WorldWideScience

Sample records for bothrops jararaca venom

  1. Proteomic identification of gender molecular markers in Bothrops jararaca venom.

    Science.gov (United States)

    Zelanis, André; Menezes, Milene C; Kitano, Eduardo S; Liberato, Tarcísio; Tashima, Alexandre K; Pinto, Antonio F M; Sherman, Nicholas E; Ho, Paulo L; Fox, Jay W; Serrano, Solange M T

    2016-04-29

    Variation in the snake venom proteome is a well-documented phenomenon; however, sex-based variation in the venom proteome/peptidome is poorly understood. Bothrops jararaca shows significant sexual size dimorphism and here we report a comparative proteomic/peptidomic analysis of venoms from male and female specimens and correlate it with the evaluation of important venom features. We demonstrate that adult male and female venoms have distinct profiles of proteolytic activity upon fibrinogen and gelatin. These differences were clearly reflected in their different profiles of SDS-PAGE, two-dimensional electrophoresis and glycosylated proteins. Identification of differential protein bands and spots between male or female venoms revealed gender-specific molecular markers. However, the proteome comparison by in-solution trypsin digestion and label-free quantification analysis showed that the overall profiles of male and female venoms are similar at the polypeptide chain level but show striking variation regarding their attached carbohydrate moieties. The analysis of the peptidomes of male and female venoms revealed different contents of peptides, while the bradykinin potentiating peptides (BPPs) showed rather similar profiles. Furthermore we confirmed the ubiquitous presence of four BPPs that lack the C-terminal Q-I-P-P sequence only in the female venom as gender molecular markers. As a result of these studies we demonstrate that the sexual size dimorphism is associated with differences in the venom proteome/peptidome in B. jararaca species. Moreover, gender-based variations contributed by different glycosylation levels in toxins impact venom complexity. Bothrops jararaca is primarily a nocturnal and generalist snake species, however, it exhibits a notable ontogenetic shift in diet and in venom proteome upon neonate to adult transition. As is common in the Bothrops genus, B. jararaca shows significant sexual dimorphism in snout-vent length and weight, with females being

  2. Evaluation of antivenoms in the neutralization of hyperalgesia and edema induced by Bothrops jararaca and Bothrops asper snake venoms

    Directory of Open Access Journals (Sweden)

    Picolo G.

    2002-01-01

    Full Text Available Neutralization of hyperalgesia induced by Bothrops jararaca and B. asper venoms was studied in rats using bothropic antivenom produced at Instituto Butantan (AVIB, 1 ml neutralizes 5 mg B. jararaca venom and polyvalent antivenom produced at Instituto Clodomiro Picado (AVCP, 1 ml neutralizes 2.5 mg B. aspar venom. The intraplantar injection of B. jararaca and B. asper venoms caused hyperalgesia, which peaked 1 and 2 h after injection, respectively. Both venoms also induced edema with a similar time course. When neutralization assays involving the independent injection of venom and antivenom were performed, the hyperalgesia induced by B. jararaca venom was neutralized only when bothropic antivenom was administered iv 15 min before venom injection, whereas edema was neutralized when antivenom was injected 15 min or immediately before venom injection. On the other hand, polyvalent antivenom did not interfere with hyperalgesia or edema induced by B. asper venom, even when administered prior to envenomation. The lack of neutralization of hyperalgesia and edema induced by B. asper venom is not attributable to the absence of neutralizing antibodies in the antivenom, since neutralization was achieved in assays involving preincubation of venom and antivenom. Cross-neutralization of AVCP or AVIB against B. jararaca and B. asper venoms, respectively, was also evaluated. Only bothropic antivenom partially neutralized hyperalgesia induced by B. asper venom in preincubation experiments. The present data suggest that hyperalgesia and edema induced by Bothrops venoms are poorly neutralized by commercial antivenoms even when antibodies are administered immediately after envenomation.

  3. Functional and proteomic comparison of Bothrops jararaca venom from captive specimens and the Brazilian Bothropic Reference Venom.

    Science.gov (United States)

    Farias, Iasmim Baptista de; Morais-Zani, Karen de; Serino-Silva, Caroline; Sant'Anna, Sávio S; Rocha, Marisa M T da; Grego, Kathleen F; Andrade-Silva, Débora; Serrano, Solange M T; Tanaka-Azevedo, Anita M

    2018-03-01

    Snake venom is a variable phenotypic trait, whose plasticity and evolution are critical for effective antivenom production. A significant reduction of the number of snake donations to Butantan Institute (São Paulo, Brazil) occurred in recent years, and this fact may impair the production of the Brazilian Bothropic Reference Venom (BBRV). Nevertheless, in the last decades a high number of Bothrops jararaca specimens have been raised in captivity in the Laboratory of Herpetology of Butantan Institute. Considering these facts, we compared the biochemical and biological profiles of B. jararaca venom from captive specimens and BBRV in order to understand the potential effects of snake captivity upon the venom composition. Electrophoretic analysis and proteomic profiling revealed few differences in venom protein bands and some differentially abundant toxins. Comparison of enzymatic activities showed minor differences between the two venoms. Similar cross-reactivity recognition pattern of both venoms by the antibothropic antivenom produced by Butantan Institute was observed. Lethality and neutralization of lethality for B. jararaca venom from captive specimens and BBRV showed similar values. Considering these results we suggest that the inclusion of B. jararaca venom from captive specimens in the composition of BBRV would not interfere with the quality of this reference venom. Snakebite envenomation is a neglected tropical pathology whose treatment is based on the use of specific antivenoms. Bothrops jararaca is responsible for the majority of snakebites in South and Southeastern Brazil. Its venom shows individual, sexual, and ontogenetic variability, however, the effect of animal captivity upon venom composition is unknown. Considering the reduced number of wild-caught snakes donated to Butantan Institute in the last decades, and the increased life expectancy of the snakes raised in captivity in the Laboratory of Herpetology, this work focused on the comparative

  4. Cross-reactivity and phospholipase A2 neutralization of anti-irradiated Bothrops jararaca venom antibodies

    International Nuclear Information System (INIS)

    Spencer, P.J.; Nascimento, N. do; Paula, R.A. de; Cardi, B.A.; Rogero, J.R.

    1995-01-01

    The detoxified Bothrops jararaca venom, immunized rabbits with the toxoid obtained and investigated cross-reactivity of the antibodies obtained against autologous and heterelogous venoms was presented. It was also investigated the ability of the IgGs, purified by affinity chromatography, from those sera to neutralize phospholipase. A 2 , an ubiquous enzyme in animal venoms. Results indicate that venom irradiation leads to an attenuation of toxicity of 84%. Cross-reactivity was investigated by ELISA and Western blot and all venoms were reactive to the antibodies. On what refers to phospholipase A 2 activity neutralization, the antibodies neutralized autologous venoms efficiently and, curiously, other venoms from the same genus were not neutralized, while Lachesis muta venom, a remote related specier, was neutralized by this serum. These data suggest that irradiation preserve important epitopes for induction of neutralizing antibodies and that these epitopes are not shared by all venoms assayed. (author). 8 refs, 2 figs, 3 tabs

  5. Individual variability in the venom proteome of juvenile Bothrops jararaca specimens.

    Science.gov (United States)

    Dias, Gabriela S; Kitano, Eduardo S; Pagotto, Ana H; Sant'anna, Sávio S; Rocha, Marisa M T; Zelanis, André; Serrano, Solange M T

    2013-10-04

    Snake venom proteomes/peptidomes are highly complex and subject to ontogenetic changes. Individual variation in the venom proteome of juvenile snakes is poorly known. We report the proteomic analysis of venoms from 21 juvenile specimens of Bothrops jararaca of different geographical origins and correlate it with the evaluation of important venom features. Individual venoms showed similar caseinolytic activities; however, their amidolytic activities were significantly different. Rather intriguingly, plasma coagulant activity showed remarkable variability among the venoms but not the prothrombin-activating activity. LC-MS analysis showed significant differences between venoms; however, an interesting finding was the ubiquitous presence of the tripeptide ZKW, an endogenous inhibitor of metalloproteinases. Electrophoretic profiles of proteins submitted to reduction showed significant variability in total proteins, glycoproteins, and in the subproteomes of proteinases. Moreover, identification of differential bands revealed variation in most B. jararaca toxin classes. Profiles of venoms analyzed under nonreducing conditions showed less individual variability and identification of proteins in a conserved band revealed the presence of metalloproteinases and l-amino acid oxidase as common components of these venoms. Taken together, our findings suggest that individual venom proteome variability in B. jararaca exists from a very early animal age and is not a result of ontogenetic and diet changes.

  6. Revisiting the Therapeutic Potential of Bothrops jararaca Venom: Screening for Novel Activities Using Connectivity Mapping

    Directory of Open Access Journals (Sweden)

    Carolina Alves Nicolau

    2018-02-01

    Full Text Available Snake venoms are sources of molecules with proven and potential therapeutic applications. However, most activities assayed in venoms (or their components are of hemorrhagic, hypotensive, edematogenic, neurotoxic or myotoxic natures. Thus, other relevant activities might remain unknown. Using functional genomics coupled to the connectivity map (C-map approach, we undertook a wide range indirect search for biological activities within the venom of the South American pit viper Bothrops jararaca. For that effect, venom was incubated with human breast adenocarcinoma cell line (MCF7 followed by RNA extraction and gene expression analysis. A list of 90 differentially expressed genes was submitted to biosimilar drug discovery based on pattern recognition. Among the 100 highest-ranked positively correlated drugs, only the antihypertensive, antimicrobial (both antibiotic and antiparasitic, and antitumor classes had been previously reported for B. jararaca venom. The majority of drug classes identified were related to (1 antimicrobial activity; (2 treatment of neuropsychiatric illnesses (Parkinson’s disease, schizophrenia, depression, and epilepsy; (3 treatment of cardiovascular diseases, and (4 anti-inflammatory action. The C-map results also indicated that B. jararaca venom may have components that target G-protein-coupled receptors (muscarinic, serotonergic, histaminergic, dopaminergic, GABA, and adrenergic and ion channels. Although validation experiments are still necessary, the C-map correlation to drugs with activities previously linked to snake venoms supports the efficacy of this strategy as a broad-spectrum approach for biological activity screening, and rekindles the snake venom-based search for new therapeutic agents.

  7. An in-depth snake venom proteopeptidome characterization: Benchmarking Bothrops jararaca.

    Science.gov (United States)

    Nicolau, Carolina A; Carvalho, Paulo C; Junqueira-de-Azevedo, Inácio L M; Teixeira-Ferreira, André; Junqueira, Magno; Perales, Jonas; Neves-Ferreira, Ana Gisele C; Valente, Richard H

    2017-01-16

    A large-scale proteomic approach was devised to advance the understanding of venom composition. Bothrops jararaca venom was fractionated by OFFGEL followed by chromatography, generating peptidic and proteic fractions. The latter was submitted to trypsin digestion. Both fractions were separately analyzed by reversed-phase nanochromatography coupled to high resolution mass spectrometry. This strategy allowed deeper and joint characterizations of the peptidome and proteome (proteopeptidome) of this venom. Our results lead to the identification of 46 protein classes (with several uniquely assigned proteins per class) comprising eight high-abundance bona fide venom components, and 38 additional classes in smaller quantities. This last category included previously described B. jararaca venom proteins, common Elapidae venom constituents (cobra venom factor and three-finger toxin), and proteins typically encountered in lysosomes, cellular membranes and blood plasma. Furthermore, this report is the most complete snake venom peptidome described so far, both in number of peptides and in variety of unique proteins that could have originated them. It is hypothesized that such diversity could enclose cryptides, whose bioactivities would contribute to envenomation in yet undetermined ways. Finally, we propose that the broad range screening of B. jararaca peptidome will facilitate the discovery of bioactive molecules, eventually leading to valuable therapeutical agents. Our proteopeptidomic strategy yielded unprecedented insights into the remarkable diversity of B. jararaca venom composition, both at the peptide and protein levels. These results bring a substantial contribution to the actual pursuit of large-scale protein-level assignment in snake venomics. The detection of typical elapidic venom components, in a Viperidae venom, reinforces our view that the use of this approach (hand-in-hand with transcriptomic and genomic data) for venom proteomic analysis, at the specimen

  8. The pharmacological effect of Bothrops neuwiedii pauloensis (jararaca-pintada snake venom on avian neuromuscular transmission

    Directory of Open Access Journals (Sweden)

    C.R. Borja-Oliveira

    2003-05-01

    Full Text Available The neuromuscular effects of Bothrops neuwiedii pauloensis (jararaca-pintada venom were studied on isolated chick biventer cervicis nerve-muscle preparations. Venom concentrations of 5-50 µg/ml produced an initial inhibition and a secondary increase of indirectly evoked twitches followed by a progressive concentration-dependent and irreversible neuromuscular blockade. At venom concentrations of 1-20 µg/ml, the responses to 13.4 mM KCl were inhibited whereas those to 110 µM acetylcholine alone and cumulative concentrations of 1 µM to 10 mM were unaffected. At venom concentrations higher than 50 µg/ml, there was pronounced muscle contracture with inhibition of the responses to acetylcholine, KCl and direct stimulation. At 20-24ºC, the venom (50 µg/ml produced only partial neuromuscular blockade (30.7 ± 8.0%, N = 3 after 120 min and the initial inhibition and the secondary increase of the twitch responses caused by the venom were prolonged and pronounced and the response to KCl was unchanged. These results indicate that B.n. pauloensis venom is neurotoxic, acting primarily at presynaptic sites, and that enzyme activity may be involved in this pharmacological action.

  9. Study of 60 Co gamma radiation effects on the biochemical, biological and immunological properties of the Bothrops jararaca venom

    International Nuclear Information System (INIS)

    Guarnieri, M.C.

    1992-01-01

    Gamma radiation, by including different modifications on the toxic, enzymatic and immunological activities of proteins, could be an useful implement for detoxification of snake venoms. The present work was done to study the mechanism of action and effects of gamma rays on the Bothrops jararaca venom, determining the radiation dose that attenuates the toxic and enzymatic activities maintaining the immunological properties of venom, and also the most important free radicals on this process. The results of immuno diffusion, immunoblotting, immunoprecipitation, immunization of mice and rabbits, and neutralization tests, showed the maintenance of antigenic and immunogenic properties and decrease of neutralizing capacity of antibodies induced by 3,000 and 4,000 Gy irradiated venom. Since the immunological properties were the most radioresistant, it was possible to determine the dose of 2,000 Gy, as the ideal radiation dose in the treatment of venoms aiming the improvement of the immunization schedule to obtain bothropic antisera. (author). 164 refs, 19 tabs, 54 figs

  10. Venom-related transcripts from Bothrops jararaca tissues provide novel molecular insights into the production and evolution of snake venom.

    Science.gov (United States)

    Junqueira-de-Azevedo, Inácio L M; Bastos, Carolina Mancini Val; Ho, Paulo Lee; Luna, Milene Schmidt; Yamanouye, Norma; Casewell, Nicholas R

    2015-03-01

    Attempts to reconstruct the evolutionary history of snake toxins in the context of their co-option to the venom gland rarely account for nonvenom snake genes that are paralogous to toxins, and which therefore represent important connectors to ancestral genes. In order to reevaluate this process, we conducted a comparative transcriptomic survey on body tissues from a venomous snake. A nonredundant set of 33,000 unigenes (assembled transcripts of reference genes) was independently assembled from six organs of the medically important viperid snake Bothrops jararaca, providing a reference list of 82 full-length toxins from the venom gland and specific products from other tissues, such as pancreatic digestive enzymes. Unigenes were then screened for nontoxin transcripts paralogous to toxins revealing 1) low level coexpression of approximately 20% of toxin genes (e.g., bradykinin-potentiating peptide, C-type lectin, snake venom metalloproteinase, snake venom nerve growth factor) in body tissues, 2) the identity of the closest paralogs to toxin genes in eight classes of toxins, 3) the location and level of paralog expression, indicating that, in general, co-expression occurs in a higher number of tissues and at lower levels than observed for toxin genes, and 4) strong evidence of a toxin gene reverting back to selective expression in a body tissue. In addition, our differential gene expression analyses identify specific cellular processes that make the venom gland a highly specialized secretory tissue. Our results demonstrate that the evolution and production of venom in snakes is a complex process that can only be understood in the context of comparative data from other snake tissues, including the identification of genes paralogous to venom toxins. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Bothrops jararaca venom metalloproteinases are essential for coagulopathy and increase plasma tissue factor levels during envenomation.

    Directory of Open Access Journals (Sweden)

    Karine M Yamashita

    2014-05-01

    Full Text Available BACKGROUND/AIMS: Bleeding tendency, coagulopathy and platelet disorders are recurrent manifestations in snakebites occurring worldwide. We reasoned that by damaging tissues and/or activating cells at the site of the bite and systemically, snake venom toxins might release or decrypt tissue factor (TF, resulting in activation of blood coagulation and aggravation of the bleeding tendency. Thus, we addressed (a whether TF and protein disulfide isomerase (PDI, an oxireductase involved in TF encryption/decryption, were altered in experimental snake envenomation; (b the involvement and significance of snake venom metalloproteinases (SVMP and serine proteinases (SVSP to hemostatic disturbances. METHODS/PRINCIPAL FINDINGS: Crude Bothrops jararaca venom (BjV was preincubated with Na2-EDTA or AEBSF, which are inhibitors of SVMP and SVSP, respectively, and injected subcutaneously or intravenously into rats to analyze the contribution of local lesion to the development of hemostatic disturbances. Samples of blood, lung and skin were collected and analyzed at 3 and 6 h. Platelet counts were markedly diminished in rats, and neither Na2-EDTA nor AEBSF could effectively abrogate this fall. However, Na2-EDTA markedly reduced plasma fibrinogen consumption and hemorrhage at the site of BjV inoculation. Na2-EDTA also abolished the marked elevation in TF levels in plasma at 3 and 6 h, by both administration routes. Moreover, increased TF activity was also noticed in lung and skin tissue samples at 6 h. However, factor VII levels did not decrease over time. PDI expression in skin was normal at 3 h, and downregulated at 6 h in all groups treated with BjV. CONCLUSIONS: SVMP induce coagulopathy, hemorrhage and increased TF levels in plasma, but neither SVMP nor SVSP are directly involved in thrombocytopenia. High levels of TF in plasma and TF decryption occur during snake envenomation, like true disseminated intravascular coagulation syndrome, and might be implicated in

  12. Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest.

    Science.gov (United States)

    Gonçalves-Machado, Larissa; Pla, Davinia; Sanz, Libia; Jorge, Roberta Jeane B; Leitão-De-Araújo, Moema; Alves, Maria Lúcia M; Alvares, Diego Janisch; De Miranda, Joari; Nowatzki, Jenifer; de Morais-Zani, Karen; Fernandes, Wilson; Tanaka-Azevedo, Anita Mitico; Fernández, Julián; Zingali, Russolina B; Gutiérrez, José María; Corrêa-Netto, Carlos; Calvete, Juan J

    2016-03-01

    Bothrops jararaca is a slender and semi-arboreal medically relevant pit viper species endemic to tropical and subtropical forests in southern Brazil, Paraguay, and northern Argentina (Misiones). Within its geographic range, it is often abundant and is an important cause of snakebite. Although no subspecies are currently recognized, geographic analyses have revealed the existence of two well-supported B. jararaca clades that diverged during the Pliocene ~3.8Mya and currently display a southeastern (SE) and a southern (S) Atlantic rainforest (Mata Atlântica) distribution. The spectrum, geographic variability, and ontogenetic changes of the venom proteomes of snakes from these two B. jararaca phylogroups were investigated applying a combined venom gland transcriptomic and venomic analysis. Comparisons of the venom proteomes and transcriptomes of B. jararaca from the SE and S geographic regions revealed notable interpopulational variability that may be due to the different levels of population-specific transcriptional regulation, including, in the case of the southern population, a marked ontogenetic venom compositional change involving the upregulation of the myotoxic PLA2 homolog, bothropstoxin-I. This population-specific marker can be used to estimate the proportion of venom from the southern population present in the B. jararaca venom pool used for the Brazilian soro antibotrópico (SAB) antivenom production. On the other hand, the southeastern population-specific D49-PLA2 molecules, BinTX-I and BinTX-II, lend support to the notion that the mainland ancestor of Bothrops insularis was originated within the same population that gave rise to the current SE B. jararaca phylogroup, and that this insular species endemic to Queimada Grande Island (Brazil) expresses a pedomorphic venom phenotype. Mirroring their compositional divergence, the two geographic B. jararaca venom pools showed distinct bioactivity profiles. However, the SAB antivenom manufactured in Vital Brazil

  13. Effect of Diterpenes Isolated of the Marine Alga Canistrocarpus cervicornis against Some Toxic Effects of the Venom of the Bothrops jararaca Snake

    Directory of Open Access Journals (Sweden)

    Thaisa Francielle Souza Domingos

    2015-02-01

    Full Text Available Snake venoms are composed of a complex mixture of active proteins and peptides which induce a wide range of toxic effects. Envenomation by Bothrops jararaca venom results in hemorrhage, edema, pain, tissue necrosis and hemolysis. In this work, the effect of a mixture of two secodolastane diterpenes (linearol/isolinearol, previously isolated from the Brazilian marine brown alga, Canistrocarpus cervicornis, was evaluated against some of the toxic effects induced by B. jararaca venom. The mixture of diterpenes was dissolved in dimethylsulfoxide and incubated with venom for 30 min at room temperature, and then several in vivo (hemorrhage, edema and lethality and in vitro (hemolysis, plasma clotting and proteolysis assays were performed. The diterpenes inhibited hemolysis, proteolysis and hemorrhage, but failed to inhibit clotting and edema induced by B. jararaca venom. Moreover, diterpenes partially protected mice from lethality caused by B. jararaca venom. The search for natural inhibitors of B. jararaca venom in C. cervicornis algae is a relevant subject, since seaweeds are a rich and powerful source of active molecules which are as yet but poorly explored. Our results suggest that these diterpenes have the potential to be used against Bothropic envenomation accidents or to improve traditional treatments for snake bites.

  14. Trichomoniasis in Bothrops jararaca (serpentes, viperidae

    Directory of Open Access Journals (Sweden)

    F. C. Vilela

    2003-01-01

    Full Text Available We describe a case of trichomoniasis in a Bothrops jararaca (Serpentes, Viperidae donated to the Center for the Study of Venoms and Venomous Animals - CEVAP/UNESP. The animal had diarrhea with great quantity of flagellated protozoa in the feces. Microscopic examination of fecal smears stained with Giemsa revealed the presence of trichomonads, morphologically similar to Trichomonas acosta. Trichomonads were not detected in fecal exams after treatment with a single dose of 40 mg/kg metronidazole (Flagyl®.

  15. Inhibitory Effects of Hydroethanolic Leaf Extracts of Kalanchoe brasiliensis and Kalanchoe pinnata (Crassulaceae) against Local Effects Induced by Bothrops jararaca Snake Venom.

    Science.gov (United States)

    Fernandes, Júlia Morais; Félix-Silva, Juliana; da Cunha, Lorena Medeiros; Gomes, Jacyra Antunes Dos Santos; Siqueira, Emerson Michell da Silva; Gimenes, Luisa Possamai; Lopes, Norberto Peporine; Soares, Luiz Alberto Lira; Fernandes-Pedrosa, Matheus de Freitas; Zucolotto, Silvana Maria

    2016-01-01

    The species Kalanchoe brasiliensis and Kalanchoe pinnata, both known popularly as "Saião," are used interchangeably in traditional medicine for their antiophidic properties. Studies evaluating the anti-venom activity of these species are scarce. This study aims to characterize the chemical constituents and evaluate the inhibitory effects of hydroethanolic leaf extracts of K. brasiliensis and K. pinnata against local effects induced by Bothrops jararaca snake venom. Thin Layer Chromatography (TLC) and High Performance Liquid Chromatography coupled with Diode Array Detection and Electrospray Mass Spectrometry (HPLC-DAD-MS/MS) were performed for characterization of chemical markers of the extracts from these species. For antiophidic activity evaluation, B. jararaca venom-induced paw edema and skin hemorrhage in mice were evaluated. In both models, hydroethanolic extracts (125-500 mg/kg) were administered intraperitoneally in different protocols. Inhibition of phospholipase enzymatic activity of B. jararaca was evaluated. The HPLC-DAD-MS/MS chromatographic profile of extracts showed some particularities in the chemical profile of the two species. K. brasileinsis exhibited major peaks that have UV spectra similar to flavonoid glycosides derived from patuletin and eupafolin, while K. pinnata showed UV spectra similar to flavonoids glycosides derived from quercetin and kaempferol. Both extracts significantly reduced the hemorrhagic activity of B. jararaca venom in pre-treatment protocol, reaching about 40% of inhibition, while only K. pinnata was active in post-treatment protocol (about 30% of inhibition). In the antiedematogenic activity, only K. pinnata was active, inhibiting about 66% and 30% in pre and post-treatment protocols, respectively. Both extracts inhibited phospholipase activity; however, K. pinnata was more active. In conclusion, the results indicate the potential antiophidic activity of Kalanchoe species against local effects induced by B. jararaca snake

  16. Inhibitory Effects of Hydroethanolic Leaf Extracts of Kalanchoe brasiliensis and Kalanchoe pinnata (Crassulaceae against Local Effects Induced by Bothrops jararaca Snake Venom.

    Directory of Open Access Journals (Sweden)

    Júlia Morais Fernandes

    Full Text Available The species Kalanchoe brasiliensis and Kalanchoe pinnata, both known popularly as "Saião," are used interchangeably in traditional medicine for their antiophidic properties. Studies evaluating the anti-venom activity of these species are scarce. This study aims to characterize the chemical constituents and evaluate the inhibitory effects of hydroethanolic leaf extracts of K. brasiliensis and K. pinnata against local effects induced by Bothrops jararaca snake venom. Thin Layer Chromatography (TLC and High Performance Liquid Chromatography coupled with Diode Array Detection and Electrospray Mass Spectrometry (HPLC-DAD-MS/MS were performed for characterization of chemical markers of the extracts from these species. For antiophidic activity evaluation, B. jararaca venom-induced paw edema and skin hemorrhage in mice were evaluated. In both models, hydroethanolic extracts (125-500 mg/kg were administered intraperitoneally in different protocols. Inhibition of phospholipase enzymatic activity of B. jararaca was evaluated. The HPLC-DAD-MS/MS chromatographic profile of extracts showed some particularities in the chemical profile of the two species. K. brasileinsis exhibited major peaks that have UV spectra similar to flavonoid glycosides derived from patuletin and eupafolin, while K. pinnata showed UV spectra similar to flavonoids glycosides derived from quercetin and kaempferol. Both extracts significantly reduced the hemorrhagic activity of B. jararaca venom in pre-treatment protocol, reaching about 40% of inhibition, while only K. pinnata was active in post-treatment protocol (about 30% of inhibition. In the antiedematogenic activity, only K. pinnata was active, inhibiting about 66% and 30% in pre and post-treatment protocols, respectively. Both extracts inhibited phospholipase activity; however, K. pinnata was more active. In conclusion, the results indicate the potential antiophidic activity of Kalanchoe species against local effects induced by B

  17. Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest

    OpenAIRE

    Gonçalves Machado, Larissa; Pla, Davinia; Sanz, Libia; Jorge, Roberta Jeane B.; Leitão De Araújo, Moema; Alves, Maria Lúcia M.; Alvares, Diego Janisch; De Miranda, Joari; Nowatzki, Jenifer; de Morais Zani, Karen; Fernandes, Wilson; Tanaka Azevedo, Anita Mitico; Fernández, Julián; Zingali, Russolina B.; Gutiérrez, José María

    2016-01-01

    Bothrops jararaca is a slender and semi-arboreal medically relevant pit viper species endemic to tropical and subtropical forests in southern Brazil, Paraguay, and northern Argentina (Misiones). Within its geographic range, it is often abundant and is an important cause of snakebite. Although no subspecies are currently recognized, geographic analyses have revealed the existence of two well-supported B. jararaca clades that diverged during the Pliocene ~ 3.8 Mya and currently display a southe...

  18. Differential transcript profile of inhibitors with potential anti-venom role in the liver of juvenile and adult Bothrops jararaca snake

    Directory of Open Access Journals (Sweden)

    Cícera Maria Gomes

    2017-04-01

    Full Text Available Background Snakes belonging to the Bothrops genus are vastly distributed in Central and South America and are responsible for most cases of reported snake bites in Latin America. The clinical manifestations of the envenomation caused by this genus are due to three major activities—proteolytic, hemorrhagic and coagulant—mediated by metalloproteinases, serine proteinases, phospholipases A2 and other toxic compounds present in snake venom. Interestingly, it was observed that snakes are resistant to the toxic effects of its own and other snake’s venoms. This natural immunity may occur due the absence of toxin target or the presence of molecules in the snake plasma able to neutralize such toxins. Methods In order to identify anti-venom molecules, we construct a cDNA library from the liver of B. jararaca snakes. Moreover, we analyzed the expression profile of four molecules—the already known anti-hemorrhagic factor Bj46a, one gamma-phospholipase A2 inhibitor, one inter-alpha inhibitor and one C1 plasma protease inhibitor—in the liver of juvenile and adult snakes by qPCR. Results The results revealed a 30-fold increase of gamma-phospholipase A2 inhibitor and a minor increase of the inter-alpha inhibitor (5-fold and of the C1 inhibitor (3-fold in adults. However, the Bj46a factor seems to be equally transcribed in adults and juveniles. Discussion The results suggest the up-regulation of different inhibitors observed in the adult snakes might be a physiological adaptation to the recurrent contact with their own and even other snake’s venoms throughout its lifespan. This is the first comparative analysis of ontogenetic variation of expression profiles of plasmatic proteins with potential anti-venom activities of the venomous snake B. jararaca. Furthermore, the present data contributes to the understanding of the natural resistance described in these snakes.

  19. Investigating possible biological targets of Bj-CRP, the first cysteine-rich secretory protein (CRISP) isolated from Bothrops jararaca snake venom.

    Science.gov (United States)

    Lodovicho, Marina E; Costa, Tássia R; Bernardes, Carolina P; Menaldo, Danilo L; Zoccal, Karina F; Carone, Sante E; Rosa, José C; Pucca, Manuela B; Cerni, Felipe A; Arantes, Eliane C; Tytgat, Jan; Faccioli, Lúcia H; Pereira-Crott, Luciana S; Sampaio, Suely V

    2017-01-04

    Cysteine-rich secretory proteins (CRISPs) are commonly described as part of the protein content of snake venoms, nevertheless, so far, little is known about their biological targets and functions. Our study describes the isolation and characterization of Bj-CRP, the first CRISP isolated from Bothrops jararaca snake venom, also aiming at the identification of possible targets for its actions. Bj-CRP was purified using three chromatographic steps (Sephacryl S-200, Source 15Q and C18) and showed to be an acidic protein of 24.6kDa with high sequence identity to other snake venom CRISPs. This CRISP was devoid of proteolytic, hemorrhagic or coagulant activities, and it did not affect the currents from 13 voltage-gated potassium channel isoforms. Conversely, Bj-CRP induced inflammatory responses characterized by increase of leukocytes, mainly neutrophils, after 1 and 4h of its injection in the peritoneal cavity of mice, also stimulating the production of IL-6. Bj-CRP also acted on the human complement system, modulating some of the activation pathways and acting directly on important components (C3 and C4), thus inducing the generation of anaphylatoxins (C3a, C4a and C5a). Therefore, our results for Bj-CRP open up prospects for better understanding this class of toxins and its biological actions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Allopurinol attenuates acute kidney injury following Bothrops jararaca envenomation.

    Directory of Open Access Journals (Sweden)

    Pedro Henrique França Gois

    2017-11-01

    Full Text Available Snakebites have been recognized as a neglected public health problem in several tropical and subtropical countries. Bothrops snakebites frequently complicate with acute kidney injury (AKI with relevant morbidity and mortality. To date, the only treatment available for Bothrops envenomation is the intravenous administration of antivenom despite its several limitations. Therefore, the study of novel therapies in Bothrops envenomation is compelling. The aim of this study was to evaluate the protective effect of Allopurinol (Allo in an experimental model of Bothrops jararaca venom (BJ-associated AKI. Five groups of Wistar rats were studied: Sham, Allo, BJ, BJ+Allo, BJ+ipAllo. BJ (0.25 mg/kg was intravenously injected during 40'. Saline at same dose and infusion rate was administered to Sham and Allo groups. Allo and BJ+Allo groups received Allo (300 mg/L in the drinking water 7 days prior to Saline or BJ infusion respectively. BJ+ipAllo rats received intraperitoneal Allo (25 mg/Kg 40' after BJ infusion. BJ rats showed markedly reduced glomerular filtration rate (GFR, inulin clearance associated with intense renal vasoconstriction, hemolysis, hemoglobinuria, reduced glutathione and increased systemic and renal markers of nitro-oxidative stress (Nitrotyrosine. Allo ameliorated GFR, renal blood flow (RBF, renal vascular resistance and arterial lactate levels. In addition, Allo was associated with increased serum glutathione as well as reduced levels of plasma and renal Nitrotyrosine. Our data show that Allo attenuated BJ-associated AKI, reduced oxidative stress, improved renal hemodynamics and organ perfusion. It might represent a novel adjuvant approach for Bothrops envenomation, a new use for an old and widely available drug.

  1. Allopurinol attenuates acute kidney injury following Bothrops jararaca envenomation

    Science.gov (United States)

    Martines, Monique Silva; Ferreira, Daniela; Volpini, Rildo; Canale, Daniele; Malaque, Ceila; Crajoinas, Renato; Girardi, Adriana Castello Costa; Massola Shimizu, Maria Heloisa; Seguro, Antonio Carlos

    2017-01-01

    Snakebites have been recognized as a neglected public health problem in several tropical and subtropical countries. Bothrops snakebites frequently complicate with acute kidney injury (AKI) with relevant morbidity and mortality. To date, the only treatment available for Bothrops envenomation is the intravenous administration of antivenom despite its several limitations. Therefore, the study of novel therapies in Bothrops envenomation is compelling. The aim of this study was to evaluate the protective effect of Allopurinol (Allo) in an experimental model of Bothrops jararaca venom (BJ)-associated AKI. Five groups of Wistar rats were studied: Sham, Allo, BJ, BJ+Allo, BJ+ipAllo. BJ (0.25 mg/kg) was intravenously injected during 40’. Saline at same dose and infusion rate was administered to Sham and Allo groups. Allo and BJ+Allo groups received Allo (300 mg/L) in the drinking water 7 days prior to Saline or BJ infusion respectively. BJ+ipAllo rats received intraperitoneal Allo (25 mg/Kg) 40’ after BJ infusion. BJ rats showed markedly reduced glomerular filtration rate (GFR, inulin clearance) associated with intense renal vasoconstriction, hemolysis, hemoglobinuria, reduced glutathione and increased systemic and renal markers of nitro-oxidative stress (Nitrotyrosine). Allo ameliorated GFR, renal blood flow (RBF), renal vascular resistance and arterial lactate levels. In addition, Allo was associated with increased serum glutathione as well as reduced levels of plasma and renal Nitrotyrosine. Our data show that Allo attenuated BJ-associated AKI, reduced oxidative stress, improved renal hemodynamics and organ perfusion. It might represent a novel adjuvant approach for Bothrops envenomation, a new use for an old and widely available drug. PMID:29155815

  2. Human antibody fragments specific for Bothrops jararacussu venom reduce the toxicity of other Bothrops sp. venoms.

    Science.gov (United States)

    Roncolato, Eduardo Crosara; Pucca, Manuela Berto; Funayama, Jaqueline Carlos; Bertolini, Thaís Barboza; Campos, Lucas Benício; Barbosa, José Elpidio

    2013-01-01

    Approximately 20,000 snakebites are registered each year in Brazil. The classical treatment for venomous snakebite involves the administration of sera obtained from immunized horses. Moreover, the production and care of horses is costly, and the use of heterologous sera can cause hypersensitivity reactions. The production of human antibody fragments by phage display technology is seen as a means of overcoming some of these disadvantages. The studies here attempted to test human monoclonal antibodies specific to Bothrops jararacussu against other Bothrops sp. venoms, using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Using the Griffin.1 phage antibody library, this laboratory previously produced scFvs capable of inhibiting the phospholipase and myotoxic activities of Bothrops jararacussu venom. The structural and functional similarities of the various forms of phospholipase A2 (PLA₂) in Bothrops venom served as the basis for the present study wherein the effectiveness of those same scFvs were evaluated against B. jararaca, B. neuwiedi, and B. moojeni venoms. Each clone was found to recognize all three Bothrops venoms, and purified scFvs partially inhibited their in vitro phospholipase activity. In vivo assays demonstrated that the scFv clone P2B7 reduced myotoxicity and increased the survival of animals that received the test venoms. The results here indicate that the scFv P2B7 is a candidate for inclusion in a mixture of specific antibodies to produce a human anti-bothropic sera. This data demonstrates that the human scFv P2B7 represents an alternative therapeutic approach to heterologous anti-bothropic sera available today.

  3. Antivenom Effects of 1,2,3-Triazoles against Bothrops jararaca and Lachesis muta Snakes

    Science.gov (United States)

    Domingos, Thaisa F. S.; Moura, Laura de A.; Carvalho, Carla; Campos, Vinícius R.; Jordão, Alessandro K.; Cunha, Anna C.; Ferreira, Vitor F.; de Souza, Maria Cecília B. V.; Sanchez, Eladio F.; Fuly, André L.

    2013-01-01

    Snake venoms are complex mixtures of proteins of both enzymes and nonenzymes, which are responsible for producing several biological effects. Human envenomation by snake bites particularly those of the viperid family induces a complex pathophysiological picture characterized by spectacular changes in hemostasis and frequently hemorrhage is also seen. The present work reports the ability of six of a series of 1,2,3-triazole derivatives to inhibit some pharmacological effects caused by the venoms of Bothrops jararaca and Lachesis muta. In vitro assays showed that these compounds were impaired in a concentration-dependent manner, the fibrinogen or plasma clotting, hemolysis, and proteolysis produced by both venoms. Moreover, these compounds inhibited biological effects in vivo as well. Mice treated with these compounds were fully protected from hemorrhagic lesions caused by such venoms. But, only the B. jararaca edema-inducing activity was neutralized by the triazoles. So the inhibitory effect of triazoles derivatives against some in vitro and in vivo biological assays of snake venoms points to promising aspects that may indicate them as molecular models to improve the production of effective antivenom or to complement antivenom neutralization, especially the local pathological effects, which are partially neutralized by antivenoms. PMID:23710441

  4. Immunological assessment of mice hyperimmunized with native and Cobalt-60-irradiated Bothrops venoms

    International Nuclear Information System (INIS)

    Ferreira Junior, R.S.; Meira, D.A.; Martinez, J.C.

    2005-01-01

    ELISA was used to evaluate, accompany, and compare the humoral immune response of Swiss mice during hyperimmunization with native and Cobalt-60-irradiated ( 60 Co) venoms of Bothrops jararaca, Bothrops jararacussu and Bothrops moojeni. Potency and neutralization were evaluated by in vitro challenges. After hyperimmunization, immunity was observed by in vivo challenge, and the side effects were assessed. The animals immunization with one LD50 of each venom occurred on days 1, 15, 21, 30, and 45, when blood samples were collected; challenges happened on the 60th day. Results showed that ELISA was efficient in evaluating, accompanying and comparing mouse immune response during hyperimmunization. Serum titers produced with natural venom were similar to those produced with irradiated venom. Immunogenic capacity was maintained after 60 Co-irradiation. The sera produced with native venom showed neutralizing potency and capacity similar to those of the sera produced with irradiated venom. All antibodies were able to neutralize five LD50 from these venoms. Clinical alterations were minimum during hyperimmunization with irradiated venom, however, necrosis and death occurred in animals inoculated with native venom. (author)

  5. Biochemical and hematological study of goats envenomed with natural and 60Co-irradiated bothropic venom

    International Nuclear Information System (INIS)

    Lucas de Oliveira, P.C.; Madruga, R.A.; Barbosa, N.P.U.; Sakate, M.

    2007-01-01

    Venoms from snakes of the Bothrops genus are proteolytic, coagulant, hemorrhagic and nephrotoxic, causing edema, necrosis, hemorrhage and intense pain at the bite site, besides systemic alterations. Many adjuvants have been added to the venom used in the sensitization of antiserum-producer animals to increase antigenic induction and reduce the envenomation pathological effects. Gamma radiation from 60 Co has been used as an attenuating agent of the venoms toxic properties. The main objective was to study, comparatively, clinical and laboratory aspects of goats inoculated with bothropic (Bothrops jararaca) venom, natural and irradiated from a 60 Co source. Twelve goats were divided into two groups of six animals: GINV, inoculated with 0.5 mg/kg of natural venom; and GIIV, inoculated with 0.5 mg/kg of irradiated venom. Blood samples were collected immediately before and one, two, seven, and thirty days after venom injection. Local lesions were daily evaluated. The following exams were carried out: blood tests; biochemical tests of urea, creatinine, creatine kinase, aspartate amino-transferase and alanine amino-transferase; clotting time; platelets count; and total serum immunoglobulin measurement. In the conditions of the present experiment, irradiated venom was less aggressive and more immunogenic than natural venom. (author)

  6. Biochemical and hematological study of goats envenomed with natural and 60Co-irradiated bothropic venom

    Energy Technology Data Exchange (ETDEWEB)

    Lucas de Oliveira, P.C.; Madruga, R.A.; Barbosa, N.P.U. [Uberaba School of Veterinary Medicine (UNIUBE), MG (Brazil)]. E-mail: pedrolucaso@uol.com.br; Sakate, M. [UNESP, Botucatu, SP (Brazil). School of Veterinary Medicine and Animal Husbandry

    2007-07-01

    Venoms from snakes of the Bothrops genus are proteolytic, coagulant, hemorrhagic and nephrotoxic, causing edema, necrosis, hemorrhage and intense pain at the bite site, besides systemic alterations. Many adjuvants have been added to the venom used in the sensitization of antiserum-producer animals to increase antigenic induction and reduce the envenomation pathological effects. Gamma radiation from {sup 60}Co has been used as an attenuating agent of the venoms toxic properties. The main objective was to study, comparatively, clinical and laboratory aspects of goats inoculated with bothropic (Bothrops jararaca) venom, natural and irradiated from a {sup 60}Co source. Twelve goats were divided into two groups of six animals: GINV, inoculated with 0.5 mg/kg of natural venom; and GIIV, inoculated with 0.5 mg/kg of irradiated venom. Blood samples were collected immediately before and one, two, seven, and thirty days after venom injection. Local lesions were daily evaluated. The following exams were carried out: blood tests; biochemical tests of urea, creatinine, creatine kinase, aspartate amino-transferase and alanine amino-transferase; clotting time; platelets count; and total serum immunoglobulin measurement. In the conditions of the present experiment, irradiated venom was less aggressive and more immunogenic than natural venom. (author)

  7. An overview of Bothrops erythromelas venom

    OpenAIRE

    Nery,Neriane Monteiro; Luna,Karla Patrícia; Fernandes,Carla Freire Celedônio; Zuliani,Juliana Pavan

    2016-01-01

    Abstract This review discusses studies on the venom of Bothrops erythromelas published over the past 36 years. During this period, many contributions have been made to understand the venomous snake, its venom, and its experimental and clinical effects better. The following chronological overview is based on 29 articles that were published between 1979 and 2015, with emphasis on diverse areas. The complexity of this task demands an integration of multidisciplinary research tools to study toxin...

  8. Hemostatic properties of Venezuelan Bothrops snake venoms with special reference to Bothrops isabelae venom.

    Science.gov (United States)

    Rodríguez-Acosta, Alexis; Sánchez, Elda E; Márquez, Adriana; Carvajal, Zoila; Salazar, Ana M; Girón, María E; Estrella, Amalid; Gil, Amparo; Guerrero, Belsy

    2010-11-01

    In Venezuela, Bothrops snakes are responsible for more than 80% of all recorded snakebites. This study focuses on the biological and hemostatic characteristics of Bothrops isabelae venom along with its comparative characteristics with two other closely related Bothrops venoms, Bothrops atrox and Bothrops colombiensis. Electrophoretic profiles of crude B. isabelae venom showed protein bands between 14 and 100 kDa with the majority in the range of 14-31 kDa. The molecular exclusion chromatographic profile of this venom contains five fractions (F1-F5). Amidolytic activity evaluation evidenced strong thrombin-like followed by kallikrein-like activities in crude venom and in fractions F1 and F2. The fibrinogenolytic activity of B. isabelae venom at a ratio of 100:1 (fibrinogen/venom) induced a degradation of A alpha and B beta chains at 15 min and 2 h, respectively. At a ratio of 100:10, a total degradation of A alpha and B beta chains at 5 min and of gamma chains at 24 h was apparent. This current study evidences one of rarely reported for Bothrops venoms, which resembles the physiologic effect of plasmin. B. isabelae venom as well as F2 and F3 fractions, contain fibrinolytic activity on fibrin plate of 36, 23.5 and 9.45 mm(2)/microg, respectively using 25 microg of protein. Crude venom and F1 fraction showed gelatinolytic activity. Comparative analysis amongst Venezuelan bothropoid venoms, evidenced that the LD(50) of B. isabelae (5.9 mg/kg) was similar to B. atrox-Puerto Ayacucho 1 (6.1 mg/kg) and B. colombiensis-Caucagua (5.8 mg/kg). B. isabelae venom showed minor hemorrhagic activity, whereas B. atrox-Parguasa (Bolivar state) was the most hemorrhagic. In this study, a relative high thrombin-like activity was observed in B. colombiensis venoms (502-568 mUA/min/mg), and a relative high factor Xa-like activity was found in B. atrox venoms (126-294 mUA/min/mg). Fibrinolytic activity evaluated with 10 microg protein, showed that B. isabelae venom contained higher

  9. Envenenamento experimental por Bothropoides jararaca e Bothrops jararacussu em ovinos: aspectos clínico-patológicos e laboratoriais Experimental poisoning by Bothropoides jararaca and Bothrops jararacussu in sheep: clinic-pathological and laboratory aspects

    Directory of Open Access Journals (Sweden)

    Ana Paula Aragão

    2010-09-01

    Bothropoides jararaca and Bothrops jararacussu venom to provide subsidies for the differential diagnosis of snake bites. The liofilized venoms were diluted in 1 ml saline and administrated subcutaneously to four sheep. Three of the animals died, and the one that received 0.5mg/kg (B. jararaca venom recovered. First symptoms were observed from 7 minutes to 1 hour after inoculation, and the clinical course varied from 7 hours and 9 minutes to 21 hours and 59 minutes. The symptoms, independent of the dosage, were swelling of the inoculation site, increased bleeding time and capillary filling, tachycardia, dyspnea, pale mucous membranes and diminished reaction to external stimuli. Laboratory tests revealed pronounced normocytic and normochromic anemia, trombocytopenia, slight reduction of fibrogen and total plasmatic protein, in two animals diminished hematocrit, besides pronounced increase of creatinaquinase and lactic dehydrogenase. At necropsy, the main findings at the inoculation site and adjacent tissues were extensive hemorrhages in the sheep inoculated with jararaca venom, and predominantly edema in the two animals inoculated with jararacussu venom. In two sheep which received jararacussu venom, acute pulmonary edema was observed. Hemorrhage and edema as the main histopathological changes, besides necrosis of muscle fibers and vessels at the inoculation site and adjacent tissue was observed. The renal tubular necrosis was attributed to shock. The volume increase at the inoculation site and surroundings was mainly due to hemorrhage (B. jararaca or edema (B. jararacussu.

  10. Factors underlying the natural resistance of animals against snake venoms

    Directory of Open Access Journals (Sweden)

    H. Moussatché

    1989-01-01

    Full Text Available The existence of mammals and reptilia with a natural resistance to snake venoms is known since a long time. This fact has been subjected to the study by several research workers. Our experiments showed us that in the marsupial Didelphis marsupialis, a mammal highly resistant to the venom of Bothrops jararaca, and other Bothrops venoms, has a genetically origin protein, a alpha-1, acid glycoprotein, now highly purified, with protective action in mice against the jararaca snake venom.

  11. Bothrops fonsecai snake venom activities and cross-reactivity with commercial bothropic venom.

    Science.gov (United States)

    Collaço, Rita de Cássia O; Randazzo-Moura, Priscila; Tamascia, Mariana L; da Silva, Igor Rapp F; Rocha, Thalita; Cogo, José C; Hyslop, Stephen; Sanny, Charles G; Rodrigues-Simioni, Léa

    2017-01-01

    In this work, we examined some biochemical and biological activities of Bothrops fonsecai venom, a pitviper endemic to southeastern Brazil, and assessed their neutralization by commercial bothropic antivenom (CAv). Cross-reactivity of venom with CAv was also assessed by immunoblotting and size-exclusion high performance chromatography (SE-HPLC). Bothrops fonsecai venom had PLA 2 , proteolytic and esterase activities that were neutralized to varying extents by venom:antivenom ratios of 5:1 and 5:2 (PLA 2 and esterase activities) or not significantly by either venom:antivenom ratio (proteolytic activity). The minimum hemorrhagic dose (69.2μg) was totally neutralized by both ratios. Clotting time in rat citrated plasma was 33±10.5s (mean±SD; n=5) and was completely neutralized by a 5:2 ratio. Edema formation was dose-dependent (1-30μg/site) and significantly inhibited by both ratios. Venom (10-300μg/mL) caused neuromuscular blockade in extensor digitorum longus preparations; this blockade was inhibited best by a 5:2 ratio. Venom caused myonecrosis and creatine kinase release in vivo (gastrocnemius muscle) and in vitro (extensor digitorum longus) that was effectively neutralized by both venom:antivenom ratios. Immunoblotting showed that venom components of ~25-100kDa interacted with CAv. SE-HPLC profiles for venom incubated with CAv or specific anti-B. fonsecai antivenom raised in rabbits (SAv) indicated that CAv had a higher binding capacity than SAv, whereas SAv had higher affinity than CAv. These findings indicate that B. fonsecai venom contains various activities that are neutralized to different extents by CAv and suggest that CAv could be used to treat envenoming by B. fonsecai. Copyright © 2016. Published by Elsevier Inc.

  12. Effects of Schizolobium parahyba extract on experimental Bothrops venom-induced acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Monique Silva Martines

    Full Text Available BACKGROUND: Venom-induced acute kidney injury (AKI is a frequent complication of Bothrops snakebite with relevant morbidity and mortality. The aim of this study was to assess the effects of Schizolobium parahyba (SP extract, a natural medicine with presumed anti-Bothrops venom effects, in an experimental model of Bothrops jararaca venom (BV-induced AKI. METHODOLOGY: Groups of 8 to 10 rats received infusions of 0.9% saline (control, C, SP 2 mg/kg, BV 0.25 mg/kg and BV immediately followed by SP (treatment, T in the doses already described. After the respective infusions, animals were assessed for their glomerular filtration rate (GFR, inulin clearance, renal blood flow (RBF, Doppler, blood pressure (BP, intra-arterial transducer, renal vascular resistance (RVR, urinary osmolality (UO, freezing point, urinary neutrophil gelatinase-associated lipocalin (NGAL, enzyme-linked immunosorbent assay [ELISA], lactate dehydrogenase (LDH, kinetic method, hematocrit (Hct, microhematocrit, fibrinogen (Fi, Klauss modified and blinded renal histology (acute tubular necrosis score. PRINCIPAL FINDINGS: BV caused significant decreases in GFR, RBF, UO, HcT and Fi; significant increases in RVR, NGAL and LDH; and acute tubular necrosis. SP did not prevent these changes; instead, it caused a significant decrease in GFR when used alone. CONCLUSION: SP administered simultaneously with BV, in an approximate 10∶1 concentration, did not prevent BV-induced AKI, hemolysis and fibrinogen consumption. SP used alone caused a decrease in GFR.

  13. Evaluation of the interaction of surfactants with stratum corneum model membrane from Bothrops jararaca by DSC.

    Science.gov (United States)

    Baby, André Rolim; Lacerda, Aurea Cristina Lemos; Velasco, Maria Valéria Robles; Lopes, Patrícia Santos; Kawano, Yoshio; Kaneko, Telma Mary

    2006-07-06

    The interaction of surfactants sodium dodecyl sulfate (SDS), cetyl trimethyl ammonium chloride (CTAC) and lauryl alcohol ethoxylated (12 mol ethylene oxide) (LAE-12OE) was evaluated on the stratum corneum (SC) of shed snake skins from Bothrops jararaca, used as model membrane, and thermal characterized by differential scanning calorimetry (DSC). Surfactant solutions were employed above of the critical micellar concentration (CMC) with treatment time of 8h. The SDS interaction with the SC model membrane has increased the characteristic transition temperature of 130 degrees C in approximately 10 degrees C for the water loss and keratin denaturation, indicating an augmentation of the water content. Samples treated with CTAC have a decrease of the water loss temperature, while, for the LAE-12OE treated samples, changes on the transition temperature have not been observed.

  14. Spectroscopic and thermal characterization of alternative model biomembranes from shed skins of Bothrops jararaca and Spilotis pullatus

    Directory of Open Access Journals (Sweden)

    André Rolim Baby

    2009-09-01

    Full Text Available Recently, there has been an interest in the use of shed snake skin as alternative model biomembrane for human stratum corneum. This research work presented as objective the qualitative characterization of alternative model biomembranes from Bothrops jararaca and Spilotis pullatus by FT-Raman, PAS-FTIR and DSC. The employed biophysical techniques permitted the characterization of the biomembranes from shed snake skin of B. jararaca and S. pullatus by the identification of vibrational frequencies and endothermic transitions that are similar to those of the human stratum corneum.Existe atualmente interesse no uso da muda de pele de cobra como modelos alternativos de biomembranas da pele humana. O presente trabalho apresentou como objetivo a caracterização qualitativa de modelos alternativos de biomembranas provenientes de mudas de pele de cobra da Bothrops jararaca e Spilotis pullatus por espectroscopia Raman (FT-Raman, espectroscopia fotoacústica no infravermelho (PAS-FTIR e calorimetria exploratória diferencial (DSC. As técnicas biofísicas FT-Raman, PAS-FTIR e DSC permitiram caracterizar qualitativamente os modelos alternativos de biomembranas provenientes das mudas de pele de cobra da B. jararaca e S. pullatus e identificar freqüências vibracionais e transições endotérmicas similares ao estrato córneo humano.

  15. Inhibition of local effects induced by Bothrops erythromelas snake venom: Assessment of the effectiveness of Brazilian polyvalent bothropic antivenom and aqueous leaf extract of Jatropha gossypiifolia.

    Science.gov (United States)

    Félix-Silva, Juliana; Gomes, Jacyra A S; Xavier-Santos, Jacinthia B; Passos, Júlia G R; Silva-Junior, Arnóbio A; Tambourgi, Denise V; Fernandes-Pedrosa, Matheus F

    2017-01-01

    Bothrops erythromelas is a snake of medical importance responsible for most of the venomous incidents in Northeastern Brazil. However, this species is not included in the pool of venoms that are used in the Brazilian polyvalent bothropic antivenom (BAv) production. Furthermore, it is well known that antivenom therapy has limited efficacy against venom-induced local effects, making the search for complementary alternatives to treat snakebites an important task. Jatropha gossypiifolia is a medicinal plant widely indicated in folk medicine as an antidote for snakebites, whose effectiveness against Bothrops jararaca venom (BjV) has been previously demonstrated in mice. In this context, this study assessed the effectiveness of the aqueous extract (AE) of this plant and of the BAv against local effects induced by B. erythromelas venom (BeV). Inhibition of BeV-induced edematogenic and hemorrhagic local effects was assayed in mice in pre-treatment (treatment prior to BeV injection) and post-treatment (treatment post-envenomation) protocols. Inhibition of proteolytic, phospholipase A 2 (PLA 2 ) and hyaluronidase enzymatic activities of BeV were evaluated in vitro. BAv cross-reactivity and estimation of antibody titers against BeV and BjV were assessed by Ouchterlony double diffusion test. The results show that in pre-treatment protocol AE and BAv presented very similar effects (about 70% of inhibition for edematogenic and 40% for hemorrhagic activities). However, BAv poorly inhibited edema and hemorrhage in post-envenomation protocol, whilst, in contrast, AE was significantly active even when used after BeV injection. AE was able to inhibit all the tested enzymatic activities of BeV, while BAv was active only against hyaluronidase activity, which could justify the low effectiveness of BAv against BeV-induced local effects in vivo. Ouchterlony's test showed positive cross-reactivity against BeV, but the antibody titers were slightly higher against BjV. Together, these

  16. Neutralization of toxicological activities of medically-relevant Bothrops snake venoms and relevant toxins by two polyvalent bothropic antivenoms produced in Peru and Brazil.

    Science.gov (United States)

    Estevao-Costa, Maria I; Gontijo, Silea S; Correia, Barbara L; Yarleque, Armando; Vivas-Ruiz, Dan; Rodrigues, Edith; Chávez-Olortegui, Carlos; Oliveira, Luciana S; Sanchez, Eladio F

    2016-11-01

    Snakebite envenoming is a neglected public pathology, affecting especially rural communities or isolated areas of tropical and subtropical Latin American countries. The parenteral administration of antivenom is the mainstay and the only validated treatment of snake bite envenoming. Here, we assess the efficacy of polyspecific anti-Bothrops serum (α-BS) produced in the Instituto Nacional de Salud (INS, Peru) and at the Fundação Ezequiel Dias (FUNED, Brazil), to neutralize the main toxic activities induced by five medically-relevant venoms of: Bothrops atrox, B. barnetti, and B. pictus from Peru, and the Brazilian B. jararaca and B. leucurus, all of them inhabiting different geographical locations. Protein electrophoretic patterns of these venoms showed significant differences in composition, number and intensity of bands. Another goal was to evaluate the efficacy and safety of lyophilized α-BS developed at INS to neutralize the detrimental effects of these venoms using in vivo and in vitro assays. The availability of lyophilized α-BS has relevant significance in its distribution to distant rural communities where the access to antivenom in health facilities is more difficult. Despite the fact that different antigen mixtures were used for immunization during antivenom production, our data showed high toxin-neutralizing activity of α-BS raised against Bothrops venoms. Moreover, the antivenom cross-reacted even against venoms not included in the immunization mixture. Furthermore, we have evaluated the efficacy of both α-BS to neutralize key toxic compounds belonging to the predominant protein families of Bothrops snakes. Most significantly, both α-BS cross-specifically neutralized the main toxicological activities e.g. lethality and hemorrhage induced by these venoms. Thus, our data indicate that both α-BS are equally effective to treat snake bite victims inflicted by Bothrops snakes particularly B. atrox, responsible for the largest numbers of human

  17. Variação anual do sistema reprodutor de fêmeas de Bothrops jararaca (Serpentes, Viperidae Annual variation of the reproductive system in females of Bothrops jararaca (Serpentes, Viperidae

    Directory of Open Access Journals (Sweden)

    Thélia R. F. Janeiro-Cinquini

    2004-09-01

    Full Text Available The morphological changes of the ovary and oviduct of 238 tropical snakes Bothrops jararaca (Wied, 1824 were determined. The ovarian mass presented a remarkable decrease in October, after ovulation, staying in low levels from November to March, during the gestational period. From April to September, it increased because of the ovarian follicles maturation. A gradual increase in oviduct weight was observed from October to March due to stages of embryonic development. A significant difference was observed between right and left ovary weight, and oviduct length, independently of the months considered.

  18. Purification of phospholipase A2 from Bothrops atrox venom

    Directory of Open Access Journals (Sweden)

    B. Quevedo

    1999-01-01

    Full Text Available Phospholipase A2 (PLA2 from Bothrops atrox (Sensu lato venom, from Chiriguaná (Colombia was purified using exclusión chromatography on Sephadex G-75, obtaining five fractions one of which showed phospholipase A2 activity. After further purification on Mono S cationic exchange column, eight fractions with PLA2 activity, measured using the hemolytic method, were obtained.

  19. The interaction of the antitoxin DM43 with a snake venom metalloproteinase analyzed by mass spectrometry and surface plasmon resonance

    DEFF Research Database (Denmark)

    Brand, Guilherme D; Salbo, Rune; Jørgensen, Thomas J D

    2012-01-01

    DM43 is a circulating dimeric antitoxin isolated from Didelphis aurita, a South American marsupial naturally immune to snake envenomation. This endogenous inhibitor binds non-covalently to jararhagin, the main hemorrhagic metalloproteinase from Bothrops jararaca snake venom, and efficiently...

  20. The influence of circadian rhythms on the metabolism of the snake Bothrops jararaca (Serpentes, Viperidae = A influência dos ritmos circadianos no metabolismo da serpente Bothrops jararaca (Serpentes, Viperidae

    Directory of Open Access Journals (Sweden)

    José Geraldo Pereira da Cruz

    2008-07-01

    Full Text Available The thermoregulatory activity has led to an extensive search for correlations between physiological variables, including metabolic functions, and the ideal level of body temperature. Snakes were also often seen basking, when their body temperatures were relatively independent of ambient temperature, indicating successful thermoregulation. Bothrops jararaca were exposed to two different ambient temperatures (20 and 30oC over a time course of three weeks and oxygen consumption and body temperature were measured. The snakes exhibited a freerunning rhythm of body temperature. Metabolic rate wasincreased at the same circadian phase as the increase in body temperature in the 30oC. The increase of body temperature and oxygen consumption of B. jararaca occurs in the scotophase of the photoperiod, consistent with that of nocturnal species. However, prior to a scotophase period the snakes under 20oC maintain body temperature and oxygen consumption at higher levels during the day. These results demonstrate for the first time that ectothermic animals may display physiologically generated circadian rhythms of bodytemperature similar to those recorded in endotherms. Circadian rhythms allow animals to anticipate environmental changes: physiological parameters such as body temperature andmobilization of energy reserves have to be adjusted before the expected environmental changes actually take place.A atividade termorreguladora conduziu a uma busca extensiva para o entendimento das correlações entre as variáveis fisiológicas, incluindo as funções metabólicas e a temperatura corporal. Frequentes observações mostram que algumas serpentes podem se aquecer, sendo este aumento de temperatura independente da temperatura ambiente, indicando a termorregulação bem sucedida. Bothrops jararaca foramexpostas a dois ambientes com diferentes temperaturas (20 e 30oC durante três semanas, sendo mensuradas a temperatura corporal e o consumo de oxigênio. O aumento

  1. Neuromuscular activity of Bothrops fonsecai snake venom in vertebrate preparations

    Science.gov (United States)

    Fernandes, Carla T; Giaretta, Vânia MA; Prudêncio, Luiz S; Toledo, Edvana O; da Silva, Igor RF; Collaço, Rita CO; Barbosa, Ana M; Hyslop, Stephen; Rodrigues-Simioni, Léa; Cogo, José C

    2014-01-01

    The neuromuscular activity of venom from Bothrops fonsecai, a lancehead endemic to southeastern Brazil, was investigated. Chick biventer cervicis (CBC) and mouse phrenic nerve-diaphragm (PND) preparations were used for myographic recordings and mouse diaphragm muscle was used for membrane resting potential (RP) and miniature end-plate potential (MEPP) recordings. Creatine kinase release and muscle damage were also assessed. In CBC, venom (40, 80 and 160μg/ml) produced concentration- and time-dependent neuromuscular blockade (50% blockade in 85±9 min and 73±8 min with 80 and 160μg/ml, respectively) and attenuated the contractures to 110μM ACh (78–100% inhibition) and 40mM KCl (45–90% inhibition). The venom-induced decrease in twitch-tension in curarized, directly-stimulated preparations was similar to that in indirectly stimulated preparations. Venom (100 and 200μg/ml) also caused blockade in PND preparations (50% blockade in 94±13 min and 49±8 min with 100 and 200μg/ml, respectively) but did not alter the RP or MEPP amplitude. In CBC, venom caused creatine kinase release and myonecrosis. The venom-induced decrease in twitch-tension and in the contractures to ACh and K+ were abolished by preincubating venom with commercial antivenom. These findings indicate that Bothrops fonsecai venom interferes with neuromuscular transmission essentially through postsynaptic muscle damage that affects responses to ACh and KCl. These actions are effectively prevented by commercial antivenom. PMID:25028603

  2. Comparison of Phylogeny, Venom Composition and Neutralization by Antivenom in Diverse Species of Bothrops Complex

    Science.gov (United States)

    Peixoto, Pedro S.; Bernardoni, Juliana L.; Oliveira, Sâmella S.; Portes-Junior, José Antonio; Mourão, Rosa Helena V.; Lima-dos-Santos, Isa; Sano-Martins, Ida S.; Chalkidis, Hipócrates M.; Valente, Richard H.; Moura-da-Silva, Ana M.

    2013-01-01

    In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB – soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted. PMID

  3. Quantitative evaluation of blood elements by neutron activation analysis in mice immunized with Bothrops snake venoms

    International Nuclear Information System (INIS)

    Zamboni, C.B.; Metairon, S.; Suzuki, M.F.; Furtado, M.F.; Sant'Anna, O.A.; Tambourgi, D.V.

    2009-01-01

    Mice genetically selected for high antibody responsiveness (HIII) were immunized against different Bothrops species snake venoms from distinct region of Brazil. The Neutron Activation Analysis technique was used to evaluate the whole blood concentrations of elements of clinical relevance [Ca, Cl, K, Mg and Na] in order to establish a potential correlation between antibody response and blood constituents after Bothrops venom administration for clinical screening of envenomed patients. (author)

  4. Distribution of 131 I- labeled Bothrops erythromelas venom in mice

    International Nuclear Information System (INIS)

    Vasconcelos, C.M.L.; Valenca, R.C.; Araujo, E.A.; Modesto, J.C.A.; Pontes, M.M.; Guarnieri, M.C.; Brazil, T.K.

    1998-01-01

    Bothrops erythromelas is responsible for many snake bites in northeastern Brazil. In the present study we determined the in vivo distribution of the venom following its subcutaneous injection into mice. B. erythromelas venom and albumin were labeled individually with 131 I by the chloramine T method, and separated in a Sephacryl S-200 column. The efficiency of labeling was 68%.Male Swiss mice (40-45 g), which had been provided with drinking water containing 0.05% KI over a period of 10 days prior to the experiment, were inoculated dorsally (sc) with 0.3 ml (2.35 x 10 5 cpm/mouse) of 131 I-venom (N = 42), 131 -albumin or 131 I (controls, N = 28 each). Thirty minutes and 1,3, 6, 12, 18 and 24 h after inoculation, the animals were perfused with 0.85% Na Cl and skin and various organs were collected in order to determine radioactivity content. There was a high rate of venom absorption int he skin (51%) within the first 30 min compared to albumin (20.1%) and free iodine (8.2%). Up to the third hour after injection there was a tendency for venom and albumin to concentrate in the stomach ( 3 rd h),small intestine (3 rd h) and large intestine (6th h). Both control groups had more radioactivity in the digestive tract, especially in the stomach, but these levels decreased essentially to baseline by 12-18 h postinjection. In the kidneys, the distribution profiles of venom, albumin and iodine were similar. Counts at 30 min postinjection were low in all three groups (1.37, 1.86 and 0.77, respectively), and diminished to essentially 0% by 12-18 h. Albumin tended to concentrate in muscle until the 3 rd h postinjection (1.98%).There was a low binding of labeled venom in the liver (B. erythromelas venom does not specifically target most internal organs. That is, the systemic effects of envenomation ar mainly due to an indirect action. (author)

  5. Biochemical and immunological alterations of 60 Co irradiated Bothrops jararacussu venom

    International Nuclear Information System (INIS)

    Spencer, Patrick J.

    1995-01-01

    Proteins irradiation leads to structural alterations resulting in activity and function loss. This process has been useful to detoxify animal venoms and toxins, resulting in low toxicity products which increased immunogenicity. The Bothrops jararacussu venom behaves as a weak immunogen and its lethal activity in not neutralized by either autologous, heterologous or bothropic polyvalent antisera. This venom is markedly myotoxic and and the commercial bothropic antiserum does not neutralize this activity, because of this low immunogenicity of the myotoxins. This present work was done in order to evaluate the possibility of irradiating Bothrops jararacussu, intending to increase the immunogenicity of the myotoxic components, leading to productions of myotoxins neutralizing antibodies. Bothrops jararacussu venom samples were irradiated with 500, 1000 and 2000 Gy of 60 Co gamma rays. A 2.3 folds decrease of toxicity was observed for the 1000 Gy irradiated samples while the 2000 Gy irradiated sample was at least 3.7 folds attenuated. On the other hand, the 500 Gy did not promote any detoxification. Electrophoresis and HPLC data indicate that the irradiation lead to the formation of high molecular weight products (aggregates). The proteolytic and phospholipasic activities decreased in a dose dependent manner, the phospholipases being more resistant than the proteases. Both the animals (rabbit) immunized with either native or 2000 Gy irradiated venom produced native venom binding antibodies, a slightly higher titer being obtained in the serum of the rabbit immunized with the irradiated samples. Western blot data indicate that the anti-irradiated venom Ig Gs recognised a greater amount of either autologous or heterologous venom bands, both sera behaving as genus specific. The anti-native serum did not neutralize the myotoxic activity of native venom, while the anti-irradiated one was able to neutralize this activity. (author)

  6. Inactivation and fragmentation of lectin from Bothrops leucurus snake venom by gamma irradiation

    International Nuclear Information System (INIS)

    Nunes, E.S.; Souza, M.A.A.; Vaz, A.F.M.; Coelho, L.C.B.B.; Aguiar, J.S.; Silva, T.G.; Guarnieri, M.C.; Melo, A.M.M.A.; Oliva, M.L.V.; Correia, M.T.S.

    2012-01-01

    Gamma radiation alters the molecular structure of biomolecules and is able to mitigate the action of snake venoms and their isolated toxins. The effect of γ-radiation on the folding of Bothrops lecurus venom lectin was measured by a hemagglutinating assay, intrinsic and bis-ANS fluorescence. Intrinsic and bis-ANS fluorescence analyses indicated that irradiation caused unfolding followed by aggregation of the lectin. Our results suggest that irradiation can lead to significant changes in the protein structure, which may promote the loss of its binding property and toxic action. - Highlights: ► Gamma radiation alters the molecular structure of biomolecules. ► The radiation has been able to mitigate snake venoms and its isolated toxins. ► Our aim was to evaluate the effects of radiation in Bothrops lecurus venom lectin. ► The irradiation acts as a detoxification strategy in snake venoms.

  7. Snake Venomics and Antivenomics of Bothrops diporus, a Medically Important Pitviper in Northeastern Argentina

    Science.gov (United States)

    Gay, Carolina; Sanz, Libia; Calvete, Juan J.; Pla, Davinia

    2015-01-01

    Snake species within genus Bothrops are responsible for more than 80% of the snakebites occurring in South America. The species that cause most envenomings in Argentina, B. diporus, is widely distributed throughout the country, but principally found in the Northeast, the region with the highest rates of snakebites. The venom proteome of this medically relevant snake was unveiled using a venomic approach. It comprises toxins belonging to fourteen protein families, being dominated by PI- and PIII-SVMPs, PLA2 molecules, BPP-like peptides, L-amino acid oxidase and serine proteinases. This toxin profile largely explains the characteristic pathophysiological effects of bothropic snakebites observed in patients envenomed by B. diporus. Antivenomic analysis of the SAB antivenom (Instituto Vital Brazil) against the venom of B. diporus showed that this pentabothropic antivenom efficiently recognized all the venom proteins and exhibited poor affinity towards the small peptide (BPPs and tripeptide inhibitors of PIII-SVMPs) components of the venom. PMID:26712790

  8. Complete amino-acid sequence, crystallization and preliminary X-ray diffraction studies of leucurolysin-a, a nonhaemorrhagic metalloproteinase from Bothrops leucurus snake venom

    International Nuclear Information System (INIS)

    Ferreira, Rodrigo Novaes; Rates, Breno; Richardson, Michael; Guimarães, Beatriz Gomes; Sanchez, Eládio Oswaldo Flores; Castro Pimenta, Adriano Monteiro de; Nagem, Ronaldo Alves Pinto

    2009-01-01

    Leucurolysin-a, a nonhaemorrhagic metalloproteinase from B. leucurus snake venom, has been crystallized in a free form and in a complexed form. Leucurolysin-a (leuc-a) is a class P-I snake-venom metalloproteinase isolated from the venom of the South American snake Bothrops leucurus (white-tailed jararaca). The mature protein is composed of 202 amino-acid residues in a single polypeptide chain. It contains a blocked N-terminus and is not glycosylated. In vitro studies revealed that leuc-a dissolves clots made either from purified fibrinogen or from whole blood. Unlike some other venom fibrinolytic metalloproteinases, leuc-a has no haemorrhagic activity. Leuc-a was sequenced and was crystallized using the hanging-drop vapour-diffusion technique. Crystals were obtained using PEG 6000 or PEG 1500. Diffraction data to 1.80 and 1.60 Å resolution were collected from two crystals (free enzyme and the endogenous ligand–protein complex, respectively). They both belonged to space group P2 1 2 1 2 1 , with very similar unit-cell parameters (a = 44.0, b = 56.2, c = 76.3 Å for the free-enzyme crystal)

  9. The Triterpenoid Betulin Protects against the Neuromuscular Effects of Bothrops jararacussu Snake Venom In Vivo

    Directory of Open Access Journals (Sweden)

    Miriéle Cristina Ferraz

    2015-01-01

    Full Text Available We confirmed the ability of the triterpenoid betulin to protect against neurotoxicity caused by Bothrops jararacussu snake venom in vitro in mouse isolated phrenic nerve-diaphragm (PND preparations and examined its capability of in vivo protection using the rat external popliteal/sciatic nerve-tibialis anterior (EPSTA preparation. Venom caused complete, irreversible blockade in PND (40 μg/mL, but only partial blockade (~30% in EPSTA (3.6 mg/kg, i.m. after 120 min. In PND, preincubation of venom with commercial bothropic antivenom (CBA attenuated the venom-induced blockade, and, in EPSTA, CBA given i.v. 15 min after venom also attenuated the blockade (by ~70% in both preparations. Preincubation of venom with betulin (200 μg/mL markedly attenuated the venom-induced blockade in PND; similarly, a single dose of betulin (20 mg, i.p., 15 min after venom virtually abolished the venom-induced decrease in contractility. Plasma creatine kinase activity was significantly elevated 120 min after venom injection in the EPSTA but was attenuated by CBA and betulin. These results indicate that betulin given i.p. has a similar efficacy as CBA given i.v. in attenuating the neuromuscular effects of B. jararacussu venom in vivo and could be a useful complementary measure to antivenom therapy for treating snakebite.

  10. The Triterpenoid Betulin Protects against the Neuromuscular Effects of Bothrops jararacussu Snake Venom In Vivo

    Science.gov (United States)

    Ferraz, Miriéle Cristina; de Oliveira, Jhones Luiz; de Oliveira Junior, Joel Reis; Cogo, José Carlos; dos Santos, Márcio Galdino; Franco, Luiz Madaleno; Puebla, Pilar; Ferraz, Helena Onishi; Ferraz, Humberto Gomes; da Rocha, Marisa Maria Teixeira; Hyslop, Stephen

    2015-01-01

    We confirmed the ability of the triterpenoid betulin to protect against neurotoxicity caused by Bothrops jararacussu snake venom in vitro in mouse isolated phrenic nerve-diaphragm (PND) preparations and examined its capability of in vivo protection using the rat external popliteal/sciatic nerve-tibialis anterior (EPSTA) preparation. Venom caused complete, irreversible blockade in PND (40 μg/mL), but only partial blockade (~30%) in EPSTA (3.6 mg/kg, i.m.) after 120 min. In PND, preincubation of venom with commercial bothropic antivenom (CBA) attenuated the venom-induced blockade, and, in EPSTA, CBA given i.v. 15 min after venom also attenuated the blockade (by ~70% in both preparations). Preincubation of venom with betulin (200 μg/mL) markedly attenuated the venom-induced blockade in PND; similarly, a single dose of betulin (20 mg, i.p., 15 min after venom) virtually abolished the venom-induced decrease in contractility. Plasma creatine kinase activity was significantly elevated 120 min after venom injection in the EPSTA but was attenuated by CBA and betulin. These results indicate that betulin given i.p. has a similar efficacy as CBA given i.v. in attenuating the neuromuscular effects of B. jararacussu venom in vivo and could be a useful complementary measure to antivenom therapy for treating snakebite. PMID:26633987

  11. Naa Technique for Clinical Investigation of Mice Immunized with BOTHROP Venom

    Science.gov (United States)

    Zamboni, C. B.; Aguiar, R. O.; Kovacs, L.; Suzuki, M.; Sant'Anna, O. A.

    2009-06-01

    In the present study Neutron Activation Analysis (NAA) technique was used to determine sodium concentration in whole blood of mice immunized with Bothrops venom. With this value it was possible to perform clinical investigation in this animal model using whole blood.

  12. Antigenic cross-reactivity and immunogenicity of Bothrops venoms from snakes of the Amazon region.

    Science.gov (United States)

    Furtado, Maria de Fátima D; Cardoso, Silvia Travaglia; Soares, Oscar Espellet; Pereira, Aparecida Pietro; Fernandes, Daniel Silva; Tambourgi, Denise Vilarinho; Sant'Anna, Osvaldo Augusto

    2010-04-01

    Snakebites are still a critical public health problem in developing countries or isolated areas. In Brazil, the North Region has a high distribution coefficient worsened by the significant number of eventually unreported cases, due to difficulties in access to health services, to the natural geographic barriers and the vast territory. In the Rio Negro area, the species Bothrops atrox, Bothrops brazili, Lachesis muta muta and Bothriopsis taeniata are thought to be the major species responsible for snakebites. The aim of this study was to qualitatively and quantitatively determine the antigenic cross-reactivity and expression of toxins and the immunogenicity of Bothrops venom species of the Amazon and to evaluate the general efficacy of the therapeutic sera. The in vivo assays demonstrated that the defibrinating activity of B. taeniata venom was absent but that the lethal and hemorrhagic properties were more intense than in the B. atrox venom. The results evidence venom variability among the two B. atrox populations from two distinct Amazonian regions, which may reveal a subjacent speciation process. The results point to new aspects that may guide the improvement of anti-Bothropic therapeutic serum. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Biochemical and immunological alterations of {sup 60} Co irradiated Bothrops jararacussu venom; Alteracoes bioquimicas e imunologicas do veneno de Bothrops jararacussu irradiado com {sup 60} Co

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Patrick J.

    1995-12-31

    Proteins irradiation leads to structural alterations resulting in activity and function loss. This process has been useful to detoxify animal venoms and toxins, resulting in low toxicity products which increased immunogenicity. The Bothrops jararacussu venom behaves as a weak immunogen and its lethal activity in not neutralized by either autologous, heterologous or bothropic polyvalent antisera. This venom is markedly myotoxic and and the commercial bothropic antiserum does not neutralize this activity, because of this low immunogenicity of the myotoxins. This present work was done in order to evaluate the possibility of irradiating Bothrops jararacussu, intending to increase the immunogenicity of the myotoxic components, leading to productions of myotoxins neutralizing antibodies. Bothrops jararacussu venom samples were irradiated with 500, 1000 and 2000 Gy of {sup 60} Co gamma rays. A 2.3 folds decrease of toxicity was observed for the 1000 Gy irradiated samples while the 2000 Gy irradiated sample was at least 3.7 folds attenuated. On the other hand, the 500 Gy did not promote any detoxification. Electrophoresis and HPLC data indicate that the irradiation lead to the formation of high molecular weight products (aggregates). The proteolytic and phospholipasic activities decreased in a dose dependent manner, the phospholipases being more resistant than the proteases. Both the animals (rabbit) immunized with either native or 2000 Gy irradiated venom produced native venom binding antibodies, a slightly higher titer being obtained in the serum of the rabbit immunized with the irradiated samples. Western blot data indicate that the anti-irradiated venom Ig Gs recognised a greater amount of either autologous or heterologous venom bands, both sera behaving as genus specific. The anti-native serum did not neutralize the myotoxic activity of native venom, while the anti-irradiated one was able to neutralize this activity. (author). 56 refs., 7 figs.

  14. Analysis of Brazilian snake venoms by neutron activation analysis

    International Nuclear Information System (INIS)

    Saiki, M.; Vasconcellos, M.B.A.; Rogero, J.R.; Cruz, M.C.G.

    1991-01-01

    Instrumental neutron activation analysis (INAA) has been applied to multielemental determinations of Brazilian snake venoms from the species: Bothrops jararacussu, Crotalus durissus terrificus and Bothrops jararaca. Concentrations of Br, Ca, Cl, Cs, K, Mg, Na, Rb, Sb, Se and Zn have been determined in lyophilized venoms by using short and long irradiations in the IEA-RI nuclear reactor under a thermal neutron flux of 10 11 to 10 13 n · cm -2 · s -1 . The reference materials NIST Bovine Liver 1577 and IUPAC Bowen's Kale were also analyzed simultaneously with the venoms to evaluate the accuracy and the reproducibility of the method. The concentrations of the elements found in snake venoms from different species were compared. The Crotalus durissus terrificus venoms presented high concentration of Se but low concentrations of Zn when these results are compared with those obtained from genera Bothrops venoms. (author) 9 refs.; 2 tabs

  15. The distribution and elimination of Bothrops erythromelas venom labeled with 131 I after intravenous injection in mice

    International Nuclear Information System (INIS)

    Rocha, M.L.

    1999-01-01

    Pharmacokinetic studies can be used to study the systemic effects of snake venoms and to develop standard serotherapy protocols for envenomation. Bothrops erythromelas is probably responsible for most of the snakebite in Pernambuco. The objective of this study was to investigate the pharmacokinetics of B. erythromelas venom (BeV) in mice, and to evaluate the efficacy of bothropic antivenom. BeV showed bicompartmental distribution in the blood of the experimental animals. (author)

  16. The distribution and elimination of Bothrops erythromelas venom labeled with {sup 131} I after intravenous injection in mice

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.L. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Zoologia]. E-mail: rocha@cascavel.uefs.br

    1999-07-01

    Pharmacokinetic studies can be used to study the systemic effects of snake venoms and to develop standard serotherapy protocols for envenomation. Bothrops erythromelas is probably responsible for most of the snakebite in Pernambuco. The objective of this study was to investigate the pharmacokinetics of B. erythromelas venom (BeV) in mice, and to evaluate the efficacy of bothropic antivenom. BeV showed bicompartmental distribution in the blood of the experimental animals. (author)

  17. A bradykinin-potentiating peptide (BPP-10c) from Bothrops jararaca induces changes in seminiferous tubules.

    Science.gov (United States)

    Gilio, Joyce M; Portaro, Fernanda Cv; Borella, Maria I; Lameu, Claudiana; Camargo, Antonio Cm; Alberto-Silva, Carlos

    2013-11-06

    The testis-specific isoform of angiotensin-converting enzyme (tACE) is exclusively expressed in germ cells during spermatogenesis. Although the exact role of tACE in male fertility is unknown, it clearly plays a critical function in spermatogenesis. The dipeptidase domain of tACE is identical to the C-terminal catalytic domain of somatic ACE (sACE). Bradykinin potentiating peptides (BPPs) from snake venoms are the first natural sACE inhibitors described and their structure-activity relationship studies were the basis for the development of antihypertensive drugs such as captopril. In recent years, it has been showed that a number of BPPs - including BPP-10c - are able to distinguish between the N- and C-active sites of sACE, what is not applicable to captopril. Considering the similarity between tACE and sACE (and since BPPs are able to distinguish between the two active sites of sACE), the effects of the BPP-10c and captopril on the structure and function of the seminiferous epithelium were characterized in the present study. BPP-10c and captopril were administered in male Swiss mice by intraperitoneal injection (4.7 μmol/kg for 15 days) and histological sections of testes were analyzed. Classification of seminiferous tubules and stage analysis were carried out for quantitative evaluation of germ cells of the seminiferous epithelium. The blood-testis barrier (BTB) permeability and distribution of claudin-1 in the seminiferous epithelium were analyzed by hypertonic fixative method and immunohistochemical analyses of testes, respectively. The morphology of seminiferous tubules from animals treated with BPP-10c showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and degenerated germ cells in the adluminal compartment. BPP-10c led to an increase in the number of round spermatids and total support capacity of Sertoli cell in stages I, V, VII/VIII of the seminiferous epithelium cycle, without affecting BTB permeability

  18. A bradykinin-potentiating peptide (BPP-10c) from Bothrops jararaca induces changes in seminiferous tubules

    Science.gov (United States)

    2013-01-01

    Background The testis-specific isoform of angiotensin-converting enzyme (tACE) is exclusively expressed in germ cells during spermatogenesis. Although the exact role of tACE in male fertility is unknown, it clearly plays a critical function in spermatogenesis. The dipeptidase domain of tACE is identical to the C-terminal catalytic domain of somatic ACE (sACE). Bradykinin potentiating peptides (BPPs) from snake venoms are the first natural sACE inhibitors described and their structure–activity relationship studies were the basis for the development of antihypertensive drugs such as captopril. In recent years, it has been showed that a number of BPPs – including BPP-10c – are able to distinguish between the N- and C-active sites of sACE, what is not applicable to captopril. Considering the similarity between tACE and sACE (and since BPPs are able to distinguish between the two active sites of sACE), the effects of the BPP-10c and captopril on the structure and function of the seminiferous epithelium were characterized in the present study. BPP-10c and captopril were administered in male Swiss mice by intraperitoneal injection (4.7 μmol/kg for 15 days) and histological sections of testes were analyzed. Classification of seminiferous tubules and stage analysis were carried out for quantitative evaluation of germ cells of the seminiferous epithelium. The blood-testis barrier (BTB) permeability and distribution of claudin-1 in the seminiferous epithelium were analyzed by hypertonic fixative method and immunohistochemical analyses of testes, respectively. Results The morphology of seminiferous tubules from animals treated with BPP-10c showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and degenerated germ cells in the adluminal compartment. BPP-10c led to an increase in the number of round spermatids and total support capacity of Sertoli cell in stages I, V, VII/VIII of the seminiferous epithelium cycle, without

  19. Venomics and antivenomics of Bothrops erythromelas from five geographic populations within the Caatinga ecoregion of northeastern Brazil.

    Science.gov (United States)

    Jorge, Roberta Jeane B; Monteiro, Helena S A; Gonçalves-Machado, Larissa; Guarnieri, Míriam C; Ximenes, Rafael M; Borges-Nojosa, Diva M; Luna, Karla P de O; Zingali, Russolina B; Corrêa-Netto, Carlos; Gutiérrez, José María; Sanz, Libia; Calvete, Juan J; Pla, Davinia

    2015-01-30

    The Caatinga lancehead, Bothrops erythromelas, is a medically relevant species, responsible for most of the snakebite accidents in most parts of its distribution range in northeastern Brazil. The spectrum and geographic variability of its venom toxins were investigated applying a venomics approach to venom pools from five geographic areas within the Caatinga ecoregion. Despite its wide habitat, populations of B. erythromelas from Ceará, Pernambuco, Juazeiro, Paraiba, and Ilha de Itaparica exhibit highly conserved venom proteomes. Mirroring their compositional conservation, the five geographic venom pools also showed qualitatively and quantitatively overlapping antivenomic profiles against antivenoms generated in Vital Brazil (BR) and Clodomiro Picado (CR) Institutes, using different venoms in the immunization mixtures. The paraspecificity exhibited by the Brazilian SAB and the Costa Rican BCL antivenoms against venom toxins from B. erythromelas indicates large immunoreactive epitope conservation across genus Bothrops during the last ~14 million years, thus offering promise for the possibility of generating a broad-spectrum bothropic antivenom. Biological Significance Accidental snakebite envenomings represent an important public health hazard in Brazil. Ninety per cent of the yearly estimated 20-30,000 snakebite accidents are caused by species of the Bothrops genus. Bothrops erythromelas, a small, moderately stocky terrestrial venomous snake, is responsible for most of the snakebite accidents in its broad distribution range in the Caatinga, a large ecoregion in northeastern Brazil. To gain a deeper insight into the spectrum of medically important toxins present in the venom of the Caatinga lancehead, we applied a venomics approach to define the proteome and geographic variability of adult B. erythromelas venoms from five geographic regions. Although intraspecific compositional variation between venoms among specimens from different geographic regions has long been

  20. Local inflammation, lethality and cytokine release in mice injected with Bothrops atrox venom

    Directory of Open Access Journals (Sweden)

    S. F. Barros

    1998-01-01

    Full Text Available We have provided evidence that: (a lethality of mice to crude Bothrops venom varies according the isogenic strain (A/J > C57Bl/6 > A/Sn > BALB/c > C3H/ HePas > DBA/2 > C3H/He; (bBALB/c mice (LD50=100.0 μg were injected i.p. with 50 μg of venom produced IL-6, IL-10, INF-γ, TNF-α and NO in the serum. In vitro the cells from the mice injected and challenged with the venom only released IL-10 while peritoneal macrophages released IL-10, INF-γ and less amounts of IL-6; (c establishment of local inflammation and necrosis induced by the venom, coincides with the peaks of TNF-α, IFN-γ and NO and the damage was neutralized when the venom was incubated with a monoclonal antibody against a 60 kDa haemorrhagic factor. These results suggest that susceptibility to Bothrops a trox venom is genetically dependent but MHC independent; that IL-6, IL10, TNF-α, IFN-γ and NO can be involved in the mediation of tissue damage; and that the major venom component inducers of the lesions are haemorrhagins.

  1. Snake population venomics and antivenomics of Bothrops atrox: Paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management

    OpenAIRE

    Calvete, Juan J.; Sanz, Libia; Pérez, Alicia; Borges, Adolfo; Vargas, Alba M.; Lomonte, Bruno; Angulo, Yamileth; Gutiérrez, José María; Chalkidis, Hipócrates M.; Mourão, Rosa H.V.; Furtado, María de Fátima; Moura Da Silva, Ana M.

    2011-01-01

    We describe two geographically differentiated venom phenotypes across the wide distribution range of Bothrops atrox, from the Colombian Magdalena Medio Valley through Puerto Ayacucho and El Paují, in the Venezuelan States of Amazonas and Orinoquia, respectively, and São Bento in the Brazilian State of Maranhão. Colombian and Venezuelan venoms show an ontogenetic toxin profile phenotype whereas Brazilian venoms exhibit paedomorphic phenotypes. Venoms from each of the 16 localities sampled cont...

  2. Determination of inorganic elements in blood of mice immunized with Bothrops Snake venom using XRF and NAA

    International Nuclear Information System (INIS)

    Da Silva, L F F Lopes; Zamboni, C B; Bahovschi, V; Metairon, S; Suzuki, M F; Sant' Anna, O A; Rizzutto, M A

    2015-01-01

    In this work, mice genetically modified [H III line] were immunized against different Bothrops snake venoms to produce anti-Bothrops serum (antivenom). The Neutron Activation Analysis (NAA) and Energy Dispersive X-Ray Fluorescence (EDXRF) techniques were used to evaluate Ca and Fe concentrations in blood of these immunized mice in order to establish a potential correlation between both phenotypes: antibody response and blood constituents after Bothrops venom administration. The results were compared with the control group (mice not immunized) and with human being estimative. These data are important for clinical screening of patients submitted to immunological therapy as well as the understanding of the envenoming mechanisms. (paper)

  3. Determination of inorganic elements in blood of mice immunized with Bothrops Snake venom using XRF and NAA

    Science.gov (United States)

    Lopes da Silva, L. F. F.; Zamboni, C. B.; Bahovschi, V.; Metairon, S.; Suzuki, M. F.; Sant'Anna, O. A.; Rizzutto, M. A.

    2015-07-01

    In this work, mice genetically modified [HIII line] were immunized against different Bothrops snake venoms to produce anti-Bothrops serum (antivenom). The Neutron Activation Analysis (NAA) and Energy Dispersive X-Ray Fluorescence (EDXRF) techniques were used to evaluate Ca and Fe concentrations in blood of these immunized mice in order to establish a potential correlation between both phenotypes: antibody response and blood constituents after Bothrops venom administration. The results were compared with the control group (mice not immunized) and with human being estimative. These data are important for clinical screening of patients submitted to immunological therapy as well as the understanding of the envenoming mechanisms.

  4. Effects of Co60 gamma radiation on the immunogenic and antigenic properties of Bothrops jararacussu venom

    International Nuclear Information System (INIS)

    Spencer, Patrick J.; Nascimento, Nanci do; Rogero, Jose R.

    1997-01-01

    Ionizing radiation has been successfully employed to attenuate animals toxins and venoms for immunizing antisera producing animals. However, the radiation effects on antigenicity and immunogenecity have not yet been elucidated. In the present work, we investigated the effects of gamma rays on the antigenic and immunogenicity have not yet been elucidated. In the present work, we investigated the effects of gamma rays on the antigenic and immunogenic behaviour of Bothrops jararacussu venon. Venom samples (2mg/ml in 150 mM NaCl) were irradiated with 500, 1000 and 2000 Gy of 60 Co gamma rays. These samples were submitted to antigen capture ELISA on plates coated with commercial bothropic antiserum. Results suggest a loss of reactivity of the 1000 and 2000 Gy irradiated samples. Antibodies against native and 2000 Gy irradiated venoms were produced in rabbits. Both sera able to bind native venom with a slightly higher titer for anti-irradiated serum. These data suggest that radiation promoted structural modification on the antigen molecules. However since the antibodies produced against irradiated antivenom were able to recognize native venom, there must have been preservation of some antigenic determinants. It has already been demosntrated that irradiation of proteins leads to structural modifications and unfolding of the molecules. Our data suggest that irradiation led to conformational epitopes destruction with preservation of linear epitopes and that the response against irradiated venom may be attributed to these linear antigenic determinants. (author). 8 refs., 3 figs

  5. Functional proteomic analyses of Bothrops atrox venom reveals phenotypes associated with habitat variation in the Amazon.

    Science.gov (United States)

    Sousa, Leijiane F; Portes-Junior, José A; Nicolau, Carolina A; Bernardoni, Juliana L; Nishiyama, Milton Y; Amazonas, Diana R; Freitas-de-Sousa, Luciana A; Mourão, Rosa Hv; Chalkidis, Hipócrates M; Valente, Richard H; Moura-da-Silva, Ana M

    2017-04-21

    Venom variability is commonly reported for venomous snakes including Bothrops atrox. Here, we compared the composition of venoms from B. atrox snakes collected at Amazonian conserved habitats (terra-firme upland forest and várzea) and human modified areas (pasture and degraded areas). Venom samples were submitted to shotgun proteomic analysis as a whole or compared after fractionation by reversed-phase chromatography. Whole venom proteomes revealed a similar composition among the venoms with predominance of SVMPs, CTLs, and SVSPs and intermediate amounts of PLA 2 s and LAAOs. However, when distribution of particular isoforms was analyzed by either method, the venom from várzea snakes showed a decrease in hemorrhagic SVMPs and an increase in SVSPs, and procoagulant SVMPs and PLA 2 s. These differences were validated by experimental approaches including both enzymatic and in vivo assays, and indicated restrictions in respect to antivenom efficacy to variable components. Thus, proteomic analysis at the isoform level combined to in silico prediction of functional properties may indicate venom biological activity. These results also suggest that the prevalence of functionally distinct isoforms contributes to the variability of the venoms and could reflect the adaptation of B. atrox to distinct prey communities in different Amazon habitats. In this report, we compared isoforms present in venoms from snakes collected at different Amazonian habitats. By means of a species venom gland transcriptome and the in silico functional prediction of each isoform, we were able to predict the principal venom activities in vitro and in animal models. We also showed remarkable differences in the venom pools from snakes collected at the floodplain (várzea habitat) compared to other habitats. Not only was this venom less hemorrhagic and more procoagulant, when compared to the venom pools from the other three habitats studied, but also this enhanced procoagulant activity was not

  6. Inactivation and fragmentation of lectin from Bothrops leucurus snake venom by gamma irradiation

    Science.gov (United States)

    Nunes, E. S.; Souza, M. A. A.; Vaz, A. F. M.; Coelho, L. C. B. B.; Aguiar, J. S.; Silva, T. G.; Guarnieri, M. C.; Melo, A. M. M. A.; Oliva, M. L. V.; Correia, M. T. S.

    2012-04-01

    Gamma radiation alters the molecular structure of biomolecules and is able to mitigate the action of snake venoms and their isolated toxins. The effect of γ-radiation on the folding of Bothrops lecurus venom lectin was measured by a hemagglutinating assay, intrinsic and bis-ANS fluorescence. Intrinsic and bis-ANS fluorescence analyses indicated that irradiation caused unfolding followed by aggregation of the lectin. Our results suggest that irradiation can lead to significant changes in the protein structure, which may promote the loss of its binding property and toxic action.

  7. A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu

    Directory of Open Access Journals (Sweden)

    Menossi Marcelo

    2010-10-01

    Full Text Available Abstract Background The genus Bothrops is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of Bothrops alternatus, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay. Results A cDNA library of 5,350 expressed sequence tags (ESTs was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%, bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%, phospholipases A2 (5.6%, serine proteinases (1.9% and C-type lectins (1.5%. Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A2 were essentially acidic; no basic PLA2 were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed. Conclusions Bothrops alternatus venom gland

  8. Intraspecific variation of Bothrops pubescens (cope, 1869 venom in Uruguay (serpentes: viperidae

    Directory of Open Access Journals (Sweden)

    V. Morais

    2006-01-01

    Full Text Available In Uruguay, there was no information about the variations degree in Bothrops pubescens venoms until the present work, in which we investigated intraspecific venom variation using polyacrylamide gel electrophoresis (SDS-PAGE. We found some differences in the venom protein profile; however, they were not related to the parameters studied (geographic distribution, weight, sex, and captivity time. Moreover, we distinguished two different groups in relation to band densities at 49 and 57 kDa. Specimens with predominant density in the 49kDa band tend to be predominantly females. Weight distribution in this group extended for all the range (150-1500 g with an average weight of 720 g. The other group (57kDa predominant band showed restricted weight range (150-400 g with an average weight of 280 g. Cluster analysis was also performed. The variability observed in the venom profile probably corresponds to genetic variations.

  9. Screening of Bothrops snake venoms for L-amino acid oxidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Pessati, M.L.; Fontana, J.D.; Guimaraes, M.F. [Federal Univ. of Parana, Curitiba (Brazil)

    1995-12-31

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venom LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use in biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom.

  10. New findings from the first transcriptome of the Bothrops moojeni snake venom gland.

    Science.gov (United States)

    Amorim, Fernanda Gobbi; Morandi-Filho, Romualdo; Fujimura, Patricia Tieme; Ueira-Vieira, Carlos; Sampaio, Suely Vilela

    2017-12-15

    Snakebites are a serious health problem in tropical countries. In Brazil, the genus Bothrops (Viperidae family) causes most of the ophidic accidents, characterized by proteolysis and haemorrhage. Snake venoms are rich sources of toxins with great therapeutic and biotechnological potential and omics approaches is a valuable tool for identification of new bioactive components in the venom. In this study, we described the first transcriptome of the venom gland of Bothrops moojeni snake, using the next-generation sequencing with the Illumina platform. We identified: (i) 20 venom components classes, among which metalloproteases were the most expressed ones, followed by serine proteases and phospholipases; and (ii) the 33 full-length amino acid sequences of toxins that have never been reported before in B. moojeni venom, such as one cysteine-rich secretory protein (Moojin), two hyaluronidases (BmooHyal-1 and BmooHyal-2), and one three-finger toxin (Bmoo-3FTx). Altogether, the transcripts identified herein represent a starting point for the analysis of structure-function relationships of toxins, which shall help develop novel biological tools and therapeutic drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Venomics and antivenomics of Bothrops erythromelas from five geographic populations within the Caatinga ecoregion of northeastern Brazil

    OpenAIRE

    Jorge, Roberta Jeane B.; Monteiro, Helena S.A.; Gonçalves Machado, Larissa; Guarnieri, Míriam C.; Ximenes, Rafael M.; Borges Nojosa, Diva M.; de O. Luna, Karla P.; Zingali, Russolina B.; Corrêa Netto, Carlos; Gutiérrez, José María; Sanz, Libia; Calvete, Juan J.; Pla, Davinia

    2015-01-01

    The Caatinga lancehead, Bothrops erythromelas, is a medically relevant species, responsible for most of the snakebite accidents in most parts of its distribution range in northeastern Brazil. The spectrum and geographic variability of its venom toxins were investigated applying a venomics approach to venom pools from five geographic areas within the Caatinga ecoregion. Despite its wide habitat, populations of B. erythromelas from Ceará, Pernambuco, Juazeiro, Paraiba, and Ilha de Itaparica exh...

  12. The effects of low-level laser on muscle damage caused by Bothrops neuwiedi venom

    Directory of Open Access Journals (Sweden)

    DM Dourado

    2008-01-01

    Full Text Available The present study aimed to assess the effects of low-level laser (660 nm on myonecrosis caused by the insertion of Bothrops neuwiedi venom in the gastrocnemius muscle of rats. Male Wistar rats were divided into three groups (n = 24 each: Group S (0.9% saline solution; Group V (venom and Group VLLL (venom plus low-level laser. These categories were subdivided into four additional groups (n = 6 based on the euthanasia timing (3 hours, 24 hours, 3 days and 7 days. The groups V and VLLL were inoculated with 100 µL of concentrated venom (40 µg/mL in the gastrocnemius muscle. The muscle was irradiated using a gallium-aluminum-arsenide laser (GaAlAs at 35 mW power and 4 J/cm² energy density for 3 hours, 24 hours, 3 days or 7 days after venom inoculation. To evaluate the myotoxic activity of the venom, CK activity was measured and the muscle was histologically analyzed. The low-level laser reduced venom-induced CK activity in the groups euthanized at 3 hours, 24 hours and 3 days (p < 0.0001. Histological analysis revealed that low-level laser reduced neutrophilic inflammation as well as myofibrillar edema, hemorrhage and myonecrosis following B. neuwiedi envenomation. These results suggest that low-level laser can be useful as an adjunct therapy following B. neuwiedi envenomation.

  13. The effects of low-level laser on muscle damage caused by Bothrops neuwiedi venom

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, D.M.; Matias, R.; Almeida, M.F.; Paula, K.R. de; Carvalho, P.T.C. [University for the Development of the State and of the Region of Pantanal (UNIDERP), Campo Grande, MS (Brazil). Lab. of Experimental Histopathology]. E-mail: ccfi@uniderp.br; Vieira, R.P. [University of Sao Paulo (USP), SP (Brazil). School of Medicine. Dept. of Pathology and Physical Therapy; Oliveira, L.V.F. [Nove de Julho University (UNINOVE), Sao Paulo, SP (Brazil). Masters Program in Rehabilitation Sciences

    2008-07-01

    The present study aimed to assess the effects of low-level laser (660 nm) on myonecrosis caused by the insertion of Bothrops neuwiedi venom in the gastrocnemius muscle of rats. Male Wistar rats were divided into three groups (n = 24 each): Group S (0.9% saline solution); Group V (venom) and Group VLLL (venom plus low-level laser). These categories were subdivided into four additional groups (n = 6) based on the euthanasia timing (3 hours, 24 hours, 3 days and 7 days). The groups V and VLLL were inoculated with 100 {mu}L of concentrated venom (40 {mu}g/mL) in the gastrocnemius muscle. The muscle was irradiated using a gallium-aluminum-arsenide laser (GaAlAs) at 35 mW power and 4 J/cm{sup 2} energy density for 3 hours, 24 hours, 3 days or 7 days after venom inoculation. To evaluate the myotoxic activity of the venom, CK activity was measured and the muscle was histologically analyzed. The low-level laser reduced venom-induced CK activity in the groups euthanized at 3 hours, 24 hours and 3 days (p < 0.0001). Histological analysis revealed that low-level laser reduced neutrophilic inflammation as well as myofibrillar edema, hemorrhage and myonecrosis following B. neuwiedi envenomation. These results suggest that low-level laser can be useful as an adjunct therapy following B. neuwiedi envenomation. (author)

  14. The effects of low-level laser on muscle damage caused by Bothrops neuwiedi venom

    International Nuclear Information System (INIS)

    Dourado, D.M.; Matias, R.; Almeida, M.F.; Paula, K.R. de; Carvalho, P.T.C.; Vieira, R.P.; Oliveira, L.V.F.

    2008-01-01

    The present study aimed to assess the effects of low-level laser (660 nm) on myonecrosis caused by the insertion of Bothrops neuwiedi venom in the gastrocnemius muscle of rats. Male Wistar rats were divided into three groups (n = 24 each): Group S (0.9% saline solution); Group V (venom) and Group VLLL (venom plus low-level laser). These categories were subdivided into four additional groups (n = 6) based on the euthanasia timing (3 hours, 24 hours, 3 days and 7 days). The groups V and VLLL were inoculated with 100 μL of concentrated venom (40 μg/mL) in the gastrocnemius muscle. The muscle was irradiated using a gallium-aluminum-arsenide laser (GaAlAs) at 35 mW power and 4 J/cm 2 energy density for 3 hours, 24 hours, 3 days or 7 days after venom inoculation. To evaluate the myotoxic activity of the venom, CK activity was measured and the muscle was histologically analyzed. The low-level laser reduced venom-induced CK activity in the groups euthanized at 3 hours, 24 hours and 3 days (p < 0.0001). Histological analysis revealed that low-level laser reduced neutrophilic inflammation as well as myofibrillar edema, hemorrhage and myonecrosis following B. neuwiedi envenomation. These results suggest that low-level laser can be useful as an adjunct therapy following B. neuwiedi envenomation. (author)

  15. Irradiation of the Crude Venom of Bothrops jararacussu to Obtain Toxoid

    International Nuclear Information System (INIS)

    Ferreira, Camila G.; Avalloni, Tania M.; Oshima-Franco, Yoko; Oliveira, Sara de J; Oliveira, Jose M. Jr. de; Cogo, Jose C.

    2011-01-01

    The aim of this work was to reduce the toxicity of Bothrops jararacussu venom using gamma-rays of low-energy coming from a source of Americium-241 (E = 59.6 keV and 3.7x10 9 Bq of activity) in order to obtain a toxoid. The radiation dose that each sample received was controlled by exposure time of the venom to the radiation beam. Mouse nerve phrenic-diaphragm preparation was used for testing the loss of venom toxicity, since the venom causes an irreversible neuromuscular blockade. In this condition, the several samples of irradiated venom, when assayed in neuromuscular preparation showed that with a dose of 0.051 Gy the paralysis caused by the irradiated venom was of 91%, at 0.360 Gy was of 79%, at 1.662 Gy was of 50% and at 2.448 Gy was of 42%. Therefore, it can be concluded that the irradiation model was able to induce a progressive loss of the venom toxicity.

  16. Irradiation of the Crude Venom of Bothrops jararacussu to Obtain Toxoid

    Science.gov (United States)

    Ferreira, Camila G.; Avalloni, Tânia M.; Oshima-Franco, Yoko; de J. Oliveira, Sara; de Oliveira, José M.; Cogo, José C.

    2011-08-01

    The aim of this work was to reduce the toxicity of Bothrops jararacussu venom using gamma-rays of low-energy coming from a source of Americium-241 (E = 59.6 keV and 3.7×109 Bq of activity) in order to obtain a toxoid. The radiation dose that each sample received was controlled by exposure time of the venom to the radiation beam. Mouse nerve phrenic-diaphragm preparation was used for testing the loss of venom toxicity, since the venom causes an irreversible neuromuscular blockade. In this condition, the several samples of irradiated venom, when assayed in neuromuscular preparation showed that with a dose of 0.051 Gy the paralysis caused by the irradiated venom was of 91%, at 0.360 Gy was of 79%, at 1.662 Gy was of 50% and at 2.448 Gy was of 42%. Therefore, it can be concluded that the irradiation model was able to induce a progressive loss of the venom toxicity.

  17. Pulsed ultrasound therapy accelerates the recovery of skeletal muscle damage induced by Bothrops jararacussu venom

    Directory of Open Access Journals (Sweden)

    J. Saturnino-Oliveira

    2012-06-01

    Full Text Available We studied the effect of pulsed ultrasound therapy (UST and antibothropic polyvalent antivenom (PAV on the regeneration of mouse extensor digitorum longus muscle following damage by Bothrops jararacussu venom. Animals (Swiss male and female mice weighing 25.0 ± 5.0 g; 5 animals per group received a perimuscular injection of venom (1 mg/kg and treatment with UST was started 1 h later (1 min/day, 3 MHz, 0.3 W/cm², pulsed mode. Three and 28 days after injection, muscles were dissected and processed for light microscopy. The venom caused complete degeneration of muscle fibers. UST alone and combined with PAV (1.0 mL/kg partially protected these fibers, whereas muscles receiving no treatment showed disorganized fascicules and fibers with reduced diameter. Treatment with UST and PAV decreased the effects of the venom on creatine kinase content and motor activity (approximately 75 and 48%, respectively. Sonication of the venom solution immediately before application decreased the in vivo and ex vivo myotoxic activities (approximately 60 and 50%, respectively. The present data show that UST counteracts some effects of B. jararacussu venom, causing structural and functional improvement of the regenerated muscle after venom injury.

  18. A influência dos ritmos circadianos no metabolismo da serpente Bothrops jararaca (Serpentes, Viperidae - DOI: 10.4025/actascibiolsci.v30i3.5030 The influence of circadian rhythms on the metabolism of the snake Bothrops jararaca (Serpentes, Viperidae - DOI: 10.4025/actascibiolsci.v30i3.5030

    Directory of Open Access Journals (Sweden)

    José Geraldo Pereira da Cruz

    2008-10-01

    Full Text Available A atividade termorreguladora conduziu a uma busca extensiva para o entendimento das correlações entre as variáveis fisiológicas, incluindo as funções metabólicas e a temperatura corporal. Frequentes observações mostram que algumas serpentes podem se aquecer, sendo este aumento de temperatura independente da temperatura ambiente, indicando a termorregulação bem sucedida. Bothrops jararaca foram expostas a dois ambientes com diferentes temperaturas (20 e 30oC durante três semanas, sendo mensuradas a temperatura corporal e o consumo de oxigênio. O aumento da temperatura corporal e consumo de oxigênio de Bothrops jararaca ocorreram na fase de escuro do fotoperíodo, consistente para espécies noturnas. Entretanto, antecedendo a fase de escuro, as serpentes em 20oC apresentaram os níveis mais elevados durante o dia para temperatura corporal e consumo de oxigênio. Estes resultados indicam pela primeira vez que animais termodependentes podem controlar a temperatura corporal por meio de ritmos fisiológicos circadianos, semelhante aos observados em termoindependentes. Os ritmos circadianos permitem que os animais antecipem as mudanças no ambiente: parâmetros fisiológicos como a temperatura corporal e as reservas de energia ou sua mobilização podem ser ajustadas antes que as mudanças ambientais previstas ocorram realmente.The thermoregulatory activity has led to an extensive search for correlations between physiological variables, including metabolic functions, and the ideal level of body temperature. Snakes were also often seen basking, when their body temperatures were relatively independent of ambient temperature, indicating successful thermoregulation. Bothrops jararaca were exposed to two different ambient temperatures (20 and 30ºC over a time course of three weeks and oxygen consumption and body temperature were measured. The snakes exhibited a freerunning rhythm of body temperature. Metabolic rate was increased at the same

  19. Isolation and Functional Characterization of an Acidic Myotoxic Phospholipase A₂ from Colombian Bothrops asper Venom.

    Science.gov (United States)

    Posada Arias, Silvia; Rey-Suárez, Paola; Pereáñez J, Andrés; Acosta, Cristian; Rojas, Mauricio; Delazari Dos Santos, Lucilene; Ferreira, Rui Seabra; Núñez, Vitelbina

    2017-10-26

    Myotoxic phospholipases A₂ (PLA₂) are responsible for many clinical manifestations in envenomation by Bothrops snakes. A new myotoxic acidic Asp49 PLA₂ (BaCol PLA₂) was isolated from Colombian Bothrops asper venom using reverse-phase high performance liquid chromatography (RP-HPLC). BaCol PLA₂ had a molecular mass of 14,180.69 Da (by mass spectrometry) and an isoelectric point of 4.4. The complete amino acid sequence was obtained by cDNA cloning (GenBank accession No. MF319968) and revealed a mature product of 124 amino acids with Asp at position 49. BaCol PLA₂ showed structural homology with other acidic PLA₂ isolated from Bothrops venoms, including a non-myotoxic PLA₂ from Costa Rican B. asper . In vitro studies showed cell membrane damage without exposure of phosphatidylserine, an early apoptosis hallmark. BaCol PLA₂ had high indirect hemolytic activity and moderate anticoagulant action. In mice, BaCol PLA₂ caused marked edema and myotoxicity, the latter seen as an increase in plasma creatine kinase and histological damage to gastrocnemius muscle fibers that included vacuolization and hyalinization necrosis of the sarcoplasm.

  20. Isolation and Functional Characterization of an Acidic Myotoxic Phospholipase A2 from Colombian Bothrops asper Venom

    Directory of Open Access Journals (Sweden)

    Silvia Posada Arias

    2017-10-01

    Full Text Available Myotoxic phospholipases A2 (PLA2 are responsible for many clinical manifestations in envenomation by Bothrops snakes. A new myotoxic acidic Asp49 PLA2 (BaCol PLA2 was isolated from Colombian Bothrops asper venom using reverse-phase high performance liquid chromatography (RP-HPLC. BaCol PLA2 had a molecular mass of 14,180.69 Da (by mass spectrometry and an isoelectric point of 4.4. The complete amino acid sequence was obtained by cDNA cloning (GenBank accession No. MF319968 and revealed a mature product of 124 amino acids with Asp at position 49. BaCol PLA2 showed structural homology with other acidic PLA2 isolated from Bothrops venoms, including a non-myotoxic PLA2 from Costa Rican B. asper. In vitro studies showed cell membrane damage without exposure of phosphatidylserine, an early apoptosis hallmark. BaCol PLA2 had high indirect hemolytic activity and moderate anticoagulant action. In mice, BaCol PLA2 caused marked edema and myotoxicity, the latter seen as an increase in plasma creatine kinase and histological damage to gastrocnemius muscle fibers that included vacuolization and hyalinization necrosis of the sarcoplasm.

  1. Snake venomics of the Lesser Antillean pit vipers Bothrops caribbaeus and Bothrops lanceolatus: correlation with toxicological activities and immunoreactivity of a heterologous antivenom.

    Science.gov (United States)

    Gutiérrez, José María; Sanz, Libia; Escolano, José; Fernández, Julián; Lomonte, Bruno; Angulo, Yamileth; Rucavado, Alexandra; Warrell, David A; Calvete, Juan J

    2008-10-01

    The venom proteomes of the snakes Bothrops caribbaeus and Bothrops lanceolatus, endemic to the Lesser Antillean islands of Saint Lucia and Martinique, respectively, were characterized by reverse-phase HPLC fractionation, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venoms contain proteins belonging to seven ( B. caribbaeus) and five ( B. lanceolatus) types of toxins. B. caribbaeus and B. lanceolatus venoms contain phospholipases A 2, serine proteinases, l-amino acid oxidases and zinc-dependent metalloproteinases, whereas a long disintegrin, DC-fragments and a CRISP molecule were present only in the venom of B. caribbaeus, and a C-type lectin-like molecule was characterized in the venom of B. lanceolatus. Compositional differences between venoms among closely related species from different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. The venoms of these two species differed in the composition and the relative abundance of their component toxins, but they exhibited similar toxicological and enzymatic profiles in mice, characterized by lethal, hemorrhagic, edema-forming, phospholipase A 2 and proteolytic activities. The venoms of B. caribbaeus and B. lanceolatus are devoid of coagulant and defibrinogenating effects and induce only mild local myotoxicity in mice. The characteristic thrombotic effect described in human envenomings by these species was not reproduced in the mouse model. The toxicological profile observed is consistent with the abundance of metalloproteinases, PLA 2s and serine proteinases in the venoms. A polyvalent (Crotalinae) antivenom produced in Costa Rica was able to immunodeplete approximately 80% of the proteins from both B. caribbaeus and B. lanceolatus venoms, and was effective in neutralizing the lethal, hemorrhagic, phospholipase

  2. BjussuSP-I: a new thrombin-like enzyme isolated from Bothrops jararacussu snake venom.

    Science.gov (United States)

    Sant' Ana, Carolina D; Ticli, Fabio K; Oliveira, Leandro L; Giglio, Jose R; Rechia, Carem G V; Fuly, André L; Selistre de Araújo, Heloisa S; Franco, João J; Stabeli, Rodrigo G; Soares, Andreimar M; Sampaio, Suely V

    2008-11-01

    A thrombin-like enzyme named BjussuSP-I, isolated from B. jararacussu snake venom, is an acidic single chain glycoprotein with approximately 6% sugar, Mr=61,000 under reducing conditions and pI approximately 3.8, representing 1.09% of the chromatographic A(280) recovery. BjussuSP-I is a glycosylated serine protease containing both N-linked carbohydrates and sialic acid in its structure. BjussuSP-I showed a high clotting activity upon human plasma, which was inhibited by PMSF, leupeptin, heparin and 1,10-phenantroline. This enzyme showed high stability regarding coagulant activity when analyzed at different temperatures (-70 to 37 degrees C), pHs (4.5 to 8.0), and presence of two divalent metal ions (Ca(2+) and Mg(2+)). It also displayed TAME esterase and proteolytic activities toward natural (fibrinogen and fibrin) and synthetic (BAPNA) substrates, respectively, being also inhibited by PMSF and leupeptin. BjussuSP-I can induce production of polyclonal antibodies able to inhibit its clotting activity, but unable to inhibit its proteolytic activity on fibrinogen. The enzyme also showed crossed immunoreactivity against 11 venom samples of Bothrops, 1 of Crotalus, and 1 of Calloselasma snakes, in addition of LAAO isolated from B. moojeni venom. It displayed neither hemorrhagic, myotoxic, edema-inducing profiles nor proteolytic activity on casein. BjussuSP-I showed an N-terminal sequence (VLGGDECDINEHPFLA FLYS) similar to other thrombin-like enzymes from snake venoms. Based on its biochemical, enzymatic and pharmacological characteristics, BjussuSP-I was identified as a new thrombin-like enzyme isoform from Bothrops jararacussu snake venom.

  3. Ontogenetic variations in the venom proteome of the Amazonian snake Bothrops atrox

    Directory of Open Access Journals (Sweden)

    Sousa Marcelo V

    2006-05-01

    Full Text Available Abstract Background Bothrops atrox is responsible for the majority of snakebite accidents in the Brazilian Amazon region. Previous studies have demonstrated that the biological and pharmacological activities of B. atrox venom alter with the age of the animal. Here, we present a comparative proteome analysis of B. atrox venom collected from specimens of three different stages of maturation: juveniles, sub-adults and adults. Results Optimized conditions for two-dimensional gel electrophoresis (2-DE of pooled venom samples were achieved using immobilized pH gradient (IPG gels of non-linear 3–10 pH range during the isoelectric focusing step and 10–20% gradient polyacrylamide gels in the second dimension. Software-assisted analysis of the 2-DE gels images demonstrated differences in the number and intensity of spots in juvenile, sub-adult and adult venoms. Although peptide mass fingerprinting (PMF failed to identify even a minor fraction of spots, it allowed us to group spots that displayed similar peptide maps. The spots were subjected to a combination of tandem mass spectrometry and Mascot and MS BLAST database searches that identified several classes of proteins, including metalloproteinases, serine proteinases, lectins, phospholipases A2, L-amino oxidases, nerve growth factors, vascular endothelial growth factors and cysteine-rich secretory proteins. Conclusion The analysis of B. atrox samples from specimens of different ages by 2-DE and mass spectrometry suggested that venom proteome alters upon ontogenetic development. We identified stage specific and differentially expressed polypeptides that may be responsible for the activities of the venom in each developmental stage. The results provide insight into the molecular basis of the relation between symptomatology of snakebite accidents in humans and the venom composition. Our findings underscore the importance of the use of venoms from individual specimen at various stages of maturation for

  4. In vitro and in vivo genotoxic evaluation of Bothrops moojeni snake venom.

    Science.gov (United States)

    Novak Zobiole, Nathalia; Caon, Thiago; Wildgrube Bertol, Jéssica; Pereira, Cintia Alves de Souza; Okubo, Brunna Mary; Moreno, Susana Elisa; Cardozo, Francielle Tramontini Gomes de Sousa

    2015-06-01

    Bothrops moojeni Hoge (Viperidae) venom is a complex mixture of compounds with therapeutic potential that has been included in the research and development of new drugs. Along with the biological activity, the pharmaceutical applicability of this venom depends on its toxicological profile. This study evaluates the cytotoxicity and genotoxicity of the Bothrops moojeni venom (BMV). The in vitro cytotoxicity and genotoxicity of a pooled sample of BMV was assessed by the MTT and Comet assay, respectively. Genotoxicity was also evaluated in vivo through the micronucleus assay. BMV displayed a 50% cytotoxic concentration (CC50) on Vero cells of 4.09 µg/mL. Vero cells treated with 4 µg/mL for 90 min and 6 h presented significant (p < 0.05, ANOVA/Newman-Keuls test) higher DNA damage than the negative control in the Comet assay. The lower DNA damage found after 6 h compared with the 90 min treatment suggests a DNA repair effect. Mice intraperitoneally treated with BMV at 10, 30, or 80 µg/animal presented significant genotoxicity (p < 0.05, ANOVA/Newman-Keuls test) in relation to the negative control after 24 h of treatment. Contrary to the in vitro results, no DNA repair seemed to occur in vivo up to 96 h post-venom inoculation at a dose of 30 µg/animal. The results show that BMV presents cyto- and genotoxicity depending on the concentration/dose used. These findings emphasize the importance of toxicological studies, including assessment of genotoxicity, in the biological activity research of BMV and/or in the development of BMV-derived products.

  5. Effects of irradiated Bothropstoxin-1 and Bothrops jararacussu crude venom on the immune system

    International Nuclear Information System (INIS)

    Caproni, Priscila

    2009-01-01

    Ionizing radiation has been successfully employed to modify the immunological properties of biomolecules and has been proven to be a powerful tool to attenuate snake venoms toxicity without affecting and even increasing their immunogenic properties. Very promising results were obtained when crude animal venoms, as well as isolated toxins, were treated with 60 Co gamma rays, yielding toxoids with good immunogenicity, however, little is known about the modifications that irradiated molecules undergo and even less about the immunological response that such antigens elicit. At the present work, we have evaluated the effects on immune system of B10.PL and BALB/c mice of Bothrops jararacussu crude venom and isolated bothropstoxin-1 (Bthx-1), before and after gamma radiation exposition. According to our data, irradiation process promoted structural modifications on both isolated toxin and crude venom, characterized by higher molecular weight protein (aggregates and oligomers) formation. Irradiated samples were immunogenic and the antibodies elicited by them were able to recognize the native toxin in ELISA. These results indicate that irradiation of toxic proteins can promote significant modifications in their structures, but still retain many of the original antigenic and immunological properties. Also, our data indicate that the irradiated protein induced higher titers of IgG2b, suggesting that Th1 cells were predominantly involved. Results from Western blot assay showed that antibodies raised against irradiated bothropstoxin-1 recognize both native isolated toxin or crude venom. Cytotoxicity assay showed that irradiated toxin and crude venom were less toxic than their native counterpart. Thus, the viability of the macrophages cultured in the presence of irradiated Bthx-1 or crude venom was higher if compared with their native forms. LDH Assay showed that irradiated Bthx-1 promotes less muscular damage than the native form. Our data confirm a potential use of ionizing

  6. Systemic effects induced by the venom of the snake Bothrops caribbaeus in a murine model.

    Science.gov (United States)

    Herrera, Cristina; Rucavado, Alexandra; Warrell, David A; Gutiérrez, José María

    2013-03-01

    Snakebite envenoming by Bothrops caribbaeus, an endemic viperid from the Lesser Antillean island of Saint Lucia, is clinically characterized by local tissue damage and systemic thrombosis that can lead to cerebral, myocardial or pulmonary infarctions and venous thromboses. Systemic effects (lethality, pulmonary hemorrhage, thrombocytopenia and coagulopathy) induced by intravenous (i.v.) administration of B. caribbaeus venom were studied in mice. The role of snake venom metalloproteinases (SVMPs) in these systemic alterations was assessed by inhibition with the chelating agent calcium disodium ethylenediaminetetraacetic acid (CaNa(2)EDTA). A snake C-type lectin-like (snaclec) and a type P-III hemorrhagic SVMP were isolated and characterized from this venom, and the effect of venom and the isolated snaclec on human platelet aggregation was studied in vitro. Results indicate that SVMPs play an important role in the overall toxicity of B. caribbaeus venom, being responsible for systemic hemorrhage and lethality, but not thrombocytopenia, whereas the isolated snaclec is involved in the thrombocytopenic effect. Both venom and snaclec induce platelet aggregation/agglutination. Moreover, the snaclec binds directly to glycoprotein Ib (GPIb) and induces agglutination in washed fixed platelets. On the other hand, B. caribbaeus venom hydrolyzed fibrinogen in vitro and induced a partial drop of fibrinogen levels with an increase in fibrin/fibrinogen degradation products (FDP) levels in vivo. The negative result for D-dimer (DD) in plasma is consistent with the lack of microscopic evidence of pulmonary thrombosis and endothelial cell damage. Likewise, no increments in plasma sE-selectin levels were detected. The absence of thrombosis in this murine model suggests that this effect may be species-specific. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Vellozia flavicans Mart. ex Schult. hydroalcoholic extract inhibits the neuromuscular blockade induced by Bothrops jararacussu venom.

    Science.gov (United States)

    Tribuiani, Natália; da Silva, Alexandro Mateus; Ferraz, Miriéle Cristina; Silva, Magali Glauzer; Bentes, Ana Paula Guerreiro; Graziano, Talita Signoreti; dos Santos, Marcio Galdino; Cogo, José Carlos; Varanda, Eliana Aparecida; Groppo, Francisco Carlos; Cogo, Karina; Oshima-Franco, Yoko

    2014-02-08

    Snakebite is a significant public health issue in tropical countries. In Brazil, some of the most common snake envenomations are from Bothrops. Bothrops bites trigger local and systemic effects including edema, pain, erythema, cyanosis, infections, and necrosis. Vellozia flavicans is a plant from the Brazilian "cerrado" (savanna) that is popularly used as an anti-inflammatory medicine. Since inflammation develops quickly after Bothrops bites, which can lead to infection, the aim of the present study was to observe possible anti-snake venom and antimicrobial activities of V. flavicans (Vf). The chromatographic profile of the main constituents from the Vf leaf hydroalcoholic extract was obtained by thin-layer chromatography (TLC). The anti-snake venom activity was measured by Vf's ability to neutralize the in vitro neuromuscular blockade caused by Bothrops jararacussu venom (Bjssu) in a mouse phrenic nerve-diaphragm model (PND). After a 20 min incubation, preparations of PND were added to Tyrode's solution (control); Vf (0.2, 0.5, 1, and 2 mg/mL); 40 μg/mL Bjssu; pre-incubation for 30 min with Bjssu and 1 mg/mL Vf; and a Bjssu pretreated preparation (for 10 min) followed by 1 mg/mL Vf. Myographic recording was performed, and the contractile responses were recorded. The antimicrobial activity (minimum inhibitory concentration [MIC] and minimum bactericidal concentration [MBC]) was obtained for Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis, using gentamicin and vancomycin as positive controls. TLC analysis yielded several compounds from Vf, such as flavonoids (quercetin) and phenolic acids (chlorogenic acid). Bjssu completely blocked the contractile responses of PND preparations, while Vf preserved 97% (±10%) of the contractile responses when incubated with Bjssu. In the PND pretreated with Bjssu, Vf was able to inhibit the neuromuscular blockade progress. MIC and MBC of Vf ranged from 2.5 to 5.0 mg/mL for P. aeruginosa

  8. Evaluation of anti-Bothrops asper venom activity of ethanolic extract of Brownea rosademonte leaves

    Directory of Open Access Journals (Sweden)

    Salazar Marcos

    2014-12-01

    Full Text Available Significant inhibition of the coagulant and hemorrhagic effects of Bothrops asper venom was demonstrated by ethanolic extract prepared from the leaves of Brownea rosademonte. In vitro experiments preincubating 5.5 mg of extract kg-1 b.m. for 30 min with a minimum hemorrhagic dose of venom (273.8 ± 16.1 μg of venom kg-1 b.m. lowered the hemorrhagic activity of the venom alone in CD-1 mice by 51.5 ± 2.6 %. Additionally, 1.7 mg extract L-1 plasma prolonged 5.1 times the plasma coagulation time. Fractionation of the extract led to the isolation of two compounds: ononitol (1 and quercetrin (2. The structure of compounds 1 and 2 was established by spectroscopic analyses, including APCI-HRMS and NMR (1H, 13C, HSQC, HMBC and COSY. A quercetrin concentration of 0.11 μmol L-1 prolonged the plasma coagulation time 2.6 times demonstrating that this compound was one of the active constituents of the Brownea rosademonte extract.

  9. Neuromuscular activity of Bothrops neuwiedi pauloensis snake venom in mouse nerve-muscle preparations

    Directory of Open Access Journals (Sweden)

    A. M. Durigon

    2005-03-01

    Full Text Available The pharmacological effects of Bothrops neuwiedi pauloensis venom on mouse phrenic nerve-diaphragm (PND preparations were studied. Venom (20 mug/ml irreversibly inhibited indirectly evoked twitches in PND preparations (60 ± 10% inhibition, mean ± SEM; p<0.05; n=6. At 50 mug/ml, the venom blocked indirectly and directly (curarized preparations evoked twitches in mouse hemidiaphragms. In the absence of Ca2+, venom (50 mug/ml, produced partial blockade only after an 80 min incubation, which reached 40.3 ± 7.8% (p<0.05; n=3 after 120 min. Venom (20 mug/ml increased (25 ± 2%, p< 0.05 the frequency of giant miniature end-plate potentials in 9 of 10 end-plates after 30 min and the number of miniature end-plate potentials which was maximum (562 ± 3%, p<0.05 after 120 min. During the same period, the resting membrane potential decreased from - 81 ± 1.4 mV to - 41.3 ± 3.6 mV 24 fibers; p<0.01; n=4 in the end-plate region and from - 77.4 ± 1.4 to -44.6 ± 3.9 mV (24 fibers; p<0.01; n=4 in regions distant from the end-plate. These results indicate that B. n. pauloensis venom acts primarily at presynaptic sites. They also suggest that enzymatic activity may be involved in this pharmacological action.

  10. Molecular Cloning and Pharmacological Properties of an Acidic PLA2 from Bothrops pauloensis Snake Venom

    Directory of Open Access Journals (Sweden)

    Francis Barbosa Ferreira

    2013-12-01

    Full Text Available In this work, we describe the molecular cloning and pharmacological properties of an acidic phospholipase A2 (PLA2 isolated from Bothrops pauloensis snake venom. This enzyme, denominated BpPLA2-TXI, was purified by four chromatographic steps and represents 2.4% of the total snake venom protein content. BpPLA2-TXI is a monomeric protein with a molecular mass of 13.6 kDa, as demonstrated by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF analysis and its theoretical isoelectric point was 4.98. BpPLA2-TXI was catalytically active and showed some pharmacological effects such as inhibition of platelet aggregation induced by collagen or ADP and also induced edema and myotoxicity. BpPLA2-TXI displayed low cytotoxicity on TG-180 (CCRF S 180 II and Ovarian Carcinoma (OVCAR-3, whereas no cytotoxicity was found in regard to MEF (Mouse Embryonic Fibroblast and Sarcoma 180 (TIB-66. The N-terminal sequence of forty-eight amino acid residues was determined by Edman degradation. In addition, the complete primary structure of 122 amino acids was deduced by cDNA from the total RNA of the venom gland using specific primers, and it was significantly similar to other acidic D49 PLA2s. The phylogenetic analyses showed that BpPLA2-TXI forms a group with other acidic D49 PLA2s from the gender Bothrops, which are characterized by a catalytic activity associated with anti-platelet effects.

  11. Molecular Cloning and Pharmacological Properties of an Acidic PLA2 from Bothrops pauloensis Snake Venom

    Science.gov (United States)

    Ferreira, Francis Barbosa; Gomes, Mário Sérgio Rocha; Naves de Souza, Dayane Lorena; Gimenes, Sarah Natalie Cirilo; Castanheira, Letícia Eulalio; Borges, Márcia Helena; Rodrigues, Renata Santos; Yoneyama, Kelly Aparecida Geraldo; Homsi Brandeburgo, Maria Inês; Rodrigues, Veridiana M.

    2013-01-01

    In this work, we describe the molecular cloning and pharmacological properties of an acidic phospholipase A2 (PLA2) isolated from Bothrops pauloensis snake venom. This enzyme, denominated BpPLA2-TXI, was purified by four chromatographic steps and represents 2.4% of the total snake venom protein content. BpPLA2-TXI is a monomeric protein with a molecular mass of 13.6 kDa, as demonstrated by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) analysis and its theoretical isoelectric point was 4.98. BpPLA2-TXI was catalytically active and showed some pharmacological effects such as inhibition of platelet aggregation induced by collagen or ADP and also induced edema and myotoxicity. BpPLA2-TXI displayed low cytotoxicity on TG-180 (CCRF S 180 II) and Ovarian Carcinoma (OVCAR-3), whereas no cytotoxicity was found in regard to MEF (Mouse Embryonic Fibroblast) and Sarcoma 180 (TIB-66). The N-terminal sequence of forty-eight amino acid residues was determined by Edman degradation. In addition, the complete primary structure of 122 amino acids was deduced by cDNA from the total RNA of the venom gland using specific primers, and it was significantly similar to other acidic D49 PLA2s. The phylogenetic analyses showed that BpPLA2-TXI forms a group with other acidic D49 PLA2s from the gender Bothrops, which are characterized by a catalytic activity associated with anti-platelet effects. PMID:24304676

  12. Bothrops asper snake venom and its metalloproteinase BaP–1 activate the complement system. Role in leucocyte recruitment

    Directory of Open Access Journals (Sweden)

    Sandra H. P. Farsky

    2000-01-01

    Full Text Available The venom of the snake Bothrops asper, the most important poisonous snake in Central America, evokes an inflammatory response, the mechanisms of which are not well characterized. The objectives of this study were to investigate whether B. asper venom and its purified toxins – phospholipases and metalloproteinase – activate the complement system and the contribution of the effect on leucocyte recruitment. In vitro chemotaxis assays were performed using Boyden's chamber model to investigate the ability of serum incubated with venom and its purified toxins to induce neutrophil migration. The complement consumption by the venom was evaluated using an in vitro haemolytic assay. The importance of complement activation by the venom on neutrophil migration was investigated in vivo by injecting the venom into the peritoneal cavity of C5-deficient mice. Data obtained demonstrated that serum incubated with crude venom and its purified metalloproteinase BaP–1 are able to induce rat neutrophil chemotaxis, probably mediated by agent(s derived from the complement system. This hypothesis was corroborated by the capacity of the venom to activate this system in vitro. The involvement of C5a in neutrophil chemotaxis induced by venom-activated serum was demonstrated by abolishing migration when neutrophils were pre-incubated with antirat C5a receptor antibody. The relevance of the complement system in in vivo leucocyte mobilization was further demonstrated by the drastic decrease of this response in C5-deficient mice. Pre-incubation of serum with the soluble human recombinant complement receptor type 1 (sCR 1 did not prevent the response induced by the venom, but abolished the migration evoked by metalloproteinase-activated serum. These data show the role of the complement system in bothropic envenomation and the participation of metalloproteinase in the effect. Also, they suggest that the venom may contain other component(s which can cause direct activation

  13. Comparison of the adjuvant activity of aluminum hydroxide and calcium phosphate on the antibody response towards Bothrops asper snake venom.

    Science.gov (United States)

    Olmedo, Hidekel; Herrera, María; Rojas, Leonardo; Villalta, Mauren; Vargas, Mariángela; Leiguez, Elbio; Teixeira, Catarina; Estrada, Ricardo; Gutiérrez, José María; León, Guillermo; Montero, Mavis L

    2014-01-01

    The adjuvanticity of aluminum hydroxide and calcium phosphate on the antibody response in mice towards the venom of the snake Bothrops asper was studied. It was found that, in vitro, most of the venom proteins are similarly adsorbed by both mineral salts, with the exception of some basic phospholipases A2, which are better adsorbed by calcium phosphate. After injection, the adjuvants promoted a slow release of the venom, as judged by the lack of acute toxicity when lethal doses of venom were administered to mice. Leukocyte recruitment induced by the venom was enhanced when it was adsorbed on both mineral salts; however, venom adsorbed on calcium phosphate induced a higher antibody response towards all tested HPLC fractions of the venom. On the other hand, co-precipitation of venom with calcium phosphate was the best strategy for increasing: (1) the capacity of the salt to couple venom proteins in vitro; (2) the venom ability to induce leukocyte recruitment; (3) phagocytosis by macrophages; and (4) a host antibody response. These findings suggest that the chemical nature is not the only one determining factor of the adjuvant activity of mineral salts.

  14. Thrombocytin, a serine protease from Bothrops atrox venom. 1. Purification and characterization of the enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, E.P. (Temple Univ. Health Sciences Center, Philadelphia, PA); Niewiarowski, S.; Stocker, K.; Kettner, C.; Shaw, E.; Brudzynsi, T.M.

    1979-08-07

    Thrombocytin, a platelet-activating enzyme from Bothrops atrox venom, has been purified to homogeneity by precipitation with sodium salicylate and chromatography on heparin-agarose. Thrombocytin is a single-chain glycoprotein with a molecular weight of 36,000 which contains 5.6% carbohydrate. It causes platelet aggregation, release of platelet serotonin, and activation of factor XIII. The most sensitive substrate for the amidolytic activity of thrombocytin was Tos-Gly-Pro-Arg-p-nitroanilide hydrochloride. The activity of thrombocytin on this substrate and on platelets was inhibited by diisopropyl fluorophosphate (DFP), soybean trypsin inhibitor, and several arginine chloromethyl ketones. Active site titration with nitrophenyl guanidinobenzoate demonstrated that approximately 86% of the preparation was in the active form. These experiments demonstrate the presence of serine and histidine in the active site of thrombocytin and suggest that thrombocytin is a classical serine protease with a platelet-activating activity similar to thrombin.

  15. Inhibitory effects of ascorbic acid, vitamin E, and vitamin B-complex on the biological activities induced by Bothrops venom.

    Science.gov (United States)

    Oliveira, Carlos Henrique de Moura; Assaid Simão, Anderson; Marcussi, Silvana

    2016-01-01

    Natural compounds have been widely studied with the aim of complementing antiophidic serum therapy. The present study evaluated the inhibitory potential of ascorbic acid and a vitamin complex, composed of ascorbic acid, vitamin E, and all the B-complex vitamins, on the biological activities induced by snake venoms. The effect of vitamins was evaluated on the phospholipase, proteolytic, coagulant, and fibrinogenolytic activities induced by Bothrops moojeni (Viperidae), B. jararacussu, and B. alternatus snake venoms, and the hemagglutinating activity induced by B. jararacussu venom. The vitamin complex (1:5 and 1:10 ratios) totally inhibited the fibrinogenolytic activity and partially the phospholipase activity and proteolytic activity on azocasein induced by the evaluated venoms. Significant inhibition was observed in the coagulation of human plasma induced by venoms from B. alternatus (1:2.5 and 1:5, to vitamin complex and ascorbic acid) and B. moojeni (1:2.5 and 1:5, to vitamin complex and ascorbic acid). Ascorbic acid inhibited 100% of the proteolytic activities of B. moojeni and B. alternatus on azocasein, at 1:10 ratio, the effects of all the venoms on fibrinogen, the hemagglutinating activity of B. jararacussu venom, and also extended the plasma coagulation time induced by all venoms analyzed. The vitamins analyzed showed relevant in vitro inhibitory potential over the activities induced by Bothrops venoms, suggesting their interaction with toxins belonging to the phospholipase A2, protease, and lectin classes. The results can aid further research in clarifying the possible mechanisms of interaction between vitamins and snake enzymes.

  16. Snake population venomics and antivenomics of Bothrops atrox: Paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management.

    Science.gov (United States)

    Calvete, Juan J; Sanz, Libia; Pérez, Alicia; Borges, Adolfo; Vargas, Alba M; Lomonte, Bruno; Angulo, Yamileth; Gutiérrez, José María; Chalkidis, Hipócrates M; Mourão, Rosa H V; Furtado, M Fatima D; Moura-Da-Silva, Ana M

    2011-04-01

    We describe two geographically differentiated venom phenotypes across the wide distribution range of Bothrops atrox, from the Colombian Magdalena Medio Valley through Puerto Ayacucho and El Paují, in the Venezuelan States of Amazonas and Orinoquia, respectively, and São Bento in the Brazilian State of Maranhão. Colombian and Venezuelan venoms show an ontogenetic toxin profile phenotype whereas Brazilian venoms exhibit paedomorphic phenotypes. Venoms from each of the 16 localities sampled contain both population-specific toxins and proteins shared by neighboring B. atrox populations. Mapping the molecular similarity between conspecific populations onto a physical map of B. atrox range provides clues for tracing dispersal routes that account for the current biogeographic distribution of the species. The proteomic pattern is consistent with a model of southeast and southwest dispersal and allopatric fragmentation northern of the Amazon Basin, and trans-Amazonian expansion through the Andean Corridor and across the Amazon river between Monte Alegre and Santarém. An antivenomic approach applied to assess the efficacy towards B. atrox venoms of two antivenoms raised in Costa Rica and Brazil using Bothrops venoms different than B. atrox in the immunization mixtures showed that both antivenoms immunodepleted very efficiently the major toxins (PIII-SVMPs, serine proteinases, CRISP, LAO) of paedomorphic venoms from Puerto Ayacucho (Venezuelan Amazonia) through São Bento, but had impaired reactivity towards PLA(2) and P-I SVMP molecules abundantly present in ontogenetic venoms. The degree of immunodepletion achieved suggests that each of these antivenoms may be effective against envenomations by paedomorphic, and some ontogenetic, B. atrox venoms. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Comparison of the effect of Crotalus simus and Crotalus durissus ruruima venoms on the equine antibody response towards Bothrops asper venom: implications for the production of polyspecific snake antivenoms.

    Science.gov (United States)

    Dos-Santos, Maria Cristina; Arroyo, Cynthia; Solano, Sergio; Herrera, María; Villalta, Mauren; Segura, Alvaro; Estrada, Ricardo; Gutiérrez, José María; León, Guillermo

    2011-02-01

    Antivenoms are preparations of immunoglobulins purified from the plasma of animals immunized with snake venoms. Depending on the number of venoms used during the immunization, antivenoms can be monospecific (if venom from a single species is used) or polyspecific (if venoms from several species are used). In turn, polyspecific antivenoms can be prepared by purifying antibodies from the plasma of animals immunized with a mixture of venoms, or by mixing antibodies purified from the plasma of animals immunized separately with single venom. The suitability of these strategies to produce polyspecific antibothropic-crotalic antivenoms was assessed using as models the venoms of Bothrops asper, Crotalus simus and Crotalus durissus ruruima. It was demonstrated that, when used as co-immunogen, C. simus and C. durissus ruruima venoms exert a deleterious effect on the antibody response towards different components of B. asper venom and in the neutralization of hemorrhagic and coagulant effect of this venom when compared with a monospecific B. asper antivenom. Polyspecific antivenoms produced by purifying immunoglobulins from the plasma of animals immunized with venom mixtures showed higher antibody titers and neutralizing capacity than those produced by mixing antibodies purified from the plasma of animals immunized separately with single venom. Thus, despite the deleterious effect of Crotalus sp venoms on the immune response against B. asper venom, the use of venom mixtures is more effective than the immunization with separate venoms for the preparation of polyspecific bothropic-crotalic antivenoms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Crystal structure of myotoxin-II: a myotoxic phospholipase A2 - homologue from Bothrops moojeni venom

    International Nuclear Information System (INIS)

    Azevedo, W.F.; Ward, R.J.; Lombardi, F.R.; Arni, R.K.; Soares, A.M.; Giglio, J.R.; Fontes, M.R.M.

    1997-01-01

    Full text. Phospho lipases A2 (PLA 2 ; E C 3.1.1.4, phosphatides s n-2 acyl hydrolases) hydrolysis the s n-2 ester bond of phospholipids showing enhanced activity at lamellar or membrane surfaces. Intracellular PLA 2 s are involved at phospholipid metabolism and signal transduction, whereas extracellular PLA 2 s are found in mammalian pancreatic juices, the venoms of snakes, lizards and insects. Based on their high primary sequence similarity, extracellular PLA 2 s are separated into Classes I, II and III. Class II PLA 2 s are found in snake venoms of Crotalidae an Viperidae species, and include the sub-family of Lys PLA 2 s homologue. he coordination of the Ca 2+ ion in the PLA 2 calcium-binding loop includes and aspartate at position 49. In the catalytically active PLA 2 s, this calcium ion plays a critical role in the stabilization of the tetrahedral transition state intermediate in the catalytic mechanism. The conservative substitution Asp49-Lys results in a decreased calcium affinity with a concomitant loss of catalytic activity, and naturally occurring PLA 2 s-homologues showing the same substitution are catalytically inactive. However, the Lys PLA 2 s possess cytolytic and myotoxic activities and furthermore retain the ability to disrupt the integrity of both plasma membranes and model lipid layers by a ca 2+ -independent mechanism for which there is no evidence of lipid hydrolysis. Lys 49 PLA 2 homologues have been isolated from several Bothrops spp. venoms including B. moojeni. Therefore, in order to improve our understanding of the molecular basis of the myotoxic and Ca 2+ independent membrane damaging activities we have determined the crystal structure of MjTX-II, a Lys 49 homologue from the venom of B. moojeni. The model presented has been determined at 2.0 A resolution and refined to a crystallographic residual of 19.7% (R f ree=28.1%). (author)

  19. Avaliação da influência de tensoativos na pele de muda de cobra (Bothrops jararaca e Spilotis pullatus) por espectroscopia fatoacústica no infravermelho, calorimetria exploratória diferencial e espectroscopia Raman

    OpenAIRE

    Aurea Cristina Lemos Lacerda

    2004-01-01

    A influência dos tensoativos lauril sulfato de sódio, cloreto de cetil trimetil amônio e álcool láurico etoxilado com 12 moles de óxido de etileno sobre o stratum corneum da pele de muda das cobras Bothrops jararaca e Spilotis pullatus foi avaliada através das técnicas biofísicas de PAS-FTIR, FT-Raman e DSC. Foram utilizadas soluções dos tensoativos em concentrações acima e abaixo da cmc e tratamentos por 4 e 8 horas (stratum corneum íntegro) e por 12 horas (stratum corneum após a remoção mec...

  20. Tissue distribution in mice of BPP 10c, a potent proline-rich anti-hypertensive peptide of Bothrops jararaca.

    Science.gov (United States)

    Silva, Carlos A; Portaro, Fernanda C V; Fernandes, Beatriz L; Ianzer, Danielle A; Guerreiro, Juliano R; Gomes, Claudiana L; Konno, Katsuhiro; Serrano, Solange M T; Nascimento, Nanci; Camargo, Antonio C M

    2008-03-15

    The snake venom proline-rich peptide BPP 10c is an active somatic angiotensin-converting enzyme (sACE) inhibitors. Recently we demonstrated that the anti-hypertensive effect of BPP 10c is not related to the inhibition of sACE alone, thus suggesting that this enzyme is not its only target for blood pressure reduction. In the present work, a biodistribution study in Swiss mice of [(125)I]-BPP 10c in the absence or in the presence of a saturating concentration of captopril, a selective active-site inhibitor of sACE, demonstrated that: (1) [(125)I]-BPP 10c was present in several organs and the renal absorption was significantly high; (2) [(125)I]-BPP 10c showed a clear preference for the kidney, maintaining a high concentration in this organ in the presence of captopril for at least 3h; (3) The residual amount of [(125)I]-BPP 10c in the kidney of animals simultaneously treated with captopril suggest that the peptide can interact with other targets different from sACE in this organ. We also showed that Cy3-labeled BPP 10c was internalized by human embryonic kidney cells (HEK-293T). Taken together, these results suggest that sACE inhibition by captopril affects the tissue distribution of [(125)I]-BPP 10c and that the anti-hypertensive effects of BPP 10c are not only dependent on sACE inhibition.

  1. Unmasking Snake Venom of Bothrops leucurus: Purification and Pharmacological and Structural Characterization of New PLA2 Bleu TX-III

    Science.gov (United States)

    Marangoni, Fábio André; Ponce-Soto, Luis Alberto; Marangoni, Sergio; Landucci, Elen Cristina Teizem

    2013-01-01

    Bleu TX-III was isolated from Bothrops leucurus snake venom on one-step analytical chromatography reverse phase HPLC, was homogeneous on SDS-PAGE, and was confirmed by Q-Tof Ultima API ESI/MS (TOF MS mode) mass spectrometry in 14243.8 Da. Multiple alignments of Bleu TX-III show high degree of homology with basic PLA2 myotoxins from other Bothrops venoms. Our studies on local and systemic myotoxicity “in vivo” reveal that Bleu TX-III is myotoxin with local but not systemic action due to the decrease in the plasmatic CK levels when Bleu TX-III is administrated by intravenous route in mice (dose 1 and 5 μg). And at a dose of 20 μg myotoxin behaves like a local and systemic action. Bleu TX-III induced moderate marked paw edema, evidencing the local increase in vascular permeability. The inflammatory events induced in the mice (I.M.) were investigated. The increase in the levels of IL-1, IL-6, and TNF-α was observed in the plasma. It is concluded that Bleu TX-III induces inflammatory events in this model. The enzymatic phospholipid hydrolysis may be relevant to these phenomena. Bothrops leucurus venom is still not extensively explored, and the knowledge of its toxins separately through the study of structure/function will contribute for a better understanding of its action mechanism. PMID:23509815

  2. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism.

    Science.gov (United States)

    Núñez, Vitelbina; Cid, Pedro; Sanz, Libia; De La Torre, Pilar; Angulo, Yamileth; Lomonte, Bruno; Gutiérrez, José María; Calvete, Juan J

    2009-11-02

    The venom proteomes of Bothrops atrox from Colombia, Brazil, Ecuador, and Perú were characterized using venomic and antivenomic strategies. Our results evidence the existence of two geographically differentiated venom phenotypes. The venom from Colombia comprises at least 26 different proteins belonging to 9 different groups of toxins. PI-metalloproteinases and K49-PLA(2) molecules represent the most abundant toxins. On the other hand, the venoms from Brazilian, Ecuadorian, and Peruvian B. atrox contain predominantly PIII-metalloproteinases. These toxin profiles correlate with the venom phenotypes of adult and juvenile B. asper from Costa Rica, respectively, suggesting that paedomorphism represented a selective trend during the trans-Amazonian southward expansion of B. atrox through the Andean Corridor. The high degree of crossreactivity of a Costa Rican polyvalent (Bothrops asper, Lachesis stenophrys, Crotalus simus) antivenom against B. atrox venoms further evidenced the close evolutionary kinship between B. asper and B. atrox. This antivenom was more efficient immunodepleting proteins from the venoms of B. atrox from Brazil, Ecuador, and Perú than from Colombia. Such behaviour may be rationalized taking into account the lower content of poorly immunogenic toxins, such as PLA(2) molecules and PI-SVMPs in the paedomorphic venoms. The immunological profile of the Costa Rican antivenom strongly suggests the possibility of using this antivenom for the management of snakebites by B. atrox in Colombia and the Amazon regions of Ecuador, Perú and Brazil.

  3. A New Platelet-Aggregation-Inhibiting Factor Isolated from Bothrops moojeni Snake Venom

    Directory of Open Access Journals (Sweden)

    Bruna Barbosa de Sousa

    2017-01-01

    Full Text Available This work reports the purification and functional characterization of BmooPAi, a platelet-aggregation-inhibiting factor from Bothrops moojeni snake venom. The toxin was purified by a combination of three chromatographic steps (ion-exchange on DEAE-Sephacel, molecular exclusion on Sephadex G-75, and affinity chromatography on HiTrap™ Heparin HP. BmooPAi was found to be a single-chain protein with an apparent molecular mass of 32 kDa on 14% SDS-PAGE, under reducing conditions. Sequencing of BmooPAi by Edman degradation revealed the amino acid sequence LGPDIVPPNELLEVM. The toxin was devoid of proteolytic, haemorrhagic, defibrinating, or coagulant activities and induced no significant oedema or hyperalgesia. BmooPAi showed a rather specific inhibitory effect on ristocetin-induced platelet aggregation in human platelet-rich plasma, whereas it had little or no effect on platelet aggregation induced by collagen and adenosine diphosphate. The results presented in this work suggest that BmooPAi is a toxin comprised of disintegrin-like and cysteine-rich domains, originating from autolysis/proteolysis of PIII SVMPs from B. moojeni snake venom. This toxin may be of medical interest because it is a platelet aggregation inhibitor, which could potentially be developed as a novel therapeutic agent to prevent and/or treat patients with thrombotic disorders.

  4. A C-Type Lectin from Bothrops jararacussu Venom Disrupts Staphylococcal Biofilms

    Science.gov (United States)

    Klein, Raphael Contelli; Fabres-Klein, Mary Hellen; de Oliveira, Leandro Licursi; Feio, Renato Neves; Malouin, François; Ribon, Andréa de Oliveira Barros

    2015-01-01

    Bovine mastitis is a major threat to animal health and the dairy industry. Staphylococcus aureus is a contagious pathogen that is usually associated with persistent intramammary infections, and biofilm formation is a relevant aspect of the outcome of these infections. Several biological activities have been described for snake venoms, which led us to screen secretions of Bothrops jararacussu for antibiofilm activity against S. aureus NRS155. Crude venom was fractionated by size-exclusion chromatography, and the fractions were tested against S. aureus. Biofilm growth, but not bacterial growth, was affected by several fractions. Two fractions (15 and 16) showed the best activities and were also assayed against S. epidermidis NRS101. Fraction 15 was identified by TripleTOF mass spectrometry as a galactose-binding C-type lectin with a molecular weight of 15 kDa. The lectin was purified from the crude venom by D-galactose affinity chromatography, and only one peak was observed. This pure lectin was able to inhibit 75% and 80% of S. aureus and S. epidermidis biofilms, respectively, without affecting bacterial cell viability. The lectin also exhibited a dose-dependent inhibitory effect on both bacterial biofilms. The antibiofilm activity was confirmed using scanning electron microscopy. A pre-formed S. epidermidis biofilm was significantly disrupted by the C-type lectin in a time-dependent manner. Additionally, the lectin demonstrated the ability to inhibit biofilm formation by several mastitis pathogens, including different field strains of S. aureus, S. hyicus, S. chromogenes, Streptococcus agalactiae, and Escherichia coli. These findings reveal a new activity for C-type lectins. Studies are underway to evaluate the biological activity of these lectins in a mouse mastitis model. PMID:25811661

  5. A C-type lectin from Bothrops jararacussu venom disrupts Staphylococcal biofilms.

    Directory of Open Access Journals (Sweden)

    Raphael Contelli Klein

    Full Text Available Bovine mastitis is a major threat to animal health and the dairy industry. Staphylococcus aureus is a contagious pathogen that is usually associated with persistent intramammary infections, and biofilm formation is a relevant aspect of the outcome of these infections. Several biological activities have been described for snake venoms, which led us to screen secretions of Bothrops jararacussu for antibiofilm activity against S. aureus NRS155. Crude venom was fractionated by size-exclusion chromatography, and the fractions were tested against S. aureus. Biofilm growth, but not bacterial growth, was affected by several fractions. Two fractions (15 and 16 showed the best activities and were also assayed against S. epidermidis NRS101. Fraction 15 was identified by TripleTOF mass spectrometry as a galactose-binding C-type lectin with a molecular weight of 15 kDa. The lectin was purified from the crude venom by D-galactose affinity chromatography, and only one peak was observed. This pure lectin was able to inhibit 75% and 80% of S. aureus and S. epidermidis biofilms, respectively, without affecting bacterial cell viability. The lectin also exhibited a dose-dependent inhibitory effect on both bacterial biofilms. The antibiofilm activity was confirmed using scanning electron microscopy. A pre-formed S. epidermidis biofilm was significantly disrupted by the C-type lectin in a time-dependent manner. Additionally, the lectin demonstrated the ability to inhibit biofilm formation by several mastitis pathogens, including different field strains of S. aureus, S. hyicus, S. chromogenes, Streptococcus agalactiae, and Escherichia coli. These findings reveal a new activity for C-type lectins. Studies are underway to evaluate the biological activity of these lectins in a mouse mastitis model.

  6. Antiparasitic effects induced by polyclonal IgY antibodies anti-phospholipase A2 from Bothrops pauloensis venom.

    Science.gov (United States)

    Borges, Isabela Pacheco; Silva, Mariana Ferreira; Santiago, Fernanda Maria; de Faria, Lucas Silva; Júnior, Álvaro Ferreira; da Silva, Rafaela José; Costa, Mônica Soares; de Freitas, Vitor; Yoneyama, Kelly Aparecida Geraldo; Ferro, Eloísa Amália Vieira; Lopes, Daiana Silva; Rodrigues, Renata Santos; de Melo Rodrigues, Veridiana

    2018-06-01

    Activities of phospholipases (PLAs) have been linked to pathogenesis in various microorganisms, and implicated in cell invasion and so the interest in these enzymes as potential targets that could contribute to the control of parasite survival and proliferation. Chicken eggs immunized with BnSP-7, a Lys49 phospholipase A 2 (PLA 2 ) homologue from Bothrops pauloensis snake venom, represent an excellent source of polyclonal antibodies with potential inhibitory activity on parasite PLA s. Herein, we report the production, characterization and anti-parasitic effect of IgY antibodies from egg yolks of hens immunized with BnSP-7. Produced antibodies presented increasing avidity and affinity for antigenic toxin epitopes throughout immunization, attaining a plateau after 4weeks. Pooled egg yolks-purified anti-BnSP-7 IgY antibodies were able to specifically recognize different PLA 2 s from Bothrops pauloensis and Bothrops jararacussu venom. Antibodies also neutralized BnSP-7 cytotoxic activity in C2C12 cells. Also, the antibodies recognized targets in Leishmania (Leishmania) amazonensis and Toxoplasma gondii extracts by ELISA and immunofluorescence assays. Anti-BnSP-7 IgY antibodies were cytotoxic to T. gondii tachyzoite and L. (L.) amazonensis promastigotes, and were able to decrease proliferation of both parasites treated before infection. These data suggest that the anti-BnSP-7 IgY is an important tool for discovering new parasite targets and blocking parasitic effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Biochemical and functional characterization of Bothropoidin: the first haemorrhagic metalloproteinase from Bothrops pauloensis snake venom.

    Science.gov (United States)

    Gomes, Mário Sérgio R; Naves de Souza, Dayane L; Guimarães, Denise O; Lopes, Daiana S; Mamede, Carla C N; Gimenes, Sarah Natalie C; Achê, David C; Rodrigues, Renata S; Yoneyama, Kelly A G; Borges, Márcia H; de Oliveira, Fábio; Rodrigues, Veridiana M

    2015-03-01

    We present the biochemical and functional characterization of Bothropoidin, the first haemorrhagic metalloproteinase isolated from Bothrops pauloensis snake venom. This protein was purified after three chromatographic steps on cation exchange CM-Sepharose fast flow, size-exclusion column Sephacryl S-300 and anion exchange Capto Q. Bothropoidin was homogeneous by SDS-PAGE under reducing and non-reducing conditions, and comprised a single chain of 49,558 Da according to MALDI TOF analysis. The protein presented an isoelectric point of 3.76, and the sequence of six fragments obtained by MS (MALDI TOF\\TOF) showed a significant score when compared with other PIII Snake venom metalloproteinases (SVMPs). Bothropoidin showed proteolytic activity on azocasein, Aα-chain of fibrinogen, fibrin, collagen and fibronectin. The enzyme was stable at pH 6-9 and at lower temperatures when assayed on azocasein. Moreover, its activity was inhibited by EDTA, 1.10-phenanthroline and β-mercaptoethanol. Bothropoidin induced haemorrhage [minimum haemorrhagic dose (MHD) = 0.75 µg], inhibited platelet aggregation induced by collagen and ADP, and interfered with viability and cell adhesion when incubated with endothelial cells in a dose and time-dependent manner. Our results showed that Bothropoidin is a haemorrhagic metalloproteinase that can play an important role in the toxicity of B. pauloensis envenomation and might be used as a tool for studying the effects of SVMPs on haemostatic disorders and tumour metastasis. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  8. Effect of Bothrops alternatus snake venom on macrophage phagocytosis and superoxide production: participation of protein kinase C

    Directory of Open Access Journals (Sweden)

    SS Setubal

    2011-01-01

    Full Text Available Envenomations caused by different species of Bothrops snakes result in severe local tissue damage, hemorrhage, pain, myonecrosis, and inflammation with a significant leukocyte accumulation at the bite site. However, the activation state of leukocytes is still unclear. According to clinical cases and experimental work, the local effects observed in envenenomation by Bothrops alternatus are mainly the appearance of edema, hemorrhage, and necrosis. In this study we investigated the ability of Bothrops alternatus crude venom to induce macrophage activation. At 6 to 100 ¼g/mL, BaV is not toxic to thioglycollate-elicited macrophages; at 3 and 6 ¼g/mL, it did not interfere in macrophage adhesion or detachment. Moreover, at concentrations of 1.5, 3, and 6 ¼g/mL the venom induced an increase in phagocytosis via complement receptor one hour after incubation. Pharmacological treatment of thioglycollate-elicited macrophages with staurosporine, a protein kinase (PKC inhibitor, abolished phagocytosis, suggesting that PKC may be involved in the increase of serum-opsonized zymosan phagocytosis induced by BaV. Moreover, BaV also induced the production of anion superoxide (O2_ by thioglycollate-elicited macrophages. This BaV stimulated superoxide production was abolished after treating the cells with staurosporine, indicating that PKC is an important signaling pathway for the production of this radical. Based on these results, we suggest that phagocytosis and reactive oxygen species are involved in the pathogenesis of local tissue damage characteristic of Bothrops spp. envenomations.

  9. Comparison of venoms from wild and long-term captive Bothrops atrox snakes and characterization of Batroxrhagin, the predominant class PIII metalloproteinase from the venom of this species.

    Science.gov (United States)

    Freitas-de-Sousa, L A; Amazonas, D R; Sousa, L F; Sant'Anna, S S; Nishiyama, M Y; Serrano, S M T; Junqueira-de-Azevedo, I L M; Chalkidis, H M; Moura-da-Silva, A M; Mourão, R H V

    2015-11-01

    Comparisons between venoms from snakes kept under captivity or collected at the natural environment are of fundamental importance in order to obtain effective antivenoms to treat human victims of snakebites. In this study, we compared composition and biological activities of Bothrops atrox venom from snakes collected at Tapajós National Forest (Pará State, Brazil) or maintained for more than 10 years under captivity at Instituto Butantan herpetarium after have been collected mostly at Maranhão State, Brazil. Venoms from captive or wild snakes were similar except for small quantitative differences detected in peaks correspondent to phospholipases A2 (PLA2), snake venom metalloproteinases (SVMP) class PI and serine proteinases (SVSP), which did not correlate with fibrinolytic and coagulant activities (induced by PI-SVMPs and SVSPs). In both pools, the major toxic component corresponded to PIII-SVMPs, which were isolated and characterized. The characterization by mass spectrometry of both samples identified peptides that matched with a single PIII-SVMP cDNA characterized by transcriptomics, named Batroxrhagin. Sequence alignments show a strong similarity between Batroxrhagin and Jararhagin (96%). Batroxrhagin samples isolated from venoms of wild or captive snakes were not pro-coagulant, but inhibited collagen-induced platelet-aggregation, and induced hemorrhage and fibrin lysis with similar doses. Results suggest that in spite of environmental differences, venom variability was detected only among the less abundant components. In opposition, the most abundant toxin, which is a PIII-SVMP related to the key effects of the venom, is structurally conserved in the venoms. This observation is relevant for explaining the efficacy of antivenoms produced with venoms from captive snakes in human accidents inflicted at distinct natural environments. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. Study of the immune response by antibodies against the Bothrops asper venom for the elaboration of a antiophidic vaccine for bovines

    International Nuclear Information System (INIS)

    Gonzalez Rojas, Katherine

    2014-01-01

    Active immunization has determined against Bothrops asper snake venom (tested in murine and bovine models) a induced response by antibody able to prevent in immunized animals. A coagulopathy or death is developed after of be administered with adequate doses of poison. The amount of B. asper venom has defined the poisoning induced in bovine and murine models. The plasmatic concentration of equine antibodies against B. asper venom is specified to prevent coagulopathy and lethality induced by this venom in murine and bovine models. Murine and bovine models have verified the active immunization reached in a concentration of antibodies against B. asper venom equal or greater to the maximum concentration achieved by intravenous administration of antivenoms from equine origin. The concentration of antibodies induced by the active immunization is evaluated against B. asper venom to prevent the development of coagulopathy and lethality induced by the venom in murine and bovine models [es

  11. Immunoglobulin G and F(ab')2 polyvalent antivenoms do not differ in their ability to neutralize hemorrhage, edema and myonecrosis induced by Bothrops asper (terciopelo) snake venom

    OpenAIRE

    León Montero, Guillermo; Rojas Céspedes, Gustavo; Lomonte, Bruno; Gutiérrez, José María

    1997-01-01

    The ability of whole immunoglobulin G (IgG) and F(ab')2 polyvalent (Crotalinae) antivenoms to neutralize the hemorrhagic, edema-forming and myotoxic activities of Bothrops asper venom was studied. Both antivenoms were adjusted to the same neutralizing potency against lethal and hemorrhagic activities in experiments where venom and antivenoms were incubated before injection. Thus, in these experimental conditions, differences in the neutralizing ability in experiments involving independent inj...

  12. Isolation of bothrasperin, a disintegrin with potent platelet aggregation inhibitory activity, from the venom of the snake Bothrops asper

    International Nuclear Information System (INIS)

    Pinto, A.; Angulo, Y.; Jimenez, R.; Lomonte, B.

    2003-01-01

    The venom of Bothrops asper induces severe coagulation disturbances in accidentally envenomed humans. However, only few studies have been conducted to identify components that interact with the hemostatic system in this venom. In the present work, we fractionated B. asper venom in order to investigate the possible presence of inhibitors of platelet aggregation. Using a combination of gel filtration, anion-exchange chromatography, and reverse-phase high performance liquid chromatography, we isolated an acidic protein which shows a single chain composition, with a molecular mass of ∼8 kDa, estimated by SDS-polyacrylamide gel electrophoresis. Its N-terminal sequence has high similarity to disintegrins isolated from different snake venoms, which are known to bind to cellular integrins such as the GPIIb/IIIa fibrinogen receptor on platelets. The purified protein exerted potent aggregation inhibitory activity on ADP-stimulated human platelets in vitro, with an estimated IC 50 of 50 nM. This biological activity, together with the biochemical characteristics observed, demonstrate that the protein isolated from B. asper venom is a disintegrin, hereby named bothrasperin. This is the first disintegrin isolated from Central American viperid snake species. (Author)

  13. Isolation and characterization of a myotoxin from Bothrops brazili Hoge, 1953 Hoge, 1953 snake venom (Ophidia: Viperidae.

    Directory of Open Access Journals (Sweden)

    Carmen Pantigoso

    2014-06-01

    Full Text Available A myotoxin from the venom of the snake Bothrops brazili has been purified by ion-exchange chromatography on CM-Sephadex C-50 with 0,05 M ammonium acetate buffer pH 7. The homogeneity was evaluated by PAGE with and without SDS, immunodiffusion and immunoelectrophoresis. The myotoxin is a basic protein with 15,6% of Lys+Arg; it is not a glicoprotein, has not enzymatic activity, and corresponds to 25% of the whole venom protein. The molecular weight of the myotoxin was determined by PAGE-SDS and gel filtration chromatography. The myotoxin has 30 KDa of molecular weight and two polypeptide chains of 15 KDa each. Myotoxin produces a severe necrosis on the gastrocnemius muscle of white mice. The myotoxin does not have hemolytic nor anticoagulant activity. However, produces edema with a DEM of 32,6 mg of protein.

  14. Isolation and characterization of a serine proteinase with thrombin-like activity from the venom of the snake Bothrops asper

    Directory of Open Access Journals (Sweden)

    A.V Pérez

    2008-01-01

    Full Text Available A serine proteinase with thrombin-like activity was isolated from the venom of the Central American pit viper Bothrops asper. Isolation was performed by a combination of affinity chromatography on aminobenzamidine-Sepharose and ion-exchange chromatography on DEAE-Sepharose. The enzyme accounts for approximately 0.13% of the venom dry weight and has a molecular mass of 32 kDa as determined by SDS-PAGE, and of 27 kDa as determined by MALDI-TOF mass spectrometry. Its partial amino acid sequence shows high identity with snake venom serine proteinases and a complete identity with a cDNA clone previously sequenced from this species. The N-terminal sequence of the enzyme is VIGGDECNINEHRSLVVLFXSSGFL CAGTLVQDEWVLTAANCDSKNFQ. The enzyme induces clotting of plasma (minimum coagulant dose = 4.1 µg and fibrinogen (minimum coagulant dose = 4.2 µg in vitro, and promotes defibrin(ogenation in vivo (minimum defibrin(ogenating dose = 1.0 µg. In addition, when injected intravenously in mice at doses of 5 and 10 µg, it induces a series of behavioral changes, i.e., loss of the righting reflex, opisthotonus, and intermittent rotations over the long axis of the body, which closely resemble the `gyroxin-like' effect induced by other thrombin-like enzymes from snake venoms.

  15. Could mesenchymal stem cell therapy help in the treatment of muscle damage caused by Bothrops alternatus venom?

    Directory of Open Access Journals (Sweden)

    Thalita da Costa Telles

    2018-03-01

    Full Text Available ABSTRACT: The aim of this study was to evaluate the use of mesenchymal stem cells (MSC in the treatment of myonecrosis induced by Bothrops alternatus venom in rats. Seventy-five male adult Wistar rats were divided into three experimental groups. G1 and G2 were injected in the gastrocnemius muscle with 120μg of B. alternatus venom, while G3 received 200μL of PBS only. Three days after the venom injection, 12 rats from G1 were treated with 5.0 x 106 MSC in PBS, whereas G2 and G3 rats received PBS. Every three days, blood and muscle samples of five animals from each group were taken for serum biochemical and pathological analyses. Histological examinations showed more intense muscle lesions following MSC treatment, characterized by disorganization and loss of muscle fibers, with focal necrosis and inflammatory infiltration by mononuclear cells. In conclusion, the use of MSC for the treatment of local damage caused by inoculation of B. alternatus venom impaired muscle regeneration and interfered in the healing process.

  16. Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis.

    Directory of Open Access Journals (Sweden)

    Cristina Herrera

    2016-04-01

    Full Text Available The time-course of the pathological effects induced by the venom of the snake Bothrops asper in muscle tissue was investigated by a combination of histology, proteomic analysis of exudates collected in the vicinity of damaged muscle, and immunodetection of extracellular matrix proteins in exudates. Proteomic assay of exudates has become an excellent new methodological tool to detect key biomarkers of tissue alterations for a more integrative perspective of snake venom-induced pathology. The time-course analysis of the intracellular proteins showed an early presence of cytosolic and mitochondrial proteins in exudates, while cytoskeletal proteins increased later on. This underscores the rapid cytotoxic effect of venom, especially in muscle fibers, due to the action of myotoxic phospholipases A2, followed by the action of proteinases in the cytoskeleton of damaged muscle fibers. Similarly, the early presence of basement membrane (BM and other extracellular matrix (ECM proteins in exudates reflects the rapid microvascular damage and hemorrhage induced by snake venom metalloproteinases. The presence of fragments of type IV collagen and perlecan one hour after envenoming suggests that hydrolysis of these mechanically/structurally-relevant BM components plays a key role in the genesis of hemorrhage. On the other hand, the increment of some ECM proteins in the exudate at later time intervals is likely a consequence of the action of endogenous matrix metalloproteinases (MMPs or of de novo synthesis of ECM proteins during tissue remodeling as part of the inflammatory reaction. Our results offer relevant insights for a more integrative and systematic understanding of the time-course dynamics of muscle tissue damage induced by B. asper venom and possibly other viperid venoms.

  17. Angiotensin-converting enzyme inhibitors of Bothrops jararaca snake venom affect the structure of mice seminiferous epithelium.

    Science.gov (United States)

    Alberto-Silva, Carlos; Gilio, Joyce M; Portaro, Fernanda C V; Querobino, Samyr M; Camargo, Antonio C M

    2015-01-01

    Considering the similarity between the testis-specific isoform of angiotensin-converting enzyme and the C-terminal catalytic domain of somatic ACE as well as the structural and functional variability of its natural inhibitors, known as bradykinin-potentiating peptides (BPPs), the effects of different synthetic peptides, BPP-10c (

  18. Edema induced by Bothrops asper (Squamata: Viperidae snake venom and its inhibition by Costa Rican plant extracts

    Directory of Open Access Journals (Sweden)

    Beatriz Badilla

    2006-06-01

    Full Text Available We tested the capacity of leaf (Urera baccifera, Loasa speciosa, Urtica leptuphylla, Chaptalia nutans, and Satureja viminea and root (Uncaria tomentosa extracts to inhibit edema induced by Bothrops asper snake venom. Edema-forming activity was studied plethysmographically in the rat hind paw model. Groups of rats were injected intraperitoneally with various doses of each extract and, one hour later, venom was injected subcutaneously in the right hind paw. Edema was assessed at various time intervals. The edematogenic activity was inhibited in those animals that received an injection U. tomentosa, C. nutans or L. speciosa extract. The extract of U. baccifera showed a slight inhibition of the venom effect. Extract from S. viminea and, to a lesser extent that of U. leptuphylla, induced a pro-inflammatory effect, increasing the edema at doses of 250 mg/kg at one and two hours. Rev. Biol. Trop. 54(2: 245-252. Epub 2006 Jun 01.Se investigó la capacidad de los extractos de las hojas de Urera baccifera, Loasa speciosa, Urtica leptuphylla, Chaptalia nutans, Satureja viminea y de la raíz de Uncaria tomentosa para inhibir el edema inducido por el veneno de Bothrops asper por métodos pletismométricos. Los grupos de ratas fueron inyectados intraperitonealmente con varias dosis de cada extracto y una hora mas tarde se inyectó veneno por vía subcutánea en la pata trasera derecha de la rata. Se evaluó el edema en distintos intervalos de tiempo. Los resultados muestran que la actividad edematogénica fue inhibida en los animales que recibieron los extractos de raíz de U. tomentosa, hojas de C. nutans y L. speciosa. Los extractos de hojas de U. baccifera mostraron leve inhibición del efecto del veneno. El extracto de hojas de S. viminea y en menor grado el de U. leptuphylla indujeron un efecto pro inflamatorio.

  19. Effect of Echinacea purpurea (Asteraceae aqueous extract on antibody response to Bothrops asper venom and immune cell response

    Directory of Open Access Journals (Sweden)

    Fernando Chaves

    2007-03-01

    Full Text Available The effect of aqueous extract of Echinacea purpurea roots on the murine antibody response to Bothrops asper snake venom in vivo was studied. Three groups were used. Group #1, baseline control, was treated with snake venom plus PBS. Group #2 was treated with snake venom plus sodium alginate as adjuvant (routine method used at Instituto Clodomiro Picado, and group #3 or experimental group, was treated with snake venom plus aqueous extract of E. purpurea root as adjuvant. In all groups, the first inoculation was done with Freund’s complete adjuvant (FCA. By the time of the second bleeding, mice in group #3 showed a remarkable increment in the level of anti-venom antibodies compared with those in groups #1 or #2. In vitro immune cell proliferation as a response to aqueous extract of E. purpurea root was studied using human lymphocytes activated with different lectins (Con A, PHA and PWM. In all cases, increase in percentage of lymphoproliferation was greater when E. purpurea root extract was used in addition to individual lectins. Rev. Biol. Trop. 55 (1: 113-119. Epub 2007 March. 31.Se estudió in vivo, el efecto del extracto acuoso de las raíces de Echinacea purpurea en la respuesta de los anticuerpos murinos al veneno de la serpiente Bothrops asper. El grupo 1 control, fue tratado con el veneno y PBS. El grupo 2 con veneno y alginato de sodio (método utilizado en el Instituto Clodomiro Picado, y el grupo 3 o experimental, con veneno y extracto acuoso de las raíces de E. purpurea. En todos los grupos, la primera inmunización fue hecha con FCA (Freund’s Complete Adjuvant. En las muestras correspondientes a la segunda sangría, los ratones del grupo 3 mostraron un marcado incremento en el nivel de anticuerpos, en comparación con los ratones de los otros grupos. También se determinó la proliferación de células inmunes in vitro, como respuesta al extracto acuoso de la raíz de E. purpurea, utilizando linfocitos humanos activados con

  20. Phospholipase A2 from Bothrops alternatus (víbora de la cruz) venom. Purification and some characteristic properties.

    Science.gov (United States)

    Nisenbom, H E; Seki, C; Vidal, J C

    1986-01-01

    One single protein species with phospholipase activity has been isolated from Bothrops alternatus venom by a procedure involving gel-filtration on Sephadex G-50 (Step 1), chromatography on SP-Sephadex C-50 (Step 2) and gel-filtration on Sephadex G-75 (Step 3). The purified sample behaved as a homogeneous, monodisperse protein with a molecular weight of 15,000 and isoelectric point of 5.04. The yield in enzyme activity was 48% of the starting material and the apparent purification was 51-fold. When assayed on 1,2-diheptanoyl- or 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine, fatty acids and lysolecithins were the only reaction products, in accordance with the predicted stoichiometry. Studies on positional specificity suggested that the enzyme is a phospholipase A2. The enzyme requires Ca2+ ions for activity and exhibited stereochemical specificity, since the enantiomeric 2, 3-diheptanoyl-sn-glycero-1-phosphorylcholine was not hydrolyzed. Under the experimental conditions employed, reaction products representative of either phospholipase B or C activities could not be detected. After Step 1, the phospholipase activity recovered was higher than the total activity in the crude venom sample, which is explained by the separation of an inhibitor during enzyme purification. The inhibitor was responsible for the initial lag period that characterized the kinetics of the enzyme reaction with crude venom acting on aggregated substrates (lipoprotein, vesicles or micelles), while the rate of hydrolysis of monomeric lecithins was not affected.

  1. Analgesic Effect of Photobiomodulation on Bothrops Moojeni Venom-Induced Hyperalgesia: A Mechanism Dependent on Neuronal Inhibition, Cytokines and Kinin Receptors Modulation.

    Directory of Open Access Journals (Sweden)

    Nikele Nadur-Andrade

    2016-10-01

    Full Text Available Envenoming induced by Bothrops snakebites is characterized by drastic local tissue damage that involves an intense inflammatory reaction and local hyperalgesia which are not neutralized by conventional antivenom treatment. Herein, the effectiveness of photobiomodulation to reduce inflammatory hyperalgesia induced by Bothrops moojeni venom (Bmv, as well as the mechanisms involved was investigated.Bmv (1 μg was injected through the intraplantar route in the right hind paw of mice. Mechanical hyperalgesia and allodynia were evaluated by von Frey filaments at different time points after venom injection. Low level laser therapy (LLLT was applied at the site of Bmv injection at wavelength of red 685 nm with energy density of 2.2 J/cm2 at 30 min and 3 h after venom inoculation. Neuronal activation in the dorsal horn spinal cord was determined by immunohistochemistry of Fos protein and the mRNA expression of IL-6, TNF-α, IL-10, B1 and B2 kinin receptors were evaluated by Real time-PCR 6 h after venom injection. Photobiomodulation reversed Bmv-induced mechanical hyperalgesia and allodynia and decreased Fos expression, induced by Bmv as well as the mRNA levels of IL-6, TNF-α and B1 and B2 kinin receptors. Finally, an increase on IL-10, was observed following LLLT.These data demonstrate that LLLT interferes with mechanisms involved in nociception and hyperalgesia and modulates Bmv-induced nociceptive signal. The use of photobiomodulation in reducing local pain induced by Bothropic venoms should be considered as a novel therapeutic tool for the treatment of local symptoms induced after bothropic snakebites.

  2. ACUTE KIDNEY INJURY CAUSED BY Crotalus AND Bothrops SNAKE VENOM: A REVIEW OF EPIDEMIOLOGY, CLINICAL MANIFESTATIONS AND TREATMENT

    Directory of Open Access Journals (Sweden)

    Polianna L.M.M. Albuquerque

    2013-09-01

    Full Text Available SUMMARY Ophidic accidents are an important public health problem due to their incidence, morbidity and mortality. An increasing number of cases have been registered in Brazil in the last few years. Several studies point to the importance of knowing the clinical complications and adequate approach in these accidents. However, knowledge about the risk factors is not enough and there are an increasing number of deaths due to these accidents in Brazil. In this context, acute kidney injury (AKI appears as one of the main causes of death and consequences for these victims, which are mainly young males working in rural areas. Snakes of the Bothrops and Crotalus genera are the main responsible for renal involvement in ophidic accidents in South America. The present study is a literature review of AKI caused by Bothrops and Crotalus snake venom regarding diverse characteristics, emphasizing the most appropriate therapeutic approach for these cases. Recent studies have been carried out searching for complementary therapies for the treatment of ophidic accidents, including the use of lipoic acid, simvastatin and allopurinol. Some plants, such as Apocynaceae, Lamiaceae and Rubiaceae seem to have a beneficial role in the treatment of this type of envenomation. Future studies will certainly find new therapeutic measures for ophidic accidents.

  3. ACUTE KIDNEY INJURY CAUSED BY Crotalus AND Bothrops SNAKE VENOM: A REVIEW OF EPIDEMIOLOGY, CLINICAL MANIFESTATIONS AND TREATMENT

    Science.gov (United States)

    Albuquerque, Polianna L.M.M.; Jacinto, Camilla N.; Silva, Geraldo B.; Lima, Juliana B.; Veras, Maria do Socorro B.; Daher, Elizabeth F.

    2013-01-01

    SUMMARY Ophidic accidents are an important public health problem due to their incidence, morbidity and mortality. An increasing number of cases have been registered in Brazil in the last few years. Several studies point to the importance of knowing the clinical complications and adequate approach in these accidents. However, knowledge about the risk factors is not enough and there are an increasing number of deaths due to these accidents in Brazil. In this context, acute kidney injury (AKI) appears as one of the main causes of death and consequences for these victims, which are mainly young males working in rural areas. Snakes of the Bothrops and Crotalus genera are the main responsible for renal involvement in ophidic accidents in South America. The present study is a literature review of AKI caused by Bothrops and Crotalus snake venom regarding diverse characteristics, emphasizing the most appropriate therapeutic approach for these cases. Recent studies have been carried out searching for complementary therapies for the treatment of ophidic accidents, including the use of lipoic acid, simvastatin and allopurinol. Some plants, such as Apocynaceae, Lamiaceae and Rubiaceae seem to have a beneficial role in the treatment of this type of envenomation. Future studies will certainly find new therapeutic measures for ophidic accidents. PMID:24037282

  4. Purification and Biochemical Characterization of Three Myotoxins from Bothrops mattogrossensis Snake Venom with Toxicity against Leishmania and Tumor Cells

    Directory of Open Access Journals (Sweden)

    Andréa A. de Moura

    2014-01-01

    Full Text Available Bothrops mattogrossensis snake is widely distributed throughout eastern South America and is responsible for snakebites in this region. This paper reports the purification and biochemical characterization of three new phospholipases A2 (PLA2s, one of which is presumably an enzymatically active Asp49 and two are very likely enzymatically inactive Lys49 PLA2 homologues. The purification was obtained after two chromatographic steps on ion exchange and reverse phase column. The 2D SDS-PAGE analysis revealed that the proteins have pI values around 10, are each made of a single chain, and have molecular masses near 13 kDa, which was confirmed by MALDI-TOF mass spectrometry. The N-terminal similarity analysis of the sequences showed that the proteins are highly homologous with other Lys49 and Asp49 PLA2s from Bothrops species. The PLA2s isolated were named BmatTX-I (Lys49 PLA2-like, BmatTX-II (Lys49 PLA2-like, and BmatTX-III (Asp49 PLA2. The PLA2s induced cytokine release from mouse neutrophils and showed cytotoxicity towards JURKAT (leukemia T and SK-BR-3 (breast adenocarcinoma cell lines and promastigote forms of Leishmania amazonensis. The structural and functional elucidation of snake venoms components may contribute to a better understanding of the mechanism of action of these proteins during envenomation and their potential pharmacological and therapeutic applications.

  5. Preparación toxoide a partir de la fracción hemorrágica del veneno de Bothrops asper (serpiente de América Central y del Sur) (Toxoid preparation from hemorrhagic fraction of the venom from Bothrops asper (snake from Central and South America).

    Science.gov (United States)

    Rodríguez-Acosta, A; Aguilar, I; Girón, M E

    1993-01-01

    A technique is described for preparing a toxoid from the hemorrhagic fraction of the Bothrops asper venom. This method conserves a high degree of immunogenicity although it eliminates lethal effects. None of the animals vaccinated with the toxoid from this fraction had hemorrhagic lesions after they were injected the venom from the hemorrhagic fraction.

  6. BaltDC: purification, characterization and infrared spectroscopy of an antiplatelet DC protein isolated from Bothrops alternatus snake venom.

    Science.gov (United States)

    Matias, Mariana Santos; de Sousa, Bruna Barbosa; da Cunha Pereira, Déborah Fernanda; Dias, Edigar Henrique Vaz; Mamede, Carla Cristine Neves; de Queiroz, Mayara Ribeiro; Silva, Anielle Christine Almeida; Dantas, Noelio Oliveira; Soares, Andreimar Martins; de Oliveira Costa, Júnia; de Oliveira, Fábio

    2017-01-01

    Snake venoms are a complex mixture of proteins, organic and inorganic compounds. Some of these proteins, enzymatic or non-enzymatic ones, are able to interact with platelet receptors, causing hemostatic disorders. The possible therapeutic potential of toxins with antiplatelet properties may arouse interest in the pharmacological areas. The present study aimed to purify and characterize an antiplatelet DC protein from Bothrops alternatus snake venom. The protein, called BaltDC (DC protein from B. alternatus snake venom), was purified by a combination of ion-exchange chromatography on DEAE-Sephacel column and gel filtration on Sephadex G-75. The molecular mass was estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE). The amino acid sequence of the N-terminal region was carried out by Edman degradation method. Platelet aggregation assays were performed in human platelet-rich plasma (PRP). Infrared (IR) spectroscopy was used in order to elucidate the interactions between BaltDC and platelet membrane. BaltDC ran as a single protein band on SDS-PAGE and showed apparent molecular mass of 32 kDa under reducing or non-reducing conditions. The N-terminal region of the purified protein revealed the amino acid sequence IISPPVCGNELLEVGEECDCGTPENCQNECCDA, which showed identity with other snake venom metalloproteinases (SVMPs). BaltDC was devoid of proteolytic, hemorrhagic, defibrinating or coagulant activities, but it showed a specific inhibitory effect on platelet aggregation induced by ristocetin and epinephrine in PRP. IR analysis spectra strongly suggests that PO 3 2- groups, present in BaltDC, form hydrogen bonds with the PO 2 - groups present in the non-lipid portion of the membrane platelets. BaltDC may be of medical interest since it was able to inhibit platelet aggregation.

  7. Snakebites and ethnobotany in the northwest region of Colombia. Part III: neutralization of the haemorrhagic effect of Bothrops atrox venom.

    Science.gov (United States)

    Otero, R; Núñez, V; Barona, J; Fonnegra, R; Jiménez, S L; Osorio, R G; Saldarriaga, M; Díaz, A

    2000-11-01

    Thirty-one of 75 extracts of plants used by traditional healers for snakebites, had moderate or high neutralizing ability against the haemorrhagic effect of Bothrops atrox venom from Antioquia and Chocó, north-western Colombia. After preincubation of several doses of every extract (7.8-4000 microg/mouse) with six minimum haemorrhagic doses (10 microg) of venom, 12 of them demonstrated 100% neutralizing capacity when the mixture was i.d. injected into mice (18-20 g). These were the stem barks of Brownea rosademonte (Caesalpiniaceae) and Tabebuia rosea (Bignoniaceae); the whole plants of Pleopeltis percussa (Polypodiaceae), Trichomanes elegans (Hymenophyllaceae) and Senna dariensis (Caesalpiniaceae); rhizomes of Heliconia curtispatha (Heliconiaceae); leaves and branches of Bixa orellana (Bixaceae), Philodendron tripartitum (Araceae), Struthanthus orbicularis (Loranthaceae) and Gonzalagunia panamensis (Rubiaceae); the ripe fruits of Citrus limon (Rutaceae); leaves, branches and stem of Ficus nymphaeifolia (Moraceae). Extracts of another 19 species showed moderate neutralization (21-72%) at doses up to 4 mg/mouse, e.g. the whole plants of Aristolochia grandiflora (Aristolochiaceae), Columnea kalbreyeriana (Gesneriaceae), Sida acuta (Malvaceae), Selaginella articulata (Selaginellaceae) and Pseudoelephantopus spicatus (Asteraceae); rhizomes of Renealmia alpinia (Zingiberaceae); the stem of Strychnos xinguensis (Loganiaceae); leaves, branches and stems of Hyptis capitata (Lamiaceae), Ipomoea cairica (Convolvulaceae), Neurolaena lobata (Asteraceae), Ocimum micranthum (Lamiaceae), Piper pulchrum (Piperaceae), Siparuna thecaphora (Monimiaceae), Castilla elastica (Moraceae) and Allamanda cathartica (Apocynaceae); the macerated ripe fruits of Capsicum frutescens (Solanaceae); the unripe fruits of Crescentia cujete (Bignoniaceae); leaves and branches of Piper arboreum (Piperaceae) and Passiflora quadrangularis (Passifloraceae). When the extracts were independently administered

  8. Data for a direct fibrinolytic metalloproteinase, barnettlysin-I from Bothrops barnetti (barnett,s pitviper) snake venom with anti-thrombotic effect

    Science.gov (United States)

    Sanchez, Eladio Flores; Richardson, Michael; Gremski, Luiza Helena; Veiga, Silvio Sanches; Yarleque, Armando; Niland, Stephan; Lima, Augusto Martins; Estevao-Costa, Maria Inácia; Eble, Johannes Andreas

    2016-01-01

    Initial association of platelets after vascular injury is mediated by glycoprotein (GP)Ib-IX-V binding to von Willebrand factor (vWf) immobilized on exposed collagens and eventually leads to thrombus formation. This article provides data about a new P-I class snake venom metalloproteinase (SVMP), barnettlysin-I (Bar-I), purified from the venom of Bothrops barnetti. This Data in Brief manuscript complements the main research article by providing additional data of the biochemical characterization of Bar-I 10.1016/j.bbagen.2015.12.021[1]. PMID:27222863

  9. Inhibition of proteases and phospholipases A2 from Bothrops atrox and Crotalus durissus terrificus snake venoms by ascorbic acid, vitamin E, and B-complex vitamins.

    Science.gov (United States)

    Oliveira, Carlos H M; Simão, Anderson A; Trento, Marcus V C; César, Pedro H S; Marcussi, Silvana

    2016-01-01

    The enzyme inhibition by natural and/ or low-cost compounds may represent a valuable adjunct to traditional serotherapy performed in cases of snakebite, mainly with a view to mitigate the local effects of envenoming. The objective of this study was to evaluate possible interactions between vitamins and enzymes that comprise Bothrops atrox and Crotalus durissus terrificus venoms, in vitro. Proteolysis inhibition assays (substrates: azocasein, collagen, gelatin and fibrinogen), hemolysis, coagulation, hemagglutination were carried out using different proportions of vitamins in face of to inhibit minimum effective dose of each venom. The vitamins were responsible for reducing 100% of breaking azocasein by C.d.t. venom, thrombolysis induced by B. atrox and fibrinogenolysis induced by both venoms. It is suggested the presence of interactions between vitamin and the active site of enzymes, for example the interactions between hydrophobic regions present in the enzymes and vitamin E, as well as the inhibitions exercised by antioxidant mechanism.

  10. Crystallization and preliminary X-ray diffraction analysis of three myotoxic phospholipases A2 from Bothrops brazili venom

    International Nuclear Information System (INIS)

    Fernandes, Carlos A. H.; Gartuzo, Elaine C. G.; Pagotto, Ivan; Comparetti, Edson J.; Huancahuire-Vega, Salomón; Ponce-Soto, Luis Alberto; Costa, Tássia R.; Marangoni, Sergio; Soares, Andreimar M.; Fontes, Marcos R. M.

    2012-01-01

    Two myotoxic and noncatalytic Lys49-phospholipases A 2 (braziliantoxin-II and MT-II) and a myotoxic and catalytic phospholipase A 2 (braziliantoxin-III) from B. brazili were crystallized. X-ray diffraction data sets were collected and molecular-replacement solutions were obtained. Two myotoxic and noncatalytic Lys49-phospholipases A 2 (braziliantoxin-II and MT-II) and a myotoxic and catalytic phospholipase A 2 (braziliantoxin-III) from the venom of the Amazonian snake Bothrops brazili were crystallized. The crystals diffracted to resolutions in the range 2.56–2.05 Å and belonged to space groups P3 1 21 (braziliantoxin-II), P6 5 22 (braziliantoxin-III) and P2 1 (MT-II). The structures were solved by molecular-replacement techniques. Both of the Lys49-phospholipases A 2 (braziliantoxin-II and MT-II) contained a dimer in the asymmetric unit, while the Asp49-phospholipase A 2 braziliantoxin-III contained a monomer in its asymmetric unit. Analysis of the quaternary assemblies of the braziliantoxin-II and MT-II structures using the PISA program indicated that both models have a dimeric conformation in solution. The same analysis of the braziliantoxin-III structure indicated that this protein does not dimerize in solution and probably acts as a monomer in vivo, similar to other snake-venom Asp49-phospholipases A 2

  11. Crystal structure of pira toxin-I: a calcium-independent, myotoxic phospholipase A2 - homologue from Bothrops pirajai venom

    International Nuclear Information System (INIS)

    Canduri, R.J.; Ward, R.J.; Azevedo Junior, G.W.F. de; Arni, R.K.; Soares, A.M.; Giglio, J.R.

    1997-01-01

    Full text. Phospho lipases A2 (PLA 2 ) are small enzymes that specifically hydrolysed the sn-2 ester bond of phospholipids, preferentially in lamellar or micellar aggregates at membrane surfaces. These enzymes are widely distributed in nature and have been extensively studied. Toxic proteins from venoms from Bothrops species include catalytically active PLA 2 s and calcium independent PLA 2L ys 49 homologues. The substitution of Asp49 by Lys greatly diminishes the ability of these PLA 2 to bind calcium, an ion that plays a critical role in the stabilization of the tetrahedral transition state intermediate in the catalytic mechanism. The Lys 49 PLA 2 homologues and therefore catalytically inactive yet maintain cytolytic and myotoxic activities and furthermore retain the ability to disrupt the integrity of both plasma membranes and model lipid bilayers by a poorly understood Ca 2+ independente mechanism. Lys49 PLA 2 homologues demonstrate a specific toxic activity against skeletal muscle, affecting only muscle fibers and leaving other tissue structure such as connective tissue, nerves and vessels essentially unharmed. In order to improve our understanding of the molecular basis of the myotoxic and Ca 2+ -independent membrane damaging activities, we have determined the crystal structure of Pr TX-I, a Lys49 variant from the venom of B. pirajai. The model presented has been determined at 2.8 angstrom resolution and refined to a crystallographic residual of 19.7% (R free =29.7%). (author)

  12. Biochemical, biological and molecular characterization of an L-Amino acid oxidase (LAAO) purified from Bothrops pictus Peruvian snake venom.

    Science.gov (United States)

    Lazo, Fanny; Vivas-Ruiz, Dan E; Sandoval, Gustavo A; Rodríguez, Edith F; Kozlova, Edgar E G; Costal-Oliveira, F; Chávez-Olórtegui, Carlos; Severino, Ruperto; Yarlequé, Armando; Sanchez, Eladio F

    2017-12-01

    An L-amino acid oxidase from Peruvian Bothrops pictus (Bpic-LAAO) snake venom was purified using a combination of size-exclusion and ion-exchange chromatography. Bpic-LAAO is a homodimeric glycosylated flavoprotein with molecular mass of ∼65 kDa under reducing conditions and ∼132 kDa in its native form as analyzed by SDS-PAGE and gel filtration chromatography, respectively. N-terminal amino acid sequencing showed highly conserved residues in a glutamine-rich motif related to binding substrate. The enzyme exhibited optimal activity towards L-Leu at pH 8.5, and like other reported SV-LAAOs, it is stable until 55 °C. Kinetic studies showed that the cations Ca 2+ , Mg 2+ and Mn 2+ did not alter Bpic-LAAO activity; however, Zn 2+ is an inhibitor. Some reagents such as β-mercaptoethanol, glutathione and iodoacetate had inhibitory effect on Bpic-LAAO activity, but PMSF, EDTA and glutamic acid did not affect its activity. Regarding the biological activities of Bpic-LAAO, this enzyme induced edema in mice (MED = 7.8 μg), and inhibited human platelet aggregation induced by ADP in a dose-dependent manner and showed antibacterial activity on Gram (+) and Gram (-) bacteria. Bpic-LAAO cDNA of 1494 bp codified a mature protein with 487 amino acid residues comprising a signal peptide of 11 amino acids. Finally, the phylogenetic tree obtained with other sequences of LAAOs, evidenced its similarity to other homologous enzymes, showing two well-established monophyletic groups in Viperidae and Elapidae families. Bpic-LAAO is evolutively close related to LAAOs from B. jararacussu, B. moojeni and B. atrox, and together with the LAAO from B. pauloensis, form a well-defined cluster of the Bothrops genus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Gamma radiation affects the anti-Leishmania activity of Bothrops moojeni venom and correlates with L-amino acid oxidase activity

    International Nuclear Information System (INIS)

    Tempone, A.G.; Lourenco, C.O.; Spencer, P.J.; Rogero, J.R.; Nascimento, N.; Andrade Junior, H.F.

    1999-01-01

    Leishmania causes human disfiguring skin disease in endemic areas of Amazon and North Eastern Brazil. Those parasites present a remarkable resistance to most treatments, except those using toxic antimonial salts. We detected a specific anti-Leishmania activity in snake venoms, using an in vitro promastigote assay. In this report, we analyzed the activity of Bothrops moojeni venom against L. Amazonensis, using whole venom or fractions of L-amino acid oxidase (L-AO). Crude venom of B.moojeni, was fractionated by molecular exclusion chromatography. Activity against promastigotes was detected by respiratory oxidative conversion of MTT in a colorimetric assay and L-AO activity was detected by a colorimetric assay with peroxidase and OPD as revealing reagents. Crude venom was irradiated with 500, 1000, and 2000 Gy in a 60 Co gamma radiation source. The venom had an anti-Leishmania activity of 33 pg/promastigote and the active fraction migrates as 100-150 kDa, close to the size described for L-AOs, and also presented L-AO activity. The radiation reduces both the L-AO and anti-Leishmania activity in a dose dependent effect. Those data suggests the anti-Leishmania activity in this venom is closely related to the L-amino acid oxidase activity and also that radiation could be used as a tool to detect specific activities reduction in water solutions, similarly to observed in dry preparations. (author)

  14. Gamma radiation affects the anti-Leishmania activity of Bothrops moojeni venom and correlates with L-amino acid oxidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Tempone, A.G.; Lourenco, C.O.; Spencer, P.J.; Rogero, J.R.; Nascimento, N. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Radiobiologia; Andrade Junior, H.F. [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina. Inst. de Medicina Tropical

    1999-11-01

    Leishmania causes human disfiguring skin disease in endemic areas of Amazon and North Eastern Brazil. Those parasites present a remarkable resistance to most treatments, except those using toxic antimonial salts. We detected a specific anti-Leishmania activity in snake venoms, using an in vitro promastigote assay. In this report, we analyzed the activity of Bothrops moojeni venom against L. Amazonensis, using whole venom or fractions of L-amino acid oxidase (L-AO). Crude venom of B.moojeni, was fractionated by molecular exclusion chromatography. Activity against promastigotes was detected by respiratory oxidative conversion of MTT in a colorimetric assay and L-AO activity was detected by a colorimetric assay with peroxidase and OPD as revealing reagents. Crude venom was irradiated with 500, 1000, and 2000 Gy in a {sup 60} Co gamma radiation source. The venom had an anti-Leishmania activity of 33 pg/promastigote and the active fraction migrates as 100-150 kDa, close to the size described for L-AOs, and also presented L-AO activity. The radiation reduces both the L-AO and anti-Leishmania activity in a dose dependent effect. Those data suggests the anti-Leishmania activity in this venom is closely related to the L-amino acid oxidase activity and also that radiation could be used as a tool to detect specific activities reduction in water solutions, similarly to observed in dry preparations. (author) 13 refs., 3 figs.

  15. Eficacia experimental de anticuerpos IgY producidos en huevos, contra el veneno de la serpiente peruana Bothrops atrox Experimental efficacy of IgY antibodies produced in eggs against the venom of the Peruvian snake Bothrops atrox

    Directory of Open Access Journals (Sweden)

    Julio C. Mendoza

    2012-03-01

    Full Text Available Objetivos. Desarrollar un protocolo de inmunización para producir inmunoglobulinas IgY de origen aviar contra el veneno de la serpiente peruana Bothrops atrox y evaluar la capacidad neutralizante. Materiales y métodos. Se inmunizaron seis gallinas de postura de la raza hy line brown con 500 μg/dosis de veneno de B. atrox en un periodo de dos meses. Cada semana, los huevos fueron colectados para el aislamiento de inmunoglobulinas IgY a partir de la yema, usando dos pasos consecutivos con αcido caprνlico y sulfato de amonio. La detecciσn de anticuerpos se realizσ por inmunodifusiσn doble mientras que el tνtulo y reactividad cruzada se determinaron por las técnicas de ELISA y Western blot. El cálculo de DL50 y de la DE50 del antiveneno IgY producido se realizó utilizando el método de Probits. Resultados. La masa de anticuerpos aislados fue de 8,5 ± 1,35 mg de IgY/mL de yema. Asimismo, la DE50 del antiveneno aviar fue calculada en 575 μL de antiveneno/mg de veneno. Adicionalmente, los ensayos de reactividad cruzada mostraron que el veneno de B. atrox comparte mas epνtopes comunes con el veneno de B. brazili (47% que con otros veneno del mismo género, en tanto que los venenos de Lachesis muta (19% y Crotalus durissus (12% mostraron una baja reactividad cruzada. Conclusiones. Se ha obtenido IgY purificada contra el veneno de B. atrox con capacidad neutralizante y se ha demostrado su utilidad como herramienta inmunoanalítica para evaluar la reactividad cruzada con venenos de otras especies.Objectives. To develop an immunization protocol in order to produce avian IgY immunoglobulins against Bothrops atrox Peruvian snake venom and to evaluate its neutralizing capacity. Materials and methods. Six Hy Line Brown hens were immunized each two weeks using 500μg/doses of B. atrox venom in a period of two months. Each week, eggs were collected for IgY isolation from yolk using two consecutive steps with caprilic acid and ammonium sulfate

  16. Isolation of bothrasperin, a disintegrin with potent platelet aggregation inhibitory activity, from the venom of the snake Bothrops asper

    Directory of Open Access Journals (Sweden)

    Adrián Pinto

    2003-03-01

    Full Text Available The venom of Bothrops asper induces severe coagulation disturbances in accidentally envenomed humans. However, only few studies have been conducted to identify components that interact with the hemostatic system in this venom. In the present work, we fractionated B. asper venom in order to investigate the possible presence of inhibitors of platelet aggregation. Using a combination of gel filtration, anion-exchange chromatography, and reverse-phase high performance liquid chromatography, we isolated an acidic protein which shows a single chain composition, with a molecular mass of ~8 kDa, estimated by SDS-polyacrylamide gel electrophoresis. Its N-terminal sequence has high similarity to disintegrins isolated from different snake venoms, which are known to bind to cellular integrins such as the GPIIb/IIIa fibrinogen receptor on platelets. The purified protein exerted potent aggregation inhibitory activity on ADP-stimulated human platelets in vitro, with an estimated IC50 of 50 nM. This biological activity, together with the biochemical characteristics observed, demonstrate that the protein isolated from B. asper venom is a disintegrin, hereby named "bothrasperin". This is the first disintegrin isolated from Central American viperid snake species.El veneno de la serpiente Bothrops asper induce graves alteraciones de la coagulación en los humanos accidentalmente envenenados. Sin embargo, se han realizado pocos estudios para identificar los componentes del veneno que interactúan con el sistema hemostático. En el presente trabajo, fraccionamos el veneno de B. asper para investigar la posible presencia de inhibidores de la agregación plaquetaria. Empleando una combinación de técnicas cromatográficas (filtración en gel, intercambio aniónico y cromatografía líquida de alto desempeño en fase reversa, aislamos una proteína acídica de cadena simple, con una masa molecular de ~8 kDa, estimada mediante electroforesis en gel de poliacrilamida con

  17. Referências hematológicas para a jararaca de rabo branco (Bothrops leucurus recém capturadas da natureza Hematological references for wild recently-caught white-tailed lancehead (Bothrops leucurus

    Directory of Open Access Journals (Sweden)

    K.F. Grego

    2006-12-01

    Full Text Available The hematological values for the specie Bothrops leucurus, recently captured from nature, were determined from blood samples of 29 snakes (11 males and 18 females. The performed hematological tests were: total red blood cell count (TRBCC, total white blood cell count (TWBCC, total trombocyte blood cell count (TTBCC; packed cell volume (PCV; hemoglobin content; and mean corpuscular volume (MCV, mean corpuscular hemoglobin (MCH and mean corpuscular hemoglobin concentration (MCHC. The mean values for TRBCC was 4.23cellsx10(5/mm³, for TWRCC was 8.92cellsx10³/mm³ and for TTBCC was 8.60cellsx10³/mm³. The mean for packed cell volume was 22.3%. The intraerythrocytic hemoparasite Hepatozoon sp was found on 58.6% of the studied animals.

  18. Preliminary X-ray crystallographic studies of BthTX-II, a myotoxic Asp49-phospholipase A2 with low catalytic activity from Bothrops jararacussu venom

    International Nuclear Information System (INIS)

    Corrêa, L. C.; Marchi-Salvador, D. P.; Cintra, A. C. O.; Soares, A. M.; Fontes, M. R. M.

    2006-01-01

    A myotoxic Asp49-PLA 2 with low catalytic activity from B. jararacussu (BthTX-II) was crystallized in the monoclinic crystal system; a complete X-ray diffraction data set was collected and a molecular-replacement solution was obtained. The oligomeric structure of BthTX-II resembles those of the Asp49-PLA 2 PrTX-III and all bothropic Lys49-PLA 2 s. For the first time, a complete X-ray diffraction data set has been collected from a myotoxic Asp49-phospholipase A 2 (Asp49-PLA 2 ) with low catalytic activity (BthTX-II from Bothrops jararacussu venom) and a molecular-replacement solution has been obtained with a dimer in the asymmetric unit. The quaternary structure of BthTX-II resembles the myotoxin Asp49-PLA 2 PrTX-III (piratoxin III from B. pirajai venom) and all non-catalytic and myotoxic dimeric Lys49-PLA 2 s. In contrast, the oligomeric structure of BthTX-II is different from the highly catalytic and non-myotoxic BthA-I (acidic PLA 2 from B. jararacussu). Thus, comparison between these structures should add insight into the catalytic and myotoxic activities of bothropic PLA 2 s

  19. Immunogenicity of Bothrops atrox (Ophidia: Viperidae venom and its evaluation by immunoenzymatic methods Inmunogenicidad del veneno de Bothrops atrox (Ophidia: Viperidae y su evaluación por métodos inmunoenzimáticos

    Directory of Open Access Journals (Sweden)

    Gustavo A. Sandoval

    2012-02-01

    Full Text Available The immunogenicity of Bothrops atrox, “jergón”, venom was studied using ELISA and Western Blot methods, as well as cross-reactivity patterns against venoms of Bothrops brazili, Lachesis muta and Crotalus durissus. For this purpose, New Zealand white rabbits (2 kg aprox were immunized with four 500 μg doses of B. atrox venom in a period of 90 days. Antibody production was followed using ELISA technique, and title of hiper-immune serum was determined at the end of immunization protocol. Additionally, electrophoretic patterns of venoms were analyzed by SDS-PAGE and venom reactivity against obtained serum by ELISA and Western Blot. Immunization schedule allowed a pronounced antibody production since day 20 of protocol. At the end of process, serum title was 256000, which demonstrated both efficacy and usefulness of the developed procedure. On the other hand, studied venoms showed a heterogenic protein composition according to their electrophoretic patterns, whereas cross-reactivity values of 23,7%, 4,0% and 1,8% were obtained between B. atrox venom and B. brazili, L. muta and C. durissus venoms, respectively, using immunoenzymatic methods. According to our results, this procedure constitutes an initial step for further assays directed to optimization in immunoserum production for envenoming treatment and development of kits for diagnosis and species identification of snakes.Se estudió la inmunogenicidad del veneno de la serpiente Bothrops atrox, “jergón”, utilizando los métodos inmunoenzimáticos de ELISA y Western Blot, así como los patrones de reactividad cruzada empleando los venenos de las serpientes Bothrops brazili, Lachesis muta y Crotalus durissus. Para este fin se inmunizaron conejos albinos Nueva Zelanda (2 kg aprox con cuatro dosis de 500 μg del veneno de B. atrox en un periodo de 90 días. La producción de anticuerpos fue monitoreada mediante la técnica de ELISA, determinándose el título del suero hiperinmune obtenido

  20. Activity evaluation from different native or irradiated with 60 Co gamma rays snake venoms and their inhibitory effect on Leishmania (Leishmania) amazonensis

    International Nuclear Information System (INIS)

    Lourenco, Cecilia de Oliveira

    2000-01-01

    Cutaneous leishmaniasis is a disease, caused by Leishmania parasites, that occurs frequently in tropical and sub-tropical regions of the world. Skin lesions that could results in disfiguring aspect characterize it. The treatment is based on few drugs as antimony salts or pentamidine that are toxic with increasing resistance by the parasite. Alternative forms of disease treatment are in constant search, including natural components as snake venoms. Previous studies demonstrate that some components of snake venoms have an inhibitory effect against those parasites, including Leishmania species. Although snake venoms presented high toxicity, several methods have been described to detoxify most or some of their toxic components, with favorable results by the use of gamma irradiation. In this report we tested several native and irradiated snake venoms for inhibitory effect against Leishmania (Leishmania) amazonensis parasite and LLCMK 2 mammalian cells, with enzymatic tests and electrophoresis. There are significant activity in Acanthophis antarcticus, Agkistrodon bilineatus, Bothrops moojeni, Bothrops jararaca, Hoplocephalus stephensi, Naja melanoleuca, Naja mossambica, Pseudechis australis, Pseudechis colletti, Pseudechis guttatus and Pseudechis porphyriacus, venom being inactive Pseudonaja textilis, Notechis ater niger, Notechis scutatus. Oxyuranus microlepidotus and Oxyuranus scutellatus venoms. After 2 KGy of 60 Co irradiation most venom loses significantly their activity. Venoms with antileishmanial activity presented L-amino acid oxidase (L-AO) activity and showed common protein with a molecular weight about 60kDa in SDS-PAGE. These results indicate that L-AO activity in those venoms are probably related with antileishmanial effect. (author)

  1. ESI-MS/MS Identification of a Bradykinin-Potentiating Peptide from Amazon Bothrops atrox Snake Venom Using a Hybrid Qq-oaTOF Mass Spectrometer

    Science.gov (United States)

    Coutinho-Neto, Antonio; Caldeira, Cleópatra A. S.; Souza, Gustavo H. M. F.; Zaqueo, Kayena D.; Kayano, Anderson M.; Silva, Rodrigo S.; Zuliani, Juliana P.; Soares, Andreimar M.; Stábeli, Rodrigo G.; Calderon, Leonardo A.

    2013-01-01

    A bradykinin-potentiating peptide (BPP) from Amazon Bothrops atrox venom with m/z 1384.7386 was identified and characterized by collision induced dissociation (CID) using an ESI-MS/MS spectra obtained in positive ion mode on a hybrid Qq-oaTOF mass spectrometer, Xevo G2 QTof MS (Waters, Manchester, UK). De novo peptide sequence analysis of the CID fragmentation spectra showed the amino acid sequence ZKWPRPGPEIPP, with a pyroglutamic acid and theoretical monoisotopic m/z 1384.7378, which is similar to experimental data, showing a mass accuracy of 0.6 ppm. The peptide is homologous to other BPP from Bothrops moojeni and was named as BPP-BAX12. PMID:23430539

  2. Effects of irradiated Bothropstoxin-1 and Bothrops jararacussu crude venom on the immune system; Acao da Bothropstoxina-1 e do veneno total de Bothrops jararacussu irradiados sobre o sistema imune

    Energy Technology Data Exchange (ETDEWEB)

    Caproni, Priscila

    2009-07-01

    Ionizing radiation has been successfully employed to modify the immunological properties of biomolecules and has been proven to be a powerful tool to attenuate snake venoms toxicity without affecting and even increasing their immunogenic properties. Very promising results were obtained when crude animal venoms, as well as isolated toxins, were treated with {sup 60}Co gamma rays, yielding toxoids with good immunogenicity, however, little is known about the modifications that irradiated molecules undergo and even less about the immunological response that such antigens elicit. At the present work, we have evaluated the effects on immune system of B10.PL and BALB/c mice of Bothrops jararacussu crude venom and isolated bothropstoxin-1 (Bthx-1), before and after gamma radiation exposition. According to our data, irradiation process promoted structural modifications on both isolated toxin and crude venom, characterized by higher molecular weight protein (aggregates and oligomers) formation. Irradiated samples were immunogenic and the antibodies elicited by them were able to recognize the native toxin in ELISA. These results indicate that irradiation of toxic proteins can promote significant modifications in their structures, but still retain many of the original antigenic and immunological properties. Also, our data indicate that the irradiated protein induced higher titers of IgG2b, suggesting that Th1 cells were predominantly involved. Results from Western blot assay showed that antibodies raised against irradiated bothropstoxin-1 recognize both native isolated toxin or crude venom. Cytotoxicity assay showed that irradiated toxin and crude venom were less toxic than their native counterpart. Thus, the viability of the macrophages cultured in the presence of irradiated Bthx-1 or crude venom was higher if compared with their native forms. LDH Assay showed that irradiated Bthx-1 promotes less muscular damage than the native form. Our data confirm a potential use of

  3. The lethality test used for estimating the potency of antivenoms against Bothrops asper snake venom: pathophysiological mechanisms, prophylactic analgesia, and a surrogate in vitro assay.

    Science.gov (United States)

    Chacón, Francisco; Oviedo, Andrea; Escalante, Teresa; Solano, Gabriela; Rucavado, Alexandra; Gutiérrez, José María

    2015-01-01

    The potency of antivenoms is assessed by analyzing the neutralization of venom-induced lethality, and is expressed as the Median Effective Dose (ED50). The present study was designed to investigate the pathophysiological mechanisms responsible for lethality induced by the venom of Bothrops asper, in the experimental conditions used for the evaluation of the neutralizing potency of antivenoms. Mice injected with 4 LD50s of venom by the intraperitoneal route died within ∼25 min with drastic alterations in the abdominal organs, characterized by hemorrhage, increment in plasma extravasation, and hemoconcentration, thus leading to hypovolemia and cardiovascular collapse. Snake venom metalloproteinases (SVMPs) play a predominat role in lethality, as judged by partial inhibition by the chelating agent CaNa2EDTA. When venom was mixed with antivenom, there was a venom/antivenom ratio at which hemorrhage was significantly reduced, but mice died at later time intervals with evident hemoconcentration, indicating that other components in addition to SVMPs also contribute to plasma extravasation and lethality. Pretreatment with the analgesic tramadol did not affect the outcome of the neutralization test, thus suggesting that prophylactic (precautionary) analgesia can be introduced in this assay. Neutralization of lethality in mice correlated with neutralization of in vitro coagulant activity in human plasma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Purification and Characterization of BmooAi: A New Toxin from Bothrops moojeni Snake Venom That Inhibits Platelet Aggregation

    Directory of Open Access Journals (Sweden)

    Mayara Ribeiro de Queiroz

    2014-01-01

    Full Text Available In this paper, we describe the purification/characterization of BmooAi, a new toxin from Bothrops moojeni that inhibits platelet aggregation. The purification of BmooAi was carried out through three chromatographic steps (ion-exchange on a DEAE-Sephacel column, molecular exclusion on a Sephadex G-75 column, and reverse-phase HPLC chromatography on a C2/C18 column. BmooAi was homogeneous by SDS-PAGE and shown to be a single-chain protein of 15,000 Da. BmooAi was analysed by MALDI-TOF Spectrometry and revealed two major components with molecular masses 7824.4 and 7409.2 as well as a trace of protein with a molecular mass of 15,237.4 Da. Sequencing of BmooAi by Edman degradation showed two amino acid sequences: IRDFDPLTNAPENTA and ETEEGAEEGTQ, which revealed no homology to any known toxin from snake venom. BmooAi showed a rather specific inhibitory effect on platelet aggregation induced by collagen, adenosine diphosphate, or epinephrine in human platelet-rich plasma in a dose-dependent manner, whereas it had little or no effect on platelet aggregation induced by ristocetin. The effect on platelet aggregation induced by BmooAi remained active even when heated to 100°C. BmooAi could be of medical interest as a new tool for the development of novel therapeutic agents for the prevention and treatment of thrombotic disorders.

  5. Neutralization of the edema-forming, defibrinating and coagulant effects of Bothrops asper venom by extracts of plants used by healers in Colombia

    Directory of Open Access Journals (Sweden)

    V. Núñez

    2004-07-01

    Full Text Available We determined the neutralizing activity of 12 ethanolic extracts of plants against the edema-forming, defibrinating and coagulant effects of Bothrops asper venom in Swiss Webster mice. The material used consisted of the leaves and branches of Bixa orellana (Bixaceae, Ficus nymphaeifolia (Moraceae, Struthanthus orbicularis (Loranthaceae and Gonzalagunia panamensis (Rubiaceae; the stem barks of Brownea rosademonte (Caesalpiniaceae and Tabebuia rosea (Bignoniaceae; the whole plant of Pleopeltis percussa (Polypodiaceae and Trichomanes elegans (Hymenophyllaceae; rhizomes of Renealmia alpinia (Zingiberaceae, Heliconia curtispatha (Heliconiaceae and Dracontium croatii (Araceae, and the ripe fruit of Citrus limon (Rutaceae. After preincubation of varying amounts of each extract with either 1.0 µg venom for the edema-forming effect or 2.0 µg venom for the defibrinating effect, the mixture was injected subcutaneously (sc into the right foot pad or intravenously into the tail, respectively, to groups of four mice (18-20 g. All extracts (6.2-200 µg/mouse partially neutralized the edema-forming activity of venom in a dose-dependent manner (58-76% inhibition, with B. orellana, S. orbicularis, G. panamensis, B. rosademonte, and D. croatii showing the highest effect. Ten extracts (3.9-2000 µg/mouse also showed 100% neutralizing ability against the defibrinating effect of venom, and nine prolonged the coagulation time induced by the venom. When the extracts were administered either before or after venom injection, the neutralization of the edema-forming effect was lower than 40% for all extracts, and none of them neutralized the defibrinating effect of venom. When they were administered in situ (sc at the same site 5 min after venom injection, the neutralization of edema increased for six extracts, reaching levels up to 64% for C. limon.

  6. A new l-amino acid oxidase from Bothrops jararacussu snake venom: Isolation, partial characterization, and assessment of pro-apoptotic and antiprotozoal activities.

    Science.gov (United States)

    Carone, Sante E I; Costa, Tássia R; Burin, Sandra M; Cintra, Adélia C O; Zoccal, Karina F; Bianchini, Francine J; Tucci, Luiz F F; Franco, João J; Torqueti, Maria R; Faccioli, Lúcia H; Albuquerque, Sérgio de; Castro, Fabíola A de; Sampaio, Suely V

    2017-10-01

    A new l-amino acid oxidase (LAAO) from Bothrops jararacussu venom (BjussuLAAO-II) was isolated by using a three-step chromatographic procedure based on molecular exclusion, hydrophobicity, and affinity. BjussuLAAO-II is an acidic enzyme with pI=3.9 and molecular mass=60.36kDa that represents 0.3% of the venom proteins and exhibits high enzymatic activity (4884.53U/mg/mim). We determined part of the primary sequence of BjussuLAAO-II by identifying 96 amino acids, from which 34 compose the N-terminal of the enzyme (ADDRNPLEECFRETDYEEFLEIARNGLSDTDNPK). Multiple alignment of the partial BjussuLAAO-II sequence with LAAOs deposited in the NCBI database revealed high similarity (95-97%) with other LAAOs isolated from Bothrops snake venoms. BjussuLAAO-II exerted a strong antiprotozoal effect against Leishmania amazonensis (IC 50 =4.56μg/mL) and Trypanosoma cruzi (IC 50 =4.85μg/mL). This toxin also induced cytotoxicity (IC 50 =1.80μg/mL) and apoptosis in MCF7 cells (a human breast adenocarcinoma cell line) by activating the intrinsic and extrinsic apoptosis pathways, but were not cytotoxic towards MCF10A cells (a non-tumorigenic human breast epithelial cell line). The results reported herein add important knowledge to the field of Toxinology, especially for the development of new therapeutic agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Inhibition of the Myotoxicity Induced by Bothrops jararacussu Venom and Isolated Phospholipases A2 by Specific Camelid Single-Domain Antibody Fragments.

    Directory of Open Access Journals (Sweden)

    Nidiane D R Prado

    Full Text Available Antivenoms, produced using animal hyperimmune plasma, remains the standard therapy for snakebites. Although effective against systemic damages, conventional antivenoms have limited efficacy against local tissue damage. Additionally, the hypersensitivity reactions, often elicited by antivenoms, the high costs for animal maintenance, the difficulty of producing homogeneous lots, and the instability of biological products instigate the search for innovative products for antivenom therapy. In this study, camelid antibody fragments (VHH with specificity to Bothropstoxin I and II (BthTX-I and BthTX-II, two myotoxic phospholipases from Bothrops jararacussu venom, were selected from an immune VHH phage display library. After biopanning, 28 and 6 clones recognized BthTX-I and BthTX-II by ELISA, respectively. Complementarity determining regions (CDRs and immunoglobulin frameworks (FRs of 13 VHH-deduced amino acid sequences were identified, as well as the camelid hallmark amino acid substitutions in FR2. Three VHH clones (KF498607, KF498608, and KC329718 were capable of recognizing BthTX-I by Western blot and showed affinity constants in the nanomolar range against both toxins. VHHs inhibited the BthTX-II phospholipase A2 activity, and when tested for cross-reactivity, presented specificity to the Bothrops genus in ELISA. Furthermore, two clones (KC329718 and KF498607 neutralized the myotoxic effects induced by B. jararacussu venom, BthTX-I, BthTX-II, and by a myotoxin from Bothrops brazili venom (MTX-I in mice. Molecular docking revealed that VHH CDRs are expected to bind the C-terminal of both toxins, essential for myotoxic activity, and to epitopes in the BthTX-II enzymatic cleft. Identified VHHs could be a biotechnological tool to improve the treatment for snake envenomation, an important and neglected world public health problem.

  8. Biotechnological application of protein Leuc-B isolated from Bothrops leucurus venom as a prototype for antitumoral radiopharmaceutical

    International Nuclear Information System (INIS)

    Gabriel, Lucilene Marcia

    2010-01-01

    According to the report of the International Agency for Research on Cancer, the growth of this disease implies the death of 17 million people a year by 2030. Although the knowledge on development of cancer is growing considerably, just a few advances in the diagnosis and therapy has been achieved. Faced with this scenario, it is clear the need for new substances more specifics with low toxicity to the patient, which can be used for diagnosis and treatment of cancer. Membrane receptors over expressed in tumor cells are promising target candidates for development of diagnostic and therapeutical tools. Integrins are a family of hetero dimeric cell surface adhesion receptors able to recognize and bind to proteins in the extracellular matrix (ECM). This recognition is mainly through the RGD domains presents in both the cell surface as in the protein from the ECM. Various integrins have been identified as regulators of tumor progression. The RGD domain is also found in some snake venoms named disintegrins. Disintegrins inhibit cell-matrix and a cell-cell interactions mediated by integrins and it has been shown that these proteins are able to inhibit metastasis in processes dependent on integrin. The disintegrin-like (ECD), as well as RGD-disintegrin are also able to bind to cell surface integrins and inhibit their adhesion to the natural ligands. In this work it was purified from Bothrops leucurus venom (VBL), a metalloproteinase-class P-III with disintegrin-like domain (ECD), Leucurolisina B (Leuc-B). This metalloproteinase and the crude venom were used to evaluate their applicability in the differential detection of tumors. In vitro results demonstrated that both VBL and Leuc-B have potent antitumoral effect on several cancer cell lines: U87, T98, RT2 (glioblastoma), MCF7 (breast), Ehrlich and UACC (melanoma) with IC 50 values of approximately 0.6 μM. The morphological changes observed in these strains when treated with Leuc-B, and data from the DAPI staining solution

  9. Comparison between IgG and F(ab′)2 polyvalent antivenoms: neutralization of systemic effects induced by Bothrops asper venom in mice, extravasation to muscle tissue, and potential for induction of adverse reactions

    OpenAIRE

    León Montero, Guillermo; Monge Monge, María; Rojas Umaña, Ermila; Lomonte, Bruno; Gutiérrez, José María

    2001-01-01

    Whole IgG and F(ab′)2 equine-derived polyvalent (Crotalinae) antivenoms, prepared from the same batch of hyperimmune plasma, were compared in terms of neutralization of the lethal and defibrinating activities induced by Bothrops asper venom, their ability to reach the muscle tissue compartment in envenomated mice, and their potential for the induction of adverse reactions. Both preparations were adjusted to the same potency against the lethal effect of B. asper venom in experiments involving ...

  10. Clinical poisoning in bovine the venom of Bothrops atrox the municipality of Oriximiná-Pará, Central Amazonia, Brazil - Case report

    Directory of Open Access Journals (Sweden)

    Ubaldo de Almeida Farias Junior

    2015-10-01

    Full Text Available ABSTRACT. Farias Junior U. de A. & Chalkidis H.M. [Clinical poisoning in bovine the venom of Bothrops atrox the municipality of Oriximiná-Pará, Central Amazonia, Brazil - Case report.] Envenenamento clínico de bovino por peçonha de Bothrops atrox no município de Oriximiná-Pará, Amazô- nia Central, Brasil - Relato de caso. Revista Brasileira de Medicina Veterinária, 37(3:264-268, 2015. Laboratório de Pesquisas Zoológicas, Faculdades Integradas do Tapajós, Rua Rosa Vermelha, 335, Aeroporto Velho, Santarém, PA 68010-200, Brasil. E-mail: chalkidis@hotmail.com It explains a case of poisoning bovine by Bothrops atrox, abundant snake family Viperidae, prevalent in northern Brazil, assigned as the etiological agent of over 90% of cases of snakebite in the State of Pará. Report the examination semiological and the clinical symptoms observed due to its evolution as well. Clinical signs are confronted with the findings conferred in similar cases reported by veterinarians and ranchers in the region. The treatment in this particular case was not proceeded in order to examine symptoms presented by the accuracy of these reports.

  11. Angiogenenic effects of BpLec, a C-type lectin isolated from Bothrops pauloensis snake venom.

    Science.gov (United States)

    Castanheira, Letícia Eulalio; Lopes, Daiana Silva; Gimenes, Sarah Natalie Cirilo; Deconte, Simone Ramos; Ferreira, Bruno Antônio; Alves, Patricia Terra; Filho, Luiz Ricardo Goulart; Tomiosso, Tatiana Carla; Rodrigues, Renata Santos; Yoneyama, Kelly Aparecida Geraldo; Araújo, Fernanda de Assis; Rodrigues, Veridiana de Melo

    2017-09-01

    The present work reports the effects of a C-type lectin (BpLec) isolated from Bothrops pauloensis snake venom upon in vitro and in vivo angiogenesis models. Initially, we noted that BpLec was not cytotoxic to endothelial cells (tEnd) in doses up to 40μg/mL, but lower doses (2.5μg/mL, 5μg/mL, 10μg/mL and 20μg/mL) reduced tEnd cells adhesion to some extracellular matrix proteins and inhibited the in vitro vessel formation in Matrigel assay stimulated by bFGF. β-galactosides (d-lactose, N-acetyl-d-galactosamine and d-galactose) at 400mM reversed the effect of BpLec on tEnd cells adhesion, whereas d-galactose (400mM) partially reversed BpLec property of inhibiting vessel formation by tEnd cells in Matrigel. In vivo assays showed that BpLec increased hemoglobin content and capillary vessels number in polyether-polyurethane sponge discs subcutaneously implanted into dorsal skin mice. Additionally, BpLec also reduced collagen deposition and did not induce a pro-inflammatory response, as demonstrated by the decreased the secretion of some inflammatory cytokines, whereas myeloperoxidase (MPO) and N-acetylglucosaminidase (NAG) activities were not altered by BpLec. Taken together, our results indicate that BpLec might represent an interesting angiogenesis and inflammatory modulator that could also be used for searching possible therapeutic targets involved in these processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Structural and binding studies of a C-type galactose-binding lectin from Bothrops jararacussu snake venom.

    Science.gov (United States)

    Sartim, Marco A; Pinheiro, Matheus P; de Pádua, Ricardo A P; Sampaio, Suely V; Nonato, M Cristina

    2017-02-01

    BJcuL is a snake venom galactoside-binding lectin (SVgalL) isolated from Bothrops jararacussu and is involved in a wide variety of biological activities including triggering of pro-inflammatory response, disruption of microbial biofilm structure and induction of apoptosis. In the present work, we determined the crystallographic structure of BJcuL, the first holo structure of a SVgalL, and introduced the fluorescence-based thermal stability assay (Thermofluor) as a tool for screening and characterization of the binding mechanism of SVgalL ligands. BJcuL structure revealed the existence of a porous and flexible decameric arrangement composed of disulfide-linked dimers related by a five-fold symmetry. Each monomer contains the canonical carbohydrate recognition domain, a calcium ion required for BJcuL lectinic activity and a sodium ion required for protein stabilization. BJcuL thermostability was found to be induced by calcium ion and galactoside sugars which exhibit hyperbolic saturation profiles dependent on ligand concentration. Serendipitously, the gentamicin group of aminoglycoside antibiotics (gAGAs) was also identified as BJcuL ligands. On contrast, gAGAs exhibited a sigmoidal saturation profile compatible with a cooperative mechanism of binding. Thermofluor, hemagglutination inhibition assay and molecular docking strategies were used to identify a distinct binding site in BJcuL localized at the dimeric interface near the fully conserved intermolecular Cys86-Cys86 disulfide bond. The hybrid approach used in the present work provided novel insights into structural behavior and functional diversification of SVgaLs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Structural and biophysical studies with the MjTX-I, a Lys49-phospholipase A2 homologue from Bothrops moojeni venom

    International Nuclear Information System (INIS)

    Salvador, G.H.M.; Fernandes, C.A.H.; Fernandez, R.M.; Fontes, M.R.M.; Marchi-Salvador, D.P.; Soares, A.M.; Oliveira, C.L.P

    2012-01-01

    Full text: Phospholipases A 2 (PLA 2 ) are small proteins found in a great diversity of organisms and belong to a superfamily of proteins involved in many important pharmacological processes, such as neurotoxicity, myotoxicity, platelet aggregation, and anticoagulant activity. Ophidic accidents caused by snakes from Bothrops genus are not efficiently neutralized by conventional serum therapy, and then detailed studies with this class of proteins may be very important to supplement this conventional therapy. Miotoxin-I (MjTX-I) is a basic Lys49-PLA 2 , isolated from Bothrops moojeni snake venom, which induces a drastic local myonecrosis. Crystal structure of MjTX-I shows four molecules in the asymmetric unit, an unusually oligomeric conformation for snake venom Lys49-PLA 2 s. However, bioinformatics techniques indicate a dimer as the biological oligomeric conformation. To get additional information of its biological conformation, we also performed Dynamic Light Scattering, Size Exclusion Chromatography and Small Angle X-ray Scattering experiments. These techniques showed a monomer as the most probable biological conformation in water; however small changes in pH and ionic strength result in different oligomeric assemblies. These novel information for Lys49-PLA 2 s may result in important conclusions for this intriguing class of toxins. (author)

  14. Structural and biophysical studies with the MjTX-I, a Lys49-phospholipase A{sub 2} homologue from Bothrops moojeni venom

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, G.H.M.; Fernandes, C.A.H.; Fernandez, R.M.; Fontes, M.R.M. [UNESP, Universidade Estadual Paulista, Botucatu, SP (Brazil); Marchi-Salvador, D.P. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Soares, A.M. [Universidade de Sao Paulo (USP-RP), Ribeirao Preto, SP (Brazil); Oliveira, C.L.P [Universidade de Sao Paulo (USP), SP (Brazil)

    2012-07-01

    Full text: Phospholipases A{sub 2} (PLA{sub 2}) are small proteins found in a great diversity of organisms and belong to a superfamily of proteins involved in many important pharmacological processes, such as neurotoxicity, myotoxicity, platelet aggregation, and anticoagulant activity. Ophidic accidents caused by snakes from Bothrops genus are not efficiently neutralized by conventional serum therapy, and then detailed studies with this class of proteins may be very important to supplement this conventional therapy. Miotoxin-I (MjTX-I) is a basic Lys49-PLA{sub 2}, isolated from Bothrops moojeni snake venom, which induces a drastic local myonecrosis. Crystal structure of MjTX-I shows four molecules in the asymmetric unit, an unusually oligomeric conformation for snake venom Lys49-PLA{sub 2}s. However, bioinformatics techniques indicate a dimer as the biological oligomeric conformation. To get additional information of its biological conformation, we also performed Dynamic Light Scattering, Size Exclusion Chromatography and Small Angle X-ray Scattering experiments. These techniques showed a monomer as the most probable biological conformation in water; however small changes in pH and ionic strength result in different oligomeric assemblies. These novel information for Lys49-PLA{sub 2}s may result in important conclusions for this intriguing class of toxins. (author)

  15. Activity evaluation from different native or irradiated with {sup 60} Co gamma rays snake venoms and their inhibitory effect on Leishmania (Leishmania) amazonensis; Avaliacao da atividade de diferentes venenos de serpentes, nativos ou irradiados, com radiacao gama de {sup 60} Co, quanto ao poder inibitorio do crescimento de Leishmania (Leishmania) amazonensis

    Energy Technology Data Exchange (ETDEWEB)

    Lourenco, Cecilia de Oliveira

    2000-07-01

    Cutaneous leishmaniasis is a disease, caused by Leishmania parasites, that occurs frequently in tropical and sub-tropical regions of the world. Skin lesions that could results in disfiguring aspect characterize it. The treatment is based on few drugs as antimony salts or pentamidine that are toxic with increasing resistance by the parasite. Alternative forms of disease treatment are in constant search, including natural components as snake venoms. Previous studies demonstrate that some components of snake venoms have an inhibitory effect against those parasites, including Leishmania species. Although snake venoms presented high toxicity, several methods have been described to detoxify most or some of their toxic components, with favorable results by the use of gamma irradiation. In this report we tested several native and irradiated snake venoms for inhibitory effect against Leishmania (Leishmania) amazonensis parasite and LLCMK{sub 2} mammalian cells, with enzymatic tests and electrophoresis. There are significant activity in Acanthophis antarcticus, Agkistrodon bilineatus, Bothrops moojeni, Bothrops jararaca, Hoplocephalus stephensi, Naja melanoleuca, Naja mossambica, Pseudechis australis, Pseudechis colletti, Pseudechis guttatus and Pseudechis porphyriacus, venom being inactive Pseudonaja textilis, Notechis ater niger, Notechis scutatus. Oxyuranus microlepidotus and Oxyuranus scutellatus venoms. After 2 KGy of {sup 60}Co irradiation most venom loses significantly their activity. Venoms with antileishmanial activity presented L-amino acid oxidase (L-AO) activity and showed common protein with a molecular weight about 60kDa in SDS-PAGE. These results indicate that L-AO activity in those venoms are probably related with antileishmanial effect. (author)

  16. Snake Venom: From Deadly Toxins to Life-saving Therapeutics.

    Science.gov (United States)

    Waheed, Humera; Moin, Syed F; Choudhary, M I

    2017-01-01

    Snakes are fascinating creatures and have been residents of this planet well before ancient humans dwelled the earth. Venomous snakes have been a figure of fear, and cause notable mortality throughout the world. The venom constitutes families of proteins and peptides with various isoforms that make it a cocktail of diverse molecules. These biomolecules are responsible for the disturbance in fundamental physiological systems of the envenomed victim, leading to morbidity which can lead to death if left untreated. Researchers have turned these life-threatening toxins into life-saving therapeutics via technological advancements. Since the development of captopril, the first drug that was derived from bradykininpotentiating peptide of Bothrops jararaca, to the disintegrins that have potent activity against certain types of cancers, snake venom components have shown great potential for the development of lead compounds for new drugs. There is a continuous development of new drugs from snake venom for coagulopathy and hemostasis to anti-cancer agents. In this review, we have focused on different snake venom proteins / peptides derived drugs that are in clinical use or in developmental stages till to date. Also, some commonly used snake venom derived diagnostic tools along with the recent updates in this exciting field are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. BmajPLA2-II, a basic Lys49-phospholipase A2 homologue from Bothrops marajoensis snake venom with parasiticidal potential.

    Science.gov (United States)

    Grabner, Amy N; Alfonso, Jorge; Kayano, Anderson M; Moreira-Dill, Leandro S; Dos Santos, Ana Paula de A; Caldeira, Cleópatra A S; Sobrinho, Juliana C; Gómez, Ana; Grabner, Fernando P; Cardoso, Fabio F; Zuliani, Juliana Pavan; Fontes, Marcos R M; Pimenta, Daniel C; Gómez, Celeste Vega; Teles, Carolina B G; Soares, Andreimar M; Calderon, Leonardo A

    2017-09-01

    Snake venoms contain various proteins, especially phospholipases A 2 (PLA 2 s), which present potential applications in diverse areas of health and medicine. In this study, a new basic PLA 2 from Bothrops marajoensis with parasiticidal activity was purified and characterized biochemically and biologically. B. marajoensis venom was fractionated through cation exchange followed by reverse phase chromatographies. The isolated toxin, BmajPLA 2 -II, was structurally characterized with MALDI-TOF (Matrix-assisted laser desorption/ionization-time of flight) mass spectrometry, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by two-dimensional electrophoresis, partial amino acid sequencing, an enzymatic activity assay, circular dichroism, and dynamic light scattering assays. These structural characterization tests presented BmajPLA 2 -II as a basic Lys49 PLA 2 homologue, compatible with other basic snake venom PLA 2 s (svPLA 2 ), with a tendency to form aggregations. The in vitro anti-parasitic potential of B. marajoensis venom and of BmajPLA 2 -II was evaluated against Leishmania infantum promastigotes and Trypanosoma cruzi epimastigotes, showing significant activity at a concentration of 100μg/mL. The venom and BmajPLA 2 -II presented IC 50 of 0.14±0.08 and 6.41±0.64μg/mL, respectively, against intraerythrocytic forms of Plasmodium falciparum with CC 50 cytotoxicity values against HepG2 cells of 43.64±7.94 and >150μg/mL, respectively. The biotechnological potential of these substances in relation to leishmaniasis, Chagas disease and malaria should be more deeply investigated. Copyright © 2017. Published by Elsevier B.V.

  18. Alkylation of histidine residues of Bothrops jararacussu venom proteins and isolated phospholipases A2: a biotechnological tool to improve the production of antibodies.

    Science.gov (United States)

    Guimarães, C L S; Andrião-Escarso, S H; Moreira-Dill, L S; Carvalho, B M A; Marchi-Salvador, D P; Santos-Filho, N A; Fernandes, C A H; Fontes, M R M; Giglio, J R; Barraviera, B; Zuliani, J P; Fernandes, C F C; Calderón, L A; Stábeli, R G; Albericio, F; da Silva, S L; Soares, A M

    2014-01-01

    Crude venom of Bothrops jararacussu and isolated phospholipases A2 (PLA2) of this toxin (BthTX-I and BthTX-II) were chemically modified (alkylation) by p-bromophenacyl bromide (BPB) in order to study antibody production capacity in function of the structure-function relationship of these substances (crude venom and PLA2 native and alkylated). BthTX-II showed enzymatic activity, while BthTX-I did not. Alkylation reduced BthTX-II activity by 50% while this process abolished the catalytic and myotoxic activities of BthTX-I, while reducing its edema-inducing activity by about 50%. Antibody production against the native and alkylated forms of BthTX-I and -II and the cross-reactivity of antibodies to native and alkylated toxins did not show any apparent differences and these observations were reinforced by surface plasmon resonance (SPR) data. Histopathological analysis of mouse gastrocnemius muscle sections after injection of PBS, BthTX-I, BthTX-II, or both myotoxins previously incubated with neutralizing antibody showed inhibition of the toxin-induced myotoxicity. These results reveal that the chemical modification of the phospholipases A2 (PLA2) diminished their toxicity but did not alter their antigenicity. This observation indicates that the modified PLA2 may provide a biotechnological tool to attenuate the toxicity of the crude venom, by improving the production of antibodies and decreasing the local toxic effects of this poisonous substance in animals used to produce antivenom.

  19. Neutralization of pharmacological and toxic activities of Bothrops jararacussu snake venom and isolated myotoxins by Serjania erecta methanolic extract and its fractions

    Directory of Open Access Journals (Sweden)

    RS Fernandes

    2011-01-01

    Full Text Available Most of the snakebites recorded in Brazil are caused by the Bothrops genus. Given that the local tissue damage caused by this genus cannot be treated by antivenom therapy, numerous studies are focusing on supplementary alternatives, such as the use of medicinal plants. Serjania erecta has already demonstrated anti-inflammatory, antiseptic and healing properties. In the current study, the aerial parts of S. erecta were extracted with methanol, then submitted to chromatographic fractionation on a Sephadex LH20 column and eluted with methanol, which resulted in four main fractions. The crude extract and fractions neutralized the toxic activities of Bothrops jararacussu snake venom and isolated myotoxins (BthTX-I and II. Results showed that phospholipase A2, fibrinogenolytic, myotoxic and hemorrhagic activities were inhibited by the extract. Moreover, the myotoxic and edematous activities induced by BthTX-I, and phospholipase A2 activity induced by BthTX-II, were inhibited by the extract of S. erecta and its fraction. The clotting time on bovine plasma was significantly prolonged by the inhibitory action of fractions SF3 and SF4. This extract is a promising source of natural inhibitors, such as flavonoids and tannins, which act by forming complexes with metal ions and proteins, inhibiting the action of serineproteases, metalloproteases and phospholipases A2.

  20. Daño renal en ratas inducido por veneno de Bothrops neuwiedii diporus de Argentina Renal injury in rats poisoned by venom of Bothrops neuwiedii diporus from Argentina

    Directory of Open Access Journals (Sweden)

    Patricia Koscinczuk

    2004-08-01

    Full Text Available La insuficiencia renal aguda es una de las complicaciones sistémicas más frecuentes después de un accidente ofídico. En este estudio se evalúan los efectos que el veneno de Bothrops neuwiedii diporus produce en el riñón de ratas machos de la cepa Wistar. La histopatología permitió comprobar el desarrollo de necrosis tubular aguda; las lesiones iniciales se observaron a las 3 horas de la inoculación de una dosis de 700 µg del veneno, observándose en corteza renal congestión y degeneración granulohialina de las células epiteliales tubulares, acompañadas de dilatación y cilindros hialinos en la luz tubular. A las 24 horas se presentó necrosis tubular aguda en una superficie extensa de la corteza sin daño de la membrana basal tubular. Las lesiones de degeneración turbia de células epiteliales tubulares, dilatación de la luz tubular y cilindros hialinos se mantuvieron presentes hasta las 4 semanas post-inoculación. Si bien los parámetros de la bioquímica clínica asociados con insuficiencia renal aguda aumentaron a las 6 horas de la administración del veneno (urea: 1.10±0.22 g/dl; creatinina: 19.60±1.51mg/dl, a la semana descendieron a valores normales. Las densidades urinarias, en cambio, a la semana se mantuvieron más bajas que lo normal, 1.005 ± 0.001 (pAcute renal failure is one of the systemic complications that can be found in bothropic accidents. In this study the effects on male Wistar rats induced by the venom of Bothrops neuwiedii diporus were evaluated. The histopathology revealed acute tubular necrosis, lesions firstly were observed 3 hours post inoculation of 700 µg of venom. Cortical kidney congestion and granulohialin degeneration of tubular epithelial cells were observed, these lesions achieved a maximum at 24 hours after inoculation. Tubular epithelial hidropic degeneration and dilatation of tubular lumen with hyalin casts were present inclusive up to 4 weeks after inoculation. Biochemical parameter

  1. Action of Bothrops moojeni venom and its L-amino acid oxidase fraction, treated with 60Co gamma rays, in Leishmania spp

    International Nuclear Information System (INIS)

    Cardoso, Andre Gustavo Tempone

    1999-01-01

    Bothrops moojeni venom showed an anti leishmania activity in vitro, as determined by a cell viability assay using the reduction of MTT. After venom purification, by chromatography techniques, the fractions with anti leishmania and L-amino acid oxidase activities, eluted in the same positions. The molecular weight of the enzyme was estimated to be 140 kDa by molecular exclusion chromatography, and 69 kDa, by SDS-PAGE, migrating as a single band, with an isoelectric point of 4.8 as determined by isoelectric focusing. The purified LAO from B. moojeni venom, 135-fold more active than crude venom, showed homo dimeric constitution, and was active against Leishmania spp from the New World, with an effective concentration against L(L). amazonensis of 1.80 μg/ml (EC 50 ), L.(V.) panamensis (0.78 |μg/ml) and L.(L.) chagasi (0.63 (μg/ml). Ultrastructural studies of promastigotes affected by LAO demonstrated cell death, with edema in several organelles such as mitochondria and nuclear membrane, before cell disruption and necrosis. The action of LAO was demonstrated to be hydrogen peroxide-dependent. Studies with LLCMK-2 cells, treated with LAO, showed a toxic effect, with an EC 50 of 11|μg/ml. Irradiation of LAO with 6 0C o gamma rays, did not affect its whole oxidative activity, neither detoxified the enzyme. Amastigotes treated with LAO were not affected by its hydrogen peroxide, otherwise, the exogenous product, killed amastigotes with an EC 50 of 0.67mM. These data could be of help in the development of alternative therapeutic approaches to the treatment of leishmaniasis. (author)

  2. Sexual dimorphism in development and venom production of the insular threatened pit viper Bothrops insularism (Serpentes: Viperidae of Queimada Grande Island, Brazil

    Directory of Open Access Journals (Sweden)

    S.R. Travaglia-Cardoso

    2010-09-01

    Full Text Available Bothrops insularis is a threatened snake endemic to Queimada Grande Island, southern coast of São Paulo, Brazil, and the occurrence of sexual abnormalities in females (females with functional ovaries and rudimentary hemipenis has been reported in this population. To date there are few data regarding developmental features of this particular species. The aim of this study was to follow some developmental features in specimens maintained in captivity for seven years in the Herpetology Laboratory at Instituto Butantan, São Paulo, Brazil. We verified a pronounced sexual dimorphism in development and venom production in the specimens analyzed. In this regard, females showed greater length, mass and amount of venom in comparison to males. Our results suggest a possible niche partitioning between the sexes that reduces (or minimizes intraspecific disharmonic interactions (eg. competition on their small living area (Queimada Grande Island. Taken together, our data suggest that males and females probably are divergent in their diets, with females feeding preferentially on endothermic prey (such as migratory birds, while males maintain the juvenile diet (with the major items being ectothermic prey.

  3. Isolation: analysis and properties of three bradykinin-potentiating peptides (BPP-II, BPP-III, and BPP-V) from Bothrops neuwiedi venom.

    Science.gov (United States)

    Ferreira, L A; Galle, A; Raida, M; Schrader, M; Lebrun, I; Habermehl, G

    1998-04-01

    In the course of systematic investigations on low-molecular-weight compounds from the venom of Crotalidae and Viperidae, we have isolated and characterized at least three bradykinin-potentiating peptides (BPP-II, BPP-III, and BPP-V) from Bothrops neuwiedi venom by gel filtration on Sephadex G-25 M, Sephadex G-10 followed by HPLC. The peptides showed bradykinin-potentiating action on isolated guinea-pig ileum, for which the BPP-V was more active than of BPP-II, and BPP-III, rat arterial blood pressure, and a relevant angiotensin-converting enzyme (ACE) competitive inhibiting activity. The kinetic studies showed a Ki of the order of 9.7 x 10(-3) microM to BPP-II, 7 x 10(-3) microM to BPP-III, and 3.3 x 10(-3) microM to BPP-V. The amino acid sequence of the BPP-III has been determined to be pGlu-Gly-Gly-Trp-Pro-Arg-Pro-Gly-Pro-Glu-Ile-Pro-Pro, and the amino acid compositions of the BPP-II and BPP-V by amino acid analysis were 2Glu-2Gly-1Arg-4Pro-1Ile and 2Glu-2Gly-1Ser-3Pro-2Val-1Ile, with molecular weight of 1372, 1046, and 1078, respectively.

  4. Crystallization and preliminary X-ray crystallographic studies of a Lys49-phospholipase A2 homologue from Bothrops pirajai venom complexed with rosmarinic acid

    International Nuclear Information System (INIS)

    Santos, Juliana I. dos; Santos-Filho, Norival A.; Soares, Andreimar M.; Fontes, Marcos R. M.

    2010-01-01

    PrTX-I, a noncatalytic and myotoxic Lys49-phospholipase A 2 from B. pirajai venom, was cocrystallized with the inhibitor rosmarinic acid from C. verbenacea. The crystals diffracted X-rays to 1.8 Å resolution and the structure was solved, indicating a remarkable electronic density for the ligand at the entrance to the hydrophobic channel. PrTX-I, a noncatalytic and myotoxic Lys49-phospholipase A 2 from Bothrops pirajai venom, was crystallized in the presence of the inhibitor rosmarinic acid (RA). This is the active compound in the methanolic extract of Cordia verbenacea, a plant that is largely used in Brazilian folk medicine. The crystals diffracted X-rays to 1.8 Å resolution and the structure was solved by molecular-replacement techniques, showing electron density that corresponds to RA molecules at the entrance to the hydrophobic channel. The crystals belong to space group P2 1 2 1 2 1 , indicating conformational changes in the structure after ligand binding: the crystals of all apo Lys49-phospholipase A 2 structures belong to space group P3 1 21, while the crystals of complexed structures belong to space groups P2 1 or P2 1 2 1 2 1

  5. Crystallization and preliminary X-ray crystallographic studies of a Lys49-phospholipase A{sub 2} homologue from Bothrops pirajai venom complexed with rosmarinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Juliana I. dos [Departamento de Física e Biofísica, Instituto de Biociências, UNESP - Universidade Estadual Paulista, Botucatu-SP (Brazil); Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq (Brazil); Santos-Filho, Norival A.; Soares, Andreimar M. [Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq (Brazil); Departamento de Análizes Clínicas, Toxicológicas e Bromatológicas, FCFRP, USP, Ribeirão Preto-SP (Brazil); Fontes, Marcos R. M., [Departamento de Física e Biofísica, Instituto de Biociências, UNESP - Universidade Estadual Paulista, Botucatu-SP (Brazil); Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq (Brazil)

    2010-06-01

    PrTX-I, a noncatalytic and myotoxic Lys49-phospholipase A{sub 2} from B. pirajai venom, was cocrystallized with the inhibitor rosmarinic acid from C. verbenacea. The crystals diffracted X-rays to 1.8 Å resolution and the structure was solved, indicating a remarkable electronic density for the ligand at the entrance to the hydrophobic channel. PrTX-I, a noncatalytic and myotoxic Lys49-phospholipase A{sub 2} from Bothrops pirajai venom, was crystallized in the presence of the inhibitor rosmarinic acid (RA). This is the active compound in the methanolic extract of Cordia verbenacea, a plant that is largely used in Brazilian folk medicine. The crystals diffracted X-rays to 1.8 Å resolution and the structure was solved by molecular-replacement techniques, showing electron density that corresponds to RA molecules at the entrance to the hydrophobic channel. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, indicating conformational changes in the structure after ligand binding: the crystals of all apo Lys49-phospholipase A{sub 2} structures belong to space group P3{sub 1}21, while the crystals of complexed structures belong to space groups P2{sub 1} or P2{sub 1}2{sub 1}2{sub 1}.

  6. A novel fibrinolytic metalloproteinase, barnettlysin-I from Bothrops barnetti (Barnett´s pitviper) snake venom with anti-platelet properties.

    Science.gov (United States)

    Sanchez, Eladio Flores; Richardson, Michael; Gremski, Luiza Helena; Veiga, Silvio Sanches; Yarleque, Armando; Niland, Stephan; Lima, Augusto Martins; Estevao-Costa, Maria Inácia; Eble, Johannes Andreas

    2016-03-01

    Viperid snake venoms contain active components that interfere with hemostasis. We report a new P-I class snake venom metalloproteinase (SVMP), barnettlysin-I (Bar-I), isolated from the venom of Bothrops barnetti and evaluated its fibrinolytic and antithrombotic potential. Bar-I was purified using a combination of molecular exclusion and cation-exchange chromatographies. We describe some biochemical features of Bar-I associated with its effects on hemostasis and platelet function. Bar-I is a 23.386 kDa single-chain polypeptide with pI of 6.7. Its sequence (202 residues) shows high homology to other members of the SVMPs. The enzymatic activity on dimethylcasein (DMC) is inhibited by metalloproteinase inhibitors e.g. EDTA, and by α2-macroglobulin. Bar-I degrades fibrin and fibrinogen dose- and time-dependently by cleaving their α-chains. Furthermore, it hydrolyses plasma fibronectin but not laminin nor collagen type I. In vitro Bar-I dissolves fibrin clots made either from purified fibrinogen or from whole blood. In contrast to many other P-I SVMPs, Bar-I is devoid of hemorrhagic activity. Also, Bar-I dose- and time-dependently inhibits aggregation of washed human platelets induced by vWF plus ristocetin and collagen (IC50=1.3 and 3.2 μM, respectively), presumably Bar-I cleaves both vWF and GPIb. Thus, it effectively inhibits vWF-induced platelet aggregation. Moreover, this proteinase cleaves the collagen-binding α2-A domain (160 kDa) of α2β1-integrin. This explains why it additionally inhibits collagen-induced platelet activation. A non-hemorrhagic but fibrinolytic metalloproteinase dissolves fibrin clots in vitro and impairs platelet function. This study provides new opportunities for drug development of a fibrinolytic agent with antithrombotic effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Crystallization and preliminary X-ray diffraction studies of BmooPLA2-I, a platelet-aggregation inhibitor and hypotensive phospholipase A2 from Bothrops moojeni venom

    International Nuclear Information System (INIS)

    Salvador, Guilherme H. M.; Marchi-Salvador, Daniela P.; Silveira, Lucas B.; Soares, Andreimar M.; Fontes, Marcos R. M.

    2011-01-01

    BmooPLA 2 -I, an acidic, catalytic and nontoxic phospholipase A 2 from B. moojeni venom that is able to inhibit platelet aggregation and induce a hypotensive effect, has been crystallized. An X-ray diffraction data set was collected to 1.6 Å resolution and a molecular-replacement solution was obtained. Phospholipases A 2 (PLA 2 s) are enzymes that cause the liberation of fatty acids and lysophospholipids by the hydrolysis of membrane phospholipids. In addition to their catalytic action, a wide variety of pharmacological activities have been described for snake-venom PLA 2 s. BmooPLA 2 -I is an acidic, nontoxic and catalytic PLA 2 isolated from Bothrops moojeni snake venom which exhibits an inhibitory effect on platelet aggregation, an immediate decrease in blood pressure, inducing oedema at a low concentration, and an effective bactericidal effect. BmooPLA 2 -I has been crystallized and X-ray diffraction data have been collected to 1.6 Å resolution using a synchrotron-radiation source. The crystals belonged to space group C222 1 , with unit-cell parameters a = 39.7, b = 53.2, c = 89.2 Å. The molecular-replacement solution of BmooPLA 2 -I indicated a monomeric conformation, which is in agreement with nondenaturing electrophoresis and dynamic light-scattering experiments. A comparative study of this enzyme with the acidic PLA 2 from B. jararacussu (BthA-I) and other toxic and nontoxic PLA 2 s may provide important insights into the functional aspects of this class of proteins

  8. Biotechnological application of protein Leuc-B isolated from Bothrops leucurus venom as a prototype for antitumoral radiopharmaceutical;Aplicacao biotecnologica da proteina Leuc-B isolada da peconha de Bothrops leucurus como prototipo de radiofarmaco antitumoral

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Lucilene Marcia

    2010-07-01

    According to the report of the International Agency for Research on Cancer, the growth of this disease implies the death of 17 million people a year by 2030. Although the knowledge on development of cancer is growing considerably, just a few advances in the diagnosis and therapy has been achieved. Faced with this scenario, it is clear the need for new substances more specifics with low toxicity to the patient, which can be used for diagnosis and treatment of cancer. Membrane receptors over expressed in tumor cells are promising target candidates for development of diagnostic and therapeutical tools. Integrins are a family of hetero dimeric cell surface adhesion receptors able to recognize and bind to proteins in the extracellular matrix (ECM). This recognition is mainly through the RGD domains presents in both the cell surface as in the protein from the ECM. Various integrins have been identified as regulators of tumor progression. The RGD domain is also found in some snake venoms named disintegrins. Disintegrins inhibit cell-matrix and a cell-cell interactions mediated by integrins and it has been shown that these proteins are able to inhibit metastasis in processes dependent on integrin. The disintegrin-like (ECD), as well as RGD-disintegrin are also able to bind to cell surface integrins and inhibit their adhesion to the natural ligands. In this work it was purified from Bothrops leucurus venom (VBL), a metalloproteinase-class P-III with disintegrin-like domain (ECD), Leucurolisina B (Leuc-B). This metalloproteinase and the crude venom were used to evaluate their applicability in the differential detection of tumors. In vitro results demonstrated that both VBL and Leuc-B have potent antitumoral effect on several cancer cell lines: U87, T98, RT2 (glioblastoma), MCF7 (breast), Ehrlich and UACC (melanoma) with IC{sub 50} values of approximately 0.6 muM. The morphological changes observed in these strains when treated with Leuc-B, and data from the DAPI staining

  9. Estudo comparativo do veneno botrópico de referência em relação ao veneno das serpentes Bothrops jararaca nascidas em cativeiro no Laboratório de Herpetologia do Instituto Butantan.

    OpenAIRE

    Iasmim Baptista de Farias

    2016-01-01

    Em 1987 o Instituto Nacional de Controle de Qualidade em Saúde iniciou o uso do Veneno Botrópico de Referência Nacional (VBRN), que é a primeira extração das serpentes B. jararaca recém-chegadas da natureza. Em 10 anos notou-se uma queda de 67,65% na recepção de serpentes ao Instituto Butantan (IB), e na distribuição geográfica, resultando em uma maior heterogeneidade na composição do VBRN. Assim, comparamos os venenos das serpentes nascidas em cativeiro (VP) do Laboratório de Herpetologia do...

  10. A C-type lectin from Bothrops jararacussu venom can adhere to extracellular matrix proteins and induce the rolling of leukocytes

    Directory of Open Access Journals (Sweden)

    S. L. Elífio-Esposito

    2007-01-01

    Full Text Available Purification of a lectin from Bothrops jararacussu venom (BjcuL was carried out using agarose-D-galactose affinity gel. MALDI-TOF gave a major signal at m/z 32028, suggesting the presence of a dimmer composed of two identical subunits. Divalent cations were required for the lectin activity, as complete absence of such ions reduced hemagglutination. BjcuL was more effective at neutral pH and showed total loss of activity at pH values below 4.0 and above 9.0. Its agglutinating activity remained stable at 25°C until 60min, but increased when at 35°C for at least 15min. Adhesion assays to extracellular matrix (ECM glycoproteins showed that the biotinylated lectin (0.039-5.0µg/100µl was capable of binding to fibronectin and vitronectin in a dose-dependent manner. The binding was partially inhibited in the presence of D-galactose. BjcuL (1.25-10µg/30µl potential was investigated for leukocyte rolling and adhesion to endothelial cells in living microvessels using intravital microscopy, which showed that it induced a dose-dependent increase in rolling and adherence of leukocytes, acting directly on endothelial cells of postcapillary venules. The specific association between lectins and their ligands, either on the cell surface or on the ECM, is related to a variety of biological processes. The complementary characterization of BjcuL, shown here, is useful to further understand the venom effects and as a background for future investigation for therapeutic strategies.

  11. Purification and partial characterization of phospholipases A2 from Bothrops asper (barba amarilla snake venom from Chiriguaná (Cesar, Colombia

    Directory of Open Access Journals (Sweden)

    J. Ramírez-Avila

    2004-01-01

    Full Text Available Components with phospholipase A2 activity were isolated by gel filtration and cationic exchange chromatography from the venom of Bothrops asper snakes from Chiriguaná, Colombia (9°22´N; 73°37´W. Five fractions were obtained by the gel filtration, and PLA2 activity was found in fraction 3 (F3. In the cationic exchange chromatography, F3 showed eight components with PLA2 activity. Six of these components appeared as one band in polyacrylamide gel electrophoresis (SDS-PAGE. Fractions II and VII exhibited an optimal activity at pH 9 and 52ºC. The optimum calcium concentration for fraction II was 48 mM and for fraction VII, 384 mM. Both fractions showed thermal stability. Fraction II was stable at pH values between 2.5 and 9, and fraction VII, between 2.5 and 8. The Michaelis Menten constant (K M was 3.5x10-3 M for fraction II and 1.6x10-3 M for fraction VII. The molecular weight was 16,000 Dalton for fraction II and 17,000 Dalton for fraction VII. Both isoenzymes did not show any toxic activity (DL50 at 5.3 and 4 µg/g. The two fractions showed different kinetic constant (K M, calcium requirement, and substrate specificity for haemolytic activity.

  12. Experimental Bothrops atrox envenomation: Efficacy of antivenom therapy and the combination of Bothrops antivenom with dexamethasone.

    Directory of Open Access Journals (Sweden)

    Gabriella Neves Leal Santos Barreto

    2017-03-01

    Full Text Available Bothrops atrox snakes are the leading cause of snake bites in Northern Brazil. The venom of this snake is not included in the antigen pool used to obtain the Bothrops antivenom. There are discrepancies in reports on the effectiveness of this antivenom to treat victims bitten by B. atrox snakes. However, these studies were performed using a pre-incubation of the venom with the antivenom and, thus, did not simulate a true case of envenomation treatment. In addition, the local lesions induced by Bothrops venoms are not well resolved by antivenom therapy. Here, we investigated the efficacy of the Bothrops antivenom in treating the signs and symptoms caused by B. atrox venom in mice and evaluated whether the combination of dexamethasone and antivenom therapy enhanced the healing of local lesions induced by this envenomation. In animals that were administered the antivenom 10 minutes after the envenomation, we observed an important reduction of edema, dermonecrosis, and myonecrosis. When the antivenom was given 45 minutes after the envenomation, the edema and myonecrosis were reduced, and the fibrinogen levels and platelet counts were restored. The groups treated with the combination of antivenom and dexamethasone had an enhanced decrease in edema and a faster recovery of the damaged skeletal muscle. Our results show that Bothrops antivenom effectively treats the envenomation caused by Bothrops atrox and that the use of dexamethasone as an adjunct to the antivenom therapy could be useful to improve the treatment of local symptoms observed in envenomation caused by Bothrops snakes.

  13. Alternagin-C, a disintegrin-like protein from the venom of Bothrops alternatus, modulates a2ß1 integrin-mediated cell adhesion, migration and proliferation

    Directory of Open Access Journals (Sweden)

    Selistre-de-Araujo H.S.

    2005-01-01

    Full Text Available The alpha2ß1 integrin is a major collagen receptor that plays an essential role in the adhesion of normal and tumor cells to the extracellular matrix. Alternagin-C (ALT-C, a disintegrin-like protein purified from the venom of the Brazilian snake Bothrops alternatus, competitively interacts with the alpha2ß1 integrin, thereby inhibiting collagen binding. When immobilized in plate wells, ALT-C supports the adhesion of fibroblasts as well as of human vein endothelial cells (HUVEC and does not detach cells previously bound to collagen I. ALT-C is a strong inducer of HUVEC proliferation in vitro. Gene expression analysis was done using an Affimetrix HU-95A probe array with probe sets of ~10,000 human genes. In human fibroblasts growing on collagen-coated plates, ALT-C up-regulates the expression of several growth factors including vascular endothelial growth factor, as well as some cell cycle control genes. Up-regulation of the vascular endothelial growth factor gene and other growth factors could explain the positive effect on HUVEC proliferation. ALT-C also strongly activates protein kinase B phosphorylation, a signaling event involved in endothelial cell survival and angiogenesis. In human neutrophils, ALT-C has a potent chemotactic effect modulated by the intracellular signaling cascade characteristic of integrin-activated pathways. Thus, ALT-C acts as a survival factor, promoting adhesion, migration and endothelial cell proliferation after binding to alpha2ß1 integrin on the cell surface. The biological activities of ALT-C may be helpful as a therapeutic strategy in tissue regeneration as well as in the design of new therapeutic agents targeting alpha2ß1 integrin.

  14. Bothrops pirajai snake venom L-amino acid oxidase: in vitro effects on infection of Toxoplasma gondii in human foreskin fibroblasts

    Directory of Open Access Journals (Sweden)

    Luiz F. M. Izidoro

    2011-06-01

    Full Text Available The effect of an L-amino acid oxidase isolated from Bothrops pirajai snake venom (BpirLAAO-I was investigated on infection of Toxoplasma gondii in human foreskin fibroblasts (HFF. The cytotoxic activity of BpirLAAO-I on HFF cells showed a dose-dependent toxicity with median cytotoxic dose (TD50 of 11.8 µg/mL. BpirLAAO-I induced considerable dose-dependent decrease in the T. gondii infection index under two different conditions, treatment of tachyzoites before infection or treatment of HFF cells after infection. A maximal inhibition of infection (56% was found for treatment before infection, with a median inhibitory dose (ID50 at 1.83 µg/mL and selectivity index (SI at 6.45. For treatment after infection, it was observed a maximal inhibition of infection at 65%, ID50 of 1.20 µg/mL and SI of 9.83. The treatment before infection was also effective to reduce intracellular parasitism up to 62%, although presenting higher values of ID50 (3.14 µg/mL and lower values of SI (3.76. However, treatment after infection was not effective, suggesting that the enzyme seems to have no effect on the parasite intracellular replication for this condition. In conclusion, BpirLAAO-I was more effective to inhibit the infection of neighboring cells and consequently parasite dissemination than primary infection and parasite replication. Thus, the effect of BpirLAAO-I described herein could be taken into account for the development of new synthetic anti-parasite therapeutic agents.

  15. Increments in cytokines and matrix metalloproteinases in skeletal muscle after injection of tissue-damaging toxins from the venom of the snake Bothrops asper

    Directory of Open Access Journals (Sweden)

    Alexandra Rucavado

    2002-01-01

    Full Text Available Envenomations by the snake Bothrops asper are characterized by prominent local tissue damage (i.e. myonecrosis, blistering, hemorrhage and edema. Various phospholipases A2 and metalloproteinases that induce local pathological alterations have been purified from this venom. Since these toxins induce a conspicuous inflammatory response, it has been hypothesized that inflammatory mediators may contribute to the local pathological alterations described. This study evaluated the local production of cytokines and matrix metalloproteinases (MMPs as a consequence of intramuscular injections of an Asp-49 myotoxic phospholipase A2 (myotoxin III (MT-III and a P-I type hemorrhagic metalloproteinase (BaP1 isolated from B. asper venom. Both enzymes induced prominent tissue alterations and conspicuous increments in interleukin (IL-1β, IL-6 and a number of MMPs, especially gelatinase MMP-9, rapidly after injection. In contrast, no increments in tumor necrosis factor-α (TNF-α and interferon-γ were detected. In agreement, MT-III and BaP1 did not induce the synthesis of TNF-α by resident peritoneal macrophages in vitro. Despite the conspicuous expression of latent forms of MMPs in muscle, evidenced by zymography, there were no increments in activated MMP-2 and only a small increase in activated MMP-9, as detected by a functional enzymatic assay. This suggests that MMP activity was regulated by a highly controlled activation of latent forms and, probably, by a concomitant synthesis of MMP inhibitors. Since no hemorrhage nor dermonecrosis were observed after injection of MT-III, despite a prominent increase in MMP expression, and since inflammatory exudate did not enhance hemorrhage induced by BaP1, it is suggested that endogenous MMPs released in the tissue are not responsible for the dermonecrosis and hemorrhage characteristic of B. asper envenomation. Moreover, pretreatment of mice with the peptidomimetic MMP inhibitor batimastat did not reduce myotoxic nor

  16. Occurrence of Hepatozoon spp. (Apicomplexa, Hepatozoidae) in snakes of genus Bothrops in captivity

    OpenAIRE

    Glaser, V.; Boni, A.P.; Albuquerque, C.A.C.

    2008-01-01

    The occurrence of Hepatozoon gamont in the blood cells of Bothrops jararaca and B. jararacussu in captivity was analyzed. The prevalence of infection by Hepatozoon spp. was 50% and few erythrocytes contained the gamonts. Results suggest that the infection by Hepatozoon spp. occurred in the natural environment or after the captivity.

  17. Variaciones en las actividades enzimáticas del veneno de la serpiente Bothrops atrox "jergón", de tres zonas geográficas del Perú Variation of the enzymatic activity of Bothrops atrox "jergon" snake venom from three geographic regions, Peru

    Directory of Open Access Journals (Sweden)

    César Ortiz

    2012-06-01

    Full Text Available Objetivos. Estudiar la variabilidad en la composición y actividades enzimáticas entre venenos de ejemplares adultos de Bothrops atrox. Materiales y métodos. Se emplearon venenos de serpientes adultas procedentes de Amazonas, Junín y Ucayali. A cada una de las muestras se les realizó el análisis del contenido proteico y del número de bandas por PAGESDS, así como las actividades de fosfolipasa A2, hemolítica indirecta, amidolítica, coagulante, hemorrágica y proteolítica sobre caseína y mediante zimograma; además, se hicieron ensayos de inmunodifusión y neutralización in vitro con el suero antibotrópico polivalente del Instituto Nacional de Salud de Perú. Resultados. Las actividades amidolítica, coagulante, hemorrágica, proteolítica mediante zimograma, fosfolipasa A2 y hemolítica indirecta fueron variables, evidenciándose en las tres últimas una mayor actividad en los venenos de Amazonas, mientras que en la cantidad de proteína, bandas electroforéticas y actividad proteolítica sobre caseína no se observaron diferencias. Con respecto a las pruebas de neutralización, 0,5 dosis del antiveneno fueron suficientes para neutralizar con eficacia (más del 50% la actividad coagulante y fosfolipasa A2 de todas las muestras analizadas. Conclusiones. Algunas propiedades biológicas del veneno de ejemplares adultos de Bothrops atrox de Perú son variables, sin que ello afecte la neutralización in vitro por parte del suero antibotrópico polivalente sobre las actividades coagulante y fosfolipasa A2 del veneno.Objectives. To study the variability in the composition and enzymatic activity of venom from adult Bothrops atrox specimens. Materials and methods. We used venoms from adult snakes from Amazonas, Junín and Ucayali. Each of the venom samples underwent analysis for protein and number of bands by pagesds. Phospholipase A2, hemolytic, amidolytic, coagulant, hemorrhagic activity were analyzed, also and proteolytic activity on

  18. Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites.

    Science.gov (United States)

    Zelanis, André; Huesgen, Pitter F; Oliveira, Ana Karina; Tashima, Alexandre K; Serrano, Solange M T; Overall, Christopher M

    2015-01-15

    Many snake venom toxins are serine proteases but their specific in vivo targets are mostly unknown. Various act on components of the coagulation cascade, and fibrinolytic and kallikrein-kinin systems to trigger various pathological effects observed in the envenomation. Despite showing high similarity in terms of primary structure snake venom serine proteinases (SVSPs) show exquisite specificity towards macromolecular substrates. Therefore, the characterization of their peptide bond specificity is important for understanding the active site preference associated with effective proteolysis as well as for the design of peptide substrates and inhibitors. Bothrops jararaca contains various SVSPs among which Bothrops protease A is a specific fibrinogenolytic agent and PA-BJ is a platelet-activating enzyme. In this study we used proteome derived peptide libraries in the Proteomic Identification of protease Cleavage Sites (PICS) approach to explore the peptide bond specificity of Bothrops protease A and PA-BJ in order to determine their individual peptide cleavage sequences. A total of 371 cleavage sites (208 for Bothrops protease A and 163 for PA-BJ) were detected and both proteinases displayed a clear preference for arginine at the P1 position. Moreover, the analysis of the specificity profiles of Bothrops protease A and PA-BJ revealed subtle differences in the preferences along P6-P6', despite a common yet unusual preference for Pro at P2. Taken together, these results map the subsite specificity of both SVSPs and shed light in the functional differences between these proteinases. Proteolysis is key to various pathological effects observed upon envenomation by viperid snakes. The use of the Proteomic Identification of protease Cleavage Sites (PICS) approach for the easy mapping of proteinase subsite preferences at both the prime- and non-prime sides concurrently gives rise to a fresh understanding of the interaction of the snake venom serine proteinases with peptide and

  19. A novel peptide from the ACEI/BPP-CNP precursor in the venom of Crotalus durissus collilineatus.

    Science.gov (United States)

    Higuchi, Shigesada; Murayama, Nobuhiro; Saguchi, Ken-ichi; Ohi, Hiroaki; Fujita, Yoshiaki; da Silva, Nelson Jorge; de Siqueira, Rodrigo José Bezerra; Lahlou, Saad; Aird, Steven D

    2006-10-01

    In crotaline venoms, angiotensin-converting enzyme inhibitors [ACEIs, also known as bradykinin potentiating peptides (BPPs)], are products of a gene coding for an ACEI/BPP-C-type natriuretic peptide (CNP) precursor. In the genes from Bothrops jararaca and Gloydius blomhoffii, ACEI/BPP sequences are repeated. Sequencing of a cDNA clone from venom glands of Crotalus durissus collilineatus showed that two ACEIs/BPPs are located together at the N-terminus, but without repeats. An additional sequence for CNP was unexpectedly found at the C-terminus. Homologous genes for the ACEI/BPP-CNP precursor suggest that most crotaline venoms contain both ACEIs/BPPs and CNP. The sequence of ACEIs/BPPs is separated from the CNP sequence by a long spacer sequence. Previously, there was no evidence that this spacer actually coded any expressed peptides. Aird and Kaiser (1986, unpublished) previously isolated and sequenced a peptide of 11 residues (TPPAGPDVGPR) from Crotalus viridis viridis venom. In the present study, analysis of the cDNA clone from C. d. collilineatus revealed a nearly identical sequence in the ACEI/BPP-CNP spacer. Fractionation of the crude venom by reverse phase HPLC (C(18)), and analysis of the fractions by mass spectrometry (MS) indicated a component of 1020.5 Da. Amino acid sequencing by MS/MS confirmed that C. d. collilineatus venom contains the peptide TPPAGPDGGPR. Its high proline content and paired proline residues are typical of venom hypotensive peptides, although it lacks the usual N-terminal pyroglutamate. It has no demonstrable hypotensive activity when injected intravenously in rats; however, its occurrence in the venoms of dissimilar species suggests that its presence is not accidental. Evidence suggests that these novel toxins probably activate anaphylatoxin C3a receptors.

  20. Caracterização individual do veneno de Bothrops alternatus Duméril, Bibron & Duméril em função da distribuição geográfica no Brasil (Serpentes,Viperidae Individual characterization of Bothrops alternatus Duméril, Bibron & Duméril venoms, according to their geographic distribution in Brazil (Serpentes, Viperidae

    Directory of Open Access Journals (Sweden)

    Marisa M. T. da Rocha

    2005-06-01

    Full Text Available Bothrops alternatus Duméril, Bibron & Duméril, 1854 é uma serpente de importância em saúde pública, com ampla distribuição geográfica, desde o Mato Grosso do Sul até o sudeste do Brasil, chegando até a Argentina e Uruguai, ocupando vários domínios morfoclimáticos. Neste trabalho investigou-se a variação do veneno de adultos de Bothrops alternatus, em função de sua distribuição geográfica no Brasil, comparativamente ao veneno elaborado sob a forma de "pool" desta espécie (veneno referência, que inclui serpentes, em sua maioria, da região do estado de São Paulo. Foram analisadas as atividades letal, coagulante sobre o plasma, proteolítica sobre a caseína e miotóxica, bem como os padrões eletroforéticos de 61 amostras individuais de veneno contrapostas ao "pool". Os resultados mostraram que o veneno de B. alternatus é pouco ativo, comparativamente ao de outros Bothrops Wagler, 1824. A variação individual prevaleceu, não apresentando correlação com as áreas de distribuição geográfica e domínios morfoclimáticos, porém a atividade coagulante das amostras de veneno provenientes do nordeste da distribuição geográfica apresentaram-se menos ativas comparativamente às da porção central da distribuição. Os venenos provenientes das bordas da distribuição apresentaram ações proteolíticas e miotóxicas mais intensas, que estatisticamente não foram significativamente diferentes. As variações individuais prevaleceram.Bothrops alternatus Duméril, Bibron & Duméril, 1854 snakebites are an important public health problem in Brazil. Such snakes are found from Mato Grosso do Sul (central Brazil to southeastern Brazil, reaching even Argentina and Uruguay and thereby occupying different morphoclimatic domains. This work investigated venom variation occurring in adult specimens of B. alternatus specimens, according to their geographic distribution in Brazil. The standard venom pool (reference venom produced by

  1. Ocorrência de Hepatozoon spp. (Apicomplexa, Hepatozoidae em serpentes do gênero Bothrops de cativeiro Occurrence of Hepatozoon spp. (Apicomplexa, Hepatozoidae in snakes of genus Bothrops in captivity

    Directory of Open Access Journals (Sweden)

    V. Glaser

    2008-10-01

    Full Text Available The occurrence of Hepatozoon gamont in the blood cells of Bothrops jararaca and B. jararacussu in captivity was analyzed. The prevalence of infection by Hepatozoon spp. was 50% and few erythrocytes contained the gamonts. Results suggest that the infection by Hepatozoon spp. occurred in the natural environment or after the captivity.

  2. Moojenactivase, a novel pro-coagulant PIIId metalloprotease isolated from Bothrops moojeni snake venom, activates coagulation factors II and X and induces tissue factor up-regulation in leukocytes.

    Science.gov (United States)

    Sartim, Marco A; Costa, Tassia R; Laure, Helen J; Espíndola, Milena S; Frantz, Fabiani G; Sorgi, Carlos A; Cintra, Adélia C O; Arantes, Eliane C; Faccioli, Lucia H; Rosa, José C; Sampaio, Suely V

    2016-05-01

    Coagulopathies following snakebite are triggered by pro-coagulant venom toxins, in which metalloproteases play a major role in envenomation-induced coagulation disorders by acting on coagulation cascade, platelet function and fibrinolysis. Considering this relevance, here we describe the isolation and biochemical characterization of moojenactivase (MooA), a metalloprotease from Bothrops moojeni snake venom, and investigate its involvement in hemostasis in vitro. MooA is a glycoprotein of 85,746.22 Da, member of the PIIId group of snake venom metalloproteases, composed of three linked disulfide-bonded chains: an N-glycosylated heavy chain, and two light chains. The venom protease induced human plasma clotting in vitro by activating on both blood coagulation factors II (prothrombin) and X, which in turn generated α-thrombin and factor Xa, respectively. Additionally, MooA induced expression of tissue factor (TF) on the membrane surface of peripheral blood mononuclear cells (PBMC), which led these cells to adopt pro-coagulant characteristics. MooA was also shown to be involved with production of the inflammatory mediators TNF-α, IL-8 and MCP-1, suggesting an association between MooA pro-inflammatory stimulation of PBMC and TF up-regulation. We also observed aggregation of washed platelets when in presence of MooA; however, the protease had no effect on fibrinolysis. Our findings show that MooA is a novel hemostatically active metalloprotease, which may lead to the development of coagulopathies during B. moojeni envenomation. Moreover, the metalloprotease may contribute to the development of new diagnostic tools and pharmacological approaches applied to hemostatic disorders.

  3. Action of Bothrops moojeni venom and its L-amino acid oxidase fraction, treated with {sup 60}Co gamma rays, in Leishmania spp; Acao do veneno de Bothrops moojeni e sua fracao L-aminoacido oxidase, submetida ao tratamento com raios gama de {sup 60}Co, em Leishmania spp

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Andre Gustavo Tempone

    1999-07-01

    Bothrops moojeni venom showed an anti leishmania activity in vitro, as determined by a cell viability assay using the reduction of MTT. After venom purification, by chromatography techniques, the fractions with anti leishmania and L-amino acid oxidase activities, eluted in the same positions. The molecular weight of the enzyme was estimated to be 140 kDa by molecular exclusion chromatography, and 69 kDa, by SDS-PAGE, migrating as a single band, with an isoelectric point of 4.8 as determined by isoelectric focusing. The purified LAO from B. moojeni venom, 135-fold more active than crude venom, showed homo dimeric constitution, and was active against Leishmania spp from the New World, with an effective concentration against L(L). amazonensis of 1.80 {mu}g/ml (EC{sub 50}), L.(V.) panamensis (0.78 |{mu}g/ml) and L.(L.) chagasi (0.63 ({mu}g/ml). Ultrastructural studies of promastigotes affected by LAO demonstrated cell death, with edema in several organelles such as mitochondria and nuclear membrane, before cell disruption and necrosis. The action of LAO was demonstrated to be hydrogen peroxide-dependent. Studies with LLCMK-2 cells, treated with LAO, showed a toxic effect, with an EC{sub 50} of 11|{mu}g/ml. Irradiation of LAO with 6{sup 0C}o gamma rays, did not affect its whole oxidative activity, neither detoxified the enzyme. Amastigotes treated with LAO were not affected by its hydrogen peroxide, otherwise, the exogenous product, killed amastigotes with an EC{sub 50} of 0.67mM. These data could be of help in the development of alternative therapeutic approaches to the treatment of leishmaniasis. (author)

  4. Individual characterization of Bothrops alternatus Duméril, Bibron & Duméril venoms, according to their geographic distribution in Brazil (Serpentes, Viperidae)

    OpenAIRE

    Rocha, Marisa M. T. da; Furtado, Maria de F. D.

    2005-01-01

    Bothrops alternatus Duméril, Bibron & Duméril, 1854 é uma serpente de importância em saúde pública, com ampla distribuição geográfica, desde o Mato Grosso do Sul até o sudeste do Brasil, chegando até a Argentina e Uruguai, ocupando vários domínios morfoclimáticos. Neste trabalho investigou-se a variação do veneno de adultos de Bothrops alternatus, em função de sua distribuição geográfica no Brasil, comparativamente ao veneno elaborado sob a forma de "pool" desta espécie (veneno referência), q...

  5. Interaction between TNF and BmooMP-Alpha-I, a Zinc Metalloprotease Derived from Bothrops moojeni Snake Venom, Promotes Direct Proteolysis of This Cytokine: Molecular Modeling and Docking at a Glance

    Directory of Open Access Journals (Sweden)

    Maraisa Cristina Silva

    2016-07-01

    Full Text Available Tumor necrosis factor (TNF is a major cytokine in inflammatory processes and its deregulation plays a pivotal role in several diseases. Here, we report that a zinc metalloprotease extracted from Bothrops moojeni venom (BmooMP-alpha-I inhibits TNF directly by promoting its degradation. This inhibition was demonstrated by both in vitro and in vivo assays, using known TLR ligands. These findings are supported by molecular docking results, which reveal interaction between BmooMP-alpha-I and TNF. The major cluster of interaction between BmooMP-alpha-I and TNF was confirmed by the structural alignment presenting Ligand Root Mean Square Deviation LRMS = 1.05 Å and Interactive Root Mean Square Deviation IRMS = 1.01 Å, this result being compatible with an accurate complex. Additionally, we demonstrated that the effect of this metalloprotease on TNF is independent of cell cytotoxicity and it does not affect other TLR-triggered cytokines, such as IL-12. Together, these results indicate that this zinc metalloprotease is a potential tool to be further investigated for the treatment of inflammatory disorders involving TNF deregulation.

  6. Some new species of Caryospora (Apicomplexa: Eimeriidae from brazilian snakes, and a re-description of C. jararacae Carini, 1939

    Directory of Open Access Journals (Sweden)

    Ralph Lainson

    1991-09-01

    Full Text Available The mature ooxysts of six new species of Caryospora are described from the faeces of Brazilian snakes. They are differentiated from other species previously recorded from reptiles, largely on the size and shape of the oocyst and sporocyst, structure of the oocyst wall, and presence or absence of a polar body. C. paraensis n. sp., and C. carajasensis n. sp., are from the "false coral", Oxyrhopus petola digitalis; C. pseustesi n. sp., from the "egg-eater", Pseustes sulphureus sulphureus; C. epicratesi n. sp., from the "red boa", Epicrates cenchria cenchria; and C. micruri n. sp., and C. constancieae n. sp., from the "coral snake", Micrurus spixii spixii. A re-description is given of C. jararacae Carini, 1939, from the "jararaca" Bothrops atrox, embodying some additional morphological features.

  7. Canopy Venom: Proteomic Comparison among New World Arboreal Pit-Viper Venoms.

    Science.gov (United States)

    Debono, Jordan; Cochran, Chip; Kuruppu, Sanjaya; Nouwens, Amanda; Rajapakse, Niwanthi W; Kawasaki, Minami; Wood, Kelly; Dobson, James; Baumann, Kate; Jouiaei, Mahdokht; Jackson, Timothy N W; Koludarov, Ivan; Low, Dolyce; Ali, Syed A; Smith, A Ian; Barnes, Andrew; Fry, Bryan G

    2016-07-08

    Central and South American pitvipers, belonging to the genera Bothrops and Bothriechis, have independently evolved arboreal tendencies. Little is known regarding the composition and activity of their venoms. In order to close this knowledge gap, venom proteomics and toxin activity of species of Bothriechis, and Bothrops (including Bothriopsis) were investigated through established analytical methods. A combination of proteomics and bioactivity techniques was used to demonstrate a similar diversification of venom composition between large and small species within Bothriechis and Bothriopsis. Increasing our understanding of the evolution of complex venom cocktails may facilitate future biodiscoveries.

  8. SISTEMA FIBRINOLÍTICO: MÉTODOS DE ESTUDIO Y HALLAZGOS EN VENENOS DE SERPIENTES DE LOS GENEROS Bothrops, Crotalus, Micrurus EN VENEZUELA | FIBRINOLYTIC SYSTEM: METHODS OF STUDY AND FINDINGS IN Bothrops, Crotalus, Micrurus SNAKE VENOMS IN VENEZUELA

    Directory of Open Access Journals (Sweden)

    Alexis Rodríguez-Acosta,

    2016-10-01

    Full Text Available En la presente revisión se muestran resultados relevantes de actividades hemostáticas, con especial énfasis a las relacionadas con la fibrinólisis, presentes en venenos de serpientes venezolanas de los géneros Bothrops, Crotalus y Micrurus, que existen en diversas localidades geográficas. Con esta descripción, se presenta además una revisión de diversos ensayos que se utilizan en investigación para estos estudios. Se han evidenciado importantes diferencias inter e intra-especies, e incluso entre ejemplares de distintos espacios geográficos, lo que debe influir en los mecanismos de acción de sus venenos y la sintomatología clínica. Estas diferencias en composición y concentración de componentes activos, deben estar asociadas a variaciones estacionales o geográficas, dieta, sexo, hábitat, edad, e inclusive variabilidades genéticas. Ello podría explicar las discrepancias en los cuadros clínicos de las víctimas y también ayudar a determinar mecanismos de acción que faciliten una mejor orientación a los médicos tratantes. Estas variables ayudarían al seguimiento y tratamiento de los pacientes, orientando a los especialistas en antivenenos, en la escogencia del inóculo, con una mezcla amplia de venenos de diferentes especies, géneros, edad, sexo y procedencia, así como con toxinas de relevancia, para la preparación y obtención de estos antivenenos con valores de gran eficacia y amplio espectro. Los componentes bioactivos aislados, como las colombienasas y la tenerplasminina-1, por sus características biológicas, representan asimismo moléculas con un uso potencial como trombolíticos y antifibrinolíticos, respectivamente.

  9. First report of hepatic hematoma after presumed Bothrops envenomation

    Directory of Open Access Journals (Sweden)

    Fernanda Cristina Cunha

    2015-10-01

    Full Text Available ABSTRACTIn Latin America, Bothrops envenomation is responsible for the majority of accidents caused by venomous snakes. Patients usually present local edema, bleeding and coagulopathy. Visceral hemorrhage is extremely rare and considered a challenge for diagnosis and management. We report the first case of hepatic hematoma owing to the bothropic envenomation in a 66-year-old man who was bitten in the left leg. He presented local edema, coagulopathy, and acute kidney injury. Radiological findings suggested hepatic hematoma, with a volume of almost 3 liters. The hepatic hematoma was gradually absorbed without the need for surgical intervention with complete resolution in 8 months.

  10. Biological and immunological characteristics of the poison of Bothrops cotiara (Serpentes: Viperidae)

    International Nuclear Information System (INIS)

    Roodt, Adolfo Rafael de; Dolab, Jorge Adrian; Manzanelli, Marcelo Victor; Pineiro, Nicolas; Estevez, Judith; Paniagua, Jorge Francisco; Urs Vogt, Alejandro

    2006-01-01

    Bothrops cotiara is a venomous snake sporadically found in the province of Misiones in Argentina, South of Brazil and Paraguay. Data on the clinics of the poisoning produced by its bite and on its venom are scarce. There is no information on the neutralizing capacity of the antivenoms available. In this study, the lethal potency, hemorrhagic, necrotizing, coagulant and thrombin-like, defibrinogenasing, indirect hemolytic and fibrinolytic activities of the venom of B. cotiara specimens from the province of Misiones were determined. The toxic activities were within the range of those described for the other Bothrops species from Argentina, and the electrophoretic and chromatographic studies showed similarities with those described for the other bothropic venoms. The immunochemical reactivity of six South American anti Viper antivenoms (ELISA) have a strong reactivity with all the antivenoms studied. The neutralizing capacity of three of these therapeutic antivenoms against the lethal potency and hemorrhagic, necrotizing, coagulant, thrombin-like and hemolytic activities showed a very close neutralizing capacity. Our data strongly suggest that the antivenoms for therapeutic use available in this area of South America are useful to neutralize the toxic and enzymatic activities of the venom of this uncommon specie of Bothrops. (author) [es

  11. Comparative study of anticoagulant and procoagulant properties of 28 snake venoms from families Elapidae, Viperidae, and purified Russell's viper venom-factor X activator (RVV-X).

    Science.gov (United States)

    Suntravat, Montamas; Nuchprayoon, Issarang; Pérez, John C

    2010-09-15

    Snake venoms consist of numerous molecules with diverse biological functions used for capturing prey. Each component of venom has a specific target, and alters the biological function of its target. Once these molecules are identified, characterized, and cloned; they could have medical applications. The activated clotting time (ACT) and clot rate were used for screening procoagulant and anticoagulant properties of 28 snake venoms. Crude venoms from Daboia russellii siamensis, Bothrops asper, Bothrops moojeni, and one Crotalus oreganus helleri from Wrightwood, CA, had procoagulant activity. These venoms induced a significant shortening of the ACT and showed a significant increase in the clot rate when compared to the negative control. Factor X activator activity was also measured in 28 venoms, and D. r. siamensis venom was 5-6 times higher than those of B. asper, B. moojeni, and C. o. helleri from Wrightwood County. Russell's viper venom-factor X activator (RVV-X) was purified from D. r. siamensis venom, and then procoagulant activity was evaluated by the ACT and clot rate. Other venoms, Crotalus atrox and two Naja pallida, had anticoagulant activity. A significant increase in the ACT and a significant decrease in the clot rate were observed after the addition of these venoms; therefore, the venoms were considered to have anticoagulant activity. Venoms from the same species did not always have the same ACT and clot rate profiles, but the profiles were an excellent way to identify procoagulant and anticoagulant activities in snake venoms.

  12. Gene expression in SK-Mel-28 human melanoma cells treated with the snake venom jararhagin.

    Science.gov (United States)

    Klein, Anelise; Capitanio, Juliana Silva; Maria, Durvanei Augusto; Ruiz, Itamar Romano Garcia

    2011-01-01

    Alternative approaches to improve the treatment of advanced melanomas are highly needed. The disintegrin domain of metalloproteinases binds integrin receptors on tumor cells, blocking migration, invasion, and metastatization. Previous studies showed that jararhagin, from the Bothrops jararaca snake venom, induces changes in the morphology and viability of SK-Mel-28 human melanoma cells, and decreases the number of metastases in mice injected with pre-treated cells. The purpose of this study was to evaluate the molecular effects of jararhagin on SK-Mel-28 cells and fibroblasts, concerning the expression of integrins, cadherins, caspases, and TP53 genes. Sub-toxic doses of jararhagin were administered to confluent cells. RT-PCR was performed following extraction of total RNA. Jararhagin treatments induced similar morphological alterations in both normal and tumor cells, with higher IC50 values for fibroblasts. Integrin genes were downregulated in untreated cells, except for ITGA6a,b, ITGAv, and ITGB3 which were highly expressed in SK-Mel-28. The integrin expression profiles were not affected by the toxin. However, jararhagin 30ng/μl upregulated genes TP53, CDKN1A, CDKN2A, CASP3, CASP5, CASP6, CASP8, and E-CDH in SK-Mel-28, and genes ITGB6, ITGB7, CASP3, TP53, and CDKN1B in fibroblasts. Appropriate jararhagin concentration can have apoptotic and suppressant effects on SK-Mel-28 cells, rather than on fibroblasts, and can be used to develop potential anti-cancer drugs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Envenomations by Bothrops and Crotalus snakes induce the release of mitochondrial alarmins.

    Directory of Open Access Journals (Sweden)

    Irene Zornetta

    Full Text Available Skeletal muscle necrosis is a common manifestation of viperid snakebite envenomations. Venoms from snakes of the genus Bothrops, such as that of B. asper, induce muscle tissue damage at the site of venom injection, provoking severe local pathology which often results in permanent sequelae. In contrast, the venom of the South American rattlesnake Crotalus durissus terrificus, induces a clinical picture of systemic myotoxicity, i.e., rhabdomyolysis, together with neurotoxicity. It is known that molecules released from damaged muscle might act as 'danger' signals. These are known as 'alarmins', and contribute to the inflammatory reaction by activating the innate immune system. Here we show that the venoms of B. asper and C. d. terrificus release the mitochondrial markers mtDNA (from the matrix and cytochrome c (Cyt c from the intermembrane space, from ex vivo mouse tibialis anterior muscles. Cyt c was released to a similar extent by the two venoms whereas B. asper venom induced the release of higher amounts of mtDNA, thus reflecting hitherto some differences in their pathological action on muscle mitochondria. At variance, injection of these venoms in mice resulted in a different time-course of mtDNA release, with B. asper venom inducing an early onset increment in plasma levels and C. d. terrificus venom provoking a delayed release. We suggest that the release of mitochondrial 'alarmins' might contribute to the local and systemic inflammatory events characteristic of snakebite envenomations.

  14. Discovery of human scFvs that cross-neutralize the toxic effects of B. jararacussu and C. d. terrificus venoms.

    Science.gov (United States)

    Silva, Luciano C; Pucca, Manuela B; Pessenda, Gabriela; Campos, Lucas B; Martinez, Edson Z; Cerni, Felipe A; Barbosa, José E

    2018-01-01

    Accidents involving venomous snakes are a public health problem worldwide, causing a large number of deaths per year. In Brazil, the majority of accidents are caused by the Bothrops and Crotalus genera, which are responsible for approximately 80% of severe envenoming cases. The cross-neutralization of snake venoms by antibodies is an important issue for development of more effective treatments. Our group has previously reported the construction of human monoclonal antibody fragments towards Bothrops jararacussu and Crotalus durissus terrificus' venoms. This study aimed to select human single-chain variable fragments (scFvs) that recognize both bothropic and crotalic crude venoms following venoms neutralizing capacity in vitro and in vivo. The cross-reactivity of Cro-Bothrumabs were demonstrated by ELISA and in vitro and in vivo experiments showed that a combination of scFvs neutralizes in vitro toxic activities (e.g. indirect hemolysis and plasma-clotting) of crotalic and bothropic venoms as well as prolonged survival time of envenomed animals. Our results may contribute to the development of the first human polyvalent antivenom against Bothrops jararacussu and Crotalus durissus terrificus venoms, overcoming some undesirable effects caused by conventional serotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Microhabitat use by species of the genera Bothrops and Crotalus (Viperidae in semi-extensive captivity

    Directory of Open Access Journals (Sweden)

    CA Gomes

    2012-01-01

    Full Text Available Many factors influence microhabitat including climate and the occurrence of predators, prey and suitable shelters. The influence of predators in a semi-extensive breeding system is minimized due to frequent monitoring of the area. This situation enables the independent analysis of such other variables as refuges and temperature. Some specimens of the Viperidae family are kept in a semi-extensive breeding system at the Butantan Institute for display and study. These animals are widely distributed in the Atlantic Forest and Cerrado, two biomes with distinct climatic characteristics. We compared the daily activity pattern and microhabitat use of the species Bothrops jararaca and Crotalus durissus terrificus. Our main questions were whether rattlesnakes and lancehead snakes respond to habitat selection differently in similar climatic conditions and if they choose similar microhabitats. Species of the genus Bothrops were frequently found under shelters regardless of the time of day. On the other hand, snakes of the genus Crotalus were frequently found sheltered during the early morning, then migrated to sunnier areas and returned to shelters in late afternoon.

  16. A novel synthetic quinolinone inhibitor presents proteolytic and hemorrhagic inhibitory activities against snake venom metalloproteases.

    Science.gov (United States)

    Baraldi, Patrícia T; Magro, Angelo J; Matioli, Fábio F; Marcussi, Silvana; Lemke, Ney; Calderon, Leonardo A; Stábeli, Rodrigo G; Soares, Andreimar M; Correa, Arlene G; Fontes, Marcos R M

    2016-02-01

    Metalloproteases play a fundamental role in snake venom envenomation inducing hemorrhagic, fibrigen(ogen)olytic and myotoxic effects in their victims. Several snake venoms, such as those from the Bothrops genus, present important local effects which are not efficiently neutralized by conventional serum therapy. Consequently, these accidents may result in permanent sequelae and disability, creating economic and social problems, especially in developing countries, leading the attention of the World Health Organization that considered ophidic envenomations a neglected tropical disease. Aiming to produce an efficient inhibitor against bothropic venoms, we synthesized different molecules classified as quinolinones - a group of low-toxic chemical compounds widely used as antibacterial and antimycobacterial drugs - and tested their inhibitory properties against hemorrhage caused by bothropic venoms. The results from this initial screening indicated the molecule 2-hydroxymethyl-6-methoxy-1,4-dihydro-4-quinolinone (Q8) was the most effective antihemorrhagic compound among all of the assayed synthetic quinolinones. Other in vitro and in vivo experiments showed this novel compound was able to inhibit significantly the hemorrhagic and/or proteolytic activities of bothropic crude venoms and isolated snake venom metalloproteases (SVMPs) even at lower concentrations. Docking and molecular dynamic simulations were also performed to get insights into the structural basis of Q8 inhibitory mechanism against proteolytic and hemorrhagic SVMPs. These structural studies demonstrated that Q8 may form a stable complex with SVMPs, impairing the access of substrates to the active sites of these toxins. Therefore, both experimental and structural data indicate that Q8 compound is an interesting candidate for antiophidic therapy, particularly for the treatment of the hemorrhagic and necrotic effects induced by bothropic venoms. Copyright © 2015 Elsevier B.V. and Société Française de

  17. Biochemical and biological characterization of Bothriechis schlegelii snake venoms from Colombia and Costa Rica.

    Science.gov (United States)

    Prezotto-Neto, José P; Kimura, Louise F; Alves, André F; Gutiérrez, José María; Otero, Rafael; Suárez, Ana M; Santoro, Marcelo L; Barbaro, Katia C

    2016-12-01

    Snakebites inflicted by the arboreal viperid snake Bothriechis schlegelii in humans are characterized by pain, edema, and ecchymosis at the site of the bite, rarely with blisters, local necrosis, or defibrination. Herein, a comparative study of Bothriechis schlegelii snake venoms from Colombia (BsCo) and Costa Rica (BsCR) was carried out in order to compare their main activities and to verify the efficacy of Bothrops antivenom produced in Brazil to neutralize them. Biochemical (SDS-PAGE and zymography) and biological parameters (edematogenic, lethal, hemorrhagic, nociceptive, and phospholipase A 2 activities) induced by BsCo and BsCR snake venoms were evaluated. The presence of antibodies in Bothrops antivenom that recognize BsCo and BsCR snake venoms by enzyme-linked immunosorbent assay and Western blotting, as well as the ability of this antivenom to neutralize the toxic activities were also verified. SDS-PAGE showed differences between venoms. Distinctive caseinolytic and hyaluronidase patterns were detected by zymography. BsCo and BsCR showed similar phospholipase A 2 activity. Strong cross-reactivity between BsCo and BsCR was detected using Bothrops antivenom with many components located between 150 and 35 kDa. BsCR was more edematogenic and almost fourfold more hemorrhagic than BsCo, and both venoms induced nociception. BsCR (LD 50 5.60 mg/kg) was more lethal to mice than BsCo (LD 50 9.24 mg/kg). Bothrops antivenom was effective in the neutralization of lethal and hemorrhagic activities of BsCo and BsCR and was partially effective in the neutralization of edematogenic and nociceptive activities. In conclusion, geographic distribution influences the composition and activities of Bothriechis schlegelii venoms. Bothrops antivenom cross-reacted with these venoms and was partially effective in neutralizing some toxic activities of BsCo and BsCR.

  18. A new structurally atypical bradykinin-potentiating peptide isolated from Crotalus durissus cascavella venom (South American rattlesnake).

    Science.gov (United States)

    Lopes, Denise M; Junior, Norberto E G; Costa, Paula P C; Martins, Patrícia L; Santos, Cláudia F; Carvalho, Ellaine D F; Carvalho, Maria D F; Pimenta, Daniel C; Cardi, Bruno A; Fonteles, Manassés C; Nascimento, Nilberto R F; Carvalho, Krishnamurti M

    2014-11-01

    Venom glands of some snakes synthesize bradykinin-potentiating peptides (BPP's) which increase bradykinin-induced hypotensive effect and decrease angiotensin I vasopressor effect by angiotensin-converting enzyme (ACE) inhibition. The present study shows a new BPP (BPP-Cdc) isolated from Crotalus durissus cascavella venom: Pro-Asn-Leu-Pro-Asn-Tyr-Leu-Gly-Ile-Pro-Pro. Although BPP-Cdc presents the classical sequence IPP in the C-terminus, it has a completely atypical N-terminal sequence, which shows very low homology with all other BPPs isolated to date. The pharmacological effects of BPP-Cdc were compared to BBP9a from Bothrops jararaca and captopril. BPP-Cdc (1 μM) significantly increased BK-induced contractions (BK; 1 μM) on the guinea pig ileum by 267.8% and decreased angiotensin I-induced contractions (AngI; 10 nM) by 62.4% and these effects were not significantly different from those of BPP9a (1 μM) or captopril (200 nM). Experiments with 4-week hypertensive 2K-1C rats show that the vasopressor effect of AngI (10 ng) was decreased by 50 μg BPP-Cdc (69.7%), and this result was similar to that obtained with 50 μg BPP9a (69.8%). However, the action duration of BPP-Cdc (60 min) was 2 times greater than that of BPP-9a (30 min). On the other hand, the hypotensive effect of BK (250 ng) was significantly increased by 176.6% after BPP-Cdc (50 μg) administration, value 2.5 times greater than that obtained with BPP9a administered at the same doses (71.4%). In addition, the duration of the action of BPP-Cdc (120 min) was also at least 4 times greater than that of BPP-9a (30 min). Taken together, these results suggest that BPP-Cdc presents more selective action on arterial blood system than BPP9a. Besides the inhibition of ACE, it may present other mechanisms of action yet to be elucidated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Isotopic analysis of Bothrops atrox in Amazonian forest

    Science.gov (United States)

    Martinez, M. G.; Silva, A. M.; Chalkidis, H.; de Oliveira Júnior, R. C.; Camargo, P. B.

    2012-12-01

    The poisoning of snakes is considered a public health problem, especially in populations from rural areas of tropical and subtropical countries. In Brazil, the 26,000 snakebites, 90% are of the genus Bothrops, and Bothrops atrox species predominant in the Amazon region including all the Brazilian Amazon. Research shows that using stable isotopes, we can verify the isotopic composition of tissues of animals that depend mainly on food, water ingested and inhaled gases. For this study, samples taken from Bothrops atrox (B. atrox), in forest using pitfall traps and fall ("Pitt-fall traps with drift fence"). The analyzes were performed by mass spectrometry, where the analytical error is 0.3‰ for carbon and 0.5‰ to nitrogen. The results of the forest animals are significantly different from results of animal vivarium. The average values of the tissues and venoms of snakes of the forest for carbon-13 and nitrogen-15 are: δ13C = -24.68‰ and δ15N = 14.22‰ and mean values of tissue and poisons snakes vivarium (Instituto Butantan) to carbon-13 and nitrogen-15 are δ13C = -20.47‰ and δ15N = 8.36‰, with a significantly different due to different sources of food animals. Based on all results isotopic δ13C and δ15N, we can suggest that changes as the power of the serpent, (nature and captivity), changes occur in relation to diet and environment as the means of the isotopic data are quite distinct, showing that these changes can also cause metabolic changes in the body of the animal itself and the different periods of turnover of each tissue analyzed.

  20. Características biológicas e inmunológicas del veneno de Bothrops cotiara (Serpentes: Viperidae

    Directory of Open Access Journals (Sweden)

    Adolfo Rafael de Roodt

    2006-09-01

    Full Text Available Bothrops cotiara es una serpiente que se encuentra en la provincia de Misiones (Argentina, el Sur de Brasil y Paraguay. La información sobre las características clínicas de los accidentes por esta serpiente es muy escasa y existen pocos datos sobre su veneno y la capacidad neutralizante de las actividades tóxicas del mismo por antivenenos terapéuticos. En este trabajo se estudiaron características bioquímicas, actividades tóxicas y la reactividad inmunoquímica del veneno de B. cotiara. Seis antivenenos anti Viperinos Sudamericanos fueron estudiados frente a este veneno por el método ELISA y se probó la capacidad neutralizante de tres de estos frente a las actividades hemorrágica, necrotizante, procoagulante, trombina-símil, hemolítica indirecta y la potencia letal de veneno de ejemplares de B. cotiara de la provincia de Misiones. Los patrones cromatográficos y electroforéticos mostraron características similares a los de otros venenos de Bothrops. Las actividades tóxicas estuvieron dentro de los ámbitos descritos para los venenos botrópicos. Los seis antivenenos mostraron gran reactividad inmunoquímica por ELISA y las potencias neutralizantes de los tres estudiados fueron muy próximas para las actividades letal, hemorrágica, necrotizante, hemolítica indirecta, coagulante y trombina-símil. Los resultados de los estudios de neutralización indicarían que ante la mordedura de esta poco común especie de Bothrops, pueden usarse los diferentes tipos de antivenenos botrópicos o botrópico-crotálicos para uso terapéutico disponibles en esa región.Biological and immunological characteristics of the poison of Bothrops cotiara (Serpentes: Viperidae. Bothrops cotiara is a venomous snake sporadically found in the province of Misiones in Argentina, South of Brazil and Paraguay. Data on the clinics of the envenomation produced by its bite and on its venom are scarce. There is no information on the neutralizing capacity of the

  1. Screening for Proteolytic Activities in Snake Venom by Means of a Multiplexing ESI-MS Assay Scheme

    NARCIS (Netherlands)

    Liesener, A.; Perchuc, Anna-Maria; Schöni, Reto; Wilmer, Marianne; Karst, U.

    2005-01-01

    A multiplexed mass spectrometry based assay scheme for the simultaneous determination of five different substrate/product pairs was developed as a tool for screening of proteolytic activities in snake venom fractions from Bothrops moojeni. The assay scheme was employed in the functional

  2. Accidents caused by Bothrops and Bothropoides in the State of Paraiba: epidemiological and clinical aspects.

    Science.gov (United States)

    Oliveira, Fagner Neves; Brito, Monalisa Taveira; Morais, Isabel Cristina Oliveira de; Fook, Sayonara Maria Lia; Albuquerque, Helder Neves de

    2010-01-01

    Bothrops and Bothropoides snakes cause 70% of the ophidic accidents in Brazil. The species that cause ophidic accidents in State of Paraíba are Bothropoides erythromelas, Bothrops leucurus and Bothropoides neuwiedi. This is a prospective and transverse study, following a quantitative approach of accidents involving Bothrops and Bothropoides admitted to the Toxicological Assistance and Information Centers of Campina Grande and João Pessoa (Ceatox-CG and Ceatox-JP), aimed at identifying the epidemiological and clinical profile of such accidents. All of the patients admitted had medical diagnoses and were monitored at Ceatox-CG or Ceatox-JP. The genera Bothrops and Bothropoides caused 91.7% of the ophidic accidents reported. Snake bites were frequent in men (75.1%), rural workers (65.1%), literate individuals (69%) between 11 and 20 years-old (21.7%), and toes the most common area attacked (52.7%). Most (86.6%) patients were admitted within 6 hours after the accident/bite, with a predominance of mild cases (64.6%). The annual occurrence in Paraíba was 5.5 accidents/100,000 inhabitants and lethality was 0.2%. Positive changes in the profiles of these accidents were verified, such as the non-application of inadequate solutions, including the use of tourniquet, coffee grounds, garlic, suction and/or cutting the bitten area. Moreover, the Itinerant Laboratory project, linked to Paraíba State University in partnership with Ceatox-CG, has contributed positively, providing several cities of the state with information regarding the prevention of accidents involving venomous animals. The local press has also contributed, reporting the educational work developed by the centers.

  3. Venom Evolution

    Indian Academy of Sciences (India)

    IAS Admin

    Therefore, the platypus sequence was studied to quantify the role of gene duplication in the evolution of venom. ... Platypus venom is present only in males and is used for asserting dominance over com- petitors during the ... Certain toxin gene families are known to re- peatedly evolve through gene duplications. The rapidly ...

  4. Avaliação das lesões locais de cães envenenados experimentalmente com Bothrops alternatus após diferentes tratamentos

    Directory of Open Access Journals (Sweden)

    Santos M.M.B.

    2003-01-01

    Full Text Available The aim of this study was to evaluate the therapeutic action of flunixin meglumine and aqueous extract of Curcuma longa (10% on local lesions caused by bothropic venom, comparing with the specific antivenom. Twelve adult dogs were inoculated in the middle third of the lateral face of the thigh with 0.3mg/kg of venom. The dogs were divided into three groups of four animals and the treatment was done two hours after venom inoculation as follows: Group I- specific antivenom diluted in saline (one dosage sufficient to neutralize the venom, Group II- flunixin meglumine (1.1mg/kg, IM, once a day for five days, Group III- topical application of aqueous extract of C. longa (10% (three times a day for five days. Necrosis was observed in all dogs of groups I and II, and in two dogs of group III. Edema and hemorrhagic halo were observed in all dogs. Better recovery of lesions was observed in dogs of group I and III. The results denote a satisfactory effect of C. longa on treatment of local lesions caused by bothropic venom in dogs.

  5. Acidente por serpentes do gênero Bothrops: série de 3.139 casos

    Directory of Open Access Journals (Sweden)

    Lindioneza Adriano Ribeiro

    1997-12-01

    Full Text Available Em avaliação dos prontuários médicos de 3.139 pacientes picados por serpentes do gênero Bothrops atendidos no Hospital Vital Brazil (HVB, de 1981 a 1990, observou-se maior acometimento do sexo masculino (75,7%. Em 1.412 casos (45,0% a serpente foi identificada, sendo 1.376 B. jararaca, 20 B. jararacussu, 11 B. neuwiedi, 2 B. moojeni, 2 B. alternatus e 1 B. pradoi. As regiões anatômicas mais comumente picadas foram: pé (47,5% e mão (21,3%. O torniquete foi realizado em 38,2% dos casos e sua freqüência diminuiu durante esse período (p Medical records of 3,139 patients bitten by Bothrops snakes and attended at Vital Brazil Hospital (HVB from 1981 to 1990 were reviwed. They were more frequent in males (75.7%. In 1,412 cases (45.0% the snake was classified by species, and 1,376 were B. jararaca, 20 B. jararacussu, 11 B. neuwiedi, 2 B. moojeni, 2 B. alternatus e 1 B. pradoi. The most frequent bitten anatomic regions were: foot (47.5% and hand (21.3%. Tourniquet was used in 38.2% of the cases and its frequency fell down during the study period (p < 0.05. The clinical features at the bite site were: pain (95.6%, swelling (95.4%, echimosis (56.1%, blisters (13.8%, necrosis (16.5%, and abscess (11.0%. Systemic manifestations were: bleeding (12.3%, acute renal failure (1.6%, and shock (0.7%. There were blood coagulation disorders in 1,730 (57.9% of the 2,990 cases. There were 21 amputations (0.7% and 9 deaths (0.3%. The average serum dose that was used in treatment fell down during the study period (p < 0.001.

  6. Biochemical and biological characterization of Bothriechis schlegelii snake venoms from Colombia and Costa Rica

    OpenAIRE

    Prezotto-Neto, Jos�� P; Kimura, Louise F; Alves, Andr�� F; Guti��rrez, Jos�� Mar��a; Otero, Rafael; Su��rez, Ana M; Santoro, Marcelo L; Barbaro, Katia C

    2016-01-01

    Snakebites inflicted by the arboreal viperid snake Bothriechis schlegelii in humans are characterized by pain, edema, and ecchymosis at the site of the bite, rarely with blisters, local necrosis, or defibrination. Herein, a comparative study of Bothriechis schlegelii snake venoms from Colombia (BsCo) and Costa Rica (BsCR) was carried out in order to compare their main activities and to verify the efficacy of Bothrops antivenom produced in Brazil to neutralize them. Biochemical (SDS-PAGE and z...

  7. P-I Snake Venom Metalloproteinase Is Able to Activate the Complement System by Direct Cleavage of Central Components of the Cascade

    Science.gov (United States)

    Pidde-Queiroz, Giselle; Magnoli, Fábio Carlos; Portaro, Fernanda C. V.; Serrano, Solange M. T.; Lopes, Aline Soriano; Paes Leme, Adriana Franco; van den Berg, Carmen W.; Tambourgi, Denise V.

    2013-01-01

    Background Snake Venom Metalloproteinases (SVMPs) are amongst the key enzymes that contribute to the high toxicity of snake venom. We have recently shown that snake venoms from the Bothrops genus activate the Complement system (C) by promoting direct cleavage of C-components and generating anaphylatoxins, thereby contributing to the pathology and spread of the venom. The aim of the present study was to isolate and characterize the C-activating protease from Bothrops pirajai venom. Results Using two gel-filtration chromatography steps, a metalloproteinase of 23 kDa that activates Complement was isolated from Bothrops pirajai venom. The mass spectrometric identification of this protein, named here as C-SVMP, revealed peptides that matched sequences from the P-I class of SVMPs. C-SVMP activated the alternative, classical and lectin C-pathways by cleaving the α-chain of C3, C4 and C5, thereby generating anaphylatoxins C3a, C4a and C5a. In vivo, C-SVMP induced consumption of murine complement components, most likely by activation of the pathways and/or by direct cleavage of C3, leading to a reduction of serum lytic activity. Conclusion We show here that a P-I metalloproteinase from Bothrops pirajai snake venom activated the Complement system by direct cleavage of the central C-components, i.e., C3, C4 and C5, thereby generating biologically active fragments, such as anaphylatoxins, and by cleaving the C1-Inhibitor, which may affect Complement activation control. These results suggest that direct complement activation by SVMPs may play a role in the progression of symptoms that follow envenomation. PMID:24205428

  8. Inorganic elements in blood of mice immunized with snake venom using NAA and XRF techniques

    International Nuclear Information System (INIS)

    Metairon, S.; Zamboni, C.B.; Suzuki, M.F.; Lopes da Silva, L.F.F.; Rizzutto, M.A.

    2016-01-01

    Brazil has the greatest diversity of snakes in the world and a large portion of them are venomous. Nowadays, Instituto Butantan (research center, at Brazil) produces various types of antivenom to meet the large number of incidences. In this investigation, mice were immunized with different species of Bothrops snake venom to evaluate the inorganic elements concentration in their blood by using NAA and XRF techniques. The results were compared with the control group (mice not immunized) and with human estimative. The data allows to evaluate the toxicity of these elements, important for clinical screening of patients submitted to immunological therapy. (author)

  9. Treatment of Bothrops alternatus envenomation by Curcuma longa and Calendula officinalis extracts and ar-turmerone Tratamento local do envenenamento por Bothrops alternatus com extrato de Curcuma longa e Calendula officinalis e ar-turmerone

    Directory of Open Access Journals (Sweden)

    M.M. Melo

    2005-02-01

    Full Text Available It was investigated the efficiency of two extracts of plants and one fraction of their properties against the local effects of bothropic envenomation. Bothrops alternatus venom (1.25µg diluted in 100µl of sterile saline solution was inoculated (intradermally into the shaved dorsal back skin of 30 New Zealand rabbits. The animals were divided in six groups receiving the following treatments: group I: subcutaneous application of Curcuma longa extract (1.0ml; group II: topic treatment of Curcuma longa hydroalcoholic extract (1.0ml; group III: topic application of ar-turmerone in vaseline (1.0g; group IV: topic application of Curcuma longa methanolic extract (1.0ml; group V: topic application of Calendula officinalis ointment (1.0g; group VI: topic application of saline (1.0ml. These treatments were done at 30 minutes, and at 2, 4, 24 and 72 hours after venom inoculation. Intensity of local edema, hemorrhagic halo and necrosis were evaluated until 168h after that. Additionally, seven days after the Bothrops venom inoculation, blood was collected from heart with and without EDTA (10% for hemogram and biochemical parameters (total protein, blood urea nitrogen, creatinine, and fibrinogen and all the animals were anesthetized, sacrificed by ether inhalation and submitted to necropsy. Fragments of tissues were taken for histopathological evaluation. The most efficient treatment for inhibition of edema, necrosis and local hemorrhage after Bothrops alternatus venom was the topic application of ar-turmerone.Investigou-se a eficácia do extrato de plantas no tratamento local do envenenamento botrópico. Veneno de serpentes Bothrops alternatus (1,25µg diluído em 100µl de solução salina estéril foi inoculado (via intradérmica entre as escápulas de 30 coelhos. Os animais foram divididos em seis grupos (tratamentos: grupo I: tratamento subcutâneo com extrato de Curcuma longa; grupo II: tratamento tópico com extrato hidroalcoólico de Curcuma longa

  10. Multiple cerebral infarctions following a snakebite by Bothrops caribbaeus.

    Science.gov (United States)

    Numeric, Patrick; Moravie, Victor; Didier, Martin; Chatot-Henry, Didier; Cirille, Sylvia; Bucher, Bernard; Thomas, Laurent

    2002-09-01

    Bothrops caribbaeus, a species of the Bothrops complex, is found only in the island of Saint Lucia, West Indies. Snakebite from this pitviper is very rare. We report the case of a healthy 32-year-old Saint Lucian man who developed multiple cerebral infarctions following envenoming by this snake. This patient developed signs and symptoms very similar to those observed in patients envenomed by Bothrops lanceolatus, a snake found only in Martinique, the neighbor island of Saint Lucia. This clinical presentation differs dramatically from coagulopathies and systemic bleeding observed with the Central and South American bothropic envenomings. The exact mechanism of this thrombogenic phenomenon, leading to a unique envenoming syndrome, remains unknown.

  11. Hemiparesia esquerda consecutiva a empeçonhamento: Por Bothrops Jararacussu

    Directory of Open Access Journals (Sweden)

    Napoleão L. Teixeira

    1944-09-01

    Full Text Available O A. apresenta uma observação de hemiparesia esquerda, consecutiva a envenenamento por Bothrops Jararacussu. É o segundo caso que publica, com idêntica etiologia; além das suas, há duas outras observações semelhantes, de Octávio de Magalhães. Depois de discorrer sobre as hemiplegias cerebrais infantis - mais comuns - lembra que estas nem sempre se acompanham de espasticidade, podendo apresentar-se, raramente, com hipotonia muscular, ou mesmo de coréia, atetose, ou movimentos córeo-atetóticos que falam em favor de comprometimento extrapiramidal. Assinala, também, que crises epileptiformes - generalizadas ou parciais - podem ocorrer, o mesmo se podendo dizer de distúrbios psíquicos. Traduzir-se-iam, estes, por déficit intelectual marcado, podendo ir desde a debilidade mental até a idiotia; ou então, mesmo quando não há aparente comprometimento da esfera intelectual, por perturbações da afetividade, da vontade e do pragmatismo. Passando em revista as causas mais frequentes das hemiplegias cerebrais infantis, abre lugar, dentre elas, para os empeçonhamentos ofídico e escorpiônico (Magalhães e Guimarães. Estuda, a seguir, a patogenia das hemiplegias no decurso dos referidos empeçonhamentos, alinhando as hipóteses correntes, da preferência de conceituadas autoridades no assunto. Transcreve, finalmente, sua observação clínica, da qual se pode concluir, sem dúvida possível, haver, no caso "que apresenta, estreita e imediata ligação entre o envenenamento ofídico e a hemiparesia em estudo. O observado seria portador, além do mais, de crises epileptiformes generalizadas, aparecidas logo a seguir ao empeçonhamento. Além da fotografia do caso que apresenta, mostra-nos o A. outra, de caso anteriormente publicado, este, porém, de hemiplegia cerebral infantil típica, instalada aos 11 anos, após picada de Bothrops jararaca.

  12. Photobiomodulation Protects and Promotes Differentiation of C2C12 Myoblast Cells Exposed to Snake Venom.

    Directory of Open Access Journals (Sweden)

    Luciana Miato Gonçalves Silva

    Full Text Available Snakebites is a neglected disease and in Brazil is considered a serious health problem, with the majority of the snakebites caused by the genus Bothrops. Antivenom therapy and other first-aid treatments do not reverse local myonecrose which is the main sequel caused by the envenomation. Several studies have shown the effectiveness of low level laser (LLL therapy in reducing local myonecrosis induced by Bothropic venoms, however the mechanism involved in this effect is unknown. In this in vitro study, we aimed to analyze the effect of LLL irradiation against cytotoxicity induced by Bothrops jararacussu venom on myoblast C2C12 cells.C2C12 were utilized as a model target and were incubated with B. jararacussu venom (12.5 μg/mL and immediately irradiated with LLL at wavelength of red 685 nm or infrared 830 nm with energy density of 2.0, 4.6 and 7.0 J/cm2. Effects of LLL on cellular responses of venom-induced cytotoxicity were examined, including cell viability, measurement of cell damage and intra and extracellular ATP levels, expression of myogenic regulatory factors, as well as cellular differentiation.In non-irradiated cells, the venom caused a decrease in cell viability and a massive release of LDH and CK levels indicating myonecrosis. Infrared and red laser at all energy densities were able to considerably decrease venom-induced cytotoxicity. Laser irradiation induced myoblasts to differentiate into myotubes and this effect was accompanied by up regulation of MyoD and specially myogenin. Moreover, LLL was able to reduce the extracellular while increased the intracellular ATP content after venom exposure. In addition, no difference in the intensity of cytotoxicity was shown by non-irradiated and irradiated venom.LLL irradiation caused a protective effect on C2C12 cells against the cytotoxicity caused by B. jararacussu venom and promotes differentiation of these cells by up regulation of myogenic factors. A modulatory effect of ATP synthesis may

  13. 21 CFR 864.8100 - Bothrops atrox reagent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bothrops atrox reagent. 864.8100 Section 864.8100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8100 Bothrops atrox reagent. (a...

  14. Antibacterial activity of different types of snake venom from the Viperidae family against Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Isabela Nascimento Canhas

    2017-09-01

    Full Text Available Toxins and venoms produced by living organisms have exhibited a variety of biological activities against microorganisms. In this study, we tested seven snake venoms from the family Viperidae for antibacterial activity and the activities of reversal of antibiotic resistance and inhibition of biofilm formation against 22 clinical isolates of Staphylococcus aureus. Bothrops moojeni venom exhibited anti staphylococcal activity with the lowest mean value of minimum inhibitory concentration (MIC. Moreover, reversal of antibiotic resistance was observed for combinations of B. moojeni venom (½ x MIC and norfloxacin or ampicillin (both ½ x MIC for 86.4% and 50% of the isolates, respectively. B. moojeni venom alone at ½ MIC inhibited 90% of biofilm formation, whereas in combination with ciprofloxacin, both at ½ MIC, a reduction on the NorA efflux pump activity was observed. The detection of in vitro mutants colonies of S. aureus resistant to B. moojeni venom was low and they did not survive. A phospholipase A2 was purified from the venom of B. moojeni and displayed anti-staphylococcal activity when tested alone or in combination with ciprofloxacin. The results presented here will contribute to the search for new antimicrobial agents against resistant S. aureus.

  15. Comparación de caracteres corporales y del veneno de Bothrops alternatus entre poblaciones de las provincias de Buenos Aires y Entre Ríos, Argentina

    Directory of Open Access Journals (Sweden)

    Rocco, Daniela Marisa

    2011-11-01

    Full Text Available Comparamos caracteres corporales y producción de veneno de ejemplares de Bothrops alternatus de una población aislada geográficamente (Olavarría, región de Tandilia, Buenos Aires con otra en su área de distribución continua de Concordia (Entre Ríos. Estudiamos el largo corporal, peso, separación entre dientes inoculadores, cantidad de veneno y de proteínas en el veneno por ejemplar. No se hallaron diferencias en los caracteres estudiados entre ambas poblaciones (p > 0.05. Las hembras fueron mayores que los machos en ambas muestras, entre un 12-18% (p 0.5; Olavarría: 142 ± 65 mg/animal, Concordia: 160 ± 80 mg/animal, aún ajustando la cantidad de veneno producida respecto al tamaño, mediante el cociente veneno/largo corporal (p >0.6. Tampoco hubo diferencias en el contenido proteico, siendo para ambas muestras de 0.697 ± 0.096 mg de proteínas/mg de veneno seco. Nuestros datos sugieren que los ejemplares de la población aislada de Tandilia no presentan variaciones en el tamaño corporal o en la cantidad de veneno producida, respecto a los ejemplares de Concordia. Some corporal characters and venom yield of adult specimens of Bothrops alternatus from the isolated region of Olavarría (Tandilian Region, Buenos Aires and the region of continuous distribution of Concordia (Entre Ríos were compared. Corporal length, weight, separation between fangs, venom yield by snake and the amount of protein in the venom were determined. No differences in the distinct characters from specimens from both regions were found (p > 0.05. Females were greater than males in both samples, 12-18% (p 0.5; Olavarría= 142 ± 65 mg / animal, Concordia= 161 ± 80 mg / animal even adjusting the venom yield with the corporal length by the relation mg of venom / corporal length (p > 0.6. No differences were observed in the protein content of the dry venom which was of 0.697 ± 0.096 mg of protein / mg of dry venom. From the study of these samples, it could be

  16. The renal effects and initial characterization of venom from Philodryas nattereri Steindachner, 1870

    Directory of Open Access Journals (Sweden)

    Marinetes Dantas de Aquino Nery

    2014-01-01

    Full Text Available The venom of the snake Philodryas nattereri is a mixture of proteins and toxic peptides with several important local and systemic actions, which are similar to those occurring in Bothrops snake bites. The mechanisms involved in the local and systemic actions of this venom are unknown. The aims of the work were to initial characterization of P. nattereri venom and investigate the effects of the poison in the renal perfusion system and in cultured renal tubular cells of the type MDCK (Madin–Darby canine kidney. The P. nattereri venom is composed majority of proteins (86.3% and this poison promoted changes in all the evaluated renal parameters, mainly decreasing renal perfusion pressure (PP and renal vascular resistance (RVR and increasing urine flow (UF and glomerular filtration rate (GFR. The most relevant result was that this venom was highly detrimental to the renal tubules independent of the PP reduction, which was shown by a decrease in sodium (Na+, potassium (K+ and chloride (Cl− electrolyte transport in the studied concentrations. The glomeruli and tubules contain protein bodies and blood extravasation, which were observed by histological analysis. The venom of P. nattereri reduced viability of the MDCK cells only at high concentrations (50 and 100 μg/mL with an IC50 of 169.5 μg/mL.

  17. Disseminated intravascular coagulation caused by moojenactivase, a procoagulant snake venom metalloprotease.

    Science.gov (United States)

    Sartim, Marco A; Cezarette, Gabriel N; Jacob-Ferreira, Anna L; Frantz, Fabiani G; Faccioli, Lucia H; Sampaio, Suely V

    2017-10-01

    Snake venom toxins that activate coagulation factors are key players in the process of venom-induced coagulopathy, and account for severe clinical manifestations. The present study applies a variety of biochemical, hematological, and histopathological approaches to broadly investigate the intravascular and systemic effects of moojenactivase (MooA), the first described PIIId subclass metalloprotease isolated from Bothrops sp. venom that activates coagulation factors. MooA induced consumption coagulopathy with high toxic potency, characterized by prolongation of prothrombin and activated partial thromboplastin time, consumption of fibrinogen and the plasma coagulation factors X and II, and thrombocytopenia. MooA promoted leukocytosis and expression of the proinflammatory cytokines interleukin-6 and tumor necrosis factor-α, accompanied by tissue factor-dependent procoagulant activity in peripheral blood mononuclear cells. This metalloprotease also caused intravascular hemolysis, elevated plasma levels of creatine kinase-MB, aspartate transaminase, and urea/creatinine, and induced morphopathological alterations in erythrocytes, heart, kidney, and lungs associated with thrombosis and hemorrhage. Diagnosis of MooA-induced disseminated intravascular coagulation represents an important approach to better understand the pathophysiology of Bothrops envenomation and develop novel therapeutic strategies targeting hemostatic disturbances. Copyright © 2017. Published by Elsevier B.V.

  18. Ethnobotanic study of Randia aculeata (Rubiaceae in Jamapa, Veracruz, Mexico, and its anti-snake venom effects on mouse tissue

    Directory of Open Access Journals (Sweden)

    CA Gallardo-Casas

    2012-01-01

    Full Text Available In Mexico, medicinal plants are widely used. The use of Randia aculeata by healers against snakebites has never been scientifically tested in relation to possible effects on blood parameters and muscle tissue damage. Interviews were carried out in Jamapa, Veracuz, Mexico, with local residents to collect information about the traditional use of Randia aculeata. In this locality, seven pieces of fruit from the plant are mixed in a liter of alcohol, and then administered orally against snakebites. By using histological techniques and a murine model, we explored its cytoprotective properties against the effects of Crotalus simus and Bothrops asper venoms. Possible protections provided by the plant against tissue damage to skeletal and cardiac muscles and against the typical loss of red blood cells were analyzed. Randia aculeata caused an increase in microhematocrit and total hemoglobin, parameters that are often decremented in association with the loss of red blood cells, which is a characteristic effect of animal venom. Randia aculeata was also shown to protect against the lowering of platelet levels caused by Bothrops asper venom. Finally, Randia aculeata produced a partial inhibition of necrosis following administration of snake venom in skeletal and myocardial muscles. The present results provide solid evidence for the traditional use of Randia aculeata against snakebites, as demonstrated by protection against muscular tissue damage and the diminution of red blood cells.

  19. HYMENOPTERA ALLERGENS: FROM VENOM TO VENOME

    Directory of Open Access Journals (Sweden)

    Edzard eSpillner

    2014-02-01

    Full Text Available In Western Europe hymenoptera venom allergy primarily relates to venoms of the honeybee and the common yellow jacket. In contrast to other allergen sources, only a few major components of hymenoptera venoms had been characterized until recently. Improved expression systems and proteomic detection strategies have allowed the identification and characterization of a wide range of additional allergens. The field of hymenoptera venom allergy research has moved rapidly from focusing on venom extract and single major allergens to a molecular understanding of the entire venome as a system of unique and characteristic components. An increasing number of such components has been identified, characterized regarding function and assessed for allergenic potential. Moreover, advanced expression strategies for recombinant production of venom allergens allow selective modification of molecules and provide insight into different types of IgE reactivities and sensitization patterns. The obtained information contributes to an increased diagnostic precision in hymenoptera venom allergy and may serve for monitoring, reevaluation and improvement of current therapeutic strategies.

  20. Crystallization and preliminary X-ray diffraction analysis of a Lys49-phospholipase A2 complexed with caffeic acid, a molecule with inhibitory properties against snake venoms

    International Nuclear Information System (INIS)

    Shimabuku, Patrícia S.; Fernandes, Carlos A. H.; Magro, Angelo J.; Costa, Tássia R.; Soares, Andreimar M.; Fontes, Marcos R. M.

    2011-01-01

    Piratoxin I, a noncatalytic and myotoxic Lys49-phospholipase A 2 from B. pirajai venom, was cocrystallized with the inhibitor caffeic acid and a data set was collected to a resolution of 1.65 Å. The electron-density map unambiguously indicated that three inhibitor molecules interact with the C-terminus of the protein. Phospholipases A 2 (PLA 2 s) are one of the main components of bothropic venoms; in addition to their phospholipid hydrolysis action, they are involved in a wide spectrum of pharmacological activities, including neurotoxicity, myotoxicity and cardiotoxicity. Caffeic acid is an inhibitor that is present in several plants and is employed for the treatment of ophidian envenomations in the folk medicine of many developing countries; as bothropic snake bites are not efficiently neutralized by conventional serum therapy, it may be useful as an antivenom. In this work, the cocrystallization and preliminary X-ray diffraction analysis of the Lys49-PLA 2 piratoxin I from Bothrops pirajai venom in the presence of the inhibitor caffeic acid (CA) are reported. The crystals diffracted X-rays to 1.65 Å resolution and the structure was solved by molecular-replacement techniques. The electron-density map unambiguously indicated the presence of three CA molecules that interact with the C-terminus of the protein. This is the first time a ligand has been observed bound to this region and is in agreement with various experiments previously reported in the literature

  1. Phospholipase a properties of several snake venom preparations.

    Science.gov (United States)

    Nutter, L J; Privett, O S

    1966-07-01

    The hydrolytic properties of the venoms of seven species of snakes,Crotalus adamanteus, Ancistrodon contortrix, Naja naja, Bothrops atrox, Ophiophagus hannah, Crotalus atrox andVipera russeli, were studied with purified lecithins and mixtures of lecithins of known fatty acid and class composition as substrates.The relative rates of hydrolysis of the fatty acids by the above venoms were studied by analysis of the products of the reaction at intervals during the course of the reaction. Of the seven venoms studied, that ofOphiophagus hannah was the only one which did not give some degree of preferential rate of hydrolysis of individual fatty acids.In general, saturated fatty acids were liberated faster than unsaturated fatty acids; differences in the rates of the hydrolysis of individual saturate and unsaturated fatty acids were also observed. Individual classes of lecithin were also hydrolyzed at different rates. For the determination of the distribution of the fatty acids between the alpha- and beta-position of lecithin, the reaction should be carried to completion. If the reaction requires a prolonged time to go to completion, it should be carried out under nitrogen to prevent autoxidation.

  2. Gamma radiation effect on biological activity and enzymatic properties of snake venoms

    International Nuclear Information System (INIS)

    Herrera, E.; Yarleque, A.; Campos, S.; Zavaleta, A.

    1986-01-01

    The effect of gamma radiation, from Co-60, on the biological activity and on some enzymatic activities, present in the venoms of Lachesis muta and Bothrops atrox, using samples of dried venom that had been irradiated at a dose of 0.1, 0.5 and 1.0 Mrad have been studied. Variations in the degree of hemorrhage and local necrosis were observed in albino mice injected subcutaneously with venoms of both types. The reduction of the biological activity was greater for the local hemorrhagic effect and was dependent on the doses of irradiation. The specific activity of various enzymes, present in both venoms, is affected by the gamma radiation, at a dose of 0.1 Mrad the order of increasing inactivation being: exonuclease (4%), phospholipase (24%), caseinolytic enzyme (20%), tamesterase (33%), a thrombine-like enzyme (40%), fibrinolytic enzyme (41%), 5'-nucleotidase (50%) and endonuclease (55%). The enzymatic inactivation was augmented by 0.5 and 1.0 Mrad, without maintaining an arithmetic relation. The enzyme of major resistance to the radiation was exonuclease, whereas 5'-nucleotidase and endonuclease were the most sensitive. No significant changes were observed in the spectrum of UV absorbtion (range 260 to 290 nm) nor in the contents of L-tyrosine in the irradiated venoms

  3. Neutralización del efecto hemorrágico inducido por veneno de Bothrops asper (Serpentes: Viperidae por extractos de plantas tropicales

    Directory of Open Access Journals (Sweden)

    Oscar Castro

    1999-09-01

    Full Text Available Se evaluó la capacidad de extractos orgánicos de 48 especies de plantas costarricenses para neutralizar la actividad hemorrágica del veneno de la serpiente Bothrops asper (terciopelo. Los extractos se evaluaron mediante un bioensayo basado en inyecciones intradérmicas de veneno en ratones, o de mezclas veneno-extracto, seguidas de la cuantificación macroscópica de la hemorragia. Se observó una inhibición total de la hemorragia con los extractos etanólico, de acetato de etilo y acuoso de Bursera simaruba, Clusia torresii, C. palmana, Croton draco, Persea americana, Phoebe brenesii, Pimenta dioica, Sapindus saponaria, Smilax cuculmeca y Virola koschnyi. El análisis químico de estos extractos permitió identificar catequinas, flavonas, antocianinas y taninos condensados, los cuales podrían jugar un papel en la inhibición del efecto hemorrágico debido a la capacidad de quelar el ion zinc requerido por las metaloproteinasas hemorrágicas para su acción.Organic extracts representing 48 species included in 30 families of Costa Rican tropical plants were evaluated for their ability to neutralize hemorrhagic activity induced by the venom of the snake Bothrops asper. A bioassay in mice was used, based on intradermal injection of either venom or venom-extract mixtures followed by the measurement of hemorrhagic areas. Total inhibition of hemorrhage was observed with the ethanolic, ethyl acetate and aquous extracts of Bursera simaruba, Clusia torresii, C. palmana, Croton draco, Persea americana, Phoebe brenesii, Pimenta dioica, Sapindus saponaria, Smilax cuculmeca and Virola koschnyi. Chemical analysis of these extracts identified catequines, flavones, anthocyanines and condensated tannins, which may be responsible for the inhibitory effect observed, probably owing to the chelation of the zinc required for the catalytic activity of venom’s hemorrhagic metalloproteinases.

  4. Pharmacokinetics of Snake Venom

    OpenAIRE

    Suchaya Sanhajariya; Stephen B. Duffull; Geoffrey K. Isbister

    2018-01-01

    Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974–present) and Medline (1946–present). For animals, 12 out of 520 initially identified studies met the inclusion criteria. In general, ...

  5. Immunology of Bee Venom.

    Science.gov (United States)

    Elieh Ali Komi, Daniel; Shafaghat, Farzaneh; Zwiener, Ricardo D

    2017-01-20

    Bee venom is a blend of biochemicals ranging from small peptides and enzymes to biogenic amines. It is capable of triggering severe immunologic reactions owing to its allergenic fraction. Venom components are presented to the T cells by antigen-presenting cells within the skin. These Th2 type T cells then release IL-4 and IL-13 which subsequently direct B cells to class switch to production of IgE. Generating venom-specific IgE and crosslinking FcεR1(s) on the surface of mast cells complete the sensitizing stage in allergic individuals who are most likely to experience severe and even fatal allergic reactions after being stung. Specific IgE for bee venom is a double-edged sword as it is a powerful mediator in triggering allergic events but is also applied successfully in diagnosis of the venom allergic patient. The healing capacity of bee venom has been rediscovered under laboratory-controlled conditions using animal models and cell cultures. The potential role of enzymatic fraction of bee venom including phospholipase A2 in the initiation and development of immune responses also has been studied in numerous research settings. Undoubtedly, having insights into immunologic interactions between bee venom components and innate/specific immune cells both locally and systematically will contribute to the development of immunologic strategies in specific and epitope-based immunotherapy especially in individuals with Hymenoptera venom allergy.

  6. The venom optimization hypothesis revisited.

    Science.gov (United States)

    Morgenstern, David; King, Glenn F

    2013-03-01

    Animal venoms are complex chemical mixtures that typically contain hundreds of proteins and non-proteinaceous compounds, resulting in a potent weapon for prey immobilization and predator deterrence. However, because venoms are protein-rich, they come with a high metabolic price tag. The metabolic cost of venom is sufficiently high to result in secondary loss of venom whenever its use becomes non-essential to survival of the animal. The high metabolic cost of venom leads to the prediction that venomous animals may have evolved strategies for minimizing venom expenditure. Indeed, various behaviors have been identified that appear consistent with frugality of venom use. This has led to formulation of the "venom optimization hypothesis" (Wigger et al. (2002) Toxicon 40, 749-752), also known as "venom metering", which postulates that venom is metabolically expensive and therefore used frugally through behavioral control. Here, we review the available data concerning economy of venom use by animals with either ancient or more recently evolved venom systems. We conclude that the convergent nature of the evidence in multiple taxa strongly suggests the existence of evolutionary pressures favoring frugal use of venom. However, there remains an unresolved dichotomy between this economy of venom use and the lavish biochemical complexity of venom, which includes a high degree of functional redundancy. We discuss the evidence for biochemical optimization of venom as a means of resolving this conundrum. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Postprandial thermogenesis in Bothrops moojeni (Serpentes: Viperidae

    Directory of Open Access Journals (Sweden)

    DR Stuginski

    2011-01-01

    Full Text Available Snakes that can ingest prey that are proportionally large have high metabolic rates during digestion. This great increase in metabolic rate (specific dynamic action - SDA may create a significant augment in the animal's body temperature. The present study investigated postprandial thermogenesis in Bothrops moojeni. Briefly, two groups of snakes were fed meals equivalent to 17 ± 3% and 32 ± 5% of their body weight and were observed for 72 hours, in which thermal images of each snake were taken with an infrared camera in a thermostable environment with a constant air temperature of 30°C. The results showed a significant increase in snake surface temperature, with a thermal peak between 33 and 36 hours after feeding. The meal size had a great impact on the intensity and duration of the thermogenic response. Such increase in temperature appears to be connected with the huge increase in metabolic rates during digestion of relatively large prey by snakes that feed infrequently. The ecologic implication of the thermogenic response is still not well understood; however, it is possible that its presence could affect behaviors associated with the snake digestion, such as postprandial thermophily.

  8. Involvement of Nitric Oxide on Bothropoides insularis Venom Biological Effects on Murine Macrophages In Vitro.

    Directory of Open Access Journals (Sweden)

    Ramon R P P B de Menezes

    Full Text Available Viperidae venom has several local and systemic effects, such as pain, edema, inflammation, kidney failure and coagulopathy. Additionally, bothropic venom and its isolated components directly interfere on cellular metabolism, causing alterations such as cell death and proliferation. Inflammatory cells are particularly involved in pathological envenomation mechanisms due to their capacity of releasing many mediators, such as nitric oxide (NO. NO has many effects on cell viability and it is associated to the development of inflammation and tissue damage caused by Bothrops and Bothropoides venom. Bothropoides insularis is a snake found only in Queimada Grande Island, which has markedly toxic venom. Thus, the aim of this work was to evaluate the biological effects of Bothropoides insularis venom (BiV on RAW 264.7 cells and assess NO involvement. The venom was submitted to colorimetric assays to identify the presence of some enzymatic components. We observed that BiV induced H2O2 production and showed proteolytic and phospholipasic activities. RAW 264.7 murine macrophages were incubated with different concentrations of BiV and then cell viability was assessed by MTT reduction assay after 2, 6, 12 and 24 hours of incubation. A time- and concentration-dependent effect was observed, with a tendency to cell proliferation at lower BiV concentrations and cell death at higher concentrations. The cytotoxic effect was confirmed after lactate dehydrogenase (LDH measurement in the supernatant from the experimental groups. Flow cytometry analyses revealed that necrosis is the main cell death pathway caused by BiV. Also, BiV induced NO release. The inhibition of both proliferative and cytotoxic effects with L-NAME were demonstrated, indicating that NO is important for these effects. Finally, BiV induced an increase in iNOS expression. Altogether, these results demonstrate that B. insularis venom have proliferative and cytotoxic effects on macrophages, with

  9. Unraveling the distinctive features of hemorrhagic and non-hemorrhagic snake venom metalloproteinases using molecular simulations

    Science.gov (United States)

    de Souza, Raoni Almeida; Díaz, Natalia; Nagem, Ronaldo Alves Pinto; Ferreira, Rafaela Salgado; Suárez, Dimas

    2016-01-01

    Snake venom metalloproteinases are important toxins that play fundamental roles during envenomation. They share a structurally similar catalytic domain, but with diverse hemorrhagic capabilities. To understand the structural basis for this difference, we build and compare two dynamical models, one for the hemorrhagic atroxlysin-I from Bothrops atrox and the other for the non-hemorraghic leucurolysin-a from Bothrops leucurus. The analysis of the extended molecular dynamics simulations shows some changes in the local structure, flexibility and surface determinants that can contribute to explain the different hemorrhagic activity of the two enzymes. In agreement with previous results, the long Ω-loop (from residue 149 to 177) has a larger mobility in the hemorrhagic protein. In addition, we find some potentially-relevant differences at the base of the S1' pocket, what may be interesting for the structure-based design of new anti-venom agents. However, the sharpest differences in the computational models of atroxlysin-I and leucurolysin-a are observed in the surface electrostatic potential around the active site region, suggesting thus that the hemorrhagic versus non-hemorrhagic activity is probably determined by protein surface determinants.

  10. Neutralizing activities of ethanolic extracts of six plants traditionally used in Guatemala as antidotes for the envenomation caused by the snake Bothrops asper

    Directory of Open Access Journals (Sweden)

    Patricia Saravia-Otten

    2015-07-01

    Full Text Available Many plants are reported to be used in Guatemalan traditional medicine as antidotes against various effects of the snakebite; however, very few attempts have been made to evaluate their neutralizing capacity in controlled experiments. Six plants (Acacia hindsii, Cissampelos pareira; Hamelia patens, Piper peltatum, Sansevieria hyacinthoides and Aristolochia maxima were evaluated in vitro for their ability to neutralize phospholipase A2(PLA2 and proteolytic effects of the venom of Bothrops asper, the snake responsible for approximately half of the snakebite envenomations in Central America. These effects are indicatives of the ability of B. asper venom to produce myotoxicity, hemorrhage and inflammation. Plants were collected, dried and extracted by maceration with ethanol. After pre-incubation of several amounts of each extract with a challenge dose of venom, S. hyacinthoides demonstrated a low neutralizing capacity (< DE 50 of the PLA2 effect (13.90 ± 6.41%; C. pareira (32.98 ± 5.51% and P. peltatum (24.52 ± 7.45% neutralized less than 50% of the proteolytic effect. The results suggest that neither of the tested plants should be used individually to treat the main effects of B. asper envenomation. However, the three low-active extracts might be potentiated when used in mixtures composed of several plants, as prepared by traditional healers. Given the complexity of the venom components and the multiple pathologic effects produced by B. asper envenomation, more tests are required to fully investigate the ability of this plants to neutralize the coagulant, fibrin(ogenolytic, edematizing and myotoxic effects of the venom.

  11. Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing

    Directory of Open Access Journals (Sweden)

    Sanz Libia

    2011-05-01

    Full Text Available Abstract Background A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. Results The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27% were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements and class II (DNA transposons mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large

  12. Quo Vadis Venomics? A Roadmap to Neglected Venomous Invertebrates

    Science.gov (United States)

    von Reumont, Bjoern Marcus; Campbell, Lahcen I.; Jenner, Ronald A.

    2014-01-01

    Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms. PMID:25533518

  13. Quo Vadis Venomics? A Roadmap to Neglected Venomous Invertebrates

    Directory of Open Access Journals (Sweden)

    Bjoern Marcus von Reumont

    2014-12-01

    Full Text Available Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms.

  14. Allergies to Insect Venom

    Science.gov (United States)

    ... insects (as might be the case when a nest is disturbed, or when Africanized honeybees are involved); ... test with the five commercially available venoms; honey bee, paper wasp, yellow jacket, yellow hornet and white- ...

  15. Pharmacokinetics of Snake Venom

    Directory of Open Access Journals (Sweden)

    Suchaya Sanhajariya

    2018-02-01

    Full Text Available Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974–present and Medline (1946–present. For animals, 12 out of 520 initially identified studies met the inclusion criteria. In general, the disposition of snake venom was described by a two-compartment model consisting of a rapid distribution phase and a slow elimination phase, with half-lives of 5 to 48 min and 0.8 to 28 h, respectively, following rapid intravenous injection of the venoms or toxins. When the venoms or toxins were administered intramuscularly or subcutaneously, an initial absorption phase and slow elimination phase were observed. The bioavailability of venoms or toxins ranged from 4 to 81.5% following intramuscular administration and 60% following subcutaneous administration. The volume of distribution and the clearance varied between snake species. For humans, 24 out of 666 initially identified publications contained sufficient information and timed venom concentrations in the absence of antivenom therapy for data extraction. The data were extracted and modelled in NONMEM. A one-compartment model provided the best fit, with an elimination half-life of 9.71 ± 1.29 h. It is intended that the quantitative information provided in this review will provide a useful basis for future studies that address the pharmacokinetics of snakebite in humans.

  16. Snake Venom Metalloproteinases

    OpenAIRE

    Gâz Florea Şerban Andrei; Gâz Florea Adriana; Kelemen Hajnal; Muntean Daniela-Lucia

    2016-01-01

    As more data are generated from proteome and transcriptome analysis revealing that metalloproteinases represent most of the Viperid and Colubrid venom components authors decided to describe in a short review a classification and some of the multiple activities of snake venom metalloproteinases. SVMPs are classified in three major classes (P-I, P-II and P-III classes) based on the presence of various domain structures and according to their domain organization. Furthermore, P-II and P-III clas...

  17. Radioiodination and biodistribution of Leucurolysin-B isolated from Bothrops Leucurus in mice bearing Ehrlich

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, L.M.; Soares, M.A.; Bicalho, M.S.; Santos, R.G. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: marcellaaraugio@yahoo.com.br, e-mail: mbs@cdtn.br, e-mail: santosr@cdtn.br; Sanchez, E.O.F.; Silva, S.G. [Ezequiel Dias Foundation, Belo Horizonte, MG (Brazil)], e-mail: silea@funed.mg.gov.br, e-mail: eladio@funed.mg.gov.br

    2009-07-01

    Integrins are family of heterodimeric cell surface adhesion receptors able to recognize and bind to proteins in the extracellular matrix (ECM). This recognition is mainly through the RGD domain present in both the cell surface as the protein in the ECM. Various integrins have been identified as regulators of tumor progression. The RGD domain is also found in some snake venoms named disintegrins. Disintegrins inhibit cell-matrix and a cell-cell interaction mediated by integrin and has been shown that these proteins are able to inhibit metastasis in processes dependent on integrin. The disintegrin-like (ECD), as well as RGD-disintegrin are also able to bind to cell surface integrins and inhibit their adherence to the natural ligands. Leucurolysin-B (Leuc-B) is a metalloproteinase class P-III isolated from Bothrops leucurus (BLV) and possesses a disintegrin-like domain (ECD). The goals of this work were to synthesize a radioactive probe analog to Leuc-B using radioiodine {sup 125}I and evaluate the interaction of {sup 125}I-Leuc-B in tumor cells through the study of biodistribution in animals bearing Ehrlich tumor.125I-Leuc-B was synthesized using lactoperoxidase with high yield (90%) and specific activity of 1.2x10-7Bq/mmol. It was observed that {sup 125}I-Leuc-B had very fast clearance from the blood stream (T1/2= 0.01 h). Tumor uptake of 125I-Leuc-B gradually increased up to (2 min) and remained for a quite long period. The tumor/normal tissue uptake ratios of {sup 125}I-Leuc-B were 1.77 (tumor/normal paw) and 8.44 tumor/skeletal muscle. The results suggest that {sup 125}I-Leuc- B may constitute a good template for development of a tool for detection of solid tumors. (author)

  18. Radioiodination and biodistribution of Leucurolysin-B isolated from Bothrops Leucurus in mice bearing Ehrlich

    International Nuclear Information System (INIS)

    Gabriel, L.M.; Soares, M.A.; Bicalho, M.S.; Santos, R.G.; Sanchez, E.O.F.; Silva, S.G.

    2009-01-01

    Integrins are family of heterodimeric cell surface adhesion receptors able to recognize and bind to proteins in the extracellular matrix (ECM). This recognition is mainly through the RGD domain present in both the cell surface as the protein in the ECM. Various integrins have been identified as regulators of tumor progression. The RGD domain is also found in some snake venoms named disintegrins. Disintegrins inhibit cell-matrix and a cell-cell interaction mediated by integrin and has been shown that these proteins are able to inhibit metastasis in processes dependent on integrin. The disintegrin-like (ECD), as well as RGD-disintegrin are also able to bind to cell surface integrins and inhibit their adherence to the natural ligands. Leucurolysin-B (Leuc-B) is a metalloproteinase class P-III isolated from Bothrops leucurus (BLV) and possesses a disintegrin-like domain (ECD). The goals of this work were to synthesize a radioactive probe analog to Leuc-B using radioiodine 125 I and evaluate the interaction of 125 I-Leuc-B in tumor cells through the study of biodistribution in animals bearing Ehrlich tumor.125I-Leuc-B was synthesized using lactoperoxidase with high yield (90%) and specific activity of 1.2x10-7Bq/mmol. It was observed that 125 I-Leuc-B had very fast clearance from the blood stream (T1/2= 0.01 h). Tumor uptake of 125I-Leuc-B gradually increased up to (2 min) and remained for a quite long period. The tumor/normal tissue uptake ratios of 125 I-Leuc-B were 1.77 (tumor/normal paw) and 8.44 tumor/skeletal muscle. The results suggest that 125 I-Leuc- B may constitute a good template for development of a tool for detection of solid tumors. (author)

  19. The inhibitory potential of the condensed-tannin-rich fraction of Plathymenia reticulata Benth. (Fabaceae) against Bothrops atrox envenomation.

    Science.gov (United States)

    de Moura, Valéria Mourão; da Silva, Wania Cristina Rodrigues; Raposo, Juliana D A; Freitas-de-Sousa, Luciana A; Dos-Santos, Maria Cristina; de Oliveira, Ricardo Bezerra; Veras Mourão, Rosa Helena

    2016-05-13

    Ethnobotanical studies have shown that Plathymenia reticulata Benth. (Fabaceae) has been widely used in cases of snake envenomation, particularly in Northern Brazil. In light of this, the aim of this study was to evaluate the inhibitory potential of the condensed-tannin-rich fraction obtained from the bark of P. reticulata against the main biological activities induced by Bothrops atrox venom (BaV). The chemical composition of the aqueous extract of P. reticulata (AEPr) was first investigated by thin-layer chromatography (TLC) and the extract was then fractionated by column chromatography on Sephadex LH-20. This yielded five main fractions (Pr1, Pr2, Pr3, Pr4 and Pr5), which were analyzed by colorimetry to determine their concentrations of total phenolics, total tannins and condensed tannins and to assess their potential for blocking the phospholipase activity of BaV. The Pr5 fraction was defined as the fraction rich in condensed tannins (CTPr), and its inhibitory potential against the activities of the venom was evaluated. CTPr was evaluated in different in vivo and in vitro experimental protocols. The in vivo protocols consisted of (1) pre-incubation (venom:CTPr, w/w), (2) pre-treatment (orally administered) and (3) post-treatment (orally administered) to evaluate the effect on the hemorrhagic and edematogenic activities of BaV; in the in vitro protocol the effect on phospholipase and coagulant activity using pre-incubation in both tests was evaluated. There was statistically significant inhibition (p<0.05) of hemorrhagic activity by CTPr when the pre-incubation protocol was used [55% (1:5, w/w) and 74% (1:10, w/w)] and when pre-treatment with doses of 50 and 100mg/kg was used (19% and 13%, respectively). However, for the concentrations tested, there was no statistically significant inhibition in the group subjected to post-treatment administered orally. CTPr blocked 100% of phospholipase activity and 63.3% (1:10, w/w) of coagulant activity when it was pre

  20. Structural and Functional Studies of a Bothropic Myotoxin Complexed to Rosmarinic Acid: New Insights into Lys49-PLA2 Inhibition

    Science.gov (United States)

    dos Santos, Juliana I.; Cardoso, Fábio F.; Soares, Andreimar M.; dal Pai Silva, Maeli; Gallacci, Márcia; Fontes, Marcos R. M.

    2011-01-01

    Snakebite envenoming is an important public health problem in many tropical and subtropical countries, and is considered a neglected tropical disease by the World Health Organization. Most severe cases are inflicted by species of the families Elapidae and Viperidae, and lead to a number of systemic and local effects in the victim. One of the main problems regarding viperidic accidents is prominent local tissue damage whose pathogenesis is complex and involves the combined actions of a variety of venom components. Phospholipases A2 (PLA2s) are the most abundant muscle-damaging components of these venoms. Herein, we report functional and structural studies of PrTX-I, a Lys49-PLA2 from Bothops pirajai snake venom, and the influence of rosmarinic acid (RA) upon this toxin's activities. RA is a known active component of some plant extracts and has been reported as presenting anti-myotoxic properties related to bothopic envenomation. The myotoxic activity of Lys49-PLA2s is well established in the literature and although no in vivo neurotoxicity has been observed among these toxins, in vitro neuromuscular blockade has been reported for some of these proteins. Our in vitro studies show that RA drastically reduces both the muscle damage and the neuromuscular blockade exerted by PrTX-I on mice neuromuscular preparations (by ∼80% and ∼90%, respectively). These results support the hypothesis that the two effects are closely related and lead us to suggest that they are consequences of the muscle membrane-destabilizing activity of the Lys49-PLA2. Although the C-terminal region of these proteins has been reported to comprise the myotoxic site, we demonstrate by X-ray crystallographic studies that RA interacts with PrTX-I in a different region. Consequently, a new mode of Lys49-PLA2 inhibition is proposed. Comparison of our results with others in the literature suggests possible new ways to inhibit bothropic snake venom myotoxins and improve serum therapy. PMID:22205953

  1. Anaphylaxis to Insect Venom Allergens

    DEFF Research Database (Denmark)

    Ollert, Markus; Blank, Simon

    2015-01-01

    available for diagnostic measurement of specific IgE in venom-allergic patients. These recombinant venom allergens offer several promising possibilities for an improved diagnostic algorithm. Reviewed here are the current status, recent developments, and future perspectives of molecular diagnostics of venom...

  2. Obtained and evaluation of antisera raised against irradiated crotalic whole venom or crotoxin in 60 Co source

    International Nuclear Information System (INIS)

    Paula, Regina A. de.

    1995-01-01

    Snake bite is a great Public Health problem in our country. The accidents with snakes from Crotalus genus are the most severe. About 1% of the victims die without seratherapy. The antivenons are obtained from hyper immune horse plasma. During the production these animals present signs of envenoming that result in a decrease of organic resistance besides the horses maintenance is very expensive and the producers are fewer, so the sera production is restrict. Many techniques which could reduce the venoms toxicity and increase the sera production using chemical and physical agents have been studied. The gamma rays are excellent tool to detoxify venoms and toxins. It is able to modify protein structures that decrease lethally, toxic and enzymatic activities without modifying the immunogenicity. So, it is important evaluate the sera production in rabbits using gamma rays detoxified venom and crotoxin as immunogen and their power as reagents in immuno assays. In order to obtain the antisera, Crotalus durissus terrificus whole venom or isolated crotoxin was irradiated with 2.000 Gy in 60 Co source, in a 150 mM NaCl solution, and inoculated in rabbits. The sera production were screened by immunoprecipitation, immuno enzymatic (ELISA) and immunoradiometric (IRMA) assays. The specificity was studied by immuno-electrophoresis, ELISA and western blot techniques. The neutralizing power was evaluated by neutralization of phospholipase A 2 activity of toxin in vitro. The antisera were used as reagents in antigen capture assays ELISA and IRMA immuno assays to detect circulant antigens in sera of mice experimentally inoculated with crotalic venom or crotoxin. The results showed that both detoxified venom or crotoxin were good immunogens, and they were able to induce antibodies that could recognize non-irradiated venom or isolated crotoxin. The data suggest that those antibodies present more specificity and higher in vitro neutralizing power, when compared with commercial

  3. Snake Venom Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Gâz Florea Şerban Andrei

    2016-03-01

    Full Text Available As more data are generated from proteome and transcriptome analysis revealing that metalloproteinases represent most of the Viperid and Colubrid venom components authors decided to describe in a short review a classification and some of the multiple activities of snake venom metalloproteinases. SVMPs are classified in three major classes (P-I, P-II and P-III classes based on the presence of various domain structures and according to their domain organization. Furthermore, P-II and P-III classes were separated in subclasses based on distinctive post-translational modifications. SVMPs are synthesized in a latent form, being activated through a Cys-switch mechanism similar to matrix metalloproteinases. Most of the metalloproteinases of the snake venom are responsible for the hemorrhagic events but also have fibrinogenolytic activity, poses apoptotic activity, activate blood coagulation factor II and X, inhibit platelet aggregation, demonstrating that SVMPs have multiple functions in addition to well-known hemorrhagic function.

  4. Addiction to Snake Venom.

    Science.gov (United States)

    Das, Saibal; Barnwal, Preeti; Maiti, Tanay; Ramasamy, Anand; Mondal, Somnath; Babu, Dinesh

    2017-07-03

    The nature of addiction depends on various factors. The tendency to have already used several addictive substances and to seek high sensation experiences as a result of specific personality traits may lead to extreme and peculiar forms of addictions. Even belonging to specific social and cultural background may lead to such forms of addiction such as intentional snake bite and willful envenomation. In this article, we have discussed the peculiarities and practical insight of such addiction to snake venom. The possible molecular mechanism behind such venom-mediated reinforcement has also been highlighted. Finally, we have stressed upon the treatment and de-addiction measures.

  5. Direct Fibrinolytic Snake Venom Metalloproteinases Affecting Hemostasis: Structural, Biochemical Features and Therapeutic Potential.

    Science.gov (United States)

    Sanchez, Eladio F; Flores-Ortiz, Renzo J; Alvarenga, Valeria G; Eble, Johannes A

    2017-12-05

    Snake venom metalloproteinases (SVMPs) are predominant in viperid venoms, which provoke hemorrhage and affect hemostasis and thrombosis. P-I class enzymes consist only of a single metalloproteinase domain. Despite sharing high sequence homology, only some of them induce hemorrhage. They have direct fibrin(ogen)olytic activity. Their main biological substrate is fibrin(ogen), whose Aα-chain is degraded rapidly and independently of activation of plasminogen. It is important to understand their biochemical and physiological mechanisms, as well as their applications, to study the etiology of some human diseases and to identify sites of potential intervention. As compared to all current antiplatelet therapies to treat cardiovascular events, the SVMPs have outstanding biochemical attributes: (a) they are insensitive to plasma serine proteinase inhibitors; (b) they have the potential to avoid bleeding risk; (c) mechanistically, they are inactivated/cleared by α2-macroglobulin that limits their range of action in circulation; and (d) few of them also impair platelet aggregation that represent an important target for therapeutic intervention. This review will briefly highlight the structure-function relationships of these few direct-acting fibrinolytic agents, including, barnettlysin-I, isolated from Bothrops barnetti venom, that could be considered as potential agent to treat major thrombotic disorders. Some of their pharmacological advantages are compared with plasmin.

  6. Direct Fibrinolytic Snake Venom Metalloproteinases Affecting Hemostasis: Structural, Biochemical Features and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Eladio F. Sanchez

    2017-12-01

    Full Text Available Snake venom metalloproteinases (SVMPs are predominant in viperid venoms, which provoke hemorrhage and affect hemostasis and thrombosis. P-I class enzymes consist only of a single metalloproteinase domain. Despite sharing high sequence homology, only some of them induce hemorrhage. They have direct fibrin(ogenolytic activity. Their main biological substrate is fibrin(ogen, whose Aα-chain is degraded rapidly and independently of activation of plasminogen. It is important to understand their biochemical and physiological mechanisms, as well as their applications, to study the etiology of some human diseases and to identify sites of potential intervention. As compared to all current antiplatelet therapies to treat cardiovascular events, the SVMPs have outstanding biochemical attributes: (a they are insensitive to plasma serine proteinase inhibitors; (b they have the potential to avoid bleeding risk; (c mechanistically, they are inactivated/cleared by α2-macroglobulin that limits their range of action in circulation; and (d few of them also impair platelet aggregation that represent an important target for therapeutic intervention. This review will briefly highlight the structure–function relationships of these few direct-acting fibrinolytic agents, including, barnettlysin-I, isolated from Bothrops barnetti venom, that could be considered as potential agent to treat major thrombotic disorders. Some of their pharmacological advantages are compared with plasmin.

  7. Venomics-Accelerated Cone Snail Venom Peptide Discovery

    Science.gov (United States)

    Himaya, S. W. A.

    2018-01-01

    Cone snail venoms are considered a treasure trove of bioactive peptides. Despite over 800 species of cone snails being known, each producing over 1000 venom peptides, only about 150 unique venom peptides are structurally and functionally characterized. To overcome the limitations of the traditional low-throughput bio-discovery approaches, multi-omics systems approaches have been introduced to accelerate venom peptide discovery and characterisation. This “venomic” approach is starting to unravel the full complexity of cone snail venoms and to provide new insights into their biology and evolution. The main challenge for venomics is the effective integration of transcriptomics, proteomics, and pharmacological data and the efficient analysis of big datasets. Novel database search tools and visualisation techniques are now being introduced that facilitate data exploration, with ongoing advances in related omics fields being expected to further enhance venomics studies. Despite these challenges and future opportunities, cone snail venomics has already exponentially expanded the number of novel venom peptide sequences identified from the species investigated, although most novel conotoxins remain to be pharmacologically characterised. Therefore, efficient high-throughput peptide production systems and/or banks of miniaturized discovery assays are required to overcome this bottleneck and thus enhance cone snail venom bioprospecting and accelerate the identification of novel drug leads. PMID:29522462

  8. Venomics-Accelerated Cone Snail Venom Peptide Discovery

    Directory of Open Access Journals (Sweden)

    S. W. A. Himaya

    2018-03-01

    Full Text Available Cone snail venoms are considered a treasure trove of bioactive peptides. Despite over 800 species of cone snails being known, each producing over 1000 venom peptides, only about 150 unique venom peptides are structurally and functionally characterized. To overcome the limitations of the traditional low-throughput bio-discovery approaches, multi-omics systems approaches have been introduced to accelerate venom peptide discovery and characterisation. This “venomic” approach is starting to unravel the full complexity of cone snail venoms and to provide new insights into their biology and evolution. The main challenge for venomics is the effective integration of transcriptomics, proteomics, and pharmacological data and the efficient analysis of big datasets. Novel database search tools and visualisation techniques are now being introduced that facilitate data exploration, with ongoing advances in related omics fields being expected to further enhance venomics studies. Despite these challenges and future opportunities, cone snail venomics has already exponentially expanded the number of novel venom peptide sequences identified from the species investigated, although most novel conotoxins remain to be pharmacologically characterised. Therefore, efficient high-throughput peptide production systems and/or banks of miniaturized discovery assays are required to overcome this bottleneck and thus enhance cone snail venom bioprospecting and accelerate the identification of novel drug leads.

  9. Bioinformatics-Aided Venomics

    Directory of Open Access Journals (Sweden)

    Quentin Kaas

    2015-06-01

    Full Text Available Venomics is a modern approach that combines transcriptomics and proteomics to explore the toxin content of venoms. This review will give an overview of computational approaches that have been created to classify and consolidate venomics data, as well as algorithms that have helped discovery and analysis of toxin nucleic acid and protein sequences, toxin three-dimensional structures and toxin functions. Bioinformatics is used to tackle specific challenges associated with the identification and annotations of toxins. Recognizing toxin transcript sequences among second generation sequencing data cannot rely only on basic sequence similarity because toxins are highly divergent. Mass spectrometry sequencing of mature toxins is challenging because toxins can display a large number of post-translational modifications. Identifying the mature toxin region in toxin precursor sequences requires the prediction of the cleavage sites of proprotein convertases, most of which are unknown or not well characterized. Tracing the evolutionary relationships between toxins should consider specific mechanisms of rapid evolution as well as interactions between predatory animals and prey. Rapidly determining the activity of toxins is the main bottleneck in venomics discovery, but some recent bioinformatics and molecular modeling approaches give hope that accurate predictions of toxin specificity could be made in the near future.

  10. Are ticks venomous animals?

    Czech Academy of Sciences Publication Activity Database

    Cabezas-Cruz, A.; Valdés, James J.

    2014-01-01

    Roč. 11, JUL 2014 (2014), s. 47 ISSN 1742-9994 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : ticks * venom * secreted proteins * toxicoses * pathogens * convergence Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.051, year: 2014

  11. Ação de venenos de serpentes brasileiras sôbre a alexina ou complemento

    Directory of Open Access Journals (Sweden)

    F. da Rocha Lagôa

    1947-06-01

    Full Text Available O autor estudou a ação inativante, sôbre o complemento de cobaia, alguns venenos de serpentes brasileiras pertencentes às famílias dos Elapideos e Crotalideos. Da primeira, foi utilizado veneno de Micrurus frontalis, da segunda, foram usados venenos de espécies pertencentes aos gêneros Crotalus (C. terrificus e Bothrops (B. atrox, B. neuwiedii, B. jararaca, B. ja-raracussú, B. cotiara e B. alternata. O venenos de M. frontalis e C. terri¬ficus se revelaram incapazes de inativar o complemento, ao passo que os diversos de Bothrops empregados se mostraram altamente inativantes, destruindo sempre o 4.° componente do complemento (C4, fração idêntica à afetada pela ação da amônea.The author shows in this paper the results of the inactivation of com¬plement or alexin by some Brazilian snakes venoms of the Elapideae and Cro¬talideae families. The venom of Micrurus frontalis (Elapideae family and of Crotalus terrificus (Crotalideae family did not destroy the complement; but the venoms of Bothrops generus (B. atrox, B. neuwiedii, B. jararaca, B. jararacussú, B. cotiara e B. alternata, (Crotalideae family are highly active in the inactivation complement, always destroing the fourth component, whichis exactly the same component that is detroyed by ammonia.

  12. Influence of gamma-radiation on the biological activity of snake venoms in Peru

    International Nuclear Information System (INIS)

    Yarleque Ch, A.

    1986-03-01

    Effects of Co-60 gamma radiation on enzymatic, haemorragic and necrotic activities of Lachesis muta and Bothrops atrox venoms was studied at several ranges of irradiation lower than 1.0 Mrad. The radiation produced changes on its enzymatic activities. Irradiation at 0.1 Mrad resulted in the partial or complete inactivation of the following enzymes that are listed in order of increasing sensitivity: exonuclease, phospholipase A, caseinolytic enzyme, thrombinolytic enzyme, fibrinolytic enzyme, 5'-nucleotidase and endonuclease. The enzymatic inactivation was increased with 0.5 and 1.0 Mrad although not in a linear manner. Exonuclease was found to be the most radioresistant. The haemorragic activity was decreased to a greater extent than the necrotic activity. The probable mechanism for the changes in the enzymatic, haemorragic and necrotic activities are discussed

  13. Insuficiencia renal aguda inducida por mordedura de serpiente Bothrops

    Directory of Open Access Journals (Sweden)

    Gustavo A. Aroca Martínez

    2014-01-01

    Full Text Available Mujer de 58 años de edad, remitida a urgencias por presentar cuadro clínico de insuficiencia renal aguda (IRA secundaria a mordedura de serpiente (Bothrops Atrox. Ingresa hipotensa con elevación de azoados e hiperkalemia, ecografía renal dentro de parámetros normales. Se maneja terapia dialítica con lo cual presenta mejoría clínica. En este reporte se detallan aspectos del diagnóstico, manejo clínico y posibles mecanismos fisiopatológicos que explican el daño renal.

  14. Efficacy and safety of two whole IgG polyvalent antivenoms, refined by caprylic acid fractionation with or without beta-propiolactone, in the treatment of Bothrops asper bites in Colombia.

    Science.gov (United States)

    Otero, Rafael; León, Guillermo; Gutiérrez, José María; Rojas, Gustavo; Toro, María Fabiola; Barona, Jacqueline; Rodríguez, Verónica; Díaz, Abel; Núñez, Vitelbina; Quintana, Juan Carlos; Ayala, Shirley; Mosquera, Diana; Conrado, Lesdy L; Fernández, Diego; Arroyo, Yobana; Paniagua, Carlos A; López, Mercedes; Ospina, Carlos E; Alzate, Claudia; Fernández, Jorge; Meza, Jazmín J; Silva, Juan F; Ramírez, Patricia; Fabra, Patricia E; Ramírez, Eugenio; Córdoba, Elkin; Arrieta, Ana B; Warrell, David A; Theakston, R David G

    2006-12-01

    The efficacy and safety of two whole IgG polyvalent antivenoms (A and B) were compared in a randomised, blinded clinical trial in 67 patients systemically envenomed by Bothrops asper in Colombia. Both antivenoms were fractionated by caprylic acid precipitation and had similar neutralising potencies, protein concentrations and aggregate contents. Antivenom B was additionally treated with beta-propiolactone to lower its anticomplementary activity. Analysing all treatment regimens together, there were no significant differences between the two antivenoms (A=34 patients; B=33 patients) in the time taken to reverse venom-induced bleeding and coagulopathy, to restore physiological fibrinogen concentrations and to clear serum venom antigenaemia. Blood coagulability was restored within 6-24 h in 97% of patients, all of whom had normal coagulation and plasma fibrinogen levels 48 h after the start of antivenom treatment. Two patients (3.0%) had recurrent coagulopathy and eight patients suffered recurrence of antigenaemia within 72 h of treatment. None of the dosage regimens of either antivenom used guaranteed resolution of venom-induced coagulopathy within 6 h, nor did they prevent recurrences. A further dose of antivenom at 6 h also did not guarantee resolution of coagulopathy within 12-24 h in all patients. The incidence of early adverse reactions (all mild) was similar for both antivenoms (15% and 24%; P>0.05).

  15. Toxin synergism in snake venoms

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard

    2016-01-01

    Synergism between venom toxins exists for a range of snake species. Synergism can be derived from both intermolecular interactions and supramolecular interactions between venom components, and can be the result of toxins targeting the same protein, biochemical pathway or physiological process. Few...... simple systematic tools and methods for determining the presence of synergism exist, but include co-administration of venom components and assessment of Accumulated Toxicity Scores. A better understanding of how to investigate synergism in snake venoms may help unravel strategies for developing novel...

  16. Prevalence of Hepatozoon spp. (Apicomplexa, Hepatozoidae among recently captured Brazilian snakes Prevalência de Hepatozoon spp. (Apicomplexa, Hepatozoidae em serpentes recém-capturadas no Brasil

    Directory of Open Access Journals (Sweden)

    L.H. O'Dwyer

    2003-06-01

    Full Text Available The goal of this study was to determine the prevalence of Hepatozoon spp. infection in recently captured snakes from Botucatu, São Paulo State, Brazil. Blood was collected from all snakes by ventral tail venipuncture. Blood smears were air dried, fixed with methanol, and stained with 10% Giemsa solution. The slides were microscopically examined for detection of hemoparasites by light microscopy at 250x magnification. A total of 238 snakes from 23 species were examined, of which 135 (56.7% were venomous and 103 (43.3% non-venomous snakes. The more numerous venomous species sampled were Crotalus durissus terrificus (n=108 and Bothrops jararaca (n=17 and non-venomous snakes were Oxyrhopus guibei (n=35, Boa constrictor amarali (n=18, and Waglerophis merremi (n=13. Hepatozoon spp. infection was detected in 39 (16.4% snakes. The prevalence in venomous and non-venomous snakes was 20.0% and 11.7%, respectively. The highest prevalences observed were 38.9% for Boa constrictor amarali, 35.3% for Bothrops jararaca, and 19.4% for Crotalus durissus terrificus.O presente estudo teve como objetivo determinar a prevalência da infecção por Hepatozoon spp. em serpentes recém-capturadas da região de Botucatu, São Paulo. O sangue foi coletado de todas as serpentes por punção da veia caudal. Os esfregaços foram secos ao ar, fixados com metanol e corados com solução de Giemsa a 10%. Examinaram-se 238 serpentes pertencentes a 23 espécies, das quais 135 (56,7% eram venenosas e 103 (43,3% não venenosas. As espécies venenosas mais representativas foram Crotalus durissus terrificus (n=108 e Bothrops jararaca (n=17 e as não venenosas foram Oxyrhopus guibei (n=35, Boa constrictor amarali (n=18 e Waglerophis merremi (n=13. A infecção por Hepatozoon spp. foi detectada em 39 (16,4% serpentes. As prevalências em serpentes venenosas e não venenosas foram 20,0% e 11,7%, respectivamente. As maiores prevalências foram 38,9% para Boa constrictor amarali, 35

  17. An alternative method to isolate protease and phospholipase A2 toxins from snake venoms based on partitioning of aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    GN Gómez

    2012-01-01

    Full Text Available Snake venoms are rich sources of active proteins that have been employed in the diagnosis and treatment of health disorders and antivenom therapy. Developing countries demand fast economical downstream processes for the purification of this biomolecule type without requiring sophisticated equipment. We developed an alternative, simple and easy to scale-up method, able to purify simultaneously protease and phospholipase A2 toxins from Bothrops alternatus venom. It comprises a multiple-step partition procedure with polyethylene-glycol/phosphate aqueous two-phase systems followed by a gel filtration chromatographic step. Two single bands in SDS-polyacrylamide gel electrophoresis and increased proteolytic and phospholipase A2 specific activities evidence the homogeneity of the isolated proteins.

  18. Computational Studies of Snake Venom Toxins

    OpenAIRE

    Paola G. Ojeda; David Ramírez; Jans Alzate-Morales; Julio Caballero; Quentin Kaas; Wendy González

    2017-01-01

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics t...

  19. Efficacy of IgG and F(ab′)2 Antivenoms to Neutralize Snake Venom-induced Local Tissue Damage as Assessed by the Proteomic Analysis of Wound Exudate

    OpenAIRE

    Rucavado, Alexandra; Escalante Muñoz, Teresa; Shannon, John D.; Ayala Castro, Carla N.; Villalta, Mauren; Gutiérrez, José María; Fox, Jay W.

    2012-01-01

    2082-01 Embargo por política editorial Proteomic analysis of wound exudates represents a valuable tool to investigate tissue pathology and to assess the therapeutic success of various interventions. In this study, the ability of horse-derived IgG and F(ab0)2 antivenoms to neutralize local pathological effects induced by the venom of the snake Bothrops asper in mouse muscle was investigated by the proteomic analysis of exudates collected in the vicinity of affected tissue. In experiments...

  20. Bioactive Components in Fish Venoms

    Science.gov (United States)

    Ziegman, Rebekah; Alewood, Paul

    2015-01-01

    Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767

  1. Nanofibrous Snake Venom Hemostat

    OpenAIRE

    Kumar, Vivek A.; Wickremasinghe, Navindee C.; Shi, Siyu; Hartgerink, Jeffrey D.

    2015-01-01

    Controlling perioperative bleeding is of critical importance to minimize hemorrhaging and fatality. Patients on anticoagulant therapy such as heparin have diminished clotting potential and are at risk for hemorrhaging. Here we describe a self-assembling nanofibrous peptide hydrogel (termed SLac) that on its own can act as a physical barrier to blood loss. SLac was loaded with snake-venom derived Batroxobin (50 μg/mL) yielding a drug-loaded hydrogel (SB50). SB50 was potentiated to enhance clot...

  2. Polymerized soluble venom--human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    1985-03-01

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. /sup 125/I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera against bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom.

  3. Polymerized soluble venom--human serum albumin

    International Nuclear Information System (INIS)

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    1985-01-01

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. 125 I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera against bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom

  4. Evaluation of an antimicrobial L-amino acid oxidase and peptide derivatives from Bothropoides mattogrosensis pitviper venom.

    Directory of Open Access Journals (Sweden)

    Brunna M Okubo

    Full Text Available Healthcare-associated infections (HAIs are causes of mortality and morbidity worldwide. The prevalence of bacterial resistance to common antibiotics has increased in recent years, highlighting the need to develop novel alternatives for controlling these pathogens. Pitviper venoms are composed of a multifaceted mixture of peptides, proteins and inorganic components. L-amino oxidase (LAO is a multifunctional enzyme that is able to develop different activities including antibacterial activity. In this study a novel LAO from Bothrops mattogrosensis (BmLAO was isolated and biochemically characterized. Partial enzyme sequence showed full identity to Bothrops pauloensis LAO. Moreover, LAO here isolated showed remarkable antibacterial activity against Gram-positive and -negative bacteria, clearly suggesting a secondary protective function. Otherwise, no cytotoxic activities against macrophages and erythrocytes were observed. Finally, some LAO fragments (BmLAO-f1, BmLAO-f2 and BmLAO-f3 were synthesized and further evaluated, also showing enhanced antimicrobial activity. Peptide fragments, which are the key residues involved in antimicrobial activity, were also structurally studied by using theoretical models. The fragments reported here may be promising candidates in the rational design of new antibiotics that could be used to control resistant microorganisms.

  5. Evaluación biológica preliminar de extractos vegetales utilizados en la medicina tradicional de la Sierra Nevada deSanta Marta contra el veneno de la Bothrops asper

    Directory of Open Access Journals (Sweden)

    Willinton Barranco Pérez

    2013-10-01

    Full Text Available Title: Preliminary biological evaluation of plants extracts used in the Sierra Nevada de Santa Marta against the snake Bothrops asper venom.ResumenLa mordedura de serpientes constituye un problema de salubridad importante en muchos países tropicales y subtropicales, con un estimado de 2,5 millones de personas envenenadas cada año. En Colombia las especies Bothropsasper y Bothropsatrox son las causantes del 70 al 90 % de los accidentes registrados. Se estima que el 60% de estos accidentes son inicialmente tratados por curanderos tradicionales utilizando plantas medicinales en diferentes preparaciones. Este estudio evaluó la capacidad inhibitoria de cinco especies contra el efecto proteolítico y hemolítico indirecto inducido por el veneno de B. asper en ensayos in vitro.Las especies, que fueron seleccionadas de acuerdo a su uso en la medicina tradicional por parte de las comunidades campesinas de la Sierra Nevada de Santa Marta, fueron, Aristolochia máxima, Cissampelospareira, Equisetumbogotense, Mucunacfpruriens y una especie de la familia Asteraceae. La planta E. bogotense mostró los mayores porcentaje de inhibición contra la actividad de las fosfolipasas A2(42,29 %, así como la mayor precipitación de las proteínas en un rango de masas moleculares de 28,2 y 94,43 KDa. Al fraccionar el extracto de E. bogotense se obtuvieron cinco fracciones, las cuales presentaron un porcentaje de inhibición de 36,6 ± 1,07 a 46,1 ± 13,6. Adicionalmente se detectaron por métodos cualitativos núcleos como, alcaloides, esteroides y/o triterpenos, taninos, cumarinas y leucoantocianidinas. En estudio se reporta la actividad antiofídica en ensayos in vitro de la especie E. bogotense contra el veneno de la especie B.asper. (DUAZARY 2012 No. 2, 140 - 150AbstractIn Colombia the species Bothrops asper and Bothrops atrox are responsible for 70 to 90% of the snakebite accidents. Around 60% of these injuries are initially treated by traditional healers; they

  6. Animal venoms as antimicrobial agents.

    Science.gov (United States)

    Perumal Samy, Ramar; Stiles, Bradley G; Franco, Octavio L; Sethi, Gautam; Lim, Lina H K

    2017-06-15

    Hospitals are breeding grounds for many life-threatening bacteria worldwide. Clinically associated gram-positive bacteria such as Staphylococcus aureus/methicillin-resistant S. aureus and many others increase the risk of severe mortality and morbidity. The failure of antibiotics to kill various pathogens due to bacterial resistance highlights the urgent need to develop novel, potent, and less toxic agents from natural sources against various infectious agents. Currently, several promising classes of natural molecules from snake (terrestrial and sea), scorpion, spider, honey bee and wasp venoms hold promise as rich sources of chemotherapeutics against infectious pathogens. Interestingly, snake venom-derived synthetic peptide/snake cathelicidin not only has potent antimicrobial and wound-repair activity but is highly stable and safe. Such molecules are promising candidates for novel venom-based drugs against S. aureus infections. The structure of animal venom proteins/peptides (cysteine rich) consists of hydrophobic α-helices or β-sheets that produce lethal pores and membrane-damaging effects on bacteria. All these antimicrobial peptides are under early experimental or pre-clinical stages of development. It is therefore important to employ novel tools for the design and the development of new antibiotics from the untapped animal venoms of snake, scorpion, and spider for treating resistant pathogens. To date, snail venom toxins have shown little antibiotic potency against human pathogens. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Mastocytosis and insect venom allergy.

    Science.gov (United States)

    Bonadonna, Patrizia; Zanotti, Roberta; Müller, Ulrich

    2010-08-01

    To analyse the association of systemic allergic hymenoptera sting reactions with mastocytosis and elevated baseline serum tryptase and to discuss diagnosis and treatment in patients with both diseases. In recent large studies on patients with mastocytosis a much higher incidence of severe anaphylaxis following hymenoptera stings than in the normal population was documented. In patients with hymenoptera venom allergy, elevated baseline tryptase is strongly associated with severe anaphylaxis. Fatal sting reactions were reported in patients with mastocytosis, notably after stopping venom immunotherapy. During venom immunotherapy most patients with mastocytosis are protected from further sting reactions. Based on these observations immunotherapy for life is recommended for patients with mastocytosis and venom allergy. The incidence of allergic side-effects is increased in patients with mastocytosis and elevated baseline tryptase, especially in those allergic to Vespula venom. Premedication with antihistamines, or omalizumab in cases with recurrent severe side-effects, can be helpful. In all patients with anaphylaxis following hymenoptera stings, baseline serum tryptase should be determined. A value above 11.4 microg/l is often due to mastocytosis and indicates a high risk of very severe anaphylaxis following re-stings. Venom immunotherapy is safe and effective in this situation.

  8. High-resolution proteomic profiling of spider venom: expanding the toxin diversity of Phoneutria nigriventer venom.

    Science.gov (United States)

    Liberato, Tarcísio; Troncone, Lanfranco Ranieri Paolo; Yamashiro, Edson T; Serrano, Solange M T; Zelanis, André

    2016-03-01

    Here we present a proteomic characterization of Phoneutria nigriventer venom. A shotgun proteomic approach allowed the identification, for the first time, of O-glycosyl hydrolases (chitinases) in P. nigriventer venom. The electrophoretic profiles under nonreducing and reducing conditions, and protein identification by mass spectrometry, indicated the presence of oligomeric toxin structures in the venom. Complementary proteomic approaches allowed for a qualitative and semi-quantitative profiling of P. nigriventer venom complexity, expanding its known venom proteome diversity.

  9. Snake venom instability | Willemse | African Zoology

    African Journals Online (AJOL)

    Egyptian cobra Naja haje haje) and puffadder (Bills arietans). Considerable differences in electrophoretic characteristics were found between fresh venom and commercial venom samples from the same species of snake. These differences could be attributed partly to the instability of snake venom under conditions of drying ...

  10. Rosmarinic acid, a new snake venom phospholipase A2 inhibitor from Cordia verbenacea (Boraginaceae): antiserum action potentiation and molecular interaction.

    Science.gov (United States)

    Ticli, Fábio K; Hage, Lorane I S; Cambraia, Rafael S; Pereira, Paulo S; Magro, Angelo J; Fontes, Marcos R M; Stábeli, Rodrigo G; Giglio, José R; França, Suzelei C; Soares, Andreimar M; Sampaio, Suely V

    2005-09-01

    Many plants are used in traditional medicine as active agents against various effects induced by snakebite. The methanolic extract from Cordia verbenacea (Cv) significantly inhibited paw edema induced by Bothrops jararacussu snake venom and by its main basic phospholipase A2 homologs, namely bothropstoxins I and II (BthTXs). The active component was isolated by chromatography on Sephadex LH-20 and by RP-HPLC on a C18 column and identified as rosmarinic acid (Cv-RA). Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid [2-O-cafeoil-3-(3,4-di-hydroxy-phenyl)-R-lactic acid]. This is the first report of RA in the species C. verbenacea ('baleeira', 'whaler') and of its anti-inflammatory and antimyotoxic properties against snake venoms and isolated toxins. RA inhibited the edema and myotoxic activity induced by the basic PLA2s BthTX-I and BthTX-II. It was, however, less efficient to inhibit the PLA2 activity of BthTX-II and, still less, the PLA2 and edema-inducing activities of the acidic isoform BthA-I-PLA2 from the same venom, showing therefore a higher inhibitory activity upon basic PLA2s. RA also inhibited most of the myotoxic and partially the edema-inducing effects of both basic PLA2s, thus reinforcing the idea of dissociation between the catalytic and pharmacological domains. The pure compound potentiated the ability of the commercial equine polyvalent antivenom in neutralizing lethal and myotoxic effects of the crude venom and of isolated PLA2s in experimental models. CD data presented here suggest that, after binding, no significant conformation changes occur either in the Cv-RA or in the target PLA2. A possible model for the interaction of rosmarinic acid with Lys49-PLA2 BthTX-I is proposed.

  11. Phylogeography of the Central American lancehead Bothrops asper (SERPENTES: VIPERIDAE)

    Science.gov (United States)

    Parkinson, Christopher L.; Daza, Juan M.; Wüster, Wolfgang

    2017-01-01

    The uplift and final connection of the Central American land bridge is considered the major event that allowed biotic exchange between vertebrate lineages of northern and southern origin in the New World. However, given the complex tectonics that shaped Middle America, there is still substantial controversy over details of this geographical reconnection, and its role in determining biogeographic patterns in the region. Here, we examine the phylogeography of Bothrops asper, a widely distributed pitviper in Middle America and northwestern South America, in an attempt to evaluate how the final Isthmian uplift and other biogeographical boundaries in the region influenced genealogical lineage divergence in this species. We examined sequence data from two mitochondrial genes (MT-CYB and MT-ND4) from 111 specimens of B. asper, representing 70 localities throughout the species’ distribution. We reconstructed phylogeographic patterns using maximum likelihood and Bayesian methods and estimated divergence time using the Bayesian relaxed clock method. Within the nominal species, an early split led to two divergent lineages of B. asper: one includes five phylogroups distributed in Caribbean Middle America and southwestern Ecuador, and the other comprises five other groups scattered in the Pacific slope of Isthmian Central America and northwestern South America. Our results provide evidence of a complex transition that involves at least two dispersal events into Middle America during the final closure of the Isthmus. PMID:29176806

  12. Circadian pattern of Bothrops moojeni in captivity (Serpentes: Viperidae

    Directory of Open Access Journals (Sweden)

    DR Stuginski

    2012-01-01

    Full Text Available Members of the subfamily Crotalinae are considered to be essentially nocturnal and most of the data about these snakes have been collected from the field. Information on how nutritional status affects the movement rate and activity patterns is a key point to elucidating the ecophysiology of snakes. In this study, we distributed 28 lancehead Bothrops moojeni into three groups under distinct feeding regimens after a month of fasting. Groups were divided as follows: ingestion of meals weighing (A 40%, (B 20%, or (C 10% of the snake body mass. Groups were monitored for five days before and after food intake and the activity periods and movement rates were recorded. Our results show that B. moojeni is prevalently nocturnal, and the activity peak occurs in the first three hours of the scotophase. After feeding, a significant decrease in activity levels in groups A and B was detected. The current results corroborate previous field data that describe B. moojeni as a nocturnal species with low movement rates. The relationship between motion and the amount of food consumed by the snake may be associated with its hunting strategy.

  13. Fatal bothropic snakebite in a horse: a case report

    Directory of Open Access Journals (Sweden)

    NS Silva

    2011-01-01

    Full Text Available The present study reports a snakebite in a horse in the state of Pará, Brazil. At initial evaluation the animal was reluctant to walk and had tachycardia, tachypnea, severe lameness, bleeding on the pastern and swelling around the left hind leg. Blood samples from the bleeding sites, took on the first day, showed leukocytosis and neutrophilia, whereas biochemical values of urea and creatinine were significantly increased. The chosen treatment was snake antivenom, fluid therapy, antibiotics, anti-inflammatory agents and diuretic drugs. On the fourth day of therapy, the hematological values were within normal parameters. There was improvement related to the clinical lameness and swelling of the limb. However, a decrease in water intake and oliguria were observed. On the seventh day the animal died. Necropsy revealed areas of hemorrhagic edema in the left hind limb and ventral abdomen; the kidneys presented equimosis in the capsule, and when cut they were wet. Moreover, the cortex was pale, slightly yellow and the medullary striae had the same aspect. Based on these data, we concluded that the snakebite in the present study was caused by Bothrops spp. and that renal failure contributed to death.

  14. Optimization of antiscorpion venom production

    Directory of Open Access Journals (Sweden)

    O. Ozkan

    2006-01-01

    Full Text Available The present study was carried out to produce highly efficient antivenom from a small number of telsons in a short time. Venom solution was prepared through maceration of telsons from Androctonus crassicauda (Olivier, 1807 collected in the Southeastern Anatolia Region, Turkey. Lethal dose 50% (LD50 of the venom solution injected into mice was 1 ml/kg (95% confidence interval; 0.8-1.3, according to probit analysis. Different adjuvants (Freund's Complete Adjuvant, Freund's Incomplete Adjuvant, and 0.4% aluminium phosphate, at increasing doses and combined with venom, were subcutaneously injected into horses on days 0, 14, 21, 28, 35, and 42 of the experiment. Antivenom was collected from the immunized horses on days 45, 48, and 51 using the pepsin digestive method. The antivenom effective dose 50% (ED50 in mice was 0.5 ml (95% confidence interval; 0.40-0.58, according to probit analysis. It was concluded that 0.5 ml antivenom neutralized a venom dose 35-fold higher than the venom LD50. Thus, highly potent antivenom could be produced from about 238 telsons in 51 days.

  15. Colubrid Venom Composition: An -Omics Perspective.

    Science.gov (United States)

    Junqueira-de-Azevedo, Inácio L M; Campos, Pollyanna F; Ching, Ana T C; Mackessy, Stephen P

    2016-07-23

    Snake venoms have been subjected to increasingly sensitive analyses for well over 100 years, but most research has been restricted to front-fanged snakes, which actually represent a relatively small proportion of extant species of advanced snakes. Because rear-fanged snakes are a diverse and distinct radiation of the advanced snakes, understanding venom composition among "colubrids" is critical to understanding the evolution of venom among snakes. Here we review the state of knowledge concerning rear-fanged snake venom composition, emphasizing those toxins for which protein or transcript sequences are available. We have also added new transcriptome-based data on venoms of three species of rear-fanged snakes. Based on this compilation, it is apparent that several components, including cysteine-rich secretory proteins (CRiSPs), C-type lectins (CTLs), CTLs-like proteins and snake venom metalloproteinases (SVMPs), are broadly distributed among "colubrid" venoms, while others, notably three-finger toxins (3FTxs), appear nearly restricted to the Colubridae (sensu stricto). Some putative new toxins, such as snake venom matrix metalloproteinases, are in fact present in several colubrid venoms, while others are only transcribed, at lower levels. This work provides insights into the evolution of these toxin classes, but because only a small number of species have been explored, generalizations are still rather limited. It is likely that new venom protein families await discovery, particularly among those species with highly specialized diets.

  16. Role of collagens and perlecan in microvascular stability: exploring the mechanism of capillary vessel damage by snake venom metalloproteinases.

    Directory of Open Access Journals (Sweden)

    Teresa Escalante

    Full Text Available Hemorrhage is a clinically important manifestation of viperid snakebite envenomings, and is induced by snake venom metalloproteinases (SVMPs. Hemorrhagic and non-hemorrhagic SVMPs hydrolyze some basement membrane (BM and associated extracellular matrix (ECM proteins. Nevertheless, only hemorrhagic SVMPs are able to disrupt microvessels; the mechanisms behind this functional difference remain largely unknown. We compared the proteolytic activity of the hemorrhagic P-I SVMP BaP1, from the venom of Bothrops asper, and the non-hemorrhagic P-I SVMP leucurolysin-a (leuc-a, from the venom of Bothrops leucurus, on several substrates in vitro and in vivo, focusing on BM proteins. When incubated with Matrigel, a soluble extract of BM, both enzymes hydrolyzed laminin, nidogen and perlecan, albeit BaP1 did it at a faster rate. Type IV collagen was readily digested by BaP1 while leuc-a only induced a slight hydrolysis. Degradation of BM proteins in vivo was studied in mouse gastrocnemius muscle. Western blot analysis of muscle tissue homogenates showed a similar degradation of laminin chains by both enzymes, whereas nidogen was cleaved to a higher extent by BaP1, and perlecan and type IV collagen were readily digested by BaP1 but not by leuc-a. Immunohistochemistry of muscle tissue samples showed a decrease in the immunostaining of type IV collagen after injection of BaP1, but not by leuc-a. Proteomic analysis by LC/MS/MS of exudates collected from injected muscle revealed higher amounts of perlecan, and types VI and XV collagens, in exudates from BaP1-injected tissue. The differences in the hemorrhagic activity of these SVMPs could be explained by their variable ability to degrade key BM and associated ECM substrates in vivo, particularly perlecan and several non-fibrillar collagens, which play a mechanical stabilizing role in microvessel structure. These results underscore the key role played by these ECM components in the mechanical stability of

  17. from Cerastes cerastes venom gland

    African Journals Online (AJOL)

    Sequence analysis and alignment using bioinformatic programs indicated that samples 1, 2 and 3 bear significant homology to the metalloprotease family of snake venom sequences deposited in the Genbank. Translation to the amino acid sequence and alignment using protein database showed strong homology with ...

  18. Diagnosis of Hymenoptera venom allergy

    NARCIS (Netherlands)

    Bilo, BM; Rueff, F; Mosbech, H; Bonifazi, F; Oude Elberink, JNG

    2005-01-01

    The purpose of diagnostic procedure is to classify a sting reaction by history, identify the underlying pathogenetic mechanism, and identify the offending insect. Diagnosis of Hymenoptera venom allergy thus forms the basis for the treatment. In the central and northern Europe vespid (mainly Vespula

  19. Características bioquímicas y capacidad neutralizante de cuatro antivenenos polivalentes frente a los efectos farmacológicos y enzimáticos del veneno de Bothrops asper y Porthidium nasutum de Antioquia y Chocó

    Directory of Open Access Journals (Sweden)

    Mónica Saldarriaga

    2002-01-01

    Full Text Available En Colombia, el 90-95% de las 3000 mordeduras de serpientes informadas cada año, son ocasionadas por Bothrops spp, con una elevada mortalidad y secuelas. Siguiendo recomendaciones de la OMS, se evaluó la capacidad neutralizante de los efectos farmacológicos y enzimáticos de los venenos de Bothrops asper y Porthidium nasutum de Antioquia y Chocó por cuatro antivenenos; 2 de ellos de IgG completa (polivalente antibothrópico, anticrotálico del Instituto Nacional de Salud INS -Colombia; polivalente antibothrópico, anticrotálico, antilachésico de Laboratorios Probiol -Colombia y 2 antivenenos de fragmentos F(ab’2 (polivalente antibothrópico, anticrotálico del Centro de Biotecnología de la Universidad Central de Venezuela; y el polivalente antibothrópico, anticrotálico Antivipmyn® del Instituto Bioclón -México. Se determinó la actividad letal, hemorrágica, desfibrinante, edematizante, mionecrosante y hemolítica indirecta de cada veneno, siguiendo métodos ya estandarizados. Las pruebas de neutralización in vitro e in vivo se realizaron por el método de preincubación a 370C de dosis fijas de veneno y dosis variables de antiveneno. Los antivenenos Antivipmyn® de México y polivalente INS de Colombia tuvieron la mayor potencia neutralizante de todos los efectos farmacológicos y enzimáticos del veneno de B. asper y P. nasutum. El antiveneno polivalente Probiol fue el de menor capacidad neutralizante y mayor concentración de proteínas. Los antivenenos de fragmentos F(ab’2 tuvieron más baja concentración de proteínas y solo cantidades menores de proteínas no inmunes por electroforesis. Ninety to 95% of the snakebites reported yearly in Colombia are inflicted by Bothrops spp with high mortality and sequelae. Following recommendations of the World Health Organization, the neutralizing ability of four polyvalent antivenoms against several pharmacological and enzymatic effects of Bothrops asper and Porthidium nasutum snake

  20. Kinins in ant venoms--a comparison with venoms of related Hymenoptera

    NARCIS (Netherlands)

    Piek, T.; Schmidt, J. O.; de Jong, J. M.; Mantel, P.

    1989-01-01

    1. Venom preparations have been made of six ant, one pompilid wasp, two mutillid wasp, and four social wasp species. 2. The venoms were analysed pharmacologically in order to detect kinin-like activity. 3. Due to the small amounts of venoms available only a cascade of smooth muscle preparation could

  1. Immunochemical studies of yellowjacket venom proteins.

    Science.gov (United States)

    King, T P; Alagon, A C; Kuan, J; Sobotka, A K; Lichtenstein, L M

    1983-03-01

    The major proteins of yellowjacket venoms have been isolated and characterized immuno-chemically. They consist of hyaluronidase, phospholipase, and antigen 5. Venoms from three species of yellowjacket were studied. Vespula germanica, V. maculifrons, and V. vulgaris. The phospholipases could be isolated in good yield only when affinity chromatography was used to minimize limited proteolysis. A kallikrein-like peptidase was found present in the yellowjacket venom. Phospholipases from these three species were immunochemically indistinguishable from each other, as were their antigen 5s. Sera from individuals sensitive to yellowjacket venom contained IgE and IgG specific for antigen 5 and phospholipase.

  2. The Biochemical Toxin Arsenal from Ant Venoms

    Directory of Open Access Journals (Sweden)

    Axel Touchard

    2016-01-01

    Full Text Available Ants (Formicidae represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents.

  3. The Biochemical Toxin Arsenal from Ant Venoms

    Science.gov (United States)

    Touchard, Axel; Aili, Samira R.; Fox, Eduardo Gonçalves Paterson; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham M.; Dejean, Alain

    2016-01-01

    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents. PMID:26805882

  4. Recombinant snake venom prothrombin activators

    OpenAIRE

    L?vgren, Ann

    2012-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need ...

  5. Analyses of venom spitting in African cobras (Elapidae: Serpentes ...

    African Journals Online (AJOL)

    ... all four species. The low levels of variation in venom volume, coupled with the variation in venom dispersal pattern, suggests a complexity to the regulation of venom flow in spitting cobras beyond simply neuromuscular control of the extrinsic venom gland. Keywords: defensive behaviour, snake, teeth, Naja, Hemachatus ...

  6. In-vitro diagnostics of Hymenoptera venom allergy

    NARCIS (Netherlands)

    Rueff, F.; Vos, B.; Przybilla, B.

    In-vitro diagnostics of Hymenoptera venom allergy Patients with a history of anaphylactic sting reactions require an allergological work-up (history, in-vitro tests, and skin tests) to clarify indications on venom immunotherapy and on the type of venom to be used. To demonstrate a venom

  7. Lipase and phospholipase activities of Hymenoptera venoms ...

    African Journals Online (AJOL)

    native gel), Polistes flavis venom has four major protein bands, one of which has lipase activity; with sodium dodecyl sulfate (SDS-PAGE), the venom had eighteen bands with molecular weights ranging from a maximum of 94 kD and a minimum of ...

  8. Moving pieces in a venomic puzzle

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Dutra, Alexandre A A; León, Ileana R

    2013-01-01

    Besides being a public health problem, scorpion venoms have a potential biotechnological application since they contain peptides that may be used as drug leads and/or to reveal novel pharmacological targets. A comprehensive Tityus serrulatus venom proteome study with emphasis on the phosphoproteo...

  9. Pharmacological screening technologies for venom peptide discovery.

    Science.gov (United States)

    Prashanth, Jutty Rajan; Hasaballah, Nojod; Vetter, Irina

    2017-12-01

    Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The effects of Bee Venom and Sweet Bee Venom to the preadipocyte proliferation and lipolysis of adipocyte, localized fat accumulation

    Directory of Open Access Journals (Sweden)

    Min-Ki Kim

    2007-12-01

    Full Text Available Objectives : The purpose of this study was to investigate the effects of Bee Venom and Sweet Bee Venom to the primary cultured preadipocyte, adipocytes, and localized fat tissue. Methods : Decreased preadipocyte proliferation and decreased lipogenesis are mechanisms to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures using Sprague-Dawley Rats and treated with 0.01-1mg/㎖ Bee Venom and Sweet Bee Venom. And porcine skin including fat tissue after treated Bee Venom and Sweet Bee Venom according to the dosage dependent variation are investigated the histologic changes after injection of these Pharmacopuncture. Result : Following results were obtained from the preadipocyte proliferation and lipolysis of adipocyte and histologic investigation of fat tissue. 1. Bee Venom and Sweet Bee Venom showed the effect of decreased preadipocyte proliferation depend on concentration. 2. Bee Venom and Sweet Bee Venom showed the effect of decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH significantly. 3. Bee Venom was not showed the effect of lipolysis, but Sweet Bee Venom was increased in low dosage and decreased in high dosage. 4. Investigated the histologic changes in porcine fat tissue after treated Bee Venom and Sweet Bee Venom, we knew that these Pharmacopuncture was activated nonspecific lysis of cell membranes depend on concentration. Conclusion : These results suggest that Bee Venom and Sweet Bee Venom efficiently induces decreased proliferation of preadipocyte and lipolysis in adipose tissue

  11. Tears of Venom: Hydrodynamics of Reptilian Envenomation

    Science.gov (United States)

    Young, Bruce A.; Herzog, Florian; Friedel, Paul; Rammensee, Sebastian; Bausch, Andreas; van Hemmen, J. Leo

    2011-05-01

    In the majority of venomous snakes, and in many other reptiles, venom is conveyed from the animal’s gland to the prey’s tissue through an open groove on the surface of the teeth and not through a tubular fang. Here we focus on two key aspects of the grooved delivery system: the hydrodynamics of venom as it interacts with the groove geometry, and the efficiency of the tooth-groove-venom complex as the tooth penetrates the prey’s tissue. We show that the surface tension of the venom is the driving force underlying the envenomation dynamics. In so doing, we explain not only the efficacy of the open groove, but also the prevalence of this mechanism among reptiles.

  12. [Bites of venomous snakes in Switzerland].

    Science.gov (United States)

    Plate, Andreas; Kupferschmidt, Hugo; Schneemann, Markus

    2016-06-08

    Although snake bites are rare in Europe, there are a constant number of snake bites in Switzerland. There are two domestic venomous snakes in Switzerland: the aspic viper (Vipera aspis) and the common European adder (Vipera berus). Bites from venomous snakes are caused either by one of the two domestic venomous snakes or by an exotic venomous snake kept in a terrarium. Snake- bites can cause both a local and/or a systemic envenoming. Potentially fatal systemic complications are related to disturbances of the hemostatic- and cardiovascular system as well as the central or peripheral nervous system. Beside a symptomatic therapy the administration of antivenom is the only causal therapy to neutralize the venomous toxins.

  13. Pharmacological Aspects of Vipera xantina palestinae Venom

    Science.gov (United States)

    Momic, Tatjana; Arlinghaus, Franziska T.; Arien-Zakay, Hadar; Katzhendler, Jeoshua; Eble, Johannes A.; Marcinkiewicz, Cezary; Lazarovici, Philip

    2011-01-01

    In Israel, Vipera xantina palestinae (V.x.p.) is the most common venomous snake, accounting for several hundred cases of envenomation in humans and domestic animals every year, with a mortality rate of 0.5 to 2%. In this review we will briefly address the research developments relevant to our present understanding of the structure and function of V.x.p. venom with emphasis on venom disintegrins. Venom proteomics indicated the presence of four families of pharmacologically active compounds: (i) neurotoxins; (ii) hemorrhagins; (iii) angioneurin growth factors; and (iv) different types of integrin inhibitors. Viperistatin, a α1β1selective KTS disintegrin and VP12, a α2β1 selective C-type lectin were discovered. These snake venom proteins represent promising tools for research and development of novel collagen receptor selective drugs. These discoveries are also relevant for future improvement of antivenom therapy towards V.x.p. envenomation. PMID:22174978

  14. Pharmacological evaluation of bee venom and melittin

    Directory of Open Access Journals (Sweden)

    Camila G. Dantas

    Full Text Available The objective of this study was to identify the pharmacological effects of bee venom and its major component, melittin, on the nervous system of mice. For the pharmacological analysis, mice were treated once with saline, 0.1 or 1.2 mg/kg of bee venom and 0.1 mg/kg of melittin, subcutaneously, 30 min before being submitted to behavioral tests: locomotor activity and grooming (open-field, catalepsy, anxiety (elevated plus-maze, depression (forced swimming test and apomorphine-induced stereotypy. Haloperidol, imipramine and diazepam were administered alone (positive control or as a pre-treatment (haloperidol.The bee venom reduced motor activity and promoted cataleptic effect, in a similar manner to haloperidol.These effects were decreased by the pretreatment with haloperidol. Both melittin and bee venom decreased the apomorphine-induced stereotypies. The data indicated the antipsychotic activity of bee venom and melittin in a murine model.

  15. Proteomic Characterization of the Venom of Five Bombus (Thoracobombus) Species

    OpenAIRE

    Barkan, Nezahat Pınar; Bayazit, Mustafa Bilal; Ozel Demiralp, Duygu

    2017-01-01

    Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptides, to act on vital systems of the prey or predator. In bees, venom is solely used for defense against predators. However, the venom composition of bumble bees (Bombus sp.) is largely unknown. The Thoracobombus subgenus of Bombus sp. is a diverse subgenus represented by 14 members across Turkey. In this study, we sought out to proteomically characterize the venom of five Thoracobombus species by u...

  16. VenomKB, a new knowledge base for facilitating the validation of putative venom therapies.

    Science.gov (United States)

    Romano, Joseph D; Tatonetti, Nicholas P

    2015-11-24

    Animal venoms have been used for therapeutic purposes since the dawn of recorded history. Only a small fraction, however, have been tested for pharmaceutical utility. Modern computational methods enable the systematic exploration of novel therapeutic uses for venom compounds. Unfortunately, there is currently no comprehensive resource describing the clinical effects of venoms to support this computational analysis. We present VenomKB, a new publicly accessible knowledge base and website that aims to act as a repository for emerging and putative venom therapies. Presently, it consists of three database tables: (1) Manually curated records of putative venom therapies supported by scientific literature, (2) automatically parsed MEDLINE articles describing compounds that may be venom derived, and their effects on the human body, and (3) automatically retrieved records from the new Semantic Medline resource that describe the effects of venom compounds on mammalian anatomy. Data from VenomKB may be selectively retrieved in a variety of popular data formats, are open-source, and will be continually updated as venom therapies become better understood.

  17. Venom evolution widespread in fishes: a phylogenetic road map for the bioprospecting of piscine venoms.

    Science.gov (United States)

    Smith, William Leo; Wheeler, Ward C

    2006-01-01

    Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism's venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step involved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on approximately 1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, >1,200 fishes in 12 clades should be presumed venomous. This assertion was corroborated by a detailed anatomical study examining potentially venomous structures in >100 species. The results of these studies not only alter our view of the diversity of venomous fishes, now representing >50% of venomous vertebrates, but also provide the predictive phylogeny or "road map" for the efficient search for potential pharmacological agents or physiological tools from the unexplored fish venoms.

  18. Venomics of New World pit vipers: genus-wide comparisons of venom proteomes across Agkistrodon.

    Science.gov (United States)

    Lomonte, Bruno; Tsai, Wan-Chih; Ureña-Diaz, Juan Manuel; Sanz, Libia; Mora-Obando, Diana; Sánchez, Elda E; Fry, Bryan G; Gutiérrez, José María; Gibbs, H Lisle; Sovic, Michael G; Calvete, Juan J

    2014-01-16

    We report a genus-wide comparison of venom proteome variation across New World pit vipers in the genus Agkistrodon. Despite the wide variety of habitats occupied by this genus and that all its taxa feed on diverse species of vertebrates and invertebrate prey, the venom proteomes of copperheads, cottonmouths, and cantils are remarkably similar, both in the type and relative abundance of their different toxin families. The venoms from all the eleven species and subspecies sampled showed relatively similar proteolytic and PLA2 activities. In contrast, quantitative differences were observed in hemorrhagic and myotoxic activities in mice. The highest myotoxic activity was observed with the venoms of A. b. bilineatus, followed by A. p. piscivorus, whereas the venoms of A. c. contortrix and A. p. leucostoma induced the lowest myotoxic activity. The venoms of Agkistrodon bilineatus subspecies showed the highest hemorrhagic activity and A. c. contortrix the lowest. Compositional and toxicological analyses agree with clinical observations of envenomations by Agkistrodon in the USA and Central America. A comparative analysis of Agkistrodon shows that venom divergence tracks phylogeny of this genus to a greater extent than in Sistrurus rattlesnakes, suggesting that the distinct natural histories of Agkistrodon and Sistrurus clades may have played a key role in molding the patterns of evolution of their venom protein genes. A deep understanding of the structural and functional profiles of venoms and of the principles governing the evolution of venomous systems is a goal of venomics. Isolated proteomics analyses have been conducted on venoms from many species of vipers and pit vipers. However, making sense of these large inventories of data requires the integration of this information across multiple species to identify evolutionary and ecological trends. Our genus-wide venomics study provides a comprehensive overview of the toxic arsenal across Agkistrodon and a ground for

  19. Venomics of New World pit vipers: Genus-wide comparisons of venom proteomes across Agkistrodon

    Science.gov (United States)

    Lomonte, Bruno; Tsai, Wan-Chih; Ureña-Diaz, Juan Manuel; Sanz, Libia; Mora-Obando, Diana; Sánchez, Elda E.; Fry, Bryan G.; Gutiérrez, José María; Gibbs, H. Lisle; Sovic, Michael G.; Calvete, Juan J.

    2015-01-01

    We report a genus-wide comparison of venom proteome variation across New World pit vipers in the genus Agkistrodon. Despite the wide variety of habitats occupied by this genus and that all its taxa feed on diverse species of vertebrates and invertebrate prey, the venom proteomes of copperheads, cottonmouths, and cantils are remarkably similar, both in the type and relative abundance of their different toxin families. The venoms from all the eleven species and subspecies sampled showed relatively similar proteolytic and PLA2 activities. In contrast, quantitative differences were observed in hemorrhagic and myotoxic activities in mice. The highest myotoxic activity was observed with the venoms of A. b. bilineatus, followed by A. p. piscivorus, whereas the venoms of A. c. contortrix and A. p. leucostoma induced the lowest myotoxic activity. The venoms of Agkistrodon bilineatus subspecies showed the highest hemorrhagic activity and A. c. contortrix the lowest. Compositional and toxicological analyses agree with clinical observations of envenomations by Agkistrodon in the USA and Central America. A comparative analysis of Agkistrodon shows that venom divergence tracks phylogeny of this genus to a greater extent than in Sistrurus rattlesnakes, suggesting that the distinct natural histories of Agkistrodon and Sistrurus clades may have played a key role in molding the patterns of evolution of their venom protein genes. Biological significance A deep understanding of the structural and functional profiles of venoms and of the principles governing the evolution of venomous systems is a goal of venomics. Isolated proteomics analyses have been conducted on venoms from many species of vipers and pit vipers. However, making sense of these large inventories of data requires the integration of this information across multiple species to identify evolutionary and ecological trends. Our genus-wide venomics study provides a comprehensive overview of the toxic arsenal across

  20. Acidente vascular cerebral hemorrágico associado à acidente ofídico por serpente do gênero bothrops: relato de caso Hemorrhagic stroke related to snakebite by bothrops genus: a case report

    Directory of Open Access Journals (Sweden)

    Amanda Silva Machado

    2010-10-01

    Full Text Available Este trabalho tem como objetivo relatar um caso de acidente vascular cerebral hemorrágico, associado à acidente ofídico por serpente do gênero bothrops e hipertensão arterial sistêmica grave. Apesar do ofidismo botrópico ser frequente no Estado do Pará, tais associações são incomuns, necessitando de uma abordagem especializada e precoce, visando menores complicações.This research reports a clinical case of hemorrhagic stroke due to envenomation by bothrops snakebite associated with severe hypertension. Although bothrops snakebites are frequent in the State of Pará, such associations are uncommon, requiring specialized and early management to avoid severe complications.

  1. Computational Studies of Snake Venom Toxins.

    Science.gov (United States)

    Ojeda, Paola G; Ramírez, David; Alzate-Morales, Jans; Caballero, Julio; Kaas, Quentin; González, Wendy

    2017-12-22

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  2. Cardiovascular-Active Venom Toxins: An Overview.

    Science.gov (United States)

    Rebello Horta, Carolina Campolina; Chatzaki, Maria; Rezende, Bruno Almeida; Magalhães, Bárbara de Freitas; Duarte, Clara Guerra; Felicori, Liza Figueiredo; Ribeiro Oliveira-Mendes, Bárbara Bruna; do Carmo, Anderson Oliveira; Chávez-Olórtegui, Carlos; Kalapothakis, Evanguedes

    2016-01-01

    Animal venoms are a mixture of bioactive compounds produced as weapons and used primarily to immobilize and kill preys. As a result of the high potency and specificity for various physiological targets, many toxins from animal venoms have emerged as possible drugs for the medication of diverse disorders, including cardiovascular diseases. Captopril, which inhibits the angiotensin-converting enzyme (ACE), was the first successful venom-based drug and a notable example of rational drug design. Since captopril was developed, many studies have discovered novel bradykinin-potentiating peptides (BPPs) with actions on the cardiovascular system. Natriuretic peptides (NPs) have also been found in animal venoms and used as template to design new drugs with applications in cardiovascular diseases. Among the anti-arrhythmic peptides, GsMTx-4 was discovered to be a toxin that selectively inhibits the stretch-activated cation channels (SACs), which are involved in atrial fibrillation. The present review describes the main components isolated from animal venoms that act on the cardiovascular system and presents a brief summary of venomous animals and their venom apparatuses.

  3. Computational Studies of Snake Venom Toxins

    Directory of Open Access Journals (Sweden)

    Paola G. Ojeda

    2017-12-01

    Full Text Available Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  4. Black Bear Reactions to Venomous and Non-venomous Snakes in Eastern North America

    OpenAIRE

    Rogers, Lynn L; Mansfield, Susan A; Hornby, Kathleen; Hornby, Stewart; Debruyn, Terry D; Mize, Malvin; Clark, Rulon; Burghardt, Gordon M

    2014-01-01

    Bears are often considered ecological equivalents of large primates, but the latter often respond with fear, avoidance, and alarm calls to snakes, both venomous and non-venomous, there is sparse information on how bears respond to snakes. We videotaped or directly observed natural encounters between black bears (Ursus americanus) and snakes. Inside the range of venomous snakes in Arkansas and West Virginia, adolescent and adult black bears reacted fearfully in seven of seven encounters upon b...

  5. BEE VENOM TRAP DESIGN FOR PRODUCE BEE VENOM OF APIS MELLIFERA L. HONEY BEES

    OpenAIRE

    Budiaman

    2015-01-01

    Bee venom is one honey bee products are very expensive and are required in the pharmaceutical industry and as an anti-cancer known as nanobee, but the production technique is still done in the traditional way. The purpose of this study was to design a bee venom trap to produce bee venom of Apis mellifera L honey bees. The method used is to design several models of bee venom apparatus equipped weak current (DC current) with 3 variations of voltage, ie 12 volts, 15 volts and 18 volts coupled...

  6. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom.

    Science.gov (United States)

    Sunagar, Kartik; Morgenstern, David; Reitzel, Adam M; Moran, Yehu

    2016-03-01

    Animal venom is a complex cocktail of bioactive chemicals that traditionally drew interest mostly from biochemists and pharmacologists. However, in recent years the evolutionary and ecological importance of venom is realized as this trait has direct and strong influence on interactions between species. Moreover, venom content can be modulated by environmental factors. Like many other fields of biology, venom research has been revolutionized in recent years by the introduction of systems biology approaches, i.e., genomics, transcriptomics and proteomics. The employment of these methods in venom research is known as 'venomics'. In this review we describe the history and recent advancements of venomics and discuss how they are employed in studying venom in general and in particular in the context of evolutionary ecology. We also discuss the pitfalls and challenges of venomics and what the future may hold for this emerging scientific field. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Experimental Study on the comparison of antibacterial and antioxidant effects between the Bee Venom and Sweet Bee Venom

    Directory of Open Access Journals (Sweden)

    Joong chul An

    2006-12-01

    Full Text Available Objectives : This study was conducted to compare antibacterial activities and free radical scavenging activity between the Bee Venom and Sweet Bee Venom in which the allergy-causing enzyme is removed. Methods : To evaluate antibacterial activities of the test samples, gram negative E. coli and gram positive St. aureus were compared using the paper disc method. For comparison of the antioxidant effects, DPPH (1,1-diphenyl-2-picrylhydrazyl free radical scavenging assay and Thiobarbituric Acid Reactive Substances (TBARS assay were conducted. Results : 1. Antibacterial activity against gram negative E. coli was greater in the Sweet Bee Venom group than the Bee Venom group. 2. Antibacterial activity against gram positive St. aureus was similar between the Bee Venom and Sweet Bee Venom groups. 3. DPPH free radical scavenging activity of the Bee Venom group showed 2.8 times stronger than that of the Sweet Bee Venom group. 4. Inhibition of lipid peroxidation of the Bee Venom group showed 782 times greater than that of the Sweet Bee Venom group. Conclusions : The Bee Venom group showed outstanding antibacterial activity against gram positive St. aureus, and allergen-removed Sweet Bee Venom group showed outstanding antibacterial activity against both gram negative E. coli and gram positive St. aureus. For antioxidant effects, the Bee Venom was superior over the Sweet Bee Venom and the superiority was far more apparent for lipid peroxidation.

  8. Hemostatic interference of Indian king cobra (Ophiophagus hannah) Venom. Comparison with three other snake venoms of the subcontinent.

    Science.gov (United States)

    Gowtham, Yashonandana J; Kumar, M S; Girish, K S; Kemparaju, K

    2012-06-01

    Unlike Naja naja, Bungarus caeruleus, Echis carinatus, and Daboia/Vipera russellii venoms, Ophiophagus hannah venom is medically ignored in the Indian subcontinent. Being the biggest poisonous snake, O. hannah has been presumed to inject several lethal doses of venom in a single bite. Lack of therapeutic antivenom to O. hannah bite in India makes any attempt to save the victim a difficult exercise. This study was initiated to compare O. hannah venom with the above said venoms for possible interference in hemostasis. Ophiophagus hannah venom was found to actively interfere in hemostatic stages such as fibrin clot formation, platelet activation/aggregation, and fibrin clot dissolution. It decreased partial thromboplastin time (aPTT), prothrombin time (PT), and thrombin clotting time (TCT). These activities are similar to that shown by E. carinatus and D. russellii venoms, and thus O. hannah venom was found to exert procoagulant activity through the common pathway of blood coagulation, while N. naja venom increased aPTT and TCT but not PT, and hence it was found to exert anticoagulant activity through the intrinsic pathway. Venoms of O. hannah, E. carinatus, and D. russellii lack plasminogen activation property as they do not hydrolyze azocasein, while they all show plasmin-like activity by degrading the fibrin clot. Although N. naja venom did not degrade azocasein, unlike other venoms, it showed feeble plasmin-like activity on fibrin clot. Venom of E. carinatus induced clotting of human platelet rich plasma (PRP), while the other three venoms interfered in agonist-induced platelet aggregation in PRP. Venom of O. hannah least inhibited the ADP induced platelet aggregation as compared to D. russellii and N. naja venoms. All these three venoms showed complete inhibition of epinephrine-induced aggregation at varied doses. However, O. hannah venom was unique in inhibiting thrombin induced aggregation.

  9. Echidna venom gland transcriptome provides insights into the evolution of monotreme venom.

    Directory of Open Access Journals (Sweden)

    Emily S W Wong

    Full Text Available Monotremes (echidna and platypus are egg-laying mammals. One of their most unique characteristic is that males have venom/crural glands that are seasonally active. Male platypuses produce venom during the breeding season, delivered via spurs, to aid in competition against other males. Echidnas are not able to erect their spurs, but a milky secretion is produced by the gland during the breeding season. The function and molecular composition of echidna venom is as yet unknown. Hence, we compared the deeply sequenced transcriptome of an in-season echidna crural gland to that of a platypus and searched for putative venom genes to provide clues into the function of echidna venom and the evolutionary history of monotreme venom. We found that the echidna venom gland transcriptome was markedly different from the platypus with no correlation between the top 50 most highly expressed genes. Four peptides found in the venom of the platypus were detected in the echidna transcriptome. However, these genes were not highly expressed in echidna, suggesting that they are the remnants of the evolutionary history of the ancestral venom gland. Gene ontology terms associated with the top 100 most highly expressed genes in echidna, showed functional terms associated with steroidal and fatty acid production, suggesting that echidna "venom" may play a role in scent communication during the breeding season. The loss of the ability to erect the spur and other unknown evolutionary forces acting in the echidna lineage resulted in the gradual decay of venom components and the evolution of a new role for the crural gland.

  10. [Insect venom allergies : Update 2016 for otorhinolaryngologists].

    Science.gov (United States)

    Klimek, L; Dippold, N; Sperl, A

    2016-12-01

    Due to the increasing incidence of hymenoptera venom allergies and the potentially life-threatening reactions, it is important for otolaryngologists working in allergology to have an understanding of modern diagnostic and treatment standards for this allergic disease. Molecular diagnosis with recombinant single allergens from bee and wasp venom components improves the diagnostics of insect venom allergies, particularly in patients with double-positive extract-based test results. Detection of specific sensitizations to bee or wasp venom enables double sensitizations to be better distinguished from cross-reactivity. Based on patient history and test results, the patient is initially advised on avoidance strategies and prescribed an emergency medication kit. Then, the indication for allergen-specific immunotherapy (AIT) is evaluated. The dose-increase phase can be performed using conventional, cluster, rush, or ultra-rush schedules, whereby rapid desensitization (rush AIT) performed in the clinic seems to be particularly effective as initial treatment.

  11. [Therapy control of specific hymenoptera venom allergy].

    Science.gov (United States)

    Aust, W; Wichmann, G; Dietz, A

    2010-12-01

    In Germany anaphylactic reactions after insect stings are mostly caused by honey bee (Apis mellifera) and wasp (Vespula vulgaris, Vespula germanica). In the majority of cases venom immunotherapy is a successful therapy and protects patients from recurrent systemic anaphylactic reaction. In some patients persistent severe reactions after insect sting can even occur in spite of venom therapy, as a sign of therapy failure. It is important to identify these patients, who do not benefit from venom immunotherapy, in an early stage of therapy. In this case dose rate of venom immunotherapy must be adjusted for a successful therapy outcome. Up to now skin prick tests, specific IgE-antibodies and in vitro diagnostics are not suitable for detecting therapy failure. Patients with treatment failure can be diagnosed by insect sting test and almost all of them will become fully protected by increasing the maintenance dose. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Radiating sterilization of the venom of snake

    International Nuclear Information System (INIS)

    Abiyev, H.A.; Topchiyeva, Sh.A.; Rustamov, V.R.

    2006-01-01

    Full text: Water solutions of venoms are unstable and they lose toxicity in some day. Snake venoms inactivate under action of some physical factors: the UV-irradiation, x-rays beams. The purpose of the present work was sterilization of venom Vipera lebetina obtusa under influence of small dozes γ-radiations. Object of research was integral venom of adult individuals. Transcaucasian viper, and also the water solutions of venom irradiated with small dozes scale of radiation. An irradiation of venom carried out to radioisotope installation 60NI. For experiment tests of dry venom, and also their water solutions have been taken. Water solutions of venom have been subjected -radiation up to dozes 1.35, 2.7, 4.05, 5.4 kGr simultaneously dry venom of vipers was exposed -radiation before absorption of a doze 5.4 kGr. In comparative aspect action scale of radiation on ultra-violet spectra of absorption of venom was studied. Ultra-violet spectra venom have been taken off on device Specord UV-VIS. In 12 months after an irradiation spectra of absorption of venom have been repeatedly taken off. In spectra irradiated dry and solutions of venom new maxima of absorption have been revealed in the field of 285 nm and 800 nm describing change of toxicity. It is shown, that the increase in absorption of a doze of radiation occurs decrease of intensity of strips of absorption reduction of intensity of absorption.It is revealed at 260 and 300 nm testifying to course of biochemical reactions of separate enzymes zootoxins. It is necessary to note, that at comparison of intensity of absorption of control samples of poison with irradiated up to dozes 1.35 kGr it has not been revealed essential changes. The subsequent increase in a doze scale of radiation up to 2.7, 4.05, 5.4 kGr promotes proportional reduction of intensity of the absorption, describing toxicity of snake venom. At repeated (later 12 months) measurement of the irradiated water solutions of venom are not revealed changes in

  13. Correlation of the inhibitory activity of phospholipase A2 snake venom and the antioxidant activity of Colombian plant extracts

    Directory of Open Access Journals (Sweden)

    Jaime A. Pereañez

    2010-12-01

    Full Text Available Snakebite continues to be a significant health problem in many countries of Latin America. Even though, there has been an improvement in the antivenom therapy, the local effects caused by myotoxic phospholipases A2 (PLA2 present in the venoms, still persist. In search for alternatives to antagonize the PLA2 activity of Bothrops asper's venom, 36 extracts belonging to seventeen families of vascular plants and bryophytes were screened. A significant inhibition of the enzymatic activity of PLA2 present in B. asper's whole venom was seen in eleven of these extracts. In addition, the antioxidant activity of all the extracts was evaluated. The results evidenced a significant statistical correlation between extracts with an inhibitory effect against PLA2 and those with an antioxidant activity. Moreover, the amount of phenols was quantified finding a relationship between the bioactivity and the presence of these compounds. Nine extracts were screened against a fraction of the venom rich in basic PLA2 (Fx-V B. asper, exhibiting an inhibitory effect on PLA2 activity of this fraction in a range from 30-80%. This activity was supported by the inhibition that these extracts presented on the cytotoxicity caused by Fx-V B. asper on murine skeletal muscle C2C12 myoblasts. The results obtained, could point to minimize efforts in the search of PLA2 inhibitors by focusing in samples with known antioxidant properties.Veneno de cobra continua a ser um problema importante de saúde em muitos países da América Latina. Apesar dos avanços na terapia antiveneno, os efeitos locais causados por fosfolipases A2 miotóxica (PLA2 presentes no veneno, ainda persistem. Em busca de alternativas para antagonizar a atividade da PLA2 do veneno de Bothrops asper, foram selecionados 36 extratos pertencentes a dezessete famílias de plantas vasculares e briófitas. Uma inibição significativa da atividade enzimática de PLA2 presente no veneno de B. asper foi observada em onze

  14. Snake evolution and prospecting of snake venom

    OpenAIRE

    Vonk, Freek Jacobus

    2012-01-01

    in this thesis I have shown that snakes have undergone multiple changes in their genome and embryonic development that has provided them with the variation to which natural selection could act. This thesis provides evidence for the variable mechanisms of venom gene evolution, which presumably is much more flexible than previously thought. But it also underscores the potential use of the many different types of snake venom toxins that could be screened for use against human disorders. And most...

  15. Variação entre filhotes de representantes do complexo Bothrops newied (Serpentes, Viperidae, Crotalinae

    Directory of Open Access Journals (Sweden)

    Vinícius Xavier

    2002-01-01

    Full Text Available External morphological characters of 141 young specimens (69 males and 72 femalesof the Bothrops newied complex were analyzed. Regression analysis was used in the study of morphometric characters and principal components analysis was used in the study of meristic and qualitative characters. Sexual dimorphism was confirmed in the meristic and morphometric characters. Males showed higher counts of subcaudals and longer tails. Females showed eventually higher number of ventrals and dorsal rows, and larger heads. Six different drawing patterns were diagnosed and can indicate the existence of different species. Ontogenetic variation was described.

  16. Filogenia e filogeografia do grupo Bothrops neuwiedi (Serpentes, Squamata)

    OpenAIRE

    Tais Machado

    2015-01-01

    O grupo Bothrops neuwiedi é composto por serpentes neotropicais que desempenham grande impacto na saúde pública, em decorrência de acidentes ofídicos. O grupo apresenta ampla distribuição ao longo da diagonal seca de formações abertas, desde o nordeste do Brasil até o noroeste da Argentina. A taxonomia atual, baseada principalmente em dados morfológicos qualitativos, não recupera as linhagens evolutivas apontadas pelas abordagens moleculares. O objetivo deste trabalho foi investigar o grupo B...

  17. Snake oil and venoms for medical research

    Science.gov (United States)

    Wolpert, H. D.

    2011-04-01

    Some think that using derivatives of snake venom for medical purposes is the modern version of snake oil but they are seriously misjudging the research potentials of some of these toxins in medicines of the 2000's. Medical trials, using some of the compounds has proven their usefulness. Several venoms have shown the possibilities that could lead to anticoagulants, helpful in heart disease. The blood clotting protein from the taipan snake has been shown to rapidly stop excessive bleeding. The venom from the copperhead may hold an answer to breast cancer. The Malaysian pit viper shows promise in breaking blood clots. Cobra venom may hold keys to finding cures for Parkinson's disease and Alzheimer's. Rattlesnake proteins from certain species have produced blood pressure medicines. Besides snake venoms, venom from the South American dart frog, mollusks (i.e. Cone Shell Snail), lizards (i.e. Gila Monster & Komodo Dragon), some species of spiders and tarantulas, Cephalopods, mammals (i.e. Platypus & Shrews), fish (i.e. sting rays, stone fish, puffer fish, blue bottle fish & box jelly fish), intertidal marine animals (echinoderms)(i.e. Crown of Thorn Star Fish & Flower Urchin) and the Honeybee are being investigated for potential medical benefits.

  18. Venom On-a-Chip: A Fast and Efficient Method for Comparative Venomics.

    Science.gov (United States)

    Zancolli, Giulia; Sanz, Libia; Calvete, Juan J; Wüster, Wolfgang

    2017-05-28

    Venom research has attracted an increasing interest in disparate fields, from drug development and pharmacology, to evolutionary biology and ecology, and rational antivenom production. Advances in "-omics" technologies have allowed the characterization of an increasing number of animal venoms, but the methodology currently available is suboptimal for large-scale comparisons of venom profiles. Here, we describe a fast, reproducible and semi-automated protocol for investigating snake venom variability, especially at the intraspecific level, using the Agilent Bioanalyzer on-chip technology. Our protocol generated a phenotype matrix which can be used for robust statistical analysis and correlations of venom variation with ecological correlates, or other extrinsic factors. We also demonstrate the ease and utility of combining on-chip technology with previously fractionated venoms for detection of specific individual toxin proteins. Our study describes a novel strategy for rapid venom discrimination and analysis of compositional variation at multiple taxonomic levels, allowing researchers to tackle evolutionary questions and unveiling the drivers of the incredible biodiversity of venoms.

  19. Black Bear Reactions to Venomous and Non-venomous Snakes in Eastern North America

    Science.gov (United States)

    Rogers, Lynn L; Mansfield, Susan A; Hornby, Kathleen; Hornby, Stewart; Debruyn, Terry D; Mize, Malvin; Clark, Rulon; Burghardt, Gordon M

    2014-01-01

    Bears are often considered ecological equivalents of large primates, but the latter often respond with fear, avoidance, and alarm calls to snakes, both venomous and non-venomous, there is sparse information on how bears respond to snakes. We videotaped or directly observed natural encounters between black bears (Ursus americanus) and snakes. Inside the range of venomous snakes in Arkansas and West Virginia, adolescent and adult black bears reacted fearfully in seven of seven encounters upon becoming aware of venomous and non-venomous snakes; but in northern Michigan and Minnesota where venomous snakes have been absent for millennia, black bears showed little or no fear in four encounters with non-venomous snakes of three species. The possible roles of experience and evolution in bear reactions to snakes and vice versa are discussed. In all areas studied, black bears had difficulty to recognize non-moving snakes by smell or sight. Bears did not react until snakes moved in 11 of 12 encounters with non-moving timber rattlesnakes (Crotalus horridus) and four species of harmless snakes. However, in additional tests in this study, bears were repulsed by garter snakes that had excreted pungent anal exudates, which may help explain the absence of snakes, both venomous and harmless, in bear diets reported to date. PMID:25635152

  20. Combined Venom Gland Transcriptomic and Venom Peptidomic Analysis of the Predatory Ant Odontomachus monticola

    Directory of Open Access Journals (Sweden)

    Kohei Kazuma

    2017-10-01

    Full Text Available Ants (hymenoptera: Formicidae have adapted to many different environments and have become some of the most prolific and successful insects. To date, 13,258 ant species have been reported. They have been classified into 333 genera and 17 subfamilies. Except for a few Formicinae, Dolichoderinae, and members of other subfamilies, most ant species have a sting with venom. The venoms are composed of formic acid, alkaloids, hydrocarbons, amines, peptides, and proteins. Unlike the venoms of other animals such as snakes and spiders, ant venoms have seldom been analyzed comprehensively, and their compositions are not yet completely known. In this study, we used both transcriptomic and peptidomic analyses to study the composition of the venom produced by the predatory ant species Odontomachus monticola. The transcriptome analysis yielded 49,639 contigs, of which 92 encoded toxin-like peptides and proteins with 18,106,338 mapped reads. We identified six pilosulin-like peptides by transcriptomic analysis in the venom gland. Further, we found intact pilosulin-like peptide 1 and truncated pilosulin-like peptides 2 and 3 by peptidomic analysis in the venom. Our findings related to ant venom peptides and proteins may lead the way towards development and application of novel pharmaceutical and biopesticidal resources.

  1. Synergism between Basic Asp49 and Lys49 Phospholipase A2 Myotoxins of Viperid Snake Venom In Vitro and In Vivo

    Science.gov (United States)

    Mora-Obando, Diana; Fernández, Julián; Montecucco, Cesare; Gutiérrez, José María; Lomonte, Bruno

    2014-01-01

    Two subtypes of phospholipases A2 (PLA2s) with the ability to induce myonecrosis, ‘Asp49’ and ‘Lys49’ myotoxins, often coexist in viperid snake venoms. Since the latter lack catalytic activity, two different mechanisms are involved in their myotoxicity. A synergism between Asp49 and Lys49 myotoxins from Bothrops asper was previously observed in vitro, enhancing Ca2+ entry and cell death when acting together upon C2C12 myotubes. These observations are extended for the first time in vivo, by demonstrating a clear enhancement of myonecrosis by the combined action of these two toxins in mice. In addition, novel aspects of their synergism were revealed using myotubes. Proportions of Asp49 myotoxin as low as 0.1% of the Lys49 myotoxin are sufficient to enhance cytotoxicity of the latter, but not the opposite. Sublytic amounts of Asp49 myotoxin also enhanced cytotoxicity of a synthetic peptide encompassing the toxic region of Lys49 myotoxin. Asp49 myotoxin rendered myotubes more susceptible to osmotic lysis, whereas Lys49 myotoxin did not. In contrast to myotoxic Asp49 PLA2, an acidic non-toxic PLA2 from the same venom did not markedly synergize with Lys49 myotoxin, revealing a functional difference between basic and acidic PLA2 enzymes. It is suggested that Asp49 myotoxins synergize with Lys49 myotoxins by virtue of their PLA2 activity. In addition to the membrane-destabilizing effect of this activity, Asp49 myotoxins may generate anionic patches of hydrolytic reaction products, facilitating electrostatic interactions with Lys49 myotoxins. These data provide new evidence for the evolutionary adaptive value of the two subtypes of PLA2 myotoxins acting synergistically in viperid venoms. PMID:25290688

  2. Vintage venoms: proteomic and pharmacological stability of snake venoms stored for up to eight decades.

    Science.gov (United States)

    Jesupret, Clémence; Baumann, Kate; Jackson, Timothy N W; Ali, Syed Abid; Yang, Daryl C; Greisman, Laura; Kern, Larissa; Steuten, Jessica; Jouiaei, Mahdokht; Casewell, Nicholas R; Undheim, Eivind A B; Koludarov, Ivan; Debono, Jordan; Low, Dolyce H W; Rossi, Sarah; Panagides, Nadya; Winter, Kelly; Ignjatovic, Vera; Summerhayes, Robyn; Jones, Alun; Nouwens, Amanda; Dunstan, Nathan; Hodgson, Wayne C; Winkel, Kenneth D; Monagle, Paul; Fry, Bryan Grieg

    2014-06-13

    For over a century, venom samples from wild snakes have been collected and stored around the world. However, the quality of storage conditions for "vintage" venoms has rarely been assessed. The goal of this study was to determine whether such historical venom samples are still biochemically and pharmacologically viable for research purposes, or if new sample efforts are needed. In total, 52 samples spanning 5 genera and 13 species with regional variants of some species (e.g., 14 different populations of Notechis scutatus) were analysed by a combined proteomic and pharmacological approach to determine protein structural stability and bioactivity. When venoms were not exposed to air during storage, the proteomic results were virtually indistinguishable from that of fresh venom and bioactivity was equivalent or only slightly reduced. By contrast, a sample of Acanthophis antarcticus venom that was exposed to air (due to a loss of integrity of the rubber stopper) suffered significant degradation as evidenced by the proteomics profile. Interestingly, the neurotoxicity of this sample was nearly the same as fresh venom, indicating that degradation may have occurred in the free N- or C-terminus chains of the proteins, rather than at the tips of loops where the functional residues are located. These results suggest that these and other vintage venom collections may be of continuing value in toxin research. This is particularly important as many snake species worldwide are declining due to habitat destruction or modification. For some venoms (such as N. scutatus from Babel Island, Flinders Island, King Island and St. Francis Island) these were the first analyses ever conducted and these vintage samples may represent the only venom ever collected from these unique island forms of tiger snakes. Such vintage venoms may therefore represent the last remaining stocks of some local populations and thus are precious resources. These venoms also have significant historical value as

  3. Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah).

    Science.gov (United States)

    Tan, Choo Hock; Tan, Kae Yi; Fung, Shin Yee; Tan, Nget Hong

    2015-09-10

    The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS. Transcriptomic results reveal high redundancy of toxin transcripts (3357.36 FPKM/transcript) despite small cluster numbers, implying gene duplication and diversification within restricted protein families. Among the 23 toxin families identified, three-finger toxins (3FTxs) and snake-venom metalloproteases (SVMPs) have the most diverse isoforms. These 2 toxin families are also the most abundantly transcribed, followed in descending order by phospholipases A2 (PLA2s), cysteine-rich secretory proteins (CRISPs), Kunitz-type inhibitors (KUNs), and L-amino acid oxidases (LAAOs). Seventeen toxin families exhibited low mRNA expression, including hyaluronidase, DPP-IV and 5'-nucleotidase that were not previously reported in the venom-gland transcriptome of a Balinese O. hannah. On the other hand, the MOh proteome includes 3FTxs, the most abundantly expressed proteins in the venom (43 % toxin sbundance). Within this toxin family, there are 6 long-chain, 5 short-chain and 2 non-conventional 3FTx. Neurotoxins comprise the major 3FTxs in the MOh venom, consistent with rapid neuromuscular paralysis reported in systemic envenoming. The presence of toxic enzymes such as LAAOs, SVMPs and PLA2 would explain tissue inflammation and necrotising destruction in local envenoming. Dissimilarities in the subtypes and sequences between the neurotoxins of MOh and Naja kaouthia (monocled cobra) are in agreement with the poor cross-neutralization activity of N. kaouthia antivenom used against MOh venom. Besides, the presence of cobra venom factor, nerve growth factors

  4. Allergen-specific immunotherapy of Hymenoptera venom allergy

    DEFF Research Database (Denmark)

    Schiener, Maximilian; Graessel, Anke; Ollert, Markus

    2017-01-01

    Stings of hymenoptera can induce IgE-mediated hypersensitivity reactions in venom-allergic patients, ranging from local up to severe systemic reactions and even fatal anaphylaxis. Allergic patients' quality of life can be mainly improved by altering their immune response to tolerate the venoms...... by injecting increasing venom doses over years. This venom-specific immunotherapy is highly effective and well tolerated. However, component-resolved information about the venoms has increased in the last years. This knowledge is not only able to improve diagnostics as basis for an accurate therapy......, but was additionally used to create tools which enable the analysis of therapeutic venom extracts on a molecular level. Therefore, during the last decade the detailed knowledge of the allergen composition of hymenoptera venoms has substantially improved diagnosis and therapy of venom allergy. This review focuses...

  5. SNAKE VENOM INSTABILITY • Department of Physiology, Medical ...

    African Journals Online (AJOL)

    preferable to desiccated samples for use in snake venom research (Bjork ... experimental results suggest that dried venom samples may be influenced by different ..... true for the commercial samples, as these are collectively pooled before ...

  6. A study of bacterial contamination of rattlesnake venom

    Directory of Open Access Journals (Sweden)

    E. Garcia-Lima

    1987-03-01

    Full Text Available The authors studied the bacterial contamination of rattlesnake venom isolated from snakes in captivity and wild snakes caught recently. The captive snakes showed a relatively high incidence of bacterial contamination of their venom.

  7. Mycobacterium chelonae infections associated with bee venom acupuncture.

    Science.gov (United States)

    Cho, Sun Young; Peck, Kyong Ran; Kim, Jungok; Ha, Young Eun; Kang, Cheol-In; Chung, Doo Ryeon; Lee, Nam Yong; Song, Jae-Hoon

    2014-03-01

    We report 3 cases of Mycobacterium chelonae infections after bee venom acupuncture. All were treated with antibiotics and surgery. Mycobacterium chelonae infections should be included in the differential diagnosis of chronic skin and soft tissue infections following bee venom acupuncture.

  8. Accidente bothrópico en Colombia: estudio multicéntrico de la eficacia y seguridad de Antivipmyn-Tri®, un antiveneno polivalente producido en México Bothrops bites in Colombia: a multicenter study on the efficacy and safety of Antivipmyn-Tri®, a polyvalent antivenom produced in Mexico

    Directory of Open Access Journals (Sweden)

    Oscar Fernando Jaramillo Delgado

    2007-08-01

    , including serum venom and antivenom measurements (ELISA, was performed during 9 months in 53 patients. Results: forty four patients were bitten by Bothrops asper in Antioquia and Chocó and 9 by B. atrox in Amazonas; on admission, all of them had nonclottable blood, 30 (56.6% presented local and 24 (45.3% systemic bleeding. The final envenoming grade was mild in 13 (24.5%, moderate in 30 (56.6% and severe in 10 patients (18.9%. At the antivenom doses used in this study (5 vials for mild / moderate and 10 for severe envenoming, Antivipmyn Triwas 100% efficient to decrease significantly serum venom concentrations within the first treatment hour, and to stop local and systemic bleeding within 6-12 hours, 96.2% efficient to restore blood coagulation within 24 hours and 100% within 48 hours. Two patients (3.8% had recurrence of coagulopathy without bleeding, and there were 12 recurrences of antigenaemia without clinical relevance. Ten (18.9% patients suffered early mild adverse reactions to fabotherapy. There were no deaths and four patients (7.5% presented sequelae. Conclusion: at the doses used in this study, Antivipmyn Tri® was efficient and safe for the treatment of Bothrops bites in Colombia.

  9. Snake antivenom for snake venom induced consumption coagulopathy

    OpenAIRE

    Maduwage, Kalana; Buckley, Nick A.; Janaka de Silva, H.; Lalloo, David; Isbister, Geoffrey K.

    2015-01-01

    Background\\ud \\ud Snake venom induced consumption coagulopathy is a major systemic effect of envenoming. Observational studies suggest that antivenom improves outcomes for venom induced consumption coagulopathy in some snakebites and not others. However, the effectiveness of snake antivenom in all cases of venom induced consumption coagulopathy is controversial.\\ud \\ud Objectives\\ud \\ud To assess the effect of snake antivenom as a treatment for venom induced consumption coagulopathy in people...

  10. Anti-arthritic effects of microneedling with bee venom gel

    OpenAIRE

    Mengdi Zhao; Jie Bai; Yang Lu; Shouying Du; Kexin Shang; Pengyue Li; Liu Yang; Boyu Dong; Ning Tan

    2016-01-01

    Objective: To combine with transdermal drug delivery using microneedle to simulate the bee venom therapy to evaluate the permeation of bee venom gel. Methods: In this study, the sodium urate and LPS were used on rats and mice to construct the model. Bee venom gel–microneedle combination effect on the model is to determine the role of microneedle gel permeation by observing inflammation factors. Results: Compared with the model group, the bee venom gel–microneedle combination group can r...

  11. Use of gamma irradiated viper venom as the toxoid against viper venom poisoning in mice and rabbits

    International Nuclear Information System (INIS)

    Hati, A.K.; Mandal, M.; Hati, R.N.; Das, S.

    1995-01-01

    The present paper deals with detoxification of the crude viper (Vipera russelli) venom by gamma irradiation and its effective immunogenic role in Balb/C mice, used as a toxoid. The successful immunization of rabbits with irradiated viper venom toxoid is also reported. Certain biochemical changes of the venom due to radiation exposure and neutralization capacity of the immune sera against phosphodiesterase and protease activity of the crude viper venom have also been studied. The neutralizing potency of Russell's viper venom (RVV) toxoid anti venom (anti venom raised in rabbits against γ-irradiated RVV toxoid adsorbed on aluminium phosphate), in comparison with a commercial bivalent anti venom (as a standard reference) with reference to haemorrhagic, necrotic and lethal effects of Russell's viper envenomation are reported. 25 refs

  12. Cysteine-free peptides in scorpion venom: geographical distribution ...

    African Journals Online (AJOL)

    GRACE

    2006-12-29

    Dec 29, 2006 ... In 1993, the first cysteine-free peptide was isolated from scorpion venom. ..... Venom is produced by 2 venom glands in the tail and stored in 2 ... The resistance of a variety of bacterial micro-organisms .... Biopolymers 55: 4-30.

  13. Allergen-specific immunotherapy of Hymenoptera venom allergy

    DEFF Research Database (Denmark)

    Schiener, Maximilian; Graessel, Anke; Ollert, Markus

    2017-01-01

    by injecting increasing venom doses over years. This venom-specific immunotherapy is highly effective and well tolerated. However, component-resolved information about the venoms has increased in the last years. This knowledge is not only able to improve diagnostics as basis for an accurate therapy...

  14. Some Neuropharmacological Effects of the Crude Venom Extract of ...

    African Journals Online (AJOL)

    This study reports some neuropharmacological effects of the crude venom extract of Conus musicus (family Conidae) in mice using various experimental models. The crude venom was found to significantly increase tail flick reaction time in mice. The effects of the venom on the central nervous system were studied by ...

  15. Expression, purification, and analysis of three recombinant ECD disintegrins (r-colombistatins) from P-III class snake venom metalloproteinases affecting platelet aggregation and SK-MEL-28 cell adhesion.

    Science.gov (United States)

    Suntravat, Montamas; Helmke, Thomas J; Atphaisit, Chairat; Cuevas, Esteban; Lucena, Sara E; Uzcátegui, Nestor L; Sánchez, Elda E; Rodriguez-Acosta, Alexis

    2016-11-01

    Crotalid venoms are rich sources of components that affect the hemostatic system. Snake venom metalloproteinases are zinc-dependent enzymes responsible for hemorrhage that also interfere with hemostasis. The disintegrin domain is a part of snake venom metalloproteinases, which involves the binding of integrin receptors. Integrins play an essential role in cancer survival and invasion, and they have been major targets for drug development and design. Both native and recombinant disintegrins have been widely investigated for their anti-cancer activities in biological systems as well as in vitro and in vivo systems. Here, three new cDNAs encoding ECD disintegrin-like domains of metalloproteinase precursor sequences obtained from a Venezuelan mapanare (Bothrops colombiensis) venom gland cDNA library have been cloned. Three different N- and C-terminal truncated ECD disintegrin-like domains of metalloproteinases named colombistatins 2, 3, and 4 were amplified by PCR, cloned into a pGEX-4T-1 vector, expressed in Escherichia coli BL21, and tested for inhibition of platelet aggregation and inhibition of adhesion of human skin melanoma (SK-Mel-28) cancer cell lines on collagen I. Purified recombinant colombistatins 2, 3, and 4 were able to inhibit ristocetin- and collagen-induced platelet aggregation. r-Colombistatins 2 showed the most potent inhibiting SK-Mel-28 cancer cells adhesion to collagen. These results suggest that colombistatins may have utility in the development of therapeutic tools in the treatment of melanoma cancers and also thrombotic diseases. Copyright © 2016. Published by Elsevier Ltd.

  16. Tityus serrulatus venom--A lethal cocktail.

    Science.gov (United States)

    Pucca, Manuela Berto; Cerni, Felipe Augusto; Pinheiro Junior, Ernesto Lopes; Bordon, Karla de Castro Figueiredo; Amorim, Fernanda Gobbi; Cordeiro, Francielle Almeida; Longhim, Heloisa Tavoni; Cremonez, Caroline Marroni; Oliveira, Guilherme Honda; Arantes, Eliane Candiani

    2015-12-15

    Tityus serrulatus (Ts) is the main scorpion species of medical importance in Brazil. Ts venom is composed of several compounds such as mucus, inorganic salts, lipids, amines, nucleotides, enzymes, kallikrein inhibitor, natriuretic peptide, proteins with high molecular mass, peptides, free amino acids and neurotoxins. Neurotoxins are considered the most responsible for the envenoming syndrome due to their pharmacological action on ion channels such as voltage-gated sodium (Nav) and potassium (Kv) channels. The major goal of this review is to present important advances in Ts envenoming research, correlating both the crude Ts venom and isolated toxins with alterations observed in all human systems. The most remarkable event lies in the Ts induced massive releasing of neurotransmitters influencing, directly or indirectly, the entire body. Ts venom proved to extremely affect nervous and muscular systems, to modulate the immune system, to induce cardiac disorders, to cause pulmonary edema, to decrease urinary flow and to alter endocrine, exocrine, reproductive, integumentary, skeletal and digestive functions. Therefore, Ts venom possesses toxins affecting all anatomic systems, making it a lethal cocktail. However, its low lethality may be due to the low venom mass injected, to the different venom compositions, the body characteristics and health conditions of the victim and the local of Ts sting. Furthermore, we also described the different treatments employed during envenoming cases. In particular, throughout the review, an effort will be made to provide information from an extensive documented studies concerning Ts venom in vitro, in animals and in humans (a total of 151 references). Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The effects of Bee Venom and Sweet Bee Venom to the preadipocyte proliferation and lipolysis of adipocyte, localized fat accumulation

    OpenAIRE

    Min-Ki Kim; Si Hyeong, Lee; Jo Young Shin; Kang San Kim; Nam Guen Cho; Ki Rok Kwon; Tae Jin Rhim

    2007-01-01

    Objectives : The purpose of this study was to investigate the effects of Bee Venom and Sweet Bee Venom to the primary cultured preadipocyte, adipocytes, and localized fat tissue. Methods : Decreased preadipocyte proliferation and decreased lipogenesis are mechanisms to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures using Sprague-Dawley Rats and treated with 0.01-1mg/㎖ Bee Venom and Sweet Bee Venom. And porcine skin including fat tissue after treated Bee Ve...

  18. Immunoreactivity between venoms and commercial antiserums in four Chinese snakes and venom identification by species-specific antibody.

    Science.gov (United States)

    Gao, Jian-Fang; Wang, Jin; Qu, Yan-Fu; Ma, Xiao-Mei; Ji, Xiang

    2013-01-31

    We studied the immunoreactivity between venoms and commercial antiserums in four Chinese venomous snakes, Bungarus multicinctus, Naja atra, Deinagkistrodon acutus and Gloydius brevicaudus. Venoms from the four snakes shared common antigenic components, and most venom components expressed antigenicity in the immunological reaction between venoms and antiserums. Antiserums cross-reacted with heterologous venoms. Homologous venom and antiserum expressed the highest reaction activity in all cross-reactions. Species-specific antibodies (SSAbs) were obtained from four antiserums by immunoaffinity chromatography: the whole antiserum against each species was gradually passed through a medium system coated with heterologous venoms, and the cross-reacting components in antiserum were immunoabsorbed by the common antigens in heterologous venoms; the unbound components (i.e., SSAbs) were collected, and passed through Hitrap G protein column and concentrated. The SSAbs were found to have high specificity by western blot and enzyme-linked immunosorbent assay (ELISA). A 6-well ELISA strip coated with SSAbs was used to assign a venom sample and blood and urine samples from the envenomed rats to a given snake species. Our detections could differentiate positive and negative samples, and identify venoms of a snake species in about 35 min. The ELISA strips developed in this study are clinically useful in rapid and reliable identification of venoms from the above four snake species. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Hymenoptera venom review focusing on Apis mellifera

    Directory of Open Access Journals (Sweden)

    P. R. de Lima

    2003-01-01

    Full Text Available Hymenoptera venoms are complex mixtures containing simple organic molecules, proteins, peptides, and other bioactive elements. Several of these components have been isolated and characterized, and their primary structures determined by biochemical techniques. These compounds are responsible for many toxic or allergic reactions in different organisms, such as local pain, inflammation, itching, irritation, and moderate or severe allergic reactions. The most extensively characterized Hymenoptera venoms are bee venoms, mainly from the Apis genus and also from social wasps and ant species. However, there is little information about other Hymenoptera groups. The Apis venom presents high molecular weight molecules - enzymes with a molecular weight higher than 10.0 kDa - and peptides. The best studied enzymes are phospholipase A2, responsible for cleaving the membrane phospholipids, hyaluronidase, which degrades the matrix component hyaluronic acid into non-viscous segments and acid phosphatase acting on organic phosphates. The main peptide compounds of bee venom are lytic peptide melittin, apamin (neurotoxic, and mastocyte degranulating peptide (MCD.

  20. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly.

    Science.gov (United States)

    Aird, Steven D; Aggarwal, Shikha; Villar-Briones, Alejandro; Tin, Mandy Man-Ying; Terada, Kouki; Mikheyev, Alexander S

    2015-08-28

    While many studies have shown that extracellular proteins evolve rapidly, how selection acts on them remains poorly understood. We used snake venoms to understand the interaction between ecology, expression level, and evolutionary rate in secreted protein systems. Venomous snakes employ well-integrated systems of proteins and organic constituents to immobilize prey. Venoms are generally optimized to subdue preferred prey more effectively than non-prey, and many venom protein families manifest positive selection and rapid gene family diversification. Although previous studies have illuminated how individual venom protein families evolve, how selection acts on venoms as integrated systems, is unknown. Using next-generation transcriptome sequencing and mass spectrometry, we examined microevolution in two pitvipers, allopatrically separated for at least 1.6 million years, and their hybrids. Transcriptomes of parental species had generally similar compositions in regard to protein families, but for a given protein family, the homologs present and concentrations thereof sometimes differed dramatically. For instance, a phospholipase A2 transcript comprising 73.4 % of the Protobothrops elegans transcriptome, was barely present in the P. flavoviridis transcriptome (king cobra genome, suggesting that rapid evolution of abundant proteins may be generally true for snake venoms. Looking more broadly at Protobothrops, we show that rapid evolution of the most abundant components is due to positive selection, suggesting an interplay between abundance and adaptation. Given log-scale differences in toxin abundance, which are likely correlated with biosynthetic costs, we hypothesize that as a result of natural selection, snakes optimize return on energetic investment by producing more of venom proteins that increase their fitness. Natural selection then acts on the additive genetic variance of these components, in proportion to their contributions to overall fitness. Adaptive

  1. Mast Cells Can Enhance Resistance to Snake and Honeybee Venoms

    Science.gov (United States)

    Metz, Martin; Piliponsky, Adrian M.; Chen, Ching-Cheng; Lammel, Verena; Åbrink, Magnus; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.

    2006-07-01

    Snake or honeybee envenomation can cause substantial morbidity and mortality, and it has been proposed that the activation of mast cells by snake or insect venoms can contribute to these effects. We show, in contrast, that mast cells can significantly reduce snake-venom-induced pathology in mice, at least in part by releasing carboxypeptidase A and possibly other proteases, which can degrade venom components. Mast cells also significantly reduced the morbidity and mortality induced by honeybee venom. These findings identify a new biological function for mast cells in enhancing resistance to the morbidity and mortality induced by animal venoms.

  2. Use of immunoturbidimetry to detect venom-antivenom binding using snake venoms.

    Science.gov (United States)

    O'Leary, M A; Maduwage, K; Isbister, G K

    2013-01-01

    Immunoturbidimetry studies the phenomenon of immunoprecipitation of antigens and antibodies in solution, where there is the formation of large, polymeric insoluble immunocomplexes that increase the turbidity of the solution. We used immunoturbidimetry to investigate the interaction between commercial snake antivenoms and snake venoms, as well as cross-reactivity between different snake venoms. Serial dilutions of commercial snake antivenoms (100μl) in water were placed in the wells of a microtitre plate and 100μl of a venom solution (50μg/ml in water) was added. Absorbance readings were taken at 340nm every minute on a BioTek ELx808 plate reader at 37°C. Limits imposed were a 30minute cut-off and 0.004 as the lowest significant maximum increase. Reactions with rabbit antibodies were carried out similarly, except that antibody dilutions were in PBS. Mixing venom and antivenom/antibodies resulted in an immediate increase in turbidity, which either reached a maximum or continued to increase until a 30minute cut-off. There was a peak in absorbance readings for most Australian snake venoms mixed with the corresponding commercial antivenom, except for Pseudonaja textilis venom and brown snake antivenom. There was cross-reactivity between Naja naja venom from Sri Lanka and tiger snake antivenom indicated by turbidity when they were mixed. Mixing rabbit anti-snake antibodies with snake venoms resulted in increasing turbidity, but there was not a peak suggesting the antibodies were not sufficiently concentrated. The absorbance reading at pre-determined concentrations of rabbit antibodies mixed with different venoms was able to quantify the cross-reactivity between venoms. Indian antivenoms from two manufacturers were tested against four Sri Lankan snake venoms (Daboia russelli, N. naja, Echis carinatus and Bungarus caeruleus) and showed limited formation of immunocomplexes with antivenom from one manufacturer. The turbidity test provides an easy and rapid way to compare

  3. Coralsnake Venomics: Analyses of Venom Gland Transcriptomes and Proteomes of Six Brazilian Taxa.

    Science.gov (United States)

    Aird, Steven D; da Silva, Nelson Jorge; Qiu, Lijun; Villar-Briones, Alejandro; Saddi, Vera Aparecida; Pires de Campos Telles, Mariana; Grau, Miguel L; Mikheyev, Alexander S

    2017-06-08

    Venom gland transcriptomes and proteomes of six Micrurus taxa ( M. corallinus , M. lemniscatus carvalhoi , M. lemniscatus lemniscatus , M. paraensis , M. spixii spixii , and M. surinamensis ) were investigated, providing the most comprehensive, quantitative data on Micrurus venom composition to date, and more than tripling the number of Micrurus venom protein sequences previously available. The six venomes differ dramatically. All are dominated by 2-6 toxin classes that account for 91-99% of the toxin transcripts. The M. s. spixii venome is compositionally the simplest. In it, three-finger toxins (3FTxs) and phospholipases A₂ (PLA₂s) comprise >99% of the toxin transcripts, which include only four additional toxin families at levels ≥0.1%. Micrurus l. lemniscatus venom is the most complex, with at least 17 toxin families. However, in each venome, multiple structural subclasses of 3FTXs and PLA₂s are present. These almost certainly differ in pharmacology as well. All venoms also contain phospholipase B and vascular endothelial growth factors. Minor components (0.1-2.0%) are found in all venoms except that of M. s. spixii . Other toxin families are present in all six venoms at trace levels (venom components differ in each venom. Numerous novel toxin chemistries include 3FTxs with previously unknown 8- and 10-cysteine arrangements, resulting in new 3D structures and target specificities. 9-cysteine toxins raise the possibility of covalent, homodimeric 3FTxs or heterodimeric toxins with unknown pharmacologies. Probable muscarinic sequences may be reptile-specific homologs that promote hypotension via vascular mAChRs. The first complete sequences are presented for 3FTxs putatively responsible for liberating glutamate from rat brain synaptosomes. Micrurus C-type lectin-like proteins may have 6-9 cysteine residues and may be monomers, or homo- or heterodimers of unknown pharmacology. Novel KSPIs, 3× longer than any seen previously, appear to have arisen in three

  4. Coralsnake Venomics: Analyses of Venom Gland Transcriptomes and Proteomes of Six Brazilian Taxa

    Directory of Open Access Journals (Sweden)

    Steven D. Aird

    2017-06-01

    Full Text Available Venom gland transcriptomes and proteomes of six Micrurus taxa (M. corallinus, M. lemniscatus carvalhoi, M. lemniscatus lemniscatus, M. paraensis, M. spixii spixii, and M. surinamensis were investigated, providing the most comprehensive, quantitative data on Micrurus venom composition to date, and more than tripling the number of Micrurus venom protein sequences previously available. The six venomes differ dramatically. All are dominated by 2–6 toxin classes that account for 91–99% of the toxin transcripts. The M. s. spixii venome is compositionally the simplest. In it, three-finger toxins (3FTxs and phospholipases A2 (PLA2s comprise >99% of the toxin transcripts, which include only four additional toxin families at levels ≥0.1%. Micrurus l. lemniscatus venom is the most complex, with at least 17 toxin families. However, in each venome, multiple structural subclasses of 3FTXs and PLA2s are present. These almost certainly differ in pharmacology as well. All venoms also contain phospholipase B and vascular endothelial growth factors. Minor components (0.1–2.0% are found in all venoms except that of M. s. spixii. Other toxin families are present in all six venoms at trace levels (<0.005%. Minor and trace venom components differ in each venom. Numerous novel toxin chemistries include 3FTxs with previously unknown 8- and 10-cysteine arrangements, resulting in new 3D structures and target specificities. 9-cysteine toxins raise the possibility of covalent, homodimeric 3FTxs or heterodimeric toxins with unknown pharmacologies. Probable muscarinic sequences may be reptile-specific homologs that promote hypotension via vascular mAChRs. The first complete sequences are presented for 3FTxs putatively responsible for liberating glutamate from rat brain synaptosomes. Micrurus C-type lectin-like proteins may have 6–9 cysteine residues and may be monomers, or homo- or heterodimers of unknown pharmacology. Novel KSPIs, 3× longer than any seen

  5. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution.

    Science.gov (United States)

    Modahl, Cassandra M; Mackessy, Stephen P

    2016-06-01

    Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides

  6. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom.

    Science.gov (United States)

    Reyes-Velasco, Jacobo; Card, Daren C; Andrew, Audra L; Shaney, Kyle J; Adams, Richard H; Schield, Drew R; Casewell, Nicholas R; Mackessy, Stephen P; Castoe, Todd A

    2015-01-01

    Snake venom gene evolution has been studied intensively over the past several decades, yet most previous studies have lacked the context of complete snake genomes and the full context of gene expression across diverse snake tissues. We took a novel approach to studying snake venom evolution by leveraging the complete genome of the Burmese python, including information from tissue-specific patterns of gene expression. We identified the orthologs of snake venom genes in the python genome, and conducted detailed analysis of gene expression of these venom homologs to identify patterns that differ between snake venom gene families and all other genes. We found that venom gene homologs in the python are expressed in many different tissues outside of oral glands, which illustrates the pitfalls of using transcriptomic data alone to define "venom toxins." We hypothesize that the python may represent an ancestral state prior to major venom development, which is supported by our finding that the expansion of venom gene families is largely restricted to highly venomous caenophidian snakes. Therefore, the python provides insight into biases in which genes were recruited for snake venom systems. Python venom homologs are generally expressed at lower levels, have higher variance among tissues, and are expressed in fewer organs compared with all other python genes. We propose a model for the evolution of snake venoms in which venom genes are recruited preferentially from genes with particular expression profile characteristics, which facilitate a nearly neutral transition toward specialized venom system expression. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Comparison of Vespula germanica venoms obtained from different sources.

    Science.gov (United States)

    Sanchez, F; Blanca, M; Miranda, A; Carmona, M J; Garcia, J; Fernandez, J; Torres, M J; Rondon, M C; Juarez, C

    1994-08-01

    This study was carried out to compare the allergenic potency of Vespula germanica (VG) venoms extracted by different methods and commercially available venoms from Vespula species currently used for in vivo and in vitro studies including immunotherapy. Pure VG venom was used as the reference material. Protein content and enzymatic and allergenic properties of all venoms studied were determined by dye stain reagent, hyaluronidase and phospholipase A1B enzyme activities, and radioallergosorbent test inhibition studies, respectively. Radioallergosorbent test discs sensitized with commercial and pure VG venom were compared using specific IgE antibodies from subjects allergic to VG venom. The data obtained indicate that there were important differences in the allergenic potency between the Vespula species venoms employed for in vivo and/or in vitro assays, VG venom obtained by sac dissection, and pure VG venom. These results indicate that venoms from Vespula species used for in vitro and in vivo tests have a lower concentration of allergens and contain nonvenom proteins. These data should be taken into account when these vespid venoms are used for diagnostic purposes and also when evaluating immunotherapy studies.

  8. Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Md Abdul Hakim

    2015-11-01

    Full Text Available Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components.

  9. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    International Nuclear Information System (INIS)

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-01-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: → Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. → Bt-VSP activates prothrombin. → Bt-VSP directly degrades fibrinogen into fibrin degradation products. → Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  10. Tracing Monotreme Venom Evolution in the Genomics Era

    Directory of Open Access Journals (Sweden)

    Camilla M. Whittington

    2014-04-01

    Full Text Available The monotremes (platypuses and echidnas represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves.

  11. Tracing monotreme venom evolution in the genomics era.

    Science.gov (United States)

    Whittington, Camilla M; Belov, Katherine

    2014-04-02

    The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves.

  12. Low cost venom extractor based on Arduino(®) board for electrical venom extraction from arthropods and other small animals.

    Science.gov (United States)

    Besson, Thomas; Debayle, Delphine; Diochot, Sylvie; Salinas, Miguel; Lingueglia, Eric

    2016-08-01

    Extracting venom from small species is usually challenging. We describe here an affordable and versatile electrical venom extractor based on the Arduino(®) Mega 2560 Board, which is designed to extract venom from arthropods and other small animals. The device includes fine tuning of stimulation time and voltage. It was used to collect venom without apparent deleterious effects, and characterized for the first time the venom of Zoropsis spinimana, a common spider in French Mediterranean regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The first venomous crustacean revealed by transcriptomics and functional morphology: remipede venom glands express a unique toxin cocktail dominated by enzymes and a neurotoxin.

    Science.gov (United States)

    von Reumont, Björn M; Blanke, Alexander; Richter, Sandy; Alvarez, Fernando; Bleidorn, Christoph; Jenner, Ronald A

    2014-01-01

    Animal venoms have evolved many times. Venomous species are especially common in three of the four main groups of arthropods (Chelicerata, Myriapoda, and Hexapoda), which together represent tens of thousands of species of venomous spiders, scorpions, centipedes, and hymenopterans. Surprisingly, despite their great diversity of body plans, there is no unambiguous evidence that any crustacean is venomous. We provide the first conclusive evidence that the aquatic, blind, and cave-dwelling remipede crustaceans are venomous and that venoms evolved in all four major arthropod groups. We produced a three-dimensional reconstruction of the venom delivery apparatus of the remipede Speleonectes tulumensis, showing that remipedes can inject venom in a controlled manner. A transcriptomic profile of its venom glands shows that they express a unique cocktail of transcripts coding for known venom toxins, including a diversity of enzymes and a probable paralytic neurotoxin very similar to one described from spider venom. We screened a transcriptomic library obtained from whole animals and identified a nontoxin paralog of the remipede neurotoxin that is not expressed in the venom glands. This allowed us to reconstruct its probable evolutionary origin and underlines the importance of incorporating data derived from nonvenom gland tissue to elucidate the evolution of candidate venom proteins. This first glimpse into the venom of a crustacean and primitively aquatic arthropod reveals conspicuous differences from the venoms of other predatory arthropods such as centipedes, scorpions, and spiders and contributes valuable information for ultimately disentangling the many factors shaping the biology and evolution of venoms and venomous species.

  14. Quantitative Proteomic Analysis of Venoms from Russian Vipers of Pelias Group: Phospholipases A₂ are the Main Venom Components.

    Science.gov (United States)

    Kovalchuk, Sergey I; Ziganshin, Rustam H; Starkov, Vladislav G; Tsetlin, Victor I; Utkin, Yuri N

    2016-04-12

    Venoms of most Russian viper species are poorly characterized. Here, by quantitative chromato-mass-spectrometry, we analyzed protein and peptide compositions of venoms from four Vipera species (V. kaznakovi, V. renardi, V. orlovi and V. nikolskii) inhabiting different regions of Russia. In all these species, the main components were phospholipases A₂, their content ranging from 24% in V. orlovi to 65% in V. nikolskii. Altogether, enzyme content in venom of V. nikolskii reached ~85%. Among the non-enzymatic proteins, the most abundant were disintegrins (14%) in the V. renardi venom, C-type lectin like (12.5%) in V. kaznakovi, cysteine-rich venom proteins (12%) in V. orlovi and venom endothelial growth factors (8%) in V. nikolskii. In total, 210 proteins and 512 endogenous peptides were identified in the four viper venoms. They represented 14 snake venom protein families, most of which were found in the venoms of Vipera snakes previously. However, phospholipase B and nucleotide degrading enzymes were reported here for the first time. Compositions of V. kaznakovi and V. orlovi venoms were described for the first time and showed the greatest similarity among the four venoms studied, which probably reflected close relationship between these species within the "kaznakovi" complex.

  15. Allergen immunotherapy for insect venom allergy

    DEFF Research Database (Denmark)

    Dhami, S; Zaman, H; Varga, E-M

    2016-01-01

    BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines on Allergen Immunotherapy (AIT) for the management of insect venom allergy. To inform this process, we sought to assess the effectiveness, cost-effectiveness and safety...... of AIT in the management of insect venom allergy. METHODS: We undertook a systematic review, which involved searching 15 international biomedical databases for published and unpublished evidence. Studies were independently screened and critically appraised using established instruments. Data were...

  16. STUDY ON ANTIBACTERIAL ACTIVITY OF BEE VENOM.

    OpenAIRE

    Yeon Jo Ha; Chi Won Noh; Woo Young Bang; Sam Woong Kim; Sang Wan Gal.

    2018-01-01

    The purpose of this study was to investigate the antimicrobial activity against Salmonella infection which causes intestinal diseases from bee venom which is one of the social insects, and to find a way which use ghost vaccine. The minimum inhibitory concentration (MIC) of bee venom against Salmonella Typhimurium χ3339 was 101.81 ug/ml. Based on the result of MIC, the antimicrobial activity according to amount of the cells showed strong activities below 106 CFU/ml, but exhibited no and low ac...

  17. THE USE OF THE ANTI-VENOM SPECIFIC ANTIBODIES ISOLATED FROM DUCK EGGS FOR INACTIVATION OF THE VIPER VENOM

    Directory of Open Access Journals (Sweden)

    ADRIANA CRISTE

    2008-05-01

    Full Text Available The activity of specific anti-venom can be demonstrated using protection test in laboratory mice. Our study aimed to emphasize the possibility of viper venom inactivation by the antibodies produced and isolated from duck eggs and also to the activation concentration of these antibodies. The venom used for inoculation was harvested from two viper species (Vipera ammodytes and Vipera berus. The immunoglobulin extract had a better activity on the venom from Vipera berus compared to the venom from Vipera ammodytes. This could be the result of a better immunological response, as consequence of the immunization with this type of venom, compared to the response recorded when the Vipera ammodytes venom was used. Besides the advantages of low cost, high productivity and reduced risk of anaphylactic shock, the duck eggs also have high activity up to dilutions of 1/16, 1/32, respectively, with specific activity and 100 surviving in individuals which received 3 x DL50.

  18. Venomous snakes of Costa Rica: biological and medical implications of their venom proteomic profiles analyzed through the strategy of snake venomics.

    Science.gov (United States)

    Lomonte, Bruno; Fernández, Julián; Sanz, Libia; Angulo, Yamileth; Sasa, Mahmood; Gutiérrez, José María; Calvete, Juan J

    2014-06-13

    In spite of its small territory of ~50,000km(2), Costa Rica harbors a remarkably rich biodiversity. Its herpetofauna includes 138 species of snakes, of which sixteen pit vipers (family Viperidae, subfamily Crotalinae), five coral snakes (family Elapidae, subfamily Elapinae), and one sea snake (Family Elapidae, subfamily Hydrophiinae) pose potential hazards to human and animal health. In recent years, knowledge on the composition of snake venoms has expanded dramatically thanks to the development of increasingly fast and sensitive analytical techniques in mass spectrometry and separation science applied to protein characterization. Among several analytical strategies to determine the overall protein/peptide composition of snake venoms, the methodology known as 'snake venomics' has proven particularly well suited and informative, by providing not only a catalog of protein types/families present in a venom, but also a semi-quantitative estimation of their relative abundances. Through a collaborative research initiative between Instituto de Biomedicina de Valencia (IBV) and Instituto Clodomiro Picado (ICP), this strategy has been applied to the study of venoms of Costa Rican snakes, aiming to obtain a deeper knowledge on their composition, geographic and ontogenic variations, relationships to taxonomy, correlation with toxic activities, and discovery of novel components. The proteomic profiles of venoms from sixteen out of the 22 species within the Viperidae and Elapidae families found in Costa Rica have been reported so far, and an integrative view of these studies is hereby presented. In line with other venomic projects by research groups focusing on a wide variety of snakes around the world, these studies contribute to a deeper understanding of the biochemical basis for the diverse toxic profiles evolved by venomous snakes. In addition, these studies provide opportunities to identify novel molecules of potential pharmacological interest. Furthermore, the

  19. BOTHROPS JARARACUSSU: A NEW RECORD FOR THE MUNICIPALITY OF SÃO PAULO, BRAZIL

    Directory of Open Access Journals (Sweden)

    Silara Fatima Batista

    2016-10-01

    Full Text Available Bothrops jararacussu is a terrestrial snake, predominantly nocturnal, and mainly found in forested areas. Our objective was to provide the first record of B.jararacussu for the municipality of São Paulo, in the highland of Parque Estadual da Serra do Mar (PESM, Núcleo Curucutu. The register ocurred through monthly samplings in the Núcleo Curucutu, during one year. The specimen was found in a transitional area of Atlantic upper montane forest and Pinus sp. reforestation. It represents a new altitude record (>800m in a well-preserved area, reiterating the importance of this park for the maintenance of biodiversity in this municipality and evinces the region potential to house rare species in São Paulo highland.

  20. Enzymatic analysis of Hemiscorpius lepturus scorpion venom using zymography and venom-specific antivenin.

    Science.gov (United States)

    Seyedian, Ramin; Pipelzadeh, Mohammad Hassan; Jalali, Amir; Kim, Euikyung; Lee, Hyunkyoung; Kang, Changkeun; Cha, Mijin; Sohn, Eun-Tae; Jung, Eun-Sun; Rahmani, Ali Hassan; Mirakabady, Abbas Zare

    2010-09-15

    Hemiscorpius lepturus envenomation exhibits various pathological changes in the affected tissues, including skin, blood cells, cardiovascular and central nervous systems. The enzymatic activity and protein component of the venom have not been described previously. In the present study, the electrophoretic profile of H. lepturus venom was determined by SDS-PAGE (12 and 15%), resulting in major protein bands at 3.5-5, 30-35 and 50-60 kDa. The enzymatic activities of the venom was, for the first time, investigated using various zymography techniques, which showed the gelatinolytic, caseinolytic, and hyaluronidase activities mainly at around 50-60 kDa, 30-40 kDa, and 40-50 kDa, respectively. Among these, the proteolytic activities was almost completely disappeared in the presence of a matrix metalloproteinase inhibitor, 1, 10-phenanthroline. Antigen-antibody interactions between the venom and its Iranian antivenin was observed by Western blotting, and it showed several antigenic proteins in the range of 30-160 kDa. This strong antigen-antibody reaction was also demonstrated through an enzyme-linked immunosorbent assay (ELISA). The gelatinase activity of the venom was suppressed by Razi institute polyvalent antivenin, suggesting the inhibitory effect of the antivenin against H. lepturus venom protease activities. Prudently, more extensive clinical studies are necessary for validation of its use in envenomed patients. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Fossilized Venom: The Unusually Conserved Venom Profiles of Heloderma Species (Beaded Lizards and Gila Monsters)

    Science.gov (United States)

    Koludarov, Ivan; Jackson, Timothy N. W.; Sunagar, Kartik; Nouwens, Amanda; Hendrikx, Iwan; Fry, Bryan G.

    2014-01-01

    Research into snake venoms has revealed extensive variation at all taxonomic levels. Lizard venoms, however, have received scant research attention in general, and no studies of intraclade variation in lizard venom composition have been attempted to date. Despite their iconic status and proven usefulness in drug design and discovery, highly venomous helodermatid lizards (gila monsters and beaded lizards) have remained neglected by toxinological research. Proteomic comparisons of venoms of three helodermatid lizards in this study has unravelled an unusual similarity in venom-composition, despite the long evolutionary time (~30 million years) separating H. suspectum from the other two species included in this study (H. exasperatum and H. horridum). Moreover, several genes encoding the major helodermatid toxins appeared to be extremely well-conserved under the influence of negative selection (but with these results regarded as preliminary due to the scarcity of available sequences). While the feeding ecologies of all species of helodermatid lizard are broadly similar, there are significant morphological differences between species, which impact upon relative niche occupation. PMID:25533521

  2. Fossilized venom: the unusually conserved venom profiles of Heloderma species (beaded lizards and gila monsters).

    Science.gov (United States)

    Koludarov, Ivan; Jackson, Timothy N W; Sunagar, Kartik; Nouwens, Amanda; Hendrikx, Iwan; Fry, Bryan G

    2014-12-22

    Research into snake venoms has revealed extensive variation at all taxonomic levels. Lizard venoms, however, have received scant research attention in general, and no studies of intraclade variation in lizard venom composition have been attempted to date. Despite their iconic status and proven usefulness in drug design and discovery, highly venomous helodermatid lizards (gila monsters and beaded lizards) have remained neglected by toxinological research. Proteomic comparisons of venoms of three helodermatid lizards in this study has unravelled an unusual similarity in venom-composition, despite the long evolutionary time (~30 million years) separating H. suspectum from the other two species included in this study (H. exasperatum and H. horridum). Moreover, several genes encoding the major helodermatid toxins appeared to be extremely well-conserved under the influence of negative selection (but with these results regarded as preliminary due to the scarcity of available sequences). While the feeding ecologies of all species of helodermatid lizard are broadly similar, there are significant morphological differences between species, which impact upon relative niche occupation.

  3. Bee Venom Phospholipase A2: Yesterday's Enemy Becomes Today's Friend.

    Science.gov (United States)

    Lee, Gihyun; Bae, Hyunsu

    2016-02-22

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson's disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes.

  4. Simplification of intradermal skin testing in Hymenoptera venom allergic children.

    Science.gov (United States)

    Cichocka-Jarosz, Ewa; Stobiecki, Marcin; Brzyski, Piotr; Rogatko, Iwona; Nittner-Marszalska, Marita; Sztefko, Krystyna; Czarnobilska, Ewa; Lis, Grzegorz; Nowak-Węgrzyn, Anna

    2017-03-01

    The direct comparison between children and adults with Hymenoptera venom anaphylaxis (HVA) has never been extensively reported. Severe HVA with IgE-documented mechanism is the recommendation for venom immunotherapy, regardless of age. To determine the differences in the basic diagnostic profile between children and adults with severe HVA and its practical implications. We reviewed the medical records of 91 children and 121 adults. Bee venom allergy was exposure dependent, regardless of age (P bee venom allergic group, specific IgE levels were significantly higher in children (29.5 kU A /L; interquartile range, 11.30-66.30 kU A /L) compared with adults (5.10 kU A /L; interquartile range, 2.03-8.30 kU A /L) (P venom were higher in bee venom allergic children compared with the wasp venom allergic children (P venom. At concentrations lower than 0.1 μg/mL, 16% of wasp venom allergic children and 39% of bee venom allergic children had positive intradermal test results. The median tryptase level was significantly higher in adults than in children for the entire study group (P = .002), as well as in bee (P = .002) and wasp venom allergic groups (P = .049). The basic diagnostic profile in severe HVA reactors is age dependent. Lower skin test reactivity to culprit venom in children may have practical application in starting the intradermal test procedure with higher venom concentrations. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. Hyaluronidase and hyaluronan in insect venom allergy.

    Science.gov (United States)

    King, Te Piao; Wittkowski, Knut M

    2011-01-01

    Insect venoms contain an allergen hyaluronidase that catalyzes the hydrolysis of hyaluronan (HA), a polymer of disaccharide GlcUA-GlcNAc in skin. HAs depending on their size have variable function in inflammation and immunity. This paper reports on whether hyaluronidase, HA polymers and oligomers can promote antibody response in mice. HA oligomers (8- to 50-mer; 3-20 kDa) were obtained by bee venom hyaluronidase digestion of HA polymers (750- to 5,000-mer; 300-2,000 kDa). Antibody responses in mice were compared following 3 biweekly subcutaneous injection of ovalbumin (OVA) with or without test adjuvant. OVA-specific IgG1 levels were approximately 2 times higher in BALB/c and C3H/HeJ mice receiving OVA and HA oligomer or polymer than those treated with OVA alone, and no increase in total IgE level was observed. In C57Bl/6 mice, observed increases in IgG1 and IgE were 3.5- and 1.7-fold, respectively, for the oligomer and 16- and 5-fold (p Insect venoms also have cytolytic peptides and phospholipases with inflammatory roles. These activities found in mice may contribute to venom allergenicity in susceptible people. Copyright © 2011 S. Karger AG, Basel.

  6. Snake evolution and prospecting of snake venom

    NARCIS (Netherlands)

    Vonk, Freek Jacobus

    2012-01-01

    in this thesis I have shown that snakes have undergone multiple changes in their genome and embryonic development that has provided them with the variation to which natural selection could act. This thesis provides evidence for the variable mechanisms of venom gene evolution, which presumably is

  7. Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of Lachesis stenophrys and comparative proteomics of the venoms of adult Lachesis melanocephala and Lachesis acrochorda.

    Science.gov (United States)

    Madrigal, Marvin; Sanz, Libia; Flores-Díaz, Marietta; Sasa, Mahmood; Núñez, Vitelbina; Alape-Girón, Alberto; Calvete, Juan J

    2012-12-21

    We report the proteomic analysis of ontogenetic changes in venom composition of the Central American bushmaster, Lachesis stenophrys, and the characterization of the venom proteomes of two congeneric pitvipers, Lachesis melanocephala (black-headed bushmaster) and Lachesis acrochorda (Chochoan bushmaster). Along with the previous characterization of the venom proteome of Lachesis muta muta (from Bolivia), our present outcome enables a comparative overview of the composition and distribution of the toxic proteins across genus Lachesis. Comparative venomics revealed the close kinship of Central American L. stenophrys and L. melanocephala and support the elevation of L. acrochorda to species status. Major ontogenetic changes in the toxin composition of L. stenophrys venom involves quantitative changes in the concentration of vasoactive peptides and serine proteinases, which steadily decrease from birth to adulthood, and age-dependent de novo biosynthesis of Gal-lectin and snake venom metalloproteinases (SVMPs). The net result is a shift from a bradykinin-potentiating and C-type natriuretic peptide (BPP/C-NP)-rich and serine proteinase-rich venom in newborns and 2-years-old juveniles to a (PI>PIII) SVMP-rich venom in adults. Notwithstanding minor qualitative and quantitative differences, the venom arsenals of L. melanocephala and L. acrochorda are broadly similar between themselves and also closely mirror those of adult L. stenophrys and L. muta venoms. The high conservation of the overall composition of Central and South American bushmaster venoms provides the ground for rationalizing the "Lachesis syndrome", characterized by vagal syntomatology, sensorial disorders, hematologic, and cardiovascular manifestations, documented in envenomings by different species of this wide-ranging genus. This finding let us predict that monospecific Lachesic antivenoms may exhibit paraspecificity against all congeneric species. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. ENVENENAMIENTO OFIDICO POR EL GENERO Bothrops COMPLICADO CON MIOCARDIOPATIA TÓXICA: A PROPOSITO DE UN CASO.

    Directory of Open Access Journals (Sweden)

    Sajar Abusaid Palomo

    2014-12-01

    Full Text Available El envenenamiento ofídico en Venezuela es un problema de salud pública, afectando a agricultores y mineros, implicada con mayor frecuencia la familia Viperidae, genero Bothrops. Presenta clínica variable, desde manifestaciones locales hasta sistémicas. Paciente femenina de 40 años, agricultora, consulta por dolor y aumento de volumen en cara lateral de pie izquierdo por envenenamiento ofídico. Acude a ambulatorio de su localidad, 24 horas después es trasladada al Hospital Universitario Ruiz y Páez, ingresando con diagnóstico de Envenenamiento Ofídico por Bothrops. Evoluciona tórpidamente presentando Insuficiencia Renal Aguda en terapia de hemodiálisis, Sepsis punto de partida respiratorio, Insuficiencia Respiratoria Aguda y Miocardiopatía Tóxica, por lo que ingresa a Unidad de Cuidados Intensivos y Cuidados Coronarios. Luego de marcada mejoría clínica es dada de alta. El envenenamiento ofídico por Bothrops corresponde 80% de los accidentes por mordeduras de serpientes, su pronóstico depende de la especie, atención medica-hospitalaria, el intervalo de tiempo ocurrido y el uso de la terapia antiofídica especifica.

  9. Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal

    Directory of Open Access Journals (Sweden)

    Wu Yingliang

    2009-07-01

    Full Text Available Abstract Background The family Euscorpiidae, which covers Europe, Asia, Africa, and America, is one of the most widely distributed scorpion groups. However, no studies have been conducted on the venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki. Results There are ten known types of venom peptides and proteins obtained from Scorpiops jendeki. Great diversity is observed in primary sequences of most highly expressed types. The most highly expressed types are cytolytic peptides and serine proteases. Neurotoxins specific for sodium channels, which are major groups of venom components from Buthidae scorpions, are not detected in this study. In addition to those known types of venom peptides and proteins, we also obtain nine atypical types of venom molecules which haven't been observed in any other scorpion species studied to date. Conclusion This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion. This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins. Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

  10. Study on Bee venom and Pain

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2000-07-01

    Full Text Available In order to study Bee venom and Pain, We searched Journals and Internet. The results were as follows: 1. The domestic papers were total 13. 4 papers were published at The journal of korean acupuncture & moxibustion society, 3 papers were published at The journal of korean oriental medical society, Each The journal of KyoungHee University Oriental Medicine and The journal of korean sports oriental medical society published 1 papers and Unpublished desertations were 3. The clinical studies were 4 and the experimental studies were 9. 2. The domestic clinical studies reported that Bee venom Herbal Acupuncture therapy was effective on HIVD, Subacute arthritis of Knee Joint and Sequale of sprain. In the domestic experimental studies, 5 were related to analgesic effect of Bee vnom and 4 were related to mechanism of analgesia. 3. The journals searched by PubMed were total 18. 5 papers were published at Pain, Each 2 papers were published at Neurosci Lett. and Br J Pharmacol, and Each Eur J Pain, J Rheumatol, Brain Res, Neuroscience, Nature and Toxicon et al published 1 paper. 4. In the journals searched by PubMed, Only the experimental studies were existed. 8 papers used Bee Venom as pain induction substance and 1 paper was related to analgesic effects of Bee venom. 5. 15 webpage were searched by internet related to Bee Venom and pain. 11 were the introduction related to arthritis, 1 was the advertisement, 1 was the patient's experience, 1 was the case report on RA, 1 was review article.

  11. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.

    Science.gov (United States)

    Thakur, Rupamoni; Mukherjee, Ashis K

    2017-06-01

    Protease inhibitors are important constituents of snake venom and play important roles in the pathophysiology of snakebite. Recently, research on snake venom protease inhibitors has provided valuable information to decipher the molecular details of various biological processes and offer insight for the development of some therapeutically important molecules from snake venom. The process of blood coagulation and fibrinolysis, in addition to affecting platelet function, are well known as the major targets of several snake venom protease inhibitors. This review summarizes the structure-functional aspects of snake venom protease inhibitors that have been described to date. Because diverse biological functions have been demonstrated by protease inhibitors, a comparative overview of their pharmacological and pathophysiological properties is also highlighted. In addition, since most snake venom protease inhibitors are non-toxic on their own, this review evaluates the different roles of individual protease inhibitors that could lead to the identification of drug candidates and diagnostic molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Bee venom therapy: Potential mechanisms and therapeutic applications.

    Science.gov (United States)

    Zhang, Shuai; Liu, Yi; Ye, Yang; Wang, Xue-Rui; Lin, Li-Ting; Xiao, Ling-Yong; Zhou, Ping; Shi, Guang-Xia; Liu, Cun-Zhi

    2018-04-11

    Bee venom is a very complex mixture of natural products extracted from honey bee which contains various pharmaceutical properties such as peptides, enzymes, biologically active amines and nonpeptide components. The use of bee venom into the specific points is so called bee venom therapy, which is widely used as a complementary and alternative therapy for 3000 years. A growing number of evidence has demonstrated the anti-inflammation, the anti-apoptosis, the anti-fibrosis and the anti-arthrosclerosis effects of bee venom therapy. With these pharmaceutical characteristics, bee venom therapy has also been used as the therapeutic method in treating rheumatoid arthritis, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, liver fibrosis, atherosclerosis, pain and others. Although widely used, several cases still reported that bee venom therapy might cause some adverse effects, such as local itching or swelling. In this review, we summarize its potential mechanisms, therapeutic applications, and discuss its existing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Anti-arthritic effects of microneedling with bee venom gel

    Directory of Open Access Journals (Sweden)

    Mengdi Zhao

    2016-10-01

    Conclusions: Bee venom can significantly suppress the occurrence of gouty arthritis inflammation in rats and mice LPS inflammatory reaction. Choose the 750 μm microneedle with 10N force on skin about 3 minutes, bee venom can play the optimal role, and the anti-inflammatory effect is obvious. Microneedles can promote the percutaneous absorption of the active macromolecules bee venom gel.

  14. Studies on Bee Venom and Its Medical Uses

    Science.gov (United States)

    Ali, Mahmoud Abdu Al-Samie Mohamed

    2012-07-01

    Use of honey and other bee products in human treatments traced back thousands of years and healing properties are included in many religious texts including the Veda, Bible and Quran. Apitherapy is the use of honey bee products for medical purposes, this include bee venom, raw honey, royal jelly, pollen, propolis, and beeswax. Whereas bee venom therapy is the use of live bee stings (or injectable venom) to treat various diseases such as arthritis, rheumatoid arthritis, multiple sclerosis (MS), lupus, sciatica, low back pain, and tennis elbow to name a few. It refers to any use of venom to assist the body in healing itself. Bee venom contains at least 18 pharmacologically active components including various enzymes, peptides and amines. Sulfur is believed to be the main element in inducing the release of cortisol from the adrenal glands and in protecting the body from infections. Contact with bee venom produces a complex cascade of reactions in the human body. The bee venom is safe for human treatments, the median lethal dose (LD50) for an adult human is 2.8 mg of venom per kg of body weight, i.e. a person weighing 60 kg has a 50% chance of surviving injections totaling 168 mg of bee venom. Assuming each bee injects all its venom and no stings are quickly removed at a maximum of 0.3 mg venom per sting, 560 stings could well be lethal for such a person. For a child weighing 10 kg, as little as 93.33 stings could be fatal. However, most human deaths result from one or few bee stings due to allergic reactions, heart failure or suffocation from swelling around the neck or the mouth. As compare with other human diseases, accidents and other unusual cases, the bee venom is very safe for human treatments.

  15. Analysis of the intersexual variation in Thalassophryne maculosa fish venoms.

    Science.gov (United States)

    Lopes-Ferreira, Mônica; Sosa-Rosales, Ines; Bruni, Fernanda M; Ramos, Anderson D; Vieira Portaro, Fernanda Calheta; Conceição, Katia; Lima, Carla

    2016-06-01

    Gender related variation in the molecular composition of venoms and secretions have been described for some animal species, and there are some evidences that the difference in the toxin (s) profile among males and females may be related to different physiopathological effects caused by the envenomation by either gender. In order to investigate whether this same phenomenon occurs to the toadfish Thalassophryne maculosa, we have compared some biological and biochemical properties of female and male venoms. Twenty females and males were collected in deep waters of the La Restinga lagoon (Venezuela) and, after protein concentration assessed, the induction of toxic activities in mice and the biochemical properties were analyzed. Protein content is higher in males than in females, which may be associated to a higher size and weight of the male body. In vivo studies showed that mice injected with male venoms presented higher nociception when compared to those injected with female venoms, and both venoms induced migration of macrophages into the paw of mice. On the other hand, mice injected with female venoms had more paw edema and extravasation of Evans blue in peritoneal cavity than mice injected with male venoms. We observed that the female venoms had more capacity for necrosis induction when compared with male venoms. The female samples present a higher proteolytic activity then the male venom when gelatin, casein and FRETs were used as substrates. Evaluation of the venoms of females and males by SDS-PAGE and chromatographic profile showed that, at least three components (present in two peaks) are only present in males. Although the severity of the lesion, characterized by necrosis development, is related with the poisoning by female specimens, the presence of exclusive toxins in the male venoms could be associated with the largest capacity of nociception induction by this sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. In vitro neutralization of the scorpion, Buthus tamulus venom toxicity.

    Science.gov (United States)

    Venkateswarlu, Y; Janakiram, B; Reddy, G R

    1988-01-01

    Scorpion (Buthus tamulus) venom was subjected to neutralization by treating the venom with various chemicals such as hydrochloric acid, sodium hydroxide, thiourea, formaldehyde, zinc sulphate, acetic acid and trichloroacetic acid. The venom was also subjected to heat treatment. The levels of total protein, free amino acids and protease activity in neutralized venom decreased significantly. The decrease in venom protein and free amino acids was in proportion to the duration of the heat treatment and the concentration of chemicals used except zinc sulphate, sodium hydroxide and thiourea. Protease activity of neutralized venom samples also showed a decrease except with zinc sulphate which enhanced the enzyme activity. Intramuscular injection of formaldehyde, trichlcroacetic acid and heat treated venoms into albino rats produced low mortality while thiourea and zinc sulphate were not effective in reducing the mortality. Hydrochloric acid and acetic acid treated venoms reduced the mortality by 50% with a decrease in the symptoms of envenomation. The changes were attributed to the denaturing of venom protein by chemical and heat treatments.

  17. Snake Venom As An Effective Tool Against Colorectal Cancer.

    Science.gov (United States)

    Uzair, Bushra; Atlas, Nagina; Malik, Sidra Batool; Jamil, Nazia; Salaam, Temitope Ojuolape; Rehman, Mujaddad Ur; Khan, Barkat Ali

    2018-06-13

    Cancer is considered one of the most predominant causes of morbidity and mortality all over the world and colorectal cancer is the most common fatal cancers, triggering the second cancer related death. Despite progress in understanding carcinogenesis and development in chemotherapeutics, there is an essential need to search for improved treatment. More than the half a century, cytotoxic and cytostatic agents have been examined as a potential treatment of cancer, among these agents; remarkable progresses have been reported by the use of the snake venom. Snake venoms are secreting materials of lethal snakes are store in venomous glands. Venoms are composite combinations of various protein, peptides, enzymes, toxins and non proteinaceous secretions. Snake venom possesses immense valuable mixtures of proteins and enzymes. Venoms have potential to combat with the cancerous cells and produce positive effect. Besides the toxicological effects of venoms, several proteins of snake venom e.g. disintegrins, phospholipases A2, metalloproteinases, and L-amino acid oxidases and peptides e.g. bradykinin potentiators, natriuretic, and analgesic peptides have shown potential as pharmaceutical agents, including areas of diagnosis and cancer treatment. In this review we have discussed recent remarkable research that has involved the dynamic snake venoms compounds, having anticancer bustle especially in case of colorectal cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Tc 99m - scorpion venom: labelling, biodistribution and scintiimaging

    International Nuclear Information System (INIS)

    Murugesan, S.; Noronha, O.P.D.; Samuel, A.M.; Murthy, K. Radha Krishna

    1999-01-01

    Labelling of scorpion (Mesobuthus tamulus concanesis Pocock) venom was successfully achieved with Tc 99m using direct tin reduction procedure. Biodistribution studies were carried out in Wistar rats at different time intervals after i.v. administration of the labelled venom. Scintiimages were obtained after scorpion envenoming using a large field of view gamma camera to ascertain the pharmacological action of venom in the body. Within 5 min of administration, labelled venom was found in the blood (27.7%), muscle (30.11%), bone (13.3%), kidneys (11.5%), liver (10.4%) and other organs. The level of venom in the kidneys was higher than in the liver. The labelled venom was excreted through renal and hepatobiliary pathways. An immunoreactivity study was carried out in rabbits after i.v. injection of labelled scorpion venom followed by the injection of the species specific antivenom. A threefold increase in uptake by the kidneys ss was observed compared with that seen with scorpion venom alone. the neutralisation of the venom in the kidneys was higher than in the liver. (author)

  19. Treating autoimmune disorders with venom-derived peptides.

    Science.gov (United States)

    Shen, Bingzheng; Cao, Zhijian; Li, Wenxin; Sabatier, Jean-Marc; Wu, Yingliang

    2017-09-01

    The effective treatment of autoimmune diseases remains a challenge. Voltage-gated potassium Kv1.3 channels, which are expressed in lymphocytes, are a new therapeutic target for treating autoimmune disease. Consequently, Kv1.3 channel-inhibiting venom-derived peptides are a prospective resource for new drug discovery and clinical application. Area covered: Preclinical and clinical studies have produced a wealth of information on Kv1.3 channel-inhibiting venom-derived peptides, especially from venomous scorpions and sea anemones. This review highlights the advances in screening and design of these peptides with diverse structures and potencies. It focuses on representative strategies for improving peptide selectivity and discusses the preclinical research on those venom-derived peptides as well as their clinical developmental status. Expert opinion: Encouraging results indicate that peptides isolated from the venom of venomous animals are a large resource for discovering immunomodulators that act on Kv1.3 channels. Since the structural diversity of venom-derived peptides determines the variety of their pharmacological activities, the design and optimization of venom-peptides for improved Kv1.3 channel-specificity has been advanced through some representative strategies, such as peptide chemical modification, amino acid residue truncation and binding interface modulation. These advances should further accelerate research, development and the future clinical application of venom-derived peptides selectively targeting Kv1.3 channels.

  20. Mechanisms of bee venom-induced acute renal failure.

    Science.gov (United States)

    Grisotto, Luciana S D; Mendes, Glória E; Castro, Isac; Baptista, Maria A S F; Alves, Venancio A; Yu, Luis; Burdmann, Emmanuel A

    2006-07-01

    The spread of Africanized bees in the American continent has increased the number of severe envenomation after swarm attacks. Acute renal failure (ARF) is one of the major hazards in surviving patients. To assess the mechanisms of bee venom-induced ARF, rats were evaluated before, up to 70 min and 24h after 0.5mg/kg of venom injection. Control rats received saline. Bee venom caused an early and significant reduction in glomerular filtration rate (GFR, inulin clearance, 0.84+/-0.05 to 0.40+/-0.08 ml/min/100g, pbee venom-induced ARF that may occur even without hemolysis or hypotension.

  1. Effects of gamma radiation on bee venom: preliminary studies

    International Nuclear Information System (INIS)

    Costa, H.; Boni-Mitake, M.; Souza, C.F.; Rogero, J.R.

    1999-01-01

    Africanized honeybees are very common insects in Brazil and frequently cause accidents followed by important immunological reactions and even deaths. Their venoms are composed of a complex mixture of substances of general biological actions. several works utilizing ionizing radiation showed that it is able to modify protein structures, and successfully detoxify snake venoms toxins, although maintaining its immunological properties. The main objective of this paper was to study the effects of gamma radiation on bee venom, regarding some biochemical and toxicological aspects. Africanized Apis melllifera whole venom (2 mg/ml) in 0.15 M Na Cl solution was irradiated with 2 kGy in a 60 Co source. Preliminary studies has been carried out in order to identify some biochemical changes after irradiation. Concerning this, irradiated and native venom were submitted to a molecular exclusion chromatography (Sephadex G-100), UV absorption spectrum and protein concentration analysis. It could be seen that irradiated bee venom spectrum presented differences when compared to native bee venom, suggesting that some structural alterations has occurred. Protein concentration and chromatography profiles were not changes after irradiation. In order to evaluate the toxicity a lethality assay (L D 50 ) has been performed with both venoms, and irradiated venom showed to be less toxic than native one. (author)

  2. Inactivation of complement by Loxosceles reclusa spider venom.

    Science.gov (United States)

    Gebel, H M; Finke, J H; Elgert, K D; Cambell, B J; Barrett, J T

    1979-07-01

    Zymosan depletion of serum complement in guinea pigs rendered them highly resistant to lesion by Loxosceles reclusa spider venom. Guinea pigs deficient in C4 of the complement system are as sensitive to the venom as normal guinea pigs. The injection of 35 micrograms of whole recluse venom intradermally into guinea pigs lowered their complement level by 35.7%. Brown recluse spider venom in concentrations as slight as 0.02 micrograms protein/ml can totally inactivate one CH50 of guinea pig complement in vitro. Bee, scorpion, and other spider venoms had no influence on the hemolytic titer of complement. Fractionation of recluse spider venom by Sephadex G-200 filtration separated the complement-inactivating property of the venom into three major regions which could be distinguished on the basis of heat stability as well as size. None was neutralized by antivenom. Polyacrylamide gel electrophoresis of venom resolved the complement inactivators into five fractions. Complement inactivated by whole venom or the Sephadex fractions could be restored to hemolytic activity by supplements of fresh serum but not by heat-inactivated serum, pure C3, pure C5, or C3 and C5 in combination.

  3. Bee Venom Pharmacopuncture Responses According to Sasang Constitution and Gender

    Directory of Open Access Journals (Sweden)

    Kim Chaeweon

    2013-12-01

    Full Text Available Objectives: The current study was performed to compare the bee venom pharmacopuncture skin test reactions among groups with different sexes and Sasang constitutions. Methods: Between July 2012 and June 2013, all 76 patients who underwent bee venom pharmacopuncture skin tests and Sasang constitution diagnoses at Oriental Medicine Hospital of Sangji University were included in this study. The skin test was performed on the patient’s forearm intracutaneously with 0.05 ml of sweet bee venom (SBV on their first visit. If the patients showed a positive response, the test was discontinued. On the other hand, if the patient showed a negative response, the test was performed on the opposite forearm intracutaneously with 0.05 ml of bee venom pharmacopuncture 25% on the next day or the next visit. Three groups were made to compare the differences in the bee venom pharmacopuncture skin tests according to sexual difference and Sasang constitution: group A showed a positive response to SBV, group B showed a positive response to bee venom pharmacopuncture 25%, and group C showed a negative response on all bee venom pharmacopuncture skin tests. Fisher’s exact test was performed to evaluate the differences statistically. Results: The results of the bee venom pharmacopuncture skin tests showed no significant differences according to Sasang constitution (P = 0.300 or sexual difference (P = 0.163. Conclusion: No significant differences on the results of bee venom pharmacopuncture skin tests were observed according to two factors, Sasang constitution and the sexual difference.

  4. Effects of gamma radiation on bee venom: preliminary studies

    Energy Technology Data Exchange (ETDEWEB)

    Costa, H.; Boni-Mitake, M.; Souza, C.F.; Rogero, J.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Radiobiologia

    1999-11-01

    Africanized honeybees are very common insects in Brazil and frequently cause accidents followed by important immunological reactions and even deaths. Their venoms are composed of a complex mixture of substances of general biological actions. several works utilizing ionizing radiation showed that it is able to modify protein structures, and successfully detoxify snake venoms toxins, although maintaining its immunological properties. The main objective of this paper was to study the effects of gamma radiation on bee venom, regarding some biochemical and toxicological aspects. Africanized Apis melllifera whole venom (2 mg/ml) in 0.15 M Na Cl solution was irradiated with 2 kGy in a {sup 60} Co source. Preliminary studies has been carried out in order to identify some biochemical changes after irradiation. Concerning this, irradiated and native venom were submitted to a molecular exclusion chromatography (Sephadex G-100), UV absorption spectrum and protein concentration analysis. It could be seen that irradiated bee venom spectrum presented differences when compared to native bee venom, suggesting that some structural alterations has occurred. Protein concentration and chromatography profiles were not changes after irradiation. In order to evaluate the toxicity a lethality assay (L D{sub 50}) has been performed with both venoms, and irradiated venom showed to be less toxic than native one. (author) 23 refs., 3 figs., 1 tab.

  5. Pain-Causing Venom Peptides: Insights into Sensory Neuron Pharmacology

    Directory of Open Access Journals (Sweden)

    Sina Jami

    2017-12-01

    Full Text Available Venoms are produced by a wide variety of species including spiders, scorpions, reptiles, cnidarians, and fish for the purpose of harming or incapacitating predators or prey. While some venoms are of relatively simple composition, many contain hundreds to thousands of individual components with distinct pharmacological activity. Pain-inducing or “algesic” venom compounds have proven invaluable to our understanding of how physiological nociceptive neural networks operate. In this review, we present an overview of some of the diverse nociceptive pathways that can be modulated by specific venom components to evoke pain.

  6. Molecular Characterization of Lys49 and Asp49 Phospholipases A2 from Snake Venom and Their Antiviral Activities against Dengue virus

    Science.gov (United States)

    Cecilio, Alzira B.; Caldas, Sergio; De Oliveira, Raiana A.; Santos, Arthur S. B.; Richardson, Michael; Naumann, Gustavo B.; Schneider, Francisco S.; Alvarenga, Valeria G.; Estevão-Costa, Maria I.; Fuly, Andre L.; Eble, Johannes A.; Sanchez, Eladio F.

    2013-01-01

    We report the detailed molecular characterization of two PLA2s, Lys49 and Asp49 isolated from Bothrops leucurus venom, and examined their effects against Dengue virus (DENV). The Bl-PLA2s, named BlK-PLA2 and BlD-PLA2, are composed of 121 and 122 amino acids determined by automated sequencing of the native proteins and peptides produced by digestion with trypsin. They contain fourteen cysteines with pIs of 9.05 and 8.18 for BlK- and BlD-PLA2s, and show a high degree of sequence similarity to homologous snake venom PLA2s, but may display different biological effects. Molecular masses of 13,689.220 (Lys49) and 13,978.386 (Asp49) were determined by mass spectrometry. DENV causes a prevalent arboviral disease in humans, and no clinically approved antiviral therapy is currently available to treat DENV infections. The maximum non-toxic concentration of the proteins to LLC-MK2 cells determined by MTT assay was 40 µg/mL for Bl-PLA2s (pool) and 20 µg/mL for each isoform. Antiviral effects of Bl-PLA2s were assessed by quantitative Real-Time PCR. Bl-PLA2s were able to reduce DENV-1, DENV-2, and DENV-3 serotypes in LLC-MK2 cells infection. Our data provide further insight into the structural properties and their antiviral activity against DENV, opening up possibilities for biotechnological applications of these Bl-PLA2s as tools of research. PMID:24131891

  7. Molecular Characterization of Lys49 and Asp49 Phospholipases A2 from Snake Venom and Their Antiviral Activities against Dengue virus

    Directory of Open Access Journals (Sweden)

    Andre L. Fuly

    2013-10-01

    Full Text Available We report the detailed molecular characterization of two PLA2s, Lys49 and Asp49 isolated from Bothrops leucurus venom, and examined their effects against Dengue virus (DENV. The Bl-PLA2s, named BlK-PLA2 and BlD-PLA2, are composed of 121 and 122 amino acids determined by automated sequencing of the native proteins and peptides produced by digestion with trypsin. They contain fourteen cysteines with pIs of 9.05 and 8.18 for BlK- and BlD-PLA2s, and show a high degree of sequence similarity to homologous snake venom PLA2s, but may display different biological effects. Molecular masses of 13,689.220 (Lys49 and 13,978.386 (Asp49 were determined by mass spectrometry. DENV causes a prevalent arboviral disease in humans, and no clinically approved antiviral therapy is currently available to treat DENV infections. The maximum non-toxic concentration of the proteins to LLC-MK2 cells determined by MTT assay was 40 µg/mL for Bl-PLA2s (pool and 20 µg/mL for each isoform. Antiviral effects of Bl-PLA2s were assessed by quantitative Real-Time PCR. Bl-PLA2s were able to reduce DENV-1, DENV-2, and DENV-3 serotypes in LLC-MK2 cells infection. Our data provide further insight into the structural properties and their antiviral activity against DENV, opening up possibilities for biotechnological applications of these Bl-PLA2s as tools of research.

  8. Snake Venom Metalloproteinases and Their Peptide Inhibitors from Myanmar Russell’s Viper Venom

    Directory of Open Access Journals (Sweden)

    Khin Than Yee

    2016-12-01

    Full Text Available Russell’s viper bites are potentially fatal from severe bleeding, renal failure and capillary leakage. Snake venom metalloproteinases (SVMPs are attributed to these effects. In addition to specific antivenom therapy, endogenous inhibitors from snakes are of interest in studies of new treatment modalities for neutralization of the effect of toxins. Two major snake venom metalloproteinases (SVMPs: RVV-X and Daborhagin were purified from Myanmar Russell’s viper venom using a new purification strategy. Using the Next Generation Sequencing (NGS approach to explore the Myanmar RV venom gland transcriptome, mRNAs of novel tripeptide SVMP inhibitors (SVMPIs were discovered. Two novel endogenous tripeptides, pERW and pEKW were identified and isolated from the crude venom. Both purified SVMPs showed caseinolytic activity. Additionally, RVV-X displayed specific proteolytic activity towards gelatin and Daborhagin showed potent fibrinogenolytic activity. These activities were inhibited by metal chelators. Notably, the synthetic peptide inhibitors, pERW and pEKW, completely inhibit the gelatinolytic and fibrinogenolytic activities of respective SVMPs at 5 mM concentration. These complete inhibitory effects suggest that these tripeptides deserve further study for development of a therapeutic candidate for Russell’s viper envenomation.

  9. Proteomic characterization of venom of the medically important Southeast Asian Naja sumatrana (Equatorial spitting cobra).

    Science.gov (United States)

    Yap, Michelle Khai Khun; Fung, Shin Yee; Tan, Kae Yi; Tan, Nget Hong

    2014-05-01

    The proteome of Naja sumatrana (Equatorial spitting cobra) venom was investigated by shotgun analysis and a combination of ion-exchange chromatography and reverse phase HPLC. Shotgun analysis revealed the presence of 39 proteins in the venom while the chromatographic approach identified 37 venom proteins. The results indicated that, like other Asiatic cobra venoms, N. sumatrana contains large number of three finger toxins and phospholipases A2, which together constitute 92.1% by weight of venom protein. However, only eight of the toxins can be considered as major venom toxins. These include two phospholipases A2, three neurotoxins (two long neurotoxins and a short neurotoxin) and three cardiotoxins. The eight major toxins have relative abundance of 1.6-27.2% venom proteins and together account for 89.8% (by weight) of total venom protein. Other venom proteins identified include Zn-metalloproteinase-disintegrin, Thaicobrin, CRISP, natriuretic peptide, complement depleting factors, cobra venom factors, venom nerve growth factor and cobra serum albumin. The proteome of N. sumatrana venom is similar to proteome of other Asiatic cobra venoms but differs from that of African spitting cobra venom. Our results confirm that the main toxic action of N. sumatrana venom is neurotoxic but the large amount of cardiotoxins and phospholipases A2 are likely to contribute significantly to the overall pathophysiological action of the venom. The differences in toxin distribution between N. sumatrana venom and African spitting cobra venoms suggest possible differences in the pathophysiological actions of N. sumatrana venom and the African spitting cobra venoms, and explain why antivenom raised against Asiatic cobra venom is not effective against African spitting cobra venoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Can Inhibitors of Snake Venom Phospholipases A₂ Lead to New Insights into Anti-Inflammatory Therapy in Humans? A Theoretical Study.

    Science.gov (United States)

    Sales, Thaís A; Marcussi, Silvana; da Cunha, Elaine F F; Kuca, Kamil; Ramalho, Teodorico C

    2017-10-25

    Human phospholipase A₂ ( h PLA₂) of the IIA group (HGIIA) catalyzes the hydrolysis of membrane phospholipids, producing arachidonic acid and originating potent inflammatory mediators. Therefore, molecules that can inhibit this enzyme are a source of potential anti-inflammatory drugs, with different action mechanisms of known anti-inflammatory agents. For the study and development of new anti-inflammatory drugs with this action mechanism, snake venom PLA₂ ( sv PLA₂) can be employed, since the sv PLA₂ has high similarity with the human PLA₂ HGIIA. Despite the high similarity between these secretory PLA₂s , it is still not clear if these toxins can really be employed as an experimental model to predict the interactions that occur with the human PLA₂ HGIIA and its inhibitors. Thus, the present study aims to compare and evaluate, by means of theoretical calculations, docking and molecular dynamics simulations, as well as experimental studies, the interactions of human PLA₂ HGIIA and two sv PLA₂s , Bothrops toxin II and Crotoxin B (BthTX-II and CB, respectively). Our theoretical findings corroborate experimental data and point out that the human PLA₂ HGIIA and sv PLA₂ BthTX-II lead to similar interactions with the studied compounds. From our results, the sv PLA₂ BthTX-II can be used as an experimental model for the development of anti-inflammatory drugs for therapy in humans.

  11. Characterization of the gila monster (Heloderma suspectum suspectum) venom proteome.

    Science.gov (United States)

    Sanggaard, Kristian W; Dyrlund, Thomas F; Thomsen, Line R; Nielsen, Tania A; Brøndum, Lars; Wang, Tobias; Thøgersen, Ida B; Enghild, Jan J

    2015-03-18

    The archetypical venomous lizard species are the helodermatids, the gila monsters (Heloderma suspectum) and the beaded lizards (Heloderma horridum). In the present study, the gila monster venom proteome was characterized using 2D-gel electrophoresis and tandem mass spectrometry-based de novo peptide sequencing followed by protein identification based on sequence homology. A total of 39 different proteins were identified out of the 58 selected spots that represent the major constituents of venom. Of these proteins, 19 have not previously been identified in helodermatid venom. The data showed that helodermatid venom is complex and that this complexity is caused by genetic isoforms and post-translational modifications including proteolytic processing. In addition, the venom proteome analysis revealed that the major constituents of the gila monster venom are kallikrein-like serine proteinases (EC 3.4.21) and phospholipase A2 (type III) enzymes (EC 3.1.1.4). A neuroendocrine convertase 1 homolog that most likely converts the proforms of the previously identified bioactive exendins into the mature and active forms was identified suggesting that these peptide toxins are secreted as proforms that are activated by proteolytic cleavage following secretion as opposed to being activated intracellularly. The presented global protein identification-analysis provides the first overview of the helodermatid venom composition. The helodermatid lizards are the classical venomous lizards, and the pharmacological potential of the venom from these species has been known for years; best illustrated by the identification of exendin-4, which is now used in the treatment of type 2 diabetes. Despite the potential, no global analyses of the protein components in the venom exist. A hindrance is the lack of a genome sequence because it prevents protein identification using a conventional approach where MS data are searched against predicted protein sequences based on the genome sequence

  12. Effects of gamma radiation on snake venoms

    International Nuclear Information System (INIS)

    Nascimento, N.; Spencer, P.J.; Andrade, H.F.; Guarnieri, M.C.; Rogero, J.R.

    1998-01-01

    Ionizing radiation is able to detoxify several venoms, including snake venoms, without affecting significantly their immunogenic properties. In order to elucidate this phenomena, we conceived a comparative pharmacological study between native and irradiated (2,000 Gy) crotoxin, the main toxin of the South American rattlesnake Crotalus durissus terrificus. Crotoxin was isolated and purified by molecular exclusion chromatography, pI precipitation and, subsequently submitted to irradiation. Gel filtration of the irradiated toxin resulted in some high molecular weight aggregates formation. Crotoxin toxicity decreased two folds after irradiation, as determined by LD 50 in mice. Native and irradiated crotoxin biodistribution ocurred in the same general manner, with renal elimination. However, in contrast to irradiated crotoxin, the native form was initially retained in kidneys. A later concentration (2-3 hr) appeared in phagocytic mononuclear cells rich organs (liver and spleen) and neural junction rich organs (muscle and brain)

  13. Harvesting Venom Toxins from Assassin Bugs and Other Heteropteran Insects.

    Science.gov (United States)

    Walker, Andrew Allan; Rosenthal, Max; Undheim, Eivind E A; King, Glenn F

    2018-04-21

    Heteropteran insects such as assassin bugs (Reduviidae) and giant water bugs (Belostomatidae) descended from a common predaceous and venomous ancestor, and the majority of extant heteropterans retain this trophic strategy. Some heteropterans have transitioned to feeding on vertebrate blood (such as the kissing bugs, Triatominae; and bed bugs, Cimicidae) while others have reverted to feeding on plants (most Pentatomomorpha). However, with the exception of saliva used by kissing bugs to facilitate blood-feeding, little is known about heteropteran venoms compared to the venoms of spiders, scorpions and snakes. One obstacle to the characterization of heteropteran venom toxins is the structure and function of the venom/labial glands, which are both morphologically complex and perform multiple biological roles (defense, prey capture, and extra-oral digestion). In this article, we describe three methods we have successfully used to collect heteropteran venoms. First, we present electrostimulation as a convenient way to collect venom that is often lethal when injected into prey animals, and which obviates contamination by glandular tissue. Second, we show that gentle harassment of animals is sufficient to produce venom extrusion from the proboscis and/or venom spitting in some groups of heteropterans. Third, we describe methods to harvest venom toxins by dissection of anaesthetized animals to obtain the venom glands. This method is complementary to other methods, as it may allow harvesting of toxins from taxa in which electrostimulation and harassment are ineffective. These protocols will enable researchers to harvest toxins from heteropteran insects for structure-function characterization and possible applications in medicine and agriculture.

  14. Important biological activities induced by Thalassophryne maculosa fish venom.

    Science.gov (United States)

    Sosa-Rosales, Josefina Ines; Piran-Soares, Ana Amélia; Farsky, Sandra H P; Takehara, Harumi Ando; Lima, Carla; Lopes-Ferreira, Mônica

    2005-02-01

    The accidents caused by Thalassophryne maculosa fish venoms are frequent and represent a public health problem in some regions of Venezuela. Most accidents occur in the fishing communities and tourists. The clinical picture is characterized by severe pain, dizziness, fever, edema, and necrosis. Due to the lack of efficient therapy it may take weeks, or even months for complete recovery of the victims. The investigations presented here were undertaken to assess the eletrophoretical profile and principal biological properties of the T. maculosa venom. Venom obtained from fresh captured specimens of this fish was tested in vitro or in animal models for a better characterization of its toxic activities. In contrast to other fish venoms, T. maculosa venom showed relative low LD50. The injection of venom in the footpad of mice reproduced a local inflammatory lesion similar to that described in humans. Significant increase of the nociceptive and edematogenic responses was observed followed within 48 h by necrosis. Pronounced alterations on microvascular hemodynamics were visualized after venom application. These alterations were represented by fibrin depots and thrombus formation followed by complete venular stasis and transient arteriolar contraction. T. maculosa venom is devoid of phospholipase A2 activity, but the venom showed proteolytic and myotoxic activities. SDS-Page analysis of the crude venom showed important bands: one band located above 97 M(w), one band between 68 and 97 M(w), one major band between 29 and 43 M(w) and the last one located below 18.4 M(w) Then, the results presented here support that T. maculosa venom present a mixture of bioactive toxins involved in a local inflammatory lesion.

  15. Chem I Supplement: Bee Sting: The Chemistry of an Insect Venom.

    Science.gov (United States)

    O'Connor, Rod; Peck, Larry

    1980-01-01

    Considers various aspects of bee stings including the physical mechanism of the venom apparatus in the bee, categorization of physiological responses of nonprotected individuals to bee sting, chemical composition of bee venom and the mechanisms of venom action, and areas of interest in the synthesis of bee venom. (CS)

  16. Single venom-based immunotherapy effectively protects patients with double positive tests to honey bee and Vespula venom

    Science.gov (United States)

    2013-01-01

    Background Referring to individuals with reactivity to honey bee and Vespula venom in diagnostic tests, the umbrella terms “double sensitization” or “double positivity” cover patients with true clinical double allergy and those allergic to a single venom with asymptomatic sensitization to the other. There is no international consensus on whether immunotherapy regimens should generally include both venoms in double sensitized patients. Objective We investigated the long-term outcome of single venom-based immunotherapy with regard to potential risk factors for treatment failure and specifically compared the risk of relapse in mono sensitized and double sensitized patients. Methods Re-sting data were obtained from 635 patients who had completed at least 3 years of immunotherapy between 1988 and 2008. The adequate venom for immunotherapy was selected using an algorithm based on clinical details and the results of diagnostic tests. Results Of 635 patients, 351 (55.3%) were double sensitized to both venoms. The overall re-exposure rate to Hymenoptera stings during and after immunotherapy was 62.4%; the relapse rate was 7.1% (6.0% in mono sensitized, 7.8% in double sensitized patients). Recurring anaphylaxis was statistically less severe than the index sting reaction (P = 0.004). Double sensitization was not significantly related to relapsing anaphylaxis (P = 0.56), but there was a tendency towards an increased risk of relapse in a subgroup of patients with equal reactivity to both venoms in diagnostic tests (P = 0.15). Conclusions Single venom-based immunotherapy over 3 to 5 years effectively and long-lastingly protects the vast majority of both mono sensitized and double sensitized Hymenoptera venom allergic patients. Double venom immunotherapy is indicated in clinically double allergic patients reporting systemic reactions to stings of both Hymenoptera and in those with equal reactivity to both venoms in diagnostic tests who have not reliably identified the

  17. Cross reactivity between European hornet and yellow jacket venoms.

    Science.gov (United States)

    Severino, M G; Caruso, B; Bonadonna, P; Labardi, D; Macchia, D; Campi, P; Passalacqua, G

    2010-08-01

    Cross-reactions between venoms may be responsible for multiple diagnostic positivities in hymenoptera allergy. There is limited data on the cross-reactivity between Vespula spp and Vespa crabro, which is an important cause of severe reactions in some parts of Europe. We studied by CAP-inhibition assays and immunoblotting the cross-reactivity between the two venoms. Sera from patients with non discriminative skin/CAP positivity to both Vespula and Vespa crabro were collected for the analyses. Inhibition assays were carried out with a CAP method, incubating the sera separately with both venoms and subsequently measuring the specific IgE to venoms themselves. Immunoblotting was performed on sera with ambiguous results at the CAP-inhibition. Seventeen patients had a severe reaction after Vespa crabro sting and proved skin and CAP positive also to vespula. In 11/17 patients, Vespula venom completely inhibited IgE binding to VC venom, whereas VC venom inhibited binding to Vespula venom only partially (Vespula germanica, thus indicating a true sensitisation to crabro. In the case of multiple positivities to Vespa crabro and Vespula spp the CAP inhibition is helpful in detecting the cross-reactivities.

  18. Protein pattern of the honeybee venoms of Egypt | Zalat | Egyptian ...

    African Journals Online (AJOL)

    The venom composition of the Egyptian honeybee Apis mellifera lamarckii, the Carniolan honeybee Apis mellifera carnica and a hybrid with unknown origin were analyzed using electrophoresis (SDS-PAGE). All venoms shared six bands with molecular weights of 97.400, 67.400, 49.000, 45.000, 43.000 and 14.000D.

  19. Effect of Trimeresurus albolabris (green pit viper) venom on mean ...

    African Journals Online (AJOL)

    An in vitro study was conducted by mixing small amounts of green pit viper venom with blood and observing changes. At a concentration of 10 mg crude venom, red blood cells (RBC) osmotic fragility slightly increased. RBC morphology changed to spherical shape which was compatible with what was observed in scanning ...

  20. Analysis of scorpion venom composition by Raman Spectroscopy

    Science.gov (United States)

    Martínez-Zérega, Brenda E.; González-Solís, José L.

    2015-01-01

    In this work we study the venom of two Centruroides scorpion species using Raman spectroscopy. The spectra analysis allows to determine the venoms chemical composition and to establish the main differences and similarities among the species. It is also shown that the use of Principal Component Analysis may help to tell apart between the scorpion species.

  1. Venom gland components of the ectoparasitoid wasp, Anisopteromalus calandrae

    Science.gov (United States)

    The wasp Anisopteromalus calandrae is a small ectoparasitoid that attacks stored product pest beetle larvae that develop inside grain kernels, and is thus a potential insect control tool. The components of the venom have not been studied, but venom peptides from other organisms have been identified ...

  2. Embriotoxic effects of maternal exposure to Tityus serrulatus scorpion venom

    Directory of Open Access Journals (Sweden)

    A. A. S. Barão

    2008-01-01

    Full Text Available Tityus serrulatus is the most venomous scorpion in Brazil; however, it is not known whether its venom causes any harm to the offspring whose mothers have received it. This study investigates whether the venom of T. serrulatus may lead to deleterious effects in the offspring, when once administered to pregnant rats at a dose that causes moderate envenomation (3mg/kg. The venom effects were studied on the 5th and on the 10th gestation day (GD5 and GD10. The maternal reproductive parameters of the group that received the venom on GD5 showed no alteration. The group that received the venom on GD10 presented an increase in post-implantation losses. In this group, an increase in the liver weight was also observed and one-third of the fetuses presented incomplete ossification of skull bones. None of the groups that received the venom had any visceral malformation or delay in the fetal development of their offspring. The histopathological analysis revealed not only placentas and lungs but also hearts, livers and kidneys in perfect state. Even having caused little effect on the dams, the venom may act in a more incisive way on the offspring, whether by stress generation or by a direct action.

  3. Proteomic Characterization of the Venom of Five Bombus (Thoracobombus Species

    Directory of Open Access Journals (Sweden)

    Nezahat Pınar Barkan

    2017-11-01

    Full Text Available Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptides, to act on vital systems of the prey or predator. In bees, venom is solely used for defense against predators. However, the venom composition of bumble bees (Bombus sp. is largely unknown. The Thoracobombus subgenus of Bombus sp. is a diverse subgenus represented by 14 members across Turkey. In this study, we sought out to proteomically characterize the venom of five Thoracobombus species by using bottom-up proteomic techniques. We have obtained two-dimensional polyacrylamide gel (2D-PAGE images of each species’ venom sample. We have subsequently identified the protein spots by using matrix assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS. We have identified 47 proteins for Bombus humilis, 32 for B. pascuorum, 60 for B. ruderarius, 39 for B. sylvarum, and 35 for B. zonatus. Moreover, we illustrated that intensities of 2DE protein spots corresponding to putative venom toxins vary in a species-specific manner. Our analyses provide the primary proteomic characterization of five bumble bee species’ venom composition.

  4. Immune and clinical response to honeybee venom in beekeepers

    Directory of Open Access Journals (Sweden)

    Jan Matysiak

    2016-03-01

    The differences in the immune response to a bee sting between the beekeepers and individuals not exposed to bees were probably due to the high exposure of the beekeepers to honeybee venom allergens. This may suggest a different approach to the bee venom allergy diagnostic tests in this occupational group.

  5. Radioactive elements definition in composition of snake venom

    International Nuclear Information System (INIS)

    Mekhrabova, M.A.; Topchieva, Sh.F.; Abiev, G.A.; Nagiev, Dj.A.

    2010-11-01

    Full text: The given article presents questions concerned to usage of snake venom in medicine and pharmacy for medicinal drugs production, zootoxin base antidotes, thorough treatment of many deseases, especially onkological, also have a widespread in biology as a specific test-material for biological sistem analises. It is experimentally proved that certain amount of snake venom can replace morphine drugs, taking into acount that snake venom solutions make longer prolonged influence than other drugs, vithout causing an accustoming. It is also marked about possibility of usage of snake venom for cancer treatment. Many expeditions had been conducted with the purpose to research snake venom crytals on the territory of Azerbaijan. During these expeditions snakes capturing had been made with the purpose of taking the venom and also soil samples had been taken in order to research the quantity of radioactive elements. Measurements made with the help of electronic microscope C anberra . Revealed uranium activity in spectrum of venom as a result of radiation background, which appears under influence of ionizing radiation on the environment. On the base of analises data it can be ascertained that snake venom can be used for production of medicinal and also other necessary drugs. [ru

  6. Proteomic Characterization of the Venom of Five Bombus (Thoracobombus) Species.

    Science.gov (United States)

    Barkan, Nezahat Pınar; Bayazit, Mustafa Bilal; Ozel Demiralp, Duygu

    2017-11-11

    Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptides, to act on vital systems of the prey or predator. In bees, venom is solely used for defense against predators. However, the venom composition of bumble bees ( Bombus sp.) is largely unknown. The Thoracobombus subgenus of Bombus sp. is a diverse subgenus represented by 14 members across Turkey. In this study, we sought out to proteomically characterize the venom of five Thoracobombus species by using bottom-up proteomic techniques. We have obtained two-dimensional polyacrylamide gel (2D-PAGE) images of each species' venom sample. We have subsequently identified the protein spots by using matrix assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS). We have identified 47 proteins for Bombus humilis , 32 for B. pascuorum , 60 for B. ruderarius , 39 for B. sylvarum , and 35 for B. zonatus . Moreover, we illustrated that intensities of 2DE protein spots corresponding to putative venom toxins vary in a species-specific manner. Our analyses provide the primary proteomic characterization of five bumble bee species' venom composition.

  7. 21 CFR 864.8950 - Russell viper venom reagent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Russell viper venom reagent. 864.8950 Section 864.8950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8950 Russell viper venom...

  8. Activity and pharmacology of the venom of Proxylocopa rufa, a ...

    African Journals Online (AJOL)

    The heart muscle appeared paralysed by the venom, but the lungs remained primarily unaffected. ... After the desired number of reservoirs are collected into the final droplet, all are gently torn with forceps, the venom ... peritoneal muscles in what appeared to be an attempt to move air in and out of the lungs. When these ...

  9. Irradiated cobra (Naja naja) venom for biomedical applications

    International Nuclear Information System (INIS)

    Kankonkar, S.R.; Kankonkar, R.C.; Gaitonde, B.B.

    1975-01-01

    Ionizing radiation is known to cause damage to proteins in aqueous solutions in a selective manner, thereby producing remarkable changes in their properties. Since venoms are very rich in proteins, it was felt that they would also show such changes upon irradiation. It was of interest to know if one could get rid of the toxicity and retain the immunogenicity of the venom by suitable choice of radiation dose and strength of venom solution. If so, the method could be profitably exploited for the rapid preparation of venom toxoid and this could be expected to have many applications in the biological sciences. Accordingly, laboratory investigations were undertaken on the effect of gamma radiation on cobra (Naja naja) venom. To avoid drastic changes, solutions of cobra venom having low protein content were irradiated with gamma radiation from a cobalt-60 source. The results obtained with 0.01 to 1.0% venom solutions are found to be encouraging. The solutions did not manifest any toxicity in mice. For the immunogenicity test, guinea pigs were immunized with varying doses of the irradiated cobra venom and the immunized guinea pigs were found to survive when challenged with as big a dose as 10 MLD (i.e. minimum lethal dose, approximately 1 mg). The paper describes the experimental details and the results of the observations. (author)

  10. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms.

    Science.gov (United States)

    Dos Santos-Pinto, José Roberto Aparecido; Perez-Riverol, Amilcar; Lasa, Alexis Musacchio; Palma, Mario Sergio

    2018-06-15

    Among venomous animals, Hymenoptera have been suggested as a rich source of natural toxins. Due to their broad ecological diversity, venom from Hymenoptera insects (bees, wasps and ants) have evolved differentially thus widening the types and biological functions of their components. To date, insect toxinology analysis have scarcely uncovered the complex composition of bee, wasp and ant venoms which include low molecular weight compounds, highly abundant peptides and proteins, including several allergens. In Hymenoptera, these complex mixtures of toxins represent a potent arsenal of biological weapons that are used for self-defense, to repel intruders and to capture prey. Consequently, Hymenoptera venom components have a broad range of pharmacological targets and have been extensively studied, as promising sources of new drugs and biopesticides. In addition, the identification and molecular characterization of Hymenoptera venom allergens have allowed for the rational design of component-resolved diagnosis of allergy, finally improving the outcome of venom immunotherapy (VIT). Until recently, a limited number of Hymenoptera venoms had been unveiled due to the technical limitations of the approaches used to date. Nevertheless, the application of novel techniques with high dynamic range has significantly increased the number of identified peptidic and proteinaceous toxins. Considering this, the present review summarizes the current knowledge about the most representative Hymenoptera venom peptides and proteins which are under study for a better understanding of the insect-caused envenoming process and the development of new drugs and biopesticides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Snake venoms components with antitumor activity in murine melanoma cells

    International Nuclear Information System (INIS)

    Queiroz, Rodrigo Guimaraes

    2012-01-01

    Despite the constant advances in the treatment of cancer, this disease remains one of the main causes of mortality worldwide. So, the development of new treatment modalities is imperative. Snake venom causes a variety of biological effects because they constitute a complex mixture of substances as disintegrins, proteases (serine and metalo), phospholipases A2, L-amino acid oxidases and others. The goal of the present work is to evaluate a anti-tumor activity of some snake venoms fractions. There are several studies of components derived from snake venoms with this kind of activity. After fractionation of snake venoms of the families Viperidae and Elapidae, the fractions were assayed towards murine melanoma cell line B16-F10 and fibroblasts L929. The results showed that the fractions of venom of the snake Notechis ater niger had higher specificity and potential antitumor activity on B16-F10 cell line than the other studied venoms. Since the components of this venom are not explored yet coupled with the potential activity showed in this work, we decided to choose this venom to develop further studies. The cytotoxic fractions were evaluated to identify and characterize the components that showed antitumoral activity. Western blot assays and zymography suggests that these proteins do not belong to the class of metallo and serine proteinases. (author)

  12. Acción de la miotoxina del veneno de Bothrops brazili Hoge, 1953 (Ophidia: Viperidae

    Directory of Open Access Journals (Sweden)

    Carmen Pantigoso

    2013-06-01

    Full Text Available Se ha estudiado el modo de acción de la miotoxina aislada del veneno de la serpiente Bothrops brazili. La inoculación de la miotoxina en el músculo gastrocnemius de ratones albinos produce durante la primera hora de acción la liberación de creatina kinasa y lactato deshidrogenasa, mientras que por PAGE-SDS, se revela que la incubación de la miotoxina con músculo gastrocnemius aislado, produce además la liberación de otras proteínas musculares. Asimismo, la miotoxina produce hipercontracción, lesiones delta e incrementa los niveles de calcio intramuscular, tanto in vivo como in vitro, lo cual no depende del ingreso de calcio extracelular vía receptores de dihidropiridina. Este incremento de calcio explicaría la hipercontracción observada y podría generar la activación de proteasas y lipasas endógenas dependientes de calcio, que conducirían a la necrosis muscular.

  13. Estudio bioquímico del veneno de la serpiente Bothrops hyoprorus

    Directory of Open Access Journals (Sweden)

    César Bonilla

    1997-07-01

    Full Text Available Se describe la purificación parcial de la enzima Fosfolipasa A del veneno de Bothrops hyoprorus y la caracterización de sus actividades hemolítica y citotóxica. La actividad fosfolipásica se detectó en dos fracciones de 23 y 12 Kd por cromatografía en Sephadex G-100 y G-50. Las actividades fosfolipásica y hemolítica fueron detectadas en las mismas fracciones. Los ensayos de Western-blot, sugieren que la fracción con 12 Kd es un producto de degradación, in-vitro, del polipéptido mayor. La actividad citotóxica de la fracción fue evidente sólo a elevadas concentraciones, sugiriéndose que moléculas diferentes a Fosfolipasa A serián responsables del efecto citotóxico del veneno

  14. Wasp venom proteins: phospholipase A1 and B.

    Science.gov (United States)

    King, T P; Kochoumian, L; Joslyn, A

    1984-04-01

    Three major venom proteins from different species of wasps have been isolated and characterized. They are hyaluronidase, phospholipase, and antigen 5 of as yet unknown biochemical function. These three proteins are allergens in wasp venom-sensitive persons. The species of wasps studied, of the genus Polistes, were annularis, carolina, exclamans, fuscatus, and instabilis. Antigen 5 and phospholipase from wasp venoms were shown to be antigenically distinct from homologous proteins of yellowjacket venoms. The venom phospholipase from wasp, as well as that from yellowjacket (Vespula germanica), appears to have dual enzymatic specificities of the A1 and B types. That is, hydrolysis takes place at the 1-acyl residue of phosphatidylcholine and at the 1- or 2-acyl residue of lysophosphatidylcholine.

  15. Therapeutic potential of snake venom in cancer therapy: current perspectives

    Science.gov (United States)

    Vyas, Vivek Kumar; Brahmbhatt, Keyur; Bhatt, Hardik; Parmar, Utsav

    2013-01-01

    Many active secretions produced by animals have been employed in the development of new drugs to treat diseases such as hypertension and cancer. Snake venom toxins contributed significantly to the treatment of many medical conditions. There are many published studies describing and elucidating the anti-cancer potential of snake venom. Cancer therapy is one of the main areas for the use of protein peptides and enzymes originating from animals of different species. Some of these proteins or peptides and enzymes from snake venom when isolated and evaluated may bind specifically to cancer cell membranes, affecting the migration and proliferation of these cells. Some of substances found in the snake venom present a great potential as anti-tumor agent. In this review, we presented the main results of recent years of research involving the active compounds of snake venom that have anticancer activity. PMID:23593597

  16. Guillain-Barré syndrome following bee venom acupuncture.

    Science.gov (United States)

    Lee, Hyun Jo; Park, In Seok; Lee, Jon-In; Kim, Joong-Seok

    2015-01-01

    Bee venom acupuncture has been widely used in Oriental medicine with limited evidence of effectiveness. Most of the complications due to bee venom acupuncture are local or systemic allergic reactions. However, serious medical and neurological complications have also been reported. We herein describe the treatment of a 68-year-old woman who developed progressive quadriplegia 10 days after receiving multiple honeybee venom sting acupuncture treatments. The electrophysiological findings were consistent with Guillain-Barré syndrome (GBS). The temporal relationship between the development of GBS and honeybee venom sting acupuncture is suggestive of a cause-and-effect relationship, although the precise pathophysiology and causative components in honeybee venom need to be verified.

  17. Characterization of the gila monster (Heloderma suspectum suspectum) venom proteome

    DEFF Research Database (Denmark)

    Sanggaard, Kristian Wejse; Dyrlund, Thomas Franck; Thomsen, Line Rold

    2015-01-01

    of venom. Of these proteins, 19 have not previously been identified in helodermatid venom. The data showed that helodermatid venom is complex and that this complexity is caused by genetic isoforms and post-translational modifications including proteolytic processing. In addition, the venom proteome...... analysis revealed that the major constituents of the gila monster venom are kallikrein-like serine proteinases (EC 3.4.21) and phospholipase A2 (type III) enzymes (EC 3.1.1.4). A neuroendocrine convertase 1 homolog that most likely converts the proforms of the previously identified bioactive exendins...... into the mature and active forms was identified suggesting that these peptide toxins are secreted as proforms that are activated by proteolytic cleavage following secretion as opposed to being activated intracellularly. The presented global protein identification-analysis provides the first overview...

  18. Ontogenesis, gender, and molting influence the venom yield in the spider Coremiocnemis tropix (Araneae, Theraphosidae)

    OpenAIRE

    Herzig, Volker

    2010-01-01

    The demand for spider venom increases along with the growing popularity of venoms-based research. A deeper understanding of factors that influence the venom yield in spiders would therefore be of interest to both commercial venom suppliers and research facilities. The present study addresses the influence of several factors on the venom yield by systematically analyzing the data obtained from 1773 electrical milkings of the Australian theraphosid spider Coremiocnemis tropix. Gender and ontoge...

  19. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard; Gutiérrez, José María; Lohse, Brian

    2015-01-01

    /cardiotoxins. IgGs isolated from a person who had repeatedly self-immunized with a variety of snake venoms were immunoprofiled by ELISA against all venom fractions. Stronger responses against larger toxins, but lower against the most critical α-neurotoxins were obtained. As expected, no neutralization potential...

  20. Brown Spider (Loxosceles genus Venom Toxins: Tools for Biological Purposes

    Directory of Open Access Journals (Sweden)

    Andrea Senff-Ribeiro

    2011-03-01

    Full Text Available Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus venom is enriched in low molecular mass proteins (5–40 kDa. Although their venom is produced in minute volumes (a few microliters, and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins.

  1. A Study on Major Components of Bee Venom Using Electrophoresis

    Directory of Open Access Journals (Sweden)

    Lee, Jin-Seon

    2000-12-01

    Full Text Available This study was designed to study on major components of various Bee Venom(Bee Venom by electrical stimulation in Korea; K-BV I, Bee Venom by Microwave stimulation in Korea; K -BV II, 0.5rng/ml, Fu Yu Pharmaceutical Factory, China; C-BV, 1mg /ml, Monmouth Pain Institute, Inc., U.S.A.; A-BV using Electrophoresis. The results were summarized as follows: 1. In 1:4000 Bee Venom solution rate, the band was not displayed distinctly usmg Electrophoresis. But in 1: 1000, the band showed clearly. 2. The results of Electrophoresis at solution rate 1:1000, K-BV I and K-BVII showed similar band. 3. The molecular weight of Phospholipase A2 was known as 19,000 but its band was seen at 17,000 in Electrophoresis. 4. Protein concentration of Bee Venom by Lowry method was different at solution rate 1:4000 ; C-BV was 250μg/ml, K-BV I was 190μg/ml, K-BV Ⅱ was 160μg/ml and C-BV was 45μg/ml. 5. Electrophoresis method was unuseful for analysis of Bee Venom when solution rate is above 1:4000 but Protein concentration of Bee Venom by Lowry method was possible. These data from the study can be applied to establish the standard measurement of Bee Venom and prevent pure bee venom from mixing of another components. I think it is desirable to study more about safety of Bee Venom as time goes by.

  2. Venom immunotherapy improves health-related quality of life in patients allergic to yellow jacket venom

    NARCIS (Netherlands)

    Elberink, JNGO; de Monchy, JGR; van der Heide, S; Guyatt, GH; Dubois, AEJ

    Background: Venom immunotherapy (VIT) is effective in preventing anaphylactic reactions after insect stings. The effect of VIT on health-related quality of life (HRQL) was studied to evaluate whether this treatment is of importance to patients. Objective: We compared HRQL outcomes measured with a

  3. Mastocytosis and insect venom allergy : diagnosis, safety and efficacy of venom immunotherapy

    NARCIS (Netherlands)

    Niedoszytko, M.; de Monchy, J.; van Doormaal, J. J.; Jassem, E.; Oude Elberink, J. N. G.

    The most important causative factor for anaphylaxis in mastocytosis are insect stings. The purpose of this review is to analyse the available data concerning prevalence, diagnosis, safety and effectiveness of venom immunotherapy (VIT) in mastocytosis patients. If data were unclear, authors were

  4. Características biológicas e inmunológicas del veneno de Bothrops cotiara (Serpentes: Viperidae)

    OpenAIRE

    Adolfo Rafael de Roodt; Judith Estévez; Jorge Adrián Dolab; Marcelo Víctor Manzanelli; Nicolás Piñeiro; Jorge Francisco Paniagua; Alejandro Urs Vogt

    2006-01-01

    Bothrops cotiara es una serpiente que se encuentra en la provincia de Misiones (Argentina), el Sur de Brasil y Paraguay. La información sobre las características clínicas de los accidentes por esta serpiente es muy escasa y existen pocos datos sobre su veneno y la capacidad neutralizante de las actividades tóxicas del mismo por antivenenos terapéuticos. En este trabajo se estudiaron características bioquímicas, actividades tóxicas y la reactividad inmunoquímica del veneno de B. cotiara. Seis ...

  5. Comparative evaluation of adverse effects in the use of powder trivalent antivenom and liquid antivenoms in Bothrops snake bites

    Directory of Open Access Journals (Sweden)

    Iran Mendonça da Silva

    2012-08-01

    Full Text Available INTRODUCTION: Snake bite, a problem in public health, generally occurs where there is no electric power. METHODS: A comparative clinical study was conducted with 102 victims of Bothrops snake bite, from the state of Amazonas, Brazil; 58 victims were treated with liofilizated trivalent antivenom serum (SATL and 44 victims treated with liquid bivalent and monovalent antivenom serum (SAMBL. RESULTS: 17% (10/58 of patients presented adverse effects with the SATL and 25% (11/44 with the SAMBL. CONCLUSIONS: There was no statistic difference in number of adverse effects between the two types of snake bite antivenom.

  6. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia.

    Science.gov (United States)

    Tan, Kae Yi; Tan, Choo Hock; Fung, Shin Yee; Tan, Nget Hong

    2015-04-29

    Previous studies showed that venoms of the monocled cobra, Naja kaouthia from Thailand and Malaysia are substantially different in their median lethal doses. The intraspecific venom variations of N. kaouthia, however, have not been fully elucidated. Here we investigated the venom proteomes of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V) through reverse-phase HPLC, SDS-PAGE and tandem mass spectrometry. The venom proteins comprise 13 toxin families, with three-finger toxins being the most abundant (63-77%) and the most varied (11-18 isoforms) among the three populations. NK-T has the highest content of neurotoxins (50%, predominantly long neurotoxins), followed by NK-V (29%, predominantly weak neurotoxins and some short neurotoxins), while NK-M has the least (18%, some weak neurotoxins but less short and long neurotoxins). On the other hand, cytotoxins constitute the main bulk of toxins in NK-M and NK-V venoms (up to 45% each), but less in NK-T venom (27%). The three venoms show different lethal potencies that generally reflect the proteomic findings. Despite the proteomic variations, the use of Thai monovalent and Neuro polyvalent antivenoms for N. kaouthia envenomation in the three regions is appropriate as the different venoms were neutralized by the antivenoms albeit at different degrees of effectiveness. Biogeographical variations were observed in the venom proteome of monocled cobra (Naja kaouthia) from Malaysia, Thailand and Vietnam. The Thai N. kaouthia venom is particularly rich in long neurotoxins, while the Malaysian and Vietnamese specimens were predominated with cytotoxins. The differentially expressed toxin profile accounts for the discrepancy in the lethal dose of the venom from different populations. Commercially available Thai antivenoms (monovalent and polyvalent) were able to neutralize the three venoms at different effective doses, hence supporting their uses in the three regions. While dose adjustment according to

  7. Minor snake venom proteins: Structure, function and potential applications.

    Science.gov (United States)

    Boldrini-França, Johara; Cologna, Camila Takeno; Pucca, Manuela Berto; Bordon, Karla de Castro Figueiredo; Amorim, Fernanda Gobbi; Anjolette, Fernando Antonio Pino; Cordeiro, Francielle Almeida; Wiezel, Gisele Adriano; Cerni, Felipe Augusto; Pinheiro-Junior, Ernesto Lopes; Shibao, Priscila Yumi Tanaka; Ferreira, Isabela Gobbo; de Oliveira, Isadora Sousa; Cardoso, Iara Aimê; Arantes, Eliane Candiani

    2017-04-01

    Snake venoms present a great diversity of pharmacologically active compounds that may be applied as research and biotechnological tools, as well as in drug development and diagnostic tests for certain diseases. The most abundant toxins have been extensively studied in the last decades and some of them have already been used for different purposes. Nevertheless, most of the minor snake venom protein classes remain poorly explored, even presenting potential application in diverse areas. The main difficulty in studying these proteins lies on the impossibility of obtaining sufficient amounts of them for a comprehensive investigation. The advent of more sensitive techniques in the last few years allowed the discovery of new venom components and the in-depth study of some already known minor proteins. This review summarizes information regarding some structural and functional aspects of low abundant snake venom proteins classes, such as growth factors, hyaluronidases, cysteine-rich secretory proteins, nucleases and nucleotidases, cobra venom factors, vespryns, protease inhibitors, antimicrobial peptides, among others. Some potential applications of these molecules are discussed herein in order to encourage researchers to explore the full venom repertoire and to discover new molecules or applications for the already known venom components. Copyright © 2016. Published by Elsevier B.V.

  8. A Study on the Stability of Diluted Bee Venom Solution

    Directory of Open Access Journals (Sweden)

    Mi-Suk Kang

    2003-06-01

    Full Text Available Objective : The purpose of this study was to investigate the stability of bee venom according to the keeping method and period. Method : The author observed microbial contamination of bee venom in nutrient agar, broth, YPD agar and YPD media and antibacterial activity for S. aureus, E. coli manufactured 12, 6 and 3 months ago as the two type of room temperature and 4℃ cold storage. Result : 1. 1:3,000 and 1:4,000 diluted bee venom solution did not show microbial contamination both room temperature and cold storage within twelve months. 2. There was antibacterial activity of diluted bee venom for S. aureus in cold storage within twelve months and there was no antibacterial activity of diluted bee venom for S. aureus in twelve months, room temperature storage. 3. We could not observe the zone of inhibition around paper disc of all for E.coli. in 1:3,000, 1:30,000 and 1:3,000,000 diluted bee venom solution, respectively. According to results, we expect that diluted bee venom solution is stable both cold and room temperature storage within twelve months.

  9. Micrurus snake venoms activate human complement system and generate anaphylatoxins

    Directory of Open Access Journals (Sweden)

    Tanaka Gabriela D

    2012-01-01

    Full Text Available Abstract Background The genus Micrurus, coral snakes (Serpentes, Elapidae, comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. Results In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s present in the venoms, which disrupts complement activation control. Conclusion Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process.

  10. Bee venom treatment for refractory postherpetic neuralgia: a case report.

    Science.gov (United States)

    Lee, Seung Min; Lim, Jinwoong; Lee, Jae-Dong; Choi, Do-Young; Lee, Sanghoon

    2014-03-01

    Bee venom has been reported to have antinociceptive and anti-inflammatory effects in experimental studies. However, questions still remain regarding the clinical use of bee venom. This report describes the successful outcome of bee venom treatment for refractory postherpetic neuralgia. A 72-year-old Korean man had severe pain and hypersensitivity in the region where he had developed a herpes zoster rash 2 years earlier. He was treated with antivirals, painkillers, steroids, and analgesic patches, all to no effect. The patient visited the East-West Pain Clinic, Kyung Hee University Medical Center, to receive collaborative treatment. After being evaluated for bee venom compatibility, he was treated with bee venom injections. A 1:30,000 diluted solution of bee venom was injected subcutaneously along the margins of the rash once per week for 4 weeks. Pain levels were evaluated before every treatment, and by his fifth visit, his pain had decreased from 8 to 2 on a 10-point numerical rating scale. He experienced no adverse effects, and this improvement was maintained at the 3-month, 6-month, and 1-year phone follow-up evaluations. Bee venom treatment demonstrates the potential to become an effective treatment for postherpetic neuralgia. Further large-sample clinical trials should be conducted to evaluate the overall safety and efficacy of this treatment.

  11. Role of the inflammasome in defense against venoms

    Science.gov (United States)

    Palm, Noah W.; Medzhitov, Ruslan

    2013-01-01

    Venoms consist of a complex mixture of toxic components that are used by a variety of animal species for defense and predation. Envenomation of mammalian species leads to an acute inflammatory response and can lead to the development of IgE-dependent venom allergy. However, the mechanisms by which the innate immune system detects envenomation and initiates inflammatory and allergic responses to venoms remain largely unknown. Here we show that bee venom is detected by the NOD-like receptor family, pyrin domain-containing 3 inflammasome and can trigger activation of caspase-1 and the subsequent processing and unconventional secretion of the leaderless proinflammatory cytokine IL-1β in macrophages. Whereas activation of the inflammasome by bee venom induces a caspase-1–dependent inflammatory response, characterized by recruitment of neutrophils to the site or envenomation, the inflammasome is dispensable for the allergic response to bee venom. Finally, we find that caspase-1–deficient mice are more susceptible to the noxious effects of bee and snake venoms, suggesting that a caspase-1–dependent immune response can protect against the damaging effects of envenomation. PMID:23297192

  12. Effects of Animal Venoms and Toxins on Hallmarks of Cancer

    Science.gov (United States)

    Chaisakul, Janeyuth; Hodgson, Wayne C.; Kuruppu, Sanjaya; Prasongsook, Naiyarat

    2016-01-01

    Animal venoms are a cocktail of proteins and peptides, targeting vital physiological processes. Venoms have evolved to assist in the capture and digestion of prey. Key venom components often include neurotoxins, myotoxins, cardiotoxins, hematoxins and catalytic enzymes. The pharmacological activities of venom components have been investigated as a source of potential therapeutic agents. Interestingly, a number of animal toxins display profound anticancer effects. These include toxins purified from snake, bee and scorpion venoms effecting cancer cell proliferation, migration, invasion, apoptotic activity and neovascularization. Indeed, the mechanism behind the anticancer effect of certain toxins is similar to that of agents currently used in chemotherapy. For example, Lebein is a snake venom disintegrin which generates anti-angiogenic effects by inhibiting vascular endothelial growth factors (VEGF). In this review article, we highlight the biological activities of animal toxins on the multiple steps of tumour formation or hallmarks of cancer. We also discuss recent progress in the discovery of lead compounds for anticancer drug development from venom components. PMID:27471574

  13. Secreted Phospholipases A₂ from Animal Venoms in Pain and Analgesia.

    Science.gov (United States)

    Zambelli, Vanessa O; Picolo, Gisele; Fernandes, Carlos A H; Fontes, Marcos R M; Cury, Yara

    2017-12-19

    Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A₂ (sPLA₂s). These PLA₂ belong to distinct PLA₂s groups. For example, snake venom sPLA₂s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA₂ belongs to group III of sPLA₂s. It is well known that PLA₂, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA₂s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA₂s from animal venoms, particularly snake venoms.

  14. Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) against Russell's viper venom: characterization of piperine as active principle.

    Science.gov (United States)

    Shenoy, P A; Nipate, S S; Sonpetkar, J M; Salvi, N C; Waghmare, A B; Chaudhari, P D

    2013-05-20

    Piper longum L. fruits have been traditionally used against snakebites in north-eastern and southern region of India. To examine the ability of ethanolic extract of fruits of Piper longum L., Piperaceae (PLE) and piperine, one of the main active principles of Piper longum, to inhibit the Russell's viper (Doboia russelii, Viperidae) snake venom activities. Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) and piperine against Russell's viper venom was studied in embryonated fertile chicken eggs, mice and rats by using various models as follows: inhibition of venom lethal action, inhibition of venom haemorrhagic action (in vitro), inhibition of venom haemorrhagic action (in vivo), inhibition of venom necrotizing action, inhibition of venom defibrinogenating action, inhibition of venom induced paw edema, inhibition of venom induced mast cell degranulation, creatine kinase assay and assay for catalase activity. PLE was found to inhibit the venom induced haemorrhage in embryonated fertile chicken eggs. Administration of PLE and piperine significantly (p<0.01) inhibited venom induced lethality, haemorrhage, necrosis, defibrinogenation and inflammatory paw edema in mice in a dose dependent manner. PLE and piperine also significantly (p<0.01) reduced venom induced mast cell degranulation in rats. Venom induced decrease in catalase enzyme levels in mice kidney tissue and increase in creatine kinase enzyme levels in mice serum were significantly (p<0.01) reversed by administration of both PLE and piperine. PLE possesses good anti-snake venom properties and piperine is one of the compounds responsible for the effective venom neutralizing ability of the plant. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Neutralization of Apis mellifera bee venom activities by suramin.

    Science.gov (United States)

    El-Kik, Camila Z; Fernandes, Fabrício F A; Tomaz, Marcelo Amorim; Gaban, Glauco A; Fonseca, Tatiane F; Calil-Elias, Sabrina; Oliveira, Suellen D S; Silva, Claudia L M; Martinez, Ana Maria Blanco; Melo, Paulo A

    2013-06-01

    In this work we evaluated the ability of suramin, a polysulfonated naphthylurea derivative, to antagonize the cytotoxic and enzymatic effects of the crude venom of Apis mellifera. Suramin was efficient to decrease the lethality in a dose-dependent way. The hemoconcentration caused by lethal dose injection of bee venom was abolished by suramin (30 μg/g). The edematogenic activity of the venom (0.3 μg/g) was antagonized by suramin (10 μg/g) in all treatment protocols. The changes in the vascular permeability caused by A. mellifera (1 μg/g) venom were inhibited by suramin (30 μg/g) in the pre- and posttreatment as well as when the venom was preincubated with suramin. In addition, suramin also inhibited cultured endothelial cell lesion, as well as in vitro myotoxicity, evaluated in mouse extensor digitorum longus muscle, which was inhibited by suramin (10 and 25 μM), decreasing the rate of CK release, showing that suramin protected the sarcolemma against damage induced by components of bee venom (2.5 μg/mL). Moreover, suramin inhibited the in vivo myotoxicity induced by i.m. injection of A. mellifera venom in mice (0.5 μg/g). The analysis of the area under the plasma CK vs. time curve showed that preincubation, pre- and posttreatment with suramin (30 μg/g) inhibited bee venom myotoxic activity in mice by about 89%, 45% and 40%, respectively. Suramin markedly inhibited the PLA2 activity in a concentration-dependent way (1-30 μM). Being suramin a polyanion molecule, the effects observed may be due to the interaction of its charges with the polycation components present in A. mellifera bee venom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Label-Free (XIC) Quantification of Venom Procoagulant and Neurotoxin Expression in Related Australian Elapid Snakes Gives Insight into Venom Toxicity Evolution.

    Science.gov (United States)

    Skejic, Jure; Steer, David L; Dunstan, Nathan; Hodgson, Wayne C

    2015-11-06

    This study demonstrates a direct role of venom protein expression alteration in the evolution of snake venom toxicity. Avian skeletal muscle contractile response to exogenously administered acetylcholine is completely inhibited upon exposure to South Australian and largely preserved following exposure to Queensland eastern brown snake Pseudonaja textilis venom, indicating potent postsynaptic neurotoxicity of the former and lack thereof of the latter venom. Label-free quantitative proteomics reveals extremely large differences in the expression of postsynaptic three-finger α-neurotoxins in these venoms, explaining the difference in the muscle contractile response and suggesting that the type of toxicity induced by venom can be modified by altered expression of venom proteins. Furthermore, the onset of neuromuscular paralysis in the rat phrenic nerve-diaphragm preparation occurs sooner upon exposure to the venom (10 μg/mL) with high expression of α-neurotoxins than the venoms containing predominately presynaptic β-neurotoxins. The study also finds that the onset of rat plasma coagulation is faster following exposure to the venoms with higher expression of venom prothrombin activator subunits. This is the first quantitative proteomic study that uses extracted ion chromatogram peak areas (MS1 XIC) of distinct homologous tryptic peptides to directly show the differences in the expression of venom proteins.

  17. PROVENANCE SNAKES OF GENUS Bothrops AND Crotalus (VIPERIDAE CATALOGED IN SERPENTARIUM ZOO UNIVERSITY OF CAXIAS DO SUL (UCS

    Directory of Open Access Journals (Sweden)

    Ezequiel Capeletti

    2016-09-01

    Full Text Available Snakes are reptiles that have large environmental adaptations, which favored it's distribution among the various ecosystems. In Brazil, there are found 392 species of snakes, while in Rio Grande do Sul (RS, this research field, 79 species have been described, of which there is the Viperidae family. The objective of this work is to verify the origin of snakes of genus Bothrops and Crotalus, according to the records of the last 15 years of the serpentarium the University of Caxias do Sul, representing the first survey in captivity of the northeastern region of RS. By extension, we seek to investigate whether there is a relationship between the amount of snakes records and abiotic factors: precipitation, temperature and humidity during the period. The research was developed at UCS's serpentarium, by documental analysis of notebook records describing serpents entries between the years 2000 and 2014, in addition to literature review that helped to understand the distribution of the species and gather of the environmental parameters at the Instituto Nacional de Metereologia for further analysis. It was found that the received species are distributed in 26 cities in the RS state, of which the highlights are the municities of Nova Petrópolis and Caxias do Sul, with 148 and 42 individuals respectively. Further, it was found that there was no relationship between the amount of animals and registered temperature, precipitation and humidity. Keywords: Geographic distribution; Bothrops; Crotalus; abiotic factors; northeastern RS.

  18. Evaluation of platelet number and function and fibrinogen level in patients bitten by snakes of the Bothrops genus

    Directory of Open Access Journals (Sweden)

    Fábio Cardoso Luan

    1995-03-01

    Full Text Available Platelet function and plasma fibrinogen levels were evaluated in 14 patients, 10 males and 4females, aged 13-59years bitten by Bothrops genus snakes. There was a statistical difference (p Foram avaliadas a função plaquetária e os níveis séricos de fibrinogênio em 14 doentes picados por serpentes do gênero Bothrops, sendo 10 do sexo masculino e 4 do sexo feminino, com idades compreendidas entre 13 e 59 anos. Houve diferença estatística (p < 0,05 entre os níveis séricos defibrinogênio avaliados 24 e 48 horas após o acidente. Houve tendência à normalização após 48 horas do tratamento. A plaquetopenia foi evidente nas avaliações de 24 e 48 horas. Houve tendência à nomalização no 8o dia após o tratamento (p <0,05. Os níveis de produtos de degradação defibrina (PDF mostraram-se alterados em 83,33 % dos pacientes avaliados. Os autores sugerem que a hipoagregação esteja relacionada com níveis baixos de fibrinogênio e elevados de PDF.

  19. [New drug developments of snake venom polypeptides and progress].

    Science.gov (United States)

    Fu, Sihai; Feng, Mei; Xiong, Yan

    2017-11-28

    The value of snake venom polypeptides in clinical application has drawn extensive attention, and the development of snake polypeptides into new drugs with anti-tumor, anti-inflammatory, antithrombotic, analgesic or antihypertensive properties has become the recent research hotspot. With the rapid development of molecular biology and biotechnology, the mechanisms of snake venom polypeptides are also gradually clarified. Numerous studies have demonstrated that snake venom polypeptides exert their pharmacological effects by regulating ion channels, cell proliferation, apoptosis, intracellular signaling pathway, and expression of cytokine as well as binding to relevant active sites or receptors.

  20. Antioxidant activity and irritation property of venoms from Apis species.

    Science.gov (United States)

    Somwongin, Suvimol; Chantawannakul, Panuwan; Chaiyana, Wantida

    2018-04-01

    Pharmacological effects of bee venom has been reported, however, it has been restricted to the bee venom collected from European honey bee (Apis mellifera). The aim of the present study was to compare the antioxidant activities and irritation properties of venoms collected from four different Apis species in Thailand, which includes Apis cerena (Asian cavity nesting honeybee), Apis florea (dwarf honeybee), Apis dorsata (giant honeybee), and A. mellifera. Melittin content of each bee venom extracts was investigated by using high-performance liquid chromatography. Ferric reducing antioxidant power, 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid), and 1, 1-diphenyl-2-picrylhydrazyl assay were used to determine the antioxidant activity, whereas, hen's egg test chorioallantoic membrane assay was used to determine the irritation property of each bee venom extracts. Melittin was the major constituent in all bee venom extracts. The melittin content in A. dorsata, A. mellifera, A. florea, and A. cerena were 95.8 ± 3.2%, 76.5 ± 1.9%, 66.3 ± 8.6%, and 56.8 ± 1.8%, respectively. Bee venom extract from A. dorsata possessed the highest antioxidant activity with the inhibition of 41.1 ± 2.2% against DPPH, Trolox equivalent antioxidant capacity of 10.21 ± 0.74 mM Trolox/mg and equivalent concentration (EC 1 ) of 0.35 ± 0.02 mM FeSO 4 /mg. Bee venom extract from A. mellifera exhibited the highest irritation, followed by A. cerena, A. dorsata, and A. florea, respectively. Melittin was the compound responsible for the irritation property of bee venom extracts since it could induce severe irritation (irritation score was 13.7 ± 0.5, at the concentration of 2 mg/ml). The extract from A. dorsata which possessed the highest antioxidant activity showed no irritation up to the concentration of 0.1 mg/ml. Therefore, bee venom extract from A. dorsata at the concentration not more than 0.1 mg/ml would be suggested for using

  1. Analysis of Fang Puncture Wound Patterns in Isfahan Province’s, Iran, Venomous and Non-Venomous Snakes

    Directory of Open Access Journals (Sweden)

    Dehghani R.1 PhD,

    2015-01-01

    Full Text Available Aims Venomous snake bites are public health problems in different parts of the world. The most specific mainstay in the treatment of envenomation is anti-venom. To treat the envenomation, it is very important to identify the offending species. This study was designed to determine the penetrating pattern of fangs and teeth of some viper snakes. Materials & Methods This descriptive study was performed on live venomous and nonvenomous snakes from 2010 till 2011. All 47 sample snakes were collected from different regions of Isfahan province such as Kashan City, Ghamsar, Niasar, Mashhad Ardehal, Taher- Abad and Khozagh. Their mouths were inspected every two weeks and development of their fangs and teeth were recorded by taking clear digital photos. Fangs and teeth patterns of samples were drawn and the results were compared. Findings One or two wounds appeared as typical fang marks at the bite site of venomous snakes while non-venomous snakes had two carved rows of small teeth. Three different teeth and fang patterns were recognized in venomous snakes which were completely different. Conclusion The fang marks of venomous snakes do not always have a common and classic pattern and there are at least 3 different patterns in Isfahan province, Iran.

  2. Effects of venom immunotherapy on serum level of CCL5/RANTES in patients with Hymenoptera venom allergy.

    Science.gov (United States)

    Gawlik, Radoslaw; Glück, Joanna; Jawor, Barbara; Rogala, Barbara

    2015-01-01

    Hymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals. Venom immunotherapy is a recommended treatment of insect allergy with still the mechanism not being completely understood. We decided to assess the serum CCL5/RANTES level in patients who experienced severe anaphylactic reaction to Hymenoptera venom and to find out changes in the course of immunotherapy. Twenty patients (9 men, 11 women, mean age: 31.91 ± 7.63 years) with history of anaphylactic reaction after insect sting were included into the study. Diagnosis was made according to sIgE and skin tests. All of them were enrolled into rush venom immunotherapy with bee or wasp venom extracts (Pharmalgen, ALK-Abello, Horsholm, Denmark). Serum levels of CCL5/RANTES were measured using a commercially available ELISA kit (R&D Systems, Minneapolis, MN). CCL5/RANTES serum concentration are higher in insect venom allergic patients than in healthy controls (887.5 ± 322.77 versus 387.27 ± 85.11 pg/ml). Serum concentration of CCL5/RANTES in insect venom allergic patient was significantly reduced in the course of allergen immunotherapy already after 6 days of vaccination (887.5 ± 322.77 versus 567.32 ± 92.16 pg/ml). CCL5/RANTES serum doesn't correlate with specific IgE. Chemokine CCL5/RANTES participates in allergic inflammation induced by Hymenoptera venom allergens. Specific immunotherapy reduces chemokine CCL5/RANTES serum level already after initial days of venom immunotherapy.

  3. The Comparison of Effectiveness between Bee Venom and Sweet Bee Venom Therapy on Low back pain with Radiating pain

    OpenAIRE

    Lee Tae-ho; Hwang Hee-sang; Chang So-young; Cha Jung-ho; Jung Ki-hoon; Lee Eun-young; Roh Jeongdu

    2007-01-01

    Objective : The aim of this study is to investigate if Sweet Bee Venom therapy has the equal effect in comparison with Bee Venom Therapy on Low back pain with Radiation pain. Methods : Clinical studies were done 24 patients who were treated low back pain with radiation pain to Dept. of Acupuncture & Moxibusition, of Oriental Medicine Se-Myung University from April 1, 2007 to September 30, 2007. Subjects were randomly divided into two groups ; Bee Venom treated group(Group A, n=10), Sweet B...

  4. Molecular barcoding, DNA from snake venom, and toxinological research: Considerations and concerns.

    Science.gov (United States)

    Powell, Randy L; Reyes, Steven R; Lannutti, Dominic I

    2006-12-15

    The problem of species identification in toxinological research and solutions such as molecular barcoding and DNA extraction from venom samples are addressed. Molecular barcoding is controversial with both perceived advantages and inherent problems. A method of species identification utilizing mitochondrial DNA from venom has been identified. This method could result in deemphasizing the importance of obtaining detailed information on the venom source prior to analysis. Additional concerns include; a cost prohibitive factor, intraspecific venom variation, and venom processing issues. As researchers demand more stringent records and verification, venom suppliers may be prompted to implement improved methods and controls.

  5. Biochemical and pharmacological characterization of Trimersurus malabaricus snake venom.

    Science.gov (United States)

    Gowda, Raghavendra; Rajaiah, Rajesh; Angaswamy, Nataraj; Krishna, Sharath; Bannikuppe Sannanayak, Vishwanath

    2018-03-12

    Trimeresurus malabaricus is a venomous pit viper species endemic to southwestern part of India. In earlier reports, we have shown that envenomation by T. malabaricus venom leading to strong local tissue damage but the mechanism of action is not clearly revealed. Local tissue damage affected by T. malabaricus venom is of great importance since the poison has serious systemic effects including death in the case of multiple attacks. The present study details the major manifestations of T. malabaricus venom and the induction of local tissue damage, which suggests that most toxins are present in the form of hydrolytic enzymes. Hydrolytic activity of the enzymes was measured and the data indicated that protease and phospholipase A 2 activity was high which is responsible for local tissue damage. Furthermore, the role of hydrolytic enzymes in the induction of pathological events such as hemorrhage, edema, myotoxicity, and blood coagulation examination were assessed through animal models. © 2018 Wiley Periodicals, Inc.

  6. Component Analysis of Bee Venom from lune to September

    Directory of Open Access Journals (Sweden)

    Ki Rok Kwon

    2007-06-01

    Full Text Available Objectives : The aim of this study was to observe variation of Bee Venom content from the collection period. Methods : Content analysis of Bee Venom was rendered using HPLC method by standard melittin Results : Analyzing melittin content using HPLC, 478.97mg/g at june , 493.89mg/g at july, 468.18mg/g at August and 482.15mg/g was containing in Bee Venom at september. So the change of melittin contents was no significance from June to September. Conclusion : Above these results, we concluded carefully that collecting time was not important factor for the quality control of Bee Venom, restricted the period from June to September.

  7. Peptidomic and transcriptomic profiling of four distinct spider venoms.

    Directory of Open Access Journals (Sweden)

    Vera Oldrati

    Full Text Available Venom based research is exploited to find novel candidates for the development of innovative pharmacological tools, drug candidates and new ingredients for cosmetic and agrochemical industries. Moreover, venomics, as a well-established approach in systems biology, helps to elucidate the genetic mechanisms of the production of such a great molecular biodiversity. Today the advances made in the proteomics, transcriptomics and bioinformatics fields, favor venomics, allowing the in depth study of complex matrices and the elucidation even of minor compounds present in minute biological samples. The present study illustrates a rapid and efficient method developed for the elucidation of venom composition based on NextGen mRNA sequencing of venom glands and LC-MS/MS venom proteome profiling. The analysis of the comprehensive data obtained was focused on cysteine rich peptide toxins from four spider species originating from phylogenetically distant families for comparison purposes. The studied species were Heteropoda davidbowie (Sparassidae, Poecilotheria formosa (Theraphosidae, Viridasius fasciatus (Viridasiidae and Latrodectus mactans (Theridiidae. This led to a high resolution profiling of 284 characterized cysteine rich peptides, 111 of which belong to the Inhibitor Cysteine Knot (ICK structural motif. The analysis of H. davidbowie venom revealed a high richness in term of venom diversity: 95 peptide sequences were identified; out of these, 32 peptides presented the ICK structural motif and could be classified in six distinct families. The profiling of P. formosa venom highlighted the presence of 126 peptide sequences, with 52 ICK toxins belonging to three structural distinct families. V. fasciatus venom was shown to contain 49 peptide sequences, out of which 22 presented the ICK structural motif and were attributed to five families. The venom of L. mactans, until now studied for its large neurotoxins (Latrotoxins, revealed the presence of 14

  8. Structures and Functions of Snake Venom Metalloproteinases (SVMP) from Protobothrops venom Collected in Japan.

    Science.gov (United States)

    Oyama, Etsuko; Takahashi, Hidenobu

    2017-08-04

    Snake venom metalloproteinases (SVMP) are widely distributed among the venoms of Crotalinae and Viperidae, and are organized into three classes (P-I, P-II and P-III) according to their size and domain structure. P-I SVMP are the smallest SVMP, as they only have a metalloproteinase (M) domain. P-II SVMP contain a disintegrin-like (D) domain, which is connected by a short spacer region to the carboxyl terminus of the M domain. P-III SVMP contain a cysteine-rich (C) domain, which is attached to the carboxyl terminus of the D domain. Some SVMP exhibit hemorrhagic activity, whereas others do not. In addition, SVMP display fibrinolytic/fibrinogenolytic (FL) activity, and the physiological functions of SVMP are controlled by their structures. Furthermore, these proteinases also demonstrate fibrinogenolytic and proteolytic activity against synthetic substrates for matrix metalloproteinases and ADAM (a disintegrin and metalloproteinase). This article describes the structures and FL, hemorrhagic, and platelet aggregation-inhibiting activity of SVMP derived from Protobothrops snake venom that was collected in Japan.

  9. Importance of basophil activation testing in insect venom allergy

    OpenAIRE

    Kosnik Mitja; Korosec Peter

    2009-01-01

    Abstract Background Venom immunotherapy (VIT) is the only effective treatment for prevention of serious allergic reactions to bee and wasp stings in sensitized individuals. However, there are still many questions and controversies regarding immunotherapy, like selection of the appropriate allergen, safety and long term efficacy. Methods Literature review was performed to address the role of basophil activation test (BAT) in diagnosis of venom allergy. Results In patients with positive skin te...

  10. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms

    Science.gov (United States)

    2013-01-01

    Background Snake venom is shaped by the ecology and evolution of venomous species, and signals of positive selection in toxins have been consistently documented, reflecting the role of venoms as an ecologically critical phenotype. New World coral snakes (Elapidae) are represented by three genera and over 120 species and subspecies that are capable of causing significant human morbidity and mortality, yet coral-snake venom composition is poorly understood in comparison to that of Old World elapids. High-throughput sequencing is capable of identifying thousands of loci, while providing characterizations of expression patterns and the molecular evolutionary forces acting within the venom gland. Results We describe the de novo assembly and analysis of the venom-gland transcriptome of the eastern coral snake (Micrurus fulvius). We identified 1,950 nontoxin transcripts and 116 toxin transcripts. These transcripts accounted for 57.1% of the total reads, with toxins accounting for 45.8% of the total reads. Phospholipases A2 and three-finger toxins dominated expression, accounting for 86.0% of the toxin reads. A total of 15 toxin families were identified, revealing venom complexity previously unknown from New World coral snakes. Toxins exhibited high levels of heterozygosity relative to nontoxins, and overdominance may favor gene duplication leading to the fixation of advantageous alleles. Phospholipase A2 expression was uniformly distributed throughout the class while three-finger toxin expression was dominated by a handful of transcripts, and phylogenetic analyses indicate that toxin divergence may have occurred following speciation. Positive selection was detected in three of the four most diverse toxin classes, suggesting that venom diversification is driven by recurrent directional selection. Conclusions We describe the most complete characterization of an elapid venom gland to date. Toxin gene duplication may be driven by heterozygote advantage, as the frequency of

  11. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms.

    Science.gov (United States)

    Margres, Mark J; Aronow, Karalyn; Loyacano, Jacob; Rokyta, Darin R

    2013-08-02

    Snake venom is shaped by the ecology and evolution of venomous species, and signals of positive selection in toxins have been consistently documented, reflecting the role of venoms as an ecologically critical phenotype. New World coral snakes (Elapidae) are represented by three genera and over 120 species and subspecies that are capable of causing significant human morbidity and mortality, yet coral-snake venom composition is poorly understood in comparison to that of Old World elapids. High-throughput sequencing is capable of identifying thousands of loci, while providing characterizations of expression patterns and the molecular evolutionary forces acting within the venom gland. We describe the de novo assembly and analysis of the venom-gland transcriptome of the eastern coral snake (Micrurus fulvius). We identified 1,950 nontoxin transcripts and 116 toxin transcripts. These transcripts accounted for 57.1% of the total reads, with toxins accounting for 45.8% of the total reads. Phospholipases A(2) and three-finger toxins dominated expression, accounting for 86.0% of the toxin reads. A total of 15 toxin families were identified, revealing venom complexity previously unknown from New World coral snakes. Toxins exhibited high levels of heterozygosity relative to nontoxins, and overdominance may favor gene duplication leading to the fixation of advantageous alleles. Phospholipase A(2) expression was uniformly distributed throughout the class while three-finger toxin expression was dominated by a handful of transcripts, and phylogenetic analyses indicate that toxin divergence may have occurred following speciation. Positive selection was detected in three of the four most diverse toxin classes, suggesting that venom diversification is driven by recurrent directional selection. We describe the most complete characterization of an elapid venom gland to date. Toxin gene duplication may be driven by heterozygote advantage, as the frequency of polymorphic toxin loci was

  12. Comparison of the venom immunogenicity of various species of yellow jackets (genus Vespula).

    Science.gov (United States)

    Wicher, K; Reisman, R E; Wypych, J; Elliott, W; Steger, R; Mathews, R S; Arbesman, C E

    1980-09-01

    Venoms from various yellow jacket species were examined by two-dimensional thin-layer chromatography (TDTLC), double-diffusion gel precipitation (DDGP) using rabbit antisera, and the radioallergosorbent test (RAST). Comparison of representative venoms by the TDTLC showed that the venoms of V. vulgaris and V. maculifrons have a larger number of Ninhydrin (triketohydrindene hydrate)-positive substances than the venom of V. squamosa. The results of the DDGP confirmed the differences; venoms of V. vulgaris, V. maculifrons, V. flavopilosa, and V. germanica have one or more major components with immunogenic identity. The venom of V. squamosa has a species-specific major component and some minor components immunologically identical to the other venoms examined. Sera from 21 patients with a history of anaphylaxis following yellow jacket stings were examined by the RAST. Using the venoms of V. maculifrons, V. vulgaris, V. flavopilosa, and V. germanica as coupling antigens, most sera reacted similarly. The sera did not react with V. squamosa. These results suggest that the major component in venom obtained from the four yellow jacket species has immunogenic identity. Venom of V. squamosa differs from the remaining venoms. As a practical corollary, with the exception of venom from V. squamosa, common sensitivity appears to exist among the yellow jacket venoms examined.

  13. Ampulexins: A New Family of Peptides in Venom of the Emerald Jewel Wasp, Ampulex compressa.

    Science.gov (United States)

    Moore, Eugene L; Arvidson, Ryan; Banks, Christopher; Urenda, Jean Paul; Duong, Elizabeth; Mohammed, Haroun; Adams, Michael E

    2018-03-27

    The parasitoid wasp Ampulex compressa injects venom directly into the brain and subesophageal ganglion of the cockroach Periplaneta americana, inducing a 7 to 10 day lethargy termed hypokinesia. Hypokinesia presents as a significant reduction in both escape response and spontaneous walking. We examined aminergic and peptidergic components of milked venom with HPLC and MALDI-TOF mass spectrometry. HPLC coupled with electrochemical detection confirmed the presence of dopamine in milked venom, while mass spectrometry revealed that the venom gland and venom sac have distinct peptide profiles, with milked venom predominantly composed of venom sac peptides. We isolated and characterized novel α-helical, amphipathic venom sac peptides that constitute a new family of venom toxins termed ampulexins. Injection of the most abundant venom peptide, ampulexin 1, into the subesophageal ganglion of cockroaches resulted in a short-term increase in escape threshold. Neither milked venom nor venom peptides interfered with growth of Escherichia coli or Bacillus thuringiensis on agar plates, and exposure to ampulexins or milked venom did not induce cell death in Chinese hamster ovary cells (CHO-K1) or Hi5 cells ( Trichoplusia ni).

  14. Venomic Analysis of the Poorly Studied Desert Coral Snake, Micrurus tschudii tschudii, Supports the 3FTx/PLA₂ Dichotomy across Micrurus Venoms.

    Science.gov (United States)

    Sanz, Libia; Pla, Davinia; Pérez, Alicia; Rodríguez, Yania; Zavaleta, Alfonso; Salas, Maria; Lomonte, Bruno; Calvete, Juan J

    2016-06-07

    The venom proteome of the poorly studied desert coral snake Micrurus tschudii tschudii was unveiled using a venomic approach, which identified ≥38 proteins belonging to only four snake venom protein families. The three-finger toxins (3FTxs) constitute, both in number of isoforms (~30) and total abundance (93.6% of the venom proteome), the major protein family of the desert coral snake venom. Phospholipases A₂ (PLA₂s; seven isoforms, 4.1% of the venom proteome), 1-3 Kunitz-type proteins (1.6%), and 1-2 l-amino acid oxidases (LAO, 0.7%) complete the toxin arsenal of M. t. tschudii. Our results add to the growing evidence that the occurrence of two divergent venom phenotypes, i.e., 3FTx- and PLA₂-predominant venom proteomes, may constitute a general trend across the cladogenesis of Micrurus. The occurrence of a similar pattern of venom phenotypic variability among true sea snake (Hydrophiinae) venoms suggests that the 3FTx/PLA₂ dichotomy may be widely distributed among Elapidae venoms.

  15. Embryotoxicity following repetitive maternal exposure to scorpion venom

    Directory of Open Access Journals (Sweden)

    BN Hmed

    2012-01-01

    Full Text Available Although it is a frequent accident in a few countries, scorpion envenomation during pregnancy remains scarcely studied. In the present study, the effects of repetitive maternal exposure to Buthus occitanus tunetanus venom are investigated and its possible embryotoxic consequences on rats. Primigravid rats received a daily intraperitoneal dose of 1 mL/kg of saline solution or 300 µg/kg of crude scorpion venom, from the 7th to the 13th day of gestation. On the 21st day, the animals were deeply anesthetized using diethyl-ether. Then, blood was collected for chemical parameter analysis. Following euthanasia, morphometric measurements were carried out. The results showed a significant increase in maternal heart and lung absolute weights following venom treatment. However, the mean placental weight per rat was significantly diminished. Furthermore, blood urea concentration was higher in exposed rats (6.97 ± 0.62 mmol/L than in those receiving saline solution (4.94 ± 0.90 mmol/L. Many organs of venom-treated rat fetuses (brain, liver, kidney and spleen were smaller than those of controls. On the contrary, fetal lungs were significantly heavier in fetuses exposed to venom (3.2 ± 0.4 g than in the others (3.0 ± 0.2 g. Subcutaneous blood clots, microphthalmia and total body and tail shortening were also observed in venom-treated fetuses. It is concluded that scorpion envenomation during pregnancy potentially causes intrauterine fetal alterations and growth impairment.

  16. Safety and efficacy of venom immunotherapy: a real life study.

    Science.gov (United States)

    Kołaczek, Agnieszka; Skorupa, Dawid; Antczak-Marczak, Monika; Kuna, Piotr; Kupczyk, Maciej

    2017-04-01

    Venom immunotherapy (VIT) is recommended as the first-line treatment for patients allergic to Hymenoptera venom. To analyze the safety and efficacy of VIT in a real life setting. One hundred and eighty patients undergoing VIT were studied to evaluate the safety, efficacy, incidence and nature of symptoms after field stings and adverse reactions to VIT. Significantly more patients were allergic to wasp than bee venom (146 vs. 34, p bees, and were not associated with angiotensin convertase inhibitors (ACEi) or β-adrenergic antagonists use. Systemic reactions were observed in 4 individuals on wasp VIT (2.7%) and in 6 patients allergic to bees (17.65%). The VIT was efficacious as most patients reported no reactions (50%) or reported only mild local reactions (43.75%) to field stings. The decrease in sIgE at completion of VIT correlated with the dose of vaccine received ( r = 0.53, p = 0.004). Beekeeping (RR = 29.54, p venom allergy. Venom immunotherapy is highly efficacious and safe as most of the adverse events during the induction and maintenance phase are mild and local. Side effects of VIT are more common in subjects on bee VIT. Beekeeping and female sex are associated with a higher risk of allergy to Hymenoptera venom.

  17. Alexander Mikhailovich Zakharov and his works on the venom apparatus and venoms of some poisonous snakes

    Directory of Open Access Journals (Sweden)

    Cherlin Vladimir Alexandrovich

    2013-10-01

    Full Text Available The article gives brief biographical information about a very talented herpetologist Alexander M. Zakharov, and describes the general results of his works on the structure and function of venom glands of some poisonous snakes and their venoms. In his studies, he got the results, which are fundamentally different from the conventional concept of 30s - 70s of the XX century. Unfortunately, among physicians this concept has not changed up today. At that time it was thought that the poisons of Viperidae snakes are almost completely hemotoxic, and poisons of Elapidae (cobra are almost neurotoxic. But A.M.Zaharov found out, that poisons of both types of snakes (Viperidae and Elapidae include three groups of substances: hemotoxins, neurotoxins and non-toxic component – hyaluronidase. Each of these groups of substances is produced by independent part of venom glands and has its own special effect. Neurotoxins act on the central nervous system (mainly the respiratory center, but are greatly destroyed by means of the blood antigen properties and cannot pass through the hematoencephalic barrier. Hyaluronidase , connecting with neurotoxins, has an important property – to "smuggle" neurotoxins through the hematoencephalic barrier exactly into the target organ – the respiratory center in the central nervous system. In this case, neurotoxin enters the respiratory center not through the blood and lymph vessels, but directly through the nerve channel, through synapsis. The main function of hemotoxins is not to kill the victim, but to protect neurotoxins and hyaluronidase from the destructive activity of the victim's blood. Therefore, the target of the poisons of Viperidae and Elapidae snakes is the central nervous system of victims, but Elapidae has almost no hemotoxins. That’s why their striking effect can be achieved only by a strong increase in the amount of neurotoxins and hyaluronidase. Hemotoxins of Viperidae venoms permits to reduce the amount of

  18. Experimental Study on the comparison of antibacterial and antioxidant effects between the Bee Venom and Sweet Bee