WorldWideScience

Sample records for boson discovery potential

  1. Discovery of the higgs boson

    CERN Document Server

    Sharma, Vivek

    2016-01-01

    The recent observation of the Higgs boson has been hailed as the scientific discovery of the century and led to the 2013 Nobel Prize in physics. This book describes the detailed science behind the decades-long search for this elusive particle at the Large Electron Positron Collider at CERN and at the Tevatron at Fermilab and its subsequent discovery and characterization at the Large Hadron Collider at CERN. Written by physicists who played leading roles in this epic search and discovery, this book is an authoritative and pedagogical exposition of the portrait of the Higgs boson that has emerged from a large number of experimental measurements. As the first of its kind, this book should be of interest to graduate students and researchers in particle physics.

  2. Improving the discovery potential of charged Higgs bosons at the Tevatron and large hadron collider

    Indian Academy of Sciences (India)

    Stefano Moretti

    2003-02-01

    We outline several improvements to the experimental analyses carried out at Tevatron (Run 2) or simulated in view of the large hadron collider (LHC) that could increase the scope of CDF/D0 and ATLAS/CMS in detecting charged Higgs bosons.

  3. Light Higgs boson discovery from fermion mixing

    Science.gov (United States)

    Aguilar–Saavedra, Juan Antonio

    2006-12-01

    We evaluate the LHC discovery potential for a light Higgs boson in tbar tH (→ellνbbar bbbar bjj) production, within the Standard Model and if a new Q = 2/3 quark singlet T with a moderate mass exists. In the latter case, T pair production with decays Tbar T→W+b Hbar t/Ht W-bar b→W+bW-bar bH provides an important additional source of Higgs bosons giving the same experimental signature, and other decay modes Tbar T→Ht Hbar t→W+bW-bar bHH, Tbar T→Zt Hbar t/Ht Zbar t→W+bW-bar bHZ further enhance this signal. Both analyses are carried out with particle-level simulations of signals and backgrounds, including tbar t plus n = 0,...,5 jets which constitute the main background by far. Our estimate for SM Higgs discovery in tbar tH production, 0.4σ significance for MH = 115 GeV and an integrated luminosity of 30 fb-1, is similar to the most recent ones by CMS which also include the full tbar tnj background. We show that, if a quark singlet with a mass mT = 500 GeV exists, the luminosity required for Higgs discovery in this final state is reduced by more than two orders of magnitude, and 5σ significance can be achieved already with 8 fb-1. This new Higgs signal will not be seen unless we look for it: with this aim, a new specific final state reconstruction method is presented. Finally, we consider the sensitivity to search for Q = 2/3 singlets. The combination of these three decay modes allows to discover a 500 GeV quark with 7 fb-1 of luminosity.

  4. The discovery of the intermediate vector bosons

    International Nuclear Information System (INIS)

    The discovery of the intermediate vector bosons in 1983 at CERN marked the culmination of a long effort to unify the theory of weak and electromagnetic forces. Here a brief outline of development of the electroweak theory which unifies these forces is given first. Its essential feature is the prediction of the existence of the W+- and Z0 bosons with rest masses of about ninety times the proton mass and lifetimes around 10-24s. Then the experimental methods used at CERN to produce and to detect these very massive and short-lived particles are described. (author)

  5. The Higgs Boson Search and Discovery

    Science.gov (United States)

    Bernardi, Gregorio; Konigsberg, Jacobo

    2016-10-01

    We present a brief account of the search for the Higgs boson at the three major colliders that have operated over the last three decades: LEP, the Tevatron, and the LHC. The experimental challenges encountered stemmed from the distinct event phenomenology as determined by the colliders energy and the possible values for the Higgs boson mass, and from the capability of these colliders to deliver as much collision data as possible to fully explore the mass spectrum within their reach. Focusing more on the hadron collider searches during the last decade, we discuss how the search for the Higgs boson was advanced through mastering the experimental signatures of standard theory backgrounds, through the comprehensive utilization of the features of the detectors involved in the searches, and by means of advanced data analysis techniques. The search culminated in 2012 with the discovery, by the ATLAS and CMS collaborations, of a Higgs-like particle with mass close to 125 GeV, confirmed more recently to have properties consistent with those expected from the standard theory Higgs boson.

  6. The Higgs Boson Search and Discovery

    CERN Document Server

    Bernardi, Gregorio

    2016-01-01

    We present a brief account of the search for the Higgs boson at the three major colliders that have operated over the last three decades: LEP, the Tevatron, and the LHC. The experimental challenges encountered stemmed from the distinct event phenomenology as determined by the colliders energy and the possible values for the Higgs boson mass, and from the capability of these colliders to deliver as much collision data as possible to fully explore the mass spectrum within their reach. Focusing more on the hadron collider searches during the last decade, we discuss how the search for the Higgs boson was advanced through mastering the experimental signatures of standard theory backgrounds, through the comprehensive utilization of the features of the detectors involved in the searches, and by means of advanced data analysis techniques. The search culminated in 2012 with the discovery, by the ATLAS and CMS collaborations, of a Higgs-like particle with mass close to 125 GeV, confirmed more recently to have propertie...

  7. Study of the Higgs boson discovery potential in the process pp→H/A→μ+μ-/τ+τ- with the ATLAS detector

    International Nuclear Information System (INIS)

    In this thesis, the discovery potential of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN for the heavy neutral Higgs bosons H/A of theMinimal Supersymmetric extension of the Standard Model of particle physics (MSSM) in the decay channels H/A→τ+τ-→e/μ+X and H/A→μ+μ- has been studied. The ATLAS detector is designed to study the full spectrum of the physics phenomena occuring in the proton-proton collisions at 14 TeV center-of-mass energy and to provide answers to the question of the origin of particle masses and of electroweak symmetry breaking. For the studies, the ATLAS muon spectrometer plays an important role. The spectrometer allows for a precise muon momentum measurement independently of other ATLAS subdetectors. The performance of the muon spectrometer depends strongly on the performance of the muon tracking detectors, the Monitored Drift Tube Chambers (MDT). Computer programs have been developed in order to test and verify the ATLAS muon spectrometer simulation, an essential ingredient for data analysis. In addition, dedicated programs for the monitoring of the quality of the data collected by the muon spectrometer have been developed and tested with data from cosmic ray muons. High-quality cosmic ray muon data have been used for the calibration of the MDT-chambers. A new calibration method, called analytical autocalibration, has been tested. The proposed method achieved the required accuracy of 20 μm in the determination of the space-to-drift-time relationship of the drift tubes of the MDT chambers with only 2000 muon tracks per chamber. Reliable muon detector simulation and calibration are essential for the study of the MSSM Higgs boson decays H/A→τ+τ-→e/μ+X and H/A→μ+μ- and of the corresponding background processes. The signal selection and background rejection requirements have been optimized for maximum signal significance. The following results have been obtained for different assumptions on the MSSM Higgs boson

  8. The ATLAS discovery potential for a heavy charged Higgs boson in $gg \\to tbH^{+-}$ with $H^{+-} \\to tb$

    CERN Document Server

    Assamagan, Ketevi A

    2005-01-01

    The feasibility of detecting a heavy charged Higgs boson, m(H^{+-})>m(t)+m(b), decaying in the H^{+-}->tb channel is studied with the fast simulation of the ATLAS detector. We study the gg->H^{+-}tb production process at the LHC which together with the aforementioned decay channel leads to four b-quarks in the final state. The whole production and decay chain reads gg->H^{+-}tb->t\\bar{t}b\\bar{b}->b\\bar{b}b\\bar{b}l\

  9. The Higgs boson discovery at the Large Hadron Collider

    CERN Document Server

    Wolf, Roger

    2015-01-01

    This book provides a comprehensive overview of the field of Higgs boson physics. It offers the first in-depth review of the complete results in connection with the discovery of the Higgs boson at CERN’s Large Hadron Collider and based on the full dataset for the years 2011 to 2012. The fundamental concepts and principles of Higgs physics are introduced and the important searches prior to the advent of the Large Hadron Collider are briefly summarized. Lastly, the discovery and first mensuration of the observed particle in the course of the CMS experiment are discussed in detail and compared to the results obtained in the ATLAS experiment.

  10. Higgs Sectors in which the only light Higgs boson is CP-odd and Linear Collider Strategies for its Discovery

    CERN Document Server

    Farris, T; Logan, H E; Farris, Tom; Gunion, John F.; Logan, Heather E.

    2001-01-01

    We survey techniques for finding a CP-odd Higgs boson, A, at the Linear Collider that do not depend upon the presence of other light Higgs bosons. The potential reach in $[m_A,\\tan\\beta]$ parameter space for various production/discovery modes is evaluated and regions where discovery might not be possible at a given $\\sqrt{s}$ are delineated. We give, for the first time, results for $\\epem\\to \

  11. Study of the Higgs boson discovery potential in the process pp{yields}H/A{yields}{mu}{sup +}{mu}{sup -}/{tau}{sup +}{tau}{sup -} with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Dedes, Georgios

    2008-04-22

    In this thesis, the discovery potential of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN for the heavy neutral Higgs bosons H/A of theMinimal Supersymmetric extension of the Standard Model of particle physics (MSSM) in the decay channels H/A{yields}{tau}{sup +}{tau}{sup -}{yields}e/{mu}+X and H/A{yields}{mu}{sup +}{mu}{sup -} has been studied. The ATLAS detector is designed to study the full spectrum of the physics phenomena occuring in the proton-proton collisions at 14 TeV center-of-mass energy and to provide answers to the question of the origin of particle masses and of electroweak symmetry breaking. For the studies, the ATLAS muon spectrometer plays an important role. The spectrometer allows for a precise muon momentum measurement independently of other ATLAS subdetectors. The performance of the muon spectrometer depends strongly on the performance of the muon tracking detectors, the Monitored Drift Tube Chambers (MDT). Computer programs have been developed in order to test and verify the ATLAS muon spectrometer simulation, an essential ingredient for data analysis. In addition, dedicated programs for the monitoring of the quality of the data collected by the muon spectrometer have been developed and tested with data from cosmic ray muons. High-quality cosmic ray muon data have been used for the calibration of the MDT-chambers. A new calibration method, called analytical autocalibration, has been tested. The proposed method achieved the required accuracy of 20 {mu}m in the determination of the space-to-drift-time relationship of the drift tubes of the MDT chambers with only 2000 muon tracks per chamber. Reliable muon detector simulation and calibration are essential for the study of the MSSM Higgs boson decays H/A{yields}{tau}{sup +}{tau}{sup -}{yields}e/{mu}+X and H/A{yields}{mu}{sup +}{mu}{sup -} and of the corresponding background processes. The signal selection and background rejection requirements have been optimized for maximum signal

  12. Bosonization

    CERN Document Server

    1994-01-01

    Bosonization is a useful technique for studying systems of interacting fermions in low dimensions. It has applications in both particle and condensed matter physics.This book contains reprints of papers on the method as used in these fields. The papers range from the classic work of Tomonaga in the 1950's on one-dimensional electron gases, through the discovery of fermionic solitons in the 1970's, to integrable systems and bosonization on Riemann surfaces. A four-chapter pedagogical introduction by the editor should make the book accessible to graduate students and experienced researchers alik

  13. Measuring the trilinear neutral Higgs boson couplings in the minimal supersymmetric standard model at e+e‑ colliders in the light of the discovery of a Higgs boson

    Science.gov (United States)

    Khosa, Charanjit K.; Pandita, P. N.

    2016-06-01

    We consider the measurement of the trilinear couplings of the neutral Higgs bosons in the minimal supersymmetric standard model (MSSM) at a high energy e+e‑ linear collider in the light of the discovery of a Higgs boson at the CERN Large Hadron Collider (LHC). We identify the state observed at the LHC with the lightest Higgs boson (h0) of the MSSM, and impose the constraints following from this identification, as well as other experimental constraints on the MSSM parameter space. In order to measure trilinear neutral Higgs couplings, we consider different processes where the heavier Higgs boson (H0) of the MSSM is produced in electron-positron collisions, which subsequently decays into a pair of lighter Higgs boson. We identify the regions of the MSSM parameter space where it may be possible to measure the trilinear couplings of the Higgs boson at a future electron-positron collider. A measurement of the trilinear Higgs couplings is a crucial step in the construction of the Higgs potential, and hence in establishing the phenomena of spontaneous symmetry breaking in gauge theories.

  14. Bosonic Partition Functions at Nonzero (Imaginary) Chemical Potential

    CERN Document Server

    Kellerstein, M

    2016-01-01

    We consider bosonic random matrix partition functions at nonzero chemical potential and compare the chiral condensate, the baryon number density and the baryon number susceptibility to the result of the corresponding fermionic partition function. We find that as long as results are finite, the phase transition of the fermionic theory persists in the bosonic theory. However, in case that bosonic partition function diverges and has to be regularized, the phase transition of the fermionic theory does not occur in the bosonic theory, and the bosonic theory is always in the broken phase.

  15. Smartphones: A Potential Discovery Tool

    OpenAIRE

    Starkweather, Wendy; Stowers, Eva

    2009-01-01

    The anticipated wide adoption of smartphones by researchers is viewed by the authors as a basis for developing mobile-based services. In response to the UNLV Libraries’ strategic plan’s focus on experimentation and outreach, the authors investigate the current and potential role of smartphones as a valuable discovery tool for library users.

  16. Low-Data Investigation of Higgs Boson Discovery at the LHC

    CERN Document Server

    Scoby, Cheyne M

    2006-01-01

    The Standard Model (SM) remains as a complete and effective tool for understanding fundamental particles and their interactions. There is only one particle that the model predicts that has not yet been discovered. The Higgs boson is required as part of the mechanism behind electroweak symmetry breaking, and explains how the weak vector bosons, as well as the charged quarks and leptons gain mass, proportional to their coupling to the Higgs field. The SM predicts many properties of the Higgs, but cannot give a precise value to its mass. Experiment and theoretical arguments have put limits on the Higgs mass to within 114.7 GeV/c2 < MH < 1000 GeV/c2. The Large Hadron Collider at CERN will provide access to a new energy regime that will offer many channels for a potential discovery of the Higgs. In the Compact Muon Solenoid (CMS) detector experiment, the “Golden mode” for Higgs discovery features decay to two Z0, with both Z0 decaying to leptonic final states. Full reconstruction analyses suffer from the...

  17. The theoretical physics ecosystem behind the discovery of the Higgs boson

    CERN Document Server

    Wells, James D

    2016-01-01

    The discovery of the Higgs boson in 2012 was one of the most significant developments of science in the last half century. A simplified history has Peter Higgs positing it in the mid-1960s followed by a long wait while experimentalists progressively turned up collider energies until it appeared several decades later. However, in order for both the hypothesis and the experimental discovery to occur, a vast and complex theory ecosystem had to thrive in the years before Higgs's hypothesis and in the years that followed, building up to its discovery. It is further claimed that the Higgs boson hypothesis was an immoderate speculation, and therefore faith in theory argumentation and speculation was mandatory for the discovery program to proceed and reach its fulfillment. The Higgs boson could not have been discovered experimentally by accident.

  18. Discovery and Characterization of a Higgs boson using four-lepton events from the CMS

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Christopher Blake [Johns Hopkins Univ., Baltimore, MD (United States)

    2015-07-01

    A new particle decaying to a pair of vector bosons was discovered in 2012 by the ATLAS and CMS experiments at the Large Hadron Collider. In the wake of this discovery a rush of measurements was made to characterize this particle. The fourlepton final state has been instrumental in both the discovery and characterization of this new particle. With only about 20 events seen in the resonance peak at 125 GeV the CMS experiment has been able to make considerable progress in characterizing the Higgs-like boson using the wealth of information in this final state in concert with other decay modes. In addition to the search for this new boson we present three recent results in the study of the Higgs-like boson properties: studies of the production mode, total width, and spin-parity quantum numbers.

  19. The Higgs boson and the physics of $WW$ scattering before and after Higgs discovery

    CERN Document Server

    Szleper, Michał

    2014-01-01

    This work presents a comprehensive overview of the physics of vector boson scattering (VBS) in the dawn of Run 2 of the Large Hadron Collider (LHC). Recalled here are some of its most basic physics principles, the historical relation between vector boson scattering and the Higgs boson, then discussed is the physics of VBS processes after Higgs discovery, and the prospects for future VBS measurements at the LHC and beyond. This monograph reviews the work of many people, including previously published theoretical work as well as experimental results, but also contains a portion of original simulation-based studies that have not been published before.

  20. The search and discovery of the Higgs boson a brief introduction to particle physics

    CERN Document Server

    Flores Castillo, Luis Roberto

    2015-01-01

    This book provides a general description of the search for and discovery of the Higgs boson (particle) at CERN's Large Hadron Collider. The goal is to provide a relatively brief overview of the issues, instruments and techniques relevant for this search; written by a physicist who was directly involved. The Higgs boson may be the one particle that was studied the most before its discovery and the story from postulation in 1964 to detection in 2012 is a fascinating one. The story is told here while detailing the fundamentals of particle physics.

  1. High-energy vector boson scattering after the Higgs discovery

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, Wolfgang; Sekulla, Marco [University of Siegen, Siegen (Germany); Ohl, Thorsten [Wuerzburg University, Wuerzburg (Germany); Reuter, Juergen [DESY, Hamburg (Germany)

    2015-07-01

    Weak vector boson scattering (VBS)at high energies will be one of the key measurements in the upcoming LHC runs. It is very sensitive to any new physics associated with electroweak symmetry breaking. But a conventional EFT analysis will fail at high energies, especially in the presence of the light 125 GeV Higgs boson. In this talk I present how to extend the EFT to a simplified model by adding additional resonances to VBS and therefore increase the energy validity of the theoretical description. Furthermore I introduce the T-matrix unitarization scheme as an extension of the K-matrix unitarization prescription. It provides an asymptotically consistent reference model, which has been matched to the low-energy effective theory of arbitrary non-perturbative and perturbative models.

  2. Higgs bosons in supersymmetric model with CP-violating potential

    OpenAIRE

    Oshimo, Noriyuki

    2015-01-01

    In the supersymmetric standard model which is not minimal, the Higgs potential does not conserve CP symmetry generally. Assuming that there exists an SU(2)-triplet Higgs field, we discuss resultant CP-violating effects on the Higgs bosons. The experimentally observed Higgs boson, which should be CP-even in the standard model, could decay into two photons of CP-odd polarization state non-negligibly. For the second lightest Higgs boson, in sizable region of parameter space, the dominant decay m...

  3. Resummation of Goldstone boson contributions to the MSSM effective potential

    CERN Document Server

    Kumar, Nilanjana

    2016-01-01

    We discuss the resummation of the Goldstone boson contributions to the effective potential of the Minimal Supersymmetric Standard Model (MSSM). This eliminates the formal problems of spurious imaginary parts and logarithmic singularities in the minimization conditions when the tree-level Goldstone boson squared masses are negative or approach zero. The numerical impact of the resummation is shown to be almost always very small. We also show how to write the two-loop minimization conditions so that Goldstone boson squared masses do not appear at all, and so that they can be solved without iteration.

  4. Resummation of Goldstone boson contributions to the MSSM effective potential

    Science.gov (United States)

    Kumar, Nilanjana; Martin, Stephen P.

    2016-07-01

    We discuss the resummation of the Goldstone boson contributions to the effective potential of the minimal supersymmetric Standard Model. This eliminates the formal problems of spurious imaginary parts and logarithmic singularities in the minimization conditions when the tree-level Goldstone boson squared masses are negative or approach zero. The numerical impact of the resummation is shown to be almost always very small. We also show how to write the two-loop minimization conditions so that Goldstone boson squared masses do not appear at all, and so that they can be solved without iteration.

  5. The discovery of the Higgs boson at the Large Hadron Collider

    Science.gov (United States)

    Nisati, A.; Tonelli, G.

    2015-11-01

    This paper summarises the work done by the ATLAS and CMS collaborations, and by the teams of the Large Hadron Collider at CERN, that led to the discovery of a new particle, with mass near 125GeV and properties consistent with the ones predicted for the Standard Model Higgs boson. An overview of the Standard Model, with a description of the role of the Higgs boson in the theory, and a summary of the searches for this particle prior to the LHC operations is also given. The paper presents the results obtained by ATLAS and CMS from the analysis of the full data set produced in the first physics run of LHC. After a short discussion on the implications of the discovery, the future prospects for the precision study of the new particle are lastly discussed.

  6. Boson-exchange nucleon-nucleon potential and nuclear structure

    International Nuclear Information System (INIS)

    A fully momentum-dependent one-boson-exchange potential is derived which takes into account the mesons, π, eta, sigma, rho, ω and phi. Scattering bound states and nuclear matter properties are studied in momentum space. The use of such potential is shown to be as easy as the use of more simple phenomenological interactions. In nuclear matter the formalism of Bethe-Goldstone is chosen to compute the binding energy versus density in the approximation of two-body and three-body correlations. The three-body correlated wave function obtained is then used

  7. Influence of Finite Chemical Potential on Critical Boson Mass in QED3

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-Qiang; LI Zhen; FENG Hong-Tao

    2007-01-01

    Using the coupled Dyson-Schwinger equation for the fermion propagator at finite chemical potential μ,we investigate the fermion chiral condensate when the gauge boson mass is nonzero in QED3. We show that the chiral symmetry restores when the boson mass is large enough, and the critical boson mass depends little on μ.

  8. Forward-Backward Asymmetry as a Discovery Tool for Z' Bosons at the LHC

    CERN Document Server

    Accomando, E; Fiaschi, J; Mimasu, K; Moretti, S; Shepherd-Themistocleous, C

    2015-01-01

    The Forward-Backward Asymmetry (AFB) in Z' physics is commonly only perceived as the observable which possibly allows one to interpret a Z' signal by distinguishing different models of such (heavy) spin-1 bosons. In this paper, we examine the potential of AFB in setting bounds on or even discovering a Z' boson at the Large Hadron Collider (LHC) and show that it might be a powerful tool for this purpose. We analyse two different scenarios: Z' bosons with a narrow and wide width, respectively. We find that, in the first case, the significance of the AFB search can be comparable with that of the bump search usually adopted by the experimental collaborations; however, being a ratio of (differential) cross sections the AFB has the advantage of reducing systematical errors. In the second case, the AFB search can win over the bump search in terms of event shape, as the structure of the AFB distribution as a function of the invariant mass of the reconstructed Z'boson could nail down the new broad resonance much bette...

  9. The Standard Model Higgs : Discovery Potentials and Branching Fraction Measurements at the NLC

    OpenAIRE

    Sachwitz, M.; Schreiber, H. J.; Shichanin, S.

    1997-01-01

    We discuss discovery potentials for a 140 GeV Standard Model Higgs boson produced in e+e- collisions at 360 GeV, including all potential irreducible and reducible background contributions. In the second part of the study, we estimate the uncertainties expected for the branching fractions of the Higgs into bb-bar, tau+tau-, WW* and into cc-bar+gg including a realistic error estimation of the inclusive bremsstrahlung Higgs production cross section.

  10. $3d$ fermion-boson map with imaginary chemical potential

    CERN Document Server

    Filothodoros, E G; Vlachos, N D

    2016-01-01

    We study the three-dimensional $U(N)$ Gross-Neveu and CP$^{N-1}$ models in the canonical formalism with fixed $U(1)$ charge. For large-$N$ this is closely related to coupling the models to abelian Chern-Simons in a monopole background. We show that the presence of the imaginary chemical potential for the $U(1)$ charge makes the phase structure of the models remarkably similar. We calculate their respective large-$N$ free energy densities and show that they are mapped into each other in a precise way. Intriguingly, the free energy map involves the Bloch-Wigner function and its generalizations introduced by Zagier. We expect that our results are connected to the recently discussed $3d$ bosonization.

  11. Complementarity of Forward-Backward Asymmetry for discovery of Z' bosons at the Large Hadron Collider

    CERN Document Server

    Accomando, Elena; Fiaschi, Juri; Mimasu, Ken; Moretti, Stefano; Shepherd-Themistocleous, Claire

    2015-01-01

    The Forward-Backward Asymmetry (AFB) in Z' physics is commonly only thought of as an observable which possibly allows one to profiling a Z' signal by distinguishing different models embedding such (heavy) spin-1 bosons. In this brief review, we examine the potential of AFB in setting bounds on or even discovering a Z' at the Large Hadron Collider (LHC) and proof that it might be a powerful tool for this purpose. We analyse two different scenarios: Z's with a narrow and wide width, respectively. We find that, in both cases, AFB can complement the conventional searches in accessing Z' signals traditionally based on cross section measurements only.

  12. AFB as a discovery tool for Z' bosons at the LHC

    Science.gov (United States)

    Accomando, E.; Belyaev, A.; Fiaschi, J.; Mimasu, K.; Moretti, S.; Shepherd-Themistocleous, C.

    2016-07-01

    The Forward-Backward Asymmetry (AFB) in Z' physics is commonly only perceived as the observable which possibly allows one to interpret a Z' signal by distinguishing different models of such (heavy) spin-1 bosons. In this article, we examine the potential of AFB in setting bounds on or even discovering a Z' at the Large Hadron Collider (LHC) and show that it might be a powerful tool for this purpose. We analyze two different scenarios: Z' s with a narrow and wide width, respectively. We find that in both cases AFB can complement the cross section in accessing Z' signals.

  13. $A_{FB}$ as a discovery tool for $Z^\\prime$ bosons at the LHC

    CERN Document Server

    Accomando, E; Fiaschi, J; Mimasu, K; Moretti, S; Shepherd-Themistocleous, C

    2015-01-01

    The Forward-Backward Asymmetry (AFB) in $Z^\\prime$ physics is commonly only perceived as the observable which possibly allows one to interpret a $Z^\\prime$ signal by distinguishing different models of such (heavy) spin-1 bosons. In this article, we examine the potential of AFB in setting bounds on or even discovering a $Z^\\prime$ at the Large Hadron Collider (LHC) and show that it might be a powerful tool for this purpose. We analyze two different scenarios: $Z^\\prime$s with a narrow and wide width, respectively. We find that in both cases AFB can complement the cross section in accessing $Z^\\prime$ signals.

  14. The discovery potential of laser polarization experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, Markus [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics; Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics and Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2008-12-15

    Currently, a number of experiments are searching for vacuum magnetic birefringence and dichroism, i.e. for dispersive and absorptive features in the propagation of polarized light along a transverse magnetic field in vacuum. In this note we calculate the Standard Model contributions to these signatures, thereby illuminating the discovery potential of such experiments in the search for new physics. We discuss the three main sources for a Standard Model contribution to a dichroism signal: photon splitting, neutrino pair production and production of gravitons. (orig.)

  15. Forward-backward asymmetry as a discovery tool for Z' bosons at the LHC

    Science.gov (United States)

    Accomando, Elena; Belyaev, Alexander; Fiaschi, Juri; Mimasu, Ken; Moretti, Stefano; Shepherd-Themistocleous, Claire

    2016-01-01

    The Forward-Backward Asymmetry (AFB) in Z' physics is commonly only perceived as the observable which possibly allows one to interpret a Z' signal appearing in the Drell-Yan channel by distinguishing different models of such (heavy) spin-1 bosons. In this paper, we revisit this issue, showing that the absence of any di-lepton rapidity cut, which is commonly used in the literature, can enhance the potential of the observable at the LHC. We moreover examine the ability of AFB in setting bounds on or even discovering a Z' at the Large Hadron Collider (LHC) concluding that it may be a powerful tool for this purpose. We analyse two different scenarios: Z'-bosons with a narrow and wide width, respectively. We find that, in the first case, the significance of the AFB search can be comparable with that of the `bump' search usually adopted by the experimental collaborations; however, in being a ratio of (differential) cross sections, the AFB has the advantage of reducing experimental systematics as well as theoretical errors due to PDF uncertainties. In the second case, the AFB search can outperform the bump search in terms of differential shape, meaning the AFB distribution may be better suited for new broad resonances than the event counting strategy usually adopted in such cases.

  16. Supersolid Phase in One-Dimensional Hard-Core Boson Hubbard Model with a Superlattice Potential

    Institute of Scientific and Technical Information of China (English)

    GUO Huai-Ming; LIANG Ying

    2008-01-01

    The ground state of the one-dimensional hard-core boson Hubbard model with a superlattice potential is studied by quantum Monte Carlo methods. We demonstrate that besides the CDW phase and the Mort insulator phase, the supersolid phase emerges due to the presence of the superlattice potential, which reflects the competition with the hopping term. We also study the densities of sublattices and have a clear idea about the distribution of the bosons on the lattice.

  17. Relationship of field-theory based single-boson-exchange potentials to static ones

    International Nuclear Information System (INIS)

    It is shown that field-theory based single-boson-exchange potentials cannot be identified to those of the Yukawa or Coulomb type that are currently inserted in the Schroedinger equation. The potential which is obtained rather correspond to this current single-boson-exchange potential corrected for the probability that the system under consideration is in a two-body component, therefore missing contributions due to the interaction of these two bodies while bosons are exchanged. The role of these contributions, which involve at least two-boson exchanges, is examined. The conditions that allow one to recover the usual single-boson-exchange potential are given. It is shown that the present results have some relation: (i) to the failure of the Bethe-Salpeter equation in reproducing the Dirac or Klein-Gordon equations in the limit where one of the constituents has a large mass, (ii) to the absence of corrections of relative order α log 1/α to a full calculation of the binding energy in the case of neutral massless bosons or (iii) to large corrections of wave-functions calculated perturbatively in some light-front approaches. Refs. 48 (author)

  18. The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC

    CERN Document Server

    Baak, M

    2012-01-01

    In view of the discovery of a new boson by the ATLAS and CMS Collaborations at the LHC, we present an update of the global Standard Model (SM) fit to electroweak precision data. Assuming the new particle to be the SM Higgs boson, all fundamental parameters of the SM are known allowing, for the first time, to overconstrain the SM at the electroweak scale and assert its validity. Including the effects of radiative corrections and the experimental and theoretical uncertainties, the global fit exhibits a p-value of 0.07. The mass measurements by ATLAS and CMS agree within 1.3sigma with the indirect determination M_H=(94 +25 -22) GeV. Within the SM the W boson mass and the effective weak mixing angle can be accurately predicted to be M_W=(80.359 +- 0.011) GeV and sin^2(theta_eff^ell)=(0.23150 +- 0.00010) from the global fit. These results are compatible with, and exceed in precision, the direct measurements. For the indirect determination of the top quark mass we find m_t=(175.8 +2.7 -2.4) GeV, in agreement with t...

  19. Is the New Resonance Spin 0 or 2? Taking a Step Forward in the Higgs Boson Discovery

    CERN Document Server

    Alves, Alexandre

    2012-01-01

    The observation of a new boson of mass $\\sim 125\\gev$ at the CERN LHC may finally have revealed the existence of a Higgs boson. Now we have the opportunity to scrutinize its properties, determining its quantum numbers and couplings to the standard model particles, in order to confirm or not its discovery. We show that by the end of the 8 TeV run, combining the entire data sets of ATLAS and CMS, it will be possible to discriminate between the following discovery alternatives: a scalar $J^P=0^+$ or a tensor $J^P=2^+$ particle with minimal couplings to photons, at a $5\\sigma$ statistical confidence level at least, using only diphotons events. Our results are based on the calculation of a center-edge asymmetry measure of the reconstructed {\\it sPlot} scattering polar angle of the diphotons. The results based on asymmetries are shown to be rather robust against systematic uncertainties with comparable discrimination power to a log likelihood ratio statistic.

  20. Discovery potential for heavy t-tbar resonances in dilepton+jets final states

    CERN Document Server

    Iashvili, Ia; Kharchilava, Avto; Prosper, Harrison B

    2013-01-01

    We examine the prospects for probing heavy top quark-antiquark (t-tbar) resonances at the upgraded LHC in pp collisions at $\\root_s = 14 TeV. Heavy t-tbar resonances (Z' bosons) are predicted by several theories that go beyond the standard model. We consider scenarios in which each top quark decays leptonically, either to an electron or a muon, and the data sets correspond to integrated luminosities of \\int L dt = 300 /fb and \\int L dt = 3000 /fb. We present the expected 5-sigma discovery potential for a Z' resonance as well as the expected upper limits at 95% C.L. on the Z' production cross section and mass in the absence of a discovery.

  1. Optimization through neuron network of the potentiality of Higgs discovery in the CMS detector via H {yields} ZZ{sup *} {yields} 4e{sup {+-}}, and study of the triggering primitives of the electromagnetic calorimeter; Optimisation par reseaux de neurones du potentiel de decouverte du boson de Higgs dans le canal H {yields} ZZ{sup *} {yields} 4e{sup {+-}} sur le detecteur CMS, et etude des primitives de declenchement du calorimetre electromagnetique

    Energy Technology Data Exchange (ETDEWEB)

    Bimbot, St

    2006-10-15

    The first chapter presents the theoretical background on which the Higgs mechanism is based within the framework of the standard model. The second chapter reviews the past and present attempts aiming at the discovery of the Higgs boson. The specific features of the Large Hadron Collider (LHC) and of one of its detector: the CMS (Compact Muon Solenoid) detector are given in the third chapter. The author details the track detector and the ECAL electronic calorimeter that are key components of CMS in the detection of the Higgs boson via the following decay channel: H {yields} ZZ{sup *} {yields} 2e{sup +}2e{sup -} (where Z and Z{sup *} represents the Z{sup O} boson in a real state and in a virtual state respectively). The chapters 4 and 5 are dedicated to the calibration of the ECAL calorimeter via the use of an electron beam and to the triggering system. The data analysis that will lead to the reconstruction of the events detected by CMS is presented in the chapter 6. The last chapter is devoted to the optimization of the extraction of the Higgs boson signal from an abundant background noise. (A.C.)

  2. Topological phases of two-component bosons in species-dependent artificial gauge potentials

    Science.gov (United States)

    Wu, Ying-Hai; Shi, Tao

    2016-08-01

    We study bosonic atoms with two internal states in artificial gauge potentials whose strengths are different for the two components. A series of topological phases for such systems is proposed using the composite fermion theory and the parton construction. It is found in exact diagonalization that some of the proposed states may be realized for simple contact interaction between bosons. The ground states and low-energy excitations of these states are modeled using trial wave functions. The effective field theories for these states are also constructed and reveal some interesting properties.

  3. Global symplectic potentials on the Witten covariant phase space for bosonic extendons

    CERN Document Server

    Cartas-Fuentevilla, R

    2002-01-01

    It is proved that the projections of the deformation vector field, normal and tangential to the worldsheet manifold swept out by Dirac-Nambu-Goto bosonic extendons propagating in a curved background, play the role of {\\it global} symplectic potentials on the corresponding Witten covariant phase space. It is also proved that the {\\it presymplectic} structure obtained from such potentials by direct exterior derivation, has not components tangent to the action of the relevant diffeomorphisms group of the theory.

  4. Influence of trapping potentials on the phase diagram of bosonic atoms in optical lattices

    OpenAIRE

    Giampaolo, S. M.; Illuminati, F.; Mazzarella, G.; De Siena, S.

    2004-01-01

    We study the effect of external trapping potentials on the phase diagram of bosonic atoms in optical lattices. We introduce a generalized Bose-Hubbard Hamiltonian that includes the structure of the energy levels of the trapping potential, and show that these levels are in general populated both at finite and zero temperature. We characterize the properties of the superfluid transition for this situation and compare them with those of the standard Bose-Hubbard description. We briefly discuss s...

  5. Flavor Nuclei and One-Boson-Exchange Potentials

    Science.gov (United States)

    Bando, H.; Nagata, S.

    1983-02-01

    Binding energies of a flavour baryon, Λ(strange), Λc(charmed) and Λb(beauty), in nuclear matter and in the α-particle are investigated within the framework of the lowest-order Brueckner theory by employing the OBE potentials derived on the basis of the Nijmegen model D interaction.

  6. Isotropization in Bianchi type-I cosmological model with fermions and bosons interacting via Yukawa potential

    CERN Document Server

    Ribas, M O; Devecchi, F P; Kremer, G M

    2015-01-01

    In this work we investigate a model for the early Universe in a Bianchi type-I metric, where the sources of the gravitational field are a fermionic and a bosonic field, interacting through a Yukawa potential, following the standard model of elementary particles. It is shown that the fermionic field has a negative pressure, while the boson has a small positive pressure. The fermionic field is the responsible for an accelerated regime at early times, but since the total pressure tends to zero for large times, a transition to a decelerated regime occurs. Here the Yukawa potential answers for the duration of the accelerated regime, since by decreasing the value of its coupling constant the transition accelerated-decelerated occurs in later times. The isotropization which occurs for late times is due to the presence of the fermionic field as one of the sources of the gravitational field.

  7. Effective potential and Goldstone bosons in de Sitter space

    OpenAIRE

    Arai, Takashi

    2013-01-01

    We investigate nonperturbative infrared effects for the O(N) linear sigma model in de Sitter space using the two-particle irreducible effective action at the Hartree truncation level. This approximation resums the infinite series of so-called superdaisy diagrams. For the proper treatment of ultraviolet divergences, we first study the renormalization of this approximation on a general curved background. Then, we calculate radiatively corrected masses and the effective potential. As a result, s...

  8. Complete two-loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry

    OpenAIRE

    Martin, Stephen P.

    2002-01-01

    I present a method for accurately calculating the pole mass of the lightest Higgs scalar boson in supersymmetric extensions of the Standard Model, using a mass-independent renormalization scheme. The Higgs scalar self-energies are approximated by supplementing the exact one-loop results with the second derivatives of the complete two-loop effective potential in Landau gauge. I discuss the dependence of this approximation on the choice of renormalization scale, and note the existence of partic...

  9. Effects of a potential fourth fermion generation on the Higgs boson mass bounds

    CERN Document Server

    Gerhold, P; Kallarackal, J

    2010-01-01

    We study the effect of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying $SU(2)_L\\times U(1)_Y$ symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations.

  10. Effects of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds

    CERN Document Server

    Gerhold, Philipp; Kallarackal, Jim

    2010-01-01

    We study the effect of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying ${SU}(2)_L\\times {U}(1)_Y$ symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations.

  11. The Higgs Boson Mass from Three-loop Effective Potential of Massless Standard Model

    CERN Document Server

    Alrebdi, H I; Barakat, T

    2016-01-01

    The effective potential of massless standard model (SM) is calculated up to three-loop order. The stability of the effective potential and the Higgs boson mass are investigated up to three-loop order. We found that, Higgs boson mass $m_{H}$ of one-loop order is large. The two-loop and three-loop results are not appreciably different from each other. The two-loop and three-loop radiative corrections have led to an improvement of Higgs boson mass and the value of the scalar coupling. For the value $m_{t}=170$ GeV at the energy scale $\\mu\\approx 5.68\\times10^2$GeV, we get $m_{H2-loop}\\approx 125.4$ GeV. At the energy scale $\\mu\\geq28\\times10^2$, the scalar coupling $\\lambda$ at two-loop becomes negative and leads to metastable vacuum while the three-loop level is stable even at high $\\mu$ $\\approx 10^{19}$ GeV. For the larger $\\mu$-range $(3 \\times 10^{3} \\text{GeV}\\leq \\mu \\leq 20 \\times 10^{3} \\text{GeV})$ spontaneous symmetry breaking for one-loop and three-loop occurs at approximately the same scalar couplin...

  12. Influence of trapping potentials on the phase diagram of bosonic atoms in optical lattices

    International Nuclear Information System (INIS)

    We study the effect of external trapping potentials on the phase diagram of bosonic atoms in optical lattices. We introduce a generalized Bose-Hubbard Hamiltonian that includes the structure of the energy levels of the trapping potential, and show that these levels are in general populated both at finite and zero temperature. We characterize the properties of the superfluid transition for this situation and compare them with those of the standard Bose-Hubbard description. We briefly discuss similar behaviors for fermionic systems

  13. Academic Training Lecture: Higgs Boson Searches at Hadron Colliders

    CERN Multimedia

    HR Department

    2010-01-01

    Regular Programme 21, 22, 23 & 24 June 2010 from 11:00 to 12:00 - Main Auditorium, Bldg. 500-1-001 Higgs Boson Searches at Hadron Colliders by Dr. Karl Jakobs (University of Freiburg) In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and ...

  14. Vortex lattices for ultracold bosonic atoms in a non-Abelian gauge potential

    OpenAIRE

    Komineas, Stavros; Cooper, Nigel R.

    2012-01-01

    The use of coherent optical dressing of atomic levels allows the coupling of ultracold atoms to effective gauge fields. These can be used to generate effective magnetic fields, and have the potential to generate non-Abelian gauge fields. We consider a model of a gas of bosonic atoms coupled to a gauge field with U(2) symmetry, and with constant effective magnetic field. We include the effects of weak contact interactions by applying Gross-Pitaevskii mean-field theory. We study the effects of ...

  15. Three-Higgs-doublet models: symmetries, potentials and Higgs boson masses

    Energy Technology Data Exchange (ETDEWEB)

    Keus, Venus [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Department of Physics, Royal Holloway, University of London,Egham Hill, Egham TW20 0EX (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory,Chilton, Didcot, Oxon OX11 0QX (United Kingdom); King, Stephen F. [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Moretti, Stefano [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory,Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2014-01-13

    We catalogue and study three-Higgs-doublet models in terms of all possible allowed symmetries (continuous and discrete, Abelian and non-Abelian), where such symmetries may be identified as flavour symmetries of quarks and leptons. We analyse the potential in each case, and derive the conditions under which the vacuum alignments (0,0,v), (0,v,v) and (v,v,v) are minima of the potential. For the alignment (0,0,v), relevant for dark matter models, we calculate the corresponding physical Higgs boson mass spectrum. Motivated by supersymmetry, we extend the analysis to the case of three up-type Higgs doublets and three down-type Higgs doublets (six doublets in total). Many of the results are also applicable to flavon models where the three Higgs doublets are replaced by three electroweak singlets.

  16. A Jacobian generalization of the pseudo Nambu-Goldstone bosons potential

    CERN Document Server

    Hipólito-Ricaldi, W S

    2015-01-01

    We enlarge the classes of inflaton and quintessence fields by generalizing the pseudo Nambu-Goldstone boson potential by means of elliptic Jacobian functions characterized by a parameter $k$. We use such generalization to implement an inflationary era and a late acceleration of the universe. As an inflationary model the Jacobian generalization leads us to a number of e-foldings and a primordial spectrum of perturbations compatible with the Planck collaboration 2015. As a quintessence model, a study of the evolution of its Equation of State (EoS) and its $w'$-$w$ plane, helps us to classify it as a thawing model. This allows us to consider analytical approximations for the EoS recently discovered for thawing quintessence. By using Union 2.1 Supernova Ia and Hubble parameter $H(z)$ data we determine the range of $k$-values which give rise to viable models for the late acceleration of the universe.

  17. Sensitivity and Discovery Potential of the PROSPECT Experiment

    CERN Document Server

    ,

    2015-01-01

    Measurements of the reactor antineutrino flux and spectrum compared to model predictions have revealed an apparent deficit in the interaction rates of reactor antineutrinos and an unexpected spectral deviation. PROSPECT, the Precision Reactor Oscillation Spectrum measurement, is designed to make a precision measurement of the antineutrino spectrum from a research reactor and search for signs of an eV-scale sterile neutrino. PROSPECT will be located at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and make use of a Highly Enriched Uranium reactor for a measurement of the pure U-235 antineutrino spectrum. An absolute measurement of this spectrum will constrain reactor models and improve our understanding of the reactor antineutrino spectrum. Additionally, the planned 3-ton lithium-doped liquid scintillator detector is ideally suited to perform a search for sterile neutrinos. This talk will focus on the sensitivity and discovery potential of PROSPECT and the detector design to achieve the...

  18. MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios after the Discovery of a Higgs-like Particle

    Energy Technology Data Exchange (ETDEWEB)

    Carena, M.; Heinemeyer, S.; Stål, O.; Wagner, C.E.M.; Weiglein, G.

    2013-09-01

    A Higgs-like particle with a mass of about 125.5 GeV has been discovered at the LHC. Within the current experimental uncertainties, this new state is compatible with both the predictions for the Standard Model (SM) Higgs boson and with the Higgs sector in the Minimal Supersymmetric Standard Model (MSSM). We propose new low-energy MSSM benchmark scenarios that, over a wide parameter range, are compatible with the mass and production rates of the observed signal. These scenarios also exhibit interesting phenomenology for the MSSM Higgs sector. We propose a slightly updated version of the well-known mh-max scenario, and a modified scenario (mh-mod), where the light CP-even Higgs boson can be interpreted as the LHC signal in large parts of the MA-tan \\beta\\ plane. Furthermore, we define a light stop scenario that leads to a suppression of the lightest CP-even Higgs gluon fusion rate, and a light stau scenario with an enhanced decay rate of h to \\gamma\\gamma\\ at large tan \\beta. We also suggest a \\tau-phobic Higgs scenario in which the lightest Higgs can have suppressed couplings to down-type fermions. We propose to supplement the specified value of the \\mu\\ parameter in some of these scenarios with additional values of both signs. This has a significant impact on the interpretation of searches for the non SM-like MSSM Higgs bosons. We also discuss the sensitivity of the searches to heavy Higgs decays into light charginos and neutralinos, and to decays of the form H to hh. Finally, in addition to all the other scenarios where the lightest CP-even Higgs is interpreted as the LHC signal, we propose a low-MH scenario, where instead the heavy CP-even Higgs boson corresponds to the new state around 125.5 GeV.

  19. CERN Library | Tord Ekelöf presents the proceedings of the Nobel Symposium on the Higgs Boson Discovery and Other Recent LHC Results | 12 June

    CERN Document Server

    2014-01-01

    Thursday, 12 June 2014 at 16:00 in the Library (52-1-052).   The “Nobel Symposium on LHC results” took place at Krusenberg mansion, Uppsala, Sweden on 13-17 May 2013. The aim of the Symposium was to give an overview of the latest experimental and theoretical results pertaining to the LHC programme but also to give an occasion to ponder over the implications of these results in the broader context of the past, present and future evolution of the field of Particle Physics. “Nobel Symposium 154: The Higgs Boson Discovery and Other Recent LHC Results”, ed. by Tord Ekelöf, Physica Scripta T154, IOP, 2013, ISBN 9789789789781. * Coffee will be served from 15:30 * E-proceedings available here.

  20. North African geology: exploration matrix for potential major hydrocarbon discoveries

    Energy Technology Data Exchange (ETDEWEB)

    Kanes, W.H.; O' Connor, T.E.

    1985-02-01

    Based on results and models presented previously, it is possible to consider an exploration matrix that examines the 5 basic exploration parameters: source, reservoir, timing, structure, and seal. This matrix indicates that even those basins that have had marginal exploration successes, including the Paleozoic megabasin and downfaulted Triassic grabens of Morocco, the Cyrenaican platform of Libya, and the Tunisia-Sicily shelf, have untested plays. The exploration matrix also suggests these high-risk areas could change significantly, if one of the 5 basic matrix parameters is upgraded or if adjustments in political or financial risk are made. The Sirte basin and the Gulf of Suez, 2 of the more intensely explored areas, also present attractive matrix prospects, particularly with deeper Nubian beds or with the very shallow Tertiary sections. The Ghadames basin of Libya and Tunisia shows some potential, but its evaluation responds strongly to stratigraphic and external nongeologic matrix variations based on degree of risk exposure to be assumed. Of greatest risk in the matrix are the very deep Moroccan Paleozoic clastic plays and the Jurassic of Sinai. However, recent discoveries may upgrade these untested frontier areas. Based on the matrix generated by the data presented at a North African Petroleum Geology symposium, significant hydrocarbon accumulations are yet to be found. The remaining questions are: where in the matrix does each individual company wish to place its exploration capital and how much should be the risk exposure.

  1. Symmetry-improved 2PI approach to the Goldstone-boson IR problem of the SM effective potential

    Science.gov (United States)

    Pilaftsis, Apostolos; Teresi, Daniele

    2016-05-01

    The effective potential of the Standard Model (SM), from three loop order and higher, suffers from infrared (IR) divergences arising from quantum effects due to massless would-be Goldstone bosons associated with the longitudinal polarizations of the W± and Z bosons. Such IR pathologies also hinder accurate evaluation of the two-loop threshold corrections to electroweak quantities, such as the vacuum expectation value of the Higgs field. However, these divergences are an artifact of perturbation theory, and therefore need to be consistently resummed in order to obtain an IR-safe effective potential. The so-called Two-Particle-Irreducible (2PI) effective action provides a rigorous framework to consistently perform such resummations, without the need to resort to ad hoc subtractions or running into the risk of over-counting contributions. By considering the recently proposed symmetry-improved 2PI formalism, we address the problem of the Goldstone-boson IR divergences of the SM effective potential in the gaugeless limit of the theory. In the same limit, we evaluate the IR-safe symmetry-improved 2PI effective potential, after taking into account quantum loops of chiral fermions, as well as the renormalization of spurious custodially breaking effects triggered by fermionic Yukawa interactions. Finally, we compare our results with those obtained with other methods presented in the literature.

  2. Symmetry-improved 2PI approach to the Goldstone-boson IR problem of the SM effective potential

    Directory of Open Access Journals (Sweden)

    Apostolos Pilaftsis

    2016-05-01

    Full Text Available The effective potential of the Standard Model (SM, from three loop order and higher, suffers from infrared (IR divergences arising from quantum effects due to massless would-be Goldstone bosons associated with the longitudinal polarizations of the W± and Z bosons. Such IR pathologies also hinder accurate evaluation of the two-loop threshold corrections to electroweak quantities, such as the vacuum expectation value of the Higgs field. However, these divergences are an artifact of perturbation theory, and therefore need to be consistently resummed in order to obtain an IR-safe effective potential. The so-called Two-Particle-Irreducible (2PI effective action provides a rigorous framework to consistently perform such resummations, without the need to resort to ad hoc subtractions or running into the risk of over-counting contributions. By considering the recently proposed symmetry-improved 2PI formalism, we address the problem of the Goldstone-boson IR divergences of the SM effective potential in the gaugeless limit of the theory. In the same limit, we evaluate the IR-safe symmetry-improved 2PI effective potential, after taking into account quantum loops of chiral fermions, as well as the renormalization of spurious custodially breaking effects triggered by fermionic Yukawa interactions. Finally, we compare our results with those obtained with other methods presented in the literature.

  3. The W Boson Mass Measurement

    Science.gov (United States)

    Kotwal, Ashutosh V.

    2016-10-01

    The measurement of the W boson mass has been growing in importance as its precision has improved, along with the precision of other electroweak observables and the top quark mass. Over the last decade, the measurement of the W boson mass has been led at hadron colliders. Combined with the precise measurement of the top quark mass at hadron colliders, the W boson mass helped to pin down the mass of the Standard Model Higgs boson through its induced radiative correction on the W boson mass. With the discovery of the Higgs boson and the measurement of its mass, the electroweak sector of the Standard Model is over-constrained. Increasing the precision of the W boson mass probes new physics at the TeV-scale. We summarize an extensive Tevatron (1984-2011) program to measure the W boson mass at the CDF and Dø experiments. We highlight the recent Tevatron measurements and prospects for the final Tevatron measurements.

  4. The W Boson Mass Measurement

    CERN Document Server

    Kotwal, Ashutosh V

    2016-01-01

    The measurement of the W boson mass has been growing in importance as its precision has improved, along with the precision of other electroweak observables and the top quark mass. Over the last decade, the measurement of the W boson mass has been led at hadron colliders. Combined with the precise measurement of the top quark mass at hadron colliders, the W boson mass helped to pin down the mass of the Standard Model Higgs boson through its induced radiative correction on the W boson mass. With the discovery of the Higgs boson and the measurement of its mass, the electroweak sector of the Standard Model is over-constrained. Increasing the precision of the W boson mass probes new physics at the TeV-scale. We summarize an extensive Tevatron (1984–2011) program to measure the W boson mass at the CDF and Dø experiments. We highlight the recent Tevatron measurements and prospects for the final Tevatron measurements.

  5. Symmetry-Improved 2PI Approach to the Goldstone-Boson IR Problem of the SM Effective Potential

    CERN Document Server

    Pilaftsis, Apostolos

    2015-01-01

    The effective potential of the Standard Model (SM), from three loop order and higher, suffers from infra-red (IR) divergences arising from quantum effects due to massless would-be Goldstone bosons associated with the longitudinal polarizations of the W and Z bosons. Such IR pathologies also hinder accurate evaluation of the two-loop threshold corrections to electroweak quantities, such as the vacuum expectation value of the Higgs field. However, these divergences are an artifact of perturbation theory, and therefore need to be consistently resummed in order to obtain a IR-safe effective potential. The so-called Two-Particle-Irreducible (2PI) effective action provides a rigorous framework to consistently perform such resummations, without the need to resort to ad hoc subtractions or running into the risk of over-counting contributions. By considering the recently proposed symmetry-improved 2PI formalism, we address the problem of the Goldstone-boson IR divergences of the SM effective potential in the gaugeless...

  6. Higgs boson discovery versus sparticles prediction: Impact on the pMSSM's posterior samples from a Bayesian global fit

    CERN Document Server

    AbdusSalam, Shehu S

    2012-01-01

    The signal strength of the recently discovered Higgs boson-like particle in the diphoton channel seemingly constrains physics beyond the standard model to a severe degree. However, the reported signal strength is prone to possible underestimation of uncertainties. We propose a discriminant that is relatively free of many of the theoretical uncertainties, and use this to gauge the impact on the phenomenological MSSM. A Bayesian global fit to all the pre-LHC data results in posterior distributions for the masses that are neither very restrictive, nor sufficiently prior-independent (except for the Higgs and stop masses). The imposition of the Higgs data, on the other hand, yields interesting and nearly prior-independent constraints. In particular, the existence of some light superpartners is favoured.

  7. Development of a benchmark parameter scan for Higgs bosons in the NMSSM Model and a study of the sensitivity for H{yields}AA{yields}4{tau} in vector boson fusion with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Rottlaender, Iris

    2008-08-15

    An evaluation of the discovery potential for NMSSM Higgs bosons of the ATLAS experiment at the LHC is presented. For this purpose, seven two-dimensional benchmark planes in the six-dimensional parameter space of the NMSSM Higgs sector are defined. These planes include different types of phenomenology for which the discovery of NMSSM Higgs bosons is especially challenging and which are considered typical for the NMSSM. They are subsequently used to give a detailed evaluation of the Higgs boson discovery potential based on Monte Carlo studies from the ATLAS collaboration. Afterwards, the possibility of discovering NMSSM Higgs bosons via the H{sub 1}{yields}A{sub 1}A{sub 1}{yields}4{tau}{yields}4{mu}+8{nu} decay chain and with the vector boson fusion production mode is investigated. A particular emphasis is put on the mass reconstruction from the complex final state. Furthermore, a study of the jet reconstruction performance at the ATLAS experiment which is of crucial relevance for vector boson fusion searches is presented. A good detectability of the so-called tagging jets that originate from the scattered partons in the vector boson fusion process is of critical importance for an early Higgs boson discovery in many models and also within the framework of the NMSSM. (orig.)

  8. The future of the Higgs boson

    International Nuclear Information System (INIS)

    Experimentalists and theorists are still celebrating the Nobel-worthy discovery of the Higgs boson that was announced in July 2012 at CERN’s Large Hadron Collider. Now they are working on the profound implications of that discovery

  9. Transmission coefficient and two-fold degenerate discrete spectrum of spin-1 bosons in a double-step potential

    CERN Document Server

    de Oliveira, L P

    2015-01-01

    The scattering of spin-1 bosons in a nonminimal vector double-step potential is described in terms of eigenstates of the helicity operator and it is shown that the transmission coefficient is insensitive to the choice of the polarization of the incident beam. Poles of the transmission amplitude reveal the existence of a two-fold degenerate spectrum. The results are interpreted in terms of solutions of two coupled effective Schr\\"{o}dinger equations for a finite square well with additional $\\delta $-functions situated at the borders.

  10. Higgs Boson Pizza Day

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    CERN celebrated the fourth anniversary of the historical Higgs boson announcement with special pizzas.    400 pizzas were served on Higgs pizza day in Restaurant 1 at CERN to celebrate the fourth anniversary of the announcement of the discovery of the Higgs Boson (Image: Maximilien Brice/ CERN) What do the Higgs boson and a pizza have in common? Pierluigi Paolucci, INFN and CMS collaboration member, together with INFN president Fernando Ferroni found out the answer one day in Naples: the pizza in front of them looked exactly like a Higgs boson event display. A special recipe was then created in collaboration with the chef of the historic “Ettore” pizzeria in the St. Lucia area of Naples, and two pizzas were designed to resemble two Higgs boson decay channel event displays. The “Higgs Boson Pizza Day” was held on Monday, 4 July 2016, on the fourth anniversary of the announcement of the discovery of the Higgs boso...

  11. Top Quark Produced Through the Electroweak Force: Discovery Using the Matrix Element Analysis and Search for Heavy Gauge Bosons Using Boosted Decision Trees

    Energy Technology Data Exchange (ETDEWEB)

    Pangilinan, Monica [Brown Univ., Providence, RI (United States)

    2010-05-01

    The top quark produced through the electroweak channel provides a direct measurement of the Vtb element in the CKM matrix which can be viewed as a transition rate of a top quark to a bottom quark. This production channel of top quark is also sensitive to different theories beyond the Standard Model such as heavy charged gauged bosons termed W'. This thesis measures the cross section of the electroweak produced top quark using a technique based on using the matrix elements of the processes under consideration. The technique is applied to 2.3 fb-1 of data from the D0 detector. From a comparison of the matrix element discriminants between data and the signal and background model using Bayesian statistics, we measure the cross section of the top quark produced through the electroweak mechanism σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.30-1.20+0.98 pb. The measured result corresponds to a 4.9σ Gaussian-equivalent significance. By combining this analysis with other analyses based on the Bayesian Neural Network (BNN) and Boosted Decision Tree (BDT) method, the measured cross section is 3.94 ± 0.88 pb with a significance of 5.0σ, resulting in the discovery of electroweak produced top quarks. Using this measured cross section and constraining |Vtb| < 1, the 95% confidence level (C.L.) lower limit is |Vtb| > 0.78. Additionally, a search is made for the production of W' using the same samples from the electroweak produced top quark. An analysis based on the BDT method is used to separate the signal from expected backgrounds. No significant excess is found and 95% C.L. upper limits on the production cross section are set for W' with masses within 600-950 GeV. For four general models of W{prime} boson production using decay channel W' → t$\\bar{p}$, the lower mass limits are the following: M(W'L with SM couplings) > 840 GeV; M(W'R) > 880 GeV or 890 GeV if the

  12. Bosonic Partition Functions

    CERN Document Server

    Kellerstein, M; Verbaarschot, J J M

    2016-01-01

    The behavior of quenched Dirac spectra of two-dimensional lattice QCD is consistent with spontaneous chiral symmetry breaking which is forbidden according to the Coleman-Mermin-Wagner theorem. One possible resolution of this paradox is that, because of the bosonic determinant in the partially quenched partition function, the conditions of this theorem are violated allowing for spontaneous symmetry breaking in two dimensions or less. This goes back to work by Niedermaier and Seiler on nonamenable symmetries of the hyperbolic spin chain and earlier work by two of the auhtors on bosonic partition functions at nonzero chemical potential. In this talk we discuss chiral symmetry breaking for the bosonic partition function of QCD at nonzero isospin chemical potential and a bosonic random matrix theory at imaginary chemical potential and compare the results with the fermionic counterpart. In both cases the chiral symmetry group of the bosonic partition function is noncompact.

  13. A review of the discovery of SM-like Higgs boson in $H\\rightarrow \\gamma\\gamma$ decay channel with the CMS detector at the LHC

    Indian Academy of Sciences (India)

    SATYAKI BHATTACHARYA; SHILPI JAIN

    2016-09-01

    In this review we have outlined a very brief history of the Higgs boson search and the development of the strategies for searching for the Higgs boson in its diphoton decay channel.We have reviewed the methodology and tools that led to the first observation of the Higgs boson decaying to a pair of photons. We have presented the latest results from the measured properties of the newly found boson.We concentrate for most part on the analysis developed by the CMS experiment, but also present the latest results of the ATLAS experiment along with CMS results.

  14. Search for Higgs boson in beyond standard model scenarios at large hadron collider

    Indian Academy of Sciences (India)

    Kajari Mazumdar; on behalf of the ATLAS and CMS Collaborations

    2007-11-01

    The principal physics motivation of the LHC experiments is to search for the Higgs boson and to probe the physics of TeV energy scale. Potential of discovery for Higgs bosons in various scenarios beyond standard model have been estimated for both CMS and ATLAS experiments through detailed detector simulations. Main results from the recently published studies of CMS collaboration are only included in this write-up.

  15. Charged Higgs boson searches and SemiConductor Tracker commissioning for the ATLAS experiment

    OpenAIRE

    Mohn, Bjarte Alsaker

    2007-01-01

    The ATLAS (A Toroidal Lhc ApparatuS) experiment is one of four major experiments presently being installed at the upcoming Large Hadron Collider (LHC) at the European Centre for Nuclear Research (CERN) outside Geneva. In this thesis we present work done on both the simulation of the ATLAS physics potential for a charged Higgs boson and the construction of the Semiconductor Tracker (SCT) - a subdetector within the ATLAS Inner Detector. The discovery of a charged Higgs boson w...

  16. Collisional interactions between self-interacting nonrelativistic boson stars: Effective potential analysis and numerical simulations

    Science.gov (United States)

    Cotner, Eric

    2016-09-01

    Scalar particles are a common prediction of many beyond the Standard Model theories. If they are light and cold enough, there is a possibility they may form Bose-Einstein condensates, which will then become gravitationally bound. These boson stars are solitonic solutions to the Einstein-Klein-Gordon equations but may be approximated in the nonrelativistic regime with a coupled Schrödinger-Poisson system. General properties of single soliton states are derived, including the possibility of quartic self-interactions. Binary collisions between two solitons are then studied, and the effects of different mass ratios, relative phases, self-couplings, and separation distances are characterized, leading to an easy conceptual understanding of how these parameters affect the collision outcome in terms of conservation of energy. Applications to dark matter are discussed.

  17. Neural crest stem cells: discovery, properties and potential for therapy

    Institute of Scientific and Technical Information of China (English)

    Annita Achilleos; Paul A Trainor

    2012-01-01

    Neural crest (NC) cells are a migratory cell population synonymous with vertebrate evolution.They generate a wide variety of cell and tissue types during embryonic and adult development including cartilage and bone,connective tissue,pigment and endocrine cells as well as neurons and glia amongst many others.Such incredible lineage potential combined with a limited capacity for self-renewal,which persists even into adult life,demonstrates that NC cells bear the key hallmarks of stem and progenitor cells.In this review,we describe the identification,characterization and isolation of NC stem and progenitor cells from different tissues in both embryo and adult organisms.We discuss their specific properties and their potential application in cell-based tissue and disease-specific repair.

  18. Hierarchy in Sampling Gaussian-correlated Bosons

    CERN Document Server

    Huh, Joonsuk

    2016-01-01

    Boson Sampling represents a class of physical processes potentially intractable for classical devices to simulate. The Gaussian extension of Boson Sampling remains a computationally hard problem, where the input state is a product of uncorrelated Gaussian modes. Besides, motivated by molecular spectroscopy, Vibronic Boson Sampling involves operations that can generate Gaussian correlation among different Boson modes. Therefore, Gaussian Boson Sampling is a special case of Vibronic Boson Sampling. However, this does not necessarily mean that Vibronic Boson Sampling is more complex than Gaussian Boson Sampling. Here we develop a hierarchical structure to show how the initial correlation in Vibronic Boson Sampling can be absorbed in Gaussian Boson Sampling with ancillary modes and in a scattershot fashion. Since every Gaussian state is associated with a thermal state, our result implies that every sampling problem in molecular vibronic transitions, at any temperature, can be simulated by Gaussian Boson Sampling ...

  19. Natural Products Towards the Discovery of Potential Future Antithrombotic Drugs.

    Science.gov (United States)

    Islam, Md Asiful; Alam, Fahmida; Khalil, Md Ibrahim; Sasongko, Teguh Haryo; Gan, Siew Hua

    2016-01-01

    Globally, thrombosis-associated disorders are one of the main contributors to fatalities. Besides genetic influences, there are some acquired and environmental risk factors dominating thrombotic diseases. Although standard regimens have been used for a long time, many side effects still occur which can be life threatening. Therefore, natural products are good alternatives. Although the quest for antithrombotic natural products came to light only since the end of last century, in the last two decades, a considerable number of natural products showing antithrombotic activities (antiplatelet, anticoagulant and fibrinolytic) with no or minimal side effects have been reported. In this review, several natural products used as antithrombotic agents including medicinal plants, vegetables, fruits, spices and edible mushrooms which have been discovered in the last 15 years and their target sites (thrombogenic components, factors and thrombotic pathways) are described. In addition, the side effects, limitations and interactions of standard regimens with natural products are also discussed. The active compounds could serve as potential sources for future research on antithrombotic drug development. As a future direction, more advanced researches (in quest of the target cofactor or component involved in antithrombotic pathways) are warranted for the development of potential natural antithrombotic medications (alone or combined with standard regimens) to ensure maximum safety and efficacy. PMID:26951101

  20. Higgs boson pizza

    CERN Multimedia

    Cinzia De Melis

    2016-01-01

    Four years after the historic announcement of the Higgs boson discovery at CERN, a collaboration between INFN and CERN has declared 4 July 2016 as “Higgs Boson Pizza Day”. The idea was born in Naples, by Pierluigi Paolucci and INFN president Fernando Ferroni, who inspired the chef of the historic “Ettore” pizzeria in St. Lucia to create the Higgs boson pizza in time for the opening of a Art&Science exhibition on 15 September 2015 in Naples. The animation shows the culinary creation of a Higgs boson in form of a vegetarian and ham&salami pizza. Ham&Salami: A two asparagus (proton-proton) collision produces a spicy Higgs boson (chorizo) decaying into two high-energy salami (photon) clusters and a lot of charged (sliced ham) and neutral (olive) particles that are detected in the pizza (detector) entirely covered with mozzarella sensors. A two asparagus (proton-proton) collision produces a juicy Higgs boson (cherry tomato) decaying into four high-energy (charged) peppers producing a tasty sign...

  1. Particle physics discovery potential using dark matter detectors

    International Nuclear Information System (INIS)

    Many of the present directions suggested for going ''beyond the Standard Model'' show promise for tests utilizing astrophysical sources. Some astrophysical puzzles suggest particle physics solutions requiring new, unconventional particles. In order to capitalize on these opportunities for progress in particle physics new detection techniques are required. Present technology has already permitted some important tests but the technology is near its limit. Intense activity is underway particularly in the area of cryogenic detectors. These developments have created an exciting new frontier at the intersection of condensed matter, astrophysics and particle physics. The nature of this frontier and its implications for progress in particle physics and its complementarity to the SSC potential are emphasized. Examples of dark matter and solar neutrino experiments are used to illustrate. 59 refs., 3 figs., 2 tabs

  2. Intrinsically Unstructured Proteins: Potential Targets for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Pathan Salma

    2009-01-01

    Full Text Available Problem statement: The function of a protein is dependent on its three-dimensional structure. However, numerous proteins lacking intrinsic globular 3D structure under physiological conditions had been recognized. These proteins are frequently involved in some of the most critical cellular control mechanisms and it appears that their rapid turnover, aided by their unstructured nature in the unbound state, provides a level of control that allows rapid and accurate responses of the cell to changing environmental conditions. Approach: A significant number of proteins known to be involved in protein deposition disorders were now considered to Be Intrinsically Unstructured Proteins (IUPs. For example, Aß peptide and tau protein in Alzheimer’s disease, PrP in Prion’s disease and a-Synuclein in Parkinson’s disease. The disorder of intrinsically unstructured proteins (IUP's was crucial to their functions. They may adopt defined but extended structures when bound to cognate ligands. Their amino acid compositions were less hydrophobic than those of soluble proteins. They lack hydrophobic cores and hence did not become insoluble when heated. About 40% of eukaryotic proteins had at least one long (>50 residues disordered region. Roughly 10% of proteins in various genomes had been predicted to be fully disordered. Presently over 100 IUP's had been identified; none are enzymes. Obviously, IUP's were greatly underrepresented in the Protein Data Bank, although there were few cases of an IUP bound to a folded (intrinsically structured protein. Results: The five functional categories for intrinsically unstructured proteins and domains were entropic chains (bristles to ensure spacing, springs, flexible spacers/linkers, effectors (inhibitors and disassemblers, scavengers, assemblers and display sites. These IUPs could serve as potential targets for Structure Based Drug Design (SBDD which stress on the transition

  3. Study of the physics potential of the FCC-hh machine to measure the coupling of the Higgs boson to b quarks

    CERN Document Server

    Rodríguez, Arturo

    2016-01-01

    The FCC project as well as the Pythia + Delphes analysis within the FCC software are introduced. The ROOT analysis carried out to reconstruct main observables, such the invariant mass of the bb system, transverse mass and momentum of the W boson together with the lepton pT and distribution is explained. The resulting reconstructed invariant mass of the bb system showed a peak near the 125 GeV in correspondence with the Higgs boson. Future steps towards estimating the physics potential of the FCC-hh machine in this channel are discussed.

  4. Search for the Higgs Boson in the H{yields} ZZ{sup (*)}{yields}4{mu} Channel in CMS Using a Multivariate Analysis; Busqueda del Boson de Higgs en el Canal H{yields} ZZ{sup (*)}{yields}4{mu} en CMS Empleando un Metodo de Analisis Multivariado

    Energy Technology Data Exchange (ETDEWEB)

    Alonso Diaz, A.

    2007-12-28

    This note presents a Higgs boson search analysis in the CMS detector of the LHC accelerator (CERN, Geneva, Switzerland) in the H{yields} ZZ{sup (*)}{yields}4{mu} channel, using a multivariate method. This analysis, based in a Higgs boson mass dependent likelihood, constructed from discriminant variables, provides a significant improvement of the Higgs boson discovery potential in a wide mass range with respect to the official analysis published by CMS, based in orthogonal cuts independent of the Higgs boson mass. (Author) 8 refs.

  5. Statistics of population difference for cold bosons in a double-well potential

    International Nuclear Information System (INIS)

    We study fluctuations in the atom number difference between halves of harmonically trapped Bose gas split by a delta potential. It is shown that the splitting potential affects fluctuations significantly. An analytical expression for the variance of atom number difference for the impenetrable potential barrier is given. Calculations are performed in the grand canonical ensemble. (paper)

  6. Metagenomics and novel gene discovery: promise and potential for novel therapeutics.

    Science.gov (United States)

    Culligan, Eamonn P; Sleator, Roy D; Marchesi, Julian R; Hill, Colin

    2014-04-01

    Metagenomics provides a means of assessing the total genetic pool of all the microbes in a particular environment, in a culture-independent manner. It has revealed unprecedented diversity in microbial community composition, which is further reflected in the encoded functional diversity of the genomes, a large proportion of which consists of novel genes. Herein, we review both sequence-based and functional metagenomic methods to uncover novel genes and outline some of the associated problems of each type of approach, as well as potential solutions. Furthermore, we discuss the potential for metagenomic biotherapeutic discovery, with a particular focus on the human gut microbiome and finally, we outline how the discovery of novel genes may be used to create bioengineered probiotics.

  7. Potential for optimizing Higgs boson CP measurement in H to tau tau decay at LHC and ML techniques

    CERN Document Server

    Józefowicz, R; Was, Z

    2016-01-01

    We investigate potential for measuring CP state of the Higgs boson in the H to tau tau$ decay with consecutive tau-lepton decays in channels: tau^+- to rho^+- nu_tau and tau^+- to a1^+- nu_tau combined. Subsequent decays rho^+- to pi^+- pi^0, a1^+- to rho^0 pi^+- and rho^0 to pi^+ pi^- are taken into account. We will explore extensions of the method, where acoplanarity angle for the planes build on the visible decay products, pi^+- pi^0 of tau^+- to pi^pm pi^0 nu_tau, was used. The angle is sensitive to transverse spin correlations, thus to parity. We show, that in the case of the cascade decays of tau to a1 nu, information on the CP state of Higgs can be extracted from the acoplanarity angles as well. Because in the cascade decay a1^+- to rho^0 pi^pm,rho^0 to pi^+ pi^- up to four planes can be defined, up to 16 distinct acoplanarity angles are available for H \\to tau tau to a1^+ a1^- nu nu decays. These acoplanarities carry in part supplementary but also correlated information. It is thus cumbersome to evalu...

  8. Modified bosonic gas trapped in a generic 3-dim power law potential

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, E., E-mail: elias@zarm.uni-bremen.de; Laemmerzahl, C., E-mail: claus.laemmerzahl@zarm.uni-bremen.de

    2014-04-04

    We analyze the consequences caused by an anomalous single-particle dispersion relation suggested in several quantum-gravity models, upon the thermodynamics of a Bose–Einstein condensate trapped in a generic 3-dimensional power-law potential. We prove that the condensation temperature is shifted as a consequence of such deformation and show that this fact could be used to provide bounds on the deformation parameters. Additionally, we show that the shift in the condensation temperature, described as a non-trivial function of the number of particles and the trap parameters, could be used as a criterion to analyze the effects caused by a deformed dispersion relation in weakly interacting systems and also in finite size systems.

  9. Natural NMSSM Higgs bosons

    Energy Technology Data Exchange (ETDEWEB)

    King, Stephen F. [School of Physics and Astronomy, University of Southampton (United Kingdom); Muehlleitner, Margarete; Walz, Kathrin [Institute for Theoretical Physics, Karlsruhe Institute of Technology (Germany); Nevzorov, Roman [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)

    2013-07-01

    The Higgs sector of the Next-to Minimal Supersymmetric Extension of the Standard Model (NMSSM) features five neutral Higgs bosons. Compared to the MSSM it is extended by one additional complex singlet field. The discovery of a Higgs-like boson at the LHC last summer opens up the exciting possibility to consider the idea that this might actually be one of the NMSSM Higgs bosons. We study the phenomenology of the NMSSM Higgs sector requiring the presence of a CP-even Higgs boson with a mass close to 126 GeV. To this end we perform a parameter scan and investigate the observable Higgs cross sections into the final states γγ, WW, ZZ, bb and ττ. Our focus is on an enhanced rate into γγ. We discuss where such an enhancement can originate from and study the correlations between the different channels. Our scenarios feature light stop masses, which leads to low fine-tuning, and comply nicely with the LHC results.

  10. Higgs Boson Physics at ATLAS

    CERN Document Server

    StDenis, R; The ATLAS collaboration

    2014-01-01

    The discovery of a new boson with the ATLAS detector at the LHC proton-proton collider is confirmed using the full data set collected at centre-of-mass energies of 7 and 8 TeV. The spin and parity properties of the boson are consistent with that of a scalar particle with positive parity. Comparison of the $J^{P}=0^+$ hypothesis to alternatives $J^{P} = 0^-,1^{+},1^-,2^+$ result in exclusion of these other choices at 97.8\\%, 99.97\\%, 99.7\\%, and 99.3\\% CL. The Higgs-boson Mass is $m_H = 125.5 \\pm 0.2 {\\rm (stat.)} ^{+0.5}_{-0.5} {\\rm (syst.)}$ \\GeV. Evidence for production of the Higgs boson by vector boson fusion is obtained in a model-independent approach by comparing the signal strengths $\\mu$ of vector boson fusion and production associated with a vector boson to to that for gluon fusion including associated production of top quark pairs: $\\mu_{\\rm VBF+VH}/\\mu_{\\rm ggF+ttH}= 1.4 ^{+0.4}_{-0.3} \\rm{(stat.)} ^{+0.6}_{-0.4} \\rm{(syst.)}$ which is 3.3 Gaussian standard deviations from zero.

  11. Higgs boson production at the CMS experiment

    CERN Document Server

    Choudhury, Somnath

    2016-01-01

    After the discovery of the Higgs boson, the ATLAS and CMS experiments have performed combined measurements of the mass of the Higgs boson and also measurements of the production and decay rates, as well as constraints on its couplings to vector bosons and fermions. These combined LHC measurements from the proton-proton collision Run-1 data will be summarized. In addition, the first results from the CMS experiment, on the way to the rediscovery of the Higgs boson in different production and decay modes with the early Run-2 data will also be presented in this paper.

  12. Higgs boson decays into single photon plus unparticle

    International Nuclear Information System (INIS)

    The decay of the standard model Higgs boson into a single photon and a vector unparticle through a one-loop process is studied. For an intermediate-mass Higgs boson, this single photon plus unparticle mode can have a branching ratio comparable with the two-photon discovery mode. The emitted photon has a continuous energy spectrum encoding the nature of the recoil unparticle. It can be measured in precision studies of the Higgs boson after its discovery.

  13. Bosonic Coherent Motions in the Universe

    CERN Document Server

    Kim, Jihn E; Tsujikawa, Shinji

    2014-01-01

    We mini-review the role of fundamental spin-0 bosons as bosonic coherent motion (BCM) in the Universe. The fundamental spin-0 bosons have the potential to account for the baryon number generation, cold dark matter (CDM) via BCM, dark energy, and inflation. Among these, here we focus on the CDM possibility because it can be experimentally tested with the current experimental techniques. We also comment briefly on the panoply of the other roles of spin-0 bosons.

  14. Higgs Discovery Movie

    CERN Multimedia

    2014-01-01

    The ATLAS & CMS Experiments Celebrate the 2nd Anniversary of the Discovery of the Higgs boson. Here, are some images of the path from LHC startup to Nobel Prize, featuring a musical composition by Roger Zare, performed by the Donald Sinta Quartet, called “LHC”. Happy Discovery Day!

  15. CMS standard model Higgs boson results

    Directory of Open Access Journals (Sweden)

    Garcia-Abia Pablo

    2013-11-01

    Full Text Available In July 2012 CMS announced the discovery of a new boson with properties resembling those of the long-sought Higgs boson. The analysis of the proton-proton collision data recorded by the CMS detector at the LHC, corresponding to integrated luminosities of 5.1 fb−1 at √s = 7 TeV and 19.6 fb−1 at √s = 8 TeV, confirm the Higgs-like nature of the new boson, with a signal strength associated with vector bosons and fermions consistent with the expectations for a standard model (SM Higgs boson, and spin-parity clearly favouring the scalar nature of the new boson. In this note I review the updated results of the CMS experiment.

  16. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery

    DEFF Research Database (Denmark)

    Poulsen, Michael; Oh, Dong-Chan; Clardy, Jon;

    2011-01-01

    Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social...... of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal...... and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding...

  17. Radiotracer properties determined by high performance liquid chromatography: a potential tool for brain radiotracer discovery

    International Nuclear Information System (INIS)

    Introduction: Previously, development of novel brain radiotracers has largely relied on simple screening tools. Improved selection methods at the early stages of radiotracer discovery and an increased understanding of the relationships between in vitro physicochemical and in vivo radiotracer properties are needed. We investigated if high performance liquid chromatography (HPLC) methodologies could provide criteria for lead candidate selection by comparing HPLC measurements with radiotracer properties in humans. Methods: Ten molecules, previously used as radiotracers in humans, were analysed to obtain the following measures: partition coefficient (Log P); permeability (Pm); percentage of plasma protein binding (%PPB); and membrane partition coefficient (Km). Relationships between brain entry measurements (Log P, Pm and %PPB) and in vivo brain percentage injected dose (%ID); and Km and specific binding in vivo (BPND) were investigated. Log P values obtained using in silico packages and flask methods were compared with Log P values obtained using HPLC. Results: The modelled associations with %ID were stronger for %PPB (r2=0.65) and Pm (r2=0.77) than for Log P (r2=0.47) while 86% of BPND variance was explained by Km. Log P values were variable dependant on the methodology used. Conclusions: Log P should not be relied upon as a predictor of blood-brain barrier penetration during brain radiotracer discovery. HPLC measurements of permeability, %PPB and membrane interactions may be potentially useful in predicting in vivo performance and hence allow evaluation and ranking of compound libraries for the selection of lead radiotracer candidates at early stages of radiotracer discovery.

  18. Bosonic interactions with a domain wall

    CERN Document Server

    Morris, J R

    2016-01-01

    We consider here the interaction of scalar bosons with a topological domain wall. Not only is there a continuum of scattering states, but there is also an interesting "quasi-discretuum" of positive energy bosonic bound states, describing bosons entrapped within the wall's core. The full spectrum of the scattering and bound state energies and eigenstates is obtainable from a Schr\\"odinger-type of equation with a P\\"oschl-Teller potential. We also consider the presence of a boson gas within the wall and high energy boson emission.

  19. The Higgs boson

    CERN Multimedia

    Brunet, S

    2014-01-01

    ATLAS Higgs poster targeted to general public, explaining the Brout-Englert-Higgs mechanism and why it is important. It also explains the role of the Higgs Boson, how we look for it, the journey of the discovery and what comes after the discovery. Also available in French (http://cds.cern.ch/record/1697501). Don’t hesitate to use it in your institute’s corridors and in your outreach events! The poster is in A0 format. You can click on the image to download the high-quality .pdf version and print it at your favorite printshop. For any questions or comments you can contact atlas-outreach-coordination@cern.ch.

  20. LHC Phenomenology of Z' and Z" bosons in the SU(4)_L \\times U(1)_X little Higgs model

    CERN Document Server

    Lee, Kang Young

    2014-01-01

    We examine direct limits on masses of the extra neutral gauge bosons in the SU(4)_L \\times U(1)_X model with a little Higgs mechanism confronted with the LHC data. There exist two extra neutral gauge bosons, calling Z' and Z", in this model. The lower exclusion limit of the mass of the lighter extra neutral gauge boson is about 3 TeV while that of the heavier one 5 TeV. For comparison, we examine the mass limit of Z'_3 boson in the SU(3)_L \\times U(1)_X model as well, and discuss the implication of our result in the SU(4)_L \\times U(1)_X model with a standard Higgs mechanism. We also discuss the discovery potential of Z' and Z" at the future LHC with the center-of-momentum energy of 14 TeV.

  1. Fly pupae and puparia as potential contaminants of forensic entomology samples from sites of body discovery.

    Science.gov (United States)

    Archer, M S; Elgar, M A; Briggs, C A; Ranson, D L

    2006-11-01

    Fly pupae and puparia may contaminate forensic entomology samples at death scenes if they have originated not from human remains but from animal carcasses or other decomposing organic material. These contaminants may erroneously lengthen post-mortem interval estimates if no pupae or puparia are genuinely associated with the body. Three forensic entomology case studies are presented, in which contamination either occurred or was suspected. In the first case, blow fly puparia collected near the body were detected as contaminants because the species was inactive both when the body was found and when the deceased was last sighted reliably. The second case illustrates that contamination may be suspected at particularly squalid death scenes because of the likely presence of carcasses or organic material. The third case involves the presence at the body discovery site of numerous potentially contaminating animal carcasses. Soil samples were taken along transects to show that pupae and puparia were clustered around their probable sources.

  2. Augmenting Collider Searches and Enhancing Discovery Potentials through Stochastic Jet Grooming

    CERN Document Server

    Roy, Tuhin S

    2016-01-01

    The jet Trimming procedure has been demonstrated to greatly improve event reconstruction in hadron collisions, by mitigating contamination due initial state radiation, multiple interactions, and event pileup. Meanwhile, Qjets -- a nondeterministic approach to tree-based jet substructure has been shown to be a powerful technique in decreasing random statistical fluctuations, yielding significant effective luminosity improvements. This manifests through an improvement in the significance $S/\\delta B$, relative to conventional methods. Qjets also provide novel observables in many cases, like mass-volatility, that could be used to further discriminate between signal and background events. The statistical robustness and volatility observables, for tagging, are obtained simultaneously. We explore here a combination of the two techniques, and demonstrate that significant enhancements in discovery potentials may be obtained in non-trivial ways. We will illustrate this by considering a diboson resonance analysis as a ...

  3. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery.

    Directory of Open Access Journals (Sweden)

    Michael Poulsen

    Full Text Available Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest.

  4. Latest results on anomalous gauge boson couplings with the ATLAS experiment

    CERN Document Server

    Schnoor, Ulrike; The ATLAS collaboration

    2015-01-01

    Contributions from new physics in the electroweak sector can be described in a model-independent way by anomalous gauge boson couplings in the framework of an effective field theory. Measurements of these parameters allow for the exclusion or discovery of contributions beyond the Standard Model. Experimentally, electroweak triple gauge boson couplings have been accessible in di-boson production at the LHC and at previous colliders. More recently, the first measurements of triple gauge boson couplings in vector boson production through vector boson fusion have been achieved. The first observations of vector boson scattering and triple boson production processes have been made recently at the LHC, giving the possibility to measure quartic gauge boson interactions of electroweak vector bosons. These proceedings describe measurements at the ATLAS detector at the LHC in various channels which allow to set limits on anomalous triple and quartic gauge boson couplings. All measurements show good agreement with the pr...

  5. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  6. Development and exploration of potential routes of discovery of new superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xiao [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis summarizes our efforts to develop and explore potential routes for the discovery of new superconductors. The development of viable solutions for sulfur-bearing compounds is presented. It also provides the details of searching for quantum critical points (QCPs) and possible superconductors by suppressing ferromagnetic states via chemical substitution and the application of pressure. The ferromagnetism in La(VxCr1-x)Ge3 was successfully suppressed by pressure, and, in addition, a potential QCP at ambient pressure was discovered for x = 0.16. On the other hand, the La(VxCr1-x)Sb3 series is likely to evolve into new magnetic state with V-substitution with the Cr-based magnetism appearing to be more local-moment like than for the case of LaCrGe3. We also performed detailed characterization on BaSn5 superconductor, giving further understanding of its superconducting state, and on R3Ni2-xSn7 and RNi1-xBi2±y series putting to rest spurious claims of superconductivity.

  7. The Higgs boson is unveiled

    International Nuclear Information System (INIS)

    The 4 of July 2012, the CERN physicists announced the discovery of the Higgs boson, a particle which existence is essential to the understanding of our world. The paper relates this day which will remain in the history of the physics of particles, and gives some details of the results of the CMS and Atlas experiments on the CERN Large Hadron Collider (LHC). Results from the Fermilab's Tevatron accelerator are also mentioned

  8. New constraints and discovery potential for Higgs to Higgs cascade decays through vectorlike leptons

    CERN Document Server

    Dermisek, Radovan; Shin, Seodong

    2016-01-01

    One of the cleanest signatures of a heavy Higgs boson in models with vectorlike leptons is $H\\to e_4^\\pm \\ell^\\mp \\to h\\ell^+\\ell^-$ which, in two Higgs doublet model type-II, can even be the dominant decay mode of heavy Higgses. Among the decay modes of the standard model like Higgs boson, $h$, we consider $b \\bar b$ and $\\gamma \\gamma$ as representative channels with sizable and negligible background, respectively. We obtained new model independent limits on production cross section for this process from recasting existing experimental searches and interpret them within the two Higgs doublet model. In addition, we show that these limits can be improved by about two orders of magnitude with appropriate selection cuts immediately with existing data sets. We also discuss expected sensitivities with integrated luminosity up to 3 ab$^{-1}$ and present a brief overview of other channels.

  9. Two-boson composites

    DEFF Research Database (Denmark)

    Tichy, Malte C.; Bouvrier, P. Alexander; Mølmer, Klaus

    2013-01-01

    Composite bosons made of two bosonic constituents exhibit deviations from ideal bosonic behavior due to their substructure. This deviation is reflected by the normalization ratio of the quantum state of N composites. We find a set of saturable, efficiently evaluable bounds for this indicator, which...... quantifies the bosonic behavior of composites via the entanglement of their constituents. We predict an abrupt transition between ordinary and exaggerated bosonic behavior in a condensate of two-boson composites....

  10. Collisional interactions between self-interacting non-relativistic boson stars: effective potential analysis and numerical simulations

    CERN Document Server

    Cotner, Eric

    2016-01-01

    Scalar particles are a common prediction of many beyond the Standard Model theories. If they are light and cold enough, there is a possibility they may form Bose-Einstein condensates, which will then become gravitationally bound. These boson stars are solitonic solutions to the Einstein-Klein-Gordon equations, but may be approximated in the non-relativistic regime with a coupled Schr\\"odinger-Poisson system. General properties of single soliton states are derived, including the possibility of quartic self-interactions. Binary collisions between two solitons are then studied, and the effects of different mass ratios, relative phases, self-couplings, and separation distances are characterized, leading to an easy conceptual understanding of how these parameters affect the collision outcome in terms of conservation of energy. Applications to dark matter are discussed.

  11. Reconstruction of Higgs bosons in the di-tau channel via 3-prong decay

    Energy Technology Data Exchange (ETDEWEB)

    Gripaios, Ben; Webber, Bryan [Cambridge Univ. (United Kingdom). Cavendish Lab.; Nagao, Keiko [KEK Theory Center, Tsukuba (Japan); Nojiri, Mihoko [KEK Theory Center, Tsukuba (Japan); The Graduate Univ. for Advanced Studies (Sokendai) IPNS, KEK, Tsukuba (Japan); Kavli Institute of the Physics and Mathematics of the Universe (Kavli IPMU), Chiba (Japan); Sakurai, Kazuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-10-15

    We propose a method for reconstructing the mass of a particle, such as the Higgs boson, decaying into a pair of {tau} leptons, of which one subsequently undergoes a 3-prong decay. The kinematics is solved using information from the visible decay products, the missing transverse momentum, and the 3-prong {tau} decay vertex, with the detector resolution taken into account using a likelihood method. The method is shown to give good discrimination between a 125 GeV Higgs boson signal and the dominant backgrounds, such as Z{sup 0} decays to {tau}{tau} and W{sup {+-}} plus jets production. As a result, we find an improvement, compared to existing methods for this channel, in the discovery potential, as well as in measurements of the Higgs boson mass and production cross section times branching ratio.

  12. Charged Higgs boson searches and SemiConductor Tracker commissioning for the ATLAS experiment

    CERN Document Server

    Mohn, Bjarte Alsaker

    The ATLAS (A Toroidal Lhc ApparatuS) experiment is one of four major experiments presently being installed at the upcoming Large Hadron Collider (LHC) at the European Centre for Nuclear Research (CERN) outside Geneva. In this thesis we present work done on both the simulation of the ATLAS physics potential for a charged Higgs boson and the construction of the Semiconductor Tracker (SCT) - a subdetector within the ATLAS Inner Detector. The discovery of a charged Higgs boson would be an unambiguous sign of physics beyond the Standard Model (SM) and it is thus of great interest to study the ATLAS potential for a charged Higgs discovery. Two such studies have been conducted for this thesis. In the first study a large-mass-splitting Minimal Supersymmetric Standard Model (MSSM) is assumed in which the charged Higgs boson decays into a W boson and a neutral Higgs may receive a large branching ratio.We conclude, however, that charged Higgs searches in this decay channel are made difficult by a large irreducible SM ba...

  13. A semiparametric modeling framework for potential biomarker discovery and the development of metabonomic profiles

    Directory of Open Access Journals (Sweden)

    Dey Dipak K

    2008-01-01

    Full Text Available Abstract Background The discovery of biomarkers is an important step towards the development of criteria for early diagnosis of disease status. Recently electrospray ionization (ESI and matrix assisted laser desorption (MALDI time-of-flight (TOF mass spectrometry have been used to identify biomarkers both in proteomics and metabonomics studies. Data sets generated from such studies are generally very large in size and thus require the use of sophisticated statistical techniques to glean useful information. Most recent attempts to process these types of data model each compound's intensity either discretely by positional (mass to charge ratio clustering or through each compounds' own intensity distribution. Traditionally data processing steps such as noise removal, background elimination and m/z alignment, are generally carried out separately resulting in unsatisfactory propagation of signals in the final model. Results In the present study a novel semi-parametric approach has been developed to distinguish urinary metabolic profiles in a group of traumatic patients from those of a control group consisting of normal individuals. Data sets obtained from the replicates of a single subject were used to develop a functional profile through Dirichlet mixture of beta distribution. This functional profile is flexible enough to accommodate variability of the instrument and the inherent variability of each individual, thus simultaneously addressing different sources of systematic error. To address instrument variability, all data sets were analyzed in replicate, an important issue ignored by most studies in the past. Different model comparisons were performed to select the best model for each subject. The m/z values in the window of the irregular pattern are then further recommended for possible biomarker discovery. Conclusion To the best of our knowledge this is the very first attempt to model the physical process behind the time-of flight mass

  14. Mass Generation, the Cosmological Constant Problem, Conformal Symmetry, and the Higgs Boson

    CERN Document Server

    Mannheim, Philip D

    2016-01-01

    In 2013 the Nobel Prize in Physics was awarded to Francois Englert and Peter Higgs for their work in 1964 along with the late Robert Brout on the mass generation mechanism (the Higgs mechanism) in local gauge theories. This mechanism requires the existence of a massive scalar particle, the Higgs boson, and in 2012 the Higgs boson was finally discovered at the Large Hadron Collider after being sought for almost half a century. In this article we review the work that led to the discovery of the Higgs boson and discuss its implications. We approach the topic from the perspective of a dynamically generated Higgs boson that is a fermion-antifermion bound state rather than an elementary field that appears in an input Lagrangian. In particular, we emphasize the connection with the Barden-Cooper-Schrieffer theory of superconductivity. We identify the double-well Higgs potential not as a fundamental potential but as a mean-field effective Lagrangian with a dynamical Higgs boson being generated through a residual inter...

  15. The Utility of Naturalness, and how its Application to Quantum Electrodynamics envisages the Standard Model and Higgs Boson

    CERN Document Server

    Wells, James D

    2015-01-01

    With the Higgs boson discovery and no new physics found at the LHC, confidence in Naturalness as a guiding principle for particle physics is under increased pressure. We wait to see if it proves its mettle in the LHC upgrades ahead, and beyond. In the meantime, in a series of "realistic intellectual leaps" I present a justification {\\it a posteriori} of the Naturalness criterion by suggesting that uncompromising application of the principle to quantum electrodynamics leads toward the Standard Model and Higgs boson without additional experimental input. Potential lessons for today and future theory building are commented upon.

  16. Identification of extra neutral gauge bosons at the International Linear Collider

    CERN Document Server

    Osland, P; Tsytrinov, A V

    2009-01-01

    Heavy neutral gauge bosons, Z's, are predicted by many theoretical schemes of physics beyond the Standard Model, and intensive searches for their signatures will be performed at present and future high energy colliders. It is quite possible that Z's are heavy enough to lie beyond the discovery reach expected at the CERN Large Hadron Collider LHC, in which case only indirect signatures of Z' exchanges may occur at future colliders, through deviations of the measured cross sections from the Standard Model predictions. We here discuss in this context the foreseeable sensitivity to Z's of fermion-pair production cross sections at an e^+e^- linear collider, especially as regards the potential of distinguishing different Z' models once such deviations are observed. Specifically, we assess the discovery and identification reaches on Z' gauge bosons pertinent to the E_6, LR, ALR and SSM classes of models, that should be attained at the planned International Linear Collider (ILC). With the high experimental accuracies...

  17. Evidence of Higgs Boson Production through Vector Boson Fusion

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00333580

    The discovery of the Higgs boson in 2012 provided confirmation of the proposed mechanism for preserving the electroweak $SU(2) \\times U(1)$ gauge symmetry of the Standard Model of particle physics. It also heralded in a new era of precision Higgs physics. This thesis presents a measurement of the rate at which the Higgs boson is produced by vector boson fusion in the \\wwlnln decay channel. With gauge boson couplings in both the production and decay vertices, a VBF measurement in this channel is a powerful probe of the $VVH$ vertex strength. Using $4.5$~fb$^{-1}$ and $20.3$~fb$^{-1}$ of $pp$ collision data collected at respective center-of-mass energies of 7 and $8 \\tev$ in the ATLAS detector, measurements of the statistical significance and the signal strength are carried out in the Higgs mass range $100 \\leq m_H \\leq 200 \\gev$. These measurements are enhanced with a boosted decision tree that exploits the correlations between eight kinematic inputs in order to separate signal and background processes. At the...

  18. Bosonic Coherent Motions in the Universe

    Directory of Open Access Journals (Sweden)

    Jihn E. Kim

    2014-10-01

    Full Text Available We review the role of fundamental spin-0 bosons as bosonic coherent motion (BCM in the Universe. The fundamental spin-0 bosons have the potential to account for the baryon number generation, cold dark matter (CDM via BCM, inflation, and dark energy. Among these, we pay particular attention to the CDM possibility because it can be experimentally tested with the current experimental techniques. We also comment on the panoply of the other roles of spin-0 bosons--such as those for cosmic accelerations at early and late times.

  19. Prospects for the study of vector boson scattering in same sign WW and WZ interactions at the HL-LHC with the upgraded CMS detector

    CERN Document Server

    CMS Collaboration

    2016-01-01

    Studies of the $pp \\rightarrow \\mathrm{\\mathrm{W}^{\\pm}Z} jj$ and $pp \\rightarrow\\mathrm{\\mathrm{W}^{\\pm}\\mathrm{W}^{\\pm}} jj$ vector boson scattering processes in 14 TeV pp collisions using the planned upgrades of the CMS detector are presented. These studies include assessments on the expected precision in measuring the electroweak cross sections, the discovery potential for observing longitudinal vector boson scattering and limits on partial unitarization scenarios between vector boson scattering and the Higgs boson. Beyond the standard model sensitivity is probed in the framework of the effective field theory by extracting expected limits on quartic gauge couplings for $\\mathrm{\\mathrm{W}^{\\pm}\\mathrm{W}^{\\pm}}$ scattering. All results are presented with a luminosity of $3~\\mathrm{ab}^{-1}$ and comparisons with the non upgraded CMS detector including its aging due to radiation are performed.

  20. Acquiring a taste for the Higgs boson

    CERN Multimedia

    Caroline Duc

    2012-01-01

    Before CERN's scientists had even announced the discovery of the Higgs boson, others were already attributing some interesting characteristics to it: flavoursome, sparkling and liquid...   The artisan brewery Hopfenstark in Quebec launched its new "Higgs boson" beer in November 2010. Ever since, it has been intriguing enthusiasts with its unique taste explosion. The boson was a source of inspiration for brewer Frédéric Cormier, the Hopfenstark brewery's owner, who is a big fan of science programmes. "I returned from a trip to Europe in 2010 with the idea for a new beer that would be unlike any other," he explains. "I was always reading and hearing about CERN's particle accelerator in the media, so I did some research on the famous Higgs boson and decided to give my new creation the same name." For Frédéric Cormier, it's important that the names of his beers refle...

  1. LHC Higgs boson results involving fermions

    CERN Document Server

    Chen, X; The ATLAS collaboration

    2013-01-01

    Following the discovery of a Higgs-like particle in the bosonic decay modes, the fermionic decay modes need to be seen to prove this particle is a Standard Model (SM) Higgs. In this presentation, an overview of the recent Higgs search results in the fermionic decays of $\\tau\\tau$, $b\\bar{b}$, $\\mu\\mu$ and $\\tau\

  2. Potential of knowledge discovery using workflows implemented in the C3Grid

    Science.gov (United States)

    Engel, Thomas; Fink, Andreas; Ulbrich, Uwe; Schartner, Thomas; Dobler, Andreas; Fritzsch, Bernadette; Hiller, Wolfgang; Bräuer, Benny

    2013-04-01

    alteration of surface cyclones. A specific feature of C3Grid is the flexible Workflow Scheduling Service (WSS) which also allows for automated nightly analysis runs of CT, Stormtrack, etc. with different input parameter sets. The statistical results of these workflows can be accumulated afterwards by a scheduled final analysis step, thereby providing a tool for data intensive analytics for the massive amounts of climate model data accessible through C3Grid. First tests with these automated analysis workflows show promising results to speed up the investigation of high volume modeling data. This example is relevant to the thorough analysis of future changes in storminess in Europe and is just one example of the potential of knowledge discovery using automated workflows implemented in the C3Grid architecture.

  3. A scientometric prediction of the discovery of the first potentially habitable planet with a mass similar to Earth.

    Directory of Open Access Journals (Sweden)

    Samuel Arbesman

    Full Text Available BACKGROUND: The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it, the expectation that the discovery of the first Earth-like extrasolar planet is not far off. METHODOLOGY/PRINCIPAL FINDINGS: Here, we develop a novel metric of habitability for discovered planets and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. CONCLUSIONS/SIGNIFICANCE: Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet and highlight the the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields.

  4. Potential insight for drug discovery from high fidelity receptor-mediated transduction mechanisms in insects

    Science.gov (United States)

    Raffa, Robert B.; Raffa, Kenneth F.

    2011-01-01

    Introduction There is a pervasive and growing concern about the small number of new pharmaceutical agents. There are many proposed explanations for this trend that do not involve the drug-discovery process per se, but the discovery process itself has also come under scrutiny. If the current paradigms are indeed not working, where are novel ideas to come from? Perhaps it is time to look to novel sources. Areas covered The receptor-signaling and 2nd-messenger transduction processes present in insects are quite similar to those in mammals (involving G proteins, ion channels, etc.). However, a review of these systems reveals an unprecedented degree of high potency and receptor selectivity to an extent greater than that modeled in most current drug-discovery approaches. Expert opinion A better understanding of insect receptor pharmacology could stimulate novel theoretical and practical ideas in mammalian pharmacology (drug discovery) and, conversely, the application of pharmacology and medicinal chemistry principles could stimulate novel advances in entomology (safer and more targeted control of pest species). PMID:21984882

  5. Compact boson stars

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Betti [School of Engineering and Science, Jacobs University, Postfach 750 561, D-28725 Bremen (Germany); Kleihaus, Burkhard; Kunz, Jutta [Institut fuer Physik, Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Schaffer, Isabell, E-mail: i.schaffer@jacobs-university.de [School of Engineering and Science, Jacobs University, Postfach 750 561, D-28725 Bremen (Germany)

    2012-07-24

    We consider compact boson stars that arise for a V-shaped scalar field potential. They represent a one parameter family of solutions of the scaled Einstein-Gordon equations. We analyze the physical properties of these solutions and determine their domain of existence. Along their physically relevant branch emerging from the compact Q-ball solution, their mass increases with increasing radius. Employing arguments from catastrophe theory we argue that this branch is stable, until the maximal value of the mass is reached. There the mass and size are on the order of magnitude of the Schwarzschild limit, and thus the spiraling respectively oscillating behaviour, well known for compact stars, sets in.

  6. The Higgs Boson.

    Science.gov (United States)

    Veltman, Martinus J. G.

    1986-01-01

    Reports recent findings related to the particle Higgs boson and examines its possible contribution to the standard mode of elementary processes. Critically explores the strengths and uncertainties of the Higgs boson and proposed Higgs field. (ML)

  7. Higgs boson : production and decays into bosons

    CERN Document Server

    Escalier, Marc; The ATLAS collaboration

    2016-01-01

    The results on the Higgs boson with decay channels into bosons from the ATLAS and CMS experiments at LHC Run 1 and early Run 2 are reviewed in the context of the Standard Model. : observation of a signal, measurement of mass, width, spin, cross-sections, search for decay channels and production modes, Higgs couplings to various particles.

  8. Various Models Mimicking the SM Higgs Boson

    CERN Document Server

    Chang, Jung; Tseng, Po-Yan; Yuan, Tzu-Chiang; 10.1142/S0217751X1230030X

    2012-01-01

    This review is based on the talk presented at the SUSY 2012 (Beijing). The new particle around 125 GeV observed at the Large Hadron Collider (LHC) is almost consistent with the standard model Higgs boson, except that the diphoton decay mode may be excessive. We summarize a number of possibilities. While at the LHC the dominant production mechanism for the Higgs boson of the standard model and some other extensions is via the gluon fusion process, the alternative vector-boson fusion is more sensitive to electroweak symmetry breaking. Using the well known dijet-tagging technique to single out the vector-boson fusion mechanism, we investigate potential of vector-boson fusion to discriminate a number of models suggested to give an enhanced inclusive diphoton production rate.

  9. Bosonization and quantum hydrodynamics

    Indian Academy of Sciences (India)

    Girish S Setlur

    2006-03-01

    It is shown that it is possible to bosonize fermions in any number of dimensions using the hydrodynamic variables, namely the velocity potential and density. The slow part of the Fermi field is defined irrespective of dimensionality and the commutators of this field with currents and densities are exponentiated using the velocity potential as conjugate to the density. An action in terms of these canonical bosonic variables is proposed that reproduces the correct current and density correlations. This formalism in one dimension is shown to be equivalent to the Tomonaga-Luttinger approach as it leads to the same propagator and exponents. We compute the one-particle properties of a spinless homogeneous Fermi system in two spatial dimensions with long-range gauge interactions and highlight the metal-insulator transition in the system. A general formula for the generating function of density correlations is derived that is valid beyond the random phase approximation. Finally, we write down a formula for the annihilation operator in momentum space directly in terms of number conserving products of Fermi fields.

  10. Searches for BSM Higgs Bosons with ATLAS

    CERN Document Server

    Navarro, Gabriela; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs-like boson with a mass of about 125GeV has prompted the question of whether or not this particle is part of a much larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS Experiment regarding Beyond-the-Standard Model (BSM) Higgs hypothesis tests are outlined. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal Supersymmetric Standard Model.

  11. Open Innovation Drug Discovery (OIDD): a potential path to novel therapeutic chemical space.

    Science.gov (United States)

    Alvim-Gaston, Maria; Grese, Timothy; Mahoui, Abdelaziz; Palkowitz, Alan D; Pineiro-Nunez, Marta; Watson, Ian

    2014-01-01

    The continued development of computational and synthetic methods has enabled the enumeration or preparation of a nearly endless universe of chemical structures. Nevertheless, the ability of this chemical universe to deliver small molecules that can both modulate biological targets and have drug-like physicochemical properties continues to be a topic of interest to the pharmaceutical industry and academic researchers alike. The chemical space described by public, commercial, in-house and virtual compound collections has been interrogated by multiple approaches including biochemical, cellular and virtual screening, diversity analysis, and in-silico profiling. However, current drugs and known chemical probes derived from these efforts are contained within a remarkably small volume of the predicted chemical space. Access to more diverse classes of chemical scaffolds that maintain the properties relevant for drug discovery is certainly needed to meet the increasing demands for pharmaceutical innovation. The Lilly Open Innovation Drug Discovery platform (OIDD) was designed to tackle barriers to innovation through the identification of novel molecules active in relevant disease biology models. In this article we will discuss several computational approaches towards describing novel, biologically active, drug-like chemical space and illustrate how the OIDD program may facilitate access to previously untapped molecules that may aid in the search for innovative pharmaceuticals.

  12. Open Innovation Drug Discovery (OIDD): a potential path to novel therapeutic chemical space.

    Science.gov (United States)

    Alvim-Gaston, Maria; Grese, Timothy; Mahoui, Abdelaziz; Palkowitz, Alan D; Pineiro-Nunez, Marta; Watson, Ian

    2014-01-01

    The continued development of computational and synthetic methods has enabled the enumeration or preparation of a nearly endless universe of chemical structures. Nevertheless, the ability of this chemical universe to deliver small molecules that can both modulate biological targets and have drug-like physicochemical properties continues to be a topic of interest to the pharmaceutical industry and academic researchers alike. The chemical space described by public, commercial, in-house and virtual compound collections has been interrogated by multiple approaches including biochemical, cellular and virtual screening, diversity analysis, and in-silico profiling. However, current drugs and known chemical probes derived from these efforts are contained within a remarkably small volume of the predicted chemical space. Access to more diverse classes of chemical scaffolds that maintain the properties relevant for drug discovery is certainly needed to meet the increasing demands for pharmaceutical innovation. The Lilly Open Innovation Drug Discovery platform (OIDD) was designed to tackle barriers to innovation through the identification of novel molecules active in relevant disease biology models. In this article we will discuss several computational approaches towards describing novel, biologically active, drug-like chemical space and illustrate how the OIDD program may facilitate access to previously untapped molecules that may aid in the search for innovative pharmaceuticals. PMID:24283973

  13. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    Directory of Open Access Journals (Sweden)

    Charu Sharma

    2015-01-01

    Full Text Available The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2 which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics.

  14. Search for a Higgs-like boson decaying into bottom quarks in the ZH channel

    CERN Document Server

    Eller, Philipp David

    2013-01-01

    After the discovery of a Higgs-like Boson with a mass close to 125 GeV at the LHC in summer 2012, we are showing the update on the analysis of the VH cannel. In this channel the Higgs-like Boson is produced in association with a vector boson and decaying into b quarks. We present the updated results on the full 2011 and 2012 7+8 TeV dataset. This poster will focus on one of the tree modes that are combined in this analysis, where the associated vector boson is a Z boson that is decaying leptonically into two electrons or muons, respectively.

  15. Bosonic behavior of entangled fermions

    DEFF Research Database (Denmark)

    C. Tichy, Malte; Alexander Bouvrie, Peter; Mølmer, Klaus

    2012-01-01

    Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi-composite-boson st......Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi...

  16. Search for Higgs bosons at LEP2 and hadron colliders

    CERN Document Server

    Trefzger, T M

    2001-01-01

    The search for the Higgs boson was one of the most relevant issues of the final years of LEP running at high energies. An excess of 3 sigma beyond the background expectation has been found, consistent with the production of the Higgs boson with a mass near 115 GeV/c/sup 2/. At the upgraded Tevatron and at LHC the search for the Higgs boson will continue. At the Tevatron Higgs bosons can be detected with masses up to 180 GeV with an assumed total integrated luminosity of 20 fb/sup -1/. LHC has the potential to discover the Higgs boson in many different decay channels for Higgs masses up to 1 TeV. It will be possible to measure Higgs boson parameters, such as mass, width, and couplings to fermions and bosons. The results from Higgs searches at LEP2 and the possibilities for searches at hadron colliders will be reviewed. (156 refs).

  17. Therapeutic Potential of Plants as Anti-Microbials for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Ramar Perumal Samy

    2010-01-01

    Full Text Available The uses of traditional medicinal plants for primary health care have steadily increased worldwide in recent years. Scientists are in search of new phytochemicals that could be developed as useful anti-microbials for treatment of infectious diseases. Currently, out of 80% of pharmaceuticals derived from plants, very few are now being used as anti-microbials. Plants are rich in a wide variety of secondary metabolites that have found anti-microbial properties. This review highlights the current status of traditional medicine, its contribution to modern medicine, recent trends in the evaluation of anti-microbials with a special emphasis upon some tribal medicine, in vitro and in vivo experimental design for screening, and therapeutic efficacy in safety and human clinical trails for commercial outlet. Many of these commercially available compounds are crude preparations administered without performing human clinical trials. Recent methods are useful to standardize the extraction for scientific investigation of new phytochemicals and anti-microbials of traditionally used plants. It is concluded that once the local ethnomedical preparations of traditional sources are scientifically evaluated before dispensing they should replace existing drugs commonly used for the therapeutic treatment of infection. This method should be put into practice for future investigations in the field of ethnopharmacology, phytochemistry, ethnobotany and other biological fields for drug discovery.

  18. The discovery of antidepressant drugs by computer-analyzed human cerebral bio-electrical potentials (CEEG).

    Science.gov (United States)

    Itil, T M

    1983-01-01

    Antidepressant properties of six compounds were predicted based on their computer-analyzed human electroencephalographical (CEEG) profiles. The clinical investigations with mianserin (GB-94) confirmed the CEEG prediction. This compound has now been marketed as the first antidepressant of which the clinical effects were discovered solely by the quantitative pharmaco-EEG method. As predicted by the CEEG, clinical antidepressant properties of GC-46, mesterolone, and estradiol valerate were observed in preliminary investigations. No extensive studies with definite statistical results were yet carried out with these compounds. No systematic large studies could be conducted with cyclozocine and cyproterone acetate because of the intolerable side effects with these compounds. The optical isomers of mianserin, GF-59 and GF-60, both predicted as antidepressant by the computer EEG data base, have not yet been tested in depressive patients. None of these compounds possess the "typical" pharmacological and/or biochemical profiles of marketed antidepressants. Thus, the discovery of the established antidepressant properties of mianserin (GB-94) by computer analyzed EEG method challenges the well-known biochemical hypotheses of depression and the "classical" development of antidepressant drugs. PMID:6142498

  19. Potential of Glutamate-Based Drug Discovery for Next Generation Antidepressants

    Directory of Open Access Journals (Sweden)

    Shigeyuki Chaki

    2015-09-01

    Full Text Available Recently, ketamine has been demonstrated to exert rapid-acting antidepressant effects in patients with depression, including those with treatment-resistant depression, and this discovery has been regarded as the most significant advance in drug development for the treatment of depression in over 50 years. To overcome unwanted side effects of ketamine, numerous approaches targeting glutamatergic systems have been vigorously investigated. For example, among agents targeting the NMDA receptor, the efficacies of selective GluN2B receptor antagonists and a low-trapping antagonist, as well as glycine site modulators such as GLYX-13 and sarcosine have been demonstrated clinically. Moreover, agents acting on metabotropic glutamate receptors, such as mGlu2/3 and mGlu5 receptors, have been proposed as useful approaches to mimicking the antidepressant effects of ketamine. Neural and synaptic mechanisms mediated through the antidepressant effects of ketamine have been being delineated, most of which indicate that ketamine improves abnormalities in synaptic transmission and connectivity observed in depressive states via the AMPA receptor and brain-derived neurotrophic factor-dependent mechanisms. Interestingly, some of the above agents may share some neural and synaptic mechanisms with ketamine. These studies should provide important insights for the development of superior pharmacotherapies for depression with more potent and faster onsets of actions.

  20. The discovery of antidepressant drugs by computer-analyzed human cerebral bio-electrical potentials (CEEG).

    Science.gov (United States)

    Itil, T M

    1983-01-01

    Antidepressant properties of six compounds were predicted based on their computer-analyzed human electroencephalographical (CEEG) profiles. The clinical investigations with mianserin (GB-94) confirmed the CEEG prediction. This compound has now been marketed as the first antidepressant of which the clinical effects were discovered solely by the quantitative pharmaco-EEG method. As predicted by the CEEG, clinical antidepressant properties of GC-46, mesterolone, and estradiol valerate were observed in preliminary investigations. No extensive studies with definite statistical results were yet carried out with these compounds. No systematic large studies could be conducted with cyclozocine and cyproterone acetate because of the intolerable side effects with these compounds. The optical isomers of mianserin, GF-59 and GF-60, both predicted as antidepressant by the computer EEG data base, have not yet been tested in depressive patients. None of these compounds possess the "typical" pharmacological and/or biochemical profiles of marketed antidepressants. Thus, the discovery of the established antidepressant properties of mianserin (GB-94) by computer analyzed EEG method challenges the well-known biochemical hypotheses of depression and the "classical" development of antidepressant drugs.

  1. Mesua beccariana (Clusiaceae, A Source of Potential Anti-cancer Lead Compounds in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Soek Sin Teh

    2012-09-01

    Full Text Available An investigation on biologically active secondary metabolites from the stem bark of Mesua beccariana was carried out. A new cyclodione, mesuadione (1, along with several known constituents which are beccamarin (2, 2,5-dihydroxy-1,3,4-trimethoxy anthraquinone (3, 4-methoxy-1,3,5-trihydroxyanthraquinone (4, betulinic acid (5 and stigmasterol (6 were obtained from this ongoing research. Structures of these compounds were elucidated by extensive spectroscopic methods, including 1D and 2D-NMR, GC-MS, IR and UV techniques. Preliminary tests of the in vitro cytotoxic activities of all the isolated metabolites against a panel of human cancer cell lines Raji (lymphoma, SNU-1 (gastric carcinoma, K562 (erythroleukemia cells, LS-174T (colorectal adenocarcinoma, HeLa (cervical cells, SK-MEL-28 (malignant melanoma cells, NCI-H23 (lung adenocarcinoma, IMR-32 (neuroblastoma and Hep-G2 (hepatocellular liver carcinoma were carried out using an MTT assay. Mesuadione (1, beccamarin (2, betulinic acid (5 and stigmasterol (6 displayed strong inhibition of Raji cell proliferation, while the proliferation rate of SK-MEL-28 and HeLa were strongly inhibited by stigmasterol (6 and beccamarin (2, indicating these secondary metabolites could be anti-cancer lead compounds in drug discovery.

  2. Prospects for Higgs boson searches at the Large Hadron Collider

    Indian Academy of Sciences (India)

    B Mellado

    2009-01-01

    These proceedings summarize the sensitivity for the CMS and ATLAS experiments at the LHC to discover a Standard Model Higgs boson with relatively low integrated luminosity per experiment. The most relevant discovery modes are dealt with. A brief discussion on the expected performance from these experiments in searches for one or more of the Higgs bosons from the minimal version of the supersymmetric theories is also included.

  3. The potential use of SUISEKI as a protein interaction discovery tool.

    Science.gov (United States)

    Blaschke, C; Valencia, A

    2001-01-01

    Relevant information about protein interactions is stored in textual sources. This sources are commonly used not only as archives of what is already known but also as information for generating new knowledge, particularly to pose hypothesis about new possible interactions that can be inferred from the existing ones. This task is the more creative part of scientific work in experimental systems. We present a large-scale analysis for the prediction of new interactions based on the interaction network for the ones already known and detected automatically in the literature. During the last few years it has became clear that part of the information about protein interactions could be extracted with automatic tools, even if these tools are still far from perfect and key problems such as detection of protein names are not completely solved. We have developed a integrated automatic approach, called SUISEKI (System for Information Extraction on Interactions), able to extract protein interactions from collections of Medline abstracts. Previous experiments with the system have shown that it is able to extract almost 70% of the interactions present in relatively large text corpus, with an accuracy of approximately 80% (for the best defined interactions) that makes the system usable in real scenarios, both at the level of extraction of protein names and at the level of extracting interaction between them. With the analysis of the interaction map of Saccharomyces cerevisiae we show that interactions published in the years 2000/2001 frequently correspond to proteins or genes that were already very close in the interaction network deduced from the literature published before these years and that they are often connected to the same proteins. That is, discoveries are commonly done among highly connected entities. Some biologically relevant examples illustrate how interactions described in the year 2000 could have been proposed as reasonable working hypothesis with the information

  4. The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies

    Directory of Open Access Journals (Sweden)

    Chuang Chih-Kuang

    2011-01-01

    Full Text Available Abstract Background Alzheimer's disease (AD is the most common cause of dementia characterized by progressive cognitive impairment in the elderly people. The most dramatic abnormalities are those of the cholinergic system. Acetylcholinesterase (AChE plays a key role in the regulation of the cholinergic system, and hence, inhibition of AChE has emerged as one of the most promising strategies for the treatment of AD. Methods In this study, we suggest a workflow for the identification and prioritization of potential compounds targeted against AChE. In order to elucidate the essential structural features for AChE, three-dimensional pharmacophore models were constructed using Discovery Studio 2.5.5 (DS 2.5.5 program based on a set of known AChE inhibitors. Results The best five-features pharmacophore model, which includes one hydrogen bond donor and four hydrophobic features, was generated from a training set of 62 compounds that yielded a correlation coefficient of R = 0.851 and a high prediction of fit values for a set of 26 test molecules with a correlation of R2 = 0.830. Our pharmacophore model also has a high Güner-Henry score and enrichment factor. Virtual screening performed on the NCI database obtained new inhibitors which have the potential to inhibit AChE and to protect neurons from Aβ toxicity. The hit compounds were subsequently subjected to molecular docking and evaluated by consensus scoring function, which resulted in 9 compounds with high pharmacophore fit values and predicted biological activity scores. These compounds showed interactions with important residues at the active site. Conclusions The information gained from this study may assist in the discovery of potential AChE inhibitors that are highly selective for its dual binding sites.

  5. The battle of Alzheimer disease - the beginning of the futureUnleashing the potential of academic discoveries

    Directory of Open Access Journals (Sweden)

    Johan eLundkvist

    2014-05-01

    Full Text Available Alzheimer Disease (AD is the most common form of dementia, affecting approximately 36 million people worldwide. To date there is no preventive or curative treatment available for AD, and in absence of major progress in therapeutic development, AD manifests a concrete socioeconomic threat. The awareness of the growing problem of AD is increasing, exemplified by the recent G8 Dementia Summit, a meeting held in order to set the stage and steer the compass for the future. Simultaneously, and paradoxically, we have seen key players in the pharmaceutical industry that have recently closed or significantly decreased their R&D spending on AD and other CNS disorders. Given the pressing need for new treatments in this area, other actors need to step-in and enter this drug discovery arena complementing the industrial efforts, in order to turn biological and technological progress into novel therapeutics. In this article, we present an example of a novel drug discovery initiative that in a non-profit setting, aims to integrate with both preclinical and clinical academic groups and pharmaceutical industry to explore the therapeutic potential of new concepts in patients, using novel biology, state of the art technologies and rapid concept

  6. The new bosonic mechanism

    OpenAIRE

    Taratuta, Rostislav

    2015-01-01

    The main purpose of this paper is to introduce the new bosonic mechanism and newtreatment of dark energy. The bosonic mechanism focuses on obtaining masses by gauge bosonswithout assuming the existence of Higgs boson. The hypothesis on dark energy as the energy ofa postulated dark field was made and a combined gravitational-dark field was introduced. This fieldis the key to a specified approach and allows addressing the fundamental starting points of the mechanism.i. Complex scalar field is i...

  7. Higgs boson parameters and decays into fermions

    CERN Document Server

    Bluj, Michal Jacek

    2016-01-01

    In 2012 the discovery of a new boson with a mass of about 125 GeV and properties in agreement with those expected for the Higgs boson in the standard model was announced. In this note we review the results of searches for the fermionic decays the Higgs boson and the study of its properties performed with the proton-proton collision data recorded by the ATLAS and CMS detectors at the LHC in 2011 and 2012, corresponding to an integrated luminosity of approximately 5~fb$^{-1}$ and approximately 20~fb$^{-1}$ per experiment at $\\sqrt{s}=7$~TeV and $\\sqrt{s}=8$~TeV, respectively. Decay rates to fermions and extracted couplings are consistent with the expectation of the standard model. In addition, we present a search for lepton flavour violating decays of the Higgs boson which can occur in several extensions of the standard model, and a search for neutral Higgs bosons decaying to tau pairs performed in the context of the minimal supersymmetric extension of the standard model (MSSM).

  8. Discovery and Identification of W' and Z' in SU(2) x SU(2) x U(1) Models at the LHC

    OpenAIRE

    Cao, Qing-Hong; Li, Zhao; Yu, Jiang-Hao; Yuan, C.-P.

    2012-01-01

    We explore the discovery potential of W' and Z' boson searches for various SU(2) x SU(2) x U(1) models at the Large Hadron Collider (LHC), after taking into account the constraints from low energy precision measurements and direct searches at both the Tevatron (1.96 TeV) and the LHC (7 TeV). In such models, the W' and Z' bosons emerge after the electroweak symmetry is spontaneously broken. Two patterns of the symmetry breaking are considered in this work: one is SU(2)_L x SU(2)_2 x U(1)_X to ...

  9. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer

    Directory of Open Access Journals (Sweden)

    Choolani Mahesh

    2011-09-01

    Full Text Available Abstract Background Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC through the study of transcription regulation of genes affected by estrogen hormone. Results The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers. Conclusions We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors.

  10. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer

    KAUST Repository

    Kaur, Mandeep

    2011-09-19

    Background: Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC) through the study of transcription regulation of genes affected by estrogen hormone.Results: The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs) that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers.Conclusions: We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors. 2011 Kaur et al; licensee BioMed Central Ltd.

  11. Macchines per scoprire - Discovery Machines

    CERN Multimedia

    Auditorium, Rome

    2016-01-01

    During the FCC week 2016 a public event entitled “Discovery Machines: The Higgs Boson and the Search for New Physics took place on 14 April at the Auditorium in Rome. The event, brought together physicists and experts from economics to discuss intriguing questions on the origin and evolution of the Universe and the societal impact of large-scale research projects.

  12. Higgs Quantum Numbers in Weak Boson Fusion

    OpenAIRE

    Englert, Christoph; Gonçalves-Netto, Dorival; Mawatari, Kentarou; Plehn, Tilman

    2012-01-01

    Recently, the ATLAS and CMS experiments have reported the discovery of a Higgs like resonance at the LHC. The next analysis step will include the determination of its spin and CP quantum numbers or the form of its interaction Lagrangian channel-by-channel. We show how weak-boson-fusion Higgs production and associated ZH production can be used to separate different spin and CP states.

  13. Measuring the 2HDM Scalar Potential at LHC14

    CERN Document Server

    Barger, Vernon; Jackson, Chris B; Peterson, Andrea D; Shaughnessy, Gabe

    2014-01-01

    After the extraordinary discovery of the Higgs boson at the LHC, the next goal is to pin down its underlying dynamics by measuring the Higgs self-couplings, along with its couplings to gauge and matter particles. As a prototype model of new physics in the scalar sector, we consider the Two Higgs Doublet Model (2HDM) with CP-conservation, and evaluate the prospects for measuring the trilinear scalar couplings among the CP-even Higgs bosons $h$ and $H$ ($\\lambda^{hhh}$, $\\lambda^{hhH}$, $\\lambda^{hHH}$) at LHC14. The continuum and resonant production of CP-even Higgs boson pairs, $hh$ and $hH$, offer complementary probes of the scalar potential away from the light-Higgs decoupling limit. We identify the viable search channels at LHC14 and estimate their expected discovery sensitivities.

  14. Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents.

    Science.gov (United States)

    Wang, Hao; Gill, Charles J; Lee, Sang H; Mann, Paul; Zuck, Paul; Meredith, Timothy C; Murgolo, Nicholas; She, Xinwei; Kales, Susan; Liang, Lianzhu; Liu, Jenny; Wu, Jin; Santa Maria, John; Su, Jing; Pan, Jianping; Hailey, Judy; Mcguinness, Debra; Tan, Christopher M; Flattery, Amy; Walker, Suzanne; Black, Todd; Roemer, Terry

    2013-02-21

    Innovative strategies are needed to combat drug resistance associated with methicillin-resistant Staphylococcus aureus (MRSA). Here, we investigate the potential of wall teichoic acid (WTA) biosynthesis inhibitors as combination agents to restore β-lactam efficacy against MRSA. Performing a whole-cell pathway-based screen, we identified a series of WTA inhibitors (WTAIs) targeting the WTA transporter protein, TarG. Whole-genome sequencing of WTAI-resistant isolates across two methicillin-resistant Staphylococci spp. revealed TarG as their common target, as well as a broad assortment of drug-resistant bypass mutants mapping to earlier steps of WTA biosynthesis. Extensive in vitro microbiological analysis and animal infection studies provide strong genetic and pharmacological evidence of the potential effectiveness of WTAIs as anti-MRSA β-lactam combination agents. This work also highlights the emerging role of whole-genome sequencing in antibiotic mode-of-action and resistance studies.

  15. Spontaneous Emission of Charged Bosons from Supercritical Point Charges

    CERN Document Server

    Kim, Sang Pyo

    2013-01-01

    We study the spontaneous emission of charged bosons from supercritical Coulomb potentials and charged black holes. We find the exact emission rate from the Bogoliubov transformation by applying the tunneling boundary condition on the Jost functions at the asymptotic boundaries. The emission rate for charged bosons in the supercritical Coulomb potential increases as the charge $Z\\alpha > 1/2$ of the superatom and the energy of the bosons increase but is suppressed for large angular momenta. We discuss physical implications of the emission of charged bosons from superatoms and charged black holes.

  16. Selective androgen receptor modulators in drug discovery: medicinal chemistry and therapeutic potential.

    Science.gov (United States)

    Cadilla, Rodolfo; Turnbull, Philip

    2006-01-01

    Modulation of the androgen receptor has the potential to be an effective treatment for hypogonadism, andropause, and associated conditions such as sarcopenia, osteoporosis, benign prostatic hyperplasia, and sexual dysfunction. Side effects associated with classical anabolic steroid treatments have driven the quest for drugs that demonstrate improved therapeutic profiles. Novel, non-steroidal compounds that show tissue selective activity and improved pharmacokinetic properties have been developed. This review provides an overview of current advances in the development of selective androgen receptor modulators (SARMs).

  17. Discovery of Acupoints and Combinations with Potential to Treat Vascular Dementia: A Data Mining Analysis

    Directory of Open Access Journals (Sweden)

    Shuwei Feng

    2015-01-01

    Full Text Available The prevalence of vascular dementia (VaD is high among the elderly. Acupuncture, a popular therapeutic method in China, can improve memory, orientation, calculation, and self-managing ability in VaD patients. However, in clinical acupuncture and acupuncture research, the selection of acupoints to treat VaD remains challenging. This study aimed to discover acupoints and acupoint combinations with potential for VaD based on data mining. After database searching and screening for articles on clinical trials evaluating the effects of acupuncture on VaD, 238 acupuncture prescriptions were included for further analysis. Baihui (GV 20, Sishencong (EX-HN 1, Fengchi (GB 20, Shuigou (GV 26, and Shenting (GV 24 appeared most frequently in the modern literature and are potential acupoints for VaD. Combinations between Baihui (GV 20, Sishencong (EX-HN 1, Fengchi (GB 20, Shenting (GV 24, Shuigou (GV 26, and Zusanli (ST 36 were most frequent and represent potential combinations for VaD treatment. These results provide a reference for the selection and combination of acupoints to treat VaD in clinical acupuncture and acupuncture research.

  18. Search for the Higgs boson in fermionic channels using the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Hageböck Stephan

    2015-01-01

    Full Text Available Since the discovery of the Higgs boson by the ATLAS and CMS experiments at the LHC, the emphasis has shifted towards measurements of its properties. Of particular importance is the direct observation of the coupling of the Higgs boson to fermions. A review of ATLAS results in the search for the Higgs boson in tau, muon and b-quark pairs is presented.

  19. Pharmacophore development and screening for discovery of potential inhibitors of ADAMTS-4 for osteoarthritis therapy.

    Science.gov (United States)

    Verma, Priyanka; Dalal, Krishna; Chopra, Madhu

    2016-08-01

    In the development of osteoarthritis, aggrecan degrades prior to cartilage destruction. Aggrecanase-1 (ADAMTS-4) is considered to be the major enzyme responsible for cleaving the Glu373-Ala374 bond in the interglobular domain of aggrecan in humans. Therefore, inhibitors of ADAMTS-4 have therapeutic potential in the treatment of osteoarthritis. In the present work, we developed a chemical feature based pharmacophore model of ADAMTS-4 inhibitors using the HipHop module within the Catalyst program package in order to elucidate the structure-activity relationship and to carry out in-silico screening. The Maybridge database was screened using Hypo1 as a 3D query, and the best-fit hits that followed Lipinski's rule of five were subsequently screened to select the compounds. The hit compounds were then docked into the active site of ADAMTS-4, and interactions were visualized to determine the potential lead molecules. After subjecting all of the hits to various screening and filtering processes, 13 compounds were finally evaluated for their in vitro inhibitory activities. This study resulted in the identification of two lead compounds with potent inhibitory effects on ADAMTS-4 activity, with IC50 values of 0.042 μM and 0.028 μM, respectively. These results provide insight into the pharmacophoric requirements for the development of more potent ADAMTS-4 inhibitors. Graphical Abstract The aggrecan-degrading metalloprotease ADAMTS-4 has been identified as a novel therapeutic target for osteoarthritis. In this work, we used HipHop-based pharmacophore modeling and virtual screening of the Maybridge database to identify novel ADAMTS-4 inhibitors. These novel lead compounds act as potent and specific inhibitors for the ADAMTS-4 enzyme and could have therapeutic potential in the treatment of OA. PMID:27401455

  20. Pharmacophore development and screening for discovery of potential inhibitors of ADAMTS-4 for osteoarthritis therapy.

    Science.gov (United States)

    Verma, Priyanka; Dalal, Krishna; Chopra, Madhu

    2016-08-01

    In the development of osteoarthritis, aggrecan degrades prior to cartilage destruction. Aggrecanase-1 (ADAMTS-4) is considered to be the major enzyme responsible for cleaving the Glu373-Ala374 bond in the interglobular domain of aggrecan in humans. Therefore, inhibitors of ADAMTS-4 have therapeutic potential in the treatment of osteoarthritis. In the present work, we developed a chemical feature based pharmacophore model of ADAMTS-4 inhibitors using the HipHop module within the Catalyst program package in order to elucidate the structure-activity relationship and to carry out in-silico screening. The Maybridge database was screened using Hypo1 as a 3D query, and the best-fit hits that followed Lipinski's rule of five were subsequently screened to select the compounds. The hit compounds were then docked into the active site of ADAMTS-4, and interactions were visualized to determine the potential lead molecules. After subjecting all of the hits to various screening and filtering processes, 13 compounds were finally evaluated for their in vitro inhibitory activities. This study resulted in the identification of two lead compounds with potent inhibitory effects on ADAMTS-4 activity, with IC50 values of 0.042 μM and 0.028 μM, respectively. These results provide insight into the pharmacophoric requirements for the development of more potent ADAMTS-4 inhibitors. Graphical Abstract The aggrecan-degrading metalloprotease ADAMTS-4 has been identified as a novel therapeutic target for osteoarthritis. In this work, we used HipHop-based pharmacophore modeling and virtual screening of the Maybridge database to identify novel ADAMTS-4 inhibitors. These novel lead compounds act as potent and specific inhibitors for the ADAMTS-4 enzyme and could have therapeutic potential in the treatment of OA.

  1. Production of electroweak bosons at hadron colliders: theoretical aspects

    CERN Document Server

    Mangano, Michelangelo L

    2016-01-01

    Since the W and Z discovery, hadron colliders have provided a fertile ground, in which continuously improving measurements and theoretical predictions allow to precisely determine the gauge boson properties, and to probe the dynamics of electroweak and strong interactions. This article will review, from a theoretical perspective, the role played by the study, at hadron colliders, of electroweak boson production properties, from the better understanding of the proton structure, to the discovery and studies of the top quark and of the Higgs, to the searches for new phenomena beyond the Standard Model.

  2. Production of Electroweak Bosons at Hadron Colliders: Theoretical Aspects

    Science.gov (United States)

    Mangano, Michelangelo L.

    2016-10-01

    Since the W± and Z0 discovery, hadron colliders have provided a fertile ground, in which continuously improving measurements and theoretical predictions allow to precisely determine the gauge boson properties, and to probe the dynamics of electroweak and strong interactions. This article will review, from a theoretical perspective, the role played by the study, at hadron colliders, of electroweak boson production properties, from the better understanding of the proton structure, to the discovery and studies of the top quark and of the Higgs, to the searches for new phenomena beyond the Standard Model.

  3. Searching for Additional Higgs Bosons via Higgs Cascades

    CERN Document Server

    Gao, Christina; Mulhearn, Michael; Neill, Nicolás A; Wang, Zhangqier

    2016-01-01

    The discovery of a 125 GeV Higgs boson at the Large Hadron Collider strongly motivates direct searches for additional Higgs bosons. In a type I two Higgs doublet model there is a large region of parameter space at $\\tan\\beta > 5$ that is currently unconstrained experimentally. We show that the process $gg \\to H \\to A Z \\to ZZh$ can probe this region, and can be the discovery mode for an extended Higgs sector at the LHC. We analyze 9 promising decay modes for the $ZZh$ state, and we find that the most sensitive final states are $\\ell\\ell\\ell\\ell bb$, $\\ell\\ell jjbb$, $\\ell\\ell\

  4. Higgs to gamma gamma in association with Z/W bosons

    CERN Document Server

    Brelier, B

    2008-01-01

    Electro-weak precision measurements strongly suggest that the mass of the Standard Model Higgs boson, if it exists, should not be much higher than the present experimental limit of 114.4 GeV. The LHC experiments will allow us to look for a Higgs boson in this mass range for which the decay into photons is one of the most important channels. The isolation of events from Higgs boson production in association with Z/W bosons may increase the statistical significance of the Higgs boson discovery and these production modes can be used to measure directly the Higgs boson couplings to the weak bosons, thus helping to confirm the nature of the observed resonance.

  5. Cure from the cave: volcanic cave actinomycetes and their potential in drug discovery

    Directory of Open Access Journals (Sweden)

    Cheeptham N.

    2013-01-01

    Full Text Available Volcanic caves have been little studied for their potential as sources of novel microbial species and bioactive compounds with new scaffolds. We present the f irst study of volcanic cave microbiology from Canada and suggest that this habitat has great potential for the isolation of novel bioactive substances. Sample locat ions were plot ted on a contour map that was compiled in ArcView 3.2. Over 400 bacterial isolates were obtained from the Helmcken Falls cave in Wells Gray Provincial Park, British Columbia. From our preliminary screen, of 400 isolates tested, 1% showed activity against extended spectrum ß-lactamase E. coli, 1.75% against Escherichia coli, 2.25% against Acinetobacter baumannii, and 26.50% against Klebsiella pneumoniae. In addition, 10.25% showed activity against Micrococcus luteus, 2% against methicillin resistant Staphylococcus aureus, 9.25% against Mycobacterium smegmatis, 6.25% Pseudomonas aeruginosa and 7.5% against Candida albicans. Chemical and physical characteristics of three rock wall samples were studied using scanning electron microscopy and f lame atomic absorption spectrometry. Calcium (Ca, iron (Fe, and aluminum (Al were the most abundant components while magnesium (Mg, sodium (Na, arsenic (As, lead (Pb, chromium (Cr, and barium (Ba were second most abundant with cadmium (Cd and potassium (K were the least abundant in our samples. Scanning electron microscopy (SEM showed the presence of microscopic life forms in all three rock wall samples. 16S rRNA gene sequencing of 82 isolates revealed that 65 (79.3% of the strains belong to the Streptomyces genus and 5 (6.1% were members of Bacillus, Pseudomonas, Nocardia and Erwinia genera. Interestingly, twelve (14.6% of the 16S rRNA sequences showed similarity to unidentif ied ribosomal RNA sequences in the library databases, the sequences of these isolates need to be further investigated using the EzTaxon-e database (http://eztaxon-e. ezbiocloud.net/ to determine whether

  6. Bosonization and Mirror Symmetry

    CERN Document Server

    Kachru, Shamit; Torroba, Gonzalo; Wang, Huajia

    2016-01-01

    We study bosonization in 2+1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an $O(2)$-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a chiral mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.

  7. The Higgs boson

    CERN Document Server

    Pimenta, Jean Jûnio Mendes; Natti, Érica Regina Takano; Natti, Paulo Laerte

    2013-01-01

    The Higgs boson was predicted in 1964 by British physicist Peter Higgs. The Higgs is the key to explain the origin of the mass of other elementary particles of Nature. However, only with the coming into operation of the LHC, in 2008, there were technological conditions to search for the Higgs boson. Recently, a major international effort conducted at CERN, by means of ATLAS and CMS experiments, has enabled the observation of a new bosonic particle in the region of 125 GeVs. In this paper, by means of known mechanisms of symmetry breaking that occur in the BCS theory of superconductivity and in the theory of nuclear pairing, we discuss the Higgs mechanism in the Standard Model. Finally, we present the current state of research looking for the Higgs boson and the alternative theories and extensions of the Standard Model for the elementary particle physics. Keywords: Higgs boson, BCS theory, nuclear pairing, Higgs mechanism, Standard Model.

  8. Discovery potential for supernova relic neutrinos with slow liquid scintillator detectors

    CERN Document Server

    Wei, Hanyu; Chen, Shaomin

    2016-01-01

    The detection of supernova relic neutrinos would provide a key support for our current understanding of stellar and cosmological evolution, and precise measurements of them would further give us an insight of the profound universe. In this paper we study the potential to detect supernova relic neutrinos using linear alkyl benzene, LAB, as a slow liquid scintillator, which features a good separation of Cherenkov and scintillation lights, thus providing a new ability in particle identification. We also address key issues of current experiments, including 1) the charged current background of atmospheric neutrinos in water Cherenkov detectors, and 2) the neutral current background of atmospheric neutrinos in typical liquid scintillator detectors. With LAB, a kiloton-scale detector, like the SNO, KamLAND, and the future Jinping neutrino detectors, with $\\mathcal{O}$(10) years of data, would have the sensitivity to discover supernova relic neutrinos, which is comparable to large-volume water Cherenkov, typical liqu...

  9. Discovery of dihydrochalcone as potential lead for Alzheimer's disease: in silico and in vitro study.

    Directory of Open Access Journals (Sweden)

    Man Hoang Viet

    Full Text Available By the virtual screening method we have screened out Dihydrochalcone as a top-lead for the Alzheimer's disease using the database of about 32364 natural compounds. The binding affinity of this ligand to amyloid beta (Aβ fibril has been thoroughly studied by computer simulation and experiment. Using the Thioflavin T (ThT assay we have obtained the inhibition constant IC50 μM. This result is in good agreement with the estimation of the binding free energy obtained by the molecular mechanic-Poisson Boltzmann surface area method and all-atom simulation with the force field CHARMM 27 and water model TIP3P. Cell viability assays indicated that Dihydrochalcone could effectively reduce the cytotoxicity induced by Aβ. Thus, both in silico and in vitro studies show that Dihydrochalcone is a potential drug for the Alzheimers disease.

  10. Sumoylation in gene regulation and cardiac disease: potential for drug discovery

    Directory of Open Access Journals (Sweden)

    Beketaev I

    2014-11-01

    Full Text Available Ilimbek Beketaev, Jun Wang Center for Stem Cell Engineering, Department of Basic Research Laboratories, Texas Heart Institute at St Luke’s Episcopal Hospital, Houston, TX, USA Abstract: Small ubiquitin-related modifier (SUMO proteins are members of ubiquitin-like super-family proteins that can be covalently conjugated to their targets through multistep enzymatic reactions. Sumoylation has caught much attention due to its versatility, wide involvement in cellular events, and disease association. Sumoylation has been well studied at cellular and molecular levels. A newly emerging role that SUMO conjugation plays is in cardiac pathophysiology. In this review we will update new advances in the study of implications of the sumoylation pathway in the pathogenesis of cardiac diseases, discuss promise of the SUMO pathway as a potential therapeutic target, and conclude with future directions for SUMO research in the heart field. Keywords: posttranslational modification, SUMO, SENP, heart

  11. Studies of b-associated production and muonic decays of neutral Higgs bosons at the ATLAS experiment within the Minimal Supersymmetric Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Warsinsky, Markus

    2008-09-15

    This thesis presents a Monte Carlo study of neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) decaying into muons at the ATLAS experiment at the CERN Large Hadron Collider. Signal and background processes are simulated using novel Monte Carlo generators that incorporate parts of higher order corrections and are expected to give a more accurate prediction than previous programs. The SHERPA Monte Carlo generator is validated for its use in the analysis and compared to results obtained with other programs. Where possible, the Monte Carlo event samples are normalized to higher order calculations. To increase the available Monte Carlo statistics, this study is based on the ATLAS fast detector simulation ATLFAST. Differences between ATLFAST and the detailed detector simulation of ATLAS are examined, and, where possible, correction procedures are devised. A cut based analysis is performed assuming an integrated luminosity of 30 fb{sup -1}, and optimized with respect to the discovery potential for MSSM Higgs bosons. The systematic uncertainties of the event selection and the Monte Carlo predictions are estimated. A method that can be used to estimate the background from data is presented and evaluated. Last, the discovery potential of the ATLAS experiment in the CP conserving benchmark scenarios of the MSSM is evaluated. One or more of the neutral Higgs bosons of the MSSM can be discovered in the muonic decay mode using 30 fb{sup -1} of data for low masses of the pseudoscalar boson A{sup 0}, if the model parameter tan {beta} is at least 20. For higher masses of the A{sup 0}, tan {beta} would need to be significantly higher to ensure a discovery in the studied decay channel. The sensitivity of ATLAS to MSSM Higgs bosons is multiple times larger than the one of previous and currently running experiments. (orig.)

  12. ATLAS Level-1 Jet Trigger Rates and study of the ATLAS discovery potential of the neutral MSSM Higgs bosons in b-jet decay channels

    OpenAIRE

    Mahboubi, Kambiz

    2001-01-01

    The response of the ATLAS calorimeters to electrons, photons and hadrons, in terms of the longitudinal and lateral shower development, is parameterized using the GEANT package and a detailed detector description (DICE). The parameterizations are implemented in the ATLAS Level-1 (LVL1) Calorimeter Trigger fast simulation package which, based on an average detector geometry, simulates the complete chain of the LVL1 calorimeter trigger system. In addition, pile-up effects due to multiple p...

  13. Etude du calorimètre électromagnétique de l'expérience CMS et recherche de boson de Higgs neutres dans le canal de production associée

    OpenAIRE

    Ravat, O

    2004-01-01

    CMS The quest for the Higgs boson, is one of the mains goals of the CMS detector, which will be operated at the next proton-proton collider LHC. In this thesis, the electromagnetic calorimeter is involved.In the first part of this thesis the ECAL performance is evaluated with the data taken during the 2003 beam tests. The choices concerning the electronics readout have been made.The second part uses the ECAL in order to evaluate the discovery potential of the Higgs boson in the associated ...

  14. A potential source for cellulolytic enzyme discovery and environmental aspects revealed through metagenomics of Brazilian mangroves.

    Science.gov (United States)

    Thompson, Claudia Elizabeth; Beys-da-Silva, Walter Orlando; Santi, Lucélia; Berger, Markus; Vainstein, Marilene Henning; Guima Rães, Jorge Almeida; Vasconcelos, Ana Tereza Ribeiro

    2013-01-01

    The mangroves are among the most productive and biologically important environments. The possible presence of cellulolytic enzymes and microorganisms useful for biomass degradation as well as taxonomic and functional aspects of two Brazilian mangroves were evaluated using cultivation and metagenomic approaches. From a total of 296 microorganisms with visual differences in colony morphology and growth (including bacteria, yeast and filamentous fungus), 179 (60.5%) and 117 (39.5%) were isolated from the Rio de Janeiro (RJ) and Bahia (BA) samples, respectively. RJ metagenome showed the higher number of microbial isolates, which is consistent with its most conserved state and higher diversity. The metagenomic sequencing data showed similar predominant bacterial phyla in the BA and RJ mangroves with an abundance of Proteobacteria (57.8% and 44.6%), Firmicutes (11% and 12.3%) and Actinobacteria (8.4% and 7.5%). A higher number of enzymes involved in the degradation of polycyclic aromatic compounds were found in the BA mangrove. Specific sequences involved in the cellulolytic degradation, belonging to cellulases, hemicellulases, carbohydrate binding domains, dockerins and cohesins were identified, and it was possible to isolate cultivable fungi and bacteria related to biomass decomposition and with potential applications for the production of biofuels. These results showed that the mangroves possess all fundamental molecular tools required for building the cellulosome, which is required for the efficient degradation of cellulose material and sugar release.

  15. Higgs Boson - on Your Own

    CERN Document Server

    Csorgo, T

    2013-01-01

    One of the highlights of 2012 in physics is related to two papers, published by the ATLAS and the CMS Collaborations, that announced the discovery of at least one new particle in pp collisions at CERN LHC. At least one of the properties of this new particle is found to be similar to that of the Higgs boson, the last and most difficult to find building block from the Standard Model of particle physics. Physics teachers are frequently approached by their media-educated students, who inquire about the properties of the Higgs boson, but physics teachers are rarely trained to teach this elusive aspect of particle physics in elementary, middle or junior high schools. In this paper I describe a card-game, that can be considered as a hands-on and easily accessible tool that allows interested teachers, students and also motivated lay-persons to play with the properties of the newly found Higgs-like particle. This new particle was detected through its decays to directly observable, final state particles. Many of these ...

  16. From The Beatles to Bosons

    CERN Multimedia

    Stephanie McClellan

    2013-01-01

    Before embarking on a successful career as a musician, Alan Parsons started out as a sound engineer - earning his first credit on The Beatles’ Abbey Road.  Over the years, he has worked and collaborated with various artists, but 30 September 2013 marks a unique collaboration.  For CERN’s ‘Bosons & More’ party, Alan Parsons Live Project will be sharing the stage with the Orchestre de la Suisse Romande.  Having already visited CERN in 2011, Alan Parsons provides an insight into his views on science and his upcoming performance at the ‘Bosons & More’ event.     Alan Parsons during his visit to CERN in August 2011. Since visiting CERN in 2011, how have your feelings towards the Organization developed? I was thrilled to hear about the recent discovery and how years of work had paid off. Together with my wife, Lisa, and my band, we were very privileged to come to CERN a couple of years ago, hav...

  17. Search for a Higgs boson produced in association with a W boson at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Ruckert, Benjamin

    2009-11-23

    The Large Hadron Collider at CERN the most modern proton-proton collider and data taking will start in 2009, with a centre-of-mass energy of {radical}(s) = 7 TeV. The ATLAS detector, which is one of two multi-purpose detectors at the Large Hadron Collider, is able to detect a Standard Model Higgs boson if it exists. This is one of the main tasks of the ATLAS experiment. This thesis deals with a Standard Model Higgs boson produced in association with a W boson. The Monte Carlo study is based on physics events generated at the nominal centre-of-mass energy of the Large Hadron Collider of {radical}(s) = 14 TeV. Large parts of this analysis have been done using the global Grid infrastructure of the Large Hadron Collider experiments. A mass range of the Higgs boson of m{sub H} = 130 - 190 GeV has been taken into account. In this mass range, the Higgs boson dominantly decays into a pair of W bosons, leading to initially three W bosons: WH{yields}WWW. Two orthogonal analysis channels have been investigated in detailed studies of the background properties. The first channel considers the leptonic decay of two W bosons, such that the leptons are of opposite charge. The third W boson then decays hadronically. The analysis is based on one-dimensional cuts, where the best cuts found are strict cuts on the transverse momenta of the leptons, a cut on the invariant mass of the jets, as well as a cut on the transverse jet momenta and the missing transverse energy. The second decay channel studied is dedicated to the leptonic decay of all three W bosons. Again, cuts on the transverse momenta of the leptons and the jets have been proven to be efficient, as well as the use of the spatial correlation of the decay products of the Higgs boson. The invariant mass of the leptons with opposite sign has been emerged as a very efficient cut to reject dominant diboson background contributions. The discovery reach of both channels separately as well as the combination has been calculated using

  18. Search for Charged Higgs bosons via decays to $W^\\pm$ and a 125 GeV Higgs at the Large Hadron Collider

    CERN Document Server

    Enberg, Rikard; Moretti, Stefano; Munir, Shoaib; Wouda, Glenn

    2015-01-01

    The recent observation of a 125 GeV neutral Higgs boson ($H_{\\rm obs}$) provides additional input for charged Higgs boson searches in the $H^\\pm \\to W^\\pm H_{\\rm obs}$ decay channel at the Large Hadron Collider (LHC). We reassess the discovery potential in this channel, which is important for $H^\\pm$ heavier than the top quark mass. When $H_{\\rm obs}$ decays to a $b\\bar{b}$ pair, knowledge of the Higgs mass aids in the kinematic selection of signal events. We perform a signal-to-background analysis to demonstrate the LHC prospects for charged Higgs discovery in the resulting channel $pp\\to t(\\bar{b})H^-\\to \\ell^\\pm\

  19. Nonminimally coupled topological-defect boson stars: Static solutions

    CERN Document Server

    Reid, Graham D

    2015-01-01

    We consider spherically symmetric static composite structures consisting of a boson star and a global monopole, minimally or non-minimally coupled to the general relativistic gravitational field. In the non-minimally coupled case, Marunovic and Murkovic have shown that these objects, so-called boson D-stars, can be sufficiently gravitationally compact so as to potentially mimic black holes. Here, we present the results of an extensive numerical parameter space survey which reveals additional new and unexpected phenomenology in the model. In particular, focusing on families of boson D-stars which are parameterized by the central amplitude of the boson field, we find configurations for both the minimally and non-minimally coupled cases that contain one or more shells of bosonic matter located far from the origin. In parameter space, each shell spontaneously appears as one tunes through some critical central amplitude of the boson field. In some cases the shells apparently materialize at spatial infinity: in the...

  20. Commissioning of the ATLAS electromagnetic calorimeter and Z' {yields} e{sup +}e{sup -} discovery potential in the first LHC data; Mise en service du calorimetre electromagnetique d'Atlas et determination du potentiel de decouverte d'un Z' {yields} e{sup +}e{sup -} dans les premieres donnees LHC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-15

    After about fifteen years of development, the ATLAS detector is ready to operate and it recorded, in 2008, several millions of cosmic events as well as first LHC data. This achievement is based on the long experience of beam tests and on the large effort towards the detector in situ commissioning undertaken by the ATLAS collaboration. This promises fast ability to perform searches for evidence of the Higgs boson and new physics. I heavily contributed to the in situ commissioning of the electromagnetic calorimeter. To verify its performance, I studied the first cosmic data taken in 2006 which allowed the first in situ analysis of dead channels, energy reconstruction and detector response uniformity. This participation to the commissioning has continued with the study of the single beam data recorded during the first week of LHC operation (Sept. 2008). Expanding on my expertise of the electromagnetic calorimeter, I focused my physics analysis, prepared with simulation, on the promising discovery potential of new physics at LHC via the di-electron/di-photon decay of new heavy gauge boson in the early LHC data (the first 100 pb{sup -1}). Possible limitations coming from early hardware problems or imperfect electron energy calibration in first data have been estimated. According to the new schedule of LHC operation, this analysis will be possible with 10 TeV pp collisions data in 2010. (author)

  1. Search for a charged Higgs boson in $\\tau\

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00011001; Gallinaro, Michele

    The Large Hadron Collider (LHC) started the first proton-proton collisions at a center-of-mass energy of 7 TeV in 2010. Soon thereafter, the experiments started collecting data and were able to rediscover the Standard Model (SM) in a few months, thanks to the very good understanding of the detectors, and their already precise calibrations. The LHC took data at $\\sqrt{s}=7$~TeV and 8~TeV in the years 2010-2011 and 2012, respectively: the peak of his intensive data taking has been, in 2012, the discovery, by the CMS and ATLAS experiment s, of a neutral boson with a mass of approximately 125\\unit{\\GeV}. The properties of the new boson are consistent with those predicted for the Standard Model (SM) Higgs boson, and models with an extended Higgs sector are constrained by the measured properties of the new boson: the discovery of another scalar boson, neutral or charged, would represent unambig uous evidence for the presence of physics beyond the SM. Charged Higgs bosons are predicted in models consisting of at...

  2. The Higgs boson

    OpenAIRE

    Pimenta, Jean Jûnio Mendes; Belussi, Lucas Francisco Bosso; Natti, Érica Regina Takano; Natti, Paulo Laerte

    2013-01-01

    The Higgs boson was predicted in 1964 by British physicist Peter Higgs. The Higgs is the key to explain the origin of the mass of other elementary particles of Nature. However, only with the coming into operation of the LHC, in 2008, there were technological conditions to search for the Higgs boson. Recently, a major international effort conducted at CERN, by means of ATLAS and CMS experiments, has enabled the observation of a new bosonic particle in the region of 125 GeVs. In this paper, by ...

  3. Photoproduction of leptophobic bosons

    CERN Document Server

    Fanelli, Cristiano

    2016-01-01

    We propose a search for photoproduction of leptophobic bosons that couple to quarks at the GlueX experiment at Jefferson Lab. We study in detail a new gauge boson that couples to baryon number $B$, and estimate that $\\gamma p \\to p B$ will provide the best sensitivity for $B$ masses above 0.5 GeV. This search will also provide sensitivity to other proposed dark-sector states that couple to quarks. Finally, our results motivate a similar search for $B$ boson electroproduction at the CLAS experiment.

  4. A Historical Profile of the Higgs Boson

    CERN Document Server

    Ellis, John; Nanopoulos, V

    2016-01-01

    The Higgs boson was postulated in 1964, and phenomenological studies of its possible production and decays started in the early 1970s, followed by studies of its possible production in e+ e−, and pp collisions, in particular. Until recently, the most sensitive searches for the Higgs boson were at LEP between 1989 and 2000, which were complemented by searches at the Fermilab Tevatron. Then the LHC experiments ATLAS and CMS entered the hunt, announcing on July 4, 2012 the discovery of a "Higgs-like" particle with a mass of about 125 GeV. This identification has been supported by subsequent measurements of its spin, parity and coupling properties. It was widely anticipated that the Higgs boson would be accompanied by supersymmetry, although other options, like compositeness, were not completely excluded. So far there are no signs of any new physics, and the measured properties of the Higgs boson are consistent with the predictions of the minimal Standard Model. This article reviews some of the key historical d...

  5. Search for a Higgs-like boson decaying into bottom quarks in the Z(IIH channel

    Directory of Open Access Journals (Sweden)

    Eller Philipp

    2013-11-01

    Full Text Available After the discovery of a Higgs-like Boson with a mass close to 125 GeV at the LHC in summer 2012, we are showing the update on the analysis of the VH cannel. In this channel the Higgs-like Boson is produced in association with a vector boson and decaying into b quarks. We present the updated results on the full 2011 and 2012 7+8 TeV dataset. This poster will focus on one of the tree modes that are combined in this analysis, where the associated vector boson is a Z boson that is decaying leptonically into two electrons or muons, respectively.

  6. Determination of the Higgs boson spin at ATLAS

    CERN Document Server

    Sanchez Pineda, A; The ATLAS collaboration

    2013-01-01

    In 2012 ATLAS and CMS collaborations announced the discovery of a new resonance in the search for the Standard Model (SM) Higgs boson. The next step is the experimental determination of its properties in order to understand if it’s the SM Higgs Boson or “someone” beyond. This presentation will resume the state of the art of the ATLAS studies of the spin/parity (JP) quantum numbers of the new boson, due to its production and decay nature, is a neutral boson. To distinguishing between different hypotheses, including that from the Standard Model, ATLAS relies on discriminant observables chosen to be sensitive to the spin and parity of the signal for each channel considered, using data recorded in 2011 and 2012.

  7. Search for a Higgs boson in fermion modes using the ATLAS detector.

    CERN Document Server

    Aben, RZ; The ATLAS collaboration

    2013-01-01

    Since the discovery of a Higgs-like boson by the ATLAS and CMS experiments at the LHC, the emphasis has shifted towards measurements of its properties in order to determine whether the new particle is the Standard Model (SM) Higgs boson, or something else. Of particular importance is the direct observation of the coupling of the Higgs boson to fermions. In this presentation a comprehensive review of ATLAS results in the search for the Higgs boson in the main fermion decay (bb and tautau) channels and in various production modes (VBF, VH, ttH, and gluon fusion) will be given.

  8. Search for the Higgs boson in VH(bb) channel using the ATLAS detector

    CERN Document Server

    Francavilla, P; The ATLAS collaboration

    2014-01-01

    Since the discovery of a Higgs boson by the ATLAS and CMS experiments at the LHC, the emphasis has shifted towards measurements of its properties and the search for less sensitive channels in order to determine whether the new particle is the Standard Model (SM) Higgs boson. Of particular importance is the direct observation of the coupling of the Higgs boson to b-quarks. In this talk a review of ATLAS results in the search for the Higgs boson in the VH production mode with the Higgs decaying to a b-quark pair decay will be given.

  9. Search for the Higgs boson in $\\tau^+\\tau^-$ channel using the ATLAS detector

    CERN Document Server

    O'Neil, D C; The ATLAS collaboration

    2013-01-01

    Since the discovery of a Higgs-­like boson by the ATLAS and CMS experiments at the LHC, the emphasis has shifted towards measurements of its properties and the search for the search in the less sensitive channels in order to determine whether the new particle is the Standard Model (SM) Higgs boson. Of particular importance is the direct observation of the coupling of the Higgs boson to leptons. In this presentation a comprehensive review of ATLAS results in the search for the Higgs boson in the tau-­tau decay channel and in various production modes (VBF, VH, and gluon fusion) will be given.

  10. Search for the Higgs boson in fermionic channels using the ATLAS detector

    CERN Document Server

    Hanagaki, K; The ATLAS collaboration

    2013-01-01

    Since the discovery of a Higgs-like boson by the ATLAS and CMS experiments at the LHC, the emphasis has shifted towards measurements of its properties and the search in the less sensitive channels in order to determine whether the new particle is the Standard Model (SM) Higgs boson. Of particular importance is the direct observation of the coupling of the Higgs boson to tau-leptons, b-quarks and the top-quark. In this presentation a comprehensive review of ATLAS results in the search for the Higgs boson in tau-leptons, b-quark pair decay channel and in the VH and ttH will be given.

  11. Search for the Higgs boson in fermionic channels using the ATLAS detector

    CERN Document Server

    Dell'Asta, L; The ATLAS collaboration

    2014-01-01

    Since the discovery of a Higgs-like boson by the ATLAS and CMS experiments at the LHC, the emphasis has shifted towards measurements of its properties and the search in the less sensitive channels in order to determine whether the new particle is the Standard Model (SM) Higgs boson. Of particular importance is the direct observation of the coupling of the Higgs boson to fermions. In this presentation a review of ATLAS results in the search for the Higgs boson in muon, tau-lepton, b-quark pair decay channels will be given.

  12. Direct search for the Standard Model Higgs boson

    Science.gov (United States)

    Janot, Patrick; Kado, Marumi

    2002-11-01

    For twelve years, LEP revolutionized the knowledge of electroweak symmetry breaking within the standard model, and the direct discovery of the Higgs boson would have been the crowning achievement. Searches at the Z resonance and above the W +W - threshold allowed an unambiguous lower limit on the mass of the standard model Higgs boson to set be at 114.1 GeV· c-2. After years of efforts to push the LEP performance far beyond the design limits, hints of what could be the first signs of the existence of a 115 GeV· c-2 Higgs boson appeared in June 2000, were confirmed in September, and were then confirmed again in November. An additional six-month period of LEP operation was enough to provide a definite answer, with an opportunity to make a fundamental discovery of prime importance. To cite this article: P. Janot, M. Kado, C. R. Physique 3 (2002) 1193-1202.

  13. Direct search for the standard model Higgs boson

    CERN Document Server

    Janot, Patrick

    2002-01-01

    For twelve years, LEP revolutionized the knowledge of electroweak symmetry breaking within the standard model, and the direct discovery of the Higgs boson would have been the crowning achievement. Searches at the Z resonance and above the W/sup +/W/sup -/ threshold allowed an unambiguous lower limit on the mass of the standard model Higgs boson to set be at 114.1 GeV.c/sup -2/. After years of efforts to push the LEP performance far beyond the design limits, hints of what could be the first signs of the existence of a 115 GeV-c/sup -2/ Higgs boson appeared in June 2000, were confirmed in September, and were then confirmed again in November. An additional six-month period of LEP operation was enough to provide a definite answer, with an opportunity to make a fundamental discovery of prime importance. (37 refs).

  14. Driven Boson Sampling

    OpenAIRE

    Barkhofen, Sonja; Bartley, Tim J.; Sansoni, Linda; Kruse, Regina; Hamilton, Craig S.; Jex, Igor; Silberhorn, Christine

    2016-01-01

    Sampling the distribution of bosons that have undergone a random unitary evolution is strongly believed to be a computationally hard problem. Key to outperforming classical simulations of this task is to increase both the number of input photons and the size of the network. We propose driven boson sampling, in which photons are input within the network itself, as a means to approach this goal. When using heralded single-photon sources based on parametric down-conversion, this approach offers ...

  15. Search for the Higgs Boson in the Channel H->ZZ*->4l with the ATLAS Detector

    CERN Document Server

    Rebuzzi, D; The ATLAS collaboration

    2009-01-01

    The decay channel H->ZZ*->4l provides a clean signature for the Higgs boson in the mass range between ~120 GeV and 2MZ, above which the "gold-plated" channel with two real Z bosons in the final state opens up. The signal cross section is several orders of magnitude smaller than those for the backgrounds, therefore a thorough understanding of the multi-lepton processes is needed to obtain a high background rejection. Crucial for this channel is also a very good knowledge of the trigger and detector response for lepton identification and reconstruction. The observability of the signal on top of the reducible tt, Zbb and of the irreducible ZZz backgrounds with the ATLAS Detector is discussed in the following, with particular emphasis on lepton reconstruction. The ATLAS discovery potential for the H->4l, including the most realistic and up-to-date description of the detector performance, is presented.

  16. Higgs boson theory and phenomenology mass measurements and nuclear physics Recent results from ISOLTRAP

    CERN Document Server

    Carena, M S; Herfurth, F; Ames, F; Audi, G; Beck, D; Blaum, K; Bollen, G; Kellerbauer, A G; Kluge, H J; Kuckein, M; Lunney, M D; Moore, R B; Oinonen, M; Rodríguez, D; Sauvan, E; Scheidenberger, C

    2003-01-01

    Precision electroweak data presently-favors a weakly-coupled Higgs sector as the mechanism responsible for electroweak symmetry breaking. Low-energy supersymmetry provides a natural framework for weakly-coupled elementary scalars. In this review, we summarize the theoretical properties of the Standard Model (SM) Higgs boson and the Higgs sector of the minimal super-symmetric extension of the Standard Model (MSSM). We then survey the phenomenology of the SM and MSSM Higgs bosons at the Tevatron, LHC and a future e**+e**- linear collider. We focus on the Higgs discovery potential of present and future colliders and stress the importance of precision measurements of Higgs boson properties. 459 Refs.31 The Penning trap mass spectrometer ISOLTRAP is a facility for high- precision mass measurements of short-lived radioactive nuclei installed at ISOLDE/CERN in Geneva. More than 200 masses have been measured with relative uncertainties of 1 multiplied by 10**-**7 or even close to 1 multiplied by 10**-**8 in special c...

  17. Exploring the potential benefits of false discovery rates for region-based testing of association with rare genetic variation

    Directory of Open Access Journals (Sweden)

    ChangJiang eXu

    2014-01-01

    Full Text Available When analyzing the data arising from exome or whole-genome sequencing studies, window-based tests, i.e. tests that jointly analyze all genetic data in a small genomic region, are very popular. However, power is known to be quite low for finding associations with phenotypes using these tests, and hence a variety of analytic strategies may be employed to potentially improve power. Using sequencing data from all of chromosome 3 in an interim release of data on 2,432 individuals from the UK10K project, we simulated phenotypes associated with rare genetic variation, and used the results to explore the window-based test power, and to ask two specific questions. Firstly, we asked whether there could be substantial benefits associated with incorporating information from external annotation on the genetic variants, and secondly we asked whether the false discovery rate (FDRs would be a useful metric for assessing significance. Although, as expected, there are benefits to using additional information (such as annotation when it is associated with causality, we confirmed the general pattern of low sensitivity and power for window-based tests. At least for our chosen example, even when power is high to detect some associations, many of the regions containing causal variants cannot be detected, despite using lax significance thresholds and optimal analytic methods. Furthermore, our estimated FDR values tended to be much smaller than the true FDRs. Long-range correlations between variants—due to linkage disequilibrium—likely explains some of this bias. A more sophisticated approach to using the annotation information may help the power, but many causal variants of realistic effect sizes may simply be undetectable, at least with this sample size. Perhaps annotation information could assist in distinguishing windows containing causal variants from windows that are merely correlated with causal variants.

  18. Search for Charged Higgs Bosons with the ATLAS Detector at the LHC

    CERN Document Server

    Czodrowski, Patrick

    2013-07-30

    The discovery of a charged Higgs boson, $H^+$, would be an unambiguous evidence for physics beyond the Standard Model. In this thesis a search for the $H^+$, with the ATLAS experiment at the Large Hadron Collider, LHC, at CERN based on data taken in 2011, are described. A re-analysis of the charged Higgs boson search, utilising the ratio-method, was performed, which greatly enhanced the sensitivity compared to the traditional direct search approach. Light charged Higgs bosons, with a mass lower than the top quark mass, can be produced in top quark decays. Due to the large production cross-section of top quark pairs the light charged Higgs bosons are accessible with early LHC data, in contrast to charged Higgs bosons heavier than the top quark mass. For light charged Higgs bosons the decay via $H^\\pm \\to \\tau^\\pm \

  19. Looking For Physics Beyond The Standard Model: Searches For Charged Higgs Bosons At $e^{+}e^{-}$ Colliders

    CERN Document Server

    Kiiskinen, A P

    2004-01-01

    This thesis describes direct searches for pair production of charged Higgs bosons performed in the data collected by the DELPHI detector at the LEP collider at CERN. In addition, the possibilities to discover and study heavy charged Higgs bosons at possible future high-energy linear colliders are presented. The existence of charged Higgs bosons is predicted by many extensions of the Standard Model. A possible discovery of these particles would be a solid proof for physics beyond the Standard Model. Discovery of charged Higgs bosons, and measurement of their properties, would also provide useful information about the structure of the more general theory. New analysis methods were developed for the searches performed at LEP. A large, previously unexplored, mass range for cover but no evidence for the existence of the charged Higgs bosons was found. This allowed setting new lower mass limits for the charged Higgs boson within the framework of general two Higgs doublet models. Results have been interpreted and pr...

  20. Search for doubly charged Higgs bosons through vector boson fusion at the LHC and beyond

    Science.gov (United States)

    Bambhaniya, G.; Chakrabortty, J.; Gluza, J.; Jeliński, T.; Szafron, R.

    2015-07-01

    Production and decays of doubly charged Higgs bosons at the LHC and future hadron colliders triggered by a vector boson fusion mechanism are discussed in the context of the minimal left-right symmetric model. Our analysis is based on the Higgs boson mass spectrum compatible with available constraints which include flavor changing neutral current (FCNC) effects and vacuum stability of the scalar potential. Though the parity breaking scale vR is large (˜ few TeV) and scalar masses which contribute to FCNC effects are even larger, a consistent Higgs boson mass spectrum still allows us to keep doubly charged scalar masses below 1 TeV which is an interesting situation for LHC and future circular collider (FCC). We have shown that the allowed Higgs boson mass spectrum constrains the splittings (MH1±±-MH1± ), closing the possibility of H1±±→W1±H1± decays. Assuming that doubly charged Higgs bosons decay predominantly into a pair of same-sign charged leptons through the process p p →H1/2 ±±H1/2 ∓∓j j →ℓ±ℓ±ℓ∓ℓ∓j j , we find that for the LHC operating at √{s }=14 TeV with an integrated luminosity at the level of 3000 fb-1 (HL-LHC), there is practically no chance to detect such particles at the reasonable significance level through this channel. However, at 33 TeV HE-LHC and (or) 100 TeV FCC-hh, a wide region opens up for exploring the doubly charged Higgs boson mass spectrum. In FCC-hh, the doubly charged Higgs bosons mass up to 1 TeV can be easily probed.

  1. Reheating with a composite Higgs boson

    Science.gov (United States)

    Croon, Djuna; Sanz, Verónica; Tarrant, Ewan R. M.

    2016-08-01

    The flatness of the inflaton potential and lightness of the Higgs boson could have the common origin of the breaking of a global symmetry. This scenario provides a unified framework of Goldstone inflation and composite Higgs models, where the inflaton and the Higgs particle both have a pseudo-Goldstone boson nature. The inflaton reheats the Universe via decays to the Higgs and subsequent secondzary production of other SM particles via the top and massive vector bosons. We find that inflationary predictions and perturbative reheating conditions are consistent with cosmic microwave background data for sub-Planckian values of the fields, as well as opening up the possibility of inflation at the TeV scale. We explore this exciting possibility, leading to an interplay between collider data cosmological constraints.

  2. HNC variational calculations of boson matter

    International Nuclear Information System (INIS)

    A simple and reliable numerical technique is given for determining the two-body distribution function which minimizes the HNC energy of boson matter. Numerical results are presented for the neutron matter homework problem and the 4He Lennard-Jones potential. The resulting distribution function is found to have proper asymptotic behaviour and yields reasonable binding energies. (Auth.)

  3. Finding the Higgs Boson through Supersymmetry

    CERN Document Server

    De Campos, F; Magro, M B; Restrepo, D; Valle, J W F

    2008-01-01

    The study of displaced vertices containing two b--jets may provide a double discovery at the Large Hadron Collider (LHC): we show how it may not only reveal evidence for supersymmetry, but also provide a way to uncover the Higgs boson necessary in the formulation of the electroweak theory in a large region of the parameter space. We quantify this explicitly using the simplest minimal supergravity model with bilinear breaking of R-parity, which accounts for the observed pattern of neutrino masses and mixings seen in neutrino oscillation experiments.

  4. Bosonization of Weyl Fermions

    Science.gov (United States)

    Marino, Eduardo

    The electron, discovered by Thomson by the end of the nineteenth century, was the first experimentally observed particle. The Weyl fermion, though theoretically predicted since a long time, was observed in a condensed matter environment in an experiment reported only a few weeks ago. Is there any linking thread connecting the first and the last observed fermion (quasi)particles? The answer is positive. By generalizing the method known as bosonization, the first time in its full complete form, for a spacetime with 3+1 dimensions, we are able to show that both electrons and Weyl fermions can be expressed in terms of the same boson field, namely the Kalb-Ramond anti-symmetric tensor gauge field. The bosonized form of the Weyl chiral currents lead to the angle-dependent magneto-conductance behavior observed in these systems.

  5. Dynamical Boson Stars

    CERN Document Server

    Liebling, Steven L

    2012-01-01

    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.

  6. Dynamical Boson Stars

    Directory of Open Access Journals (Sweden)

    Steven L. Liebling

    2012-05-01

    Full Text Available The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.

  7. Boson/Fermion Janus Particles

    CERN Document Server

    Tsekov, R

    2016-01-01

    Thermodynamically, bosons and fermions differ by their statistics only. A general entropy functional is proposed by superposition of entropic terms, typical for different quantum gases. The statistical properties of the corresponding Janus particles are derived by variation of the weight of the boson/fermion fraction. It is shown that di-bosons and anti-fermions separate in gas and liquid phases, while three-phase equilibrium appears for poly-boson/fermion Janus particles.

  8. Charged Higgs boson in the W± Higgs channel at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Rikard Enberg

    2015-04-01

    Full Text Available In light of the recent discovery of a neutral Higgs boson, Hobs, with a mass near 125 GeV, we reassess the LHC discovery potential of a charged Higgs boson, H±, in the W±Hobs decay channel. This decay channel can be particularly important for a H± heavier than the top quark, when it is produced through the pp→tH± process. The knowledge of the mass of Hobs provides an additional handle in the kinematic selection when reconstructing a Breit–Wigner resonance in the Hobs→bb¯ decay channel. We consider some extensions of the Standard Model Higgs sector, with and without supersymmetry, and perform a dedicated signal-to-background analysis to test the scope of this channel for the LHC running at the design energy (14 TeV, for 300 fb−1 (standard and 3000 fb−1 (high integrated luminosities. We find that, while this channel does not show much promise for a supersymmetric H± state, significant portions of the parameter spaces of several two-Higgs doublet models are testable.

  9. Search for the Standard Model Higgs boson in the $H\\rightarrow W^{+}W^{-}\\rightarrow\\ell^{+}\

    CERN Document Server

    Schmidt, Evelyn

    2013-06-06

    Modern particle physics research is dedicated to study the fundamental constituents of matter and their interactions. Scientific research findings on both theoretical and experimental sides during the past decades have been condensed in the Standard Model of particle physics. In this model, the interactions between fundamental particles are described by gauge fields and the exchange of corresponding gauge bosons. The Standard Model contains several such bosons, for example the massive and charged W bosons and a neutral Z boson, that have been observed experimentally. The simplest and most popular implementation of electroweak symmetry breaking to attribute mass to the W and Z bosons is the Higgs mechanism. This mechanism implies the existence of one additional particle, the Higgs boson, that is the only remaining particle of the Standard Model to be established experimentally. In July 2012, the discovery of a new neutral boson with a measured mass of about 126 GeV was announced by the ATLAS and CMS collaborat...

  10. Bosonic variables in nuclear matters

    International Nuclear Information System (INIS)

    It is shown that the boson theoretical interpretation of nuclear forces nessecitates the introduction of bosonic variables within the state function of nuclear matter. In this framework the 2-boson exchange plays a decisive role and calls for the introduction of special selfenergy diagrams. This generalized scheme is discussed with the help of a solvable field theoretical model. (orig.)

  11. Quantization over boson operator spaces

    Energy Technology Data Exchange (ETDEWEB)

    Prosen, Tomaz [Department of Physics, FMF, University of Ljubljana, Ljubljana (Slovenia); Seligman, Thomas H [Instituto de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico)

    2010-10-01

    The framework of third quantization-canonical quantization in the Liouville space-is developed for open many-body bosonic systems. We show how to diagonalize the quantum Liouvillean for an arbitrary quadratic n-boson Hamiltonian with arbitrary linear Lindblad couplings to the baths and, as an example, explicitly work out a general case of a single boson. (fast track communication)

  12. Quantization over boson operator spaces

    CERN Document Server

    Prosen, Tomaz

    2010-01-01

    The framework of third quantization - canonical quantization in the Liouville space - is developed for open many-body bosonic systems. We show how to diagonalize the quantum Liouvillean for an arbitrary quadratic n-boson Hamiltonian with arbitrary linear Lindblad couplings to the baths and, as an example, explicitly work out a general case of a single boson.

  13. Higgs boson hunting

    International Nuclear Information System (INIS)

    This is the summary report of the Higgs Boson Working Group. We discuss a variety of search techniques for a Higgs boson which is lighter than the Z. The processes K → πH, η prime → ηH,Υ → Hγ and e+e- → ZH are examined with particular attention paid to theoretical uncertainties in the calculations. We also briefly examine new features of Higgs phenomenology in a model which contains Higgs triplets as well as the usual doublet of scalar fields. 33 refs., 6 figs., 1 tab

  14. Higgs boson and inflation

    Directory of Open Access Journals (Sweden)

    FENG Chaojun

    2014-08-01

    Full Text Available Higgs is the only scalar particle that already observed up to now.In the standard model of particle physics,Higgs plays a very important role.On the other hand,inflation is also driven by scalar field called inflaton.Higgs boson can not be the inflaton since the large hierarchy energy scale of the mass between inflaton and itself.However,by using some indirectly method,inflaton could be another aspect of the Higgs boson.In this paper,the authors review some Higgs inflation models and discuss the role of the cosmological constant during inflation.

  15. Nonexotic Neutral Gauge Bosons

    OpenAIRE

    Appelquist, Thomas; Dobrescu, Bogdan A.; Hopper, Adam R.

    2002-01-01

    We study theoretical and experimental constraints on electroweak theories including a new color-singlet and electrically-neutral gauge boson. We first note that the electric charges of the observed fermions imply that any such Z' boson may be described by a gauge theory in which the Abelian gauge groups are the usual hypercharge along with another U(1) component in a kinetic-diagonal basis. Assuming that the observed quarks and leptons have generation-independent U(1) charges, and that no new...

  16. Higgs boson: the winner takes it all?

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    Since its discovery in 2012, the Higgs boson has been in the spotlight for both experimentalists and theorists. In addition to its confirmed role in the mass mechanism, recent papers have discussed its possible role in the inflation of the universe and in the matter-antimatter imbalance. Can a single particle be responsible for everything?   “Since 2012 we have known that the Higgs boson exists, but its inner properties are yet to be completely uncovered,” says Gian Giudice, a member of the CERN Theory Unit. “Precise measurements of its decay modes are still ongoing and the LHC Run 2 will be essential to understand the nature of this particle at a deeper level.” What we know is that this boson is not “yet another particle” among the hundreds that we deal with every day in physics labs. In agreement with the Standard Model theory, the recent experimental data confirms that the particle discovered by the CERN experiments is the key pa...

  17. Discovering Higgs Bosons of the MSSM using Jet Substructure

    Energy Technology Data Exchange (ETDEWEB)

    Kribs, Graham D.; Martin, Adam; Roy, Tuhin S.; Spannowsky, Michael

    2010-06-01

    We present a qualitatively new approach to discover Higgs bosons of the MSSM at the LHC using jet substructure techniques applied to boosted Higgs decays. These techniques are ideally suited to the MSSM, since the lightest Higgs boson overwhelmingly decays to b{bar b} throughout the entire parameter space, while the heavier neutral Higgs bosons, if light enough to be produced in a cascade, also predominantly decay to b{bar b}. The Higgs production we consider arises from superpartner production where superpartners cascade decay into Higgs bosons. We study this mode of Higgs production for several superpartner hierarchies: m{sub {tilde q}},m{sub {tilde g}} > m{sub {tilde W}},{sub {tilde B}} > m{sub h} + {mu}; m{tilde q};m{sub {tilde q}},m{sub {tilde g}} > m{sub {tilde W}},{sub {tilde B}} > m {sub h,H,A} + {mu}; and m{sub {tilde q}},m{sub {tilde g}} > m{sub {tilde W}} > m{sub h} + {mu} with m{sub {tilde B}} {approx} {mu}. In these cascades, the Higgs bosons are boosted, with pT > 200 GeV a large fraction of the time. Since Higgs bosons appear in cascades originating from squarks and/or gluinos, the cross section for events with at least one Higgs boson can be the same order as squark/gluino production. Given 10 fb{sup -1} of 14 TeV LHC data, with m{sub {tilde q}} {approx}< 1 TeV, and one of the above superpartner mass hierarchies, our estimate of S{radical} B of the Higgs signal is sufficiently high that the b{bar b} mode can become the discovery mode of the lightest Higgs boson of the MSSM.

  18. Mixtures of Bosonic and Fermionic Atoms in Optical Lattices

    OpenAIRE

    Albus, Alexander; Illuminati, Fabrizio; Eisert, Jens

    2003-01-01

    We discuss the theory of mixtures of Bosonic and Fermionic atoms in periodic potentials at zero temperature. We derive a general Bose--Fermi Hubbard Hamiltonian in a one--dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean field criterion for the onset of a Bosonic superfluid transition. We investigate the ground state properties of the mixture in the Gutzwiller formulation of mean field the...

  19. BEH Boson (CMS)

    CERN Document Server

    Checchia, Paolo

    2016-01-01

    The most relevant results on Higgs sector from CMS are presented. The status of the measurements of the Higgs Boson properties after the complete analysis of Run I dataset and an overview of the results obtained with the limited luminosity delivered at 13 TeV in 2015 are given. Implications of the results and future perspectives are also briefly discussed.

  20. Z Bosons in LHCb

    CERN Document Server

    AUTHOR|(CDS)2077480; Müller, Katharina; Anderson, Jonathan

    In this thesis several measurements of the $Z$ boson production cross section in the LHCb detector are presented. After an introduction with the description of the underlying theory; the detector and the properties of the collisions the machine provided to us in LHC run I in Chapter 1, in Chapter 2 the details of the $Z$ reconstruction in the $Z\\rightarrow\\mu^+\\mu^-$ final state is discussed. In Chapter 3 jets are added to the $Z$ bosons. Several aspects of jet reconstruction are presented and a cross section measurement for the associated production of $Z$ bosons with jets at $\\sqrt{s}=7$ TeV is presented for two transverse momentum thresholds of the jets. In Chapter 4 the capability of the LHCb detector to reconstruct charmed mesons is used to establish a $ZD^{0}$ and a $ZD^{+}$ signal and to measure the total cross section. In Chapter 5 the cross section of inclusive $Z$ boson production is measured at a low statistics sample of $3.3~\\text{pb}^{-1}$ at $\\sqrt{s}=2.76$ TeV.

  1. Evaluating the potential of a novel oral lesion exudate collection method coupled with mass spectrometry-based proteomics for oral cancer biomarker discovery

    Directory of Open Access Journals (Sweden)

    Kooren Joel A

    2011-09-01

    Full Text Available Abstract Introduction Early diagnosis of Oral Squamous Cell Carcinoma (OSCC increases the survival rate of oral cancer. For early diagnosis, molecular biomarkers contained in samples collected non-invasively and directly from at-risk oral premalignant lesions (OPMLs would be ideal. Methods In this pilot study we evaluated the potential of a novel method using commercial PerioPaper absorbent strips for non-invasive collection of oral lesion exudate material coupled with mass spectrometry-based proteomics for oral cancer biomarker discovery. Results Our evaluation focused on three core issues. First, using an "on-strip" processing method, we found that protein can be isolated from exudate samples in amounts compatible with large-scale mass spectrometry-based proteomic analysis. Second, we found that the OPML exudate proteome was distinct from that of whole saliva, while being similar to the OPML epithelial cell proteome, demonstrating the fidelity of our exudate collection method. Third, in a proof-of-principle study, we identified numerous, inflammation-associated proteins showing an expected increase in abundance in OPML exudates compared to healthy oral tissue exudates. These results demonstrate the feasibility of identifying differentially abundant proteins from exudate samples, which is essential for biomarker discovery studies. Conclusions Collectively, our findings demonstrate that our exudate collection method coupled with mass spectrometry-based proteomics has great potential for transforming OSCC biomarker discovery and clinical diagnostics assay development.

  2. The Higgs boson saga - Hundred years of particles, the Higgs boson, and after?

    International Nuclear Information System (INIS)

    A first article recalls the history of the theoretical conception and discovery of particles since the beginning of the twentieth century. It outlines that particles like neutrino, antiproton or quark have been foreseen by theoreticians before a clue of their existence has been experimentally observed. These theories and experiments are based on the standard model which describes weak and strong interactions within a coherent set, and this model is confirmed by the recent evidence of a particle which could be the Higgs boson. A second article discusses this last issue (was it really the Higgs boson?), the work to be done to check this, and also the numerous issues associated with this particle which are now to be addressed, for example the nature of dark matter

  3. Bosonic Decays of Charged Higgs Bosons in a 2HDM Type-I

    CERN Document Server

    Arhrib, Abdesslam; Moretti, Stefano

    2016-01-01

    In this study, we focus on the bosonic decays of light charged Higgs bosons in the 2-Higgs Doublet Model (2HDM) Type-I. We quantify the Branching Ratios (BRs) of the $H^\\pm \\to W^\\pm h$ and $H^\\pm\\to W^\\pm A$ channels and show that they could be substantial over several areas of the parameter space of the 2HDM Type-I that are still allowed by Large Hadron Collider (LHC) and other experimental data as well as theoretical constraints. We suggest that $H^\\pm \\to W^\\pm h$ and/or $H^\\pm \\to W^\\pm A$ could be used as a feasible discovery channel alternative to $H^\\pm \\to \\tau\

  4. Mixtures of bosonic and fermionic atoms in optical lattices

    International Nuclear Information System (INIS)

    We discuss the theory of mixtures of bosonic and fermionic atoms in periodic potentials at zero temperature. We derive a general Bose-Fermi Hubbard Hamiltonian in a one-dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean-field criterion for the onset of a bosonic superfluid transition. We investigate the ground-state properties of the mixture in the Gutzwiller formulation of mean-field theory, and present numerical studies of finite systems. The bosonic and fermionic density distributions and the onset of quantum phase transitions to demixing and to a bosonic Mott-insulator are studied as a function of the lattice potential strength. The existence is predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing many degenerate or quasidegenerate ground states is related to a breaking of the mirror symmetry in the lattice

  5. Higgs boson mass and new physics

    Energy Technology Data Exchange (ETDEWEB)

    Bezrukov, Fedor [Connecticut Univ., Storrs, CT (United States). Dept. of Physics; Brookhaven National Lab., Upton, NY (United States). RIKEN-BNL Research Center; Kalmykov, Mikhail Yu.; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Shaposhnikov, Mikhail [Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. de Theorie des Phenomenes Physiques

    2012-05-15

    We discuss the lower Higgs boson mass bounds which come from the absolute stability of the Standard Model (SM) vacuum and from the Higgs inflation, as well as the prediction of the Higgs boson mass coming from asymptotic safety of the SM. We account for the 3-loop renormalization group evolution of the couplings of the Standard Model and for a part of two-loop corrections that involve the QCD coupling {alpha}{sub s} to initial conditions for their running. This is one step above the current state of the art procedure (''one-loop matching-two-loop running''). This results in reduction of the theoretical uncertainties in the Higgs boson mass bounds and predictions, associated with the Standard Model physics, to 1-2 GeV. We find that with the account of existing experimental uncertainties in the mass of the top quark and {alpha}{sub s} (taken at 2{sigma} level) the bound reads M{sub H} {>=} M{sub min} (equality corresponds to the asymptotic safety prediction), where M{sub min}=129{+-}6 GeV. We argue that the discovery of the SM Higgs boson in this range would be in agreement with the hypothesis of the absence of new energy scales between the Fermi and Planck scales, whereas the coincidence of M{sub H} with M{sub min} would suggest that the electroweak scale is determined by Planck physics. In order to clarify the relation between the Fermi and Planck scale a construction of an electron-positron or muon collider with a center of mass energy {proportional_to}200+200 GeV (Higgs and t-quark factory) would be needed.

  6. Higgs Bosons in Extra Dimensions

    CERN Document Server

    Quiros, Mariano

    2015-01-01

    In this paper, motivated by the recent discovery of a Higgs-like boson at the LHC with a mass m_H\\simeq 126 GeV, we review different models where the hierarchy problem is solved by means of a warped extra dimension. In the Randall-Sundrum model electroweak observables provide very strong bounds on the mass of KK modes which motivates extensions to overcome this problem. Two extensions are briefly discussed. One particular extension is based on the deformation of the metric such that it strongly departs from the AdS_5 structure in the IR region while it goes asymptotically to AdS_5 in the UV brane. This model has the IR brane close to a naked metric singularity (which is outside the physical interval) characteristic of soft-walls constructions. The proximity of the singularity provides a strong wave-function renormalization for the Higgs field which suppresses the T and S parameters. The second class of considered extensions are based on the introduction of an extra gauge group in the bulk such that the custod...

  7. Creating the Fermion Mass Hierarchies with Multiple Higgs Bosons

    CERN Document Server

    Bauer, Martin; Gemmler, Katrin

    2015-01-01

    After the Higgs boson discovery, it is established that the Higgs mechanism explains electroweak symmetry breaking and generates the masses of all particles in the Standard Model, with the possible exception of neutrino masses. The hierarchies among fermion masses and mixing angles remain however unexplained. We propose a new class of two Higgs doublet models in which a flavor symmetry broken at the electroweak scale addresses this problem. The models are strongly constrained by electroweak precision tests and the fact that they produce modifications to Higgs couplings and flavor changing neutral currents; they are also constrained by collider searches for extra scalar bosons. The surviving models are very predictive, implying unavoidable new physics signals at the CERN Large Hadron Collider, e.g. extra Higgs Bosons with masses $M < 700$ GeV.

  8. Creating the Fermion Mass Hierarchies with Multiple Higgs Bosons

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Martin [U. Heidelberg, ITP; Carena, Marcela [Chicago U., KICP; Gemmler, Katrin [TUM-IAS, Munich

    2015-12-10

    After the Higgs boson discovery, it is established that the Higgs mechanism explains electroweak symmetry breaking and generates the masses of all particles in the Standard Model, with the possible exception of neutrino masses. The hierarchies among fermion masses and mixing angles remain however unexplained. We propose a new class of two Higgs doublet models in which a flavor symmetry broken at the electroweak scale addresses this problem. The models are strongly constrained by electroweak precision tests and the fact that they produce modifications to Higgs couplings and flavor changing neutral currents; they are also constrained by collider searches for extra scalar bosons. The surviving models are very predictive, implying unavoidable new physics signals at the CERN Large Hadron Collider, e.g. extra Higgs Bosons with masses $M < 700$ GeV.

  9. Measurement of the Jet Momentum Resolution and Search for a light Standard Model Higgs Boson in the H(bb)W(lv) Channel with the CMS Detector at the LHC

    CERN Document Server

    Held, Hauke

    The Higgs boson is the last particle predicted by the Standard Model which remains undetected. Its potential discovery was a main objective of the construction of the Large Hadron Collider (LHC) at CERN. Its exclusion would necessitate the existence of new physics beyond the Standard Model. A search for the Higgs boson decaying into two bottom quarks in association with the production of a leptonically decaying W boson is presented based on pp collision data recorded with the CMS experiment in 2011, corresponding to an integrated luminosity of L = 4.65 fb−1. Events are selected requiring the presence of an isolated charged lepton (electron or muon), missing transverse energy and two b-jets, which are clustered with the anti-kT jet algorithm at first. The search is performed in a boosted event topology, where both the W boson and the Higgs boson candidates have high momenta and move back-to-back in the transverse detector plane. Artificial Neural Networks are employed to discriminate signal and background ev...

  10. Fermion-fermion and boson-boson amplitudes: surprising similarities

    CERN Document Server

    Dvoeglazov, Valeri V

    2007-01-01

    Amplitudes for fermion-fermion, boson-boson and fermion-boson interactions are calculated in the second order of perturbation theory in the Lobachevsky space. An essential ingredient of the model is the Weinberg's 2(2j+1)-component formalism for describing a particle of spin j. The boson-boson amplitude is then compared with the two-fermion amplitude obtained long ago by Skachkov on the basis of the Hamiltonian formulation of quantum field theory on the mass hyperboloid, p_0^2 - p^2=M^2, proposed by Kadyshevsky. The parametrization of the amplitudes by means of the momentum transfer in the Lobachevsky space leads to same spin structures in the expressions of T-matrices for the fermion case and the boson case. However, certain differences are found. Possible physical applications are discussed.

  11. Search for a Higgs boson in fermion decay modes at the LHC

    CERN Document Server

    Alonso, A; The ATLAS collaboration

    2013-01-01

    Since the discovery of a Higgs-like boson by the ATLAS and CMS experiments at the LHC, the emphasis has shifted towards measurements of its properties in order to determine whether the new particle is the Standard Model (SM) Higgs boson, or not. Of particular importance is the direct observation of the coupling of the Higgs boson to fermions and rare decay modes. In this presentation a comprehensive review of ATLAS and CMS results in the search for the Higgs boson in the main fermion decay (bb and tautau) channels and in various production modes (VBF, VH, and gluon fusion) and in the searches for the SM Higgs boson via decays in rare modes such as dimuon pairs or invisible decays.

  12. Search for the Higgs boson in VH(H➞bb) and in the H➞

    CERN Document Server

    Gonzalez Parra, Garoe; The ATLAS collaboration

    2013-01-01

    Since the discovery of a Higgs-like boson by the ATLAS and CMS experiments at the LHC, the emphasis has shifted towards measurements of its properties and the search for the search in the less sensitive channels in order to determine whether the new particle is the Standard Model (SM) Higgs boson. Of particular importance is the direct observation of the coupling of the Higgs boson to b-quarks, the top-quark and leptons. In this presentation a comprehensive review of ATLAS results in the search for the Higgs boson in b-quark pair decay channel and in the VH and ttH will be given. A comprehensive review of ATLAS results in the search for the Higgs boson in the tau-tau decay channel and in various production modes will be also given.

  13. Measuring the trilinear neutral Higgs boson couplings in the MSSM at $e^+ e^-$ colliders

    CERN Document Server

    Khosa, Charanjit K

    2016-01-01

    We consider the measurement of the trilinear couplings of the neutral Higgs bosons~($H^0, h^0$) in the minimal supersymmetric standard model~(MSSM) at a high energy $e^+$ $e^-$ linear collider in the light of the discovery of a Higgs boson at the CERN Large Hadron Collider~(LHC). We identify the state observed at the LHC with the lightest CP-even Higgs boson of the MSSM. We implement this constraint, as well as all the other relevant experimental constraints, on the parameter space of the MSSM in order to study the feasibility of measuring the trilinear couplings of the neutral Higgs bosons. For the measurement of trilinear couplings, we consider the multiple Higgs production processes. We delineate the regions of MSSM parameter space where the trilinear couplings of the neutral Higgs bosons could be measured at a high energy electron-positron collider.

  14. Repelling Point Bosons

    Science.gov (United States)

    McGuire, J. B.

    2011-12-01

    There is a body of conventional wisdom that holds that a solvable quantum problem, by virtue of its solvability, is pathological and thus irrelevant. It has been difficult to refute this view owing to the paucity of theoretical constructs and experimental results. Recent experiments involving equivalent ions trapped in a spatial conformation of extreme anisotropic confinement (longitudinal extension tens, hundreds or even thousands of times transverse extension) have modified the view of relevancy, and it is now possible to consider systems previously thought pathological, in particular point Bosons that repel in one dimension. It has been difficult for the experimentalists to utilize existing theory, mainly due to long-standing theoretical misunderstanding of the relevance of the permutation group, in particular the non-commutativity of translations (periodicity) and transpositions (permutation). This misunderstanding is most easily rectified in the case of repelling Bosons.

  15. Experimental Boson Sampling

    CERN Document Server

    Spring, Justin B; Humphreys, Peter C; Kolthammer, W Steven; Jin, Xian-Min; Barbieri, Marco; Datta, Animesh; Thomas-Peter, Nicholas; Langford, Nathan K; Kundys, Dmytro; Gates, James C; Smith, Brian J; Smith, Peter G R; Walmsley, Ian A

    2013-01-01

    While universal quantum computers ideally solve problems such as factoring integers exponentially more efficiently than classical machines, the formidable challenges in building such devices motivate the demonstration of simpler, problem-specific algorithms that still promise a quantum speedup. We construct a quantum boson sampling machine (QBSM) to sample the output distribution resulting from the nonclassical interference of photons in an integrated photonic circuit, a problem thought to be exponentially hard to solve classically. Unlike universal quantum computation, boson sampling merely requires indistinguishable photons, linear state evolution, and detectors. We benchmark our QBSM with three and four photons and analyze sources of sampling inaccuracy. Our studies pave the way to larger devices that could offer the first definitive quantum-enhanced computation.

  16. Effects of Family Nonuniversal Z' Boson on Leptonic Decays of Higgs and Weak Bosons

    OpenAIRE

    Chiang, Cheng-Wei; Nomura, Takaaki; Tandean, Jusak

    2013-01-01

    Though not completely a surprise according to the standard model and existing indirect constraints, the Higgs-like particle, h, of mass around 125 GeV recently observed at the LHC may offer an additional window to physics beyond the standard model. In particular, its decay pattern can be modified by the existence of new particles. One of the popular scenarios involves a Z' boson associated with an extra Abelian gauge group. In this study, we explore the potential effects of such a boson with ...

  17. Searching for the Higgs Boson in Pairs of Tau Leptons in Data from the ATLAS Experiment

    OpenAIRE

    Rosendahl, Peter Lundgaard

    2013-01-01

    One of the key questions in particle physics today, is the origin of the electroweak symmetry breaking. The answer to this question will most likely be solved with the data provided by the Large Hadron Collider which started colliding protons in 2008. Many ideas have been posed to how particles gain their masses. The most promising of these ideas is the Higgs mechanism which predicts the existence of a new massive scalar boson, the Higgs boson. Since the discovery of a new part...

  18. Higgs Boson Properties

    CERN Document Server

    David, André

    2016-01-01

    This chapter presents an overview of the measured properties of the Higgs boson discovered in 2012 by the ATLAS and CMS collaborations at the CERN LHC. Searches for deviations from the properties predicted by the standard theory are also summarised. The present status corresponds to the combined analysis of the full Run 1 data sets of collisions collected at centre-of-mass energies of 7 and 8 TeV.

  19. Higgs Boson Properties

    Science.gov (United States)

    David, André Dührssen, Michael

    2016-10-01

    This chapter presents an overview of the measured properties of the Higgs boson discovered in 2012 by the ATLAS and CMS collaborations at the CERN LHC. Searches for deviations from the properties predicted by the standard theory are also summarised. The present status corresponds to the combined analysis of the full Run 1 data sets of collisions collected at centre-of-mass energies of 7 and 8 TeV.

  20. Interacting boson approximation

    International Nuclear Information System (INIS)

    Lectures notes on the Interacting Boson Approximation are given. Topics include: angular momentum tensors; properties of T/sub i//sup (n)/ matrices; T/sub i//sup (n)/ matrices as Clebsch-Gordan coefficients; construction of higher rank tensors; normalization: trace of products of two s-rank tensors; completeness relation; algebra of U(N); eigenvalue of the quadratic Casimir operator for U(3); general result for U(N); angular momentum content of U(3) representation; p-Boson model; Hamiltonian; quadrupole transitions; S,P Boson model; expectation value of dipole operator; S-D model: U(6); quadratic Casimir operator; an O(5) subgroup; an O(6) subgroup; properties of O(5) representations; quadratic Casimir operator; quadratic Casimir operator for U(6); decomposition via SU(5) chain; a special O(3) decomposition of SU(3); useful identities; a useful property of D/sub αβγ/(α,β,γ = 4-8) as coupling coefficients; explicit construction of T/sub x//sup (2)/ and d/sub αβγ/; D-coefficients; eigenstates of T3; and summary of T = 2 states

  1. Prospects for measurements of the Higgs boson couplings at TLEP

    CERN Document Server

    Bachtis, M

    2014-01-01

    The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discoveries of phenomena beyond the Standard Model up to scales of sev- eral hundred GeV, has triggered interest in ideas for future Higgs factories. A new circular e + e collider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for Higgs boson stud- ies, accommodates multiple detectors, and can reach energies up to the t ̄ t threshold and beyond. Moreover, being the natural precursor of the VHE-LHC, a 100 TeV hadron machine in the same tunnel, it builds up a long-term vision for particle physics. This paper describes the expected precision on the measurement of the Higgs boson couplings with a TLEP run between 250 and 350 GeV.

  2. Study of Higgs Boson Pair Production at Linear Collider

    CERN Document Server

    Desch, Klaus; Kühl, T; Raspereza, A V

    2004-01-01

    We study the potential of the TESLA linear collider operated at a center-of-mass energy of 500 to 1000 GeV for the measurement of the neutral Higgs boson properties within the framework of the MSSM. The process of associated Higgs boson production with subsequent decays of Higgs bosons into b-quark and tau-lepton pairs is considered. An integrated luminosity of 500 fb^{-1} is assumed at each energy. The Higgs boson masses and production cross sections are measured by reconstructing the bbbb and bb\\tau\\tau final states. The precision of these measurements is evaluated in dependence of the Higgs boson masses. Under the assumed experimental conditions a statistical accuracy ranging from 0.1 to 1.0 GeV is achievable on the Higgs boson mass. The topological cross section \\sigma(e+e- -> HA -> bbbb) can be determined with the relative precision of 1.5 - 6.6 % and cross sections \\sigma(e+e- -> HA -> bb \\tau\\tau) and \\sigma(e+e- -> HA -> \\tau\\tau bb) with precision of 4 - 30 %. Constraints on the Higgs boson widths ca...

  3. Experimental search of Higgs boson; Busqueda experimental del boson de Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Alcarz Maestre, J.; Josa Mutuberria, M. I.

    2000-07-01

    After an introduction to the relevance and intrinsic properties of the Higgs particle, we discuss some aspects related to the search for the Higgs boson at the LEP e''+ e''- collider. This year 2000 is the last year of data taking for the LEP programme, at the largest energies ever reached in e''+ e''- collisions in laboratory. This offers a unique opportunity to extend the reach of current searches and to observe the Higgs. Prospects for a Higgs discovery beyond LEP are also briefly discussed. (Author) 6 refs.

  4. Holographic Type II Goldstone bosons

    CERN Document Server

    Amado, Irene; Jimenez-Alba, Amadeo; Landsteiner, Karl; Melgar, Luis; Landea, Ignacio Salazar

    2013-01-01

    The Goldstone theorem implies the appearance of an ungapped mode whenever a continuous global symmetry is spontaneously broken. In general it does not say anything about the precise form of the dispersion relation nor does it imply that there is one massless mode for each broken symmetry generator. It is a well-established fact that even for relativistic field theories in the presence of a chemical potential Goldstone modes with quadratic dispersion relation, the type II Goldstone bosons, appear in the spectrum. We develop two holographic models that feature type II Goldstone modes as part of the quasinormal mode spectrum. The models are based on simple generalizations with U(2) symmetry of the well-studied holographic s-wave superfluid. Our results include Goldstone modes without broken generators but with unusual realization of symmetries and a frequency dependent conductivity of striking resemblance to the one of Graphene.

  5. The Constrained NMSSM with a 126 GeV Higgs boson: A global analysis

    OpenAIRE

    Kowalska, Kamila; Munir, Shoaib; Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian; Tsai, Yue-Lin Sming

    2012-01-01

    We present the first global analysis of the Constrained NMSSM that investigates the impact of the recent discovery of a 126 GeV Higgs-like boson, of the observation of a signal for BR(B_s->\\mu^+\\mu^-), and of constraints on supersymmetry from ~5/fb of data accumulated at the LHC, as well as of other relevant constraints from colliders, flavor physics and dark matter. We consider three possible cases, assuming in turn that the discovered Higgs boson is: i) the lightest Higgs boson of the model...

  6. The second Kaluza-Klein neutral Higgs bosons in the minimal Universal Extra Dimension model

    OpenAIRE

    Chang, Sanghyeon; Lee, Kang Young; Song, Jeonghyeon

    2011-01-01

    Loop-induced decay of a neutral Higgs boson into a pair of gluons or photons has great implications for the Higgs discovery at the LHC. If the Higgs boson is heavy with mass above $\\sim 500\\gev$, however, these radiative branching ratios are very suppressed in the standard model (SM), as the new decay channels are kinematically open. We note that these radiative decays can be sizable for the heavy CP-odd second Kaluza-Klein (KK) mode of the Higgs boson, $\\chi^\\tw$, in the minimal universal ex...

  7. Higgs boson production with one bottom quark including higher-order soft-gluon corrections

    OpenAIRE

    Field, B.; Jackson, C.B.(Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA); Reina, L.

    2007-01-01

    A Higgs boson produced in association with one or more bottom quarks is of great theoretical and experimental interest to the high-energy community. A precise prediction of its total and differential cross-section can have a great impact on the discovery of a Higgs boson with large bottom-quark Yukawa coupling, like the scalar (h^0 and H^0) and pseudoscalar (A^0) Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) in the region of large \\tan\\beta. In this paper we apply the thres...

  8. The Curious Ontology of a Light Higgs Boson

    Science.gov (United States)

    Riordan, Michael

    2016-03-01

    When the Superconducting Super Collider was being contemplated and designed in the mid-1980s, few high-energy physicists considered it likely that a light Higgs boson, as was eventually discovered at the Large Hadron Collider, would exist. Most theorists expected that the Higgs boson would occur at a mass near the TeV scale, and accelerator physicists designed the Super Collider accordingly. The possibility of a light Higgs boson with a mass less than 200 GeV began to be taken seriously during the 1990s, especially after the 1995 Fermilab discovery of the top quark near 175 GeV, but it was too late to influence the SSC design. With a peak collision energy of 40 TeV, this collider was guaranteed to discover the Higgs boson -- or whatever other mass-generating phenomenon might be occurring in the Standard Model -- even if it were to appear at masses or energies up to 2 TeV. As it turned out, therefore, the SSC was overdesigned for its principal physics goal. A substantially smaller Fermilab project known as the Dedicated Collider, which never made it beyond the drawing boards, could probably have allowed the 125 GeV Higgs boson to be discovered at least a decade earlier than it occurred at the LHC.

  9. Z'-gauge Bosons as Harbingers of Low Mass Strings

    CERN Document Server

    Anchordoqui, Luis A; Goldberg, Haim; Huang, Xing; Lüst, Dieter; Taylor, Tomasz R

    2012-01-01

    Massive Z'-gauge bosons act as excellent harbingers for string compactifications with a low string scale. In D-brane models they are associated to U(1) gauge symmetries that are either anomalous in four dimensions or exhibit a hidden higher dimensional anomaly. We discuss the possible signals of massive Z'-gauge bosons at hadron collider machines (Tevatron, LHC) in a minimal D-brane model consisting out of four stacks of D-branes. In this construction, there are two massive gauge bosons, which can be naturally associated with baryon number B and B-L (L being lepton number). Here baryon number is always anomalous in four dimensions, whereas the presence of a four-dimensional B-L anomaly depends on the U(1)-charges of the right handed neutrinos. In case B-L is anomaly free, a mass hierarchy between the two associated Z'-gauge bosons can be explained. In our phenomenological discussion about the possible discovery of massive Z'-gauge bosons, we take as a benchmark scenario the dijet plus W signal, recently obser...

  10. Compact (A)dS Boson Stars and Shells

    CERN Document Server

    Hartmann, Betti; Kunz, Jutta; Schaffer, Isabell

    2013-01-01

    We present compact Q-balls in an (Anti-)de Sitter background in D dimensions, obtained with a V-shaped potential of the scalar field. Beyond critical values of the cosmological constant compact Q-shells arise. By including the gravitational back-reaction, we obtain boson stars and boson shells with (Anti-)de Sitter asymptotics. We analyze the physical properties of these solutions and determine their domain of existence. In four dimensions we address some astrophysical aspects.

  11. Bosonization and Lie Group Structure

    CERN Document Server

    Ha, Yuan K

    2015-01-01

    We introduce a concise quantum operator formula for bosonization in which the Lie group structure appears in a natural way. The connection between fermions and bosons is found to be exactly the connection between Lie group elements and the group parameters. Bosonization is an extraordinary way of expressing the equation of motion of a complex fermion field in terms of a real scalar boson in two dimensions. All the properties of the fermion field theory are known to be preserved under this remarkable transformation with substantial simplification and elucidation of the original theory, much like Lie groups can be studied by their Lie algebras.

  12. Sensitivity of the ATLAS experiment to discover the decay H{yields} {tau}{tau} {yields}ll+4{nu} of the Standard Model Higgs Boson produced in vector boson fusion

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Martin

    2011-05-17

    A study of the expected sensitivity of the ATLAS experiment to discover the Standard Model Higgs boson produced via vector boson fusion (VBF) and its decay to H{yields} {tau}{tau}{yields} ll+4{nu} is presented. The study is based on simulated proton-proton collisions at a centre-of-mass energy of 14 TeV. For the first time the discovery potential is evaluated in the presence of additional proton-proton interactions (pile-up) to the process of interest in a complete and consistent way. Special emphasis is placed on the development of background estimation techniques to extract the main background processes Z{yields}{tau}{tau} and t anti t production using data. The t anti t background is estimated using a control sample selected with the VBF analysis cuts and the inverted b-jet veto. The dominant background process Z{yields}{tau}{tau} is estimated using Z{yields}{mu}{mu} events. Replacing the muons of the Z{yields}{mu}{mu} event with simulated {tau}-leptons, Z{yields}{tau}{tau} events are modelled to high precision. For the replacement of the Z boson decay products a dedicated method based on tracks and calorimeter cells is developed. Without pile-up a discovery potential of 3{sigma} to 3.4{sigma} in the mass range 115 GeV

  13. Big bang machine searching for the Higgs boson particle

    CERN Document Server

    2015-01-01

    On July 4, 2012, scientists at the giant atom smashing facility at CERN announced the discovery of a subatomic particle that seems like a tantalizingly close match to the elusive Higgs Boson, thought to be responsible for giving all the stuff in the universe its mass. Since it was first proposed nearly fifty years ago, the Higgs has been the holy grail of particle physicists: in finding it they validate the “standard model” that underlies all of modern physics and open the door to new discoveries when CERN’s giant collider switches on at higher power in 2015.

  14. Production of electroweak bosons at colliders

    Indian Academy of Sciences (India)

    Matthias U Mozer

    2012-10-01

    The collider experiments at the Tevatron and LHC are accumulating samples of electroweak bosons of unprecedented size. These huge samples can be used to observe rare processes, such as diboson production which have the potential to show enhancements due to new physics. Alternatively, the great statistical power of the samples allows for detailed studies of electroweak production mechanisms and correspondingly QCD and the proton structure.

  15. Mott-superfluid transition of q-deformed bosons

    Energy Technology Data Exchange (ETDEWEB)

    Kopeć, T.K., E-mail: kopec@int.pan.wroc.pl

    2015-10-16

    The effect of q-deformation of the bosonic algebra on the Mott-superfluid transition for interacting lattice bosons described by the Bose–Hubbard model is studied using mean-filed theory. It has been shown that the Mott state proliferates and the initial periodicity of the Mott lobes as a function of the chemical potential disappears as the q-deformation increases. The ground state phase diagram as a function of the q-parameter exhibits superfluid order, which intervenes in narrow regions between Mott lobes, demonstrating the new concept of statistically induced quantum phase transition. - Highlights: • We study the effect of q-deformed bosons on superfluid transition. • A mean-field theory is employed. • Bosons can change statistics due to deformation of the commutation rules. • Statistically induced quantum phase transition is found.

  16. Chips for discovering the Higgs boson and other particles at CERN: Present and future

    CERN Document Server

    Snoeys, W

    2015-01-01

    Integrated circuits and devices revolutionized particle physics experiments, and have been essential in the recent discovery of the Higgs boson by the ATLAS and CMS experiments at the Large Hadron Collider at CERN [1,2]. Particles are accelerated and brought into collision at specific interaction points where detectors, giant cameras of about 40 m long by 20 m in diameter, take pictures of the collision products as they fly away from the collision point. These detectors contain millions of channels, often implemented as reverse biased silicon pin diode arrays covering areas of up to 200 m2 in the center of the experiment, generating a small (~1fC) electric charge upon particle traversals. Integrated circuits provide the readout, and accept collision rates of about 40 MHz with on-line selection of potentially interesting events before data storage. Important limitations are power consumption, radiation tolerance, data rates, and system issues like robustness, redundancy, channel-to-channel uniformity, timing d...

  17. Z' Bosons and Supersymmetry

    OpenAIRE

    Lykken, Joseph D.

    1996-01-01

    A broad class of supersymmetric extensions of the standard model predict a Z' vector boson whose mass is naturally in the range 250 GeV < M_Z' < 2 TeV. To avoid unacceptably large mixing with the Z, one requires either a discrete tuning of the U(1)' charges or a leptophobic Z'. Both cases are likely to arise as the low energy limits of heterotic string compactifications, but a survey of existing realistic string models provides no acceptable examples. A broken U(1)' leads to additional D-term...

  18. Deformation quantization of bosonic strings

    International Nuclear Information System (INIS)

    Deformation quantization of bosonic strings is considered. We show that the light-cone gauge is the most convenient classical description to perform the quantization of bosonic strings in the deformation quantization formalism. Similar to the field theory case, the oscillator variables greatly facilitates the analysis. The mass spectrum, propagators and the Virasoro algebra are finally described within this deformation quantization scheme. (author)

  19. Evolutionary and geological factors controlling endogenic uranium mineralization and the potential for the discovery of new ore districts

    Science.gov (United States)

    Mashkovtsev, G. A.; Miguta, A. K.; Shchetochkin, V. N.

    2015-03-01

    The exhaustion of known surface and near-surface high-grade uranium deposits poses the serious problem of prospecting and exploration of new large endogenic deposits. A comparison of large data sets for endogenic deposits from the world's major uranium districts allowed the authors to develop an evolutionary geological model of large-scale uranium ore genesis, which reflects the succession and nature of preore, ore-forming, and post-ore processes. The study reveals a combination of general (recurrent) factors controlling the formation of ore districts with large-scale uranium mineralization regardless of the genesis and timing of the mineralization. At the same time, these factors depend on the regional setting and can vary considerably among deposits of the same type localized in different tectonic blocks with different characteristics and structural evolution. In connection with this, the exploration of major genetic types of deposits requires the application of specified criteria. Along with the consideration of the evolutionary geological model of ore formation, the study discusses a variety of tectono-magmatic, mineralogical, geochemical, radiogeochemical, and physicochemical factors and indications in three uranium districts (the Streltsovskoe, Elkon, and Central Ukrainian districts), which can form the basis for further uranium prospecting and exploration. Using a combination of favorable prerequisite conditions the study compares the possibilities for the discovery of large endogenic uranium deposits in several regions of Russia.

  20. A Minimally Symmetric Higgs Boson

    CERN Document Server

    Low, Ian

    2014-01-01

    Models addressing the naturalness of a light Higgs boson typically employ symmetries, either bosonic or fermionic, to stabilize the Higgs mass. We consider a setup with the minimal amount of symmetries: four shift symmetries acting on the four components of the Higgs doublet, subject to the constraints of linearly realized SU(2)xU(1) electroweak symmetry. Up to terms that explicitly violate the shift symmetries, the effective lagrangian can be derived, irrespective of the spontaneously broken group G in the ultraviolet, and is universal in all models where the Higgs arises as a pseudo-Nambu-Goldstone boson (PNGB). Very high energy scatterings of vector bosons could provide smoking gun signals of a minimally symmetric Higgs boson.

  1. Degenerate states in the scalar boson spectrum. Is the Higgs Boson a Twin ?

    OpenAIRE

    Stech, Berthold

    2013-01-01

    The extension of the standard model to $SU(3)_L\\times SU(3)_R \\times SU(3)_C$ is considered. Spontaneous symmetry breaking requires two $(3^*, 3, 1)$ Higgs field multiplets with a strong hierarchical structure of their vacuum expectation values. An invariant potential is constructed to provide for these vacuum expectation values. This potential gives masses to all scalar fields apart from the 15 Goldstone bosons. In case there exists a one-to-one correspondence between the vacuum expectation ...

  2. Higgs le boson manquant

    CERN Document Server

    Carroll, Sean; Evans, Lyn; Gagnon, Pauline; Bernet, Lison

    2013-01-01

    Ce livre conte l'histoire de la plus fascinante aventure scientifique de notre temps : la quête du "boson de Higgs". La découverte présumée de cette particule élémentaire en juillet 2012 a secoué le monde, tant pour son étrangeté que pour la démesure des moyens déployés. Qu'on en juge : un accélérateur de 27 km de circonférence sous la frontière franco-suisse - le LHC, la plus grande machine jamais construite par l'Homme-, une équipe de 6 000 chercheurs, techniciens, ingénieurs, informaticiens, etc., et un budget de plus de 9 milliards de $ ! L'auteur, cosmologiste et vulgarisateur de renom, nous révèle les enjeux de cette recherche ultime : le boson expliquerait ni plus ni moins pourquoi la matière qui nous entoure a une masse, et lèverait un coin du voile qui entoure la mystérieuse "matière noire". Il détaille surtout sa genèse et les rivalités, les doutes mais aussi les intuitions géniales des acteurs du projet. Cette galerie de personnages hors norme font de la lecture de ce li...

  3. The BEH mechanism and its scalar bosons

    CERN Document Server

    CERN. Geneva

    2014-01-01

    In the beginning of the 1960’s, the long range interactions within our universe were well understood from the laws of classical general relativity, Einstein’s generalisation of Newtonian gravity, and of quantum electrodynamics, the quantum version of Maxwell’s electromagnetic theory. But there was no hints of how to formulate consistent fundamental theories of short range interactions. A solution to this problem was proposed by Robert Brout and me, and independently by Peter Higgs. I shall explain our motivations for constructing this BEH mechanism and discuss its content. I will comment on how the magnificent ATLAS and CMS discovery at CERN of the scalar boson predicted by the mechanism confirms its validity and may have implications on structures at yet unexplored energies.

  4. Report of the Working Group on Photon and Weak Boson Production

    CERN Document Server

    Baur, Ulrich; Diehl, H T; Errede, D; Casey, D; Dorigo, T; Huston, J; Owens, J; Womersley, J; Apanasevich, L; Begel, M; Gershtein, Yu; Kelly, M; Kuhlmann, S E; Leone, S; Partos, D S; Rainwater, D L; Sakumoto, W; Steinbruck, G; Zielinski, M; Zutshi, V

    2000-01-01

    This report discusses physics issues which can be addressed in photon and weak boson production in Run II at the Tevatron. The current understanding and the potential of Run II to expand our knowledge of direct photon production in hadronic collisions is discussed. We explore the prospects for using the W-boson cross section to measure the integrated luminosity, improving the measurement of the W and Z boson transverse momentum distributions, the Z -> b\\bar b signal, and the lepton angular distribution in W decays. Finally, we consider the prospects for measuring the trilinear gauge boson couplings in Run II.

  5. Quartic gauge boson couplings

    Science.gov (United States)

    He, Hong-Jian

    1998-08-01

    We review the recent progress in studying the anomalous electroweak quartic gauge boson couplings (QGBCs) at the LHC and the next generation high energy e±e- linear colliders (LCs). The main focus is put onto the strong electroweak symmetry breaking scenario in which the non-decoupling guarantees sizable new physics effects for the QGBCs. After commenting upon the current low energy indirect bounds and summarizing the theoretical patterns of QGBCs predicted by the typical resonance/non-resonance models, we review our systematic model-independent analysis on bounding them via WW-fusion and WWZ/ZZZ-production. The interplay of the two production mechanisms and the important role of the beam-polarization at the LCs are emphasized. The same physics may be similarly and better studied at a multi-TeV muon collider with high luminosity.

  6. Supersymmetric Decays of the Z' Boson

    CERN Document Server

    Chang, Chun-Fu; Yuan, Tzu-Chiang

    2011-01-01

    The decay of the Z' boson into supersymmetric particles is studied. We investigate how these supersymmetric modes affect the current limits from the Tevatron and project the expected sensitivities at the LHC. Employing three representative supersymmetric Z' models, namely, E_6, U(1)_{B-L}, and the sequential model, we show that the current limits of the Z' mass from the Tevatron could be reduced substantially due to the weakening of the branching ratio into leptonic pairs. The mass reach for the E_6 Z' bosons is about 1.3-1.5 TeV at the LHC-7 (1 fb^{-1}), about 2.5 - 2.6 TeV at the LHC-10 (10 fb^{-1}), and about 4.2 - 4.3 TeV at the LHC-14 (100 fb^{-1}). A similar mass reach for the U(1)_{B-L} Z' is also obtained. We also examine the potential of identifying various supersymmetric decay modes of the Z' boson because it may play a crucial role in the detailed dynamics of supersymmetry breaking.

  7. Top quark and Higgs boson masses in supersymmetric models

    International Nuclear Information System (INIS)

    We study the implications for bounds on the top quark pole mass mt in models with low scale supersymmetry following the discovery of the Standard Model-like Higgs boson. In the minimal supersymmetric standard model, we find that mt≥164 GeV, if the light CP even Higgs boson mass mh=125±2 GeV. We also explore the top quark and Higgs boson masses in two classes of supersymmetric SO(10) models with t-b-τ Yukawa coupling unification at MGUT. In particular, assuming SO(10) compatible non-universal gaugino masses, setting mh=125 GeV and requiring 5% or better Yukawa unification, we obtain the result 172 GeV≤mt≤175 GeV. Conversely, demanding 5% or better t-b-τ Yukawa unification and setting mt=173.2 GeV, the Higgs boson mass is predicted to lie in the range 122 GeV≤mh≤126 GeV

  8. Higgs boson pizza day | 4 July 2016 | Restaurant 1

    CERN Multimedia

    2016-01-01

    Four years after the historic announcement of the discovery of the Higgs boson at CERN, a collaboration between INFN and CERN has declared 4 July 2016 “Higgs Boson Pizza Day”.    The Novae Restaurant 1 at CERN will offer two special “Higgs Boson Pizzas” (one vegetarian and one ham and cheese), from 11.30 a.m. to 2.15 p.m., for the usual pizza price. The idea was born in Naples (where else?), the hometown of Pierluigi Paolucci, who - while chatting with INFN president Fernando Ferroni - realised the striking resemblance between Higgs boson event displays and the delicious pizzas in front of them. A specially designed pizza was then created by the chef of the historic “Ettore” pizzeria in St. Lucia, in time for the opening of an Art&Science exhibition on 15 September 2015 in Naples. The owner of the restaurant, Ms Iolanda Canale, has been invited by INFN to come to CERN and help Novae in the preparation of 400 pizzas on thi...

  9. Metatranscriptomics and pyrosequencing facilitate discovery of potential viral natural enemies of the invasive Caribbean crazy ant, Nylanderia pubens.

    Directory of Open Access Journals (Sweden)

    Steven M Valles

    Full Text Available BACKGROUND: Nylanderia pubens (Forel is an invasive ant species that in recent years has developed into a serious nuisance problem in the Caribbean and United States. A rapidly expanding range, explosive localized population growth, and control difficulties have elevated this ant to pest status. Professional entomologists and the pest control industry in the United States are urgently trying to understand its biology and develop effective control methods. Currently, no known biological-based control agents are available for use in controlling N. pubens. METHODOLOGY AND PRINCIPAL FINDINGS: Metagenomics and pyrosequencing techniques were employed to examine the transcriptome of field-collected N. pubens colonies in an effort to identify virus infections with potential to serve as control agents against this pest ant. Pyrosequencing (454-platform of a non-normalized N. pubens expression library generated 1,306,177 raw sequence reads comprising 450 Mbp. Assembly resulted in generation of 59,017 non-redundant sequences, including 27,348 contigs and 31,669 singlets. BLAST analysis of these non-redundant sequences identified 51 of potential viral origin. Additional analyses winnowed this list of potential viruses to three that appear to replicate in N. pubens. CONCLUSIONS: Pyrosequencing the transcriptome of field-collected samples of N. pubens has identified at least three sequences that are likely of viral origin and, in which, N. pubens serves as host. In addition, the N. pubens transcriptome provides a genetic resource for the scientific community which is especially important at this early stage of developing a knowledgebase for this new pest.

  10. How to Detect `Decoupled' Heavy Supersymmetric Higgs Bosons

    CERN Document Server

    Bisset, Mike; Li, Jun

    2007-01-01

    Heretofore neglected decay modes of heavy MSSM Higgs bosons into a variety of neutralino pairs may push the LHC discovery reach for these crucial elements of an extended Higgs sector to nearly the TeV-scale -- if sparticle-sector MSSM input parameters are favorable. This is well into the so-called decoupling region, including moderate to low tan(beta) values, where no known signals exist for said heavy Higgs bosons via decays involving solely SM daughter particles, and the lighter h^0 mimics the lone SM Higgs boson. While the expanse of the Higgs to sparticle discovery region is sensitive to a number of MSSM parameters, including in particular those for the sleptons, its presence is primarily linked to the gaugino inputs -- in fact, to just one parameter, M_2, if gaugino unification is invoked. Thus consideration of high vs. low M_2 realms in the MSSM should be placed on a par with the extensive consideration already given to high vs. low tan(beta) regimes.

  11. LHC signals of a BLSSM CP-even Higgs boson

    CERN Document Server

    Hammad, A; Moretti, S

    2016-01-01

    We study the scope of the Large Hadron Collider in accessing a neutral Higgs boson of the $B-L$ Supersymmetric Standard Model. After assessing the surviving parameter space configurations following the Run 1 data taking, we investigate the possibilities of detecting this object during Run 2. For the model configurations in which the mixing between such a state and the discovered Standard Model-like Higgs boson is non-negligible, there exist several channels enabling its discovery over a mass range spanning from $\\approx 140$ to $\\approx$ 500 GeV. For a lighter Higgs state, with mass of order 140 GeV, three channels are accessible: $\\gamma\\gamma$, $Z\\gamma$ and $ZZ$, wherein the $Z$ boson decays leptonically. For a heavier Higgs state, with mass above 250 GeV (i.e., twice the mass of the Higgs state discovered in 2012), the hallmark signature is its decay in two such 125 GeV scalars, $h'\\to hh$, where $hh\\to b\\bar b \\gamma\\gamma$. In all such cases, significances above discovery can occur for already planned l...

  12. Search for the Higgs boson in fermionic channels using the ATLAS detector

    CERN Document Server

    Dao, V; The ATLAS collaboration

    2013-01-01

    Since the discovery of a Higgs-like boson by the ATLAS and CMS experiments at the LHC, the emphasis has shifted towards measurements of its properties and the search for the search in the less sensitive channels in order to determine whether the new particle is the Standard Model (SM) Higgs boson. Of particular importance is the direct observation of the coupling of the Higgs boson to tau-leptons, b-quarks and the top-quark. In this presentation a comprehensive review of ATLAS results in the search for the Higgs boson in tau-leptons, b-quark pair decay channel and in the VH and ttH will be given.

  13. Structure-based design, discovery and development of checkpoint kinase inhibitors as potential anti-cancer therapies

    Science.gov (United States)

    Matthews, Thomas P; Jones, Alan M; Collins, Ian

    2014-01-01

    Introduction Checkpoint kinase inhibitors offer the promise of enhancing the effectiveness of widely prescribed cancer chemotherapies and radiotherapy by inhibiting the DNA damage response, as well as the potential for single agent efficacy. Areas covered This article surveys structural insights into the checkpoint kinases CHK1 and CHK2 that have been exploited to enhance the selectivity and potency of small molecule inhibitors. The use of mechanistic cellular assays to guide the optimisation of inhibitors is reviewed. The status of the current clinical candidates and emerging new clinical contexts for CHK1 and CHK2 inhibitors are discussed, including the prospects for single agent efficacy. Expert opinion Protein bound water molecules play key roles in structural features that can be targeted to gain high selectivity for either enzyme. The results of early phase clinical trials of checkpoint inhibitors have been mixed, but significant progress has been made in testing the combination of CHK1 inhibitors with genotoxic chemotherapy. Second generation CHK1 inhibitors are likely to benefit from increased selectivity and oral bioavailability. While the optimum therapeutic context for CHK2 inhibition remains unclear, the emergence of single agent preclinical efficacy for CHK1 inhibitors in specific tumour types exhibiting constitutive replication stress represents exciting progress in exploring the therapeutic potential of these agents. PMID:23594139

  14. Spectroscopy of family gauge bosons

    International Nuclear Information System (INIS)

    Spectroscopy of family gauge bosons is investigated based on a U(3) family gauge boson model proposed by Sumino. In his model, the family gauge bosons are in mass eigenstates in a diagonal basis of the charged lepton mass matrix. Therefore, the family numbers are defined by (e1,e2,e3)=(e,μ,τ), while the assignment for quark sector are free. For possible family-number assignments (q1,q2,q3), under a constraint from K0–K¯0 mixing, we investigate possibilities of new physics, e.g. production of the lightest family gauge boson at the LHC, μ−N→e−N, rare K and B decays, and so on.

  15. The W boson weighs in

    International Nuclear Information System (INIS)

    It was 20 years ago this month that particle physicists caught their first glimpse of the W boson. Now they have measured its mass so precisely that the Standard Model is facing an unprecedented challenge. (U.K.)

  16. The Higgs Boson as a Window to Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Vega-Morales, Roberto [Northwestern Univ., Evanston, IL (United States)

    2013-08-01

    The recent discovery of a Higgs boson at the LHC with properties resembling those predicted by the Standard Model (SM) gives strong indication that the final missing piece of the SM is now in place. In particular, the mechanism responsible for Electroweak Symmetry Breaking (EWSB) and generating masses for the Z and W vector bosons appears to have been established. Even with this amazing discovery there are still many outstanding theoretical and phenomenological questions which suggest that there must be physics Beyond the Standard Model (BSM). As we investigate in this thesis, the Higgs boson offers the exciting possibility of acting as a window to this new physics through various avenues which are experimentally testable in the coming years. We investigate a subset of these possibilities and begin by discussing them briefly below before a detailed examination in the following chapters.

  17. Volatility Discovery

    DEFF Research Database (Denmark)

    Dias, Gustavo Fruet; Scherrer, Cristina; Papailias, Fotis

    There is a large literature that investigates how homogenous securities traded on different markets incorporate new information (price discovery analysis). We extend this concept to the stochastic volatility process and investigate how markets contribute to the efficient stochastic volatility whi...

  18. The Discovery of the Top Quark

    Science.gov (United States)

    Sinervo, P.K.

    1995-12-01

    The top quark and the Higgs boson are the heaviest elementary particles predicted by the standard model. The four lightest quark flavours, the up, down, strange and charm quarks, were well-established by the mid-1970's. The discovery in 1977 of the {Tau} resonances, a new family of massive hadrons, required the introduction of the fifth quark flavour. Experimental and theoretical studies have indicated that this quark also has a heavier partner, the top quark.

  19. Is geometry bosonic or fermionic?

    CERN Document Server

    Hughes, Taylor L

    2011-01-01

    It is generally assumed that the gravitational field is bosonic. Here we show that a simple propagating torsional theory can give rise to localized geometric structures that can consistently be quantized as fermions under exchange. To demonstrate this, we show that the model can be formally mapped onto the Skyrme model of baryons, and we use well-known results from Skyrme theory. This begs the question: {\\it Is geometry bosonic or fermionic (or both)?}

  20. MOLECULAR MODELING AND DRUG DISCOVERY OF POTENTIAL INHIBITORS FOR ANTICANCER TARGET GENE MELK (MATERNAL EMBRYONIC LEUCINE ZIPPER KINASE

    Directory of Open Access Journals (Sweden)

    Sabitha. K

    2011-12-01

    Full Text Available Maternal embryonic leucine zipper kinase (MELK, a member of the AMP serine/threonine kinase family, exhibits multiple features consistent with the potential utility of this gene as an anticancer target. Reports show that MELK functions as a cancer-specific protein kinase, and that down-regulation of MELK results in growth suppression of breast cancer cells. There are many inhibitors which bind to kinases and are in clinical trials too. In our study we have taken a library of different inhibitors and docked those using GLIDE Induced Fit. From docking result we can conclude that Syk inhibitor II, Rho kinase inhibitor IV, p38 MAP Kinase Inhibitor III, HA 1004, Dihydrochloride and IKK -2 inhibitor VI have good binding affinity towards MELK and may have anticancer activity.

  1. Discovery of membrane active benzimidazole quinolones-based topoisomerase inhibitors as potential DNA-binding antimicrobial agents.

    Science.gov (United States)

    Zhang, Ling; Addla, Dinesh; Ponmani, Jeyakkumar; Wang, Ao; Xie, Dan; Wang, Ya-Nan; Zhang, Shao-Lin; Geng, Rong-Xia; Cai, Gui-Xin; Li, Shuo; Zhou, Cheng-He

    2016-03-23

    A series of novel benzimidazole quinolones as potential antimicrobial agents were designed and synthesized. Most of the prepared compounds exhibited good or even stronger antimicrobial activities in comparison with reference drugs. The most potent compound 15m was membrane active and did not trigger the development of resistance in bacteria. It not only inhibited the formation of biofilms but also disrupted the established Staphylococcus aureus and Escherichia coli biofilms. It was able to inhibit the relaxation activity of E. coli topoisomerase IV at 10 μM concentration. Moreover, this compound also showed low toxicity against mammalian cells. Molecular modeling and experimental investigation of compound 15m with DNA suggested that this compound could effectively bind with DNA to form a steady 15m-DNA complex which might further block DNA replication to exert the powerful bioactivities.

  2. Molasses or Crowds: Making Sense of the Higgs Boson with Two Popular Analogies

    Science.gov (United States)

    Alsop, S.; Beale, S.

    2013-01-01

    The recent discovery of the Higgs boson at the Large Hadron Collider (LHC) has contributed to a surge of interest in particle physics and science education in general. Given the conceptual difficulty of the phenomenon in question, it is inevitable that teachers and science communicators rely on analogies to explain the Higgs physics and its…

  3. Le cinquantenaire du CERN sous les feux de la rampe: vers le boson de Higgs

    CERN Multimedia

    2004-01-01

    CERN is celebrating today its 50th anniversary. Greatest physic Center in the world, he is setting up actually a new major instrument: the LHC. It should allow the discovery of the Higgs boson, angular stone of the theory of "standard model"

  4. A new approach for potential drug target discovery through in silico metabolic pathway analysis using Trypanosoma cruzi genome information

    Directory of Open Access Journals (Sweden)

    Marcelo Alves-Ferreira

    2009-12-01

    Full Text Available The current drug options for the treatment of chronic Chagas disease have not been sufficient and high hopes have been placed on the use of genomic data from the human parasite Trypanosoma cruzi to identify new drug targets and develop appropriate treatments for both acute and chronic Chagas disease. However, the lack of a complete assembly of the genomic sequence and the presence of many predicted proteins with unknown or unsure functions has hampered our complete view of the parasite's metabolic pathways. Moreover, pinpointing new drug targets has proven to be more complex than anticipated and has revealed large holes in our understanding of metabolic pathways and their integrated regulation, not only for this parasite, but for many other similar pathogens. Using an in silicocomparative study on pathway annotation and searching for analogous and specific enzymes, we have been able to predict a considerable number of additional enzymatic functions in T. cruzi. Here we focus on the energetic pathways, such as glycolysis, the pentose phosphate shunt, the Krebs cycle and lipid metabolism. We point out many enzymes that are analogous to those of the human host, which could be potential new therapeutic targets.

  5. Docking and Molecular Dynamics Simulations in Potential Drugs Discovery: An Application to Influenza Virus M2 Protein

    Directory of Open Access Journals (Sweden)

    Marine E. Bozdaganyan

    2014-01-01

    Full Text Available Molecular docking is a common method for searching new potential drugs. Improvement of the results of docking can be achieved by different ways-one of them is molecular dynamics simulations of protein-ligand complexes. As a model for our research we chose M2 membrane protein from influenza virus. M2 protein is a high selective tetrameric pH-gated proton channel. It was previously shown that Omeprazole Family Compounds (OFC block the "proton pump", though we hypothesized further that they could interfere with the mechanism of fusion of the virus envelope and endosomal membrane, thereby hindering the M2 proton pump mechanism of influenza viruses. We carried out a Molecular Dynamics (MD simulation in order to predict constant of binding for OFC. We simulated M2 Protein (PDB code 3C9J in complex with its ligands: Amantadine, rimantadine as positive controls and omeprazole as putative ligand. We made use of molecular docking as well as the thermodynamic integration method to estimate binding free energies of the ligands. We demonstrate that the thermodynamic integration method predicts free energies of ligand binding better than molecular docking while embedding of M2 protein in a membrane further improves the calculated free energy values. Free energy calculations imply omeprazole as a potent anti-viral drug.

  6. Clinical implications of basic science discoveries: nociceptive neurons as targets to control immunity--potential relevance for transplantation.

    Science.gov (United States)

    Larregina, A T; Divito, S J; Morelli, A E

    2015-06-01

    Increasing evidence indicates the existence of a complex cross-regulation between the most important biosensors of the human body: The immune and nervous systems. Cytokines control body temperature and trigger autoimmune disorders in the central nervous system, whereas neuropeptides released in peripheral tissues and lymphoid organs modulate inflammatory (innate) and adaptive immune responses. Surprisingly, the effects of nerve fibers and the antidromic release of its pro-inflammatory neuropeptides on the leukocytes of the immune system that mediate graft rejection are practically unknown. In the transplantation field, such area of research remains practically unexplored. A recent study by Riol-Blanco et al has revealed new details on how nociceptive nerves regulate the pro-inflammatory function of leukocytes in peripheral tissues. Although the mechanism(s) by which neuroinflammation affects the immune response against the allograft remains unknown, recent data suggest that this new area of research is worth exploring for potential development of novel complementary therapies for prevention/treatment of graft rejection.

  7. Molecular dynamics simulations of sonic hedgehog-receptor and inhibitor complexes and their applications for potential anticancer agent discovery.

    Directory of Open Access Journals (Sweden)

    Swan Hwang

    Full Text Available The sonic hedgehog (Shh signaling pathway is necessary for a variety of development and differentiation during embryogenesis as well as maintenance and renascence of diverse adult tissues. However, an abnormal activation of the signaling pathway is related to various cancers. In this pathway, the Shh signaling transduction is facilitated by binding of Shh to its receptor protein, Ptch. In this study, we modeled the 3D structure of functionally important key loop peptides of Ptch based on homologous proteins. Using this loop model, the molecular interactions between the structural components present in the pseudo-active site of Shh and key residues of Ptch was investigated in atomic level through molecular dynamics (MD simulations. For the purpose of developing inhibitor candidates of the Shh signaling pathway, the Shh pseudo-active site of this interface region was selected as a target to block the direct binding between Shh and Ptch. Two different structure-based pharmacophore models were generated considering the key loop of Ptch and known inhibitor-induced conformational changes of the Shh through MD simulations. Finally two hit compounds were retrieved through a series of virtual screening combined with molecular docking simulations and we propose two hit compounds as potential inhibitory lead candidates to block the Shh signaling pathway based on their strong interactions to receptor or inhibitor induced conformations of the Shh.

  8. The model-independent analysis for Higgs boson

    Indian Academy of Sciences (India)

    M D NAIMUDDIN; SHIVALI MALHOTRA

    2016-09-01

    The discovery of a 125 GeV particle, announced by the ATLAS and CMS Collaborations on July 04, 2012, is one of the most important events in the recent history of particle physics. This particle could be the last missing particle of the Standard Model of particle physics or it could be the beginning of the long list of particles predicted by the physics beyond the Standard Model. Before we jump to make the final conclusion about this particle, it is imperative to study all the properties of this newly discovered particle. Since the model-dependentanalyses always have this danger of being biased, we can perform a model-independent search for the Higgs boson and also check if the 125 GeV particle is indeed the Standard Model Higgs boson or a particle belonging to the physics beyond the Standard Model.

  9. Discovery of potential drugs for human-infecting H7N9 virus containing R294K mutation

    Directory of Open Access Journals (Sweden)

    He JY

    2014-12-01

    Full Text Available Jiao-Yu He,1,* Cheng Li,2,* Guo Wu3 1College of Life Sciences and Key Laboratory for Bio-resources of Ministry of Education, Sichuan University, 2College of Agronomy, Sichuan Agricultural University, 3College of Life Sciences, Sichuan Normal University, Chengdu, People’s Republic of China *These authors contributed equally to this work Background: After the first epidemic wave from February through May 2013, the influenza A (H7N9 virus emerged and has followed a second epidemic wave since June 2013. As of June 27, 2014, the outbreak of H7N9 had caused 450 confirmed cases of human infection, with 165 deaths included. The case-fatality rate of all confirmed cases is about 36%, making the H7N9 virus a significant threat to people’s health. At present, neuraminidase inhibitors are the only licensed antiviral medications available to treat H7N9 infections in humans. Oseltamivir is the most commonly used inhibitor, and it is also a front-line drug for the threatening H7N9. Unfortunately, it has been reported that patients treated with oseltamivir can induce R294K (Arg294Lys substitution in the H7N9 virus, which is a rare mutation and can reduce the antiviral efficacy of inhibitors. Even worse, deaths caused by such mutation after oseltamivir treatment have already been reported, indicating that the need to find substitutive neuraminidase inhibitors for currently available drugs to treat drug-resistant H7N9 is really pressing.Materials and methods: First, the structure of H7N9 containing the R294K substitution was downloaded from the Protein Data Bank, and structural information of approved drugs was downloaded from the ZINC (ZINC Is Not Commercial database. Taking oseltamivir carboxylate as a reference drug, we then filtered these molecules through virtual screening to find out potential inhibitors targeting the mutated H7N9 virus. For further evaluation, we carried out a 14 ns molecular dynamic simulation for each H7N9–drug complex and

  10. Screening Method for the Discovery of Potential Bioactive Cysteine-Containing Peptides Using 3D Mass Mapping

    Science.gov (United States)

    van Oosten, Luuk N.; Pieterse, Mervin; Pinkse, Martijn W. H.; Verhaert, Peter D. E. M.

    2015-12-01

    Animal venoms and toxins are a valuable source of bioactive peptides with pharmacologic relevance as potential drug leads. A large subset of biologically active peptides discovered up till now contain disulfide bridges that enhance stability and activity. To discover new members of this class of peptides, we developed a workflow screening specifically for those peptides that contain inter- and intra-molecular disulfide bonds by means of three-dimensional (3D) mass mapping. Two intrinsic properties of the sulfur atom, (1) its relatively large negative mass defect, and (2) its isotopic composition, allow for differentiation between cysteine-containing peptides and peptides lacking sulfur. High sulfur content in a peptide decreases the normalized nominal mass defect (NMD) and increases the normalized isotopic shift (NIS). Hence in a 3D plot of mass, NIS, and NMD, peptides with sulfur appear in this plot with a distinct spatial localization compared with peptides that lack sulfur. In this study we investigated the skin secretion of two frog species; Odorrana schmackeri and Bombina variegata. Peptides from the crude skin secretions were separated by nanoflow LC, and of all eluting peptides high resolution zoom scans were acquired in order to accurately determine both monoisotopic mass and average mass. Both the NMD and the NIS were calculated from the experimental data using an in-house developed MATLAB script. Candidate peptides exhibiting a low NMD and high NIS values were selected for targeted de novo sequencing, and this resulted in the identification of several novel inter- and intra-molecular disulfide bond containing peptides.

  11. Cosmic gamma ray detection and discovery potential with the AMS-2 spectrometer; Detection de rayons {gamma} cosmiques et potentiel de decouvertes avec le spectrometre AMS-02

    Energy Technology Data Exchange (ETDEWEB)

    Girard, L

    2004-12-15

    Yet designed to measure charged component of the cosmic rays, the foreseen Alpha Magnetic Spectrometer (AMS-02) could also release {gamma}-ray studies, in the energy range from GeV to TeV, using the tracker system, for {gamma}-rays converted in e{sup +}e{sup -} pair, and the electromagnetic calorimeter. In the first part of the thesis are described the calibrations and the performances of the engineering model of the calorimeter, obtained from the analysis of data taken during a test-beam performed at CERN in July 2002. In the second part of the thesis, the AMS-02 discovery potential for {gamma}-astrophysics is presented. While exposure maps of the {gamma}--sky are computed for one year of data taking with the {gamma}--detectors, the acceptance of the calorimeter is obtained from Monte-Carlo simulations. The AMS-02 potential is then estimated for signals from the Vela pulsar and for some supersymmetric signals from the Galactic Center. (author)

  12. Proteomics-Based Characterization of the Humoral Immune Response in Sporotrichosis: Toward Discovery of Potential Diagnostic and Vaccine Antigens.

    Directory of Open Access Journals (Sweden)

    Anderson Messias Rodrigues

    understanding of the coevolution of Sporothrix and its warm-blooded hosts. We propose that 3-carboxymuconate cyclase has potential for the serological diagnosis of sporotrichosis and as target for the development of an effective multi-species vaccine against sporotrichosis in animals and humans.

  13. Amniotic fluid cathelicidin in PPROM pregnancies: from proteomic discovery to assessing its potential in inflammatory complications diagnosis.

    Directory of Open Access Journals (Sweden)

    Vojtech Tambor

    Full Text Available BACKGROUND: Preterm prelabor rupture of membranes (PPROM complicated by microbial invasion of the amniotic cavity (MIAC leading to histological chorioamnionitis (HCA significantly impacts perinatal morbidity. Unfortunately, no well-established tool for identifying PPROM patients threatened by these disorders is available. METHODOLOGY/PRINCIPAL FINDINGS: We performed an unbiased exploratory analysis of amniotic fluid proteome changes due to MIAC and HCA. From among the top five proteins that showed the most profound and significant change, we sought to confirm results concerning cathelicidin (P49913, CAMP_HUMAN, since an ELISA kit was readily available for this protein. In our exploratory proteomic study, cathelicidin showed a ∼6-fold higher concentration in PPROM patients with confirmed MIAC and HCA. We verified significantly higher levels of cathelicidin in exploratory samples (women without both MIAC and HCA: median 1.4 ng/ml; women with both conditions confirmed: median 3.6 ng/ml; p = 0.0003. A prospective replication cohort was used for independent validation and for assessment of cathelicidin potential to stratify women with MIAC leading to HCA from women in whom at least one of these conditions was ruled out. We confirmed the association of higher amniotic fluid cathelicidin levels with MIAC leading to HCA (the presence of both MIAC and HCA: median 3.1 ng/ml; other women: median 1.4 ng/ml; p<0.0001. A cathelicidin concentration of 4.0 ng/ml was found to be the best cut-off point for identifying PPROM women with both MIAC and HCA. When tested on the validation cohort, a sensitivity of 48%, a specificity of 90%, a likelihood ratio of 5.0, and an area under receiver-operating characteristic curve of 71% were achieved for identification of women with MIAC leading to HCA. CONCLUSIONS: Our multi-stage study suggests cathelicidin as a candidate marker that should be considered for a panel of amniotic fluid proteins permitting identification

  14. Proteomics-Based Characterization of the Humoral Immune Response in Sporotrichosis: Toward Discovery of Potential Diagnostic and Vaccine Antigens

    Science.gov (United States)

    Rodrigues, Anderson Messias; Fernandes, Geisa Ferreira; Araujo, Leticia Mendes; Della Terra, Paula Portella; dos Santos, Priscila Oliveira; Pereira, Sandro Antonio; Schubach, Tânia Maria Pacheco; Burger, Eva; Lopes-Bezerra, Leila Maria; de Camargo, Zoilo Pires

    2015-01-01

    understanding of the coevolution of Sporothrix and its warm-blooded hosts. We propose that 3-carboxymuconate cyclase has potential for the serological diagnosis of sporotrichosis and as target for the development of an effective multi-species vaccine against sporotrichosis in animals and humans. PMID:26305691

  15. Excited Weak Bosons and Dark Matter

    CERN Document Server

    Fritzsch, Harald

    2016-01-01

    The weak bosons are bound states of new constituents, the haplons. The p-wave excitations are studied. The state with the lowest mass is identified with the boson, which has been discovered at the LHC. Specific properties of the excited bosons are discussed, in particular their decays into weak bosons and photons. Recently a two photon signal has been observed, which might come from the decay of a neutral heavy boson with a mass of about 0.75 TeV. This particle could be the excited weak tensor boson. The stable fermion, consisting of three haplons, provides the dark matter in our universe.

  16. Analytic boosted boson discrimination

    Science.gov (United States)

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff

    2016-05-01

    Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D 2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between these limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. Our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.

  17. Search for the Higgs boson decaying to four leptons in the ATLAS detector at LHC and studies of muon isolation and energy loss

    CERN Document Server

    Lenzi, Bruno; Nicolaidou, Rosy

    2010-01-01

    The central subject of this thesis is the evaluation of the discovery potential of the Higgs boson through its decay into four leptons (electrons and muons) in the ATLAS experiment installed at the Large Hadron Collider (LHC). The LHC was designed to accelerate proton beams at a center of mass energy of 14~TeV and started its physics program with 7~TeV collisions in the beginning of 2010. An inclusive analysis involving all the production modes and an exclusive one aiming at production through vector boson fusion (VBF), studied for the first time in the collaboration, are presented. Both are capable of discovering the Higgs boson after a few years of LHC operation, with integrated luminosities of 30~fb$^{-1}$. The first one covers most part of a Higgs mass window from 130 to 500~GeV. The second one concentrates on masses around 180~GeV and above, exploiting the presence of high energy jets with large separations in pseudo-rapidity to increase the signal over background ratio. An important part of the document...

  18. Precision Higgs boson measurement at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718111

    2016-01-01

    The design of the next generation collider in high energy physics will primarily focus on the possibility to achieve high precision of the measurements of interest. The necessary precision limits are set, in the first place, by the measurement of the Higgs boson but also by measurements that are sensitive to signs of New Physics. The Compact Linear Collider (CLIC) is an attractive option for a future multi-TeV linear electron-positron collider, with the potential to cover a rich physics program with high precision. In this lecture the CLIC accelerator, detector and backgrounds will be presented with emphesis on the capabilities of CLIC for precision Higgs physics.

  19. Electrophobic Scalar Boson and Muonic Puzzles

    CERN Document Server

    Liu, Yu-Sheng; Miller, Gerald A

    2016-01-01

    A new scalar boson which couples to the muon and proton can simultaneously solve the proton radius puzzle and the muon anomalous magnetic moment discrepancy. Using a variety of measurements, we constrain the mass of this scalar and its couplings to the electron, muon, neutron, and proton. Making no assumptions about the underlying model, these constraints and the requirement that it solve both problems limit the mass of the scalar to between about 100 keV and 100 MeV. We identify two unexplored regions in the coupling constant-mass plane. Potential future experiments and their implications for theories with mass-weighted lepton couplings are discussed.

  20. Electrophobic Scalar Boson and Muonic Puzzles

    Science.gov (United States)

    Liu, Yu-Sheng; McKeen, David; Miller, Gerald A.

    2016-09-01

    A new scalar boson which couples to the muon and proton can simultaneously solve the proton radius puzzle and the muon anomalous magnetic moment discrepancy. Using a variety of measurements, we constrain the mass of this scalar and its couplings to the electron, muon, neutron, and proton. Making no assumptions about the underlying model, these constraints and the requirement that it solve both problems limit the mass of the scalar to between about 100 keV and 100 MeV. We identify two unexplored regions in the coupling constant-mass plane. Potential future experiments and their implications for theories with mass-weighted lepton couplings are discussed.

  1. On the spin of gravitational bosons

    CERN Document Server

    Ahluwalia, D V; Kirchbach, M

    2002-01-01

    We unearth spacetime structure of massive vector bosons, gravitinos, and gravitons. While the curvatures associated with these particles carry a definite spin, the underlying potentials cannot be, and should not be, interpreted as single spin objects. For instance, we predict that a spin measurement in the rest frame of a massive gravitino will yield the result 3/2 with probability one half, and 1/2 with probability one half. The simplest scenario leaves the Riemannian curvature unaltered; thus avoiding conflicts with classical tests of the theory of general relativity. However, the quantum structure acquires additional contributions to the propagators, and it gives rise to additional phases.

  2. On Effective Actions for the Bosonic Tachyon

    CERN Document Server

    Smedbäck, M

    2003-01-01

    We extend the analysis of hep-th/0304045 to the bosonic case and find the one-derivative effective action valid in the vicinity of rolling tachyons with an energy not larger than that of the original D-brane. For on-shell tachyons rolling down the well-behaved side of the potential in this theory, the energy is conserved and the pressure eventually decreases exponentially. For tachyons rolling down the ''wrong'' side, the pressure instead blows up in a finite time.

  3. Per-residue energy decomposition pharmacophore model to enhance virtual screening in drug discovery: a study for identification of reverse transcriptase inhibitors as potential anti-HIV agents

    Directory of Open Access Journals (Sweden)

    Cele FN

    2016-04-01

    Full Text Available Favourite N Cele, Muthusamy Ramesh, Mahmoud ES Soliman Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa Abstract: A novel virtual screening approach is implemented herein, which is a further improvement of our previously published “target-bound pharmacophore modeling approach”. The generated pharmacophore library is based only on highly contributing amino acid residues, instead of arbitrary pharmacophores, which are most commonly used in the conventional approaches in literature. Highly contributing amino acid residues were distinguished based on free binding energy contributions obtained from calculation from molecular dynamic (MD simulations. To the best of our knowledge; this is the first attempt in the literature using such an approach; previous approaches have relied on the docking score to generate energy-based pharmacophore models. However, docking scores are reportedly unreliable. Thus, we present a model for a per-residue energy decomposition, constructed from MD simulation ensembles generating a more trustworthy pharmacophore model, which can be applied in drug discovery workflow. This work is aimed at introducing a more rational approach to the field of drug design, rather than comparing the validity of this approach against those previously reported. We recommend additional computational and experimental work to further validate this approach. This approach was used to screen for potential reverse transcriptase inhibitors using the pharmacophoric features of compound GSK952. The complex was subjected to docking, thereafter, MD simulation confirmed the stability of the system. Experimentally determined inhibitors with known HIV-reverse transcriptase inhibitory activity were used to validate the protocol. Two potential hits (ZINC46849657 and ZINC54359621 showed a significant potential with regard to free binding energy. Reported results obtained from

  4. Per-residue energy decomposition pharmacophore model to enhance virtual screening in drug discovery: a study for identification of reverse transcriptase inhibitors as potential anti-HIV agents.

    Science.gov (United States)

    Cele, Favourite N; Ramesh, Muthusamy; Soliman, Mahmoud Es

    2016-01-01

    A novel virtual screening approach is implemented herein, which is a further improvement of our previously published "target-bound pharmacophore modeling approach". The generated pharmacophore library is based only on highly contributing amino acid residues, instead of arbitrary pharmacophores, which are most commonly used in the conventional approaches in literature. Highly contributing amino acid residues were distinguished based on free binding energy contributions obtained from calculation from molecular dynamic (MD) simulations. To the best of our knowledge; this is the first attempt in the literature using such an approach; previous approaches have relied on the docking score to generate energy-based pharmacophore models. However, docking scores are reportedly unreliable. Thus, we present a model for a per-residue energy decomposition, constructed from MD simulation ensembles generating a more trustworthy pharmacophore model, which can be applied in drug discovery workflow. This work is aimed at introducing a more rational approach to the field of drug design, rather than comparing the validity of this approach against those previously reported. We recommend additional computational and experimental work to further validate this approach. This approach was used to screen for potential reverse transcriptase inhibitors using the pharmacophoric features of compound GSK952. The complex was subjected to docking, thereafter, MD simulation confirmed the stability of the system. Experimentally determined inhibitors with known HIV-reverse transcriptase inhibitory activity were used to validate the protocol. Two potential hits (ZINC46849657 and ZINC54359621) showed a significant potential with regard to free binding energy. Reported results obtained from this work confirm that this new approach is favorable in the future of the drug design industry. PMID:27114700

  5. Higgs production in vector boson fusion in the H{yields} {tau}{tau} {yields} ll + 4{nu} final state with ATLAS. A sensitivity study

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Martin

    2011-05-15

    A study of the expected sensitivity of the ATLAS experiment to discover the Standard Model Higgs boson produced via vector boson fusion (VBF) and its decay to H{yields} {tau}{tau} {yields} ll + 4{nu} is presented. The study is based on simulated proton-proton collisions at a centre-of-mass energy of 14 TeV. For the rst time the discovery potential is evaluated in the presence of additional proton-proton interactions (pile-up) to the process of interest in a complete and consistent way. Special emphasis is placed on the development of background estimation techniques to extract the main background processes Z{yields} {tau}{tau} and t anti t production using data. The t anti t background is estimated using a control sample selected with the VBF analysis cuts and the inverted b-jet veto. The dominant background process Z {yields} {tau}{tau} is estimated using Z{yields} {mu}{mu} events. Replacing the muons of the Z{yields} {mu}{mu} event with simulated {tau}-leptons, Z {yields} {tau}{tau} events are modelled to high precision. For the replacement of the Z boson decay products a dedicated method based on tracks and calorimeter cells is developed. Without pile-up a discovery potential of 3{sigma} to 3.4{sigma} in the mass range 115 GeV

  6. Beyond Discovery

    DEFF Research Database (Denmark)

    Korsgaard, Steffen; Sassmannshausen, Sean Patrick

    2015-01-01

    as their central concepts and conceptualization of the entrepreneurial function. On this basis we discuss three central themes that cut across the four alternatives: process, uncertainty, and agency. These themes provide new foci for entrepreneurship research and can help to generate new research questions......In this chapter we explore four alternatives to the dominant discovery view of entrepreneurship; the development view, the construction view, the evolutionary view, and the Neo-Austrian view. We outline the main critique points of the discovery presented in these four alternatives, as well...

  7. El boson de Higgs

    CERN Document Server

    Gelmini, Graciela B

    2014-01-01

    The last particle that completes the Standard Model of Elementary Particles, the most sophisticated theory of nature in human history, was discovered in 2012. Although the present formulation of the theory comes from the 1960s and 70s, it incorporates all discoveries that thousands of scientists made about elementary particles and their interactions (except for gravity) since the 1700s. Even if briefly, here we review the development of the major concepts included in the theory and explain the relevance of the new particle and the mechanism for which F. Englert and P. Higgs received the Nobel Prize in Physics 2013

  8. Search for the Higgs boson in 4 leptons at the LHC: study of events with Z bosons and b jets with the ATLAS experiment. Study of the performance of the electromagnetic calorimeter trigger system for high transverse energies

    International Nuclear Information System (INIS)

    The framework of the studies presented in this thesis is the search for the Higgs boson in the 4 leptons channel with the ATLAS experiment. The Higgs boson is a particle whose existence is predicted by the Electroweak theory but has not yet been observed, and its search is one of the main research subjects at the LHC, since its discovery would complete the Standard Model. First, a study of the electromagnetic calorimeter level-one trigger system is presented. Based on data recorded in 2010, it has helped improve the behaviour of the system for very high energy deposits. It has also provided trigger efficiency uncertainties for the analyses searching for W0 and Z0 bosons. Then the measurement with 2010 data of the cross-section of b-jets production in association with Z bosons is discussed. This measurement, which is in agreement with Standard Model computations, constrains one of the important backgrounds in the search for the Higgs boson in 4 leptons: namely the production of a Z boson and b-quark pair. In order to increase the selection efficiency for the Higgs boson decaying into four electrons, an improved electron reconstruction is studied. Its validation is presented for electrons from heavy flavour decays. The search analysis of the Higgs boson in the 4 lepton channel is then described, and several possibilities are studied, to increase the sensitivity of the analysis for low-mass searches. (author)

  9. Spin models and boson sampling

    Science.gov (United States)

    Garcia Ripoll, Juan Jose; Peropadre, Borja; Aspuru-Guzik, Alan

    Aaronson & Arkhipov showed that predicting the measurement statistics of random linear optics circuits (i.e. boson sampling) is a classically hard problem for highly non-classical input states. A typical boson-sampling circuit requires N single photon emitters and M photodetectors, and it is a natural idea to rely on few-level systems for both tasks. Indeed, we show that 2M two-level emitters at the input and output ports of a general M-port interferometer interact via an XY-model with collective dissipation and a large number of dark states that could be used for quantum information storage. More important is the fact that, when we neglect dissipation, the resulting long-range XY spin-spin interaction is equivalent to boson sampling under the same conditions that make boson sampling efficient. This allows efficient implementations of boson sampling using quantum simulators & quantum computers. We acknowledge support from Spanish Mineco Project FIS2012-33022, CAM Research Network QUITEMAD+ and EU FP7 FET-Open Project PROMISCE.

  10. Iron K$\\alpha$ line of boson stars

    CERN Document Server

    Cao, Zheng; Zhou, Menglei; Bambi, Cosimo; Herdeiro, Carlos A R; Radu, Eugen

    2016-01-01

    The present paper is a sequel to our previous work [Y. Ni et al., JCAP 1607, 049 (2016)] in which we studied the iron K$\\alpha$ line expected in the reflection spectrum of Kerr black holes with scalar hair. These metrics are solutions of Einstein's gravity minimally coupled to a massive, complex scalar field. They form a continuous bridge between a subset of Kerr black holes and a family of rotating boson stars depending on one extra parameter, the dimensionless scalar hair parameter $q$, ranging from 0 (Kerr black holes) to 1 (boson stars). Here we study the limiting case $q=1$, corresponding to rotating boson stars. For comparison, spherical boson stars are also considered. We simulate observations with XIS/Suzaku. Using the fact that current observations are well fit by the Kerr solution and thus requiring that acceptable alternative compact objects must be compatible with a Kerr fit, we find that some boson star solutions are relatively easy to rule out as potential candidates to explain astrophysical bla...

  11. A Z' Boson and the Higgs Boson Mass

    OpenAIRE

    Chanowitz, Michael S.

    2008-01-01

    The Standard Model fit prefers values of the Higgs boson mass that are below the 114 GeV direct lower limit from LEP II. The discrepancy is acute if the 3.2 sigma disagreement for the effective weak interaction mixing angle from the two most precise measurements is attributed to underestimated systematic error. In that case the data suggests new physics to raise the predicted value of the Higgs mass. One of the simplest possibilities is a Z' boson, which would generically increase the predict...

  12. Boson spectra and correlations for thermal locally equilibrium systems

    International Nuclear Information System (INIS)

    The single- and multi-particle inclusive spectra for strongly inhomogeneous thermal boson systems are studied using the method of statistical operator. The thermal Wick's theorem is generalized and the analytical solution of the problem for a boost-invariant expanding boson gas is found. The results demonstrate the effects of inhomogeneity for such a system: the spectra and correlations for particles with wavelengths larger than the system's homogeneity lengths change essentially as compared with the results based on the local Bose-Einstein thermal distributions. The effects noticeably grow for overpopulated media, where the chemical potential associated with violation of chemical equilibrium is large enough. (author)

  13. Dimensional structural constants from chiral and conformal bosonization of QCD

    CERN Document Server

    Andrianov, A A; Ebert, D; Mann, T F; Mann, Th. Feld

    1997-01-01

    We derive the dimensional non-perturbative part of the QCD effective ac= tion for scalar and pseudoscalar meson fields by means of chiral and conformal bosonization. The related structural coupling constants L_5 and L_8 of th= e chiral lagrangian are estimated using general relations which are valid i= n a variety of chiral bosonization models without explicit reference to model parameters. The asymptotics for large scalar fields in QCD is elaborated,= and model-independent constraints on dimensional coupling constants of the effective meson lagrangian are evaluated. We determine also the interacti= on between scalar quarkonium and the gluon density and obtain the scalar glueball-quarkonium potential.

  14. Boson spectra and correlations for thermal locally equilibrium systems

    CERN Document Server

    Sinyukov, Yu M

    1999-01-01

    The single- and multi- particle inclusive spectra for strongly inhomogeneous thermal boson systems are studied using the method of statistical operator. The thermal Wick's theorem is generalized and the analytical solution of the problem for an boost-invariant expanding boson gas is found. The results demonstrate the effects of inhomogeneity for such a system: the spectra and correlations for particles with wave-lengths larger than the system's homogeneity lengths change essentially as compared with the results based on the local Bose-Einstein thermal distributions. The effects noticeable grow for overpopulated media, where the chemical potential associated with violation of chemical equilibrium is large enough.

  15. Discovery of potential prognostic long non-coding RNA biomarkers for predicting the risk of tumor recurrence of breast cancer patients.

    Science.gov (United States)

    Zhou, Meng; Zhong, Lei; Xu, Wanying; Sun, Yifan; Zhang, Zhaoyue; Zhao, Hengqiang; Yang, Lei; Sun, Jie

    2016-01-01

    Deregulation of long non-coding RNAs (lncRNAs) expression has been proven to be involved in the development and progression of cancer. However, expression pattern and prognostic value of lncRNAs in breast cancer recurrence remain unclear. Here, we analyzed lncRNA expression profiles of breast cancer patients who did or did not develop recurrence by repurposing existing microarray datasets from the Gene Expression Omnibus database, and identified 12 differentially expressed lncRNAs that were closely associated with tumor recurrence of breast cancer patients. We constructed a lncRNA-focus molecular signature by the risk scoring method based on the expression levels of 12 relapse-related lncRNAs from the discovery cohort, which classified patients into high-risk and low-risk groups with significantly different recurrence-free survival (HR = 2.72, 95% confidence interval 2.07-3.57; p = 4.8e-13). The 12-lncRNA signature also represented similar prognostic value in two out of three independent validation cohorts. Furthermore, the prognostic power of the 12-lncRNA signature was independent of known clinical prognostic factors in at least two cohorts. Functional analysis suggested that the predicted relapse-related lncRNAs may be involved in known breast cancer-related biological processes and pathways. Our results highlighted the potential of lncRNAs as novel candidate biomarkers to identify breast cancer patients at high risk of tumor recurrence. PMID:27503456

  16. Characterization of Si detectors, search for vertex and potentiality of detecting a light charged Higgs boson in the CMS experiment; Caracterisation des detecteurs silicium, recherche de Vertex et etude du potentiel de decouverte d'un boson de Higgs charge leger dans l'experience CMS

    Energy Technology Data Exchange (ETDEWEB)

    Estre, N

    2004-07-01

    The CMS (compact muon solenoid) detector that will be set on the future LHC (large hadron collider) accelerator will enable us to continue our search for the Higgs boson as well as to look for any hint for a new physics beyond the standard model. CMS is composed of an efficient muon detector, an electromagnetic calorimeter and of a tracker with high spatial resolution, this tracker is the topic of this thesis. The tracker will allow an accurate reconstruction of charged-particles trajectories and the reconstruction of the primary interaction vertex. The tracker's technology is based on micro-strip Si detectors, tests performed with the SPS particle beam show that these detectors have an impact reconstruction efficiency greater than 98% and a piling-up rate limited to 6%. The spatial resolution concerning particle trajectories is about 45 {mu}m for an interval of 183 {mu}m between 2 strips. The simulation for the search for a light charged Higgs boson show that an excess of {tau}{nu}{sub {tau}} + bb-bar + qq-bar' events is possible to be observed for any value of tan({beta}) up to M{sub A} = 122 GeV/c{sup 2} during the first year of operation and up to 136 GeV/c{sup 2} afterwards. With the assumption that this event excess is due to the decay of charged Higgs bosons we can state that the assessment of its mass will be possible till m{sub H} = 150 GeV/c{sup 2} with an accuracy of 15 GeV/c{sup 2}. (A.C.)

  17. Optogenetics enlightens neuroscience drug discovery.

    Science.gov (United States)

    Song, Chenchen; Knöpfel, Thomas

    2016-02-01

    Optogenetics - the use of light and genetics to manipulate and monitor the activities of defined cell populations - has already had a transformative impact on basic neuroscience research. Now, the conceptual and methodological advances associated with optogenetic approaches are providing fresh momentum to neuroscience drug discovery, particularly in areas that are stalled on the concept of 'fixing the brain chemistry'. Optogenetics is beginning to translate and transit into drug discovery in several key domains, including target discovery, high-throughput screening and novel therapeutic approaches to disease states. Here, we discuss the exciting potential of optogenetic technologies to transform neuroscience drug discovery.

  18. The mass spectrum of Diquark Boson in the color superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, K.; Miyamura, O. [Hiroshima Univ., Dept. of Physics, Higashi-Hiroshima, Hiroshima (Japan)

    2000-08-01

    In this work we apply the functional integral method to the study of the color superconducting phase and compute the mass spectrum of the Diquark Boson at finite temperature and nonzero chemical potential. We find the different aspect with QED superconductor. (author)

  19. Discovering the Higgs Bosons of Minimal Supersymmetry with Bottom Quarks

    CERN Document Server

    Kao, Chung; Sayre, Joshua; Wang, Yili

    2009-01-01

    We investigate the prospects for the discovery of a neutral Higgs boson produced with one bottom quark followed by Higgs decay into a pair of bottom quarks at the CERN Large Hadron Collider (LHC) and the Fermilab Tevatron Collider. We work within the framework of the minimal supersymmetric standard model. The dominant physics background is calculated with realistic acceptance cuts and efficiencies including the production of $bb\\bar{b}$, $\\bar{b}b\\bar{b}$, $jb\\bar{b}$ ($j = g, q, \\bar{q}$; $q = u, d, s, c$), $t\\bar{t} \\to b\\bar{b}jj\\ell\

  20. Massive the Higgs boson and the greatest hunt in science

    CERN Document Server

    Sample, Ian

    2013-01-01

    Now fully updated -- this is the dramatic and gripping account of the greatest scientific discovery of our time. In the early 1960s, three groups of physicists, working independently in different countries, stumbled upon an idea that would change physics and fuel the imagination of scientists for decades. That idea was the Higgs boson -- to find it would be to finally understand the origins of mass -- the last building block of life itself. Now, almost 50 years later, that particle has finally been discovered.

  1. Invisible decays of low mass Higgs bosons in supersymmetric models

    OpenAIRE

    Pandita, P. N.; Patra, Monalisa

    2014-01-01

    The discovery of a 126 GeV Higgs like scalar at the LHC along with the non observation of the supersymmetric particles, has in turn lead to constraining various supersymmetric models through the Higgs data. We here consider the case of both MSSM, as well its extension containing an additional chiral singlet superfield, NMSSM. We concentrate on the case where we identify the second lightest Higgs boson as the 126 GeV state discovered at the CERN LHC and consider the invisible decays of the low...

  2. Light Front Boson Model Propagation

    Institute of Scientific and Technical Information of China (English)

    Jorge Henrique Sales; Alfredo Takashi Suzuki

    2011-01-01

    stract The scope and aim of this work is to describe the two-body interaction mediated by a particle (either the scalar or the gauge boson) within the light-front formulation. To do this, first of all we point out the importance of propagators and Green functions in Quantum Mechanics. Then we project the covariant quantum propagator onto the light front time to get the propagator for scalar particles in these coordinates. This operator propagates the wave function from x+ = 0 to x+ > O. It corresponds to the definition of the time ordering operation in the light front time x+. We calculate the light-front Green's function for 2 interacting bosons propagating forward in x+. We also show how to write down the light front Green's function from the Feynman propagator and finally make a generalization to N bosons.

  3. Gauss–Bonnet boson stars

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Betti, E-mail: b.hartmann@jacobs-university.de [School of Engineering and Science, Jacobs University Bremen, 28759 Bremen (Germany); Riedel, Jürgen, E-mail: j.riedel@jacobs-university.de [School of Engineering and Science, Jacobs University Bremen, 28759 Bremen (Germany); Faculty of Physics, University Oldenburg, 26111 Oldenburg (Germany); Suciu, Raluca, E-mail: r.suciu@jacobs-university.de [School of Engineering and Science, Jacobs University Bremen, 28759 Bremen (Germany)

    2013-11-04

    We construct boson stars in (4+1)-dimensional Gauss–Bonnet gravity. We study the properties of the solutions in dependence on the coupling constants and investigate in detail their properties. While the “thick wall” limit is independent of the value of the Gauss–Bonnet coupling, we find that the spiraling behaviour characteristic for boson stars in standard Einstein gravity disappears for large enough values of the Gauss–Bonnet coupling. Our results show that in this case the scalar field can not have arbitrarily high values of the scalar field at the center of the boson star and that it is hence impossible to reach the “thin wall” limit. Moreover, for large enough Gauss–Bonnet coupling we find a unique relation between the mass and the radius (qualitatively similar to those of neutron stars) which is not present in the Einstein gravity limit.

  4. X chromosome-linked CNVs in male infertility: discovery of overall duplication load and recurrent, patient-specific gains with potential clinical relevance.

    Directory of Open Access Journals (Sweden)

    Chiara Chianese

    Full Text Available Spermatogenesis is a highly complex process involving several thousand genes, only a minority of which have been studied in infertile men. In a previous study, we identified a number of Copy Number Variants (CNVs by high-resolution array-Comparative Genomic Hybridization (a-CGH analysis of the X chromosome, including 16 patient-specific X chromosome-linked gains. Of these, five gains (DUP1A, DUP5, DUP20, DUP26 and DUP40 were selected for further analysis to evaluate their clinical significance.The copy number state of the five selected loci was analyzed by quantitative-PCR on a total of 276 idiopathic infertile patients and 327 controls in a conventional case-control setting (199 subjects belonged to the previous a-CGH study. For one interesting locus (intersecting DUP1A additional 338 subjects were analyzed.All gains were confirmed as patient-specific and the difference in duplication load between patients and controls is significant (p = 1.65 × 10(-4. Two of the CNVs are private variants, whereas 3 are found recurrently in patients and none of the controls. These CNVs include, or are in close proximity to, genes with testis-specific expression. DUP1A, mapping to the PAR1, is found at the highest frequency (1.4% that was significantly different from controls (0% (p = 0.047 after Bonferroni correction. Two mechanisms are proposed by which DUP1A may cause spermatogenic failure: i by affecting the correct regulation of a gene with potential role in spermatogenesis; ii by disturbing recombination between PAR1 regions during meiosis. This study allowed the identification of novel spermatogenesis candidate genes linked to the 5 CNVs and the discovery of the first recurrent, X-linked gain with potential clinical relevance.

  5. Optimization of the ATLAS detector to search for the two-photon decaying Higgs boson at LHC; Optimisation du detecteur ATLAS pour la recherche du boson de Higgs se desintegrant en deux photons au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Tisserand, V. [Paris-11 Univ., 91 - Orsay (France). Lab. de l' Accelerateur Lineaire]|[Universite de Paris Sud, 91 - Orsay (France)

    1997-02-03

    The two photon decay channel is the most clear and promising way to detect a Higgs boson of an intermediate mass between 80 GeV/c{sup 2} and 150 GeV/c{sup 2} at the future large proton collider of CERN (LHC). As the Higgs mass is narrow in this range, the observation of this channel relies on the performance of the electromagnetic calorimeter. A full simulation study has been performed to evaluate the discovery potential of the ATLAS detector. The results of this simulation have been confirmed by beam tests with a prototype. This simulation includes different contributions such as energy resolution sampling term, electronic and pile-up noise, global constant term and angular measurement of the two photon opening angle. The levels of the irreducible background from prompt di-photon production and the reducible background from jets with isolated leading neutrals pions have been estimated, taking into account the rejection capability of the detector. After the computation of the two photon invariant mass resolution, and the evaluation of signal and background rates, the discovery potential of the Higgs boson with the ATLAS detector was calculated. The Higgs can be discovered at five sigma confidence level after less than a year of data taking at LHC with the nominal luminosity of 10{sup 34} cm{sup -2}.s{sup -1} if the Higgs mass is between 100 GeV/c{sup 2} and 150 GeV/c{sup 2}. The Higgs mass window between 80 GeV/c{sup 2} and 150 GeV/c{sup 2} will be covered with an integrated luminosity of 3.10{sup 5} pb{sup -1}. In the case of the Minimal Supersymmetric Model (MSSM) the plane (m{sub A{sup 0}}, tan({beta})) will be fully explored if m{sub A{sup 0}} > 175 GeV/c{sup 2}. (author)

  6. Diphoton channel at the LHC experiments to find a hint for a new heavy gauge boson

    Science.gov (United States)

    Kaneta, Kunio; Kang, Subeom; Lee, Hye-Sung

    2016-09-01

    Recently there has been a huge interest in the diphoton excess around 750 GeV reported by both ATLAS and CMS collaborations, although the newest analysis with more statistics does not seem to support the excess. Nevertheless, the diphoton channel at the LHC experiments are a powerful tool to probe a new physics. One of the most natural explanations of a diphoton excess, if it occurs, could be a new scalar boson with exotic colored particles. In this setup, it would be legitimate to ask what is the role of this new scalar in nature. A heavy neutral gauge boson (Z‧) is one of the traditional targets of the discovery at the collider experiments with numerous motivations. While the Landau-Yang theorem dictates the diphoton excess cannot be this spin-1 gauge boson, there is a strong correlation of a new heavy gauge boson and a new scalar boson which provides a mass to the gauge boson being at the same mass scale. In this paper, we point out a simple fact that a new scalar with a property similar to the recently highlighted 750 GeV would suggest an existence of a TeV scale Z‧ gauge boson that might be within the reach of the LHC Run 2 experiments. We take a scenario of the well-motivated and popular gauged B - L symmetry and require the gauge coupling unification to predict the mass and other properties of the Z‧ and illustrate the discovery of the Z‧ would occur during the LHC experiments.

  7. Introduction to the physics of Higgs bosons

    International Nuclear Information System (INIS)

    A basic introduction to the physics of the Standard Model Higgs boson is given. We discuss Higgs boson production in e+e- and hadronic collisions and survey search techniques at future accelerators. The Higgs bosons of the minimal SUSY model are briefly considered. Indirect limits from triviality arguments, vacuum stability and precision measurements at LEP are also presented

  8. Introduction to the physics of Higgs bosons

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, S.

    1994-11-01

    A basic introduction to the physics of the Standard Model Higgs boson is given. We discuss Higgs boson production in e{sup +}e{sup {minus}} and hadronic collisions and survey search techniques at future accelerators. The Higgs bosons of the minimal SUSY model are briefly considered. Indirect limits from triviality arguments, vacuum stability and precision measurements at LEP are also presented.

  9. Boson stars in the centre of galaxies?

    CERN Document Server

    Schunck, Franz E

    2008-01-01

    We investigate the possible gravitational redshift values for boson stars with a self-interaction, studying a wide range of possible masses. We find a limiting value of z_lim \\simeq 0.687 for stable boson star configurations. We can exclude the direct observation of boson stars. X-ray spectroscopy is perhaps the most interesting possibility.

  10. Twisted bosonization in two dimensional noncommutative spacetime

    CERN Document Server

    Haque, Asrarul

    2012-01-01

    We study the twisted bosonization of massive Thirring model to relate to sine-Gordon model in Moyal spacetime using twisted commutation relations. We obtain the relevant twisted bosonization rules. We show that there exists dual rela- tionship between twisted bosonic and fermionic operators. The strong-weak duality is also observed to be preserved as its commutative counterpart.

  11. Search for the Higgs boson decaying to four leptons in the ATLAS detector at LHC and studies of muon isolation and energy loss

    International Nuclear Information System (INIS)

    The central subject of this thesis is the evaluation of the discovery potential of the Higgs boson through its decay into four leptons (electrons and muons) in the ATLAS experiment installed at the Large Hadron Collider (LHC). The LHC was designed to accelerate proton beams at a center of mass energy of 14 TeV and started its physics program with 7 TeV collisions in the beginning of 2010. An inclusive analysis involving all the production modes and an exclusive one aiming at production through vector boson fusion (VBF), studied for the first time in the collaboration, are presented. Both are capable of discovering the Higgs boson after a few years of LHC operation, with integrated luminosities of 30 fb-1. The first one covers most part of a Higgs mass window from 130 to 500 GeV. The second one concentrates on masses around 180 GeV and above, exploiting the presence of high energy jets with large separations in pseudo-rapidity to increase the signal over background ratio. An important part of the document is devoted to the reconstruction of muon isolation and energy loss in the ATLAS calorimeters. A software package that optimized the way of treating the energy deposits was developed and tested on simulated data and cosmic-ray events, leading to improvements in the muon momentum resolution and the distinction between muons from heavy quark and vector boson decays. As a consequence of the last result, one of the dominant backgrounds to the H → 4μ channel, Zb b-bar, is expected to be reduced by almost a factor of two. (author)

  12. Low-Mass Higgs Bosons in the NMSSM and Their LHC Implications

    OpenAIRE

    Christensen, Neil D.; Han, Tao; Liu, Zhen; Su, Shufang

    2013-01-01

    We study the Higgs sector of the Next to Minimal Supersymmetric Standard Model (NMSSM) in light of the discovery of the SM-like Higgs boson at the LHC. We perform a broad scan over the NMSSM parameter space and identify the regions that are consistent with current Higgs search results at colliders. In contrast to the commonly studied "decoupling" scenario in the literature where the Minimal Supersymmetric Standard Model CP-odd Higgs boson mass is large mA >> mZ, we pay particular attention to...

  13. Searching for the Higgs Boson in Pairs of Tau Leptons in Data from the ATLAS Experiment Automation of the SCT prompt calibration

    CERN Document Server

    Rosendahl, Peter Lundgaard

    One of the key questions in particle physics today, is the origin of the electroweak symmetry breaking. The answer to this question will most likely be solved with the data provided by the Large Hadron Collider which started colliding protons in 2008. Many ideas have been posed to how particles gain their masses. The most promising of these ideas is the Higgs mechanism which predicts the existence of a new massive scalar boson, the Higgs boson. Since the discovery of a new particle consistent with a Standard Model Higgs boson was made on July 4 by the ATLAS and CMS experiment, the solution for the puzzle of the electroweak symmetry breaking might be very near. However, in order to fully claim a discovery of the Standard Model Higgs boson, the new particle has to be proven to be a scalar boson and its decay has to be observed in both bosonic and fermionic final states with the corrected branching ratios predicted by the Standard Model. So far the new boson has only been seen in the bosonic gamma-gamma, ZZ and ...

  14. Higgs boson physics and broken flavor symmetry -- LHC phenomenology

    CERN Document Server

    Berger, Edmond L

    2014-01-01

    The LHC implications are presented of a simplified model of broken flavor symmetry in which a new scalar (a flavon) emerges with mass in the TeV range. We summarize the influence of the model on Higgs boson physics, notably on the production cross section and decay branching fractions. Limits are obtained on the flavon $\\varphi$ from heavy Higgs boson searches at the LHC at 7 and 8 TeV. The branching fractions of the flavon are computed as a function of the flavon mass and the Higgs-flavon mixing angle. We explore possible discovery of the flavon at 14 TeV, particularly via the $\\varphi \\rightarrow Z^0Z^0$ decay channel in the $2\\ell2\\ell'$ final state, and through standard model Higgs boson pair production $\\varphi \\rightarrow hh$ in the $b\\bar{b}\\gamma\\gamma$ final state. The flavon mass range up to $500$ GeV could probed down to quite small values of the Higgs-flavon mixing angle with 100 fb$^{-1}$ of integrated luminosity at 14 TeV.

  15. Excited Weak Bosons and Dark Matter

    OpenAIRE

    Fritzsch, Harald

    2016-01-01

    The weak bosons are bound states of new constituents, the haplons. The p-wave excitations are studied. The state with the lowest mass is identified with the boson, which has been discovered at the LHC. Specific properties of the excited bosons are discussed, in particular their decays into weak bosons and photons. Recently a two photon signal has been observed, which might come from the decay of a neutral heavy boson with a mass of about 0.75 TeV. This particle could be the excited weak tenso...

  16. Next-To-Leading Order QCD Corrections to Associated Production of a SM Higgs Boson with a Pair of Weak Bosons in the POWHEG-BOX

    CERN Document Server

    Baglio, Julien

    2015-01-01

    After the discovery of a Higgs boson in 2012 at the CERN Large Hadron Collider (LHC) the detailed study of its properties, and most importantly its couplings to other particles, has started. This is a very important task to be completed, in particular to test wether it is indeed the Higgs boson predicted by the Standard Model (SM). The precise study of the Higgs couplings to gauge bosons is of particular importance and requires as much information as possible. In this view this paper provides with the next-to-leading order (NLO) QCD corrections to the production cross sections and differential distributions of an SM Higgs boson in association with a pair of weak bosons $W^+W^-$, $W^\\pm Z$ and $ZZ$, matched with parton shower (PS) in the POWHEG-BOX framework. The NLO QCD corrections are found to be significant and PS effects are sizable at low $p_T$ in the jet differential distributions, as expected, while these effects are negligible in other distributions. We will also provide with a detailed study of the th...

  17. A Higgcision study on the 750 GeV Di-photon Resonance and 125 GeV SM Higgs boson with the Higgs-Singlet Mixing

    CERN Document Server

    Cheung, Kingman; Lee, Jae Sik; Park, Jubin; Tseng, Po-Yan

    2015-01-01

    We interpret the potential observation of the 750 GeV di-photon resonance at the LHC in models, in which an $SU(2)$ isospin-singlet scalar boson mixes with the Standard Model (SM) Higgs boson through an angle $\\alpha$. Allowing the singlet scalar boson to have renormalizable couplings to vector-like leptons and quarks, we can explain the large production cross section $\\sigma(H_2) \\times B(H_2 \\to \\gamma\\gamma)$ as well as the apparent large total width of the boson without conflicts from the results obtained by previous global fits to the SM Higgs boson data.

  18. Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development.

    Science.gov (United States)

    Peng, Fred Y; Reid, Karen E; Liao, Nancy; Schlosser, James; Lijavetzky, Diego; Holt, Robert; Martínez Zapater, José M; Jones, Steven; Marra, Marco; Bohlmann, Jörg; Lund, Steven T

    2007-11-01

    We report the generation and analysis of a total of 77,583 expressed sequence tags (ESTs) from two grapevine (Vitis vinifera L.) cultivars, Cabernet Sauvignon (wine grape) and Muscat Hamburg (table grape) with a focus on EST sequence quality and assembly optimization. The majority of the ESTs were derived from normalized cDNA libraries representing berry pericarp and seed developmental series, pooled non-berry tissues including root, flower, and leaf in Cabernet Sauvignon, and pooled tissues of berry, seed, and flower in Muscat Hamburg. EST and unigene sequence quality were determined by computational filtering coupled with small-scale contig reassembly, manual review, and BLAST analyses. EST assembly was optimized to better discriminate among closely related paralogs using two independent grape sequence sets, a previously published set of Vitis spp. gene families and our EST dataset derived from pooled leaf, flower, and root tissues of Cabernet Sauvignon. Sequence assembly within individual libraries indicated that those prepared from pooled tissues contributed the most to gene discovery. Annotations based upon searches against multiple databases including tomato and strawberry sequences helped to identify putative functions of ESTs and unigenes, particularly with respect to fleshy fruit development. Sequence comparison among the three wine grape libraries identified a number of genes preferentially expressed in the pericarp tissue, including transcription factors, receptor-like protein kinases, and hexose transporters. Gene ontology (GO) classification in the biological process aspect showed that GO categories corresponding to 'transport' and 'cell organization and biogenesis', which are associated with metabolite movement and cell wall structural changes during berry ripening, were higher in pericarp than in other tissues in the wine grape studied. The sequence data were used to characterize potential roles of new genes in berry development and composition. PMID

  19. Phenomenological analysis of the interacting boson model

    Science.gov (United States)

    Hatch, R. L.; Levit, S.

    1982-01-01

    The classical Hamiltonian of the interacting boson model is defined and expressed in terms of the conventional quadrupole variables. This is used in the analyses of the dynamics in the various limits of the model. The purpose is to determine the range and the features of the collective phenomena which the interacting boson model is capable of describing. In the commonly used version of the interacting boson model with one type of the s and d bosons and quartic interactions, this capability has certain limitations and the model should be used with care. A more sophisticated version of the interacting boson model with neutron and proton bosons is not discussed. NUCLEAR STRUCTURE Interacting bosons, classical IBM Hamiltonian in quadrupole variables, phenomenological content of the IBM and its limitations.

  20. Search for Higgs bosons in the final state ZZ(*)-->llqq with the ATLAS detector at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00009427; Kourkoumelis, Christine; Polychronakos, Venetios

    2016-04-25

    This dissertation presents the search for Higgs-like bosons, in the decay mode H->ZZ(*)->llqq, using data collected with the ATLAS detector, at the CERN Large Hadron Collider (LHC). Despite the fact that this channel is mostly sensitive in the Higgs boson mass range above 200 GeV, before the discovery of the Standard Model Higgs boson the search was extended over the mass interval 120-180 GeV. Reasonable sensitivity is observed above 140 GeV. The search uses 4.7 ifb of proton–proton collision data, at a centre-of-mass energy of 7 TeV. After the discovery of the Higgs boson, the search focused towards the detection of additional, heavy Higgs bosons, in the mass range 200-1000 GeV. Proton–proton collision data, at a centre-of-mass energy of 8 TeV, are used, corresponding to an integrated luminosity of 20.3 ifb. Since no significant excess of events is observed over the Standard Model prediction, upper limits are set, at 95% confidence level (CL), on the production cross-section of a heavy Higgs boson times ...

  1. The sensitivity of the Higgs boson branching ratios to the W boson width

    Science.gov (United States)

    Murray, William

    2016-07-01

    The Higgs boson branching ratio into vector bosons is sensitive to the decay widths of those vector bosons because they are produced with at least one boson significantly off-shell. Γ (H → VV) is approximately proportional to the product of the Higgs boson coupling and the vector boson width. ΓZ is well measured, but ΓW gives an uncertainty on Γ (H → WW) which is not negligible. The ratio of branching ratios, BR (H → WW) / BR (H → ZZ) measured by a combination of ATLAS and CMS at LHC is used herein to extract a width for the W boson of ΓW =1.8-0.3+0.4 GeV by assuming Standard Model couplings of the Higgs bosons. This dependence of the branching ratio on ΓW is not discussed in most Higgs boson coupling analyses.

  2. De-pinning of disordered bosonic chains

    Science.gov (United States)

    Vogt, N.; Cole, J. H.; Shnirman, A.

    2016-05-01

    We consider onset of transport (de-pinning) in one-dimensional bosonic chains with a repulsive boson–boson interaction that decays exponentially on large length-scales. Our study is relevant for (i) de-pinning of Cooper-pairs in Josephson junction arrays; (ii) de-pinning of magnetic flux quanta in quantum-phase-slip ladders, i.e. arrays of superconducting wires in a ladder-configuration that allow for the coherent tunneling of flux quanta. In the low-frequency, long wave-length regime these chains can be mapped onto an effective model of a one-dimensional elastic field in a disordered potential. The standard de-pinning theories address infinitely long systems in two limiting cases: (a) of uncorrelated disorder (zero correlation length); (b) of long range power-law correlated disorder (infinite correlation length). In this paper we study numerically chains of finite length in the intermediate case of long but finite disorder correlation length. This regime is of relevance for, e.g., the experimental systems mentioned above. We study the interplay of three length scales: the system length, the interaction range, the correlation length of disorder. In particular, we observe the crossover between the solitonic onset of transport in arrays shorter than the disorder correlation length to onset of transport by de-pinning for longer arrays.

  3. The future (and past) of quantum theory after the Higgs boson: a quantum-informational viewpoint.

    Science.gov (United States)

    Plotnitsky, Arkady

    2016-05-28

    Taking as its point of departure the discovery of the Higgs boson, this article considers quantum theory, including quantum field theory, which predicted the Higgs boson, through the combined perspective of quantum information theory and the idea of technology, while also adopting anon-realistinterpretation, in 'the spirit of Copenhagen', of quantum theory and quantum phenomena themselves. The article argues that the 'events' in question in fundamental physics, such as the discovery of the Higgs boson (a particularly complex and dramatic, but not essentially different, case), are made possible by the joint workings of three technologies: experimental technology, mathematical technology and, more recently, digital computer technology. The article will consider the role of and the relationships among these technologies, focusing on experimental and mathematical technologies, in quantum mechanics (QM), quantum field theory (QFT) and finite-dimensional quantum theory, with which quantum information theory has been primarily concerned thus far. It will do so, in part, by reassessing the history of quantum theory, beginning with Heisenberg's discovery of QM, in quantum-informational and technological terms. This history, the article argues, is defined by the discoveries of increasingly complex configurations of observed phenomena and the emergence of the increasingly complex mathematical formalism accounting for these phenomena, culminating in the standard model of elementary-particle physics, defining the current state of QFT.

  4. The future (and past) of quantum theory after the Higgs boson: a quantum-informational viewpoint.

    Science.gov (United States)

    Plotnitsky, Arkady

    2016-05-28

    Taking as its point of departure the discovery of the Higgs boson, this article considers quantum theory, including quantum field theory, which predicted the Higgs boson, through the combined perspective of quantum information theory and the idea of technology, while also adopting anon-realistinterpretation, in 'the spirit of Copenhagen', of quantum theory and quantum phenomena themselves. The article argues that the 'events' in question in fundamental physics, such as the discovery of the Higgs boson (a particularly complex and dramatic, but not essentially different, case), are made possible by the joint workings of three technologies: experimental technology, mathematical technology and, more recently, digital computer technology. The article will consider the role of and the relationships among these technologies, focusing on experimental and mathematical technologies, in quantum mechanics (QM), quantum field theory (QFT) and finite-dimensional quantum theory, with which quantum information theory has been primarily concerned thus far. It will do so, in part, by reassessing the history of quantum theory, beginning with Heisenberg's discovery of QM, in quantum-informational and technological terms. This history, the article argues, is defined by the discoveries of increasingly complex configurations of observed phenomena and the emergence of the increasingly complex mathematical formalism accounting for these phenomena, culminating in the standard model of elementary-particle physics, defining the current state of QFT. PMID:27091170

  5. Search for a neutral Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Malmgren, T.G.M.

    1997-04-01

    The mass of the neutral Higgs boson cannot be predicted by models. Therefore, the particle is scanned for at different assumed masses. The search described here was done using data taken at the DELPHI detector in 1993. The Bjorken process was searched for where the decay of the Z{sup 0*} into two neutrinos was assumed. In order to reduce the background to a level where a discovery would be possible, an artificial feed-forward neural network was used. This led to a very good background rejection and high signal efficiency. An efficiency of around 30-50% was reached for a H{sup 0} mass ranging from 35-60 GeV/c{sup 2} leaving zero background events. One event was selected from the real data with a H{sup 0} mass of 27.5(3.6) GeV/c{sup 2}. These results were translated into a limit m{sub H}>58.3 GeV/c{sup 2} at 95% confidence level.

  6. Modeling small dark energy scale with quintessential pseudoscalar boson

    OpenAIRE

    Kim, Jihn E.(Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 130-701, Republic of Korea)

    2013-01-01

    Democracy among the same type of particles is a useful paradigm in studying masses and interactions of particles with supersymmetry(SUSY) or without SUSY. This simple idea predicts the presence of massless particles. We attempt to use one of these massless pseudoscalar particles as generating the cosmological dark energy(DE) potential. To achieve the extremely shallow potential of DE, the pseudoscalar boson is required not to couple to the QCD anomaly. So, we consider two pseudoscalars, one c...

  7. Prospects for the search for Higgs bosons with vector boson fusion processes at the LHC

    OpenAIRE

    Rottlaender, Iris

    2007-01-01

    The search for the Higgs boson is one of the main physics goals of the Large Hadron Collider (LHC) and its two multi-purpose experiments, ATLAS and CMS. Vector boson fusion is the second largest production process for a standard model Higgs boson at the LHC and offers excellent means for background suppression. This paper gives an overview of the prospects of Higgs boson searches using vector boson fusion at the LHC. For a standard model Higgs boson, the decay channels H->tautau, H->WW and H-...

  8. 3-Loop Corrections to the Higgs Boson Mass and Implications for Supersymmetry at the LHC

    CERN Document Server

    Feng, Jonathan L; Profumo, Stefano; Sanford, David

    2013-01-01

    In supersymmetric models with minimal particle content and without left-right squark mixing, the conventional wisdom is that the 125.6 GeV Higgs boson mass implies top squark masses of ~10 TeV, far beyond the reach of colliders. This conclusion is subject to significant theoretical uncertainties, however, and we provide evidence that it may be far too pessimistic. We evaluate the Higgs boson mass, including the dominant three-loop terms at O(\\alpha_t \\alpha_s^2), in currently viable models. For multi-TeV stops, the three-loop corrections can increase the Higgs boson mass by as much as 3 GeV and lower the required stop mass to 3 to 4 TeV, greatly improving prospects for supersymmetry discovery at the upcoming run of the LHC and its high-luminosity upgrade.

  9. Top quark polarization as a probe of models with extra gauge bosons

    International Nuclear Information System (INIS)

    New heavy gauge bosons exist in many models of new physics beyond the standard model of particle physics. Discovery of these W(prime) and Z(prime) resonances and the establishment of their spins, couplings, and other quantum numbers would shed light on the gauge structure of the new physics. The measurement of the polarization of the SM fermions from the gauge boson decays would decipher the handedness of the coupling of the new states, an important relic of the primordial new physics symmetry. Since the top quark decays promptly, its decay preserves spin information. We show how decays of new gauge bosons into third generation fermions (W(prime) → tb, Z(prime) → t(bar t)) can be used to determine the handedness of the couplings of the new states and to discriminate among various new physics models.

  10. Search for the Standard Model Higgs boson decaying into two photons

    CERN Document Server

    Spiezia, Aniello

    2014-01-01

    With the discovery of a Higgs boson, the standard model of particle physics has been successfully proved giving an answer to the origin of the masses issue, through the electroweak symmetry breaking mechanism. The Higgs decaying to two gammas is presented in this document. Although this channel has a low branching ratio, it provides a clean final state topology, with a peak that can be observed over the background, due mainly to irreducible direct diphoton production and to reducible gamma+jets and jet+jet. The analysis is performed using 2011 and 2012 datasets recorded by the CMS experiment from pp collisions at centre of mass energies of 7 TeV (5.1/fb) and 8 TeV (19.7/fb) and shows the presence of a new boson with a mass of about 125 GeV, that is in agreement with the standard model Higgs boson hypotheses.

  11. Mixed QCD-EW corrections for Higgs boson production at $e^+e^-$ colliders

    CERN Document Server

    Gong, Yinqiang; Xu, Xiaofeng; Yang, Li Lin

    2016-01-01

    Since the discovery of the Higgs boson at the Large Hadron Collider, a future electron-position collider has been proposed for precisely studying its properties. We investigate the production of the Higgs boson at such an $e^+e^-$ collider and calculate for the first time the mixed QCD-electroweak corrections to the total cross sections. We find that the $\\mathcal{O}(\\alpha\\alpha_s)$ corrections amount to a $1.2\\%$ increase of the cross section for a center-of-mass energy around 250 GeV. This is larger than the expected experimental accuracy and has to be included for extracting the properties of the Higgs boson from the measurements of the cross sections in the future.

  12. High-Temperature Atomic Superfluidity in Lattice Boson-Fermion Mixtures

    OpenAIRE

    Illuminati, F.; Albus, A

    2003-01-01

    We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always {\\it attractive} if the boson-boson on site interaction is repulsive, and predict the existence of an enhanced BEC--BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion {\\it repulsion}, the induced attraction...

  13. Vector-Boson Fusion and Vector-Boson Scattering

    CERN Document Server

    Rauch, Michael

    2016-01-01

    Vector-boson fusion and vector-boson scattering are an important class of processes for the Large Hadron Collider at CERN. It is characterized by two high-energetic jets in the forward regions of the detector and reduced jet activity in the central region. The higher center-of-mass energy during the current and subsequent runs strongly boosts the sensitivity in these processes and allows to test the predictions of the Standard Model to a high precision. In this review, we first present the main phenomenological features of vector-boson fusion and scattering processes. Then we discuss the effects of higher-order corrections, which are available at NLO QCD for all processes and up to N3LO QCD and NLO electro-weak for VBF-H production. An additional refinement is the addition of parton-shower effects, where recently a lot of progress has been made. The appearance of triple and quartic gauge vertices in the production processes enables us to probe anomalous gauge couplings. We introduce and compare the different ...

  14. Discovery Mondays

    CERN Document Server

    2003-01-01

    Many people don't realise quite how much is going on at CERN. Would you like to gain first-hand knowledge of CERN's scientific and technological activities and their many applications? Try out some experiments for yourself, or pick the brains of the people in charge? If so, then the «Lundis Découverte» or Discovery Mondays, will be right up your street. Starting on May 5th, on every first Monday of the month you will be introduced to a different facet of the Laboratory. CERN staff, non-scientists, and members of the general public, everyone is welcome. So tell your friends and neighbours and make sure you don't miss this opportunity to satisfy your curiosity and enjoy yourself at the same time. You won't have to listen to a lecture, as the idea is to have open exchange with the expert in question and for each subject to be illustrated with experiments and demonstrations. There's no need to book, as Microcosm, CERN's interactive museum, will be open non-stop from 7.30 p.m. to 9 p.m. On the first Discovery M...

  15. Ayurvedic drug discovery.

    Science.gov (United States)

    Balachandran, Premalatha; Govindarajan, Rajgopal

    2007-12-01

    Ayurveda is a major traditional system of Indian medicine that is still being successfully used in many countries. Recapitulation and adaptation of the older science to modern drug discovery processes can bring renewed interest to the pharmaceutical world and offer unique therapeutic solutions for a wide range of human disorders. Eventhough time-tested evidences vouch immense therapeutic benefits for ayurvedic herbs and formulations, several important issues are required to be resolved for successful implementation of ayurvedic principles to present drug discovery methodologies. Additionally, clinical examination in the extent of efficacy, safety and drug interactions of newly developed ayurvedic drugs and formulations are required to be carefully evaluated. Ayurvedic experts suggest a reverse-pharmacology approach focusing on the potential targets for which ayurvedic herbs and herbal products could bring tremendous leads to ayurvedic drug discovery. Although several novel leads and drug molecules have already been discovered from ayurvedic medicinal herbs, further scientific explorations in this arena along with customization of present technologies to ayurvedic drug manufacturing principles would greatly facilitate a standardized ayurvedic drug discovery.

  16. A general approach to bosonization

    Indian Academy of Sciences (India)

    Girish S Setulur; V Meera

    2007-10-01

    We summarize recent developments in the field of higher dimensional bosonization made by Setlur and collaborators and propose a general formula for the field operator in terms of currents and densities in one dimension using a new ingredient known as a `singular complex number'. Using this formalism, we compute the Green function of the homogeneous electron gas in one spatial dimension with short-range interaction leading to the Luttinger liquid and also with long-range interactions that lead to a Wigner crystal whose momentum distribution computed recently exhibits essential singularities. We generalize the formalism to finite temperature by combining with the author's hydrodynamic approach. The one-particle Green function of this system with essential singularities cannot be easily computed using the traditional approach to bosonization which involves the introduction of momentum cutoffs, hence the more general approach of the present formalism is proposed as a suitable alternative.

  17. Introduction to bosonic string theory

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Carmen [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)], e-mail: carmen@iafe.uba.ar

    2009-07-01

    This is an introductory set of five lectures on bosonic string theory. The first one deals with the classical theory of bosonic strings. The second and third lectures cover quantization. Three basic quantization methods are sketched: the old covariant formalism, the light-cone gauge quantization, where the spectrum is derived and the Polyakov path integral formalism and in particular the partition function at one loop. Finally, the last lecture covers interactions, low energy effective action, the general idea of compactification and in particular toroidal compactification. The notes are based on books by Green, Schwarz and Witten, Polchinski, Lust and Theissen and Kaku and review papers by D'Hocker and Phong and O. Alvarez. (author)

  18. Study of γγbb final state topologies at LHC and search for high mass resonances decaying into two Higgs bosons with the CMS detector

    OpenAIRE

    Marzocchi,

    2015-01-01

    The discovery of the Higgs boson at the LHC completes the standard model (SM) of particle interactions. Albeit very successful, the SM does not provide answers to critical questions, such as the nature of dark matter or the hierarchy problem. For this reason, theories that predict the existence of new phenomena beyond the standard model (BSM theories) have been proposed. Many BSM theories predict the existence of new particles coupled to the Higgs boson. Therefore, the consistency of the SM a...

  19. The role of the top quark in the stability of the SM Higgs potential

    CERN Document Server

    Degrassi, Giuseppe

    2014-01-01

    I discuss the stability of the SM scalar potential in view of the discovery of a Higgs boson with mass around 125 GeV. The role played by the top quark mass in the choice between the full stability and the metastability conditions is analyzed in detail. The present experimental value of the top mass do not support the possibility that the SM potential is stable up to the Planck scale but favor an electroweak vacuum sufficiently long-lived to be metastable.

  20. Electroweak boson production at LHCb

    Directory of Open Access Journals (Sweden)

    Wallace Ronan

    2013-11-01

    Full Text Available Measurements of W and Z boson production provide important tests of the Standard Model as well as being inputs for determining the parton density functions of the proton. W and Z production cross-sections, and their ratios, have been measured using the LHCb detector and are reported here. Datasets of up to 1 fb−1 at √s = 7 TeV are used.

  1. Bosonic colored group field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ben Geloun, Joseph [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France); University of Abomey-Calavi, Cotonou (BJ). International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair); Universite Cheikh Anta Diop, Departement de Mathematiques et Informatique, Faculte des Sciences et Techniques, Dakar (Senegal); Magnen, Jacques [Ecole Polytechnique, Centre de Physique Theorique, Palaiseau Cedex (France); Rivasseau, Vincent [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)

    2010-12-15

    Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the ''ultraspin'' (large spin) limit. The results are generalized in any dimension. Finally, integrating out two colors we write a new representation, which could be useful for the constructive analysis of this type of models. (orig.)

  2. One or more Higgs bosons?

    CERN Document Server

    Barbieri, Riccardo; Kannike, Kristjan; Sala, Filippo; Tesi, Andrea

    2013-01-01

    Now that one has been found, the search for signs of more scalars is a primary task of current and future experiments. In the motivated hypothesis that the extra Higgs bosons of the next-to-minimal supersymmetric Standard Model (NMSSM) be the lightest new particles around, we outline a possible overall strategy to search for signs of the CP-even states. This work complements Ref. arXiv:1304.3670.

  3. Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson at muon collider

    Indian Academy of Sciences (India)

    Jai Kumar Singhal; Sardar Singh; Ashok K Nagawat

    2007-06-01

    We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross-section in SM and MSSM with Higgs boson mass for various MSSM parameters tan and A. We observe that at fixed CM energy, in the SM, the total cross-section increases with the increase in Higgs boson mass whereas this trend is reversed for the MSSM. The changes that occur for the MSSM in comparison to the SM predictions are quantified in terms of the relative percentage deviation in cross-section. The observed deviations in cross-section for different choices of Higgs boson masses suggest that the measurements of the cross-section could possibly distinguish the SM-like MSSM Higgs boson from the SM Higgs boson.

  4. Collider Signatures of Goldstone Bosons

    CERN Document Server

    Cheung, Kingman; Yuan, Tzu-Chiang

    2014-01-01

    Recently Weinberg suggested that Goldstone bosons arising from the spontaneous breakdown of some global hidden symmetries can interact weakly in the early Universe and account for a fraction of the effective number of neutrino species N_{eff}, which has been reported persistently 2\\sigma away from its expected value of three. In this work, we study in some details a number of experimental constraints on this interesting idea based on the simplest possibility of a global U(1), as studied by Weinberg. We work out the decay branching ratios of the associated light scalar field \\sigma and suggest a possible collider signature at the Large Hadron Collider (LHC). In some corners of the parameter space, the scalar field \\sigma can decay into a pair of pions with a branching ratio of order 10% while the rest is mostly a pair of Goldstone bosons. The collider signature would be gluon fusion into the standard model Higgs boson gg -> H followed by H -> \\sigma \\sigma -> (\\pi\\pi) (\\alpha\\alpha) where \\alpha is the Goldsto...

  5. Searching heavier Higgs boson via di-Higgs production at LHC Run-2

    Directory of Open Access Journals (Sweden)

    Lan-Chun Lü

    2016-04-01

    Full Text Available The discovery of a light Higgs particle h0(125 GeV opens up new prospect for searching heavier Higgs boson(s at the LHC Run-2, which will unambiguously point to new physics beyond the standard model (SM. We study the detection of a heavier neutral Higgs boson H0 via di-Higgs production channel at the LHC (14 TeV, H0→h0h0→WW⁎γγ. This directly probes the Hhh cubic Higgs interaction, which exists in most extensions of the SM Higgs sector. For the decay products of final states WW⁎, we include both pure leptonic mode WW⁎→ℓν¯ℓ¯ν and semi-leptonic mode WW⁎→qq¯′ℓν. We analyze signals and backgrounds by performing fast detector simulation for the full process pp→H→hh→WW⁎γγ→ℓν¯ℓ¯νγγ and pp→H→hh→WW⁎γγ→ℓνqq¯′γγ, over the mass range MH=250–600 GeV. For generic two-Higgs-doublet models (2HDM, we present the discovery reach of the heavier Higgs boson at the LHC Run-2, and compare it with the current Higgs global fit of the 2HDM parameter space.

  6. Searching heavier Higgs boson via di-Higgs production at LHC Run-2

    Science.gov (United States)

    Lü, Lan-Chun; Du, Chun; Fang, Yaquan; He, Hong-Jian; Zhang, Huijun

    2016-04-01

    The discovery of a light Higgs particle h0 (125 GeV) opens up new prospect for searching heavier Higgs boson(s) at the LHC Run-2, which will unambiguously point to new physics beyond the standard model (SM). We study the detection of a heavier neutral Higgs boson H0 via di-Higgs production channel at the LHC (14 TeV), H0 →h0h0 → WW* γγ. This directly probes the Hhh cubic Higgs interaction, which exists in most extensions of the SM Higgs sector. For the decay products of final states WW*, we include both pure leptonic mode WW* → ℓ ν bar ℓ bar ν and semi-leptonic mode WW* → qqbar‧ ℓν. We analyze signals and backgrounds by performing fast detector simulation for the full process pp → H → hh → WW* γγ → ℓ ν bar ℓ bar νγγ and pp → H → hh → WW* γγ → ℓνqqbar‧ γγ, over the mass range MH = 250- 600 GeV. For generic two-Higgs-doublet models (2HDM), we present the discovery reach of the heavier Higgs boson at the LHC Run-2, and compare it with the current Higgs global fit of the 2HDM parameter space.

  7. New Results on Charged Compact Boson Stars

    CERN Document Server

    Kumar, Sanjeev; Kulshreshtha, Daya Shankar

    2016-01-01

    In this work we present some new results which we have obtained in a study of the phase diagram of charged compact boson stars in the theory involving massive complex scalar fields coupled to the U(1) gauge field and gravity in a conical potential in the presence of a cosmological constant $\\Lambda$ which we treat as a free parameter taking positive and negative values and thereby allowing us to study the theory in the de Sitter and Anti de Sitter spaces respectively. In our studies, we obtain four bifurcation points (possibility of more bifurcation points being not ruled out) in the de Sitter region. We present a detailed discussion of the various regions in our phase diagram with respect to four bifurcation points. Our theory is seen to have rich physics in a particular domain for positive values of $\\Lambda$ which is consistent with the accelerated expansion of the universe.

  8. New results on charged compact boson stars

    Science.gov (United States)

    Kumar, Sanjeev; Kulshreshtha, Usha; Kulshreshtha, Daya Shankar

    2016-05-01

    In this work we present some new results that we have obtained in a study of the phase diagram of charged compact boson stars in the theory involving massive complex scalar fields coupled to the U(1) gauge field and gravity in a conical potential in the presence of a cosmological constant Λ , which we treat as a free parameter taking positive and negative values and thereby allowing us to study the theory in de Sitter and anti de Sitter spaces, respectively. We obtain four bifurcation points (the possibility of more bifurcation points not being ruled out) in the de Sitter region. We present a detailed discussion of the various regions in our phase diagram with respect to four bifurcation points. Our theory is seen to have rich physics in a particular domain for positive values of Λ , which is consistent with the accelerated expansion of the Universe.

  9. Modified Scattering for the Boson Star Equation

    Science.gov (United States)

    Pusateri, Fabio

    2014-12-01

    We consider the question of scattering for the boson star equation in three space dimensions. This is a semi-relativistic Klein-Gordon equation with a cubic nonlinearity of Hartree type. We combine weighted estimates, obtained by exploiting a special null structure present in the equation, and a refined asymptotic analysis performed in Fourier space, to obtain global solutions evolving from small and localized Cauchy data. We describe the behavior of such solutions at infinity by identifying a suitable nonlinear asymptotic correction to scattering. As a byproduct of the weighted energy estimates alone, we also obtain global existence and (linear) scattering for solutions of semi-relativistic Hartree equations with potentials decaying faster than Coulomb.

  10. Limit calculation in MSSM Higgs boson searches

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Joram; Caspart, Rene; Colombo, Fabio; Boer, Wim de; Frensch, Felix; Friese, Raphael; Gilbert, Andrew; Mueller, Thomas; Quast, Guenter; Treiber, Benjamin; Wolf, Roger [Institut fuer Experimentelle Kernphysik (IEKP), KIT (Germany)

    2015-07-01

    After run one of the LHC Supersymmetry still remains one of the favorite theories for physics beyond the Standard Model. In the minimal realization of Supersymmetry, the minimal supersymmetric Standard Model, five Higgs bosons exist. In my presentation I present limit calculation approaches for MSSM Higgs boson searches. The talk focuses on model dependent limit calculation by combining different charged and neutral MSSM Higgs boson searches.

  11. A Search for Dark Higgs Bosons

    Energy Technology Data Exchange (ETDEWEB)

    Lees, J.P.

    2012-06-08

    Recent astrophysical and terrestrial experiments have motivated the proposal of a dark sector with GeV-scale gauge boson force carriers and new Higgs bosons. We present a search for a dark Higgs boson using 516 fb{sup -1} of data collected with the BABAR detector. We do not observe a significant signal and we set 90% confidence level upper limits on the product of the Standard Model-dark sector mixing angle and the dark sector coupling constant.

  12. Fermionic subspaces of the bosonic string

    Energy Technology Data Exchange (ETDEWEB)

    Chattaraputi, Auttakit [Department of Physics, University of Chulalongkorn, Bangkok 10330 (Thailand); Englert, Francois [Service de Physique Theorique, Universite Libre de Bruxelles, Campus Plaine, CP 225, Boulevard du Triomphe, B-1050 Bruxelles (Belgium); Houart, Laurent [Service de Physique Theorique et Mathematique, Universite Libre de Bruxelles, Campus Plaine CP 231, Boulevard du Triomphe, B-1050 Brussells (Belgium); Taormina, Anne [Department of Mathematical Sciences, University of Durham, South Road, DH1 3LE Durham (United Kingdom)

    2003-06-21

    A universal symmetric truncation of the bosonic string Hilbert space yields all known closed fermionic string theories in ten dimensions, their D-branes and their open descendants. We highlight the crucial role played by group theory and two-dimensional conformal field theory in the construction and emphasize the predictive power of the truncation. Such circumstantial evidence points towards the existence of a mechanism which generates spacetime fermions out of bosons dynamically within the framework of bosonic string theory.

  13. Fermionic Subspaces of the Bosonic String

    CERN Document Server

    Chattaraputi, A; Houart, L; Taormina, A; Chattaraputi, Auttakit; Englert, Francois; Houart, Laurent; Taormina, Anne

    2003-01-01

    A universal symmetric truncation of the bosonic string Hilbert space yields all known closed fermionic string theories in ten dimensions, their D-branes and their open descendants. We highlight the crucial role played by group theory and two-dimensional conformal field theory in the construction and emphasize the predictive power of the truncation. Such circumstantial evidence points towards the existence of a mechanism which generates space-time fermions out of bosons dynamically within the framework of bosonic string theory.

  14. Fermionic Subspaces of the Bosonic String

    Science.gov (United States)

    Chattaraputi, A.; Englert, F.; Houart, L.; Taormina, A.

    A universal symmetric truncation of the bosonic string Hilbert space yields all known closed fermionic string theories in ten dimensions, their D-branes and their open descendants. We highlight the crucial role played by group theory and two-dimensional conformal field theory in the construction and emphasize the predictive power of the truncation. Such circumstantial evidence points towards the existence of a mechanism which generates space-time fermions out of bosons dynamically within the framework of bosonic string theory.

  15. Measurements of the Higgs Boson in the $H\\rightarrow\\tau\\tau$ Decay Channel

    CERN Document Server

    Howard, Jacob

    The generation of vector boson mass via the Higgs mechanism in the Standard Model has been confirmed by the 2012 discovery of a candidate Higgs boson in the $H\\rightarrow{WW}$, $H\\rightarrow{ZZ}$, and $H\\rightarrow\\gamma\\gamma$ decay channels. In contrast, the Yukawa couplings hypothesized to provide the mass of fermions in the Standard Model have yet to be observed. The $H\\rightarrow\\tau\\tau$ decay channel currently provides the best opportunity for observing these couplings. This thesis describes two separate but related searches for Higgs boson decays in the $H\\rightarrow\\tau\\tau$ decay channel using proton-proton collisions recorded by the ATLAS detector. The first analysis is a general search for all Higgs boson production mechanisms leading to a $H\\rightarrow\\tau\\tau$ decay using 4.5 fb$^{-1}$ of 7 TeV and 20.3 fb$^{-1}$ of 8 TeV proton-proton collision data. A deviation from the background-only hypothesis is observed with a significance of $4.5\\sigma$ for a hypothetical Higgs boson mass of ${m_{H} ...

  16. Evidence for the direct decay of the 125 GeV Higgs boson to fermions

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Heracleous, Natalie; Kalogeropoulos, Alexis; Keaveney, James; Kim, Tae Jeong; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Mahrous, Ayman; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sauvan, Jean-baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Geiser, Achim; Grebenyuk, Anastasia; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Hempel, Maria; Horton, Dean; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krämer, Mira; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Nowak, Friederike; Ntomari, Eleni; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Stein, Matthias; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Enderle, Holger; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hartmann, Frank; Hauth, Thomas; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Martschei, Daniel; Mozer, Matthias Ulrich; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Gouskos, Loukas; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Jones, John; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mittal, Monika; Nishu, Nishu; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Singh, Anil; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Chatterjee, Rajdeep Mohan; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dewanjee, Ram Krishna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Ferro, Fabrizio; Lo Vetere, Maurizio; Musenich, Riccardo; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kim, Tae Yeon; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Golutvin, Igor; Gorbunov, Ilya; Karjavin, Vladimir; Konoplyanikov, Viktor; Korenkov, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Gowdy, Stephen; Guida, Roberto; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Karavakis, Edward; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Palencia Cortezon, Enrique; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Reece, William; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Ronga, Frederic Jean; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Snoek, Hella; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Wilken, Rachel; Asavapibhop, Burin; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Karapinar, Guler; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Günaydin, Yusuf Oguzhan; Vardarli, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Ilic, Jelena; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Lazic, Dragoslav; Richardson, Clint; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Felcini, Marta; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Shrinivas, Amithabh; Sturdy, Jared; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Kovalskyi, Dmytro; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Kcira, Dorian; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Eggert, Nicholas; Gibbons, Lawrence Kent; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Ratnikova, Natalia; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Gray, Julia; Kenny III, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Cremaldi, Lucien Marcus; Kroeger, Rob; Oliveros, Sandra; Perera, Lalith; Sanders, David A; Summers, Don; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Duric, Senka; Friis, Evan; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Woods, Nathaniel

    2014-01-01

    The discovery of a new boson with a mass of approximately 125 GeV in 2012 at the LHC has heralded a new era in understanding the nature of electroweak symmetry breaking and possibly completing the standard model of particle physics. Since the first observation in decays to gamma-gamma, WW, and ZZ boson pairs, an extensive set of measurements of the mass and couplings to W and Z bosons, as well as multiple tests of the spin-parity quantum numbers, have revealed that the properties of the new boson are consistent with those of the long-sought agent responsible for electroweak symmetry breaking. An important open question is whether the new particle also couples to fermions, and in particular to down-type fermions, since the current measurements mainly constrain the couplings to the up-type top quark. Determination of the couplings to down-type fermions requires direct measurement of the corresponding Higgs boson decays, as recently reported by the CMS experiment in the study of Higgs decays to bottom quarks and...

  17. Testing the Higgs Boson Coupling to Gluons

    CERN Document Server

    Langenegger, Urs; Strebel, Ivo

    2015-01-01

    We study the possibility to separate in gluon fusion loop-induced Higgs boson production from point-like production. The Higgs boson is reconstructed in the Hgg final state at very large transverse momentum. Using the Higgs boson yields (normalized to the overall rate) and the shape of the Higgs boson pt distribution the two hypotheses can be separated with 2 standard deviations with an integrated luminosity of about 500 fb^-1. The largest experimental uncertainty affecting this estimate is the background event yield. The theoretical uncertainties from missing top mass effects are large, but can be decreased with dedicated calculations.

  18. Physics of W bosons at LEP

    CERN Document Server

    Mele, S

    2004-01-01

    The high-energy and high-luminosity data-taking campaigns of the LEP e+e- collider provided the four collaborations, ALEPH, DELPHI, L3 and OPAL, with about 50 000 W-boson pairs and about a thousand singly-produced W bosons. This unique data sample has an unprecedented reach in probing some aspects of the Standard Model of the electroweak interactions, and this article reviews several achievements in the understanding of W-boson physics at LEP. The measurements of the cross sections for W-boson production are discussed, together with their implication on the existence of the coupling between Z and W bosons. The precision measurements of the magnitude of triple gauge-boson couplings are presented. The observation of the longitudinal helicity component of the W-boson spin, related to the mechanism of electroweak symmetry breaking, is described together with the techniques used to probe the CP and CPT symmetries in the W-boson system. A discussion on the intricacies of the measurement of the mass of the W boson, ...

  19. Rotating Boson Stars and Q-Balls

    CERN Document Server

    Kleihaus, B; List, M; Kleihaus, Burkhard; Kunz, Jutta; List, Meike

    2005-01-01

    We consider axially symmetric, rotating boson stars. Their flat space limits represent spinning Q-balls. We discuss their properties and determine their domain of existence. Q-balls and boson stars are stationary solutions and exist only in a limited frequency range. The coupling to gravity gives rise to a spiral-like frequency dependence of the boson stars. We address the flat space limit and the limit of strong gravitational coupling. For comparison we also determine the properties of spherically symmetric Q-balls and boson stars.

  20. Invisible decays of the heavier Higgs boson in the minimal supersymmetric standard model

    OpenAIRE

    Ananthanarayan, B.; Lahiri, Jayita; Pandita, P. N.

    2015-01-01

    We consider the possibility that the heavier CP-even Higgs boson~($H^0$) in the minimal supersymmetric standard model (MSSM) decays invisibly into neutralinos in the light of the recent discovery of the 126 GeV resonance at the CERN Large Hadron Collider (LHC). For this purpose we consider the minimal supersymmetric standard model with universal, non-universal and arbitrary boundary conditions on the supersymmetry breaking gaugino mass parameters at the grand unified scale. Typically, scenari...

  1. Particles and the universe from the Ionian school to the Higgs boson and beyond

    CERN Document Server

    Narison, Stephan

    2016-01-01

    This book aims to present the history and developments of particle physics from the introduction of the notion of particles by the Ionian school until the discovery of the Higgs boson at LHC in 2012 and discuss the future developments of the field. The evolution of accelerators where different particles have been discovered is reviewed and details about the CERN accelerators are presented. A short presentation of some features of astrophysics and its connection to particle physics is also included.

  2. Phase transitions in Bose-Fermi-Hubbard model in the heavy fermion limit: Hard-core boson approach

    Directory of Open Access Journals (Sweden)

    I.V. Stasyuk

    2015-12-01

    Full Text Available Phase transitions are investigated in the Bose-Fermi-Hubbard model in the mean field and hard-core boson approximations for the case of infinitely small fermion transfer and repulsive on-site boson-fermion interaction. The behavior of the Bose-Einstein condensate order parameter and grand canonical potential is analyzed as functions of the chemical potential of bosons at zero temperature. The possibility of change of order of the phase transition to the superfluid phase in the regime of fixed values of the chemical potentials of Bose- and Fermi-particles is established. The relevant phase diagrams are built.

  3. CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae

    Directory of Open Access Journals (Sweden)

    Johan W. van de Leur

    2012-06-01

    Full Text Available We develop the theory of CKP hierarchy introduced in the papers of Kyoto school [Date E., Jimbo M., Kashiwara M., Miwa T., J. Phys. Soc. Japan 50 (1981, 3806-3812] (see also [Kac V.G., van de Leur J.W., Adv. Ser. Math. Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 1989, 369-406]. We present appropriate bosonization formulae. We show that in the context of the CKP theory certain orthogonal polynomials appear. These polynomials are polynomial both in even and odd (in Grassmannian sense variables.

  4. Boson Pairs in a One-dimensional Split Trap

    OpenAIRE

    Murphy, Domhnall; McCann, Jim; J. Goold; Busch, T

    2007-01-01

    We describe the properties of a pair of ultracold bosonic atoms in a one-dimensional harmonic trapping potential with a tunable zero-ranged barrier at the trap center. The full characterization of the ground state is done by calculating the reduced single-particle density, the momentum distribution, and the two-particle entanglement. We derive several analytical expressions in the limit of infinite repulsion (Tonks-Girardeau limit) and extend the treatment to finite interparticle interactions...

  5. Landau-Yang theorem and decays of a Z' boson into two Z bosons.

    Science.gov (United States)

    Keung, Wai-Yee; Low, Ian; Shu, Jing

    2008-08-29

    We study the decay of a Z' boson into two Z bosons by extending the Landau-Yang theorem to a parent particle decaying into two Z bosons. For a spin-1 parent the theorem predicts that (1) there are only two possible couplings and (2) the normalized differential cross section depends on kinematics only through a phase shift in the azimuthal angle between the two decay planes of the Z boson. When the parent is a Z' the two possible couplings are anomaly induced and CP violating, respectively. At the CERN Large Hadron Collider their effects could be disentangled when both Z bosons decay leptonically. PMID:18851602

  6. Quantum distillation of bosons

    Science.gov (United States)

    Weiss, David

    2015-05-01

    The non-equilibrium dynamics of many-body quantum systems present a series of challenges for theory and opportunities for cold atom experiments. I will describe an experiment in which a bundle of initially trapped superfluid 1D Bose lattice gases is quenched to an untrapped, flat lattice potential. This simple experimental situation in the intermediate coupling regime (U/J between 4 and 9.6) leads to interesting dynamics. These include the progressive dissolution of a fraction of the doublons, as well as the quantum distillation and long term confinement of singlons out of and within the central, doublon-dominated region. We measure these processes by combining absorption imaging, photoassociation and 3-body loss to separately reconstruct the spatial distributions of the expectation values of singlons, doublons and triplons. The qualitative dynamics is reproduced by a Gutzwiller mean field model and the essence of the experiment can be understood by considering simple spatial pictures of site occupancies. This work was supported by the NSF and the ARO.

  7. Observation of direct photons in the preliminary data and preparation for the Higgs boson search in the CMS experiment at LHC (CERN)

    International Nuclear Information System (INIS)

    The LHC (Large Hadron Collider) provides proton-proton collisions to CERN (European Organization for Nuclear Research) experiments at a 7 TeV center of mass energy since March 2010. The LHC has been designed in particular to allow the Higgs boson searches, particle predicted in the standard model but still not discovered until today, in the whole mass range where it is expected. This work is a contribution to the Higgs boson searches in CMS (Compact Muon Solenoid), one of the four big detectors at LHC. The thesis develops several tools which allow to measure the backgrounds and to improve the discovery potential. A new tool for recovery of photons emitted by leptons in the final state: H → ZZ(*) → 4l (l=e, μ) has been developed in this thesis. This method that recovers a variable number of photons per event, performs better than the method previously used in CMS and improves Z0 and Higgs boson mass resolution. A 5% gain on the significance to observe a Higgs boson in this channel is reached. The second part of this work deals with studies of the backgrounds and the search for a light Higgs boson (110 H 0 discrimination with a neural network has been developed to reject photons coming from π0 decays, copiously produced in QCD jets. The neural network performance is examined in details. The neural network is then used as 'template' variable to measure γ+X process in data with 10 nb-1 of integrated luminosity. The measurement of γγ+X process is also prepared with simulation in the hypothesis of a 10 pb-1 luminosity. Taking into account higher order kinematic effects is necessary to perform the best prediction of H → γγ signal and backgrounds. In the thesis this is carried out with a reweighing method, at NNLO for gg → H → γγ process and for the first time at NLO for γγ+X process, in both cases with doubly differential distributions. Reweighing procedure and γ/π0 neural network are then integrated in the H → γγ analysis to improve CMS

  8. Models of rotating boson stars and geodesics around them: new type of orbits

    CERN Document Server

    Grandclement, Philippe; Gourgoulhon, Eric

    2014-01-01

    We have developed a highly accurate numerical code capable of solving the coupled Einstein-Klein-Gordon system, in order to construct rotating boson stars in general relativity. Free fields and self-interacting fields, with quartic and sextic potentials, are considered. In particular, we present the first numerical solutions of rotating boson stars with rotational quantum number $k=3$ and $k=4$, as well as the first determination of the maximum mass of free-field boson stars with $k=2$. We have also investigated timelike geodesics in the spacetime generated by a rotating boson star for $k=1$, $2$ and $3$. A numerical integration of the geodesic equation has enabled us to identify a peculiar type of orbits: the zero-angular-momentum ones. These orbits pass very close to the center and are qualitatively different from orbits around a Kerr black hole. Should such orbits be observed, they would put stringent constraints on astrophysical compact objects like the Galactic center.

  9. Models of rotating boson stars and geodesics around them: New type of orbits

    Science.gov (United States)

    Grandclément, Philippe; Somé, Claire; Gourgoulhon, Eric

    2014-07-01

    We have developed a highly accurate numerical code capable of solving the coupled Einstein-Klein-Gordon system, in order to construct rotating boson stars in general relativity. Free fields and self-interacting fields, with quartic and sextic potentials, are considered. In particular, we present the first numerical solutions of rotating boson stars with rotational quantum number k=3 and k=4, as well as the first determination of the maximum mass of free-field boson stars with k=2. We have also investigated timelike geodesics in the spacetime generated by a rotating boson star for k=1, 2 and 3. A numerical integration of the geodesic equation has enabled us to identify a peculiar type of orbit: the zero-angular-momentum ones. These orbits pass very close to the center and are qualitatively different from orbits around a Kerr black hole. Should such orbits be observed, they would put stringent constraints on astrophysical compact objects like the Galactic center.

  10. Electroweak Boson Production in Association with Jets

    Science.gov (United States)

    Focke, Christfried Hermann

    The high energies involved in modern collider experiments lead to hadronic final states that are often boosted inside collimated jets and surrounded by soft radiation. Together with tracking and energy information from leptons and photons, these jets contain essential information about a collision event. A good theoretical understanding is vital for measurements within the Standard Model (SM) as well as for background modeling required for new physics searches. Often one is interested in hadronic final states with cuts on jets in order to reduce backgrounds. For example, by imposing a central jet veto pcut in H → WW → lnulnu one can greatly reduce contamination from tt¯ → WW bb¯. Imposing such a jet veto comes at the cost of introducing potentially large logarithms L = ln pcut/Q into the cross section (Q is the hard scale), since the cuts restrict the cancellation of soft and collinear divergences between real and virtual diagrams. There are at most two powers of L for each power of the strong coupling constant alphas and this can spoil the convergence of the perturbative series when alpha sL2 ˜ 1 . We resume these logarithmically enhanced terms to all orders within the framework of Soft-Collinear Effective Theory (SCET) in order to recover the convergence and obtain reliable predictions for several processes. Another focus of this dissertation is the application of SCET in fixed order predictions of electroweak boson production in association with an exclusive number of final state jets. We employ the N-jettiness event-shape TN to resolve the infrared singularity structure of QCD in the presence of N signal jets. This allows us to obtain the first complete next-to-next-to leading order predictions for W, Z and Higgs boson production in association with one jet.

  11. Precision Higgs Boson Physics and Implications for Beyond the Standard Model Physics Theories

    International Nuclear Information System (INIS)

    The discovery of the Higgs boson is one of science's most impressive recent achievements. We have taken a leap forward in understanding what is at the heart of elementary particle mass generation. We now have a significant opportunity to develop even deeper understanding of how the fundamental laws of nature are constructed. As such, we need intense focus from the scientific community to put this discovery in its proper context, to realign and narrow our understanding of viable theory based on this positive discovery, and to detail the implications the discovery has for theories that attempt to answer questions beyond what the Standard Model can explain. This project's first main object is to develop a state-of-the-art analysis of precision Higgs boson physics. This is to be done in the tradition of the electroweak precision measurements of the LEP/SLC era. Indeed, the electroweak precision studies of the past are necessary inputs to the full precision Higgs program. Calculations will be presented to the community of Higgs boson observables that detail just how well various couplings of the Higgs boson can be measured, and more. These will be carried out using state-of-the-art theory computations coupled with the new experimental results coming in from the LHC. The project's second main objective is to utilize the results obtained from LHC Higgs boson experiments and the precision analysis, along with the direct search studies at LHC, and discern viable theories of physics beyond the Standard Model that unify physics to a deeper level. Studies will be performed on supersymmetric theories, theories of extra spatial dimensions (and related theories, such as compositeness), and theories that contain hidden sector states uniquely accessible to the Higgs boson. In addition, if data becomes incompatible with the Standard Model's low-energy effective lagrangian, new physics theories will be developed that explain the anomaly and put it into a more

  12. On Nonlinear Bosonic Coherent States

    CERN Document Server

    Genovese, Marco; Rasetti, Mario

    2009-01-01

    Nonlinear coherent states are an interesting resource for quantum technologies. Here we investigate some critical features of the single-boson nonlinear coherent states, which are theoretically constructed as eigenstates of the annihilation operator and experimentally realized as stationary states of a trapped laser-driven ion. We show that the coherence and the minimum-uncertainty properties of such states are broken for values of the Lamb-Dicke parameter corresponding to the roots of the Laguerre polynomials, which enter their explicit expression. The case of the multiboson nonlinear coherent states is also discussed.

  13. Diffractive Higgs Boson photoproduction in peripheral collisions

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, G.G.; Ducati, M.B. Gay [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Fisica]. E-mails: gustavo.silveira@ufrgs.br; beatriz.gay@ufrgs.br

    2008-09-15

    An alternative process is proposed for the diffractive Higgs boson production inspired in the Durham model, exploring it through the photon-proton interaction. In this sense, we estimate the production cross section of the Higgs boson, comparing some sets of parton distributions in the proton and confronting this results with those from other processes. (author)

  14. Goldstone bosons as fractional cosmic neutrinos.

    Science.gov (United States)

    Weinberg, Steven

    2013-06-14

    It is suggested that Goldstone bosons may be masquerading as fractional cosmic neutrinos, contributing about 0.39 to what is reported as the effective number of neutrino types in the era before recombination. The broken symmetry associated with these Goldstone bosons is further speculated to be the conservation of the particles of dark matter. PMID:25165907

  15. Goldstone Bosons as Fractional Cosmic Neutrinos

    CERN Document Server

    Weinberg, Steven

    2013-01-01

    It is suggested that Goldstone bosons may be masquerading as fractional cosmic neutrinos, contributing about 0.39 to what is reported as the effective number of neutrino types in the era before recombination. The broken symmetry associated with these Goldstone bosons is further speculated to be the conservation of the particles of dark matter.

  16. The study of the W boson

    CERN Document Server

    Buchmüller, O L; Thompson, J C

    2002-01-01

    the status of the measurement of the W boson mass at LEP-2 is reviewed. Properties of the W such as branching ration into quarks and leptons and couplings to other neutral gauge bosons are reported. 4-fermion production cross-sections in e sup + e sup - collisions are also presented. (authors)

  17. Diffractive Higgs Boson photoproduction in peripheral collisions

    International Nuclear Information System (INIS)

    An alternative process is proposed for the diffractive Higgs boson production inspired in the Durham model, exploring it through the photon-proton interaction. In this sense, we estimate the production cross section of the Higgs boson, comparing some sets of parton distributions in the proton and confronting this results with those from other processes. (author)

  18. Higgs-like boson at 750 GeV and genesis of baryons

    Science.gov (United States)

    Davoudiasl, Hooman; Giardino, Pier Paolo; Zhang, Cen

    2016-07-01

    We propose that the diphoton excess at 750 GeV reported by ATLAS and CMS is due to the decay of an exo-Higgs scalar η associated with the breaking of a new S U (2 )e symmetry, dubbed exo-spin. New fermions, exo-quarks and exo-leptons, get TeV-scale masses through Yukawa couplings with η and generate its couplings to gluons and photons at one loop. The matter content of our model yields a B -L anomaly under S U (2 )e, whose breaking we assume entails a first-order phase transition. A nontrivial B -L asymmetry may therefore be generated in the early Universe, potentially providing a baryogenesis mechanism through the Standard Model (SM) sphaleron processes. The spontaneous breaking of S U (2 )e can, in principle, directly lead to electroweak symmetry breaking, thereby accounting for the proximity of the mass scales of the SM Higgs and the exo-Higgs. Our model can be distinguished from those comprising a singlet scalar and vector fermions by the discovery of TeV scale exo-vector bosons, corresponding to the broken S U (2 )e generators, at the LHC.

  19. Search for new heavy charged gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Magass, Carsten Martin; /RWTH Aachen U.

    2007-11-01

    Additional gauge bosons are introduced in many theoretical extensions to the Standard Model. A search for a new heavy charged gauge boson W{prime} decaying into an electron and a neutrino is presented. The data used in this analysis was taken with the D0 detector at the Fermilab proton-antiproton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of about 1 fb{sup -1}. Since no significant excess is observed in the data, an upper limit is set on the production cross section times branching fraction {sigma}{sub W{prime}}xBr (W{prime} {yields} e{nu}). Using this limit, a W{prime} boson with mass below {approx}1 TeV can be excluded at the 95% confidence level assuming that the new boson has the same couplings to fermions as the Standard Model W boson.

  20. The Boson peak in supercooled water.

    Science.gov (United States)

    Kumar, Pradeep; Wikfeldt, K Thor; Schlesinger, Daniel; Pettersson, Lars G M; Stanley, H Eugene

    2013-01-01

    We perform extensive molecular dynamics simulations of the TIP4P/2005 model of water to investigate the origin of the Boson peak reported in experiments on supercooled water in nanoconfined pores, and in hydration water around proteins. We find that the onset of the Boson peak in supercooled bulk water coincides with the crossover to a predominantly low-density-like liquid below the Widom line TW. The frequency and onset temperature of the Boson peak in our simulations of bulk water agree well with the results from experiments on nanoconfined water. Our results suggest that the Boson peak in water is not an exclusive effect of confinement. We further find that, similar to other glass-forming liquids, the vibrational modes corresponding to the Boson peak are spatially extended and are related to transverse phonons found in the parent crystal, here ice Ih. PMID:23771033

  1. Di-boson results at ATLAS

    Directory of Open Access Journals (Sweden)

    Giraud Pierre-François

    2012-06-01

    Full Text Available Pairs of gauge boson produced in proton-proton collisions at a center-of-mass energy √s of 7 TeV are reconstructed with the ATLAS detector in their leptonic final states. Based on samples of integrated luminosity See PDF mathcal{L} = 1.0 fb−1 (for WW, WZ and ZZ and 35 pb−1 (for Wγ and Zγ of 2011 and 2010 LHC data, the total di-boson production cross sections are measured. They are found, together with the kinematic distributions of the selected di-boson systems to be compatible with the expectation from the Standard Model. The di-boson production also gives a handle on possible anomalous triple gauge boson couplings, for which 95% confidence limits are set.

  2. Boson Sampling for Molecular Vibronic Spectra

    CERN Document Server

    Huh, Joonsuk; Peropadre, Borja; McClean, Jarrod R; Aspuru-Guzik, Alán

    2014-01-01

    Quantum computers are expected to be more efficient in performing certain computations than any classical machine. Unfortunately, the technological challenges associated with building a full-scale quantum computer have not yet allowed the experimental verification of such an expectation. Recently, boson sampling has emerged as a problem that is suspected to be intractable on any classical computer, but efficiently implementable with a linear quantum optical setup. Therefore, boson sampling may offer an experimentally realizable challenge to the Extended Church-Turing thesis and this remarkable possibility motivated much of the interest around boson sampling, at least in relation to complexity-theoretic questions. In this work, we show that the successful development of a boson sampling apparatus would not only answer such inquiries, but also yield a practical tool for difficult molecular computations. Specifically, we show that a boson sampling device with a modified input state can be used to generate molecu...

  3. Search for new heavy charged gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Magass, Carsten Martin [RWTH Aachen Univ. (Germany)

    2007-11-02

    Additional gauge bosons are introduced in many theoretical extensions to the Standard Model. A search for a new heavy charged gauge boson W' decaying into an electron and a neutrino is presented. The data used in this analysis was taken with the D0 detector at the Fermilab proton-antiproton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of about 1 fb-1. Since no significant excess is observed in the data, an upper limit is set on the production cross section times branching fraction σW'xBr (W' → ev). Using this limit, a W' boson with mass below ~1 TeV can be excluded at the 95% confidence level assuming that the new boson has the same couplings to fermions as the Standard Model W boson.

  4. LHC accessible second Higgs boson in the left-right model

    Science.gov (United States)

    Mohapatra, Rabindra N.; Zhang, Yongchao

    2014-03-01

    A second Higgs doublet arises naturally as a parity partner of the standard model (SM) Higgs, once the SM is extended to its left-right symmetric version (LRSM) to understand the origin of parity violation in weak interactions, as well as to accommodate small neutrino masses via the seesaw mechanism. The flavor-changing neutral Higgs (FCNH) effects in the minimal version of this model (LRSM), however, push the second Higgs mass to more than 15 TeV, making it inaccessible at the LHC. Furthermore, since the second Higgs mass is directly linked to the WR mass, discovery of a "low" mass WR (MWR≤5-6 TeV) at the LHC would require values for some Higgs self-couplings larger than 1. In this paper we present an extension of LRSM by adding a vectorlike SU(2)R quark doublet which weakens the FCNH constraints, allowing the second Higgs mass to be near or below the TeV range and a third neutral Higgs below 3 TeV for a WR mass below 5 TeV. It is then possible to search for these heavier Higgs bosons at the LHC without conflicting with FCNH constraints. A right-handed WR mass in the few TeV range is quite natural in this class of models without having to resort to large scalar coupling parameters. The CKM mixings are intimately linked to the vectorlike quark mixings with the known quarks, which is the main reason why the constraints on the second Higgs mass are relaxed. We present a detailed theoretical and phenomenological analysis of this extended left-right model and point out some tests as well as its potential for discovery of a second Higgs at the LHC. Two additional features of the model are a 5/3-charged quark and a fermionic top partner with masses in the TeV range.

  5. The Production Cross Sections of the Weak Vector Bosons in Proton Antiproton Collisions at s**(1/2) = 1.96-TeV and a Measurement of the W Boson Decay Width

    Energy Technology Data Exchange (ETDEWEB)

    Varganov, Alexei Valerievich

    2004-04-01

    The theory that describes the fundamental particle interactions is called the Standard Model, which is a gauge field theory that comprises the Glashow-Weinberg-Salam model [1, 2, 3] of the weak and electromagnetic interactions and quantum chromodynamics (QCD) [4, 5, 6], the theory of the strong interactions. The discovery of the W [7, 8] and Z [9, 10] bosons in 1983 by the UA1 and UA2 collaborations at the CERN p{bar p} collider provided a direct confirmation of the unification of the weak and electromagnetic interactions. Since then, many experiments have refined our understanding of the characteristics of the W and Z bosons.

  6. Search for the Standard Model Higgs Boson in Hadronic $\\tau^{+}\\tau^{-}$ Decays with the ATLAS Detector

    CERN Document Server

    Zanzi, Daniele; Kortner, Sandra

    The discovery of a Higgs boson in di-boson decays, the evidence of its decays into fermion pairs and the compatibility of its measured properties with the Standard Model predictions support the electroweak symmetry breaking mechanism of the Standard Model. The topic of this thesis is the search for the Higgs boson decays into a pair of $\\tau$ leptons, important for probing the coupling of the Higgs boson to fermions. The search is performed in final states where both $\\tau$ leptons decay hadronically using $4.6\\,\\rm{fb}^{-1}$ and $20.3\\,\\rm{fb}^{-1}$ of data collected by the ATLAS detector in proton-proton collisions at the Large Hadron Collider at center-of-mass energies of 7 and 8 TeV, respectively. The signal selection is optimised for events with highly boosted Higgs bosons produced via gluon fusion with additional jet or via vector boson fusion. In order to reduce systematic uncertainties, the major background contributions from $Z\\to\\tau\\tau$ and multi-jet production processes have been measured using s...

  7. The Discovery of the W and Z Particles

    CERN Document Server

    Di Lella, Luigi

    2015-01-01

    This article describes the scientific achievements that led to the discovery of the weak intermediate vector bosons, W± and Z, from the original proposal to modify an existing high-energy proton accelerator into a proton–antiproton collider and its implementation at CERN, to the design, construction and operation of the detectors which provided the first evidence for the production and decay of these two fundamental particles.

  8. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kallarackal, Jim

    2011-04-28

    upper and lower Higgs boson mass bound is studied. All numerical results presented in this work involve extensive finite volume analysis. In particular the Higgs boson mass significantly depends on the lattice volume and thus an extrapolation to infinite volume is inevitable. Both mass bounds are revised in the presence of a quark doublet with a mass around 700 GeV. The upper bound of the Higgs boson mass is only slightly enhanced by about 200 GeV with respect to the standard model. The lower bound however, is altered significantly by a factor of about five to ten. The strong dependence of the lower mass bound on the quark mass motivated to explore the Higgs boson mass bounds at a fixed cut off of 1500 GeV and varying quark masses. Preliminary data for the upper Higgs boson mass are presented. A detailed analysis at strong Yukawa couplings of both, the lower and the upper, mass bounds in a non perturbative fashion is certainly needed and may provide a reliable basis in favour or disfavour of a potential fourth generation of heavy quarks. (orig.)

  9. Probing the charged Higgs boson at the LHC in the CP-violating type-II 2HDM

    OpenAIRE

    Basso, L.; Lipniacka, A.; Mahmoudi, F.; Moretti, S.; Osland, P.; Pruna, G. M.; Purmohammadi, M.

    2012-01-01

    We present a phenomenological study of a CP-violating two-Higgs-doublet Model with type-II Yukawa couplings at the Large Hadron Collider (LHC). In the light of recent LHC data, we focus on the parameter space that survives the current and past experimental constraints as well as theoretical bounds on the model. Once the phenomenological scenario is set, we analyse the scope of the LHC in exploring this model through the discovery of a charged Higgs boson produced in association with a W boson...

  10. Z' boson decay in the SU(3)L \\otimes U(1)N electroweak model with heavy leptons

    OpenAIRE

    Abad, David Romero; Ravinez, Orlando Pereyra

    2011-01-01

    Based on the expectation generated by the discovery of new particles by current colliders, we analyze the decay of the Z' boson in the frame of one of the SU(3)L \\otimes U(1)N electroweak extensions of the standard model. The main objective is calculate the decay rate of this exotic boson in the aforementioned model at the tree level. With this purpose we need to develop the gauge sector, where we find thirty-three interaction terms. Mentioned particle (Z') has not yet been observed experimen...

  11. Bosonic Matrix Theory and Matrix Dbranes

    CERN Document Server

    Chaudhuri, S

    2002-01-01

    We develop new tools for an in-depth investigation of our recent proposal for Matrix Theory. We construct the anomaly-free and finite planar continuum limit of the ground state with SO(2^{13}) symmetry matching with the tadpole and tachyon free IR stable high temperature ground state of the open and closed bosonic string. The correspondence between large N limits and spacetime effective actions is demonstrated more generally for an arbitrary D25brane ground state which might include brane-antibrane pairs or NS-branes and which need not have an action formulation. Closure of the finite N matrix Lorentz algebra nevertheless requires that such a ground state is simultaneously charged under all even rank antisymmetric matrix potentials. Additional invariance under the gauge symmetry mediated by the one-form matrix potential requires a ground state charged under the full spectrum of antisymmetric (p+1)-form matrix potentials with p taking any integer value less than 26. Matrix Dbrane democracy has a beautiful larg...

  12. On the structure, masses and thermodynamics of the W± bosons

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2016-05-01

    Using Newton's universal gravitational law but with gravitational instead of rest masses, and the de Broglie wavelength equation, we show by computing from first principles their mass that the W+ and W- bosons correspond to relativistic e+ -νe and e- -νe rotating pairs. This appears consistent with the fact that W+ and W- bosons are known to decay to e+ -νe and e- -νe couples, respectively. The model contains no adjustable parameters and in addition to the computed masses, potential energies, decomposition temperatures, and lifetimes, are in good agreement with experiment. This agreement can be further improved upon considering, in addition to the relativistic gravitational force, the Coulombic charge-induced dipole interactions between the charged components (positrons or electrons) and the polarizable neutrinos.

  13. Measuring Resonance Parameters of Heavy Higgs Bosons at TESLA

    CERN Document Server

    Meyer, N

    2003-01-01

    This study investigates the potential of the TESLA Linear Collider for measuring resonance parameters of Higgs bosons beyond the mass range studied so far. The analysis is based on the reconstruction of events from the Higgsstrahlung process e+e- -> HZ. It is shown that the total width, the mass and the event rate for Higgs production can be measured from the mass spectrum in a model independent fit. Also, the branching ratios to W- and Z-bosons can be measured, assuming these are the only relevant Higgs decay modes. The simulation includes realistic detector effects and all relevant Standard Model background processes. Results are given for mH=200-320 GeV assuming 500 fb^-1 integrated luminosity at collision energies of 500 GeV.

  14. Measuring rare and exclusive Higgs boson decays into light resonances

    CERN Document Server

    Chisholm, Andrew S; Nikolopoulos, Konstantinos; Spannowsky, Michael

    2016-01-01

    We evaluate the LHC's potential of observing Higgs boson decays into light elementary or composite resonances through their hadronic decay channels. We focus on the Higgs boson production processes with the largest cross sections, $pp\\to h$ and $pp\\to h+\\mathrm{jet}$, with subsequent decays $h \\to ZA$ or $h\\to Z\\,\\eta_c$, and comment on the production process $pp\\to hZ$. By exploiting track-based jet substructure observables and extrapolating to $3000~\\mathrm{fb}^{-1}$ we find ${\\cal BR}(h \\to ZA) \\simeq {\\cal BR}(h \\to Z \\eta_c) \\lesssim 0.02$ at 95% CL. We interpret this limit in terms of the 2HDM Type 1. We find that searches for $h\\to ZA$ are complementary to existing measurements and can constrain large parts of the currently allowed parameter space.

  15. Goldstone bosons in the Appelquist-Terning ETC model

    CERN Document Server

    Balaji, B

    1995-01-01

    It is demonstrated that the extended technicolor model proposed recently by Appelquist and Terning has pair of potentially light U(1) Goldstone bosons coupling to ordinary matter with strength 2m_f\\over F_{\\pi}, where m_f is the mass of the fermion and F_{\\pi} \\approx 125\\,\\GeV. These Goldstone bosons could get a mass if the spontaneously broken U(1) symmetries are also explicitly broken, by physics beyond that specified in the model. An attempt to break these symmetries by embedding the model into a larger gauge group seems to be inadequate. The problem is because there are too many representations and there is a mismatch between the number of condensates and the number of gauge symmetries broken.

  16. Study of new variables for the search of the Higgs boson coupled to top quarks in the four b jets final state

    CERN Document Server

    Yu, Taozhe

    2016-01-01

    After the discovery of Higgs boson,the final particle in Stand Model was discovered.We are interested in the coupling between Higgs and Top quark.We define three variables to search for the ttHbb channel.

  17. Neutrino Jets from High-Mass $W_R$ Gauge Bosons in TeV-Scale Left-Right Symmetric Models

    CERN Document Server

    Mitra, Manimala; Scott, Darren J; Spannowsky, Michael

    2016-01-01

    We re-examine the discovery potential at hadron colliders of high-mass right-handed (RH) gauge bosons $W_R$ - an inherent ingredient of Left-Right Symmetric Models (LRSM). We focus on the regime where the $W_R$ is very heavy compared to the heavy Majorana neutrino $N$, and investigate an alternative signature for $W_R \\rightarrow N$ decays. The produced neutrinos are highly boosted in this mass regime. Subsequently, their decays via off-shell $W_R$ bosons to jets, i.e., $N \\rightarrow \\ell^\\pm j j$ are highly collimated, forming a single neutrino jet $(j_N)$. The final-state collider signature is then $\\ell^\\pm j_N$, instead of the widely studied $\\ell^\\pm\\ell^\\pm jj$. Present search strategies are not sensitive to this hierarchical mass regime due to the breakdown of the collider signature definition. We take into account QCD corrections beyond next-to-leading order (NLO) that are important for high-mass Drell-Yan processes at the 13 TeV Large Hadron Collider (LHC). For the first time, we evaluate $W_R$ prod...

  18. W Boson Production in Association with Hadronic Jets at ATLAS

    CERN Document Server

    Fiascaris, Maria

    2010-01-01

    The Large Hadron Collider (LHC) offers unprecedented opportunities to explore unknown kinematic regions and discover new Physics. Its discovery capabilities, however, strongly depend on our understanding of the Standard Model. Leptonic decays of the W boson produced in association with jets are one of the dominant backgrounds to Physics beyond the Standard Model, particularly Supersymmetry. These processes can also serve as testing ground for the theory of strong interactions. Their study is therefore of great importance at the LHC. The aim of this thesis is to prepare the essential tools for an early data measurement of W(enu) + jets processes, assuming an integrated luminosity of 100 pb^{-1}. Based on Monte Carlo simulations, several aspects of the analysis are discussed, from the treatment of backgrounds, to the calculation of electron efficiencies and acceptances. The focus is on data-driven techniques, which are going to be crucial, particularly in the early-data phase, to minimise dependence on Monte C...

  19. Higgs boson research in e+e- collisions

    International Nuclear Information System (INIS)

    This lesson is about the experimental results obtained in 1990, at LEP concerning Higgs boson research. The main topics studied are: Higgs boson research of minimal Standard Model, then beyond the minimal model, the charged Higgs boson research in 2-doublets model, and finally, neutral Higgs boson research in a specific 2-doublets model, the minimal supersymmetric standard model

  20. Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing

    DEFF Research Database (Denmark)

    Vester, Jan Kjølhede; Glaring, Mikkel Andreas; Stougaard, Peter

    2014-01-01

    to these conditions. Since only a small fraction of the total microbial diversity can be cultured in the laboratory, a combined approach involving functional screening of a strain collection and a metagenomic library was undertaken for discovery of novel enzymes from the ikaite columns.Results: A strain collection......-amylases and β-galactosidases were characterized in more detail with respect to temperature and pH profiles and one of the β-galactosidases, BGalI17E2, was able to hydrolyze lactose at 5°C. A metagenome sequence of the expression library indicated that the majority of enzymatic activities were not detected....../or alkaline-active enzymes of industrial relevance were identified in the culture based approach and the majority of the enzyme-producing isolates were closely related to previously characterized strains. The function-based metagenomic approach, on the other hand, identified several enzymes (β...

  1. Search for doubly charged Higgs bosons through VBF at the LHC, and beyond

    CERN Document Server

    Bambhaniya, G; Gluza, J; Jelinski, T; Szafron, R

    2015-01-01

    Production and decays of doubly charged Higgs bosons at the LHC and future hadron colliders triggered by vector boson fusion mechanism are discussed in the context of the Minimal Left-Right Symmetric Model. Our analysis is based on the Higgs boson mass spectrum compatible with available constraints which include FCNC effects and vacuum stability of the scalar potential. Though the parity breaking scale $v_R$ is large ($\\sim$ few TeV) and scalar masses which contribute to FCNC effects are even larger, consistent Higgs boson mass spectrum still allows us to keep doubly charged scalar masses below 1 TeV which is an interesting situation for LHC and future FCC colliders. We have shown that allowed Higgs bosons mass spectrum constrains the splittings ($M_{H_{1}^{\\pm \\pm}}-M_{H_{1}^\\pm}$), closing the possibility of $H_{1}^{\\pm\\pm}\\to W_{1}^\\pm H_{1}^\\pm$ decays. Assuming that doubly charged Higgs bosons decay predominantly into a pair of same sign charged leptons through the process $p p \\rightarrow H_{1/2}^{\\pm \\...

  2. Insect-Specific Flaviviruses: A Systematic Review of Their Discovery, Host Range, Mode of Transmission, Superinfection Exclusion Potential and Genomic Organization

    Directory of Open Access Journals (Sweden)

    Bradley J. Blitvich

    2015-04-01

    Full Text Available There has been a dramatic increase in the number of insect-specific flaviviruses (ISFs discovered in the last decade. Historically, these viruses have generated limited interest due to their inability to infect vertebrate cells. This viewpoint has changed in recent years because some ISFs have been shown to enhance or suppress the replication of medically important flaviviruses in co-infected mosquito cells. Additionally, comparative studies between ISFs and medically important flaviviruses can provide a unique perspective as to why some flaviviruses possess the ability to infect and cause devastating disease in humans while others do not. ISFs have been isolated exclusively from mosquitoes in nature but the detection of ISF-like sequences in sandflies and chironomids indicates that they may also infect other dipterans. ISFs can be divided into two distinct phylogenetic groups. The first group currently consists of approximately 12 viruses and includes cell fusing agent virus, Kamiti River virus and Culex flavivirus. These viruses are phylogenetically distinct from all other known flaviviruses. The second group, which is apparently not monophyletic, currently consists of nine viruses and includes Chaoyang virus, Nounané virus and Lammi virus. These viruses phylogenetically affiliate with mosquito/vertebrate flaviviruses despite their apparent insect-restricted phenotype. This article provides a review of the discovery, host range, mode of transmission, superinfection exclusion ability and genomic organization of ISFs. This article also attempts to clarify the ISF nomenclature because some of these viruses have been assigned more than one name due to their simultaneous discoveries by independent research groups.

  3. MSSM Higgs Bosons at The LHC

    CERN Document Server

    Christensen, Neil; Su, Shufang

    2012-01-01

    The recent results on Higgs boson searches from LHC experiments provide significant guidance in exploring the Minimal Supersymmetric (SUSY) Standard Model (MSSM) Higgs sector. If we accept the existence of a SM-like Higgs boson in the mass window of 123 GeV-127 GeV as indicated by the observed gamma,gamma events, there are two distinct mass regions (in mA) left in the MSSM Higgs sector: (a) the lighter CP-even Higgs boson being SM-like and the non-SM-like Higgs bosons all heavy and nearly degenerate above 300 GeV (an extended decoupling region); (b) the heavier CP-even Higgs boson being SM-like and the neutral non-SM-like Higgs bosons all nearly degenerate around 100 GeV (a small non-decoupling region). On the other hand, due to the strong correlation between the Higgs decays to W+W- and to gamma,gamma predicted in the MSSM, the apparent absence of a W+W- final state signal is in direct conflict with the gamma,gamma peak. If the deficit in the W+W- channel persists, it would imply that the SM-like Higgs boson...

  4. Composite Weak Bosons at the Large Hadronic Collider

    CERN Document Server

    Fritzsch, Harald

    2016-01-01

    In a composite model of the weak bosons the p-wave bosons are studied. The state with the lowest mass is identified with the boson, which has been discovered at the LHC. Specific properties of the excited bosons are discussed, in particular their decays into weak bosons and photons. Recently a two photon signal has been observed, which might come from the decay of a neutral heavy boson with a mass of about 0.75 TeV. This particle could be an excited weak tensor boson.

  5. Composite weak bosons at the large hadronic collider

    Science.gov (United States)

    Fritzsch, Harald

    2016-06-01

    In a composite model of the weak bosons the p-wave bosons are studied. The state with the lowest mass is identified with the boson, which has been discovered at the LHC. Specific properties of the excited bosons are discussed, in particular their decays into weak bosons and photons. Recently a two-photon signal has been observed, which might come from the decay of a neutral heavy boson with a mass of about 0.75 TeV. This particle could be an excited weak tensor boson.

  6. Direct search for Higgs boson in LHCb

    CERN Document Server

    Currat, C

    2001-01-01

    The LHCb detector is a forward one-arm spectrometer to precision measurements of CP violation in the B-meson systems. The motivation of the present work is to assess the potential of LHCb to observe a Standard Model (SM) Higgs signal. The recent results obtained at LEP give a hint of a SM Higgs boson with a mass mH = 115.0 +1.3 –0.9 GeV/c2 with a statistical significance of 2.9 standard deviations. Because of the high longitudinal boost encountered by the products in the pp collisions at LHC, a significant fraction (~30%) of light Higgs (mH = 115 GeV/c2) are produced in the LHCb acceptance 1.8 < h < 4.9. These facts potentially place LHCb in the race for the observation of the SM Higgs. Given a relatively low running luminosity of 2 x 1032 cm-2s-1- compared to the nominal 1034 cm-2s-1 at LHC and a limited geometrical acceptance, we have shown that the channels accessible to LHCb are H + W± Z0 b`b + l± X for Higgs masses in the range 100-130 GeV/c2. This work pioneered a setup for the pro...

  7. Higgs boson: near the end of the quest; Boson de Higgs: la physique proche du Graal

    Energy Technology Data Exchange (ETDEWEB)

    Khalatbari, A.

    2012-01-15

    The 2 experiments ATLAS and CMS that look for the existence of the Higgs boson at the LHC, published their last results in end 2011. Both teams announced very strong hints for a Higgs boson with a mass around 125 GeV. The detection of the Higgs boson is based on the identification of the particles produced in its decay and the difficulty is that the decay scheme of the Higgs depends strongly on its mass. For instance, a Higgs boson with a mass of 115 GeV has a probability rate of 70% to decay into a pair of bottom quarks while a mass of 160 GeV will produce pairs of W bosons with a probability rate of 90%. A Higgs boson with a mass of 125 GeV fits well theories beyond the standard model like supersymmetry. (A.C.)

  8. Higgs boson at LHC: a diffractive opportunity

    CERN Document Server

    Ducati, M B Gay

    2009-01-01

    An alternative process is presented for diffractive Higgs boson production in peripheral $pp$ collisions, where the particles interact through the Double Pomeron Exchange. The event rate is computed as a central-rapidity distribution for Tevatron and LHC energies leading to a result around 0.6 pb, higher than the predictions from previous approaches. Therefore, this result arises as an enhanced signal for the detection of the Higgs boson in hadron colliders. The predictions for the Higgs boson photoproduction are compared to the ones obtained from a similar approach proposed by the Durham group, enabling an analysis of the future developments of its application to $pp$ and $AA$ collisions.

  9. Light Higgs bosons in phenomenological NMSSM

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, F. [CERN, Geneva (Switzerland); Clermont Univ., CNRS/IN2P3, LPC, Clermont-Ferrand (France); Rathsman, J. [Uppsala Univ. (Sweden). High-Energy Physics; Lund Univ. (Sweden). Theoretical High Energy Physics; Staal, O. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zeune, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Goettingen Univ. (Germany). II. Physikalisches Inst.

    2010-12-15

    We consider scenarios in the next-to-minimal supersymmetric model (NMSSM) where the CP-odd and charged Higgs bosons are very light. As we demonstrate, these can be obtained as simple deformations of existing phenomenological MSSM benchmarks scenarios with parameters defined at the weak scale. This offers a direct and meaningful comparison to the MSSM case. Applying a wide set of up-to-date constraints from both high-energy collider and flavour physics, the Higgs boson masses and couplings are studied in viable parts of parameter space. The LHC phenomenology of the light Higgs scenario for neutral and charged Higgs boson searches is discussed. (orig.)

  10. Weak gauge boson radiation in parton showers

    International Nuclear Information System (INIS)

    The emission of W and Z gauge bosons off quarks is included in a traditional QCD + QED shower. The unitarity of the shower algorithm links the real radiation of the weak gauge bosons to the negative weak virtual corrections. The shower evolution process leads to a competition between QCD, QED and weak radiation, and allows for W and Z boson production inside jets. Various effects on LHC physics are studied, both at low and high transverse momenta, and effects at higher-energy hadron colliders are outlined

  11. Bosonic thermoelectric transport and breakdown of universality

    International Nuclear Information System (INIS)

    We discuss the general principles of transport in normal phase atomic gases, comparing Bose and Fermi systems. Our study shows that two-dimensional bosonic transport is non-universal with respect to different dissipation mechanisms. Near the superfluid transition temperature Tc, a striking similarity between the fermionic and bosonic transport emerges because super-conducting (fluid) fluctuation transport for Fermi gases is dominated by the bosonic, Cooper pair component. As in fluctuation theory, one finds that the Seebeck coefficient changes sign at Tc and the Lorenz number approaches zero at Tc. Our findings appear quantitatively consistent with recent Bose gas experiments. (paper)

  12. Leptogenesis and neutral gauge bosons

    CERN Document Server

    Heeck, Julian

    2016-01-01

    We consider low-scale leptogenesis via right-handed neutrinos $N$ coupled to a $Z'$ boson, with gauged $U(1)_{B-L}$ as a simple realization. Keeping the neutrinos sufficiently out of equilibrium puts strong bounds on the $Z'$ coupling strength and mass, our focus being on light $Z'$ and $N$, testable in the near future by SHiP, HPS, Belle II, and at the LHC. We show that leptogenesis could be robustly falsified in a large region of parameter space by the double observation of $Z'$ and $N$, e.g. in the channel $pp\\to Z' \\to NN$ with displaced $N$-decay vertex, and by several experiments searching for light $Z'$, according to the mass of $N$.

  13. Bosonic string theory with dust

    International Nuclear Information System (INIS)

    We study a modified bosonic string theory that has a pressureless ‘dust’ field on the string worldsheet. The dust is a real scalar field with unit gradient which breaks conformal invariance. Hamiltonian analysis reveals a time reparametrization constraint linear in the dust field momentum and a spatial diffeomorphism constraint. This feature provides a natural ‘dust time’ gauge in analogy with the parametrized particle. In this gauge we give a Fock quantization of the theory, which is complete and self-consistent in d < 26. The Hamiltonian of the theory is not a constraint; as a consequence the Hilbert space and mass spectrum are characterized by an additional parameter, and includes the usual string spectrum as a special case. The other sectors provide new particle spectra, some of which do not have tachyons. (paper)

  14. Vector Boson Scattering at ATLAS

    CERN Document Server

    Ozcan, V E

    2009-01-01

    While the Higgs model is the best studied scenario of electroweak symmetry breaking, there is no fundamental reason for the physics responsible for the symmetry breaking to be weakly-coupled. Many alternatives exist, predicting highly model-dependent signatures. By measuring the cross-section for the W and Z scattering at the LHC, it will be possible to obtain model-independent evidence for strong symmetry breaking or to constrain these various models. ATLAS Collaboration has recently performed a realistic simulation of this process and its backgrounds, which takes into account the detector effects and has developed new jet-analysis techniques for identifying vector bosons within the immense QCD backgrounds expected at the LHC. These techniques and the prospects for measuring the scattering signal will be presented.

  15. Q&A: Boson beginnings

    Science.gov (United States)

    Daphney Bucher, Thifhelimbilu

    2015-10-01

    François Englert shared the 2013 Nobel Prize in Physics with Peter Higgs for the theoretical discovery of a mechanism that gives mass to subatomic particles. For this work, he collaborated with Robert Brout, who died in 2011. He looks back on his contribution to science with Thifhelimbilu Daphney Bucher.

  16. Four-lepton LHC events from MSSM Higgs boson decays into neutralino and chargino pairs

    CERN Document Server

    Bisset, Mike; Kersting, Nick; Moortgat, Filip; Moretti, Stefano

    2009-01-01

    Heavy neutral Higgs boson production and decay into neutralino and chargino pairs is studied at the Large Hadron Collider in the context of the Minimal Supersymmetric Standard Model. Higgs boson decays into the heavier neutralino and chargino states, i.e., H^0 or A^0 to tilde{chi}_i^0 tilde{chi}_j^0 (i,j = 2,3,4) as well as H^0 or A^0 to tilde{chi}_1^{pm} tilde{chi}_2^{mp}, tilde{chi}_2^+ tilde{chi}_2^- (all leading to four-lepton plus missing transverse energy final states), is found to improve the possibilities of discovering such Higgs states beyond those previously identified by considering H^0 or A^0 to tilde{chi}_2^0 tilde{chi}_2^0 decays only. In particular, H^0,A^0 bosons with quite heavy masses, approaching ~800 GeV in the so-called `decoupling region' where no clear SM signatures for the heavier MSSM Higgs bosons are known to exist, can now be discerned, for suitable but not particularly restrictive configurations of the low energy supersymmetric parameters. The high M_A discovery reach for the H^0 ...

  17. Higgs Spin Determination and Unitarity of Vector-boson Scattering at the LHC

    CERN Document Server

    Frank, Jessica

    After the discovery of a new particle at the Large Hadron Collider (LHC), it is crucial to definitely verify or disprove whether this new 125 − 126 GeV resonance is the Higgs boson of the Standard Model (SM). Thus, its features, including its spin, have to be determined. In order to distinguish the two most likely spin hypotheses, spin-0 or spin-2, the phenomenology of light spin-2 resonances produced in different gluon-fusion and vectorboson-fusion processes at the LHC is studied. Starting from an effective model for the interaction of a spin-2 particle with SM gauge bosons, cross sections and differential distributions are calculated within the Monte Carlo program Vbfnlo. Whereas with specific model parameters, such a spin-2 resonance can mimic rates and transverse-momentum distributions of a SM Higgs boson in the main decay channels γγ, WW and ZZ, several distributions allow to separate spin-2 from spin-0, almost independently of model parameters. Since the SM Higgs boson ensures the unitarity of the S...

  18. Search for the SM Higgs Boson in the Channel $WH \\to l\

    CERN Document Server

    Will, Jonas Zacharias

    One of the most important scientific challenges of ATLAS and CMS, multi-purpose de- tectors at CERN’s Large Hadron Collider (LHC), is the discovery or exclusion of the longly sought standard model Higgs boson predicted almost fifty years ago. In summer 2012, both ATLAS and CMS discovered a new particle. Its mass is determined to be 126 . 0 ± 0 . 4 (stat) ± 0 . 4 (sys) GeV (ATLAS) and 125 . 3 ± 0 . 4 (stat) ± 0 . 5 (sys) GeV (CMS) [ 1 , 2 ]. Its further properties are so far consistent with the predicted properties of a standard model Higgs boson within large uncertainties. Besides the Higgs search in the sensitive bosonic channels, H → γγ , H → ZZ , and H → WW , the fermionic channels H → ττ and H → b b contributed to the exclusion of a standard model Higgs boson below the observed excess and are essential for measuring the couplings of the new particle to fermions. In the analysis presented here, the associated Higgs production WH in the Higgs decay channel H → b b is studied on the co...

  19. Calibration of the Atlas electromagnetic calorimeter. Search for the Higgs boson in its invisible decays

    International Nuclear Information System (INIS)

    The most promising channels for an intermediate mass Higgs boson discovery at LHC are leptonic and photonic decays. Therefore, a good uniformity of response of the electromagnetic calorimeter is required to reach the 0.7% constant term needed. This thesis deals with the absolute calibration of this detector. An electrical description of the calibration system, the detector and its read-out chain has been made for a better comprehension of the signal pulse shapes. A method, using a convolution of the calibration waveforms, has been developed to predict physics response, leading to absolute calibration. The level of accuracy obtained allows to reach the 0.3% contribution to the constant term required. Test beam analysis of a prototype module showed the performance of the electromagnetic calorimeter in terms of local resolution and linearity. A uniformity study has been made, leading to a 0.8% dispersion on a Δη x Δφ = 1.2 x 0.75 area. In a second part, the observability of an invisible Higgs boson produced via weak boson fusion at the LHC is presented. A level 1 trigger strategy for this purely jet and missing ET final states is discussed. A method to measure the level of background using physics events is presented. This analysis shows that an invisible branching ratio of 25% could be reached at 95% CL with only 30 fb-1 for a Higgs boson mass of 120 GeV/c2. (author)

  20. Searching for a Heavy Higgs boson in a Higgs-portal B-L Model

    CERN Document Server

    Banerjee, Shankha; Spannowsky, Michael

    2015-01-01

    We study the discovery prospects of a heavy neutral scalar arising from a $U(1)_{B-L}$ extension of the Standard Model (SM) during the Large Hadron Collider's high luminosity runs (HL-LHC). This heavy neutral scalar mixes with the SM Higgs boson through a Higgs portal and interacts with the SM particles with an interaction strength proportional to the sine of the mixing angle. The mixing between the two Higgs bosons is constrained by direct and indirect measurements. We choose an experimentally viable mixing angle and explore in detail the $ZZ$ and $WW$ decay modes of the heavy Higgs boson. For the $ZZ$ case, we focus on the cleanest $4\\ell$ and $2\\ell 2j$ final states and find that a heavy Higgs boson of mass smaller than 500 GeV can be discovered at the HL-LHC. For the $WW$ decay mode, we analyze the $\\ell jj \\slashed{E}_T$ signature. We implement novel background reduction techniques in order to tackle the huge background by performing both cut-based and multivariate analyses. However, large backgrounds re...

  1. Landau-Yang Theorem and Decays of a Z' Boson into Two Z Bosons

    OpenAIRE

    Keung, Wai-Yee; Low, Ian; Shu, Jing

    2008-01-01

    We study the decay of a Z' boson into two Z bosons by extending the Landau-Yang theorem to a parent particle decaying into two Z bosons. For a spin-1 parent the theorem predicts: 1) there are only two possible couplings and 2) the normalized differential cross-section depends on kinematics only through a phase shift in the azimuthal angle between the two decay planes of the Z boson. When the parent is a Z' the two possible couplings are anomaly-induced and CP-violating, respectively. At the L...

  2. LHC signals of a B -L supersymmetric standard model C P -even Higgs boson

    Science.gov (United States)

    Hammad, A.; Khalil, S.; Moretti, S.

    2016-06-01

    We study the scope of the Large Hadron Collider in accessing a neutral Higgs boson of the B -L supersymmetric standard model. After assessing the surviving parameter space configurations following the Run 1 data taking, we investigate the possibilities of detecting this object during Run 2. For the model configurations in which the mixing between such a state and the discovered standard-model-like Higgs boson is non-negligible, there exist several channels enabling its discovery over a mass range spanning from ≈140 to ≈500 GeV . For a heavier Higgs state, with mass above 250 GeV (i.e., twice the mass of the Higgs state discovered in 2012), the hallmark signature is its decay in two such 125 GeV scalars, h'→h h , where h h →b b ¯ γ γ . For a lighter Higgs state, with mass of order 140 GeV, three channels are accessible: γ γ , Z γ , and Z Z , wherein the Z boson decays leptonically. In all such cases, significances above discovery can occur for already planned luminosities at the CERN machine.

  3. From the Higgs boson to the search for new physics: the prospects for the LHC programme at CERN

    CERN Document Server

    CERN. Geneva

    2013-01-01

    The discovery of the Higgs boson, which was the subject of this year's Nobel prize for physics, has brought us the missing piece of the Standard Model of Particle Physics.  However, many observations (such as the predominance of matter over antimatter in the Universe, the existence of dark matter observed by the cosmologists and even the fact that the Higgs boson has a relatively small mass) underline that our knowledge of the structure of matter and its interactions is incomplete.   A wide-ranging programme of research spanning several decades to come thus awaits us at the LHC.  Philippe Bloch will begin his lecture by giving us the latest news on the Higgs boson, and will then go on to explain how developments at the LHC and its experiments, which will resume in 2015, will explore these fund...

  4. Searching Heavier Higgs Boson via $H \\to hh \\to WW^*\\gamma\\gamma$ at LHC Run-2

    CERN Document Server

    Lü, Lan-Chun; Fang, Yaquan; He, Hong-Jian; Zhang, Huijun

    2015-01-01

    The LHC discovery of a light Higgs particle $h^0$ (125GeV) opens up new prospect for searching heavier Higgs boson(s) at the LHC Run-2, which will unambiguously point to new physics beyond the standard model (SM). We study the detection of a heavier neutral Higgs boson $H^0$ via di-Higgs production channel at the LHC (14TeV), $H^0 \\to h^0h^0 \\to WW^*\\gamma\\gamma$. This directly probes the $Hhh$ cubic Higgs interaction, which exists in most extensions of the SM Higgs sector. For the decay products of final states $WW^*$, we include both pure leptonic mode $WW^* \\to \\ell\\bar{\

  5. A Historical Profile of the Higgs Boson

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John; Gaillard, Mary K.; Nanopoulos, Dimitri V.

    2012-01-31

    The Higgs boson was postulated in 1964, and phenomenological studies of its possible production and decays started in the early 1970s, followed by studies of its possible productionin e{sup +} e{sup -}, {anti p}p and pp collisions, in particular. Until recently, the most sensitive searches for the Higgs boson were at LEP between 1989 and 2000, which have been complemented bysearches at the Fermilab Tevatron. The LHC has recently entered the hunt, excluding a Higgs boson over a large range of masses and revealing a tantalizing hint in the range 119 to125 GeV, and there are good prospects that the existence or otherwise of the Higgs boson will soon be established. One of the most attractive possibilities is that the Higgs bosonis accompanied by supersymmetry, though composite options have yet to be excluded. This article reviews some of the key historical developments in Higgs physics over the past half-century.

  6. Boson representation of the asymmetric rotator

    International Nuclear Information System (INIS)

    The yrast states, as well as the wobbling frequency are analyzed using alternatively the Holstein-Primakoff and Dyson boson expansions. Both the prolate and oblate shapes are treated using Oz as quantization axis. (author)

  7. Majorization preservation of Gaussian bosonic channels

    Science.gov (United States)

    Jabbour, Michael G.; García-Patrón, Raúl; Cerf, Nicolas J.

    2016-07-01

    It is shown that phase-insensitive Gaussian bosonic channels are majorization-preserving over the set of passive states of the harmonic oscillator. This means that comparable passive states under majorization are transformed into equally comparable passive states by any phase-insensitive Gaussian bosonic channel. Our proof relies on a new preorder relation called Fock-majorization, which coincides with regular majorization for passive states but also induces another order relation in terms of mean boson number, thereby connecting the concepts of energy and disorder of a quantum state. The consequences of majorization preservation are discussed in the context of the broadcast communication capacity of Gaussian bosonic channels. Because most of our results are independent of the specific nature of the system under investigation, they could be generalized to other quantum systems and Hamiltonians, providing a new tool that may prove useful in quantum information theory and especially quantum thermodynamics.

  8. Boson--Fermion hybrid representation formulation, I

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.; Feng, D.H.

    1981-08-01

    A boson--fermion hybrid representation is presented. In this framework, a fermion system is described concurrently by the bosonic and the fermonic degrees of freedom. A fermion pair in this representation can be treated as a boson without violating the Pauli principle. Furthermore the ''bosonic interactions'' are shown to originate from the exchange processes of the fermions and can be calculated from the original fermion interactions. Both the formulation of the BFH representations for the even and odd nuclear systems are given. We find that the basic equation of the nuclear field theory (NFT) is just the usual Schroedinger equation in such a representation with the empirical NFT diagrammatic rules emerging naturally. This theory was numerically checked in the case of four nucleons moving in a single-j shell and the exactness of the theory was established.

  9. A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM

    OpenAIRE

    Ellwanger, Ulrich

    2011-01-01

    A natural region in the parameter space of the NMSSM can accomodate a CP-even Higgs boson with a mass of about 125 GeV and, simultaneously, an enhanced cross section times branching ratio in the di-photon channel. This happens in the case of strong singlet-doublet mixing, when the partial width of a 125 GeV Higgs boson into bb is strongly reduced. In this case, a second lighter CP-even Higgs boson is potentially also observable at the LHC.

  10. SU(N) Irreducible Schwinger Bosons

    OpenAIRE

    Mathur, Manu; Raychowdhury, Indrakshi; Anishetty, Ramesh

    2010-01-01

    We construct SU(N) irreducible Schwinger bosons satisfying certain U(N-1) constraints which implement the symmetries of SU(N) Young tableaues. As a result all SU(N) irreducible representations are simple monomials of $(N-1)$ types of SU(N) irreducible Schwinger bosons. Further, we show that these representations are free of multiplicity problems. Thus all SU(N) representations are made as simple as SU(2).

  11. Study of single W bosons at JLC

    Energy Technology Data Exchange (ETDEWEB)

    Arogancia, Dennis C.; Sanchez, Allister Levi C.; Magallanes, Jingle B.; Gooc, Hermogenes C.; Bacala, Angelina M. [Mindanao State Univ., Dept. of Physics, Iligan (Philippines); Fujii, Keisuke; Miyamoto, Akiya [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-06-01

    Single W bosons are studied through computer simulation using the process e{sup +}e{sup -} {yields} e{sup +}{nu}{sub e}W{sup -} where it decays into two hadronic jets. This study focuses of the measurement of W boson mass with and without beamstrahlung and initial state radiation (ISR) effects. The JLC Study Framework (JSF) is employed for this purpose. The center-of-mass energy is set at 500 GeV. (author)

  12. Higgs boson couplings and properties with CMS

    CERN Document Server

    Finco, Linda

    2014-01-01

    Many different production and decay modes of the 126 GeV mass Higgs boson have been studied by the CMS collaboration at the LHC collider. The analysis is based on pp collision data col- lected at center-of-mass energies of 7 and 8 TeV corresponding to integrated luminosities of 5/fb and 20/fb respectively. The measurement of the Higgs boson couplings and of the study of its properties are presented.

  13. Bosonic Dynamical Mean-Field Theory

    Science.gov (United States)

    Snoek, Michiel; Hofstetter, Walter

    2013-02-01

    We derive the bosonic dynamical mean-field equations for bosonic atoms in optical lattices with arbitrary lattice geometry. The equations are presented as a systematic expansion in 1/z, z being the number of lattice neighbours. Hence the theory is applicable in sufficiently high-dimensional lattices. We apply the method to a two-component mixture, for which a rich phase diagram with spin order is revealed.

  14. Supersymmetry search via gauge boson fusion

    Indian Academy of Sciences (India)

    Anindya Datta

    2003-02-01

    We propose a novel method for the search of supersymmetry, especially for the electroweak gauginos at the large hadron collider (LHC). Gauge boson fusion technique was shown to be useful for heavy and intermediate mass Higgs bosons. In this article, we have shown that this method can also be applied to find the signals of EW gauginos in supersymmetric theories where the canonical search strategies for these particles fail.

  15. Electroweak Precision Data and New Gauge Bosons

    OpenAIRE

    Erler, Jens

    2009-01-01

    I review constraints on the Standard Model (SM) Higgs boson from high energy electroweak (EW) precision data. The same data set also strongly limits various mixing effects of hypothetical extra neutral gauge bosons (Z') with the ordinary Z. I also discuss low energy precision measurements which are sensitive to other aspects of Z' physics, such as the direct exchange amplitude and the flavor or CP violating sectors.

  16. Precision Probes of a Leptophobic Z' Boson

    OpenAIRE

    Buckley, Matthew R.; Ramsey-Musolf, Michael J.

    2012-01-01

    Extensions of the Standard Model that contain leptophobic Z' gauge bosons are theoretically interesting but difficult to probe directly in high-energy hadron colliders. However, precision measurements of Standard Model neutral current processes can provide powerful indirect tests. We demonstrate that parity-violating deep inelastic scattering of polarized electrons off of deuterium offer a unique probe leptophobic Z' bosons with axial quark couplings and masses above 100 GeV. In addition to c...

  17. Unconventional quantum phases of lattice bosonic mixtures

    OpenAIRE

    Buonsante, P.; Giampaolo, S. M.; Illuminati, F.; Penna, V; Vezzani, A.

    2008-01-01

    We consider strongly interacting boson-boson mixtures on one-dimensional lattices and, by adopting a qualitative mean-field approach, investigate their quantum phases as the interspecies repulsion is increased. In particular, we analyze the low-energy "quantum emulsion" metastable states occurring at large values of the interspecies interaction, which are expected to prevent the system from reaching its true ground state. We argue a significant decrease in the visibility of the time-of-flight...

  18. The pomeron in closed bosonic string theory

    CERN Document Server

    Fazio, A R

    2010-01-01

    We review the features of the pomeron in the S-matrix theory and in quantum field theory. We extend those general properties to the pomeron of closed bosonic string theory in a Minkowskian background. We compute the couplings of the pomeron to the lowest mass levels of closed bosonic string states in flat space. We recognize the deviation from the linearity of the Regge trajectories in a five dimensional anti De Sitter background.

  19. Deformed Bosons: Combinatorics of Normal Ordering

    CERN Document Server

    Blasiak, P; Penson, K A; Solomon, A I

    2004-01-01

    We solve the normal ordering problem for (A* A)^n where A* (resp. A) are one mode deformed bosonic creation (resp. annihilation) operators satisfying [A,A*]=[N+1]-[N]. The solution generalizes results known for canonical and q-bosons. It involves combinatorial polynomials in the number operator N for which the generating functions and explicit expressions are found. Simple deformations provide examples of the method.

  20. Di-boson production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    De Lentdecker, Gilles; /Rochester U.

    2005-05-01

    The authors present some precision measurements on electroweak physics performed at the Tevatron collider at Fermilab. Namely they report on the boson-pair production cross sections and on triple gauge boson couplings using proton anti-proton collisions collected by the CDF and D0 experiments at the center-of-mass energy of 1.96 TeV. The data correspond to an integrated luminosity of up to 324 pb{sup -1}.

  1. Evidence for a standard model Higgs boson like particle decaying into four leptons with the CMS detector

    International Nuclear Information System (INIS)

    This thesis reports the discovery of the new boson recently observed at a mass near 125 GeV in the CMS experiment at CERN. The measurements of the properties of the new boson are reviewed. The results are obtained from a comprehensive search for the standard model Higgs boson in the H → ZZ decay channel, where both Z bosons decay to electron or muon lepton pairs. The search covers Higgs boson mass hypotheses in the range 110 H -1 at √(s)=7 TeV and 12.2 fb-1 at √(s)=8 TeV. The new boson is observed with a local significance above the expected background of 4.5 standard deviations. The signal strength μ, relative to the expectation for the standard model Higgs boson, is measured to be μ=0.80+0.35-0.28 at 126 GeV. A precise measurement of its mass has been performed and gives [126.2±0.6 (stat) ±0.2 (syst)] GeV. The hypothesis 0+ of the standard model for the spin J=0 and parity P=±1 quantum numbers is found to be consistent with the observation. The data disfavour the pseudoscalar hypothesis 0- with a CLs value of 2.4%. No other significant excess is found, and upper limits at 95% confidence level exclude the ranges 113-116 GeV and 129-720 GeV while the expected exclusion range for the standard model Higgs boson is 118-670 GeV. A special emphases throughout the thesis has been put on lepton isolation. Lepton isolation being one of the key observables for the discovery is highly susceptible to pile-up conditions of the LHC machine. This thesis establishes a robust method to reduce the effect of pile-up on isolation. The method is now used across different analysis in CMS. A special attention has also been put on measurements of the efficiencies of lepton identification, isolation and impact parameter requirements directly from data using leptonic decays of Z boson. The measurements were used to produce final per lepton scale factors when calculating the significance of excess of four lepton events. (author)

  2. Looking for a hidden sector in exotic Higgs boson decays with the ATLAS experiment

    Directory of Open Access Journals (Sweden)

    Andrea Coccaro

    2015-12-01

    Full Text Available The nature of dark matter (DM is one of the most intriguing questions in particle physics. DM can be postulated to be part of a hidden sector whose interactions with the visible matter are not completely decoupled. The discovery of a fundamental scalar particle compatible with the Higgs boson predicted by the Standard Model paves the way for looking for DM with novel methods. An overview of the searches looking for a hidden sector in exotic Higgs decays and for invisible decays of the Higgs boson within the ATLAS experiment is presented. Prospects for searches with Large Hadron Collider data at a center-of-mass energy of 13 TeV are summarized.

  3. Neutral Triple Gauge Boson production in the large extra dimensions model at linear colliders

    CERN Document Server

    Sun, Hao

    2012-01-01

    We consider the neutral triple gauge boson production process in the context of large extra dimensions (LED) model including the Kaluza-Klein (KK) excited gravitons at future linear colliders, say ILC(CLIC). We consider $\\gamma\\gamma\\gamma, \\gamma\\gamma Z, \\gamma Z Z$ and $ZZZ$ production processes, and analyse their impacts on both the total cross section and some key distributions. These processes are important for new physics searches at linear colliders. Our results show that KK graviton exchange has the most significant effect on \\eerzz among the four processes with relatively small $M_S$, while it has the largest effect on \\eerrr with larger $M_S$. By using the neutral triple gauge boson production we could set the discovery limit on the fundamental Plank scale $M_S$ up to around 6-9 TeV for $\\delta$ = 4 at the 3 TeV CLIC.

  4. Neutral triple gauge boson production in the large extra dimensions model at linear colliders

    Science.gov (United States)

    Hao, Sun; Ya-Jin, Zhou

    2012-10-01

    We consider the neutral triple-gauge boson production process in the context of large extra dimensions (LED) models including the Kaluza-Klein (KK) excited gravitons at future linear colliders, say ILC(CLIC). We consider γγγ, γγZ, γZZ, and ZZZ production processes, and analyze their impacts on both the total cross section and some key distributions. These processes are important for new physics searches at linear colliders. Our results show that KK graviton exchange has the most significant effect on e-e+→γZZ among the four processes with relatively small MS, while it has the largest effect on e-e+→γγγ with larger MS. By using the neutral triple-gauge boson production we could set the discovery limit on the fundamental Plank scale MS up to around 6-9 TeV for δ=4 at the 3 TeV CLIC.

  5. TLEP: A High-Performance Circular e+e- Collider to Study the Higgs Boson

    CERN Document Server

    Koratzinos, M; Aleksan, R; Brunner, O; Butterworth, A; Janot, P; Jensen, E; Osborne, J; Zimmermann, F; Ellis, J R; Zanetti, M

    2013-01-01

    The recent discovery of a light Higgs boson has opened up considerable interest in circular e+e- Higgs factories around the world. We report on the progress of the "TLEP" concept since last year. TLEP is an e+e- circular collider capable of very high luminosities in a wide centre-of-mass (ECM) spectrum from 90 to 350 GeV. TLEP could be housed in a new 80 to 100 km tunnel in the Geneva region. The design can be adapted to different ring circumference (e.g. 'LEP3' in the 27 km LHC tunnel). TLEP is an ideal complementary machine to the LHC thanks to high luminosity, exquisite determination of ECM and the possibility of four interaction points, both for precision measurements of the Higgs boson properties and for precision tests of the closure of the Standard Model from the Z pole to the top threshold. Presented at IPAC'13 Shanghai, 12-17 May 2013

  6. Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques

    CERN Document Server

    Gritsan, Andrei V; Schulze, Markus; Xiao, Meng

    2016-01-01

    In this paper we investigate anomalous interactions of the Higgs boson with heavy fermions, employing shapes of kinematic distributions. We study the processes $pp \\to t\\bar{t} + H$, $b\\bar{b} + H$, $tq+H$, and $pp \\to H\\to\\tau^+\\tau^-$, and present applications of event generation, re-weighting techniques for fast simulation of anomalous couplings, as well as matrix element techniques for optimal sensitivity. We extend the MELA technique, which proved to be a powerful matrix element tool for Higgs boson discovery and characterization during Run I of the LHC, and implement all analysis tools in the JHU generator framework. A next-to-leading order QCD description of the $pp \\to t\\bar{t} + H$ process allows us to investigate the performance of MELA in the presence of extra radiation. Finally, projections for LHC measurements through the end of Run III are presented.

  7. A 125 GeV composite Higgs boson versus flavour and electroweak precision tests

    CERN Document Server

    Barbieri, Riccardo; Sala, Filippo; Straub, David M; Tesi, Andrea

    2012-01-01

    A composite Higgs boson of 125 GeV mass, only mildly fine-tuned, requires top partners with a semi-perturbative coupling and a mass not greater than about a TeV. We analyze the strong constraints on such picture arising from flavour and electroweak precision tests in models of partial compositeness. We consider different representations for the composite fermions and compare the case of an anarchic flavour structure to models with a U(3)^3 and U(2)^3 flavour symmetry. Although non trivially, some models emerge that look capable of accommodating a 125 GeV Higgs boson with top partners in an interesting mass range for discovery at the LHC as well as associated flavour signals.

  8. Neutral Supersymmetric Higgs Boson Searches

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Stephen Luke [Imperial College, London (United Kingdom)

    2008-07-01

    In some Supersymmetric extensions of the Standard Model, including the Minimal Supersymmetric Standard Model (MSSM), the coupling of Higgs bosons to b-quarks is enhanced. This enhancement makes the associated production of the Higgs with b-quarks an interesting search channel for the Higgs and Supersymmetry at D0. The identification of b-quarks, both online and offline, is essential to this search effort. This thesis describes the author's involvement in the development of both types of b-tagging and in the application of these techniques to the MSSM Higgs search. Work was carried out on the Level-3 trigger b-tagging algorithms. The impact parameter (IP) b-tagger was retuned and the effects of increased instantaneous luminosity on the tagger were studied. An extension of the IP-tagger to use the z-tracking information was developed. A new b-tagger using secondary vertices was developed and commissioned. A tool was developed to allow the use of large multi-run samples for trigger studies involving b-quarks. Offline, a neural network (NN) b-tagger was trained combining the existing offline lifetime based b-tagging tools. The efficiency and fake rate of the NN b-tagger were measured in data and MC. This b-tagger was internally reviewed and certified by the Collaboration and now provides the official b-tagging for all analyses using the Run IIa dataset at D0. A search was performed for neutral MSSM Higgs bosons decaying to a b{bar b} pair and produced in association with one or more b-quarks. Limits are set on the cross-section times the branching ratio for such a process. The limits were interpreted in various MSSM scenarios. This analysis uses the NN b-tagger and was the first to use this tool. The analysis also relies on triggers using the Level-3 IP b-tagging tool described previously. A likelihood discriminant was used to improve the analysis and a neural network was developed to cross-check this technique. The result of the analysis has been submitted to PRL

  9. Vector boson scattering, triple gauge-boson production and limits on anomalous quartic gauge-boson couplings with the ATLAS detector

    CERN Document Server

    Wang, Hulin; The ATLAS collaboration

    2016-01-01

    The production of vector boson scattering and triple gauge bosons are studied using $pp$ collisions at $\\sqrt{s}=8$ TeV with the ATLAS detector at the Large Hadron Collider. The vector boson scattering processes of $W^{\\pm}W^{\\pm}(\\rightarrow \\ell^{\\pm}\

  10. Search for the Standard Model Higgs Boson in associated production with w boson at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Xu [Univ. of Michigan, Ann Arbor, MI (United States)

    2009-11-01

    A search for the Standard Model Higgs boson in proton-antiproton collisions with center-of-mass energy 1.96 TeV at the Tevatron is presented in this dissertation. The process of interest is the associated production of W boson and Higgs boson, with the W boson decaying leptonically and the Higgs boson decaying into a pair of bottom quarks. The dataset in the analysis is accumulated by the D0 detector from April 2002 to April 2008 and corresponding to an integrated luminosity of 2.7 fb-1. The events are reconstructed and selected following the criteria of an isolated lepton, missing transverse energy and two jets. The D0 Neural Network b-jet identification algorithm is further used to discriminate b jets from light jets. A multivariate analysis combining Matrix Element and Neural Network methods is explored to improve the Higgs boson signal significance. No evidence of the Higgs boson is observed in this analysis. In consequence, an observed (expected) limit on the ratio of σ (p$\\bar{p}$ → WH) x Br (H → b$\\bar{b}$) to the Standard Model prediction is set to be 6.7 (6.4) at 95% C.L. for the Higgs boson with a mass of 115 GeV.

  11. (Super)rare decays of an extra Z' boson via Higgs boson emission

    OpenAIRE

    Kozlov, G. A.

    1999-01-01

    The phenomenological model of an extra U(1) neutral gauge Z' boson coupled to heavy quarks is presented. In particular, we discuss the probability for a light $Z_{2}$ mass eigenstate decay into a bound state composed of heavy quarks via Higgs boson emission.

  12. Model-Independent Description and Large Hadron Collider Implications of Suppressed Two-Photon Decay of a Light Higgs Boson

    CERN Document Server

    Phalen, D; Wells, J D; Phalen, Daniel; Thomas, Brooks; Wells, James D.

    2006-01-01

    For a Standard Model Higgs boson with mass between 115 GeV and 150 GeV, the two-photon decay mode is important for discovery at the Large Hadron Collider (LHC). We describe the interactions of a light Higgs boson in a more model-independent fashion, and consider the parameter space where there is no two-photon decay mode. We argue from generalities that analysis of the $t\\bar t h$ discovery mode outside its normally thought of range of applicability is especially needed under these circumstances. We demonstrate the general conclusion with a specific example of parameters of a type I two-Higgs doublet theory, motivated by ideas in strongly coupled model building. We then specify a complete set of branching fractions and discuss the implications for the LHC.

  13. Collective Interference of Composite Two-Fermion Bosons

    DEFF Research Database (Denmark)

    Tichy, Malte; Bouvrie, Peter Alexander; Mølmer, Klaus

    2012-01-01

    The composite character of two-fermion bosons manifests itself in the interference of many composites as a deviation from the ideal bosonic behavior. A state of many composite bosons can be represented as a superposition of different numbers of perfect bosons and fermions, which allows us...... to provide the full Hong–Ou–Mandel-like counting statistics of interfering composites. Our theory quantitatively relates the deviation from the ideal bosonic interference pattern to the entanglement of the fermions within a single composite boson....

  14. Top quark, W-boson and light Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Parke, S.

    1997-10-01

    The top quark, the W-boson and the Higg boson form an interesting triptych of elementary particles. In the Standard Model knowing the mass of two of these particles, usually the top quark and W-boson, we can predict the mass of the third, the Higgs boson. Therefore in this proceedings I will primarily cover the following topics, top quark physics, W-boson mass and the light Higgs boson at the proton-antiproton collider at Fermilab, the Tevatron. Other hadron collider topics to be cover in this conference include B-physics, QCD, Electroweak Physics, and Supersymmetry.

  15. Electroweak production of single vector bosons, vector boson scattering and triple gauge-boson production with the ATLAS detector

    CERN Document Server

    Gumpert, Christian; The ATLAS collaboration

    2016-01-01

    The production of single Z bosons with two jets at high invariant mass has been studied by the ATLAS collaboration in detail using data corresponding to 20.3 /fb at a centre-of-mass energy of 8 TeV. Integrated and differential cross sections are measured in many different phase space regions with varying degree of sensitivity to the electroweak production in vector boson fusion. The cross section for the electroweak production has been extracted for both integrated and for the first time differential distributions. The results have also been used to derive limits on anomalous triple gauge couplings. Vector-boson scattering processes provide a unique way to probe the mechanism of electroweak symmetry breaking. Similar physics can be probed by studying the production of three gauge bosons. The results can also be used for a model-independent search for new physics at the TeV scale via anomalous quartic gauge couplings. The ATLAS collaboration has studied vector boson scattering in final states with two gauge bo...

  16. Exploring the effect of N-substitution in nor-lobelane on the interaction with VMAT2: discovery of a potential clinical candidate for treatment of methamphetamine abuse.

    Science.gov (United States)

    Zheng, Guangrong; Horton, David B; Penthala, Narsimha Reddy; Nickell, Justin R; Culver, John P; Deaciuc, Agripina G; Dwoskin, Linda P; Crooks, Peter A

    2013-03-01

    A series of N-substituted lobelane analogues was synthesized and evaluated for their [(3)H]dihydrotetrabenazine binding affinity at the vesicular monoamine transporter and for their inhibition of vesicular [(3)H]dopamine uptake. Compound 19a, which contains an N-1,2(R)-dihydroxypropyl group, had been identified as a potential clinical candidate for the treatment of methamphetamine abuse.

  17. Critical Points in Nuclei and Interacting Boson Model Intrinsic States

    CERN Document Server

    Ginocchio, J N; Ginocchio, Joseph N.

    2003-01-01

    We consider properties of critical points in the interacting boson model, corresponding to flat-bottomed potentials as encountered in a second-order phase transition between spherical and deformed $\\gamma$-unstable nuclei. We show that intrinsic states with an effective $\\beta$-deformation reproduce the dynamics of the underlying non-rigid shapes. The effective deformation can be determined from the the global minimum of the energy surface after projection onto the appropriate symmetry. States of fixed $N$ and good O(5) symmetry projected from these intrinsic states provide good analytic estimates to the exact eigenstates, energies and quadrupole transition rates at the critical point.

  18. Muon g-2 Anomaly and Dark Leptonic Gauge Boson

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye-Sung [W& M

    2014-11-01

    One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.

  19. From the top-quark to the Higgs-Boson: the search for the heaviest particles of nature

    International Nuclear Information System (INIS)

    According to our present knowledge the fundamental constituents of matter are quarks and leptons ordered by their mass into three particle families. With the discovery of the top quark about six years age our periodic table of elementary particles has been completed but the origin of its unusually high mass and, more general, of the mass of all particles, still needs to be established. The Institut fuer Experimentelle Kernphysik in Karlsruhe, who researches on the top quark and its properties, also takes part in the world-wide race for the discovery of the widely believed mediator of mass, the Higgs boson. (orig.)

  20. Ratio method of measuring W boson mass

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feng [Stony Brook Univ., NY (United States)

    2010-08-01

    This dissertation describes an alternative method of measuring the W boson mass in DØ experiment. Instead of extracting MW from the fitting of W → ev fast Monte Carlo simulations to W → ev data as in the standard method, we make the direct fit of transverse mass between W → ev data and Z → ee data. One of the two electrons from Z boson is treated as a neutrino in the calculation of transverse mass. In ratio method, the best fitted scale factor corresponds to the ratio of W and Z boson mass (MW/MZ). Given the precisely measured Z boson mass, W mass is directly fitted from W → ev and Z → ee data. This dissertation demonstrates that ratio method is a plausible method of measuring the W boson mass. With the 1 fb-1 DØ Run IIa dataset, ratio method gives MW = 80435 ± 43(stat) ± 26(sys) MeV.

  1. Interaction between bosonic dark matter and stars

    Science.gov (United States)

    Brito, Richard; Cardoso, Vitor; Macedo, Caio F. B.; Okawa, Hirotada; Palenzuela, Carlos

    2016-02-01

    We provide a detailed analysis of how bosonic dark matter "condensates" interact with compact stars, extending significantly the results of a recent Letter [1]. We focus on bosonic fields with mass mB , such as axions, axion-like candidates and hidden photons. Self-gravitating bosonic fields generically form "breathing" configurations, where both the spacetime geometry and the field oscillate, and can interact and cluster at the center of stars. We construct stellar configurations formed by a perfect fluid and a bosonic condensate, and which may describe the late stages of dark matter accretion onto stars, in dark-matter-rich environments. These composite stars oscillate at a frequency which is a multiple of f =2.5 ×1014(mBc2/eV ) Hz . Using perturbative analysis and numerical relativity techniques, we show that these stars are generically stable, and we provide criteria for instability. Our results also indicate that the growth of the dark matter core is halted close to the Chandrasekhar limit. We thus dispel a myth concerning dark matter accretion by stars: dark matter accretion does not necessarily lead to the destruction of the star, nor to collapse to a black hole. Finally, we argue that stars with long-lived bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories.

  2. Our dear boson – and so what?

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    A long-sought particle finally found. On Wednesday 4 July, enthusiasm spread from CERN to the worldwide media. But a question legitimately arises: why is this particle attracting so much interest? In other words, how is it different from all the others? (And, by the way, what is a boson?).   CERN, 4 July 2012: a long-sought particle finally found. Strictly speaking, we cannot even call it the “Higgs” boson yet. Only after careful checking of its properties will physicists be able to say if the new boson corresponds to the particle that theorists predicted in 1964. However, the experimental data we have so far already tells us, unambiguously, that this new particle is different from all the other elementary particles we know. “Every particle is either a boson or a fermion,” explains John Ellis, former CERN theorist and currently professor at King's College in London. “All known particles spin like small tops, with the known bosons tha...

  3. ATLAS measurements of vector boson production

    CERN Document Server

    Debenedetti, Chiara; The ATLAS collaboration

    2016-01-01

    Vector boson production in pp collisions at 7, 8 and 13 TeV has been extensively studied by ATLAS. Recent results include the precision measurements of the transverse momentum of the Z/gamma* boson production, sensitive to soft resummation effects, hard jet emissions and electroweak corrections. A precise measurement of the angular coefficients of the Z­boson production tests the underlying QCD dynamics of the Drell­Yan process. A first measurement of the inclusive W and Z cross section at a cms energy of 13TeV has been derived. The Production of jets in association with a vector boson is an important process to study QCD in a multi­scale environment. Cross sections, differential in several kinematics variables, have been measured with the ATLAS detector and compared to state­of­the­art QCD calculations and Monte Carlo simulations. First measurements of vector boson + jets production have been performed at cms energies of 13TeV. An overview of these results is given.

  4. Critical Phenomena Associated with Boson Stars

    CERN Document Server

    Hawley, S H; Hawley, Scott H.; Choptuik, Matthew W.

    2001-01-01

    We present a brief synopsis of related work (gr-qc/0007039), describing a study of black hole threshold phenomena for a self-gravitating, massive complex scalar field in spherical symmetry. We construct Type I critical solutions dynamically by tuning a one-parameter family of initial data consisting of a boson star and a massless real scalar field, and numerically evolving this data. The resulting critical solutions appear to correspond to boson stars on the unstable branch, as we show via comparisons between our simulations and perturbation theory. For low-mass critical solutions, we find small ``halos'' of matter in the tails of the solutions, and these distort the profiles which otherwise agree with unstable boson stars. These halos seem to be artifacts of the collisions between the original boson stars and the massless fields, and do not appear to belong to the true critical solutions. From this study, it appears that unstable boson stars are unstable to dispersal (``explosion'') in addition to black hole...

  5. Higgs boson pair production in new physics models at hadron, lepton, and photon colliders

    Science.gov (United States)

    Asakawa, Eri; Harada, Daisuke; Kanemura, Shinya; Okada, Yasuhiro; Tsumura, Koji

    2010-12-01

    We study Higgs boson pair production processes at future hadron and lepton colliders including the photon collision option in several new physics models; i.e., the two-Higgs-doublet model, the scalar leptoquark model, the sequential fourth generation fermion model and the vectorlike quark model. Cross sections for these processes can deviate significantly from the standard model predictions due to the one-loop correction to the triple Higgs boson coupling constant. For the one-loop induced processes such as gg→hh and γγ→hh, where h is the (lightest) Higgs boson and g and γ respectively represent a gluon and a photon, the cross sections can also be affected by new physics particles via additional one-loop diagrams. In the two-Higgs-doublet model and scalar leptoquark models, cross sections of e+e-→hhZ and γγ→hh can be enhanced due to the nondecoupling effect in the one-loop corrections to the triple Higgs boson coupling constant. In the sequential fourth generation fermion model, the cross section for gg→hh becomes very large because of the loop effect of the fermions. In the vectorlike quark model, effects are small because the theory has decoupling property. Measurements of the Higgs boson pair production processes can be useful to explore new physics through the determination of the Higgs potential.

  6. Spectral flow of trimer states of two heavy impurities and one light condensed boson

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas

    2014-01-01

    The spectral flow of three-body (trimer) states consisting of two heavy (impurity) particles sitting in a condensate of light bosons is considered. Assuming that the condensate is weakly interaction and that an impurity and a boson have a zero-range two-body interaction, we use the Born-Oppenheim......The spectral flow of three-body (trimer) states consisting of two heavy (impurity) particles sitting in a condensate of light bosons is considered. Assuming that the condensate is weakly interaction and that an impurity and a boson have a zero-range two-body interaction, we use the Born......-Oppenheimer approximation to determine the effective three-body potential. We solve the resulting Schr\\"odinger equation numerically and determine the trimer binding energies as a function of the coherence length of the light bosonic condensate particles. The binding energy is found to be suppressed by the presence...... of the condensate when the energy scale corresponding to the coherence length becomes of order the trimer binding energy in the absence of the condensate. We find that the Efimov scaling property is reflected in the critical values of the condensate coherence length at which the trimers are pushed...

  7. Strong effects on the hadronic widths of the neutral Higgs bosons in the MSSM

    CERN Document Server

    Coarasa, J A; Solà, J; Jimenez, Ricardo A; Sola, Joan

    1995-01-01

    We analyze the correlation of QCD one-loop effects on the partial widths of the three neutral Higgs bosons of the MSSM decaying into quark-antiquark pairs. The SUSY-QCD effects turn out to be comparable or even larger than the standard QCD effects and are slowly decoupling in a wide window of the parameter space. Especial emphasis is placed upon the results obtained in privileged portions of that space potentially curing a few alleged anomalies challenging the SM predictions of some of the high-precision Z-boson observables. Our study is aimed at elucidating the possible supersymmetric nature of the neutral Higgs bosons that might be discovered in the near future at the Tevatron and/or at the LHC. In particular, we remark some distinctive mechanisms for single top-quark production in association with neutral Higgs particles. Finally, we comment on the possibility of identifying a CP-even and a CP-odd light Higgs boson at HERA in one of the parameter subspaces highlighted by Z-boson physics.

  8. A sensitivity study for Higgs boson production in Vector Boson Fusion in the H {yields} {tau}{tau} {yields} lh+3{nu} final state with ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Moeser, Nicolas

    2011-11-15

    For a hypothetical Higgs boson mass between 114.4 GeV and about 135 GeV the production by Vector Boson Fusion and the decay H {yields} {tau}{tau} {yields} lh + 3{nu} is one of the most promising discovery channels at the LHC. In this thesis, a study of the expected sensitivity of the ATLAS detector for this channel at a centre-of-mass energy of 14 TeV is presented. For the first time, this study includes a full treatment of additional proton-proton interactions, so-called pile-up. The presence of pile-up significantly affects the signal selection efficiency and leads to a deterioration of the reconstructed Higgs boson mass, which is used as a discriminating observable. Two methods have been developed to estimate the dominant background processes from data. By replacing the muons in Z {yields} {mu}{mu} events with simulated {tau} lepton decays, Z {yields} {tau}{tau} events can be modelled with high precision. The non-resonant background, t anti t production and W+jets, is estimated by selecting events where lepton and hadronic {tau} decay have the same electric charge. Assuming a dataset corresponding to an integrated luminosity of 30 fb{sup -1}, an expected signal significance between 3.0 {sigma} and 4.4{sigma} is obtained for a Higgs boson mass between 115 GeV and 135 GeV. The expected significance decreases to 1.6-2.0{sigma} in the presence of pile-up. (orig.)

  9. Ground state properties of cold bosonic atoms at large scattering lengths.

    Science.gov (United States)

    Song, Jun Liang; Zhou, Fei

    2009-07-10

    In this Letter, we study bosonic atoms at large scattering lengths using a variational method where the condensate amplitude is a variational parameter. We further examine momentum distribution functions, chemical potentials, the speed of sound, and spatial density profiles of cold bosonic atoms in a trap in this limit. The latter two properties turn out to bear similarities to those of Fermi gases. The estimates obtained here are applicable near Feshbach resonances, particularly when the fraction of atoms forming three-body structures is small and can be tested in future cold atom experiments. PMID:19659218

  10. Masses and Couplings of the Lightest Higgs Bosons in the (M+1)SSM

    OpenAIRE

    U. Ellwanger; Hugonie, C.

    1999-01-01

    We study the upper limits on the mass of the lightest and second lightest CP even Higgs bosons in the (M+1)SSM, the MSSM extended by a gauge singlet. The dominant two loop contributions to the effective potential are included, which reduce the Higgs masses by 10 GeV. Since the coupling R of the lightest Higgs scalar to gauge bosons can be small, we study in detail the relations between the masses and couplings of both lightest scalars. We present upper bounds on the mass of a 'strongly' coupl...

  11. Energy spectrum and phase diagrams of two-sublattice hard-core boson model

    Directory of Open Access Journals (Sweden)

    I.V. Stasyuk

    2013-06-01

    Full Text Available The energy spectrum, spectral density and phase diagrams have been obtained for two-sublattice hard-core boson model in frames of random phase approximation approach. Reconstruction of boson spectrum at the change of temperature, chemical potential and energy difference between local positions in sublattices is studied. The phase diagrams illustrating the regions of existence of a normal phase which can be close to Mott-insulator (MI or charge-density (CDW phase diagrams as well as the phase with the Bose-Einstein condensate (SF phase are built.

  12. Leading two-loop corrections to the Higgs boson masses in SUSY models with Dirac gauginos

    CERN Document Server

    Braathen, Johannes; Slavich, Pietro

    2016-01-01

    We perform the first explicit two-loop calculation of Higgs boson masses in supersymmetric models beyond the NMSSM. Specifically, we compute the two-loop O(alpha_s*alpha_t) corrections to the Higgs boson masses in the effective potential approximation allowing both Majorana and Dirac gaugino masses, in both DRbar and on-shell renormalisation schemes. We give detailed results for the MDGSSM and the MRSSM, and simple approximate formulae valid in the decoupling limit for all currently-studied variants of SUSY models with Dirac gluinos.

  13. Discovery of the Potential Role of Sensors in a Personal Emergency Response System: What Can We Learn from a Single Workshop?

    Directory of Open Access Journals (Sweden)

    Femke De Backere

    2015-12-01

    Full Text Available Capturing knowledge from domain experts is important to effectively integrate novel technological support in existing care processes. In this paper, we present our experiences in using a specific type of workshop, which we identified as a decision-tree workshop, to determine the process and information exchange during the usage of a Personal Emergency Response System (PERS. We conducted the workshop with current and possible future users of a PERS system to investigate the potential of context- and social awareness for such a system. We discuss the workshop format as well as the results and reflection on this workshop.

  14. Orbital optical lattices with bosons

    Science.gov (United States)

    Kock, T.; Hippler, C.; Ewerbeck, A.; Hemmerich, A.

    2016-02-01

    This article provides a synopsis of our recent experimental work exploring Bose-Einstein condensation in metastable higher Bloch bands of optical lattices. Bipartite lattice geometries have allowed us to implement appropriate band structures, which meet three basic requirements: the existence of metastable excited states sufficiently protected from collisional band relaxation, a mechanism to excite the atoms initially prepared in the lowest band with moderate entropy increase, and the possibility of cross-dimensional tunneling dynamics, necessary to establish coherence along all lattice axes. A variety of bands can be selectively populated and a subsequent thermalization process leads to the formation of a condensate in the lowest energy state of the chosen band. As examples the 2nd, 4th and 7th bands in a bipartite square lattice are discussed. The geometry of the 2nd and 7th bands can be tuned such that two inequivalent energetically degenerate energy minima arise at the X ±-points at the edge of the 1st Brillouin zone. In this case even a small interaction energy is sufficient to lock the phase between the two condensation points such that a complex-valued chiral superfluid order parameter can emerge, which breaks time reversal symmetry. In the 4th band a condensate can be formed at the Γ-point in the center of the 1st Brillouin zone, which can be used to explore topologically protected band touching points. The new techniques to access orbital degrees of freedom in higher bands greatly extend the class of many-body scenarios that can be explored with bosons in optical lattices.

  15. Feshbach resonances and weakly bound molecular states of boson-boson and boson-fermion NaK pairs

    OpenAIRE

    Viel, Alexandra; Simoni, Andrea

    2016-01-01

    We study theoretically magnetically induced Feshbach resonances and near-threshold bound states in isotopic NaK pairs. Our calculations accurately reproduce Feshbach spectroscopy data on Na$^{40}$K and explain the origin of the observed multiplets in the p-wave [Phys. Rev. A 85, 051602(R) (2012)]. We apply the model to predict scattering and bound state threshold properties of the boson-boson Na$^{39}$K and Na$^{41}$K systems. We find that the Na$^{39}$K isotopic pair presents broad magnetic ...

  16. Integrability and Quantum Phase Transitions in Interacting Boson Models

    CERN Document Server

    Dukelsky, J; García-Ramos, J E; Pittel, S

    2003-01-01

    The exact solution of the boson pairing hamiltonian given by Richardson in the sixties is used to study the phenomena of level crossings and quantum phase transitions in the integrable regions of the sd and sdg interacting boson models.

  17. Measurements of the Higgs boson properties with the ATLAS detector

    CERN Document Server

    Tomoto, M; The ATLAS collaboration

    2013-01-01

    Slide draft for the Crimea 2013 workshop. The subject of the talk will be measurements of the Higgs boson properties, including the spin, mass, signal strength, and couplings of a new boson discovered in 2012 at the ATLAS experiment.

  18. Population genetic structure of Phytophthora cinnamomi associated with avocado in California and the discovery of a potentially recent introduction of a new clonal lineage.

    Science.gov (United States)

    Pagliaccia, D; Pond, E; McKee, B; Douhan, G W

    2013-01-01

    Phytophthora root rot (PRR) of avocado (Persea americana), caused by Phytophthora cinnamomi, is the most serious disease of avocado worldwide. Previous studies have determined that this pathogen exhibits a primarily clonal reproductive mode but no population level studies have been conducted in the avocado-growing regions of California. Therefore, we used amplified fragment length polymorphism based on 22 polymorphic loci and mating type to investigate pathogen diversity from 138 isolates collected in 2009 to 2010 from 15 groves from the Northern and Southern avocado-growing regions. Additional isolates collected from avocado from 1966 to 2007 as well as isolates from other countries and hosts were also used for comparative purposes. Two distinct clades of A2 mating-type isolates from avocado were found based on neighbor joining analysis; one clade contained both newer and older collections from Northern and Southern California, whereas the other clade only contained isolates collected in 2009 and 2010 from Southern California. A third clade was also found that only contained A1 isolates from various hosts. Within the California population, a total of 16 genotypes were found with only one to four genotypes identified from any one location. The results indicate significant population structure in the California avocado P. cinnamomi population, low genotypic diversity consistent with asexual reproduction, potential evidence for the movement of clonal genotypes between the two growing regions, and a potential introduction of a new clonal lineage into Southern California.

  19. Population genetic structure of Phytophthora cinnamomi associated with avocado in California and the discovery of a potentially recent introduction of a new clonal lineage.

    Science.gov (United States)

    Pagliaccia, D; Pond, E; McKee, B; Douhan, G W

    2013-01-01

    Phytophthora root rot (PRR) of avocado (Persea americana), caused by Phytophthora cinnamomi, is the most serious disease of avocado worldwide. Previous studies have determined that this pathogen exhibits a primarily clonal reproductive mode but no population level studies have been conducted in the avocado-growing regions of California. Therefore, we used amplified fragment length polymorphism based on 22 polymorphic loci and mating type to investigate pathogen diversity from 138 isolates collected in 2009 to 2010 from 15 groves from the Northern and Southern avocado-growing regions. Additional isolates collected from avocado from 1966 to 2007 as well as isolates from other countries and hosts were also used for comparative purposes. Two distinct clades of A2 mating-type isolates from avocado were found based on neighbor joining analysis; one clade contained both newer and older collections from Northern and Southern California, whereas the other clade only contained isolates collected in 2009 and 2010 from Southern California. A third clade was also found that only contained A1 isolates from various hosts. Within the California population, a total of 16 genotypes were found with only one to four genotypes identified from any one location. The results indicate significant population structure in the California avocado P. cinnamomi population, low genotypic diversity consistent with asexual reproduction, potential evidence for the movement of clonal genotypes between the two growing regions, and a potential introduction of a new clonal lineage into Southern California. PMID:23228146

  20. Vector boson and charmonia measurements in $p$+Pb collisions with ATLAS

    CERN Document Server

    Koehler, Markus K.

    2016-01-01

    The production of electroweak bosons ($Z,\\gamma$ and $W$) and charmonia is sensitive to the initial-state geometry of heavy-ion collisions and to the parton distribution function with its potential nuclear modification. Since their leptonic decay products do not interact strongly, their kinematics are unmodified by the strongly interacting medium, which can be created in a heavy-ion collision. We report on the latest results of the ATLAS Collaboration on electroweak boson and charmonia production in $p$+Pb collisions at $\\sqrt{s_{\\rm NN}} = 5.02$ TeV. Production yields of $Z$ and $W$ bosons are presented as a function of (pseudo-)rapidity in different centrality bins. The forward-backward ratio of J/$\\psi$ is shown as a function of transverse momentum and center-of-mass rapidity.