WorldWideScience

Sample records for boson discovery potential

  1. Improving the discovery potential of charged Higgs bosons at the ...

    Indian Academy of Sciences (India)

    The detection of charged Higgs bosons (H ¦) at Tevatron or the LHC would unequivocally imply the existence of physics beyond the standard model (SM), since spin-less charged scalar states do not belong to its particle spectrum. Singly charged Higgs bosons appear in any two-Higgs doublet model (2HDM), including a ...

  2. Improving the discovery potential of charged Higgs bosons at the ...

    Indian Academy of Sciences (India)

    ¯q — t ¯t, times the decay one, ¯t — ¯bH , in the so-called narrow width approximation (NWA) [6]. This description fails to correctly account for the production phenomenology of charged. Higgs bosons when their mass approaches or indeed ...

  3. The ATLAS discovery potential for MSSM neutral Higgs bosons decaying into muon, tau, supersymmetric particle pairs

    CERN Document Server

    Gentile, S

    2009-01-01

    The discovery potential for MSSM neutral Higgs bosons in the ATLAS experiment at centre-of-mass energy $\\sqrt{s}$ = 14 TeV at the Large Hadron Collider (LHC) is discussed. The discovery and exclusion sensitivity in the (m$_A$, tan$\\beta$) plane in different luminosity scenarios is discussed for three processes: h/A/H decaying into $\\tau\\tau$ or into $\\mu\\mu$ pairs or in supersymmetric particles (heavy neutralino/chargino pairs).

  4. The Discovery Potential of Neutral Supersymmetric Higgs Bosons with Decay to Tau Pairs at the ATLAS Experiment

    CERN Document Server

    Schaarschmidt, Jana

    2010-01-01

    This work presents a study of the discovery potential for the neutral supersymmetric Higgs bosons h/A/H decaying to tau pairs with the ATLAS experiment at the LHC. The study is based on Monte Carlo samples which are scaled to state-of-the-art cross sections. The analyses are designed assuming an integrated luminosity of 30 1/fb and a center-of-mass energy of sqrt(s) = 14 TeV. The results are interpreted in the m_h^max benchmark scenario. Two final states are analyzed: The dileptonic channel where the two tau leptons decay to electrons or muons and the lepton-hadron channel where one tau decays to an electron or muon and the other tau decays to hadrons. The study of the dilepton channel is based completely on the detailed ATLAS simulation, the analysis of the lepton-hadron channel is based on the fast simulation. The collinear approximation is used to reconstruct the Higgs boson mass and its performance is studied. Cuts are optimized in order to discriminate the signal from background and to maximize the disco...

  5. Higgs Boson Discovery and Properties

    Energy Technology Data Exchange (ETDEWEB)

    Rowson, Peter C.

    2003-06-02

    We outline issues examined and progress made by the Light Higgs Snowmass 1996 working group regarding discovering Higgs bosons and measuring their detailed properties. We focused primarily on what could be learned at LEP2, the Tevatron (after upgrade), the LHC, a next linear e{sup +}e{sup -} collider and a {mu}{sup +}{mu}{sup -} collider.

  6. Study of the Higgs boson discovery potential in the process pp{yields}Hqq, H{yields}{tau}{sup +}{tau}{sup -} with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Groh, Manfred

    2009-04-27

    The subject of this work is the evaluation of the discovery potential of the ATLAS detector at the Large Hadron Collider for the Standard Model Higgs boson in vector-boson fusion production and a subsequent decay into a {tau}-lepton pair. This is one of the most promising discovery channels of the Higgs boson in the low mass range, which is the mass range favored from precision measurements of the electroweak interaction. The decay modes where both {tau} leptons decay leptonically and where one {tau} lepton decays leptonically and the other one hadronically are studied in this thesis. The main objective was to investigate possible improvements upon earlier cut-based analyses by using additional discriminating variables as well as by applying multivariate analysis methods which take into account correlations between the variables. The variables are carefully selected in order to avoid correlations with the reconstructed invariant {tau}{tau} mass. In an intermediate step, the sequential signal selection cuts have been optimized for maximum signal significance. With this strategy, one can expect to discover the Higgs boson with {>=}5{sigma} significance in the mass range 115 GeV{<=} m{sub H}{<=}135 GeV with an integrated luminosity of 30 fb{sup -1} corresponding to the first three years of ATLAS operation. The maximum signal significance of 5.9{sigma} is obtained for a Higgs mass of 120 GeV. Significant further improvement was found with multivariate selection methods. The best results are obtained with an Artificial Neural Network algorithm. The mass range for the {>=}5{sigma} Higgs discovery with 30 fb{sup -1} is extended to 110 GeV with a maximum signal significance of 6.5 {sigma} at m{sub H}=125 GeV. Systematic uncertainties are studied in detail for both methods and are included in the above predictions of the signal significance. The largest uncertainty is due to the jet energy scale. In the case of using only Monte Carlo simulations for estimating the

  7. The Higgs Boson Search and Discovery

    CERN Document Server

    Bernardi, Gregorio

    2016-01-01

    We present a brief account of the search for the Higgs boson at the three major colliders that have operated over the last three decades: LEP, the Tevatron, and the LHC. The experimental challenges encountered stemmed from the distinct event phenomenology as determined by the colliders energy and the possible values for the Higgs boson mass, and from the capability of these colliders to deliver as much collision data as possible to fully explore the mass spectrum within their reach. Focusing more on the hadron collider searches during the last decade, we discuss how the search for the Higgs boson was advanced through mastering the experimental signatures of standard theory backgrounds, through the comprehensive utilization of the features of the detectors involved in the searches, and by means of advanced data analysis techniques. The search culminated in 2012 with the discovery, by the ATLAS and CMS collaborations, of a Higgs-like particle with mass close to 125 GeV, confirmed more recently to have propertie...

  8. Study of the Higgs boson discovery potential in the process pp→H/A→μ+μ-/τ+τ- with the ATLAS detector

    International Nuclear Information System (INIS)

    Dedes, Georgios

    2008-01-01

    In this thesis, the discovery potential of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN for the heavy neutral Higgs bosons H/A of theMinimal Supersymmetric extension of the Standard Model of particle physics (MSSM) in the decay channels H/A→τ + τ - →e/μ+X and H/A→μ + μ - has been studied. The ATLAS detector is designed to study the full spectrum of the physics phenomena occuring in the proton-proton collisions at 14 TeV center-of-mass energy and to provide answers to the question of the origin of particle masses and of electroweak symmetry breaking. For the studies, the ATLAS muon spectrometer plays an important role. The spectrometer allows for a precise muon momentum measurement independently of other ATLAS subdetectors. The performance of the muon spectrometer depends strongly on the performance of the muon tracking detectors, the Monitored Drift Tube Chambers (MDT). Computer programs have been developed in order to test and verify the ATLAS muon spectrometer simulation, an essential ingredient for data analysis. In addition, dedicated programs for the monitoring of the quality of the data collected by the muon spectrometer have been developed and tested with data from cosmic ray muons. High-quality cosmic ray muon data have been used for the calibration of the MDT-chambers. A new calibration method, called analytical autocalibration, has been tested. The proposed method achieved the required accuracy of 20 μm in the determination of the space-to-drift-time relationship of the drift tubes of the MDT chambers with only 2000 muon tracks per chamber. Reliable muon detector simulation and calibration are essential for the study of the MSSM Higgs boson decays H/A→τ + τ - →e/μ+X and H/A→μ + μ - and of the corresponding background processes. The signal selection and background rejection requirements have been optimized for maximum signal significance. The following results have been obtained for different assumptions on the

  9. Study of the Higgs boson discovery potential in the process $pp \\to H/A \\to \\mu^+\\mu^-/\\tau^+\\tau^-$ with the ATLAS detector

    CERN Document Server

    Dedes, Georgios

    2008-01-01

    In this thesis, the discovery potential of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN for the heavy neutral Higgs bosons H/A of the Min- imal Supersymmetric extension of the Standard Model of particle physics (MSSM) in the decay channels H/A → τ + τ − → e/μ + X and H/A → μ+ μ− has been studied. The ATLAS detector is designed to study the full spectrum of the physics phenomena occuring in the proton-proton collisions at 14 TeV center-of-mass energy and to provide answers to the question of the origin of particle masses and of elec- troweak symmetry breaking. For the studies, the ATLAS muon spectrometer plays an important role. The spectrometer allows for a precise muon momentum measure- ment independently of other ATLAS subdetectors. The performance of the muon spectrometer depends strongly on the performance of the muon tracking detectors, the Monitored Drift Tube Chambers (MDT). Computer programs have been developed in order to test and verify the ATLAS muon spectrometer s...

  10. Discovery of SM Higgs Boson in ATLAS Experiment

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 3. Discovery of SM Higgs Boson in ATLAS Experiment. Prafulla Kumar Behera. General Article Volume 18 Issue 3 March 2013 pp 248-263. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Discovery of SM Higgs Boson in ATLAS Experiment

    Indian Academy of Sciences (India)

    IAS Admin

    vertex detector, electro- magnetic calorimeter, hadron calorimeter and muon detector. and CMS which have similar goals. The main goal of. ATLAS and CMS is to discover Higgs boson. Why do we need two experiments with the same physics goal? For the discovery, at least two independent measure- ments are needed to ...

  12. Discovery of a Boson at CERN and Indian Connections

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 3. Discovery of a Boson at CERN and Indian Connections. Gagan B Mohanty. General Article Volume 18 Issue 3 March 2013 pp 241-247. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. CMS discovery potential for the Higgs boson in the H → ZZ* → 4e± decay channel, contribution to the construction of the CMS electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Puljak, I.

    2000-01-01

    The subject of this thesis is the study of CMS (compact muon solenoid) potential for the Higgs boson search through the H→ ZZ * →4e ± channel. The theoretical arguments and the experimental data from the electroweak precision measurements, combined with the direct search results, tend to prefer the intermediate mass Higgs boson where this channel is expected to be used for the Higgs boson search at the LHC. After indicating the importance of the electromagnetic calorimeter in the electron reconstruction process, the mechanical structure and the optical properties of alveolar containers are described. The system for the quality control of the alveolar structures is developed, consisting of the production process monitoring system, the precise geometrical measurements and the optical quality control. For the optical quality control, the apparatus is constructed for measuring the reflexivity and the diffusivity of the raw material before the production and the alveolar structure after the complete production process. The developed quality control system ensures that the alveolar containers properties remain on the level not deteriorating the properties of the electromagnetic calorimeter. The evaluation of the CMS potential for the Higgs search through its four electrons decay consists of the signal and background studies at the particle level and the reconstruction studies including the precise detector description. To combine the Monte Carlo generated events with the recent theoretical calculations, the distributions of the Higgs transverse momentum predicted by the parton shower model and the soft gluon resummation calculations are compared. The agreement is found for the low transverse momentum, while for the agreement at higher values the parton shower model can be adjusted. The evaluation of the Zbb-bar background is done with properly modeling the phase space generation and the up date theoretical results and Monte Carlo simulations are used for two other

  14. The discovery and measurements of a Higgs boson.

    Science.gov (United States)

    Gianotti, F; Virdee, T S

    2015-01-13

    In July 2012, the ATLAS and CMS collaborations at CERN's Large Hadron Collider announced the discovery of a Higgs-like boson, a new heavy particle at a mass more than 130 times the mass of a proton. Since then, further data have revealed its properties to be strikingly similar to those of the Standard Model Higgs boson, a particle expected from the mechanism introduced almost 50 years ago by six theoreticians including British physicists Peter Higgs from Edinburgh University and Tom Kibble from Imperial College London. The discovery is the culmination of a truly remarkable scientific journey and undoubtedly the most significant scientific discovery of the twenty-first century so far. Its experimental confirmation turned out to be a monumental task requiring the creation of an accelerator and experiments of unprecedented capability and complexity, designed to discern the signatures that correspond to the Higgs boson. Thousands of scientists and engineers, in each of the ATLAS and CMS teams, came together from all four corners of the world to make this massive discovery possible.

  15. Discovery of the Higgs Boson Decaying to Two Photons

    CERN Document Server

    AUTHOR|(CDS)2075371; Branson, James; Pieri, Marco

    2014-09-10

    The Standard Model (SM) of particle physics fundamentally relies on the existence of the Higgs boson. This massive particle is a relic of the underlying and hidden Higgs field, whose transformation into the Higgs boson provides mass to weak bosons and all massive fermions in the SM. This particle has been long-sought and finally using data from proton-proton collisions at the LHC, CMS and ATLAS experiments have discovered a particle which is compatible with the SM Higgs boson. Presented here is the development of one of the discovery channels, $\\mathrm{H}\\rightarrow\\gamma\\gamma$, and the final $\\mathrm{H}\\rightarrow\\gamma\\gamma$ analysis and results using the full luminosity of the LHC Run 1 dataset $\\sim$25 $\\mathrm{fb}^{-1}$ at 7 or 8 TeV center of mass energy. The observed (expected) significance of this di-photon excess in the final analysis is $5.7\\sigma$ ($5.2\\sigma$) with a measured signal strength of $\\sigma / \\sigma_{SM} = 1.14^{+0.26}_{-0.23}$. The mass of this Higgs boson is not predicted by t...

  16. Comparison of discovery limits for extra Z bosons at future colliders

    International Nuclear Information System (INIS)

    Godfrey, S.

    1995-01-01

    We study and compare the discovery potential for heavy neutral gauge bosons (Z') at various e + e - and pp (-) colliders that are planned or have been proposed. Typical discovery limits are for the Fermilab Tevatron ∼1 TeV, Di-Tevatron ∼2 TeV, CERN LHC ∼4 TeV, LSGNA (a 60 TeV pp collider) ∼13 TeV while the e + e - discovery limits are 2--10x √s with the large variation reflecting the model dependence of the limits. While both types of colliders have comparable discovery limits the hadron colliders are generally less dependent on the specific Z' model and provide more robust limits since the signal has little background. In contrast, discovery limits for e + e - limits are more model dependent and, because they are based on indirect inferences of deviations from standard model predictions, they are more sensitive to systematic errors

  17. Study of the Higgs boson discovery potential in the process pp{yields}H/A{yields}{mu}{sup +}{mu}{sup -}/{tau}{sup +}{tau}{sup -} with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Dedes, Georgios

    2008-04-22

    In this thesis, the discovery potential of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN for the heavy neutral Higgs bosons H/A of theMinimal Supersymmetric extension of the Standard Model of particle physics (MSSM) in the decay channels H/A{yields}{tau}{sup +}{tau}{sup -}{yields}e/{mu}+X and H/A{yields}{mu}{sup +}{mu}{sup -} has been studied. The ATLAS detector is designed to study the full spectrum of the physics phenomena occuring in the proton-proton collisions at 14 TeV center-of-mass energy and to provide answers to the question of the origin of particle masses and of electroweak symmetry breaking. For the studies, the ATLAS muon spectrometer plays an important role. The spectrometer allows for a precise muon momentum measurement independently of other ATLAS subdetectors. The performance of the muon spectrometer depends strongly on the performance of the muon tracking detectors, the Monitored Drift Tube Chambers (MDT). Computer programs have been developed in order to test and verify the ATLAS muon spectrometer simulation, an essential ingredient for data analysis. In addition, dedicated programs for the monitoring of the quality of the data collected by the muon spectrometer have been developed and tested with data from cosmic ray muons. High-quality cosmic ray muon data have been used for the calibration of the MDT-chambers. A new calibration method, called analytical autocalibration, has been tested. The proposed method achieved the required accuracy of 20 {mu}m in the determination of the space-to-drift-time relationship of the drift tubes of the MDT chambers with only 2000 muon tracks per chamber. Reliable muon detector simulation and calibration are essential for the study of the MSSM Higgs boson decays H/A{yields}{tau}{sup +}{tau}{sup -}{yields}e/{mu}+X and H/A{yields}{mu}{sup +}{mu}{sup -} and of the corresponding background processes. The signal selection and background rejection requirements have been optimized for maximum signal

  18. Discovery of the Higgs boson by the ATLAS and CMS experiments at the LHC

    CERN Document Server

    Wang, HaiChen

    2014-01-01

    The Standard Model (SM) Higgs boson was predicted by theorists in the 1960s during the development of the electroweak theory. Prior to the startup of the CERN Large Hadron Collider (LHC), experimental searches found no evidence of the Higgs boson. In July 2012, the ATLAS and CMS experiments at the LHC reported the discovery of a new boson in their searches for the SM Higgs boson. Subsequent experimental studies have revealed the spin-0 nature of this new boson and found its couplings to SM particles consistent to those of a Higgs boson. These measurements confirmed the newly discovered boson is indeed a Higgs boson. More measurements will be performed to compare the properties of the Higgs boson with the SM predictions.

  19. Bosonization

    CERN Document Server

    1994-01-01

    Bosonization is a useful technique for studying systems of interacting fermions in low dimensions. It has applications in both particle and condensed matter physics.This book contains reprints of papers on the method as used in these fields. The papers range from the classic work of Tomonaga in the 1950's on one-dimensional electron gases, through the discovery of fermionic solitons in the 1970's, to integrable systems and bosonization on Riemann surfaces. A four-chapter pedagogical introduction by the editor should make the book accessible to graduate students and experienced researchers alik

  20. $H \\to WW$ as the discovery mode for a light Higgs boson

    CERN Document Server

    Kauer, N; Rainwater, D L; Zeppenfeld, Dieter

    2001-01-01

    The production cross section for a m_H=115 GeV, SM Higgs boson in weak boson fusion at the LHC is sizable. However, the branching fraction for H-->WW is expected to be relatively small. The signal, with its two forward jets, is sufficiently different from the main backgrounds that a signal to background ratio of better than 1:1 can nevertheless be obtained, with large enough rate to allow for a 5 sigma signal with 35 fb^{-1} of data. The H-->WW signal in weak boson fusion may thus prove to be the discovery mode for the Higgs boson at the LHC.

  1. The theoretical physics ecosystem behind the discovery of the Higgs boson

    International Nuclear Information System (INIS)

    Wells, James D.; Michigan Univ., Ann Arbor, MI

    2016-09-01

    The discovery of the Higgs boson in 2012 was one of the most significant developments of science in the last half century. A simplified history has Peter Higgs positing it in the mid-1960s followed by a long wait while experimentalists progressively turned up collider energies until it appeared several decades later. However, in order for both the hypothesis and the experimental discovery to occur, a vast and complex theory ecosystem had to thrive in the years before Higgs's hypothesis and in the years that followed, building up to its discovery. It is further claimed that the Higgs boson hypothesis was an immoderate speculation, and therefore faith in theory argumentation and speculation was mandatory for the discovery program to proceed and reach its fulfillment. The Higgs boson could not have been discovered experimentally by accident.

  2. Discovery and Characterization of a Higgs boson using four-lepton events from the CMS

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Christopher Blake [Johns Hopkins Univ., Baltimore, MD (United States)

    2015-07-01

    A new particle decaying to a pair of vector bosons was discovered in 2012 by the ATLAS and CMS experiments at the Large Hadron Collider. In the wake of this discovery a rush of measurements was made to characterize this particle. The fourlepton final state has been instrumental in both the discovery and characterization of this new particle. With only about 20 events seen in the resonance peak at 125 GeV the CMS experiment has been able to make considerable progress in characterizing the Higgs-like boson using the wealth of information in this final state in concert with other decay modes. In addition to the search for this new boson we present three recent results in the study of the Higgs-like boson properties: studies of the production mode, total width, and spin-parity quantum numbers.

  3. Smartphones: A Potential Discovery Tool

    Directory of Open Access Journals (Sweden)

    Wendy Starkweather

    2009-09-01

    Full Text Available The anticipated wide adoption of smartphones by researchers is viewed by the authors as a basis for developing mobile-based services. In response to the UNLV Libraries’ strategic plan’s focus on experimentation and outreach, the authors investigate the current and potential role of smartphones as a valuable discovery tool for library users.

  4. What is the probability of the Higgs boson discovery?

    Energy Technology Data Exchange (ETDEWEB)

    Unzicker, Alexander [Pestalozzi-Gymnasium Muenchen (Germany)

    2010-07-01

    The standard model of particle physics requires the existence of the Higgs boson which provides a mechanism for the appearance of masses. Its detection is one of the most important goals of high energy physics, and enormous efforts have been undertaken at Tevatron and specially at the Large Hadron Collider. But how sure can we be that the Higgs exits at all? At such controversial questions, the German philosopher Immanuel Kant recommended a bet, and nowadays this can be realized using online prediction markets like Intrade.com. Such platforms have been proven useful for giving estimates of unknown probabilities, and the application for evaluating scientific research is discussed in general.

  5. Discovery potential for supersymmetry in CMS

    CERN Document Server

    Abdullin, Salavat; Charles, François; Denegri, Daniel; Dydak, U; Dzelalija, Mile; Genchev, Vladimir; Graham, Douglas Jonathon; Iashvili, Ia; Kharchilava, Avto; Kinnunen, Ritva; Kunori, Shuichi; Mazumdar, Kajari; Racca, Chantal; Rurua, Lali; Stepanov, Nikita; Womersley, J

    2002-01-01

    This work summarizes and puts in an overall perspective studies done within CMS concerning the discovery potential for squarks and gluinos, sleptons, charginos and neutralinos, SUSY dark matter, lightest Higgs, sparticle mass determination methods and the detector design optimisation in view of SUSY searches. It represents the status of our understanding of these subjects as of Summer 1997. As a benchmark model we used the minimal supergravity-inspired super- symmetric standard model (mSUGRA) with a stable LSP. Discovery of SUSY at the LHC should be relatively straightforward. It may occur through the observation of a large excesses of events in missing E_T + jets, or with one or more isolated leptons. An excess of trilepton events or of isolated dileptons with E_T^miss, exhibiting a characteristic signature in the l^+l^- invariant mass distribution could also be the first manifestation of SUSY production. Squark and gluino production may represent a copious source of Higgs bosons through cascade decays. The ...

  6. The discovery of the Higgs boson at the Large Hadron Collider

    Science.gov (United States)

    Nisati, A.; Tonelli, G.

    2015-11-01

    This paper summarises the work done by the ATLAS and CMS collaborations, and by the teams of the Large Hadron Collider at CERN, that led to the discovery of a new particle, with mass near 125GeV and properties consistent with the ones predicted for the Standard Model Higgs boson. An overview of the Standard Model, with a description of the role of the Higgs boson in the theory, and a summary of the searches for this particle prior to the LHC operations is also given. The paper presents the results obtained by ATLAS and CMS from the analysis of the full data set produced in the first physics run of LHC. After a short discussion on the implications of the discovery, the future prospects for the precision study of the new particle are lastly discussed.

  7. Nonuniversal gaugino masses and seminatural supersymmetry in view of the Higgs boson discovery

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stephen P. [Santa Barbara, KITP

    2014-02-20

    I consider models with non-universal gaugino masses at the gauge coupling unification scale, taking into account the Higgs boson discovery. Viable regions of parameter space are mapped and studied in the case of non-universality following from an F-term in a linear combination of singlet and adjoint representations of SU(5). I consider, in particular, "semi-natural" models that have small \\mu, with gaugino masses dominating the supersymmetry breaking terms at high energies. Higgsino-like particles are then much lighter than all other superpartners, and the prospects for discovery at the Large Hadron Collider can be extremely challenging.

  8. The LHC Higgs Boson Discovery: Updated Implications for Finite Unified Theories and the SUSY Breaking Scale

    Directory of Open Access Journals (Sweden)

    Sven Heinemeyer

    2018-03-01

    Full Text Available Finite Unified Theories (FUTs are N = 1 supersymmetric Grand Unified Theories, which can be made finite to all orders in perturbation theory, based on the principle of the reduction of couplings. The latter consists of searching for renormalization group invariant relations among parameters of a renormalizable theory holding to all orders in perturbation theory. FUTs have proven very successful so far. In particular, they predicted the top quark mass one and half years before its experimental discovery, while around five years before the Higgs boson discovery, a particular FUT was predicting the light Higgs boson in the mass range ∼121–126 GeV, in striking agreement with the discovery at LHC. Here, we review the basic properties of the supersymmetric theories and in particular finite theories resulting from the application of the method of reduction of couplings in their dimensionless and dimensionful sectors. Then, we analyze the phenomenologically-favored FUT, based on SU(5. This particular FUT leads to a finiteness constrained version of the Minimal SUSY Standard Model (MSSM, which naturally predicts a relatively heavy spectrum with colored supersymmetric particles above 2.7 TeV, consistent with the non-observation of those particles at the LHC. The electroweak supersymmetric spectrum starts below 1 TeV, and large parts of the allowed spectrum of the lighter might be accessible at CLIC. The FCC-hhwill be able to fully test the predicted spectrum.

  9. Universal Behavior of Few-Boson Systems Using Potential Models

    International Nuclear Information System (INIS)

    Kievsky, A.; Viviani, M.; Álvarez-Rodríguez, R.; Gattobigio, M.; Deltuva, A.

    2017-01-01

    The universal behavior of a three-boson system close to the unitary limit is encoded in a simple dependence of many observables in terms of few parameters. For example the product of the three-body parameter κ ∗ and the two-body scattering length a, κ ∗ a depends on the angle ξ defined by E 3 /E 2 =tan 2 ξ. A similar dependence is observed in the ratio a AD /a with a AD the boson-dimer scattering length. We use a two-parameter potential to determine this simple behavior and, as an application, to compute a AD for the case of three 4 He atoms. (author)

  10. Boson-exchange nucleon-nucleon potential and nuclear structure

    International Nuclear Information System (INIS)

    Grange, Pierre.

    1976-01-01

    A fully momentum-dependent one-boson-exchange potential is derived which takes into account the mesons, π, eta, sigma, rho, ω and phi. Scattering bound states and nuclear matter properties are studied in momentum space. The use of such potential is shown to be as easy as the use of more simple phenomenological interactions. In nuclear matter the formalism of Bethe-Goldstone is chosen to compute the binding energy versus density in the approximation of two-body and three-body correlations. The three-body correlated wave function obtained is then used [fr

  11. Boson Stars and Boson Shells

    Science.gov (United States)

    Kumar, Sanjeev; Kulshreshtha, Usha; Kulshreshtha, Daya Shankar

    2018-03-01

    In this work we present a broad formalism for a study of the models of black holes, boson stars, boson shells and wormholes. The studies of boson stars and boson shells in a theory involving Scalar field, U(1) gauge field and a shelf interacting scalar potential coupled to gravity in the presence of a cosmological constant Λ are presented in details.

  12. Forward-backward asymmetry as a discovery tool for Z′ bosons at the LHC

    International Nuclear Information System (INIS)

    Accomando, Elena; Belyaev, Alexander; Fiaschi, Juri; Mimasu, Ken; Moretti, Stefano; Shepherd-Themistocleous, Claire

    2016-01-01

    The Forward-Backward Asymmetry (AFB) in Z ′ physics is commonly only perceived as the observable which possibly allows one to interpret a Z ′ signal appearing in the Drell-Yan channel by distinguishing different models of such (heavy) spin-1 bosons. In this paper, we revisit this issue, showing that the absence of any di-lepton rapidity cut, which is commonly used in the literature, can enhance the potential of the observable at the LHC. We moreover examine the ability of AFB in setting bounds on or even discovering a Z ′ at the Large Hadron Collider (LHC) concluding that it may be a powerful tool for this purpose. We analyse two different scenarios: Z ′ -bosons with a narrow and wide width, respectively. We find that, in the first case, the significance of the AFB search can be comparable with that of the ‘bump’ search usually adopted by the experimental collaborations; however, in being a ratio of (differential) cross sections, the AFB has the advantage of reducing experimental systematics as well as theoretical errors due to PDF uncertainties. In the second case, the AFB search can outperform the bump search in terms of differential shape, meaning the AFB distribution may be better suited for new broad resonances than the event counting strategy usually adopted in such cases.

  13. Forward-backward asymmetry as a discovery tool for Z' bosons at the LHC

    Science.gov (United States)

    Accomando, Elena; Belyaev, Alexander; Fiaschi, Juri; Mimasu, Ken; Moretti, Stefano; Shepherd-Themistocleous, Claire

    2016-01-01

    The Forward-Backward Asymmetry (AFB) in Z' physics is commonly only perceived as the observable which possibly allows one to interpret a Z' signal appearing in the Drell-Yan channel by distinguishing different models of such (heavy) spin-1 bosons. In this paper, we revisit this issue, showing that the absence of any di-lepton rapidity cut, which is commonly used in the literature, can enhance the potential of the observable at the LHC. We moreover examine the ability of AFB in setting bounds on or even discovering a Z' at the Large Hadron Collider (LHC) concluding that it may be a powerful tool for this purpose. We analyse two different scenarios: Z'-bosons with a narrow and wide width, respectively. We find that, in the first case, the significance of the AFB search can be comparable with that of the `bump' search usually adopted by the experimental collaborations; however, in being a ratio of (differential) cross sections, the AFB has the advantage of reducing experimental systematics as well as theoretical errors due to PDF uncertainties. In the second case, the AFB search can outperform the bump search in terms of differential shape, meaning the AFB distribution may be better suited for new broad resonances than the event counting strategy usually adopted in such cases.

  14. The Road to Discovery Detector Alignment, Electron Identification, Particle Misidentification, WW Physics, and the Discovery of the Higgs Boson

    CERN Document Server

    AUTHOR|(CDS)2071014

    2012-12-19

    The Standard Model of particle physics has been tested by many experiments and describes all observed phenomena up to the highest particle interaction energies. The existence of a scalar particle, the Higgs boson, is central to the theory. The Higgs boson was the only fundamental particle that had not been observed prior to the turn-on of the Large Hadron Collider (LHC). This thesis describes a progression of research that builds to a search for the Higgs boson using the ATLAS detector at the LHC. The search uses the signature of the Higgs boson decaying to a pair of W bosons (WW). Both W bosons are required to decay leptonically into a charged lepton and a neutrino. This signature suffers from many sources of background; the most important are continuum electroweak WW production and the production of single W bosons accompanied by a jet misidentified as a lepton (W+jet background). To understand and quantify these backgrounds, a measurement of the WW cross section has been performed, and analysis techniques ...

  15. Directed tunneling of a prescribed number of dipolar bosons in shaken triple-well potentials

    International Nuclear Information System (INIS)

    Luo, Xiaobing; Yu, Xiaoguang; Wu, Donglan; Hu, Qianglin; Wang, Yueming; Guo, Yu; Chong, Guishu

    2015-01-01

    We propose a scheme for precise control of the tunneling dynamics of dipolar bosons in shaken triple-well potentials. In high-frequency regimes and under resonance conditions, we have analytically and numerically demonstrated that we can transport an a priori prescribed number of dipolar bosons along different pathways and in different directions by adjusting the driving parameters. These results extend the previous many-body selective coherent destruction of tunneling schemes for nondipolar bosons in double-well potentials (Gong et al 2009 Phys. Rev. Lett. 103 133002; Longhi 2012 Phys. Rev. A 86 044102), thus offering an efficient way to design long-range coherent quantum transportation. (paper)

  16. Inelastic multiple scattering of interacting bosons in weak random potentials

    International Nuclear Information System (INIS)

    Geiger, Tobias

    2013-01-01

    Within the present thesis we develop a diagrammatic scattering theory for interacting bosons in a three-dimensional, weakly disordered potential. Based on a microscopic N-body scattering theory, we identify the relevant diagrams including elastic and inelastic collision processes that are sufficient to describe quantum transport in the regime of weak disorder. By taking advantage of the statistical properties of the weak disorder potential, we demonstrate how the N-body dynamics can be reduced to a nonlinear integral equation of Boltzmann type for the single-particle diffusive flux. A presently available alternative description - based on the Gross-Pitaevskii equation - only includes elastic collisions. In contrast, we show that far from equilibrium the presence of inelastic collisions - even for weak interaction strength - must be accounted for and can induce the full thermalization of the single-particle current. In addition, we also determine the coherent corrections to the incoherent transport, leading to the effect of coherent backscattering. For the first time, we are able to analyze the influence of inelastic collisions on the coherent backscattering signal, which lead to an enhancement of the backscattered cone in a narrow spectral window, even for increasing non-linearity. With a short recollection of the presently available experimental techniques we furthermore show how an immediate implementation of our suggested setup with confined Bose-Einstein condensates can be accomplished. Thereby, the emergence of collective and/or thermodynamic behavior from fundamental, microscopic constituents can also be assessed experimentally. In a second part of this thesis, we present first results for light scattering off strongly interacting Rydberg atoms trapped in a one-dimensional, chain-like configuration. In order to monitor the time-dependence of this interacting many-body system, we devise a weak measurement scenario for which we derive a master equation for the

  17. The Discovery of the Higgs Boson with the CMS Detector and its Implications for Supersymmetry and Cosmology

    CERN Document Server

    De Boer, Willem

    2013-01-01

    The discovery of the long awaited Higgs boson is described using data from the CMS detector at the LHC. In the SM the masses of fermions and the heavy gauge bosons are generated by the interactions with the Higgs field, so all couplings are related to the observed masses. Indeed, all observed couplings are consistent with the predictions from the Higgs mechanism, both to vector bosons and fermions implying that masses are indeed consistent of being generated by the interactions with the Higgs field. However, on a cosmological scale the mass of the universe seems not to be related to the Higgs field: the baryonic mass originates from the binding energy of the quarks inside the nuclei and dark matter is not even predicted in the SM, so the origin of its mass is unknown. The dominant energy component in the universe, the dark energy, yields an accelerated expansion of the universe, so its repulsive gravity most likely originates from a kind of vacuum energy. The Higgs field would be the prime candidate for this,...

  18. The electroweak fit of the standard model after the discovery of a new boson at the LHC

    International Nuclear Information System (INIS)

    Baak, M.; Hoecker, A.; Schott, M.; Goebel, M.; Kennedy, D.; Moenig, K.; Haller, J.; Kogler, R.; Stelzer, J.

    2012-09-01

    In view of the discovery of a new boson by the ATLAS and CMS Collaborations at the LHC, we present an update of the global Standard Model (SM) fit to electroweak precision data. Assuming the new particle to be the SM Higgs boson, all fundamental parameters of the SM are known allowing, for the first time, to overconstrain the SM at the electroweak scale and assert its validity. Including the effects of radiative corrections and the experimental and theoretical uncertainties, the global fit exhibits a p-value of 0.07. The mass measurements by ATLAS and CMS agree within 1.3σ with the indirect determination M H =94 +25 -22 GeV. Within the SM the W boson mass and the effective weak mixing angle can be accurately predicted to be M W =80.359±0.011 GeV and sin 2 θ l eff =0.23150±0.00010 from the global fit. These results are compatible with, and exceed in precision, the direct measurements. For the indirect determination of the top quark mass we find m t =175.8 +2.7 -2.4 GeV, in agreement with the kinematic and cross-section based measurements.

  19. The discovery potential of laser polarization experiments

    International Nuclear Information System (INIS)

    Ahlers, Markus

    2008-12-01

    Currently, a number of experiments are searching for vacuum magnetic birefringence and dichroism, i.e. for dispersive and absorptive features in the propagation of polarized light along a transverse magnetic field in vacuum. In this note we calculate the Standard Model contributions to these signatures, thereby illuminating the discovery potential of such experiments in the search for new physics. We discuss the three main sources for a Standard Model contribution to a dichroism signal: photon splitting, neutrino pair production and production of gravitons. (orig.)

  20. The discovery potential of laser polarization experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, Markus [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics; Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics and Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2008-12-15

    Currently, a number of experiments are searching for vacuum magnetic birefringence and dichroism, i.e. for dispersive and absorptive features in the propagation of polarized light along a transverse magnetic field in vacuum. In this note we calculate the Standard Model contributions to these signatures, thereby illuminating the discovery potential of such experiments in the search for new physics. We discuss the three main sources for a Standard Model contribution to a dichroism signal: photon splitting, neutrino pair production and production of gravitons. (orig.)

  1. Discovery potential of the Standard Model Higgs in CMS at the LHC

    CERN Document Server

    Lassila-Perini, Katri M; Pauss, F

    This thesis presents the discovery potential of the Standard Model Higgs boson in the CMS experiment at the LHC. Detailed studies have been carried out to evaluate the detector performance in the difficult $\\rm H\\to\\gamma\\gamma$ channel. The electromagnetic crystal calorimeter is of main importance in this channel and it has been designed according stringent performance requirements. Test beam data of lead tungstate crystals have been analysed and it is shown that the performance of the crystals can meet the requirements. The Higgs decay into two photons has been studied with full detector simulation and the Higgs mass has been reconstructed. A potential danger for the photon measurement are the photon conversions in the detector material in front of the electromagnetic calorimeter. Different methods to recover these converted photons are developed and it is shown that, including the recovered conversions does not degrade the Higgs mass resolution. To complete the full Standard Model Higgs discovery range, st...

  2. Discovery prospects of a light Higgs boson at the LHC in type-I 2HDM

    Science.gov (United States)

    Bhatia, Disha; Maitra, Ushoshi; Niyogi, Saurabh

    2018-03-01

    We present a comprehensive analysis of observing a light Higgs boson in the mass range 70-110 GeV at the 13 /14 TeV LHC, in the context of the type-I two-Higgs-doublet model. The decay of the light Higgs to a pair of bottom quarks is dominant in most parts of the parameter space, except in the fermiophobic limit. Here its decay to bosons (mainly a pair of photons) becomes important. We perform an extensive collider analysis for the b b ¯ and γ γ final states. The light scalar is tagged in the highly boosted regimes for the b b ¯ mode to reduce the enormous QCD background. This decay can be observed with a few thousand fb-1 of integrated luminosity at the LHC. Near the fermiophobic limit, the decay of the light Higgs to a pair of photons can even be probed with a few hundred fb-1 of integrated luminosity at the LHC.

  3. Search for Higgs boson in beyond standard model scenarios at ...

    Indian Academy of Sciences (India)

    The principal physics motivation of the LHC experiments is to search for the Higgs boson and to probe the physics of TeV energy scale. Potential of discovery for Higgs bosons in various scenarios beyond standard model have been estimated for both CMS and ATLAS experiments through detailed detector simulations.

  4. Search for Higgs boson in beyond standard model scenarios

    Indian Academy of Sciences (India)

    The principal physics motivation of the LHC experiments is to search for the Higgs boson and to probe the physics of TeV energy scale. Potential of discovery for Higgs bosons in various scenarios beyond standard model have been estimated for both CMS and ATLAS experiments through detailed detector simulations.

  5. A review of the discovery of SM-like Higgs boson in H→ γγ decay ...

    Indian Academy of Sciences (India)

    In this review we have outlined a very brief history of the Higgs boson search and the development of the strategies for searching for the Higgs boson in its diphoton decay channel.We have reviewed the methodology and tools that led to the first observation of the Higgs boson decaying to a pair of photons. We have ...

  6. The Antiproton Accumulator and Collector and the discovery of the W & Z intermediate vector bosons

    CERN Document Server

    Chohan, Vinod

    2016-01-01

    The following sections are included: Preface ; Brief outline of the overall scheme for antiprotons of the SPS as a collider ; Antiproton production and accumulation ; The AA and AC storage rings ; Stochastic cooling and stacking ; Post-acceleration of antiprotons and beams for SPS Collider ; Proton test beams for the AA and AC from the PS ; The W and Z discoveries and the Nobel Prize ; Accumulator performance ; Acknowledgements and conclusions ; References

  7. Searching for doubly-charged Higgs bosons at future colliders

    International Nuclear Information System (INIS)

    Gunion, J.F.; Pitts, K.T.

    1996-10-01

    Doubly-charged Higgs bosons (Δ -- /Δ ++ ) appear in several extensions to the Standard Model and can be relatively light. We review the theoretical motivation for these states and present a study of the discovery reach in future runs of the Fermilab Tevatron for pair-produced doubly-charged Higgs bosons decaying to like-sign lepton pairs. We also comment on the discovery potential at other future colliders. 16 refs., 3 figs., 1 tab

  8. Search for the Higgs Boson in the H→ ZZ(*)→4μ Channel in CMS Using a Multivariate Analysis

    International Nuclear Information System (INIS)

    Alonso Diaz, A.

    2007-01-01

    This note presents a Higgs boson search analysis in the CMS detector of the LHC accelerator (CERN, Geneva, Switzerland) in the H→ ZZ ( *)→4μ channel, using a multivariate method. This analysis, based in a Higgs boson mass dependent likelihood, constructed from discriminant variables, provides a significant improvement of the Higgs boson discovery potential in a wide mass range with respect to the official analysis published by CMS, based in orthogonal cuts independent of the Higgs boson mass. (Author) 8 refs

  9. Computer-aided discovery of antimicrobial agents as potential enoyl ...

    African Journals Online (AJOL)

    Computer-aided discovery of antimicrobial agents as potential enoyl acyl carrier protein reductase inhibitors. Mohammad A Ghattas, Nermin A Eissa, Sanaa K Bardaweel, Abdallah Abu Mellal, Noor Atatreh ...

  10. Effects of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim; Jansen, Karl

    2010-12-01

    We study the effect of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)

  11. Effects of a potential fourth fermion generation on the Higgs boson mass bounds

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim; Jansen, Karl

    2010-12-01

    We study the effect of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)

  12. Complete two-loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry

    International Nuclear Information System (INIS)

    Martin, Stephen P.

    2003-01-01

    I present a method for accurately calculating the pole mass of the lightest Higgs scalar boson in supersymmetric extensions of the standard model, using a mass-independent renormalization scheme. The Higgs scalar self-energies are approximated by supplementing the exact one-loop results with the second derivatives of the complete two-loop effective potential in Landau gauge. I discuss the dependence of this approximation on the choice of renormalization scale, and note the existence of particularly poor choices, which fortunately can be easily identified and avoided. For typical input parameters, the variation in the calculated Higgs boson mass over a wide range of renormalization scales is found to be of the order of a few hundred MeV or less, and is significantly improved over previous approximations

  13. Higgs Boson Searches at Hadron Colliders (1/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and strategies to measured Higgs boson parameters and the investigation of alternative symmetry breaking scenarios are addressed.

  14. Academic Training Lecture: Higgs Boson Searches at Hadron Colliders

    CERN Multimedia

    HR Department

    2010-01-01

    Regular Programme 21, 22, 23 & 24 June 2010 from 11:00 to 12:00 - Main Auditorium, Bldg. 500-1-001 Higgs Boson Searches at Hadron Colliders by Dr. Karl Jakobs (University of Freiburg) In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and ...

  15. Augmenting collider searches and enhancing discovery potentials through stochastic jet grooming

    Science.gov (United States)

    Roy, Tuhin S.; Thalapillil, Arun M.

    2017-04-01

    The jet trimming procedure has been demonstrated to greatly improve event reconstruction in hadron collisions by mitigating contamination due initial state radiation, multiple interactions, and event pileup. Meanwhile, Qjets—a nondeterministic approach to tree-based jet substructure—has been shown to be a powerful technique in decreasing random statistical fluctuations, yielding significant effective luminosity improvements. This manifests through an improvement in the significance S /δ B , relative to conventional methods. Qjets also provides novel observables in many cases, like mass-volatility, that could be used to further discriminate between signal and background events. The statistical robustness and volatility observables, for tagging, are obtained simultaneously. We explore here a combination of the two techniques, and demonstrate that significant enhancements in discovery potentials may be obtained in nontrivial ways. We will illustrate this by considering a diboson resonance analysis as a case study, enabling us to interpolate between scenarios where the gains are purely due to statistical robustness and scenarios where the gains are also reinforced by volatility variable discriminants. The former, for instance, is applicable to digluon/diquark resonances, while the latter will be of relevance to di -W±/di -Z0 resonances, where the boosted vector bosons are decaying hadronically and have an intrinsic mass scale attached to them. We argue that one can enhance signal significance and discovery potentials markedly through stochastic grooming, and help augment studies at the Large Hadron Collider and future hadron colliders.

  16. Killing spinors for the bosonic string and Kaluza-Klein theory with scalar potentials

    International Nuclear Information System (INIS)

    Liu, Haishan; Lue, H.; Wang, Zhao-Long

    2012-01-01

    The paper consists mainly of two parts. In the first part, we obtain well-defined Killing spinor equations for the low-energy effective action of the bosonic string with the conformal anomaly term. We show that the conformal anomaly term is the only scalar potential that one can add into the action that is consistent with the Killing spinor equations. In the second part, we demonstrate that Kaluza-Klein theory can be gauged so that the Killing spinors are charged under the Kaluza-Klein vector. This gauging process generates a scalar potential with a maximum that gives rise to an AdS spacetime. We also construct solutions of these theories. (orig.)

  17. The Higgs boson. The greatest discovery of the century - And Higgs entered history. A window on hidden reality

    International Nuclear Information System (INIS)

    Khalatbari, Azar

    2012-01-01

    This article recalls the history and actors of scientific research in particle physics which leaded to the hypothesis and later the evidence of the existence of the Higgs boson. It evokes the main accelerators since 1931 (the Lawrence cyclotron, the Cockcroft Walton generator, the LEP electron-proton collider, the Tevatron), until the CERN Large Hadron Collider (LHC). Then, it discusses how the existence of the Higgs boson which confirms the physics standard model, creates new theoretical perspectives for the understanding of cosmos history, notably for the Universe missing mass, dark energy, and so on

  18. A review of the discovery of SM-like Higgs boson in H→γγ decay ...

    Indian Academy of Sciences (India)

    from this channel. It is probably important to mention in the beginning that in the diphoton channel, all the different production modes of the Higgs boson were looked at (see figure 2) .... this p-value, is a '5 sigma effect' and is taken as the quantitative ..... to-digital converter (ADC), reading out 10 samples of the signal voltage ...

  19. Coupled dynamics of interacting spin-1 bosons in a double-well potential

    Science.gov (United States)

    Carvalho, D. W. S.; Foerster, A.; Gusmão, M. A.

    2018-03-01

    We present a detailed analysis of dynamical processes involving two or three particles in a double-well potential. Motivated by experimental realizations of such a system with optically trapped cold atoms, we focus on spin-1 bosons with special attention on the effects of a spin-dependent interaction in addition to the usual Hubbard-like repulsive one. For a sufficiently weak tunneling amplitude in comparison to the dominant Hubbard coupling, particle motion is strongly correlated, occurring only under fine-tuned relationships between well-depth asymmetry and interactions. We highlight processes involving tunneling of coupled particle pairs and triads, emphasizing the role of the spin-dependent interaction in resonance conditions.

  20. Decoupled dirac equation in one-boson-Exchange potential model and Hartree-fock calculations

    International Nuclear Information System (INIS)

    Hanna, K.M.; Swelam, Sh.M.; Nafea, H.O.

    2004-01-01

    On the basis of a semi-relativistic decoupled Dirac equation and self consistent Hartree-Fock formulation, it is used the One-Boson-Exchange Potential (OBEP) model where each nucleon, as a Dirac particle, is considered to be a source of a scalar (a) and vector (co) fields, and is also acted upon by these fields, to get the ground state of some spherical nuclei. An important mathematical advantage gained by the assumption that each nucleon in the nucleus is moving under the influence of a common harmonic oscillator is that (as shown by Talmi) the wave function of the two nucleons is separable in their relative and center of mass (C.M) coordinates and the known Talmi-Moshinsky brackets. Three different static nucleon-nucleon interaction forms are used to predict the ground state energy for 4 He nucleus

  1. Theological Consequences of the Potential Discovery of Extraterrestrial Life

    Science.gov (United States)

    Funes José, G.

    2012-05-01

    I will review some ideas about extraterrestrial life in the history of the philosophical and religious thought. I will present some of the challenges that the potential discovery of extraterrestrial life would present to Christian theology. If we were to discover that we are not the only ones to inhabit the universe? Can a Christian admit the existence of other lives and other worlds, perhaps more advanced than ours, without calling into question our faith in the Creation, the Incarnation and Redemption?

  2. MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios after the Discovery of a Higgs-like Particle

    Energy Technology Data Exchange (ETDEWEB)

    Carena, M.; Heinemeyer, S.; Stål, O.; Wagner, C.E.M.; Weiglein, G.

    2013-09-01

    A Higgs-like particle with a mass of about 125.5 GeV has been discovered at the LHC. Within the current experimental uncertainties, this new state is compatible with both the predictions for the Standard Model (SM) Higgs boson and with the Higgs sector in the Minimal Supersymmetric Standard Model (MSSM). We propose new low-energy MSSM benchmark scenarios that, over a wide parameter range, are compatible with the mass and production rates of the observed signal. These scenarios also exhibit interesting phenomenology for the MSSM Higgs sector. We propose a slightly updated version of the well-known mh-max scenario, and a modified scenario (mh-mod), where the light CP-even Higgs boson can be interpreted as the LHC signal in large parts of the MA-tan \\beta\\ plane. Furthermore, we define a light stop scenario that leads to a suppression of the lightest CP-even Higgs gluon fusion rate, and a light stau scenario with an enhanced decay rate of h to \\gamma\\gamma\\ at large tan \\beta. We also suggest a \\tau-phobic Higgs scenario in which the lightest Higgs can have suppressed couplings to down-type fermions. We propose to supplement the specified value of the \\mu\\ parameter in some of these scenarios with additional values of both signs. This has a significant impact on the interpretation of searches for the non SM-like MSSM Higgs bosons. We also discuss the sensitivity of the searches to heavy Higgs decays into light charginos and neutralinos, and to decays of the form H to hh. Finally, in addition to all the other scenarios where the lightest CP-even Higgs is interpreted as the LHC signal, we propose a low-MH scenario, where instead the heavy CP-even Higgs boson corresponds to the new state around 125.5 GeV.

  3. CERN Library | Tord Ekelöf presents the proceedings of the Nobel Symposium on the Higgs Boson Discovery and Other Recent LHC Results | 12 June

    CERN Multimedia

    2014-01-01

    Thursday, 12 June 2014 at 16:00 in the Library (52-1-052).   The “Nobel Symposium on LHC results” took place at Krusenberg mansion, Uppsala, Sweden on 13-17 May 2013. The aim of the Symposium was to give an overview of the latest experimental and theoretical results pertaining to the LHC programme but also to give an occasion to ponder over the implications of these results in the broader context of the past, present and future evolution of the field of Particle Physics. “Nobel Symposium 154: The Higgs Boson Discovery and Other Recent LHC Results”, ed. by Tord Ekelöf, Physica Scripta T154, IOP, 2013, ISBN 9789789789781. * Coffee will be served from 15:30 * E-proceedings available here.

  4. Finite-size effects in the dynamics of few bosons in a ring potential

    Science.gov (United States)

    Eriksson, G.; Bengtsson, J.; Karabulut, E. Ö.; Kavoulakis, G. M.; Reimann, S. M.

    2018-02-01

    We study the temporal evolution of a small number N of ultra-cold bosonic atoms confined in a ring potential. Assuming that initially the system is in a solitary-wave solution of the corresponding mean-field problem, we identify significant differences in the time evolution of the density distribution of the atoms when it instead is evaluated with the many-body Schrödinger equation. Three characteristic timescales are derived: the first is the period of rotation of the wave around the ring, the second is associated with a ‘decay’ of the density variation, and the third is associated with periodic ‘collapses’ and ‘revivals’ of the density variations, with a factor of \\sqrt{N} separating each of them. The last two timescales tend to infinity in the appropriate limit of large N, in agreement with the mean-field approximation. These findings are based on the assumption of the initial state being a mean-field state. We confirm this behavior by comparison to the exact solutions for a few-body system stirred by an external potential. We find that the exact solutions of the driven system exhibit similar dynamical features.

  5. MSSM Higgs boson searches at the LHC. Benchmark scenarios after the discovery of a Higgs-like particle

    Energy Technology Data Exchange (ETDEWEB)

    Carena, M. [Fermilab, Batavia, IL (United States). Theoretical Physics Dept.; Chicago Univ., IL (United States). Enrico Fermi Inst.; Chicago Univ., IL (United States). Kavli Inst. for Cosmological Physics; Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Staal, O. [Stockholm Univ. (Sweden). Dept. of Physics; Wagner, C.E.M. [Chicago Univ., IL (United States). Enrico Fermi Inst.; Chicago Univ., IL (United States). Kavli Inst. for Cosmological Physics; Argonne National Laboratory, Argonne, IL (United States). HEP Division; Weiglein, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-02-15

    A Higgs-like particle with a mass of about 125.5 GeV has been discovered at the LHC. Within the current experimental uncertainties, this new state is compatible with both the predictions for the Standard Model (SM) Higgs boson and with the Higgs sector in the Minimal Supersymmetric Standard Model (MSSM). We propose new low- energy MSSM benchmark scenarios that, over a wide parameter range, are compatible with the mass and production rates of the observed signal. These scenarios also exhibit interesting phenomenology for the MSSM Higgs sector. We propose a slightly updated version of the well-known m{sup max}{sub h} scenario, and a modified scenario (m{sup mod}{sub h}), where the light CP-even Higgs boson can be interpreted as the LHC signal in large parts of the M{sub A}-tan {beta} plane. Furthermore, we define a light stop scenario that leads to a suppression of the lightest CP-even Higgs gluon fusion rate, and a light stau scenario with an enhanced decay rate of h{yields}{gamma}{gamma} at large tan {beta}. We also suggest a {tau}-phobic Higgs scenario in which the lightest Higgs can have suppressed couplings to down-type fermions. We propose to supplement the specified value of the {mu} parameter in some of these scenarios with additional values of both signs. This has a significant impact on the interpretation of searches for the non SM-like MSSM Higgs bosons. We also discuss the sensitivity of the searches to heavy Higgs decays into light charginos and neutralinos, and to decays of the form H{yields}{gamma}{gamma}. Finally, in addition to all the other scenarios where the lightest CP-even Higgs is interpreted as the LHC signal, we propose a low-M{sub H} scenario, where instead the heavy CP-even Higgs boson corresponds to the new state around 125.5 GeV.

  6. Development of a benchmark parameter scan for Higgs bosons in the NMSSM Model and a study of the sensitivity for H{yields}AA{yields}4{tau} in vector boson fusion with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Rottlaender, Iris

    2008-08-15

    An evaluation of the discovery potential for NMSSM Higgs bosons of the ATLAS experiment at the LHC is presented. For this purpose, seven two-dimensional benchmark planes in the six-dimensional parameter space of the NMSSM Higgs sector are defined. These planes include different types of phenomenology for which the discovery of NMSSM Higgs bosons is especially challenging and which are considered typical for the NMSSM. They are subsequently used to give a detailed evaluation of the Higgs boson discovery potential based on Monte Carlo studies from the ATLAS collaboration. Afterwards, the possibility of discovering NMSSM Higgs bosons via the H{sub 1}{yields}A{sub 1}A{sub 1}{yields}4{tau}{yields}4{mu}+8{nu} decay chain and with the vector boson fusion production mode is investigated. A particular emphasis is put on the mass reconstruction from the complex final state. Furthermore, a study of the jet reconstruction performance at the ATLAS experiment which is of crucial relevance for vector boson fusion searches is presented. A good detectability of the so-called tagging jets that originate from the scattered partons in the vector boson fusion process is of critical importance for an early Higgs boson discovery in many models and also within the framework of the NMSSM. (orig.)

  7. Symmetry-improved 2PI approach to the Goldstone-boson IR problem of the SM effective potential

    Directory of Open Access Journals (Sweden)

    Apostolos Pilaftsis

    2016-05-01

    Full Text Available The effective potential of the Standard Model (SM, from three loop order and higher, suffers from infrared (IR divergences arising from quantum effects due to massless would-be Goldstone bosons associated with the longitudinal polarizations of the W± and Z bosons. Such IR pathologies also hinder accurate evaluation of the two-loop threshold corrections to electroweak quantities, such as the vacuum expectation value of the Higgs field. However, these divergences are an artifact of perturbation theory, and therefore need to be consistently resummed in order to obtain an IR-safe effective potential. The so-called Two-Particle-Irreducible (2PI effective action provides a rigorous framework to consistently perform such resummations, without the need to resort to ad hoc subtractions or running into the risk of over-counting contributions. By considering the recently proposed symmetry-improved 2PI formalism, we address the problem of the Goldstone-boson IR divergences of the SM effective potential in the gaugeless limit of the theory. In the same limit, we evaluate the IR-safe symmetry-improved 2PI effective potential, after taking into account quantum loops of chiral fermions, as well as the renormalization of spurious custodially breaking effects triggered by fermionic Yukawa interactions. Finally, we compare our results with those obtained with other methods presented in the literature.

  8. Higgs Boson Pizza Day

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    CERN celebrated the fourth anniversary of the historical Higgs boson announcement with special pizzas.    400 pizzas were served on Higgs pizza day in Restaurant 1 at CERN to celebrate the fourth anniversary of the announcement of the discovery of the Higgs Boson (Image: Maximilien Brice/ CERN) What do the Higgs boson and a pizza have in common? Pierluigi Paolucci, INFN and CMS collaboration member, together with INFN president Fernando Ferroni found out the answer one day in Naples: the pizza in front of them looked exactly like a Higgs boson event display. A special recipe was then created in collaboration with the chef of the historic “Ettore” pizzeria in the St. Lucia area of Naples, and two pizzas were designed to resemble two Higgs boson decay channel event displays. The “Higgs Boson Pizza Day” was held on Monday, 4 July 2016, on the fourth anniversary of the announcement of the discovery of the Higgs boso...

  9. Supersymmetry discovery potential in the 2 leptons channel with ATLAS

    CERN Document Server

    De Sanctis, U

    2008-01-01

    The main argument of the PhD thesis is the evaluation of the ATLAS detector potential to discover Supersymmetry and to estimate the masses of the supersymmetric particles produced in events with two isolated leptons (electrons or muons) in the final state. The Supersymmetry (SUSY) is one of the most credited theories to extend the Standard Model (SM). This theory foresees a new class of particles that can be detected reconstructing their decay chains. Under some basic assumptions that define the mSUGRA model, all these chains finish with the Lightest SUSY Particle (LSP) that is stable, neutral and weakly interacting: a good candidate for the Cold Dark Matter. The LSP escapes the detection originating a large amount of missing energy in the detector. Within the mSUGRA model, this channel is then characterised by the presence of two isolated leptons, missing energy and energetic jets. A strategy to estimate the SM background in this channel using only real data has been developed allowing the discovery of SUSY ...

  10. Examining the Higgs boson potential at lepton and hadron colliders a comparative analysis

    CERN Document Server

    Baur, Ulrich; Rainwater, D L

    2003-01-01

    We investigate inclusive Standard Model Higgs boson pair production at lepton and hadron colliders for Higgs boson masses in the range 120 GeV 140 GeV we examine ZHH and HH nu bar-nu production at a future e+e- linear collider with center of mass energy in the range of sqrt{s}=0.5 - 1 TeV, and find that this is likely to be equally difficult. Combining our results with those of previous literature, which has demonstrated the capability of hadron and lepton machines to determine \\lambda in either the high or the low mass regions, we establish a very strong complementarity of these machines.

  11. Top Quark Produced Through the Electroweak Force: Discovery Using the Matrix Element Analysis and Search for Heavy Gauge Bosons Using Boosted Decision Trees

    Energy Technology Data Exchange (ETDEWEB)

    Pangilinan, Monica [Brown Univ., Providence, RI (United States)

    2010-05-01

    The top quark produced through the electroweak channel provides a direct measurement of the Vtb element in the CKM matrix which can be viewed as a transition rate of a top quark to a bottom quark. This production channel of top quark is also sensitive to different theories beyond the Standard Model such as heavy charged gauged bosons termed W'. This thesis measures the cross section of the electroweak produced top quark using a technique based on using the matrix elements of the processes under consideration. The technique is applied to 2.3 fb-1 of data from the D0 detector. From a comparison of the matrix element discriminants between data and the signal and background model using Bayesian statistics, we measure the cross section of the top quark produced through the electroweak mechanism σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.30-1.20+0.98 pb. The measured result corresponds to a 4.9σ Gaussian-equivalent significance. By combining this analysis with other analyses based on the Bayesian Neural Network (BNN) and Boosted Decision Tree (BDT) method, the measured cross section is 3.94 ± 0.88 pb with a significance of 5.0σ, resulting in the discovery of electroweak produced top quarks. Using this measured cross section and constraining |Vtb| < 1, the 95% confidence level (C.L.) lower limit is |Vtb| > 0.78. Additionally, a search is made for the production of W' using the same samples from the electroweak produced top quark. An analysis based on the BDT method is used to separate the signal from expected backgrounds. No significant excess is found and 95% C.L. upper limits on the production cross section are set for W' with masses within 600-950 GeV. For four general models of W{prime} boson production using decay channel W' → t$\\bar{p}$, the lower mass limits are the following: M(W'L with SM couplings) > 840 GeV; M(W'R) > 880 GeV or 890 GeV if the

  12. Distinguishing the Higgs Boson from the Dilaton at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Goldberger, Walter D.; Skiba, Witold; Grinstein, Benjamin

    2008-01-01

    It is likely that the LHC will observe a color- and charge-neutral scalar whose decays are consistent with those of the standard model (SM) Higgs boson. The Higgs interpretation of such a discovery is not the only possibility. For example, electroweak symmetry breaking could be triggered by a spontaneously broken, nearly conformal sector. The spectrum of states at the electroweak scale would then contain a narrow scalar resonance, the pseudo-Goldstone boson of conformal symmetry breaking, with Higgs-boson-like properties. If the conformal sector is strongly coupled, this pseudodilaton may be the only new state accessible at high energy colliders. We discuss the prospects for distinguishing this mode from a minimal Higgs boson at the LHC and ILC. The main discriminants between the two scenarios are (i) cubic self-interactions and (ii) a potential enhancement of couplings to massless SM gauge bosons

  13. Searches for the Higgs boson at the LHC

    CERN Document Server

    Delmastro, M

    2009-01-01

    The search strategy for the Standard Model Higgs boson at the Large Hadron Collider is reviewed, with a particular emphasis on its potential observation by the ATLAS and CMS detectors in the $\\gamma\\gamma$, $\\tau^+\\tau^-$, $ZZ^{*}$ and $WW^{*}$ final states. The combined Higgs discovery potential of ATLAS and CMS is discussed, as well as the expected exclusion limits on the production rate times the branching ratio as a function of the Higgs mass and the collected luminosity.

  14. Searches for the Higgs boson at LHC with the ATLAS Detector

    CERN Document Server

    Kourkoumelis, C

    2009-01-01

    The Higgs boson is the only particle missing to complete the successful description of the elementary ingredients of our world. As of yet, it escapes experimental detection despite the enormous worldwide efforts. The new Large Hadron Collider (LHC) at CERN will provide enough collision energy for its formation, if it exists. The large experiments already installed, are equipped with excellent detector capabilities in order to confirm (or exclude) its existence. Discovery examples for each mass region of the Higgs boson are given using the complete - "as built" - detector simulation and the latest theoretical cross-section calculations, as well as, optimized selection criteria and statistical treatment. Furthermore, the sensitivity for discovery of the Higgs bosons in the framework of the extended SM model, the MSSM, is shortly reviewed. Emphasis is given to the expected discovery potentials from the first years of running.

  15. Search for the Higgs Boson in the H{yields} ZZ{sup (*)}{yields}4{mu} Channel in CMS Using a Multivariate Analysis; Busqueda del Boson de Higgs en el Canal H{yields} ZZ{sup (*)}{yields}4{mu} en CMS Empleando un Metodo de Analisis Multivariado

    Energy Technology Data Exchange (ETDEWEB)

    Alonso Diaz, A.

    2007-12-28

    This note presents a Higgs boson search analysis in the CMS detector of the LHC accelerator (CERN, Geneva, Switzerland) in the H{yields} ZZ{sup (*)}{yields}4{mu} channel, using a multivariate method. This analysis, based in a Higgs boson mass dependent likelihood, constructed from discriminant variables, provides a significant improvement of the Higgs boson discovery potential in a wide mass range with respect to the official analysis published by CMS, based in orthogonal cuts independent of the Higgs boson mass. (Author) 8 refs.

  16. The H boson

    CERN Document Server

    Duplantier, Bertrand; Rivasseau, Vincent

    2017-01-01

    This volume provides a detailed description of the seminal theoretical construction in 1964, independently by Robert Brout and Francois Englert, and by Peter W. Higgs, of a mechanism for short-range fundamental interactions, now called the Brout-Englert-Higgs (BEH) mechanism. It accounts for the non-zero mass of elementary particles and predicts the existence of a new particle - an elementary massive scalar boson. In addition to this the book describes the experimental discovery of this fundamental missing element in the Standard Model of particle physics. The H Boson, also called the Higgs Boson, was produced and detected in the Large Hadron Collider (LHC) of CERN near Geneva by two large experimental collaborations, ATLAS and CMS, which announced its discovery on the 4th of July 2012. This new volume of the Poincaré Seminar Series, The H Boson, corresponds to the nineteenth seminar, held on November 29, 2014, at Institut Henri Po incaré in Paris.

  17. Study of the physics potential of the FCC-hh machine to measure the coupling of the Higgs boson to b quarks

    CERN Document Server

    Rodríguez, Arturo

    2016-01-01

    The FCC project as well as the Pythia + Delphes analysis within the FCC software are introduced. The ROOT analysis carried out to reconstruct main observables, such the invariant mass of the bb system, transverse mass and momentum of the W boson together with the lepton pT and distribution is explained. The resulting reconstructed invariant mass of the bb system showed a peak near the 125 GeV in correspondence with the Higgs boson. Future steps towards estimating the physics potential of the FCC-hh machine in this channel are discussed.

  18. Seeking heavy Higgs bosons through cascade decays

    Science.gov (United States)

    Coleppa, Baradhwaj; Fuks, Benjamin; Poulose, P.; Sahoo, Shibananda

    2018-04-01

    We investigate the LHC discovery prospects for a heavy Higgs boson decaying into the standard model Higgs boson and additional weak bosons. We consider a generic model-independent new physics configuration where this decay proceeds via a cascade involving other intermediate scalar bosons and focus on an LHC final-state signature comprised either of four b -jets and two charged leptons or of four charged leptons and two b -jets. We design two analyses of the corresponding signals, and demonstrate that a 5 σ discovery at the 14 TeV LHC is possible for various combinations of the parent and daughter Higgs-boson masses. We moreover find that the standard model backgrounds can be sufficiently rejected to guarantee the reconstruction of the parent Higgs boson mass. We apply our analyses to the Type-II two-Higgs-doublet model and identify the regions of the parameter space to which the LHC is sensitive.

  19. Measurement of cross sections and couplings of the Higgs Boson in bosonic decay channels with the ATLAS detector

    CERN Document Server

    Belyaev, Nikita; The ATLAS collaboration

    2017-01-01

    After the discovery of the Higgs boson, the measurement of its coupling properties are of particular importance. In this talk measurement of the cross sections and couplings of the Higgs boson in bosonic decay channels with the ATLAS detector are presented.

  20. Higgs Boson Physics at ATLAS

    CERN Document Server

    StDenis, R; The ATLAS collaboration

    2014-01-01

    The discovery of a new boson with the ATLAS detector at the LHC proton-proton collider is confirmed using the full data set collected at centre-of-mass energies of 7 and 8 TeV. The spin and parity properties of the boson are consistent with that of a scalar particle with positive parity. Comparison of the $J^{P}=0^+$ hypothesis to alternatives $J^{P} = 0^-,1^{+},1^-,2^+$ result in exclusion of these other choices at 97.8\\%, 99.97\\%, 99.7\\%, and 99.3\\% CL. The Higgs-boson Mass is $m_H = 125.5 \\pm 0.2 {\\rm (stat.)} ^{+0.5}_{-0.5} {\\rm (syst.)}$ \\GeV. Evidence for production of the Higgs boson by vector boson fusion is obtained in a model-independent approach by comparing the signal strengths $\\mu$ of vector boson fusion and production associated with a vector boson to to that for gluon fusion including associated production of top quark pairs: $\\mu_{\\rm VBF+VH}/\\mu_{\\rm ggF+ttH}= 1.4 ^{+0.4}_{-0.3} \\rm{(stat.)} ^{+0.6}_{-0.4} \\rm{(syst.)}$ which is 3.3 Gaussian standard deviations from zero.

  1. Examining the Potential of LSST to Contribute to Exoplanet Discovery

    Science.gov (United States)

    Lund, Michael B.; Pepper, Joshua; Jacklin, Savannah; Stassun, Keivan G.

    2018-01-01

    The Large Synoptic Survey Telescope (LSST), currently under construction in Chile with scheduled first light in 2019, will be one of the major sources of data in the next decade and is one of the top priorities expressed in the last Decadal Survey. As LSST is intended to cover a range of science questions, and so the LSST community is still working on optimizing the observing strategy of the survey. With a survey area that will cover half the sky in 6 bands providing photometric data on billions of stars from 16th to 24th magnitude, LSST has the ability to be leveraged to help contribute to exoplanet science. In particular, LSST has the potential to detect exoplanets around stellar populations that are not normally usually included in transiting exoplanet searches. This includes searching for exoplanets around red and white dwarfs and stars in the galactic plane and bulge, stellar clusters, and potentially even the Magellanic Clouds. In probing these varied stellar populations, relative exoplanet frequency can be examined, and in turn, LSST may be able to provide fresh insight into how stellar environment can play a role in planetary formation rates.Our initial work on this project has been to demonstrate that even with the limitations of the LSST cadence, exoplanets would be recoverable and detectable in the LSST photometry, and to show that exoplanets indeed worth including in discussions of variable sources that LSST can contribute to. We have continued to expand this work to examine exoplanets around stars in belonging to various stellar populations, both to show the types of systems that LSST is capable of discovering, and to determine the potential exoplanet yields using standard algorithms that have already been implemented in transiting exoplanet searches, as well as how changes to LSST's observing schedule may impact both of these results.

  2. Discovery of potential antipsychotic agents possessing pro-cognitive properties.

    Science.gov (United States)

    Lameh, Jelveh; McFarland, Krista; Ohlsson, Jorgen; Ek, Fredrik; Piu, Fabrice; Burstein, Ethan S; Tabatabaei, Ali; Olsson, Roger; Bradley, Stefania Risso; Bonhaus, Douglas W

    2012-03-01

    Current antipsychotic drug therapies for schizophrenia have limited efficacy and are notably ineffective at addressing the cognitive deficits associated with this disorder. The present study was designed to develop effective antipsychotic agents that would also ameliorate the cognitive deficits associated with this disease. In vitro studies comprised of binding and functional assays were utilized to identify compounds with the receptor profile that could provide both antipsychotic and pro-cognitive features. Antipsychotic and cognitive models assessing in vivo activity of these compounds included locomotor activity assays and novel object recognition assays. We developed a series of potential antipsychotic agents with a novel receptor activity profile comprised of muscarinic M(1) receptor agonism in addition to dopamine D(2) antagonism and serotonin 5-HT(2A) inverse agonism. Like other antipsychotic agents, these compounds reverse both amphetamine and dizocilpine-induced hyperactivity in animals. In addition, unlike other antipsychotic drugs, these compounds demonstrate pro-cognitive actions in the novel object recognition assay. The dual attributes of antipsychotic and pro-cognitive actions distinguish these compounds from other antipsychotic drugs and suggest that these compounds are prototype molecules in the development of novel pro-cognitive antipsychotic agents.

  3. CMS standard model Higgs boson results

    Directory of Open Access Journals (Sweden)

    Garcia-Abia Pablo

    2013-11-01

    Full Text Available In July 2012 CMS announced the discovery of a new boson with properties resembling those of the long-sought Higgs boson. The analysis of the proton-proton collision data recorded by the CMS detector at the LHC, corresponding to integrated luminosities of 5.1 fb−1 at √s = 7 TeV and 19.6 fb−1 at √s = 8 TeV, confirm the Higgs-like nature of the new boson, with a signal strength associated with vector bosons and fermions consistent with the expectations for a standard model (SM Higgs boson, and spin-parity clearly favouring the scalar nature of the new boson. In this note I review the updated results of the CMS experiment.

  4. Search for a Standard Model Higgs Boson in CMS via Vector Boson Fusion in the $H \\to WW \\to lvlv$ channel and Optimization of ENergy Reconstruction in CMS using Test Beam 2006 Data

    CERN Document Server

    Yazgan, E

    2007-01-01

    One of the goals of the LHC is to test the existence of the Higgs boson. This thesis presents a study of the potential to discover the Standard Model Higgs boson in the vector boson fusion *VBF) channel for the Higgs mass range 120-200 GeV/c^2. The decay of Higgs bosons into the WW* final state with both W bosons decaying leptonically is considered. The main backgrounds are ttbar+j and W+W-jj. This study, based on a full simulation of the CMS detector at the LHC, shows that a 5 sigma discovery can be done with an integrated luminosity of 12-72 fb^-1 for 130-200 GeV/c^2 Higgs bosons. Due to the uncertainties in the backgrounds, it is important to measure the backgrounds from data. This study shows that the major background can be measured directly to 7% with 30 fb^-1. After discovering the Higgs boson, it will be crucial to probe its physical properties. A method to measure the Higgs boson mass using transverse mass template distributions is investigated in the VBF channel. The performance of the combined CMS ...

  5. Study of dynamical behaviour and fermionization of a bosonic gas in funnel potential

    International Nuclear Information System (INIS)

    Xu Guangyuan; Yan Li; Wang Yongjun; Liu Xianfeng; Han Jiurong; Wang Yuzhu

    2008-01-01

    This paper presents a funnel external potential model to investigate dynamic properties of ultracold Bose gas. By using variational method, we obtain the ground-state energy and density properties of ultracold Bose atoms. The results show that the ultracold Bose gas confined in a funnel potential experiences the transition from three-dimensional regime to quasi-one-dimensional regime in a small aspect ratio, and undergoes fermionization process as the aspect ratio increases. (atomic and molecular physics)

  6. Bosonic strings

    CERN Document Server

    Jost, Jürgen

    2007-01-01

    This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmüller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and D-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.

  7. Search for additional Higgs bosons

    CERN Document Server

    Meyer, Jochen; The ATLAS collaboration

    2017-01-01

    The discovery of a Higgs boson with the mass of about 125 GeV completed the particle content predicted by the Standard Model. Even though this model is well-established and consistent with many measurements, it is not capable to solely explain some observations. Many extension addressing this fact introduce additional Higgs-like bosons which can be either neutral, singly-charged or even doubly-charged. The current status of searches based on data of the ATLAS and CMS experiments at the LHC are presented. No indications for such particles were however found.

  8. Measurement of Higgs boson production via vector boson fusion in decays into W bosons with the ATLAS detector

    International Nuclear Information System (INIS)

    Bronner, Johanna

    2014-01-01

    The vector boson fusion production rate of the Standard Model Higgs boson has been measured in decays into two W bosons, each subsequently decaying into an electron or muon and a neutrino, with the ATLAS detector at the Large Hadron Collider (LHC). The vector boson fusion production cross section in the Standard Model is about an order of magnitude smaller than the dominant Higgs boson production cross section from gluon fusion. Proton-proton collision data at a center-of-mass energy of 8 TeV delivered by the LHC recorded with the ATLAS detector corresponding to an integrated luminosity of 21 fb -1 have been analyzed. Motivated by the recent discovery of a Higgs-like boson with a mass of (125.5±0.6) GeV and (125.7±0.4) GeV by the ATLAS and CMS collaborations at the LHC, the analysis is optimized for this mass. An excess of events, compatible with the Standard Model expectation for a Higgs boson with m H =125 GeV, is observed with a significance of 2.8 standard deviations when compared to the background-only expectation. The corresponding signal strength, the observed event rate relative to the Standard Model prediction of m H =125 GeV is 2.1 -0.8 +1.0 . A Higgs boson produced via vector boson fusion is excluded with 95% confidence level in the mass range between 152 GeV and 185 GeV. When combined with measurements of other Higgs boson production and decay channels by ATLAS, evidence for vector boson fusion production with a significance of 3.3 standard deviations is observed. All measurements of Higgs boson couplings to Standard Model particles are in agreement with the predictions of the Standard Model.

  9. Search for the SM Higgs boson in the $\\gamma\\gamma$ + $E_T^{miss}$ channel

    CERN Document Server

    Beauchemin, P H

    2004-01-01

    Standard Model Higgs production in association with $Z$ or $W$ gauge bosons, or with $t\\bar t$ obtains a substantial contribution from events with large missing transverse energy. It is found that the decay channel $h \\to \\gamma\\gamma$ has a significant discovery potential, with large signal to background ratio, when missing transverse energy of $\\sim 66$ GeV is required. Very good reconstruction of $\\Esl_T$ is required, however. A measurement of the rate of this channel should be useful in determining the strength of the Higgs coupling to gauge bosons.

  10. The Higgs boson

    CERN Multimedia

    Brunet, S

    2014-01-01

    ATLAS Higgs poster targeted to general public, explaining the Brout-Englert-Higgs mechanism and why it is important. It also explains the role of the Higgs Boson, how we look for it, the journey of the discovery and what comes after the discovery. Also available in French (http://cds.cern.ch/record/1697501). Don’t hesitate to use it in your institute’s corridors and in your outreach events! The poster is in A0 format. You can click on the image to download the high-quality .pdf version and print it at your favorite printshop. For any questions or comments you can contact atlas-outreach-coordination@cern.ch.

  11. Discovering the Higgs bosons of minimal supersymmetry with muons and a bottom quark.

    Science.gov (United States)

    Dawson, Sally; Dicus, Duane; Kao, Chung; Malhotra, Rahul

    2004-06-18

    We investigate the prospects for the discovery at the CERN Large Hadron Collider (LHC) of a neutral Higgs boson produced with one bottom quark followed by Higgs decay into a muon pair. We work within the framework of the minimal supersymmetric model. The dominant physics background from the production of b mu(+)mu(-), j mu(+)mu(-), j=g,u,d,s,c, and bbW+W- is calculated with realistic acceptance cuts. Promising results are found for the CP-odd pseudoscalar (A0) and the heavier CP-even scalar (H0) Higgs bosons with masses up to 600 GeV. This discovery channel with one energetic bottom quark greatly improves the discovery potential of the LHC beyond the inclusive channel pp-->phi(0)-->mu(+)mu(-)+X.

  12. Identification of b-jets and investigation of the discovery potential of a Higgs boson in the $WH --> l \

    CERN Document Server

    Piacquadio, Giacinto

    2010-01-01

    The Standard Model of particle physics describes three of the four known fundamental interactions between the elementary particles: the electromagnetic, weak and strong forces.It provides an extremely accurate description of the electroweak interactions up to the energy scales so far explored in high energy physics experiments. The Large Hadron Collider (LHC), which is presently starting to operate, will provide proton-proton collisions with an unprecedented centre-of-mass energy of $\\sqrt{s} = 14~{\\rm TeV}$ and with instantaneous luminosities of up to $10^{34}~{\\rm cm^{-2}s^{-1}}$, and is therefore ideally suited to explore the TeV energy domain. Two multipurpose experiments, ATLAS and CMS, were built to analyse the collisions. The high instantaneous luminosities achievable at the LHC will result in a significant contamination of the signal processes by additional soft proton-proton collisions, usually known as pile-up interactions. In the course of this thesis several algorithms were developed for the ATLAS...

  13. Zika virus NS5 protein potential inhibitors: an enhanced in silico approach in drug discovery.

    Science.gov (United States)

    Ramharack, Pritika; Soliman, Mahmoud E S

    2018-04-01

    The re-emerging Zika virus (ZIKV) is an arthropod-borne virus that has been described to have explosive potential as a worldwide pandemic. The initial transmission of the virus was through a mosquito vector, however, evolving modes of transmission has allowed the spread of the disease over continents. The virus has already been linked to irreversible chronic central nervous system conditions. The concerns of the scientific and clinical community are the consequences of Zika viral mutations, thus suggesting the urgent need for viral inhibitors. There have been large strides in vaccine development against the virus but there are still no FDA approved drugs available. Rapid rational drug design and discovery research is fundamental in the production of potent inhibitors against the virus that will not just mask the virus, but destroy it completely. In silico drug design allows for this prompt screening of potential leads, thus decreasing the consumption of precious time and resources. This study demonstrates an optimized and proven screening technique in the discovery of two potential small molecule inhibitors of ZIKV Methyltransferase and RNA dependent RNA polymerase. This in silico 'per-residue energy decomposition pharmacophore' virtual screening approach will be critical in aiding scientists in the discovery of not only effective inhibitors of Zika viral targets, but also a wide range of anti-viral agents.

  14. Two-boson composites

    DEFF Research Database (Denmark)

    Tichy, Malte C.; Bouvrier, P. Alexander; Mølmer, Klaus

    2013-01-01

    Composite bosons made of two bosonic constituents exhibit deviations from ideal bosonic behavior due to their substructure. This deviation is reflected by the normalization ratio of the quantum state of N composites. We find a set of saturable, efficiently evaluable bounds for this indicator, which...... quantifies the bosonic behavior of composites via the entanglement of their constituents. We predict an abrupt transition between ordinary and exaggerated bosonic behavior in a condensate of two-boson composites....

  15. More on Higgs bosons in SU(5)

    International Nuclear Information System (INIS)

    Hueffel, H.

    1980-01-01

    In the framework of the minimal SU(5) model of Georgi and Glashow the explicit couplings between the various mass eigenstate Higgs bosons and the gauge fields as well as the Higgs boson self couplings are presented. As an application bounds for the parameters of the Higgs potential and for the Higgs boson masses are derived by applying partial wave unitarity to the tree graphs of Higgs-Higgs scattering. (Auth.)

  16. Leptonic signatures of doubly charged Higgs boson production at the LHC

    Science.gov (United States)

    Akeroyd, A. G.; Chiang, Cheng-Wei; Gaur, Naveen

    2010-11-01

    The production of doubly charged Higgs bosons ( H ±±) at the CERN LHC can give rise to distinctive multi-lepton signatures. The discovery potential of H ±± can be optimized by considering a search strategy which is sensitive to both of the dominant production mechanisms, qbar{q} to {H^{ + + }}{H^{ - - }} and qoverline {q'} to {H^{± ± }}{H^mp } . We compare the discovery potential for the signatures of exactly four leptons and at least three leptons in the final state, using the same set of cuts. We have carried out fast detector simulations at the LHC for both signal and backgrounds for a wide range of values of the charged Higgs mass. We find that the use of the latter channel can substantially improve the detection prospects of the doubly charged Higgs boson at the LHC.

  17. Search for invisibly decaying Higgs boson at Large Hadron Collider

    Indian Academy of Sciences (India)

    In several scenarios of Beyond Standard Model physics, the invisible decay mode of the Higgs boson is an interesting ... Experimental discovery of an invisible Higgs boson does not entail reconstruction of the mass peak, rather, it requires a ... jets with large (pseudo) rapidity (η) gap as shown in figure 2. The leading quarks.

  18. Measurement of cross sections and couplings of the Higgs Boson using the ATLAS detector

    CERN Document Server

    Honda, Shunsuke; The ATLAS collaboration

    2017-01-01

    After the discovery of the Higgs boson, the measurement of its coupling properties are of particular importance. In this talk measurement of the cross sections and couplings of the Higgs boson in bosonic and fermionic decay channels with the ATLAS detector are presented.

  19. Charged Higgs boson searches and SemiConductor Tracker commissioning for the ATLAS experiment

    CERN Document Server

    Mohn, Bjarte Alsaker

    The ATLAS (A Toroidal Lhc ApparatuS) experiment is one of four major experiments presently being installed at the upcoming Large Hadron Collider (LHC) at the European Centre for Nuclear Research (CERN) outside Geneva. In this thesis we present work done on both the simulation of the ATLAS physics potential for a charged Higgs boson and the construction of the Semiconductor Tracker (SCT) - a subdetector within the ATLAS Inner Detector. The discovery of a charged Higgs boson would be an unambiguous sign of physics beyond the Standard Model (SM) and it is thus of great interest to study the ATLAS potential for a charged Higgs discovery. Two such studies have been conducted for this thesis. In the first study a large-mass-splitting Minimal Supersymmetric Standard Model (MSSM) is assumed in which the charged Higgs boson decays into a W boson and a neutral Higgs may receive a large branching ratio.We conclude, however, that charged Higgs searches in this decay channel are made difficult by a large irreducible SM ba...

  20. Sensitivity and Discovery Potential of CUORE to Neutrinoless Double-Beta Decay

    Energy Technology Data Exchange (ETDEWEB)

    Alessandria, F; Ardito, R; Artusa, DR; III, FTA; Azzolini, O; Balata, M; Banks, TI; Bari, G; Beeman, J; Bellini, F; Bersani, A; Biassoni, M; Bloxham, T; Brofferio, C; Bucci, C; Cai, XZ; Canonica, L; Cao, X; Capelli, S; Carbone, L; Cardani, L; Carrettoni, M; Casali, N; Chiesa, D; Chott, N; Clemenza, M; Cosmelli, C; Cremonesi, O; Creswick, RJ; Dafinei, I; Dally, A; Datskov, V; Biasi, AD; Deninno, MM; Domizio, SD; Vacri, MLD; Ejzak, L; Faccini, R; Fang, DQ; Farach, HA; Faverzani, M; Fernandes, G; Ferri, E; Ferroni, F; Fiorini, E; Franceschi, MA; Freedman, SJ; Fujikawa, BK; Giachero, A; Gironi, L; Giuliani, A; Goett, J; Gorla, P; Gotti, C; Guardincerri, E; Gutierrez, TD; Haller, EE; Han, K; Heeger, KM; Huang, HZ; Kadel, R; Kazkaz, K; Keppel, G; Kogler, L; Kolomensky, YG; Lenz, D; Li, YL; Ligi, C; Liu, X; Ma, YG; Maiano, C; Maino, M; Martinez, M; Maruyama, RH; Mei, Y; Moggi, N; Morganti, S; Napolitano, T; Newman, S; Nisi, S; Nones, C; Norman, EB; Nucciotti, A; O' Donnell, T; Orio, F; Orlandi, D; Ouellet, JL; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Piperno, G; Pirro, S; Previtali, E; Rampazzo, V; Rimondi, F; Rosenfeld, C; Rusconi, C; Sala, E; Sangiorgio, S; Scielzo, ND; Sisti, M; Smith, AR; Stivanello, F; Taffarello, L; Tenconi, M; Tian, WD; Tomei, C; Trentalange, S; Ventura, G; Vignati, M; Wang, BS; Wang, HW; Wise, T; Woodcraft, A; Zanotti, L; Zarra, C; Zhu, BX; Zucchelli, S

    2017-07-06

    We present a study of the sensitivity and discovery potential of CUORE, a bolometric double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso in Italy. Two approaches to the computation of experimental sensitivity for various background scenarios are presented, and an extension of the sensitivity formulation to the discovery potential case is also discussed. Assuming a background rate of 10-2 cts/(keV kg y), we find that, after 5 years of live time, CUORE has a 1 sigma sensitivity to the neutrinoless double-beta decay half-life of T$0v\\atop{1/2}$(1θ) = 1.6 \\times 1026 y and thus a potential to probe the effective Majorana neutrino mass down to 40-100 meV; the sensitivity at 1.64 sigma, which corresponds to 90% C.L., will be T$0v\\atop{1/2}$(1.64θ) = 9.5 \\times 1025 y. This range is compared with the claim of observation of neutrinoless double-beta decay in 76Ge and the preferred range of the neutrino mass parameter space from oscillation results.

  1. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery

    DEFF Research Database (Denmark)

    Poulsen, Michael; Oh, Dong-Chan; Clardy, Jon

    2011-01-01

    Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social...... and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15...... and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding...

  2. Evidence of Higgs Boson Production through Vector Boson Fusion

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00333580

    The discovery of the Higgs boson in 2012 provided confirmation of the proposed mechanism for preserving the electroweak $SU(2) \\times U(1)$ gauge symmetry of the Standard Model of particle physics. It also heralded in a new era of precision Higgs physics. This thesis presents a measurement of the rate at which the Higgs boson is produced by vector boson fusion in the \\wwlnln decay channel. With gauge boson couplings in both the production and decay vertices, a VBF measurement in this channel is a powerful probe of the $VVH$ vertex strength. Using $4.5$~fb$^{-1}$ and $20.3$~fb$^{-1}$ of $pp$ collision data collected at respective center-of-mass energies of 7 and $8 \\tev$ in the ATLAS detector, measurements of the statistical significance and the signal strength are carried out in the Higgs mass range $100 \\leq m_H \\leq 200 \\gev$. These measurements are enhanced with a boosted decision tree that exploits the correlations between eight kinematic inputs in order to separate signal and background processes. At the...

  3. Transient Receptor Potential (TRP Channels in Drug Discovery: Old Concepts & New Thoughts

    Directory of Open Access Journals (Sweden)

    Susan Huang

    2017-07-01

    Full Text Available 2017 marks the 20th anniversary of the molecular cloning by David Julius and colleagues (1997 of the long sought-after capsaicin receptor, now known as TRPV1 (Transient Receptor Potential Vanilloid 1 [1]. This seminal discovery has opened up a “hot” new field of basic research and launched drug discovery efforts into the large family (by the latest count 28 mammalian members, 27 in humans of TRP ion channels [2]. Indeed, it took less than a decade for the first potent, small molecule TRPV1 antagonists to enter phase 1 clinical trials [3]. Yet, despite the large amount of resources that has been invested in TRPV1 research, there are currently no TRPV1-targeted drugs in phase 3 clinical trials. In this special issue of Pharmaceuticals, we aim to capture the progress in the TRP channel field over the past twenty years, with 15 articles covering a variety of TRP channels and potential relevant disease states and applications.

  4. Acquiring a taste for the Higgs boson

    CERN Multimedia

    Caroline Duc

    2012-01-01

    Before CERN's scientists had even announced the discovery of the Higgs boson, others were already attributing some interesting characteristics to it: flavoursome, sparkling and liquid...   The artisan brewery Hopfenstark in Quebec launched its new "Higgs boson" beer in November 2010. Ever since, it has been intriguing enthusiasts with its unique taste explosion. The boson was a source of inspiration for brewer Frédéric Cormier, the Hopfenstark brewery's owner, who is a big fan of science programmes. "I returned from a trip to Europe in 2010 with the idea for a new beer that would be unlike any other," he explains. "I was always reading and hearing about CERN's particle accelerator in the media, so I did some research on the famous Higgs boson and decided to give my new creation the same name." For Frédéric Cormier, it's important that the names of his beers refle...

  5. Prospects for the study of vector boson scattering in same sign WW and WZ interactions at the HL-LHC with the upgraded CMS detector

    CERN Document Server

    CMS Collaboration

    2016-01-01

    Studies of the $pp \\rightarrow \\mathrm{\\mathrm{W}^{\\pm}Z} jj$ and $pp \\rightarrow\\mathrm{\\mathrm{W}^{\\pm}\\mathrm{W}^{\\pm}} jj$ vector boson scattering processes in 14 TeV pp collisions using the planned upgrades of the CMS detector are presented. These studies include assessments on the expected precision in measuring the electroweak cross sections, the discovery potential for observing longitudinal vector boson scattering and limits on partial unitarization scenarios between vector boson scattering and the Higgs boson. Beyond the standard model sensitivity is probed in the framework of the effective field theory by extracting expected limits on quartic gauge couplings for $\\mathrm{\\mathrm{W}^{\\pm}\\mathrm{W}^{\\pm}}$ scattering. All results are presented with a luminosity of $3~\\mathrm{ab}^{-1}$ and comparisons with the non upgraded CMS detector including its aging due to radiation are performed.

  6. Cracking the particle code of the universe the hunt for the Higgs boson

    CERN Document Server

    Moffat, John W

    2014-01-01

    Among the current books that celebrate the discovery of the Higgs boson, Cracking the Particle Code of the Universe is a rare objective treatment of the subject. The book is an insider's behind-the-scenes look at the arcane, fascinating world of theoretical and experimental particle physics leading up to the recent discovery of a new boson. If the new boson is indeed the Higgs particle, its discovery represents an important milestone in the history of particle physics. However, despite the pressure to award Nobel Prizes to physicists associated with the Higgs boson, John Moffat argues that the

  7. Documenting and harnessing the biological potential of molecules in Distributed Drug Discovery (D3) virtual catalogs.

    Science.gov (United States)

    Abraham, Milata M; Denton, Ryan E; Harper, Richard W; Scott, William L; O'Donnell, Martin J; Durrant, Jacob D

    2017-11-01

    Virtual molecular catalogs have limited utility if member compounds are (i) difficult to synthesize or (ii) unlikely to have biological activity. The Distributed Drug Discovery (D3) program addresses the synthesis challenge by providing scientists with a free virtual D3 catalog of 73,024 easy-to-synthesize N-acyl unnatural α-amino acids, their methyl esters, and primary amides. The remaining challenge is to document and exploit the bioactivity potential of these compounds. In the current work, a search process is described that retrospectively identifies all virtual D3 compounds classified as bioactive hits in PubChem-cataloged experimental assays. The results provide insight into the broad range of drug-target classes amenable to inhibition and/or agonism by D3-accessible molecules. To encourage computer-aided drug discovery centered on these compounds, a publicly available virtual database of D3 molecules prepared for use with popular computer docking programs is also presented. © 2017 John Wiley & Sons A/S.

  8. Where is the Higgs boson?

    International Nuclear Information System (INIS)

    Aranda, A.; Balazs, C.; Diaz-Cruz, J.L.

    2003-01-01

    Electroweak precision measurements indicate that the standard model Higgs boson is light and that it could have already been discovered at LEP 2, or might be found at the Tevatron run 2. In the context of a TeV -1 size extra-dimensional model, we argue that the Higgs boson production rates at LEP and the Tevatron are suppressed, while they might be enhanced at the LHC or at CLIC. This is due to the possible mixing between brane and bulk components of the Higgs boson, that is, the non-trivial brane-bulk 'location' of the lightest Higgs. To parametrize this mixing, we consider two Higgs doublets, one confined to the usual space dimensions and the other propagating in the bulk. Calculating the production and decay rates for the lightest Higgs boson, we find that compared to the standard model (SM), the cross section receives a suppression well below but an enhancement close to and above the compactification scale M c . This impacts the discovery of the lightest (SM like) Higgs boson at colliders. To find a Higgs signal in this model at the Tevatron run 2 or at the LC with √s=1.5 TeV, a higher luminosity would be required than in the SM case. Meanwhile, at the LHC or at CLIC with √s∼3-5 TeV one might find highly enhanced production rates. This will enable the latter experiments to distinguish between the extra-dimensional and the SM for M c up to about 6 TeV

  9. Progress and Potential of Imaging Mass Spectrometry Applied to Biomarker Discovery.

    Science.gov (United States)

    Quanico, Jusal; Franck, Julien; Wisztorski, Maxence; Salzet, Michel; Fournier, Isabelle

    2017-01-01

    Mapping provides a direct means to assess the impact of protein biomarkers and puts into context their relevance in the type of cancer being examined. To this end, mass spectrometry imaging (MSI) was developed to provide the needed spatial information which is missing in traditional liquid-based mass spectrometric proteomics approaches. Aptly described as a "molecular histology" technique, MSI gives an additional dimension in characterizing tumor biopsies, allowing for mapping of hundreds of molecules in a single analysis. A decade of developments focused on improving and standardizing MSI so that the technique can be translated into the clinical setting. This review describes the progress made in addressing the technological development that allows to bridge local protein detection by MSI to its identification and to illustrate its potential in studying various aspects of cancer biomarker discovery.

  10. Search for a Standard Model Higgs boson in CMS via vector boson fusion in the $H \\to W W \\to$ lepton neutrino lepton neutrino channel and optimization of energy reconstruction in CMS using test beam 2006 data

    Energy Technology Data Exchange (ETDEWEB)

    Yazgan, Efe [Middle East Technical Univ., Ankara (Turkey)

    2007-06-01

    One of the goals of the LHC is to test the existence of the Higgs boson. This thesis presents a study of the potential to discover the Standard Model Higgs boson in the vector boson fusion (VBF) channel for the Higgs mass range 120- 200 GeV/c2. The decay of Higgs bosons into the WW* fi state with both W-bosons decaying leptonically is considered. The main backgrounds are tt + j and W +W -jj. This study, based on a full simulation of the CMS detector at the LHC, shows that a 5σ discovery can be done with an integrated luminosity of 12 - 72 fb-1 for 130 - 200 GeV/c2 Higgs bosons. Due to the uncertainties in the backgrounds, it is important to measure the backgrounds from data. This study shows that the major background can be measured directly to 7% with 30 fb-1. After discovering the Higgs boson, it will be crucial to probe its physical properties. A method to measure the Higgs boson mass using transverse mass template distributions is investigated in the VBF channel. iv The performance of the combined CMS electromagnetic and hadronic calorimeters (EB+HB) was measured at the H2 test beam at the CERN SPS during 2006 with various particles in a large momentum range, 1-350 GeV/c. Another major contribution of this thesis is developing the method to optimize the energy reconstruction for the combined EB+HB system with which the corrected responses become 100% with 6% fl and the stochastic resolution is improved from 111% to 94%.

  11. The Higgs Boson.

    Science.gov (United States)

    Veltman, Martinus J. G.

    1986-01-01

    Reports recent findings related to the particle Higgs boson and examines its possible contribution to the standard mode of elementary processes. Critically explores the strengths and uncertainties of the Higgs boson and proposed Higgs field. (ML)

  12. Working Group Report: Higgs Boson

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Sally; Gritsan, Andrei; Logan, Heather; Qian, Jianming; Tully, Chris; Van Kooten, Rick [et al.

    2013-10-30

    This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities from detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).

  13. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery.

    Directory of Open Access Journals (Sweden)

    Michael Poulsen

    2011-02-01

    Full Text Available Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest.

  14. Radioligand binding assays in the drug discovery process: potential pitfalls of high throughput screenings.

    Science.gov (United States)

    Noël, F; Mendonça-Silva, D L; Quintas, L E

    2001-02-01

    Radioligand binding assays evaluating directly the ability of a drug to interact with a defined molecular target is part of the drug discovery process. The need for a high throughput rate in screening drugs is actually leading to simplified experimental schemes that increase the probability of false negative results. Special concern involves voltage-gated ion channel drug discovery where a great care is required in designing assays because of frequent multiplicity of (interacting) binding sites. To clearly illustrate this situation, three different assays used in the academic drug discovery program of the authors were selected because they are rich of intrinsic artifacts: (I) (20 mmol/l caffeine almost duplicated [3H]ryanodine binding (89% higher than control) to rat heart microsomes at 0.3 mumol/l free calcium but did not exert any effect when using a high (107 mumol/l) free calcium, as mostly used in ryanodine binding assays; (II) An agonist for the ionotropic glutamate receptor of the kainate type can distinctly affect [3H]kainate binding to chicken cerebellum membranes depending on its concentration: unlabelled kainic acid per se either stimulated about 30% (at 50-100 nmol/l), had no effect (at 200 nmol/l) or even progressively decreased (at 0.3-2 mumol/l) the binding of 5 nmol/l [3H]kainate, emphasizing the risk of using a single concentration for screening a drug; (III) in a classical [3H]flunitrazepam binding assay, the stimulatory effect of a GABA (gamma-aminobutyric acid) agonist was only observed when using extensively washed rat brain synaptosomes (10 mumol/l GABA increased flunitrazepam binding by 90%). On the other hand, the inhibitory effect of a GABA antagonist was only observed when using crude synaptosomes (10 mumol/l bicuculine reduced [3H]flunitrazepam binding by 40%). It can be concluded that carefully designed radioligand assays which can be performed in an academic laboratory are appropriate for screening a small number of drugs, especially if

  15. Who will catch the Higgs boson?

    International Nuclear Information System (INIS)

    Colas, P.; Tuchming, B.

    2004-01-01

    The Higgs boson was theoretically created about 40 years ago by a Scott Peter Higgs who wanted to explain why some particles get a mass. Since then the Higgs boson has taken consistency and has become an important point of the standard model theory. Its experimental discovery would be a milestone of modern physics. The search for the Higgs boson is an international challenge that takes place around 2 huge machines: the Tevatron near Chicago and the LHC (large hadron collider) that is being built in CERN. The Tevatron is in fact the upgrading of an old particle accelerator, it is a proton collider and its narrow range of energy is compensated by a low background noise. On the other hand the LHC will begin operating only in 2007 and its full power will be reached a few years later, the energy available to create particles will be then 7 times higher than for the Tevatron. Both machines have chance of succeeding by being the first to detect the Higgs boson. Time plays in favor of the Tevatron but in any case if the Higgs boson exists it will be detected at LHC because this equipment covers completely the energy range in which the Higgs boson is suspected to exist. (A.C.)

  16. Cosmic gamma ray detection and discovery potential with the AMS-2 spectrometer

    International Nuclear Information System (INIS)

    Girard, L.

    2004-12-01

    Yet designed to measure charged component of the cosmic rays, the foreseen Alpha Magnetic Spectrometer (AMS-02) could also release γ-ray studies, in the energy range from GeV to TeV, using the tracker system, for γ-rays converted in e + e - pair, and the electromagnetic calorimeter. In the first part of the thesis are described the calibrations and the performances of the engineering model of the calorimeter, obtained from the analysis of data taken during a test-beam performed at CERN in July 2002. In the second part of the thesis, the AMS-02 discovery potential for γ-astrophysics is presented. While exposure maps of the γ--sky are computed for one year of data taking with the γ--detectors, the acceptance of the calorimeter is obtained from Monte-Carlo simulations. The AMS-02 potential is then estimated for signals from the Vela pulsar and for some supersymmetric signals from the Galactic Center. (author)

  17. Development and exploration of potential routes of discovery of new superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xiao [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis summarizes our efforts to develop and explore potential routes for the discovery of new superconductors. The development of viable solutions for sulfur-bearing compounds is presented. It also provides the details of searching for quantum critical points (QCPs) and possible superconductors by suppressing ferromagnetic states via chemical substitution and the application of pressure. The ferromagnetism in La(VxCr1-x)Ge3 was successfully suppressed by pressure, and, in addition, a potential QCP at ambient pressure was discovered for x = 0.16. On the other hand, the La(VxCr1-x)Sb3 series is likely to evolve into new magnetic state with V-substitution with the Cr-based magnetism appearing to be more local-moment like than for the case of LaCrGe3. We also performed detailed characterization on BaSn5 superconductor, giving further understanding of its superconducting state, and on R3Ni2-xSn7 and RNi1-xBi2±y series putting to rest spurious claims of superconductivity.

  18. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2015-08-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  19. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  20. Microbial P450 Enzymes in Bioremediation and Drug Discovery: Emerging Potentials and Challenges.

    Science.gov (United States)

    Bhattacharya, Sukanta S; Yadav, Jagjit S

    2018-01-01

    Cytochrome P450 enzymes are a structurally conserved but functionally diverse group of heme-containing mixed function oxidases found across both prokaryotic and eukaryotic forms of the microbial world. Microbial P450s are known to perform diverse functions ranging from the synthesis of cell wall components to xenobiotic/drug metabolism to biodegradation of environmental chemicals. Conventionally, many microbial systems have been reported to mimic mammalian P450-like activation of drugs and were proposed as the in-vitro models of mammalian drug metabolism. Recent reports suggest that native or engineered forms of specific microbial P450s from these and other microbial systems could be employed for desired specific biotransformation reactions toward natural and synthetic (drug) compounds underscoring their emerging potential in drug improvement and discovery. On the other hand, microorganisms particularly fungi and actinomycetes have been shown to possess catabolic P450s with unusual potential to degrade toxic environmental chemicals including persistent organic pollutants (POPs). Wood-rotting basidiomycete fungi in particular have revealed the presence of exceptionally large P450 repertoire (P450ome) in their genomes, majority of which are however orphan (with no known function). Our pre- and post-genomic studies have led to functional characterization of several fungal P450s inducible in response to exposure to several environmental toxicants and demonstration of their potential in bioremediation of these chemicals. This review is an attempt to summarize the postgenomic unveiling of this versatile enzyme superfamily in microbial systems and investigation of their potential to synthesize new drugs and degrade persistent pollutants, among other biotechnological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Using Molecular Docking Analysis to Discovery Dregea sinensis Hemsl. Potential Mechanism of Anticancer, Antidepression, and Immunoregulation.

    Science.gov (United States)

    Liu, Xiujie; Shi, Yu; Deng, Yulin; Dai, Rongji

    2017-01-01

    Dregea sinensis Hemsl. plant of the genus Dregea volubilis (Asclepiadaceae), plays a vital role in anticancer, antidepression, and immunoregulation. Steroidal glycosides are the main constituents of this herb, which were significant biological active ingredients. The objective of this study is to recognize the mechanism of anticancer, antidepression, and immunoregulation of D. sinensis Hemsl. Seventy-two steroidal glycosides of D. sinensis Hemsl. were evaluated on the docking behavior of tumor-associated proteins (PI3K, Akt, mTOR), depression-related proteins (MAO-A, MAO-B) and immune-related proteins (tumor necrosis factor-α [TNF-α], tumor necrosis factor receptor 2 [TNFR2], interleukin-2Rα [IL-2Rα]) using Discovery Studio version 3.1 (Accelrys, San Diego, USA). The molecular docking analysis revealed that mostly steroidal glycosides of D. sinensis Hemsl. exhibited powerful interaction with the depression-related protein (MAO-A) and the immune-related proteins (TNFR2, IL-2Rα). Some ligands exhibited high binding energy for the tumor-associated proteins (PI3K, Akt, mTOR) and the immune-related protein (TNF-α), but MAO-B showed none interaction with the ligands. This study has paved better understanding of steroidal glycosides from D. sinensis Hemsl. as potential constituents to the prevention of associated cancer, depression and disorders of immunoregulation. The ligand database was consist of 72 steroidal glycosides from Dregea sinensis HemslSteroidal glycosides had the potential to dock with the tumor-associated proteins (PI3K, Akt, mTOR)Steroidal glycosides were bounded with MAO-A rather than MAO-B, accorded with the inhibitor selectivity of MAOs, can be considered as potent candidate inhibitors of MAO-A72 ligands got high interaction with TNFR2 and IL-2Rα, regard the steroidal glycoside as powerful candidate inhibitors of TNFR2 and IL-2Rα. Abbreviations used: PI3K: Phosphatidyl inositol 3-kinase; Akt: Protein kinase B; mTOR: Mammalian target of

  2. Compact Muon Solenoid Experimental Discovery Potential for Supersymmetry is Same-Charge Di-Lepton Events

    CERN Document Server

    Pakhotin, Yuriy Aleksandrovich

    2010-01-01

    Same-charge di-lepton events provide a very clean experimental signature for Supersymmetry (SUSY) search. This work studies the Compact Muon Solenoid (CMS) experiment search potential for new physics with same-charge, isolated di-leptons accompanied by jets and large missing transverse energy. The results show that CMS sensitivity for new physics at 7 TeV with integrated luminosity 100 pb$^{−1}$ will exceed current Tevatron limits. Muon detection for SUSY discovery in the forward direction is accomplished using cathode strip chambers (CSC). These detectors identify muons, provide a fast muon trigger, and give a precise measurement of the muon trajectory. There are 468 six-plane CSCs in the system. The efficiency of finding muon trigger primitives (muon track segments) was studied using 36 CMS CSCs and cosmic ray muons during the Magnet Test and Cosmic Challenge (MTCC) exercise conducted by the CMS experiment in 2006. The efficiency of finding 2-dimensional trigger primitives within 6-layer chambers was foun...

  3. Mining the Proteome of subsp. ATCC 25586 for Potential Therapeutics Discovery: An Approach

    Directory of Open Access Journals (Sweden)

    Abdul Musaweer Habib

    2016-12-01

    Full Text Available The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study divulged 1,499 proteins of F. nucleatum, which have no homolog's in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the Kyoto Encyclopedia of Genes and Genomes (KEGG Automated Annotation Server (KAAS resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the three dimensional structure of these three proteins. Finally, determination of ligand binding sites of the 2 key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against F. nucleatum.

  4. Bosonic behavior of entangled fermions

    DEFF Research Database (Denmark)

    C. Tichy, Malte; Alexander Bouvrie, Peter; Mølmer, Klaus

    2012-01-01

    Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi-composite-boson st......Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi...

  5. Search for Higgs bosons at LEP2 and hadron colliders

    CERN Document Server

    Trefzger, T M

    2001-01-01

    The search for the Higgs boson was one of the most relevant issues of the final years of LEP running at high energies. An excess of 3 sigma beyond the background expectation has been found, consistent with the production of the Higgs boson with a mass near 115 GeV/c/sup 2/. At the upgraded Tevatron and at LHC the search for the Higgs boson will continue. At the Tevatron Higgs bosons can be detected with masses up to 180 GeV with an assumed total integrated luminosity of 20 fb/sup -1/. LHC has the potential to discover the Higgs boson in many different decay channels for Higgs masses up to 1 TeV. It will be possible to measure Higgs boson parameters, such as mass, width, and couplings to fermions and bosons. The results from Higgs searches at LEP2 and the possibilities for searches at hadron colliders will be reviewed. (156 refs).

  6. The bosonic birthday paradox

    OpenAIRE

    Arkhipov, Alex; Kuperberg, Greg

    2011-01-01

    We motivate and prove a version of the birthday paradox for $k$ identical bosons in $n$ possible modes. If the bosons are in the uniform mixed state, also called the maximally mixed quantum state, then we need $k \\sim \\sqrt{n}$ bosons to expect two in the same state, which is smaller by a factor of $\\sqrt{2}$ than in the case of distinguishable objects (boltzmannons). While the core result is elementary, we generalize the hypothesis and ...

  7. Selected Topics in the searches for the SM Higgs boson in ATLAS

    CERN Document Server

    Bernat, P

    2009-01-01

    One of the main goals of the Large Hadron Collider at CERN is to try understand the dynamics responsible for the EW symmetry breaking which, in the standard model (SM) is achieved by the Higgs mechanism. Although this model has in part been corroborated by indirect measurements, one of its most striking prediction, the existence of a scalar particle has eluded experiments. Its direct search is an outstanding part of the LHC research program. At tree level, the Higgs boson mass is essentially a free parameter of the theory. However, the direct search for the SM Higgs boson at the CERN LEP e+e-collider has constrained its mass to be greater than 114.4 GeV/c2 (95% CL) and the electroweak fit suggests that the Higgs boson mass be smaller than 154 GeV/c2 (95% CL). The ATLAS experiment at LHC will be able to discover the SM Higgs boson if it exists, its discovery potential has been recently reappraised and will be presented. The channels such as the diphoton and VBF tautau at relatively low masses (m<130-140...

  8. Bosonization in Space-Time

    Science.gov (United States)

    Stone, Michael

    The following sections are included: * Introduction * Free Fermi Fields * Free Bosons * The Bosonization Rules * A Quantum Pythagoras Theorem * Appendix 1A. Complex Coordinates * Appendix IB. Conformal Symmetry * References

  9. Search for horizontal bosons at the SSC

    International Nuclear Information System (INIS)

    Albright, C.H.; Deshpande, N.G.; Gunion, J.F.; Haber, H.E.

    1984-01-01

    The production process anti p p → l - l' + + X, where the leptons belong to two different generations and X refers to spectator jets, provides a clear signature for horizontal (generation-changing) bosons when the leptons are emitted nearly back-to-back and p/sub T//sup miss/ = 0. Cross sections and p/sub T/ distributions for each lepton are presented, and discovery limits on M/sub H/ are extracted for several different channels

  10. Does nature like Nambu-Goldstone bosons

    International Nuclear Information System (INIS)

    Gelmini, G.B.; Nussinov, S.

    1982-08-01

    We argue here that many (up to around 30 species) so far undetected Goldstone bosons could exist in nature, for example, associated to the spontaneous breaking of a horizontal global symmetry, provided the breaking scale is V >or approx. 10 10 GeV. Since Goldstone bosons do not generate r - 1 but spin-dependent r - 3 non-relativistic long-range potentials, the apparently most dramatic effect of massless bosons - new long-range forces competing with gravitation and electromagnetism - is easily avoidable (the Glashow-Weinberg-Salam breaking scale is enough). μ→eG and K→πG provide the most restrictive bounds and probably the only possibility to look for Goldstone bosons in laboratory. (author)

  11. Seniority bosons from similarity transformations

    International Nuclear Information System (INIS)

    Geyer, H.B.

    1986-01-01

    The requirement of associating in the boson space seniority with twice the number of non-s bosons defines a similarity transformation which re-expresses the Dyson pair boson images in terms of seniority bosons. In particular the fermion S-pair creation operator is mapped onto an operator which, unlike the pair boson image, does not change the number of non-s bosons. The original results of Otsuka, Arima and Iachello are recovered by this procedure while at the same time they are generalized to include g-bosons or even bosons with J>4 as well as any higher order boson terms. Furthermore the seniority boson images are valid for an arbitrary number of d- or g-bosons - a result which is not readily obtainable within the framework of the usual Marumori- or OAI-method

  12. Where Is Higgs Boson?

    CERN Multimedia

    2008-01-01

    Quantum physicists think they know the answer. Probabilistic calculations reveal than the data provided by previous experiments has been miscalculated and that the Higgs boson has in fact been discovered. Weird! The Higgs boson is the only particle predicted by the Standard Model that hasn't been discovered yet.

  13. Search for the Higgs boson in fermionic channels using the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Hageböck Stephan

    2015-01-01

    Full Text Available Since the discovery of the Higgs boson by the ATLAS and CMS experiments at the LHC, the emphasis has shifted towards measurements of its properties. Of particular importance is the direct observation of the coupling of the Higgs boson to fermions. A review of ATLAS results in the search for the Higgs boson in tau, muon and b-quark pairs is presented.

  14. A scientometric prediction of the discovery of the first potentially habitable planet with a mass similar to Earth.

    Directory of Open Access Journals (Sweden)

    Samuel Arbesman

    Full Text Available BACKGROUND: The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it, the expectation that the discovery of the first Earth-like extrasolar planet is not far off. METHODOLOGY/PRINCIPAL FINDINGS: Here, we develop a novel metric of habitability for discovered planets and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. CONCLUSIONS/SIGNIFICANCE: Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet and highlight the the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields.

  15. A scientometric prediction of the discovery of the first potentially habitable planet with a mass similar to Earth.

    Science.gov (United States)

    Arbesman, Samuel; Laughlin, Gregory

    2010-10-04

    The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it, the expectation that the discovery of the first Earth-like extrasolar planet is not far off. Here, we develop a novel metric of habitability for discovered planets and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet and highlight the the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields.

  16. Higgs to gamma gamma in association with Z/W bosons

    CERN Document Server

    Brelier, B

    2008-01-01

    Electro-weak precision measurements strongly suggest that the mass of the Standard Model Higgs boson, if it exists, should not be much higher than the present experimental limit of 114.4 GeV. The LHC experiments will allow us to look for a Higgs boson in this mass range for which the decay into photons is one of the most important channels. The isolation of events from Higgs boson production in association with Z/W bosons may increase the statistical significance of the Higgs boson discovery and these production modes can be used to measure directly the Higgs boson couplings to the weak bosons, thus helping to confirm the nature of the observed resonance.

  17. Production of electroweak bosons at hadron colliders: theoretical aspects

    CERN Document Server

    Mangano, Michelangelo L.

    2016-01-01

    Since the W and Z discovery, hadron colliders have provided a fertile ground, in which continuously improving measurements and theoretical predictions allow to precisely determine the gauge boson properties, and to probe the dynamics of electroweak and strong interactions. This article will review, from a theoretical perspective, the role played by the study, at hadron colliders, of electroweak boson production properties, from the better understanding of the proton structure, to the discovery and studies of the top quark and of the Higgs, to the searches for new phenomena beyond the Standard Model.

  18. Facile diverted synthesis of pyrrolidinyl triazoles using organotrifluoroborate: discovery of potential mPTP blockers.

    Science.gov (United States)

    Jung, Sun hwa; Choi, Kihang; Pae, Ae Nim; Lee, Jae Kyun; Choo, Hyunah; Keum, Gyochang; Cho, Yong Seo; Min, Sun-Joon

    2014-12-21

    This article describes the rapid and diversified synthesis of pyrrolidinyl triazoles for the discovery of mitochondrial permeability transition pore (mPTP) blockers. The 1,3-dipolar cycloaddition of ethynyl trifluoroborate with azidopyrrolidine produced a key intermediate, triazolyl trifluoroborate 4, which subsequently underwent a Suzuki-Miyaura coupling reaction to afford a series of 1,4-disubstituted triazoles 2. Subsequent biological evaluation of these derivatives indicated 2ag and 2aj as the most potent mPTP blockers exhibiting excellent cytochrome P450 (CYP) stability when compared to the previously reported oxime analogue 1. The present work clearly demonstrates that a 1,2,3-triazole can be used as a stable oxime surrogate. Furthermore, it suggests that late-stage diversification through coupling reactions of organotrifluoroborates is suitable for the rapid discovery of biologically active molecules.

  19. Discovery and Potential of SNP Markers in Characterization of Tunisian Olive Germplasm

    OpenAIRE

    Imen Rekik Hakim; Naziha Grati Kammoun; Emna Makhloufi; Ahmed Rebaï

    2009-01-01

    Single Nucelotide Polymorphisms (SNPs) have become the most widely used markers in many current genetic applications. Here we report the discovery of nine new SNPs in olives by direct partial sequencing of two genes (OEX and OEW) in sixteen Tunisian cultivars. The SNP markers were then used to genotype 24 olive cultivars and assess the level of genetic diversity. Power of discrimination of SNP markers was then compared to that of microsatellites (SSRs). A combination of SSR and SNP markers wa...

  20. Double parton scattering background to Higgs boson production at the CERN LHC

    CERN Document Server

    Del Fabbro, R

    2000-01-01

    The Higgs boson production and decay via the bbW channel is one of the most promising discovery channels at the CERN LHC if the Higgs boson mass is below the W/sup +/W/sup -/ threshold. We point out that double parton collisions represent a sizable source of background to the process. (11 refs).

  1. Neutral Higgs bosons in the standard model and in the minimal ...

    Indian Academy of Sciences (India)

    assumed to be CP invariant. Finally, we discuss an alternative MSSM scenario including. CP violation in the Higgs sector. Keywords. Higgs bosons; standard model; minimal supersymmetric model; searches at LEP. 1. Introduction. One of the challenges in high-energy particle physics is the discovery of Higgs bosons.

  2. On the mass and thermodynamics of the Higgs boson

    Science.gov (United States)

    Fokas, A. S.; Vayenas, C. G.; Grigoriou, D. P.

    2018-02-01

    In two recent works we have shown that the masses of the W± and Zo bosons can be computed from first principles by modeling these bosons as bound relativistic gravitationally confined rotational states consisting of e±-νe pairs in the case of W± bosons and of a e+-νe-e- triplet in the case of the Zo boson. Here, we present similar calculations for the Higgs boson which we model as a bound rotational state consisting of a positron, an electron, a neutrino and an antineutrino. The model contains no adjustable parameters and the computed boson mass of 125.7 GeV/c2, is in very good agreement with the experimental value of 125.1 ± 1 GeV/c2. The thermodynamics and potential connection of this particle with the Higgs field are also briefly addressed.

  3. Search for a Higgs boson produced in association with a W boson at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Ruckert, Benjamin

    2009-11-23

    The Large Hadron Collider at CERN the most modern proton-proton collider and data taking will start in 2009, with a centre-of-mass energy of {radical}(s) = 7 TeV. The ATLAS detector, which is one of two multi-purpose detectors at the Large Hadron Collider, is able to detect a Standard Model Higgs boson if it exists. This is one of the main tasks of the ATLAS experiment. This thesis deals with a Standard Model Higgs boson produced in association with a W boson. The Monte Carlo study is based on physics events generated at the nominal centre-of-mass energy of the Large Hadron Collider of {radical}(s) = 14 TeV. Large parts of this analysis have been done using the global Grid infrastructure of the Large Hadron Collider experiments. A mass range of the Higgs boson of m{sub H} = 130 - 190 GeV has been taken into account. In this mass range, the Higgs boson dominantly decays into a pair of W bosons, leading to initially three W bosons: WH{yields}WWW. Two orthogonal analysis channels have been investigated in detailed studies of the background properties. The first channel considers the leptonic decay of two W bosons, such that the leptons are of opposite charge. The third W boson then decays hadronically. The analysis is based on one-dimensional cuts, where the best cuts found are strict cuts on the transverse momenta of the leptons, a cut on the invariant mass of the jets, as well as a cut on the transverse jet momenta and the missing transverse energy. The second decay channel studied is dedicated to the leptonic decay of all three W bosons. Again, cuts on the transverse momenta of the leptons and the jets have been proven to be efficient, as well as the use of the spatial correlation of the decay products of the Higgs boson. The invariant mass of the leptons with opposite sign has been emerged as a very efficient cut to reject dominant diboson background contributions. The discovery reach of both channels separately as well as the combination has been calculated using

  4. Search for a Higgs boson produced in association with a W boson at ATLAS

    International Nuclear Information System (INIS)

    Ruckert, Benjamin

    2009-01-01

    The Large Hadron Collider at CERN the most modern proton-proton collider and data taking will start in 2009, with a centre-of-mass energy of √(s) = 7 TeV. The ATLAS detector, which is one of two multi-purpose detectors at the Large Hadron Collider, is able to detect a Standard Model Higgs boson if it exists. This is one of the main tasks of the ATLAS experiment. This thesis deals with a Standard Model Higgs boson produced in association with a W boson. The Monte Carlo study is based on physics events generated at the nominal centre-of-mass energy of the Large Hadron Collider of √(s) = 14 TeV. Large parts of this analysis have been done using the global Grid infrastructure of the Large Hadron Collider experiments. A mass range of the Higgs boson of m H = 130 - 190 GeV has been taken into account. In this mass range, the Higgs boson dominantly decays into a pair of W bosons, leading to initially three W bosons: WH→WWW. Two orthogonal analysis channels have been investigated in detailed studies of the background properties. The first channel considers the leptonic decay of two W bosons, such that the leptons are of opposite charge. The third W boson then decays hadronically. The analysis is based on one-dimensional cuts, where the best cuts found are strict cuts on the transverse momenta of the leptons, a cut on the invariant mass of the jets, as well as a cut on the transverse jet momenta and the missing transverse energy. The second decay channel studied is dedicated to the leptonic decay of all three W bosons. Again, cuts on the transverse momenta of the leptons and the jets have been proven to be efficient, as well as the use of the spatial correlation of the decay products of the Higgs boson. The invariant mass of the leptons with opposite sign has been emerged as a very efficient cut to reject dominant diboson background contributions. The discovery reach of both channels separately as well as the combination has been calculated using Bayesian methods. The

  5. Biosynthetic potential-based strain prioritization for natural product discovery: a showcase for diterpenoid-producing actinomycetes.

    Science.gov (United States)

    Xie, Pengfei; Ma, Ming; Rateb, Mostafa E; Shaaban, Khaled A; Yu, Zhiguo; Huang, Sheng-Xiong; Zhao, Li-Xing; Zhu, Xiangcheng; Yan, Yijun; Peterson, Ryan M; Lohman, Jeremy R; Yang, Dong; Yin, Min; Rudolf, Jeffrey D; Jiang, Yi; Duan, Yanwen; Shen, Ben

    2014-02-28

    Natural products remain the best sources of drugs and drug leads and serve as outstanding small-molecule probes to dissect fundamental biological processes. A great challenge for the natural product community is to discover novel natural products efficiently and cost effectively. Here we report the development of a practical method to survey biosynthetic potential in microorganisms, thereby identifying the most promising strains and prioritizing them for natural product discovery. Central to our approach is the innovative preparation, by a two-tiered PCR method, of a pool of pathway-specific probes, thereby allowing the survey of all variants of the biosynthetic machineries for the targeted class of natural products. The utility of the method was demonstrated by surveying 100 strains, randomly selected from our actinomycete collection, for their biosynthetic potential of four classes of natural products, aromatic polyketides, reduced polyketides, nonribosomal peptides, and diterpenoids, identifying 16 talented strains. One of the talented strains, Streptomyces griseus CB00830, was finally chosen to showcase the discovery of the targeted classes of natural products, resulting in the isolation of three diterpenoids, six nonribosomal peptides and related metabolites, and three polyketides. Variations of this method should be applicable to the discovery of other classes of natural products.

  6. From The Beatles to Bosons

    CERN Multimedia

    Stephanie McClellan

    2013-01-01

    Before embarking on a successful career as a musician, Alan Parsons started out as a sound engineer - earning his first credit on The Beatles’ Abbey Road.  Over the years, he has worked and collaborated with various artists, but 30 September 2013 marks a unique collaboration.  For CERN’s ‘Bosons & More’ party, Alan Parsons Live Project will be sharing the stage with the Orchestre de la Suisse Romande.  Having already visited CERN in 2011, Alan Parsons provides an insight into his views on science and his upcoming performance at the ‘Bosons & More’ event.     Alan Parsons during his visit to CERN in August 2011. Since visiting CERN in 2011, how have your feelings towards the Organization developed? I was thrilled to hear about the recent discovery and how years of work had paid off. Together with my wife, Lisa, and my band, we were very privileged to come to CERN a couple of years ago, hav...

  7. Solution of the dilaton problem in open bosonic string theories

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Z. (Los Alamos National Lab., NM (United States)); Dunbar, D.C. (Liverpool Univ. (United Kingdom))

    1991-01-01

    One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories.

  8. Solution of the dilaton problem in open bosonic string theories

    International Nuclear Information System (INIS)

    Bern, Z.; Dunbar, D.C.

    1991-01-01

    One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories

  9. Search for the Higgs boson decaying to bottom quarks and $W$-boson tagging techniques at the ATLAS experiment at the LHC

    CERN Document Server

    Bristow, Timothy Michael

    The Standard Model of particle physics is currently the most complete theory of subatomic particles. The discovery of the Higgs boson with a mass of 125 GeV in 2012 further validated the Standard Model, providing evidence for the theory that vector bosons obtain non-zero masses through the Higgs mechanism. Studies are ongoing to determine the exact nature and properties of the Higgs boson. A Higgs boson of this mass is predicted to decay to a pair of $b \\bar b$ quarks with a branching ratio of 58%, however, this decay mode has not yet been observed. This thesis presents a search for the associated production of a Higgs boson with a leptonically decaying $W$-boson, $W H \\rightarrow \\ell \

  10. CERN vector boson hunt successful

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1983-01-01

    UA-1 and UA-2 are code names for two groups of physicists at the European Laboratory for Particle Physics (CERN), together comprising almost 200 researchers. From data collected in two 3-month-long runs last fall and spring, the groups have collected 100 intermediate vector bosons (90 W's and 10 Z 0 's) whose properties so far fit the predictions of the unified quantum field theory of the electromagnetic and weak forces. Although the number of events is short of staggering, the discovery is immensely important. Physicists have been looking for the W for about 50 years. The Z 0 is crucial to the success of the method by which the two forces were melded into one - the electro-weak force

  11. Studies of b-associated production and muonic decays of neutral Higgs bosons at the ATLAS experiment within the Minimal Supersymmetric Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Warsinsky, Markus

    2008-09-15

    This thesis presents a Monte Carlo study of neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) decaying into muons at the ATLAS experiment at the CERN Large Hadron Collider. Signal and background processes are simulated using novel Monte Carlo generators that incorporate parts of higher order corrections and are expected to give a more accurate prediction than previous programs. The SHERPA Monte Carlo generator is validated for its use in the analysis and compared to results obtained with other programs. Where possible, the Monte Carlo event samples are normalized to higher order calculations. To increase the available Monte Carlo statistics, this study is based on the ATLAS fast detector simulation ATLFAST. Differences between ATLFAST and the detailed detector simulation of ATLAS are examined, and, where possible, correction procedures are devised. A cut based analysis is performed assuming an integrated luminosity of 30 fb{sup -1}, and optimized with respect to the discovery potential for MSSM Higgs bosons. The systematic uncertainties of the event selection and the Monte Carlo predictions are estimated. A method that can be used to estimate the background from data is presented and evaluated. Last, the discovery potential of the ATLAS experiment in the CP conserving benchmark scenarios of the MSSM is evaluated. One or more of the neutral Higgs bosons of the MSSM can be discovered in the muonic decay mode using 30 fb{sup -1} of data for low masses of the pseudoscalar boson A{sup 0}, if the model parameter tan {beta} is at least 20. For higher masses of the A{sup 0}, tan {beta} would need to be significantly higher to ensure a discovery in the studied decay channel. The sensitivity of ATLAS to MSSM Higgs bosons is multiple times larger than the one of previous and currently running experiments. (orig.)

  12. Detection of Heavy Majorana Neutrinos and Right-Handed Bosons

    CERN Document Server

    Gninenko, Sergei; Krasnikov, Nikolai; Matveev, Viktor

    2006-01-01

    The SU_C(3) otimes SU_L(2) otimes SU_R(2) otimes U(1) left-right (LR) symmetric model explains the origin of the parity violation in weak interactions and predicts the existence of additional W_R and Z' gauge bosons. In addition, heavy right-handed Majorana neutrino states N arise naturally within LR symmetric model. The N s could be partners of light neutrino states, related to their non-zero masses through the see-saw mechanism. This makes the searches of W_R, Z' and N interesting and important. This note describes the study of the potential of the CMS experiment to observe signals from the N and W_R production at the LHC. It is shown that their decay signals can be identified with a small background. For the integral LHC luminosity of L_t = 30 fb^ -1, the 5 sigma discovery of W_R - boson and heavy Majorana neutrinos N_e with masses up to 3.5 TeV and 2.3 TeV, respectively is found possible.

  13. Discovery and Potential of SNP Markers in Characterization of Tunisian Olive Germplasm

    Directory of Open Access Journals (Sweden)

    Imen Rekik Hakim

    2009-12-01

    Full Text Available Single Nucelotide Polymorphisms (SNPs have become the most widely used markers in many current genetic applications. Here we report the discovery of nine new SNPs in olives by direct partial sequencing of two genes (OEX and OEW in sixteen Tunisian cultivars. The SNP markers were then used to genotype 24 olive cultivars and assess the level of genetic diversity. Power of discrimination of SNP markers was then compared to that of microsatellites (SSRs. A combination of SSR and SNP markers was finally proposed that can be used for cultivars identification in juvenile step or for oil traceability.

  14. Search for a Higgs-like boson decaying into bottom quarks in the Z(IIH channel

    Directory of Open Access Journals (Sweden)

    Eller Philipp

    2013-11-01

    Full Text Available After the discovery of a Higgs-like Boson with a mass close to 125 GeV at the LHC in summer 2012, we are showing the update on the analysis of the VH cannel. In this channel the Higgs-like Boson is produced in association with a vector boson and decaying into b quarks. We present the updated results on the full 2011 and 2012 7+8 TeV dataset. This poster will focus on one of the tree modes that are combined in this analysis, where the associated vector boson is a Z boson that is decaying leptonically into two electrons or muons, respectively.

  15. A Historical Profile of the Higgs Boson

    CERN Document Server

    AUTHOR|(CDS)2108556; Nanopoulos, Dimitri V

    2016-01-01

    The Higgs boson was postulated in 1964, and phenomenological studies of its possible production and decays started in the early 1970s, followed by studies of its possible production in e+ e−, and pp collisions, in particular. Until recently, the most sensitive searches for the Higgs boson were at LEP between 1989 and 2000, which were complemented by searches at the Fermilab Tevatron. Then the LHC experiments ATLAS and CMS entered the hunt, announcing on July 4, 2012 the discovery of a "Higgs-like" particle with a mass of about 125 GeV. This identification has been supported by subsequent measurements of its spin, parity and coupling properties. It was widely anticipated that the Higgs boson would be accompanied by supersymmetry, although other options, like compositeness, were not completely excluded. So far there are no signs of any new physics, and the measured properties of the Higgs boson are consistent with the predictions of the minimal Standard Model. This article reviews some of the key historical d...

  16. Open Innovation Drug Discovery (OIDD): a potential path to novel therapeutic chemical space.

    Science.gov (United States)

    Alvim-Gaston, Maria; Grese, Timothy; Mahoui, Abdelaziz; Palkowitz, Alan D; Pineiro-Nunez, Marta; Watson, Ian

    2014-01-01

    The continued development of computational and synthetic methods has enabled the enumeration or preparation of a nearly endless universe of chemical structures. Nevertheless, the ability of this chemical universe to deliver small molecules that can both modulate biological targets and have drug-like physicochemical properties continues to be a topic of interest to the pharmaceutical industry and academic researchers alike. The chemical space described by public, commercial, in-house and virtual compound collections has been interrogated by multiple approaches including biochemical, cellular and virtual screening, diversity analysis, and in-silico profiling. However, current drugs and known chemical probes derived from these efforts are contained within a remarkably small volume of the predicted chemical space. Access to more diverse classes of chemical scaffolds that maintain the properties relevant for drug discovery is certainly needed to meet the increasing demands for pharmaceutical innovation. The Lilly Open Innovation Drug Discovery platform (OIDD) was designed to tackle barriers to innovation through the identification of novel molecules active in relevant disease biology models. In this article we will discuss several computational approaches towards describing novel, biologically active, drug-like chemical space and illustrate how the OIDD program may facilitate access to previously untapped molecules that may aid in the search for innovative pharmaceuticals.

  17. Hunting the weak bosons

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The possibility of the production of weak bosons in the proton-antiproton colliding beam facilities which are currently being developed, is discussed. The production, decay and predicted properties of these particles are described. (W.D.L.).

  18. Interacting bosons in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dehesa, J.S.; Gomez, J.M.G.; Ros, J.

    1982-01-01

    These proceedings contain the lectures and articles presented at the named autumn school. These concern the interacting boson model in connection with other collective models. Separated abstracts were prepared for the articles in these proceedings.

  19. Emergent Electroweak Symmetry Breaking with Composite W, Z Bosons

    CERN Document Server

    Cui, Yanou; Wells, James D

    2009-01-01

    We present a model of electroweak symmetry breaking in a warped extra dimension where electroweak symmetry is broken at the UV (or Planck) scale. An underlying conformal symmetry is broken at the IR (or TeV) scale generating masses for the electroweak gauge bosons without invoking a Higgs mechanism. By the AdS/CFT correspondence the W,Z bosons are identified as composite states of a strongly-coupled gauge theory, suggesting that electroweak symmetry breaking is an emergent phenomenon at the IR scale. The model satisfies electroweak precision tests with reasonable fits to the S and T parameter. In particular the T parameter is sufficiently suppressed since the model naturally admits a custodial SU(2) symmetry. The composite nature of the W,Z-bosons provide a novel possibility of unitarizing WW scattering via form factor suppression. Constraints from LEP and the Tevatron as well as discovery opportunities at the LHC are discussed for these composite electroweak gauge bosons.

  20. Determination of the Higgs boson spin at ATLAS

    CERN Document Server

    Sanchez Pineda, A; The ATLAS collaboration

    2013-01-01

    In 2012 ATLAS and CMS collaborations announced the discovery of a new resonance in the search for the Standard Model (SM) Higgs boson. The next step is the experimental determination of its properties in order to understand if it’s the SM Higgs Boson or “someone” beyond. This presentation will resume the state of the art of the ATLAS studies of the spin/parity (JP) quantum numbers of the new boson, due to its production and decay nature, is a neutral boson. To distinguishing between different hypotheses, including that from the Standard Model, ATLAS relies on discriminant observables chosen to be sensitive to the spin and parity of the signal for each channel considered, using data recorded in 2011 and 2012.

  1. Measurement of the W boson mass with the ATLAS detector

    CERN Document Server

    Balli, Fabrice; The ATLAS collaboration

    2017-01-01

    A precise measurement of the mass of the W boson mass represents an important milestone to test the overall consistency of the Standard Model. Since the discovery of a Higgs Boson, the W boson mass is predicted to 7 MeV precision, while the world average of all measurements is 15 MeV, making the improved measurement an important goal. The ATLAS experiment at the LHC represents an ideal laboratory for such a precise measurement. Large samples of many millions of leptonic decays of W and Z bosons were collected with efficient single lepton triggers in the 7 TeV data set corresponding to an integrated luminosity of 4.6/fb. With these samples the detector and physics modelling has been studied in great detail to enable a systematic uncertainty on the measurement that approaches the statistical power of the data of 7 MeV per decay channel as far as possible.

  2. Search for the Higgs and Z Boson decays to $\\phi\\gamma$ and $\\rho\\gamma$

    CERN Document Server

    Owen, Rhys Edward; The ATLAS collaboration

    2017-01-01

    A lot of progress on the study of the properties of the Higgs boson has been made since its discovery, however little is still known about the Higgs boson couplings to light quarks. Direct measurements of the Higgs boson decays to pairs of light-quarks are challenging due to the overwhelming hadronic backgrounds. A new window to experimentally access these couplings opens through the search for Higgs boson decays to a meson and a photon, and gives the possibility to search for new physics in this sector. The latest results from the ATLAS experiment on this front are presented and discussed.

  3. Direct search for the standard model Higgs boson

    CERN Document Server

    Janot, Patrick

    2002-01-01

    For twelve years, LEP revolutionized the knowledge of electroweak symmetry breaking within the standard model, and the direct discovery of the Higgs boson would have been the crowning achievement. Searches at the Z resonance and above the W/sup +/W/sup -/ threshold allowed an unambiguous lower limit on the mass of the standard model Higgs boson to set be at 114.1 GeV.c/sup -2/. After years of efforts to push the LEP performance far beyond the design limits, hints of what could be the first signs of the existence of a 115 GeV-c/sup -2/ Higgs boson appeared in June 2000, were confirmed in September, and were then confirmed again in November. An additional six-month period of LEP operation was enough to provide a definite answer, with an opportunity to make a fundamental discovery of prime importance. (37 refs).

  4. Prospects for Higgs boson searches at the Large Hadron Collider

    Indian Academy of Sciences (India)

    These proceedings summarize the sensitivity for the CMS and ATLAS experiments at the LHC to discover a Standard Model Higgs boson with relatively low integrated luminosity per experiment. The most relevant discovery modes are dealt with. A brief discussion on the expected performance from these experiments in ...

  5. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    Directory of Open Access Journals (Sweden)

    Charu Sharma

    2015-01-01

    Full Text Available The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2 which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics.

  6. Aniracetam: its novel therapeutic potential in cerebral dysfunctional disorders based on recent pharmacological discoveries.

    Science.gov (United States)

    Nakamura, Kazuo

    2002-01-01

    Aniracetam is a pyrrolidinone-type cognition enhancer that has been clinically used in the treatment of behavioral and psychological symptoms of dementia following stroke and in Alzheimer's disease. New discoveries in the behavioral pharmacology, biochemistry and pharmacokinetics of aniracetam provided new indications for this drug in the treatment of various CNS disorders or disease states. This article reviews these new findings and describes the effects of aniracetam in various rodent models of mental function impairment or cerebral dysfunction. Also, several metabolites of aniracetam have been reported to affect learning and memory in animals. It is, therefore, conceivable that major metabolites of aniracetam contribute to its pharmacological effects. The animal models, used in pharmacological evaluation of aniracetam included models of hypoattention, hypovigilance-arousal, impulsiveness, hyperactivity, fear and anxiety, depression, impaired rapid-eye movement sleep, disturbed temporal regulation, behavioral performance, and bladder hyperactivity. These are models of clinical disorders or symptoms that may include personality disorders, anxiety, depression, posttraumatic stress disorder, attention-deficit/hyperactivity disorder, autism, negative symptoms of schizophrenia, and sleep disorders. At present, there is no convincing evidence that promising effects of aniracetam in the animal models will guarantee its clinical efficacy. It is conceivable, however, that clinical trials will demonstrate beneficial effects of aniracetam in the above listed disease states. New findings regarding the mechanism of action of aniracetam, its central target sites, and its effects on signal transduction are also discussed in this review article.

  7. Discovery of potential cholesterol esterase inhibitors using in silico docking studies

    Directory of Open Access Journals (Sweden)

    Thirumalaisamy Sivashanmugam

    2013-08-01

    Full Text Available New drug discovery is considered broadly in terms of two kinds of investiga-tional activities such as exploration and exploitation. This study deals with the evaluation of the cholesterol esterase inhibitory activity of flavonoids apigenin, biochanin, curcumin, diosmetin, epipervilline, glycitein, okanin, rhamnazin and tangeritin using in silico docking studies. In silico docking studies were carried out using AutoDock 4.2, based on the Lamarckian genetic algorithm principle. The results showed that all the selected flavonoids showed binding energy ranging between -7.08 kcal/mol to -5.64 kcal/mol when compared with that of the standard compound gallic acid (-4.11 kcal/mol. Intermolecular energy (-9.13 kcal/mol to -7.09 kcal/mol and inhibition constant (6.48 µM to 73.18 µM of the ligands also coincide with the binding energy. All the selected flavonoids contributed cholesterol esterase inhibitory activity, these molecular docking analyses could lead to the further develop-ment of potent cholesterol esterase inhibitors for the treatment of obesity.

  8. Potential of Glutamate-Based Drug Discovery for Next Generation Antidepressants

    Directory of Open Access Journals (Sweden)

    Shigeyuki Chaki

    2015-09-01

    Full Text Available Recently, ketamine has been demonstrated to exert rapid-acting antidepressant effects in patients with depression, including those with treatment-resistant depression, and this discovery has been regarded as the most significant advance in drug development for the treatment of depression in over 50 years. To overcome unwanted side effects of ketamine, numerous approaches targeting glutamatergic systems have been vigorously investigated. For example, among agents targeting the NMDA receptor, the efficacies of selective GluN2B receptor antagonists and a low-trapping antagonist, as well as glycine site modulators such as GLYX-13 and sarcosine have been demonstrated clinically. Moreover, agents acting on metabotropic glutamate receptors, such as mGlu2/3 and mGlu5 receptors, have been proposed as useful approaches to mimicking the antidepressant effects of ketamine. Neural and synaptic mechanisms mediated through the antidepressant effects of ketamine have been being delineated, most of which indicate that ketamine improves abnormalities in synaptic transmission and connectivity observed in depressive states via the AMPA receptor and brain-derived neurotrophic factor-dependent mechanisms. Interestingly, some of the above agents may share some neural and synaptic mechanisms with ketamine. These studies should provide important insights for the development of superior pharmacotherapies for depression with more potent and faster onsets of actions.

  9. The discovery of antidepressant drugs by computer-analyzed human cerebral bio-electrical potentials (CEEG).

    Science.gov (United States)

    Itil, T M

    1983-01-01

    Antidepressant properties of six compounds were predicted based on their computer-analyzed human electroencephalographical (CEEG) profiles. The clinical investigations with mianserin (GB-94) confirmed the CEEG prediction. This compound has now been marketed as the first antidepressant of which the clinical effects were discovered solely by the quantitative pharmaco-EEG method. As predicted by the CEEG, clinical antidepressant properties of GC-46, mesterolone, and estradiol valerate were observed in preliminary investigations. No extensive studies with definite statistical results were yet carried out with these compounds. No systematic large studies could be conducted with cyclozocine and cyproterone acetate because of the intolerable side effects with these compounds. The optical isomers of mianserin, GF-59 and GF-60, both predicted as antidepressant by the computer EEG data base, have not yet been tested in depressive patients. None of these compounds possess the "typical" pharmacological and/or biochemical profiles of marketed antidepressants. Thus, the discovery of the established antidepressant properties of mianserin (GB-94) by computer analyzed EEG method challenges the well-known biochemical hypotheses of depression and the "classical" development of antidepressant drugs.

  10. Mesua beccariana (Clusiaceae, A Source of Potential Anti-cancer Lead Compounds in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Soek Sin Teh

    2012-09-01

    Full Text Available An investigation on biologically active secondary metabolites from the stem bark of Mesua beccariana was carried out. A new cyclodione, mesuadione (1, along with several known constituents which are beccamarin (2, 2,5-dihydroxy-1,3,4-trimethoxy anthraquinone (3, 4-methoxy-1,3,5-trihydroxyanthraquinone (4, betulinic acid (5 and stigmasterol (6 were obtained from this ongoing research. Structures of these compounds were elucidated by extensive spectroscopic methods, including 1D and 2D-NMR, GC-MS, IR and UV techniques. Preliminary tests of the in vitro cytotoxic activities of all the isolated metabolites against a panel of human cancer cell lines Raji (lymphoma, SNU-1 (gastric carcinoma, K562 (erythroleukemia cells, LS-174T (colorectal adenocarcinoma, HeLa (cervical cells, SK-MEL-28 (malignant melanoma cells, NCI-H23 (lung adenocarcinoma, IMR-32 (neuroblastoma and Hep-G2 (hepatocellular liver carcinoma were carried out using an MTT assay. Mesuadione (1, beccamarin (2, betulinic acid (5 and stigmasterol (6 displayed strong inhibition of Raji cell proliferation, while the proliferation rate of SK-MEL-28 and HeLa were strongly inhibited by stigmasterol (6 and beccamarin (2, indicating these secondary metabolites could be anti-cancer lead compounds in drug discovery.

  11. Therapeutic Potential of Plants as Anti-Microbials for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Ramar Perumal Samy

    2010-01-01

    Full Text Available The uses of traditional medicinal plants for primary health care have steadily increased worldwide in recent years. Scientists are in search of new phytochemicals that could be developed as useful anti-microbials for treatment of infectious diseases. Currently, out of 80% of pharmaceuticals derived from plants, very few are now being used as anti-microbials. Plants are rich in a wide variety of secondary metabolites that have found anti-microbial properties. This review highlights the current status of traditional medicine, its contribution to modern medicine, recent trends in the evaluation of anti-microbials with a special emphasis upon some tribal medicine, in vitro and in vivo experimental design for screening, and therapeutic efficacy in safety and human clinical trails for commercial outlet. Many of these commercially available compounds are crude preparations administered without performing human clinical trials. Recent methods are useful to standardize the extraction for scientific investigation of new phytochemicals and anti-microbials of traditionally used plants. It is concluded that once the local ethnomedical preparations of traditional sources are scientifically evaluated before dispensing they should replace existing drugs commonly used for the therapeutic treatment of infection. This method should be put into practice for future investigations in the field of ethnopharmacology, phytochemistry, ethnobotany and other biological fields for drug discovery.

  12. ATLAS level-1 jet trigger rates and study of the ATLAS discovery potential of the neutral MSSM Higgs bosons in b-jet decay channels

    CERN Document Server

    Mahboubi, Kambiz

    2001-01-01

    The response of the ATLAS calorimeters to electrons, photons and hadrons, in terms of the longitudinal and lateral shower development, is parameterized using the GEANT package and a detailed detector description (DICE). The parameterizations are implemented in the ATLAS Level-1 (LVL1) Calorimeter Trigger fast simulation package which, based on an average detector geometry, simulates the complete chain of the LVL1 calorimeter trigger system. In addition, pile-up effects due to multiple primary interactions are implemented taking into account the shape and time history of the trigger signals. An interface to the fast physics simulation package (ATLFAST) is also developed in order to perform ATLAS physics analysis, including the LVL1 trigger effects, in a consistent way. The simulation tools, the details of the parameterization and the interface are described. The LVL1 jet trigger thresholds corresponding to the current trigger menus are determined within the framework of the fast simulation, and the LVL1 jet tr...

  13. Looking For Physics Beyond The Standard Model: Searches For Charged Higgs Bosons At $e^{+}e^{-}$ Colliders

    CERN Document Server

    Kiiskinen, A P

    2004-01-01

    This thesis describes direct searches for pair production of charged Higgs bosons performed in the data collected by the DELPHI detector at the LEP collider at CERN. In addition, the possibilities to discover and study heavy charged Higgs bosons at possible future high-energy linear colliders are presented. The existence of charged Higgs bosons is predicted by many extensions of the Standard Model. A possible discovery of these particles would be a solid proof for physics beyond the Standard Model. Discovery of charged Higgs bosons, and measurement of their properties, would also provide useful information about the structure of the more general theory. New analysis methods were developed for the searches performed at LEP. A large, previously unexplored, mass range for cover but no evidence for the existence of the charged Higgs bosons was found. This allowed setting new lower mass limits for the charged Higgs boson within the framework of general two Higgs doublet models. Results have been interpreted and pr...

  14. Bosonization methods in string theory

    International Nuclear Information System (INIS)

    Abdalla, E.

    1988-02-01

    The use of bosonization/fermionization techniques to convert non-linear operators of the dual, is discussed. Non abelian bosonization to the case where the central charge of the Kac-Moody algebra is not unity, is generalized. In particular, using this generalization of non-abelian bosonization, the bosonic string vertex of the compactified theory; turns out to be fundamental field of thre fermionic theory, or bound states of it thus permiting explicit computations easily. (author) [pt

  15. Dynamical Boson Stars

    Directory of Open Access Journals (Sweden)

    Steven L. Liebling

    2012-05-01

    Full Text Available The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.

  16. The battle of Alzheimer disease - the beginning of the futureUnleashing the potential of academic discoveries

    Directory of Open Access Journals (Sweden)

    Johan eLundkvist

    2014-05-01

    Full Text Available Alzheimer Disease (AD is the most common form of dementia, affecting approximately 36 million people worldwide. To date there is no preventive or curative treatment available for AD, and in absence of major progress in therapeutic development, AD manifests a concrete socioeconomic threat. The awareness of the growing problem of AD is increasing, exemplified by the recent G8 Dementia Summit, a meeting held in order to set the stage and steer the compass for the future. Simultaneously, and paradoxically, we have seen key players in the pharmaceutical industry that have recently closed or significantly decreased their R&D spending on AD and other CNS disorders. Given the pressing need for new treatments in this area, other actors need to step-in and enter this drug discovery arena complementing the industrial efforts, in order to turn biological and technological progress into novel therapeutics. In this article, we present an example of a novel drug discovery initiative that in a non-profit setting, aims to integrate with both preclinical and clinical academic groups and pharmaceutical industry to explore the therapeutic potential of new concepts in patients, using novel biology, state of the art technologies and rapid concept

  17. HNC variational calculations of boson matter

    International Nuclear Information System (INIS)

    Lantto, L.J.; Jackson, A.D.; Siemens, P.J.

    1977-01-01

    A simple and reliable numerical technique is given for determining the two-body distribution function which minimizes the HNC energy of boson matter. Numerical results are presented for the neutron matter homework problem and the 4 He Lennard-Jones potential. The resulting distribution function is found to have proper asymptotic behaviour and yields reasonable binding energies. (Auth.)

  18. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer

    KAUST Repository

    Kaur, Mandeep

    2011-09-19

    Background: Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC) through the study of transcription regulation of genes affected by estrogen hormone.Results: The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs) that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers.Conclusions: We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors. 2011 Kaur et al; licensee BioMed Central Ltd.

  19. Higgs Boson Properties and Search for Additional Resonances

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00435709

    The Higgs boson was predicted by the Standard Model of particle physics and jointly discovered by the CMS and ATLAS experiments at LHC, in 2012. Following its discovery, the property measurements of the Higgs boson and the search for additional resonances become important research goals. The Standard Model is not the complete theory and leaves many questions unanswered, therefore it is important to search for any evidence of new physics beyond the SM. This thesis will briefly introduce the theoretical motivation for the Higgs boson, the production and decay mechanisms of the Higgs boson, and the methods used for analysis of the Higgs boson properties. The spin-1 and spin-2 Higgs hypotheses are tested in H->ZZ->4l channel, using the data recorded by CMS in Run1 of LHC. The exotic spin models were excluded and the Higgs boson is shown to agree with the Standard Model prediction of spin-0. The search for high-mass Higgs-like resonance is performed in H->ZZ->4l and H->ZZ->2l2q channels, using data recorded by CMS...

  20. Therapeutic potential of the SARMs: revisiting the androgen receptor for drug discovery.

    Science.gov (United States)

    Segal, Scott; Narayanan, Ramesh; Dalton, James T

    2006-04-01

    Selective androgen receptor modulators (SARMS) bind to the androgen receptor and demonstrate anabolic activity in a variety of tissues; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents are able to induce bone and muscle growth, as well as shrinking the prostate. The potential of SARMS is to maximise the positive attributes of steroidal androgens as well as minimising negative effects, thus providing therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, end-stage renal disease, osteoporosis, frailty and hypogonadism. This review summarises androgen physiology, the current status of the R&D of SARMS and potential therapeutic indications for this emerging class of drugs.

  1. Appropriate experimental approaches for predicting abuse potential and addictive qualities in preclinical drug discovery.

    Science.gov (United States)

    Mead, Andy N

    2014-11-01

    Drug abuse is an increasing social and public health issue, putting the onus on drug developers and regulatory agencies to ensure that the abuse potential of novel drugs is adequately assessed prior to product launch. This review summarizes the core preclinical data that frequently contribute to building an understanding of abuse potential for a new molecular entity, in addition to highlighting models that can provide increased resolution regarding the level of risk. Second, an important distinction between abuse potential and addiction potential is drawn, with comments on how preclinical models can inform on each. While the currently adopted preclinical models possess strong predictive validity, there are areas for future refinement and research. These areas include a more refined use of self-administration models to assess relative reinforcement; and the need for open innovation in pursuing improvements. There is also the need for careful scientifically driven application of models rather than a standardization of methodologies, and the need to explore the opportunities that may exist for enhancing the value of physical dependence and withdrawal studies by focusing on withdrawal-induced drug seeking, rather than broad symptomology.

  2. Discovery Potential for the Neutral Charmonium-Like Z0(4200 by p-p Annihilation

    Directory of Open Access Journals (Sweden)

    Xiao-Yun Wang

    2015-01-01

    Full Text Available Inspired by the observation of charmonium-like Z(4200, we explore the discovery potential of the neutral Z0(4200 production by antiproton-proton annihilation with an effective Lagrangian approach. By investigating the p-p→J/ψπ0 process including the Z0(4200 signal and background contributions, it is found that the center of mass energy Ec.m.≃ 4.0–4.5 GeV is the best energy window for searching the neutral Z0(4200, where the signal can be clearly distinguished from background. The relevant calculations not only are helpful to search for the neutral Z0(4200 in the future experiment but also will promote the understanding of the nature and production mechanism of neutral Z0(4200 better.

  3. Measurement of cross sections and couplings of the Higgs Boson in fermionic production and decay modes with the ATLAS detector

    CERN Document Server

    Shi, Liaoshan; The ATLAS collaboration

    2017-01-01

    After the discovery of the Higgs boson, the measurement of its coupling properties are of particular importance. In this talk measurement of the cross sections and couplings of the Higgs boson in ttH production and fermionic decay channels with the ATLAS detector are presented.

  4. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change

    OpenAIRE

    Voss, Maren; Bange, Hermann W.; Dippner, Joachim W.; Middelburg, Jack J.; Montoya, Joseph P.; Ward, Bess

    2013-01-01

    The ocean's nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and nitrification are both regulated by oxygen concentrations and potentially produce nitrous oxide (N2O), a climate-relevant atmospheric trace gas. The world's oceans, including the coastal areas and upwelli...

  5. Discovery of Acupoints and Combinations with Potential to Treat Vascular Dementia: A Data Mining Analysis

    Directory of Open Access Journals (Sweden)

    Shuwei Feng

    2015-01-01

    Full Text Available The prevalence of vascular dementia (VaD is high among the elderly. Acupuncture, a popular therapeutic method in China, can improve memory, orientation, calculation, and self-managing ability in VaD patients. However, in clinical acupuncture and acupuncture research, the selection of acupoints to treat VaD remains challenging. This study aimed to discover acupoints and acupoint combinations with potential for VaD based on data mining. After database searching and screening for articles on clinical trials evaluating the effects of acupuncture on VaD, 238 acupuncture prescriptions were included for further analysis. Baihui (GV 20, Sishencong (EX-HN 1, Fengchi (GB 20, Shuigou (GV 26, and Shenting (GV 24 appeared most frequently in the modern literature and are potential acupoints for VaD. Combinations between Baihui (GV 20, Sishencong (EX-HN 1, Fengchi (GB 20, Shenting (GV 24, Shuigou (GV 26, and Zusanli (ST 36 were most frequent and represent potential combinations for VaD treatment. These results provide a reference for the selection and combination of acupoints to treat VaD in clinical acupuncture and acupuncture research.

  6. Discovering Higgs Bosons of the MSSM using Jet Substructure

    Energy Technology Data Exchange (ETDEWEB)

    Kribs, Graham D.; Martin, Adam; Roy, Tuhin S.; Spannowsky, Michael

    2010-06-01

    We present a qualitatively new approach to discover Higgs bosons of the MSSM at the LHC using jet substructure techniques applied to boosted Higgs decays. These techniques are ideally suited to the MSSM, since the lightest Higgs boson overwhelmingly decays to b{bar b} throughout the entire parameter space, while the heavier neutral Higgs bosons, if light enough to be produced in a cascade, also predominantly decay to b{bar b}. The Higgs production we consider arises from superpartner production where superpartners cascade decay into Higgs bosons. We study this mode of Higgs production for several superpartner hierarchies: m{sub {tilde q}},m{sub {tilde g}} > m{sub {tilde W}},{sub {tilde B}} > m{sub h} + {mu}; m{tilde q};m{sub {tilde q}},m{sub {tilde g}} > m{sub {tilde W}},{sub {tilde B}} > m {sub h,H,A} + {mu}; and m{sub {tilde q}},m{sub {tilde g}} > m{sub {tilde W}} > m{sub h} + {mu} with m{sub {tilde B}} {approx} {mu}. In these cascades, the Higgs bosons are boosted, with pT > 200 GeV a large fraction of the time. Since Higgs bosons appear in cascades originating from squarks and/or gluinos, the cross section for events with at least one Higgs boson can be the same order as squark/gluino production. Given 10 fb{sup -1} of 14 TeV LHC data, with m{sub {tilde q}} {approx}< 1 TeV, and one of the above superpartner mass hierarchies, our estimate of S{radical} B of the Higgs signal is sufficiently high that the b{bar b} mode can become the discovery mode of the lightest Higgs boson of the MSSM.

  7. Bosonization and quantum hydrodynamics

    Indian Academy of Sciences (India)

    thereby completing the formalism introduced earlier [10]. It is worth emphasizing that it is the slow part of the field operator that is easily expressed in terms of the bosons rather than the full field as was implied in one of the author's earlier work. [5]. The present approach, together with the action mentioned in the abstract, can.

  8. Intermediate Vector Boson

    Indian Academy of Sciences (India)

    Keith Ulmer

    in a quantum field theory, there exists a massless scalar (spin-0) boson ... Do not know its mass. ❖. Production rate is very very low in comparison with other physics process, need. ➢. High luminosity,. ➢. High energy. ➢. High precision ..... Magnificent triumph of human thought and intelligence! But still strong interaction is ...

  9. Discovery of a synthetic Aminopeptidase N inhibitor LB-4b as a potential anticancer agent.

    Science.gov (United States)

    Su, Li; Jia, Yuping; Wang, Xuejian; Zhang, Lei; Fang, Hao; Xu, Wenfang

    2013-05-01

    APN inhibitors have been considered as potential anticancer agents for years. LB-4b is the first synthetic APN inhibitor to be evaluated for both of its anti-invasion and anti-angiogenesis effects. As a potent synthetic APN inhibitor (IC50=850 nM, versus bestatin of 8.1 μM), LB-4b was determined to have more significant block effects to cancer cell invasion and angiogenesis than bestatin. Besides, it is able to be easily synthesized with a high total yield, while the reported synthetic methods of bestatin are much more complex. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Higgs boson: the winner takes it all?

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    Since its discovery in 2012, the Higgs boson has been in the spotlight for both experimentalists and theorists. In addition to its confirmed role in the mass mechanism, recent papers have discussed its possible role in the inflation of the universe and in the matter-antimatter imbalance. Can a single particle be responsible for everything?   “Since 2012 we have known that the Higgs boson exists, but its inner properties are yet to be completely uncovered,” says Gian Giudice, a member of the CERN Theory Unit. “Precise measurements of its decay modes are still ongoing and the LHC Run 2 will be essential to understand the nature of this particle at a deeper level.” What we know is that this boson is not “yet another particle” among the hundreds that we deal with every day in physics labs. In agreement with the Standard Model theory, the recent experimental data confirms that the particle discovered by the CERN experiments is the key pa...

  11. Actinomycetes from the South China Sea sponges: isolation, diversity, and potential for aromatic polyketides discovery

    Science.gov (United States)

    Sun, Wei; Zhang, Fengli; He, Liming; Karthik, Loganathan; Li, Zhiyong

    2015-01-01

    Marine sponges often harbor dense and diverse microbial communities including actinobacteria. To date no comprehensive investigation has been performed on the culturable diversity of the actinomycetes associated with South China Sea sponges. Structurally novel aromatic polyketides were recently discovered from marine sponge-derived Streptomyces and Saccharopolyspora strains, suggesting that sponge-associated actinomycetes can serve as a new source of aromatic polyketides. In this study, a total of 77 actinomycete strains were isolated from 15 South China Sea sponge species. Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 12 families and 20 genera, among which three rare genera (Marihabitans, Polymorphospora, and Streptomonospora) were isolated from marine sponges for the first time. Subsequently, β-ketoacyl synthase (KSα) gene was used as marker for evaluating the potential of the actinomycete strains to produce aromatic polyketides. As a result, KSα gene was detected in 35 isolates related to seven genera (Kocuria, Micromonospora, Nocardia, Nocardiopsis, Saccharopolyspora, Salinispora, and Streptomyces). Finally, 10 strains were selected for small-scale fermentation, and one angucycline compound was detected from the culture extract of Streptomyces anulatus strain S71. This study advanced our knowledge of the sponge-associated actinomycetes regarding their diversity and potential in producing aromatic polyketides. PMID:26483773

  12. Cure from the cave: volcanic cave actinomycetes and their potential in drug discovery

    Directory of Open Access Journals (Sweden)

    Cheeptham N.

    2013-01-01

    Full Text Available Volcanic caves have been little studied for their potential as sources of novel microbial species and bioactive compounds with new scaffolds. We present the f irst study of volcanic cave microbiology from Canada and suggest that this habitat has great potential for the isolation of novel bioactive substances. Sample locat ions were plot ted on a contour map that was compiled in ArcView 3.2. Over 400 bacterial isolates were obtained from the Helmcken Falls cave in Wells Gray Provincial Park, British Columbia. From our preliminary screen, of 400 isolates tested, 1% showed activity against extended spectrum ß-lactamase E. coli, 1.75% against Escherichia coli, 2.25% against Acinetobacter baumannii, and 26.50% against Klebsiella pneumoniae. In addition, 10.25% showed activity against Micrococcus luteus, 2% against methicillin resistant Staphylococcus aureus, 9.25% against Mycobacterium smegmatis, 6.25% Pseudomonas aeruginosa and 7.5% against Candida albicans. Chemical and physical characteristics of three rock wall samples were studied using scanning electron microscopy and f lame atomic absorption spectrometry. Calcium (Ca, iron (Fe, and aluminum (Al were the most abundant components while magnesium (Mg, sodium (Na, arsenic (As, lead (Pb, chromium (Cr, and barium (Ba were second most abundant with cadmium (Cd and potassium (K were the least abundant in our samples. Scanning electron microscopy (SEM showed the presence of microscopic life forms in all three rock wall samples. 16S rRNA gene sequencing of 82 isolates revealed that 65 (79.3% of the strains belong to the Streptomyces genus and 5 (6.1% were members of Bacillus, Pseudomonas, Nocardia and Erwinia genera. Interestingly, twelve (14.6% of the 16S rRNA sequences showed similarity to unidentif ied ribosomal RNA sequences in the library databases, the sequences of these isolates need to be further investigated using the EzTaxon-e database (http://eztaxon-e. ezbiocloud.net/ to determine whether

  13. Discovery potential for supernova relic neutrinos with slow liquid scintillator detectors

    Science.gov (United States)

    Wei, Hanyu; Wang, Zhe; Chen, Shaomin

    2017-06-01

    Detection of supernova relic neutrinos could provide key support for our current understanding of stellar and cosmological evolution, and precise measurements of these neutrinos could yield novel insights into the universe. In this paper, we studied the detection potential of supernova relic neutrinos using linear alkyl benzene (LAB) as a slow liquid scintillator. The linear alkyl benzene features good separation of Cherenkov and scintillation lights, thereby providing a new route for particle identification. We further addressed key issues in current experiments, including (1) the charged current background of atmospheric neutrinos in water Cherenkov detectors and (2) the neutral current background of atmospheric neutrinos in typical liquid scintillator detectors. A kiloton-scale LAB detector at Jinping with O(10) years of data could discover supernova relic neutrinos with a sensitivity comparable to that of large-volume water Cherenkov detectors, typical liquid scintillator detectors, and liquid argon detectors.

  14. Discovery of dihydrochalcone as potential lead for Alzheimer's disease: in silico and in vitro study.

    Directory of Open Access Journals (Sweden)

    Man Hoang Viet

    Full Text Available By the virtual screening method we have screened out Dihydrochalcone as a top-lead for the Alzheimer's disease using the database of about 32364 natural compounds. The binding affinity of this ligand to amyloid beta (Aβ fibril has been thoroughly studied by computer simulation and experiment. Using the Thioflavin T (ThT assay we have obtained the inhibition constant IC50 μM. This result is in good agreement with the estimation of the binding free energy obtained by the molecular mechanic-Poisson Boltzmann surface area method and all-atom simulation with the force field CHARMM 27 and water model TIP3P. Cell viability assays indicated that Dihydrochalcone could effectively reduce the cytotoxicity induced by Aβ. Thus, both in silico and in vitro studies show that Dihydrochalcone is a potential drug for the Alzheimers disease.

  15. Discovery and identification of potential biomarkers for alcohol-induced oxidative stress based on cellular metabolomics.

    Science.gov (United States)

    Hu, Qingping; Wei, Jianteng; Liu, Yewei; Fei, Xiulan; Hao, Yuwei; Pei, Dong; Di, Duolong

    2017-07-01

    Biomarkers involved in alcohol-induced oxidative stress play an important role in alcoholic liver disease prevention and diagnosis. Alcohol-induced oxidative stress in human liver L-02 cells was used to discover the potential biomarkers. Metabolites from L-02 cells induced by alcohol were measured by high-performance liquid chromatography and mass spectrometry. Fourteen metabolites that allowed discrimination between control and model groups were discovered by multivariate statistical data analysis (i.e. principal components analysis, orthogonal partial least-squares discriminate analysis). Based on the retention time, UV spectrum and LC-MS findings of the samples and compared with the authentic standards, eight biomarkers involved in alcohol-induced oxidative stress, namely, malic acid, oxidized glutathione, γ-glutamyl-cysteinyl-glycine, adenosine triphosphate, phenylalanine, adenosine monophosphate, nitrotyrosine and tryptophan, were identified. These biomarkers offered important targets for disease diagnosis and other researches. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Status of the charged Higgs boson in two Higgs doublet models

    Science.gov (United States)

    Arbey, A.; Mahmoudi, F.; Stål, O.; Stefaniak, T.

    2018-03-01

    The existence of charged Higgs boson(s) is inevitable in models with two (or more) Higgs doublets. Hence, their discovery would constitute unambiguous evidence for new physics beyond the Standard Model (SM). Taking into account all relevant results from direct charged and neutral Higgs boson searches at LEP and the LHC, as well as the most recent constraints from flavour physics, we present a detailed analysis of the current phenomenological status of the charged Higgs sector in a variety of well-motivated two Higgs doublet models (2HDMs). We find that charged Higgs bosons as light as 75 GeV can still be compatible with the combined data, although this implies severely suppressed charged Higgs couplings to all fermions. In more popular models, e.g. the 2HDM of Type II, we find that flavour physics observables impose a combined lower limit on the charged Higgs mass of M_{H^± } ≳ 600 GeV - independent of tan β - which increases to M_{H^± } ≳ 650 GeV for tan β Higgs boson decaying into a lighter neutral Higgs boson and a W boson provides a promising experimental avenue that would greatly complement the existing LHC search programme for charged Higgs boson(s).

  17. Discovery and identification of potential biomarkers of pediatric Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Cui Ziyou

    2009-03-01

    Full Text Available Abstract Background Acute lymphoblastic leukemia (ALL is a common form of cancer in children. Currently, bone marrow biopsy is used for diagnosis. Noninvasive biomarkers for the early diagnosis of pediatric ALL are urgently needed. The aim of this study was to discover potential protein biomarkers for pediatric ALL. Methods Ninety-four pediatric ALL patients and 84 controls were randomly divided into a "training" set (45 ALL patients, 34 healthy controls and a test set (49 ALL patients, 30 healthy controls and 30 pediatric acute myeloid leukemia (AML patients. Serum proteomic profiles were measured using surface-enhanced laser desorption/ionization-time-of-flight mass spectroscopy (SELDI-TOF-MS. A classification model was established by Biomarker Pattern Software (BPS. Candidate protein biomarkers were purified by HPLC, identified by LC-MS/MS and validated using ProteinChip immunoassays. Results A total of 7 protein peaks (9290 m/z, 7769 m/z, 15110 m/z, 7564 m/z, 4469 m/z, 8937 m/z, 8137 m/z were found with differential expression levels in the sera of pediatric ALL patients and controls using SELDI-TOF-MS and then analyzed by BPS to construct a classification model in the "training" set. The sensitivity and specificity of the model were found to be 91.8%, and 90.0%, respectively, in the test set. Two candidate protein peaks (7769 and 9290 m/z were found to be down-regulated in ALL patients, where these were identified as platelet factor 4 (PF4 and pro-platelet basic protein precursor (PBP. Two other candidate protein peaks (8137 and 8937 m/z were found up-regulated in the sera of ALL patients, and these were identified as fragments of the complement component 3a (C3a. Conclusion Platelet factor (PF4, connective tissue activating peptide III (CTAP-III and two fragments of C3a may be potential protein biomarkers of pediatric ALL and used to distinguish pediatric ALL patients from healthy controls and pediatric AML patients. Further studies with

  18. Discovery of new chemical entities as potential leads against Mycobacterium tuberculosis.

    Science.gov (United States)

    Lu, Xiaoyun; Tang, Jian; Liu, Zhiyong; Li, Minke; Zhang, Tianyu; Zhang, Xiantao; Ding, Ke

    2016-12-15

    A series of biheterocyclic (1H-indole, benzofuran, pyrazolo[1,5-a]pyrimidine, pyrazolo[1,5-a]pyrimidin-5(4H)-one, imidazo[2,1-b]thiazole and pyrazolo[5,1-b]thiazole) derivatives were synthesized and evaluated for their anti-tubercular activities. The imidazo[2,1-b]thiazoles 9a-c and pyrazolo[5,1-b]thiazoles 10a-c exhibited promising anti-tubercular activity in varying degrees. Especially, the 2,6-dimethylpyrazolo[5,1-b]thiazole 10a exhibited strong suppressing function against H37Ra strain with MIC value of 0.03μg/mL. Compound 10a also displayed good pharmacokinetic profiles with oral bioavailability (F) of 41.7% and a half-life of 13.4h. Furthermore, 10a significantly reduced the bacterial burden in an autoluminescent H37Ra infected mouse model, suggesting its promising potential for development of anti-tubercular drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change.

    Science.gov (United States)

    Voss, Maren; Bange, Hermann W; Dippner, Joachim W; Middelburg, Jack J; Montoya, Joseph P; Ward, Bess

    2013-07-05

    The ocean's nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and nitrification are both regulated by oxygen concentrations and potentially produce nitrous oxide (N2O), a climate-relevant atmospheric trace gas. The world's oceans, including the coastal areas and upwelling areas, contribute about 30 per cent to the atmospheric N2O budget and are, therefore, a major source of this gas to the atmosphere. Human activities now add more nitrogen to the environment than is naturally fixed. More than half of the nitrogen reaches the coastal ocean via river input and atmospheric deposition, of which the latter affects even remote oceanic regions. A nitrogen budget for the coastal and open ocean, where inputs and outputs match rather well, is presented. Furthermore, predicted climate change will impact the expansion of the oceans' oxygen minimum zones, the productivity of surface waters and presumably other microbial processes, with unpredictable consequences for the cycling of nitrogen. Nitrogen cycling is closely intertwined with that of carbon, phosphorous and other biologically important elements via biological stoichiometric requirements. This linkage implies that human alterations of nitrogen cycling are likely to have major consequences for other biogeochemical processes and ecosystem functions and services.

  20. Bosonic decays of charged Higgs bosons in a 2HDM type-I

    Energy Technology Data Exchange (ETDEWEB)

    Arhrib, A. [Abdelmalek Essaadi University, Faculte des Sciences et Techniques, Tangier (Morocco); National Center for Theoretical Sciences, Physics Division, Hsinchu (China); Benbrik, R. [National Center for Theoretical Sciences, Physics Division, Hsinchu (China); Cadi Ayyad University, LPHEA, Semlalia, Marrakech (Morocco); Faculte Polydisciplinaire de Safi, MSISM Team, Sidi Bouzid, Safi (Morocco); Moretti, S. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom)

    2017-09-15

    In this study, we focus on the bosonic decays of light charged Higgs bosons in the 2-Higgs Doublet Model (2HDM) Type-I. We quantify the Branching Ratios (BRs) of the H{sup ±} → W{sup ±}h and H{sup ±} → W{sup ±}A channels and show that they could be substantial over several areas of the parameter space of the 2HDM Type-I that are still allowed by Large Hadron Collider (LHC) and other experimental data as well as theoretical constraints. We suggest that H{sup ±} → W{sup ±}h and/or H{sup ±} → W{sup ±}A could be used as a feasible discovery channel alternative to H{sup ±} → τν. (orig.)

  1. Higgs boson mass and new physics

    International Nuclear Information System (INIS)

    Bezrukov, Fedor; Brookhaven National Lab., Upton, NY; Kalmykov, Mikhail Yu.; Kniehl, Bernd A.; Shaposhnikov, Mikhail

    2012-05-01

    We discuss the lower Higgs boson mass bounds which come from the absolute stability of the Standard Model (SM) vacuum and from the Higgs inflation, as well as the prediction of the Higgs boson mass coming from asymptotic safety of the SM. We account for the 3-loop renormalization group evolution of the couplings of the Standard Model and for a part of two-loop corrections that involve the QCD coupling α s to initial conditions for their running. This is one step above the current state of the art procedure (''one-loop matching-two-loop running''). This results in reduction of the theoretical uncertainties in the Higgs boson mass bounds and predictions, associated with the Standard Model physics, to 1-2 GeV. We find that with the account of existing experimental uncertainties in the mass of the top quark and α s (taken at 2σ level) the bound reads M H ≥ M min (equality corresponds to the asymptotic safety prediction), where M min =129±6 GeV. We argue that the discovery of the SM Higgs boson in this range would be in agreement with the hypothesis of the absence of new energy scales between the Fermi and Planck scales, whereas the coincidence of M H with M min would suggest that the electroweak scale is determined by Planck physics. In order to clarify the relation between the Fermi and Planck scale a construction of an electron-positron or muon collider with a center of mass energy ∝200+200 GeV (Higgs and t-quark factory) would be needed.

  2. Higgs boson mass and new physics

    Energy Technology Data Exchange (ETDEWEB)

    Bezrukov, Fedor [Connecticut Univ., Storrs, CT (United States). Dept. of Physics; Brookhaven National Lab., Upton, NY (United States). RIKEN-BNL Research Center; Kalmykov, Mikhail Yu.; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Shaposhnikov, Mikhail [Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. de Theorie des Phenomenes Physiques

    2012-05-15

    We discuss the lower Higgs boson mass bounds which come from the absolute stability of the Standard Model (SM) vacuum and from the Higgs inflation, as well as the prediction of the Higgs boson mass coming from asymptotic safety of the SM. We account for the 3-loop renormalization group evolution of the couplings of the Standard Model and for a part of two-loop corrections that involve the QCD coupling {alpha}{sub s} to initial conditions for their running. This is one step above the current state of the art procedure (''one-loop matching-two-loop running''). This results in reduction of the theoretical uncertainties in the Higgs boson mass bounds and predictions, associated with the Standard Model physics, to 1-2 GeV. We find that with the account of existing experimental uncertainties in the mass of the top quark and {alpha}{sub s} (taken at 2{sigma} level) the bound reads M{sub H} {>=} M{sub min} (equality corresponds to the asymptotic safety prediction), where M{sub min}=129{+-}6 GeV. We argue that the discovery of the SM Higgs boson in this range would be in agreement with the hypothesis of the absence of new energy scales between the Fermi and Planck scales, whereas the coincidence of M{sub H} with M{sub min} would suggest that the electroweak scale is determined by Planck physics. In order to clarify the relation between the Fermi and Planck scale a construction of an electron-positron or muon collider with a center of mass energy {proportional_to}200+200 GeV (Higgs and t-quark factory) would be needed.

  3. Creating the fermion mass hierarchies with multiple Higgs bosons

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Martin; Carena, Marcela; Gemmler, Katrin

    2016-12-28

    After the Higgs boson discovery, it is established that the Higgs mechanism explains electroweak symmetry breaking and generates the masses of all particles in the Standard Model, with the possible exception of neutrino masses. The hierarchies among fermion masses and mixing angles remain however unexplained. We propose a new class of two Higgs doublet models in which a flavor symmetry broken at the electroweak scale addresses this problem. The models are strongly constrained by electroweak precision tests and the fact that they produce modifications to Higgs couplings and flavor changing neutral currents; they are also constrained by collider searches for extra scalar bosons. The surviving models are very predictive, implying unavoidable new physics signals at the CERN Large Hadron Collider, e.g. extra Higgs Bosons with masses $M < 700$ GeV.

  4. Higgs Bosons in Extra Dimensions

    CERN Document Server

    Quiros, Mariano

    2015-01-01

    In this paper, motivated by the recent discovery of a Higgs-like boson at the LHC with a mass m_H\\simeq 126 GeV, we review different models where the hierarchy problem is solved by means of a warped extra dimension. In the Randall-Sundrum model electroweak observables provide very strong bounds on the mass of KK modes which motivates extensions to overcome this problem. Two extensions are briefly discussed. One particular extension is based on the deformation of the metric such that it strongly departs from the AdS_5 structure in the IR region while it goes asymptotically to AdS_5 in the UV brane. This model has the IR brane close to a naked metric singularity (which is outside the physical interval) characteristic of soft-walls constructions. The proximity of the singularity provides a strong wave-function renormalization for the Higgs field which suppresses the T and S parameters. The second class of considered extensions are based on the introduction of an extra gauge group in the bulk such that the custod...

  5. Colored pseudo Goldstone bosons and gauge boson pairs

    International Nuclear Information System (INIS)

    Chivukula, R.S.; Golden, M.; Ramana, M.V.

    1992-01-01

    If the electroweak symmetry breaking sector contains colored particles weighing a few hundred GeV, then they will be copiously produced at a hadron supercollider. Colored technipions can rescatter into pairs of gauge bosons. As proposed by Bagger, Dawson, and Valencia, this leads to gauge boson pair rates far larger than in the standard model. In this Letter we reconsider this mechanism, and illustrate it in a model in which the rates can be reliably calculated. The observation of both an enhanced rate of gauge-boson-pair events and colored particles would be a signal that the colored particles were pseudo Goldstone bosons of symmetry breaking

  6. Measurement of the Jet Momentum Resolution and Search for a light Standard Model Higgs Boson in the H(bb)W(lv) Channel with the CMS Detector at the LHC

    CERN Document Server

    Held, Hauke

    The Higgs boson is the last particle predicted by the Standard Model which remains undetected. Its potential discovery was a main objective of the construction of the Large Hadron Collider (LHC) at CERN. Its exclusion would necessitate the existence of new physics beyond the Standard Model. A search for the Higgs boson decaying into two bottom quarks in association with the production of a leptonically decaying W boson is presented based on pp collision data recorded with the CMS experiment in 2011, corresponding to an integrated luminosity of L = 4.65 fb−1. Events are selected requiring the presence of an isolated charged lepton (electron or muon), missing transverse energy and two b-jets, which are clustered with the anti-kT jet algorithm at first. The search is performed in a boosted event topology, where both the W boson and the Higgs boson candidates have high momenta and move back-to-back in the transverse detector plane. Artificial Neural Networks are employed to discriminate signal and background ev...

  7. Il Bosone di Higgs

    CERN Multimedia

    Hemmer, Sabine

    2018-01-01

    Poster di ATLAS sul bosone di Higgs indirizzato al pubblico generico, che spiega il meccanismo di Brout-Englert-Higgs e la sua importanza. Spiega anche il ruolo del Bosone di Higgs, come viene cercato, il percorso della sua scoperta e cosa viene dopo la scoperta. Disponibile anche in Francese (http://cds.cern.ch/record/1697501) e Inglese (http://cds.cern.ch/record/1697389). Non esitate a utilizzarlo nelle sedi dei vostri Istituti e negli eventi divulgativi! Il poster è in formato A0. Cliccate sull'immagine per scaricare il .pdf ad alta qualità e stamparlo dove preferite. Per qualisasi domanda o commento potete contattare atlas-outreach-coordination@cern.ch

  8. Fractional bosonic strings

    Science.gov (United States)

    Diaz, Victor Alfonzo; Giusti, Andrea

    2018-03-01

    The aim of this paper is to present a simple generalization of bosonic string theory in the framework of the theory of fractional variational problems. Specifically, we present a fractional extension of the Polyakov action, for which we compute the general form of the equations of motion and discuss the connection between the new fractional action and a generalization the Nambu-Goto action. Consequently, we analyze the symmetries of the modified Polyakov action and try to fix the gauge, following the classical procedures. Then we solve the equations of motion in a simplified setting. Finally, we present a Hamiltonian description of the classical fractional bosonic string and introduce the fractional light-cone gauge. It is important to remark that, throughout the whole paper, we thoroughly discuss how to recover the known results as an "integer" limit of the presented model.

  9. Model test of boson mappings

    International Nuclear Information System (INIS)

    Navratil, P.; Dobes, J.

    1992-01-01

    Methods of boson mapping are tested in calculations for a simple model system of four protons and four neutrons in single-j distinguishable orbits. Two-body terms in the boson images of the fermion operators are considered. Effects of the seniority v=4 states are thus included. The treatment of unphysical states and the influence of boson space truncation are particularly studied. Both the Dyson boson mapping and the seniority boson mapping as dictated by the similarity transformed Dyson mapping do not seem to be simply amenable to truncation. This situation improves when the one-body form of the seniority image of the quadrupole operator is employed. Truncation of the boson space is addressed by using the effective operator theory with a notable improvement of results

  10. Triple gauge boson couplings

    CERN Document Server

    Gounaris, George J; Zeppenfeld, Dieter; Ajaltouni, Ziad J; Arhrib, A; Bella, G; Berends, F A; Bilenky, S M; Blondel, A; Busenitz, J K; Choudhury, D; Clarke, P; Conboy, J E; Diehl, M; Fassouliotis, D; Frère, J M; Georgiopoulos, C H; Gibbs, M; Grünewald, M W; Hansen, J B; Hartmann, C; Jin, B N; Jousset, J; Kalinowski, Jan; Kocian, M L; Lahanas, Athanasios B; Layssac, J; Lieb, E H; Markou, C; Matteuzzi, C; Mättig, P; Moreno, J M; Moultaka, G; Nippe, A; Orloff, J; Papadopoulos, C G; Paschalis, J; Petridou, C; Phillips, H; Podlyski, F; Pohl, M; Renard, F M; Rossignol, J M; Rylko, R; Sekulin, R L; Van Sighem, A; Simopoulou, Errietta; Skillman, A; Spanos, V C; Tonazzo, A; Tytgat, M H G; Tzamarias, S; Verzegnassi, Claudio; Vlachos, N D; Zevgolatakos, E

    1996-01-01

    We present the results obtained by the "Triple Gauge Couplings" working group during the LEP2 Workshop (1994-1995). The report concentrates on the measurement of WW\\gamma and WWZ couplings in e^-e^+\\to W^-W^+ or, more generally, four-fermion production at LEP2. In addition the detection of new interactions in the bosonic sector via other production channels is discussed.

  11. On the bosonic atoms

    Science.gov (United States)

    Amusia, M. Ya.; Chernysheva, L. V.

    2018-01-01

    We investigate ground state properties of atoms, in which substitute fermions - electrons by bosons, namely π --mesons. We perform some calculations in the frame of modified Hartree-Fock (HF) equation. The modification takes into account symmetry, instead of anti-symmetry of the pair identical bosons wave function. The modified HF approach thus enhances (doubles) the effect of self-action for the boson case. Therefore, we accordingly modify the HF equations by eliminating the self-action terms "by hand". The contribution of meson-meson and meson-nucleon non-Coulomb interaction is inessential at least for atoms with low and intermediate nuclear charge, which is our main subject. We found that the binding energy of pion negative ions A π - , pion atoms A π , and the number of extra bound pions ΔN π increases with the growth of nuclear charge Z. For e.g. Xe ΔN π = 4. As an example of a simple process with a pion atom, we consider photoionization that differs essentially from that for electron atoms. Namely, it is not monotonic decreasing from the threshold but has instead a prominent maximum above threshold. We study also elastic scattering of pions by pion atoms.

  12. A search for a charged Higgs boson in the H+ → tb channel and tagging of b jets with the Atlas experiment at the LHC

    International Nuclear Information System (INIS)

    Zaidan, R.

    2009-09-01

    The only particle of the Standard Model that has not yet been discovered is the Higgs boson, which explains the origin of the masses of elementary particles. In the Minimal Supersymmetric extension to the Standard Model (MSSM), the Higgs sector consists of five bosons, two of which are charged. The search for a charged Higgs boson in the gg → t-bar bH + (H + → tb-bar) channel, is the main topic of this analysis. We present an analysis that uses a likelihood function to resolve combinatorial possibilities while reconstructing the charged Higgs boson, and the b-tagging to suppress the tt-bar + jets background. We also present the difficulties due to the combinatorial background reducing the discovery potential of this channel. The presence of 4 b quarks in the final state that we are looking for, makes the b-tagging an important tool for the analysis. Therefore, a part of this work is dedicated to the study of b-tagging. We present in the context of the preparation for the first data, several studies dedicated to the optimisation and the understanding of the b-tagging performance. We also present the commissioning of a simple tagger (JetProb) to be used with first data analysis. (author)

  13. Search for Neutral MSSM Higgs Bosons in the Di-Tau channel at the CMS experiment at LHC.

    CERN Document Server

    AUTHOR|(CDS)2081893

    2016-01-01

    With the recent discovery of the SM (Standard Model) higgs boson of mass around 125 GeV by the CMS (Compact Muon Solenoid) and the ATLAS (A Toroidal LHC Apparatus) collaborations at the LHC (Large Hadron Collider) at CERN, there have been attempts to interpret this newly discovered resonance in the context of BSM (Beyond Standard Model) physics scenarios. Results are presented for the search for Neutral MSSM (Mininal SuperSymmetric Standard Model) higgs bosons where the higgs decays to two $\\tau$-leptons using the full Run-1 dataset collected by the CMS experiment. Interpretation of these results in the context of the SM higgs boson discovery is also given.

  14. A Study Of Observability Of Higgs Boson Decay In Higgs Boson Decays To Two Z Mesons Decays To Four Leptons At Cms

    CERN Document Server

    Liang, G

    2005-01-01

    The Standard Model (SM) of particle physics has been the most successful theory about fundamental particles and how they interact. In SM, the originally massless fundamental particles acquire masses in a process called the Higgs mechanism. This mechanism involves an additional particle, called the Higgs boson, whose responsibility is to break the electroweak symmetry and help those massless particles acquire masses. With the discovery of the top quark at Tevatron in 1995, the Higgs boson remains to be the only unfound fundamental particle in the Standard Model. The discovery of the Higgs boson would greatly increase our understanding of the origin of the mass. One of the most important objectives of the LHC experiment is to discover the Higgs boson. At LHC, the CMS experiment is optimized for the search of the Higgs boson over a mass range up to 1 TeV. Among all Higgs decay channels, H → ZZ → 4l is one of the most promising channels to search the SM Higgs boson at CMS. This study concentrat...

  15. LHC constraints on gauge boson couplings to dark matter

    CERN Document Server

    Crivellin, Andreas; Hibbs, Anthony

    2015-01-01

    Collider searches for energetic particles recoiling against missing transverse energy allow to place strong bounds on the interactions between dark matter (DM) and standard model particles. In this article we update and extend LHC constraints on effective dimension-7 operators involving DM and electroweak gauge bosons. A concise comparison of the sensitivity of the mono-photon, mono-W, mono-Z, mono-W/Z, invisible Higgs-boson decays in the vector boson fusion mode and the mono-jet channel is presented. Depending on the parameter choices, either the mono-photon or the mono-jet data provide the most stringent bounds at the moment. We furthermore explore the potential of improving the current 8 TeV limits at 14 TeV. Future strategies capable of disentangling the effects of the different effective operators involving electroweak gauge bosons are discussed as well.

  16. ElectroWeak Bosons Couplings

    CERN Document Server

    Ouraou, Ahmimed; The ATLAS collaboration

    2016-01-01

    Latest results on the measurement of gauge boson couplings, from ATLAS and CMS at the LHC, are presented. This review starts with an introduction to boson couplings, then the measurements of Triple and Quartic Couplings are described. And finally, limits on anomalous couplings are summarized.

  17. Limits on light Higgs bosons

    International Nuclear Information System (INIS)

    Dawson, S.

    1988-01-01

    Experimental limits on light Higgs bosons (M/sub H/ < 5 GeV) are examined. Particular attention is paid to the process K → πH. It is shown that there may be an allowed window for light Higgs bosons between about 100 and 210 MeV. 13 refs., 2 figs

  18. Sensitivity of the ATLAS experiment to discover the decay H{yields} {tau}{tau} {yields}ll+4{nu} of the Standard Model Higgs Boson produced in vector boson fusion

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Martin

    2011-05-17

    A study of the expected sensitivity of the ATLAS experiment to discover the Standard Model Higgs boson produced via vector boson fusion (VBF) and its decay to H{yields} {tau}{tau}{yields} ll+4{nu} is presented. The study is based on simulated proton-proton collisions at a centre-of-mass energy of 14 TeV. For the first time the discovery potential is evaluated in the presence of additional proton-proton interactions (pile-up) to the process of interest in a complete and consistent way. Special emphasis is placed on the development of background estimation techniques to extract the main background processes Z{yields}{tau}{tau} and t anti t production using data. The t anti t background is estimated using a control sample selected with the VBF analysis cuts and the inverted b-jet veto. The dominant background process Z{yields}{tau}{tau} is estimated using Z{yields}{mu}{mu} events. Replacing the muons of the Z{yields}{mu}{mu} event with simulated {tau}-leptons, Z{yields}{tau}{tau} events are modelled to high precision. For the replacement of the Z boson decay products a dedicated method based on tracks and calorimeter cells is developed. Without pile-up a discovery potential of 3{sigma} to 3.4{sigma} in the mass range 115 GeV

  19. Sensitivity of the ATLAS experiment to discover the decay H→ ττ →ll+4ν of the Standard Model Higgs Boson produced in vector boson fusion

    International Nuclear Information System (INIS)

    Schmitz, Martin

    2011-01-01

    A study of the expected sensitivity of the ATLAS experiment to discover the Standard Model Higgs boson produced via vector boson fusion (VBF) and its decay to H→ ττ→ ll+4ν is presented. The study is based on simulated proton-proton collisions at a centre-of-mass energy of 14 TeV. For the first time the discovery potential is evaluated in the presence of additional proton-proton interactions (pile-up) to the process of interest in a complete and consistent way. Special emphasis is placed on the development of background estimation techniques to extract the main background processes Z→ττ and t anti t production using data. The t anti t background is estimated using a control sample selected with the VBF analysis cuts and the inverted b-jet veto. The dominant background process Z→ττ is estimated using Z→μμ events. Replacing the muons of the Z→μμ event with simulated τ-leptons, Z→ττ events are modelled to high precision. For the replacement of the Z boson decay products a dedicated method based on tracks and calorimeter cells is developed. Without pile-up a discovery potential of 3σ to 3.4σ in the mass range 115 GeV H -1 . In the presence of pile-up the signal sensitivity decreases to 1.7σ to 1.9σ mainly caused by the worse resolution of the reconstructed missing transverse energy.

  20. Study of the discovery potential for hidden photon emission at future electron scattering fixed-target experiments

    Science.gov (United States)

    Beranek, T.; Vanderhaeghen, M.

    2014-03-01

    Recently, electron scattering fixed-target experiments came into focus to search for U(1) extensions of the Standard Model of particle physics at low energies. These extensions are motivated from anomalies in astrophysical observations as well as from deviations from Standard Model predictions, such as the discrepancy between the experimental and theoretical determinations of the anomalous magnetic moment of the muon. In such U(1) extensions, a new, light messenger particle γ', the hidden photon, couples to the hidden sector as well as to the electromagnetic current of the Standard Model by kinetic mixing, which allows for a search for this particle, e.g., in the invariant mass distribution of the process e(A ,Z)→e(A,Z)l+l-. In this process the hidden photon is emitted by bremsstrahlung and decays into a pair of Standard Model leptons. In this work we study the applicability of the Weizsäcker-Williams approximation to calculate the signal cross section of the process, which is widely used to design such experimental setups. Furthermore, we study the influence of the contribution from doubly virtual Compton scattering on experiments performed with proton targets. Based on a previous work, we investigate the discovery potential of future experimental setups at the Jefferson Lab and obtain a projected exclusion limit. We find that doubly virtual Compton scattering causes a 10% effect on the cross section for the kinematics of a planned experiment and therefore does not alter the obtained experimental reach significantly. In addition, we find that the Weizsäcker-Williams approximation can be applied to calculate the underlying cross sections in the kinematic range of most of the present and upcoming experiments, provided that the dependence on the energy and emission angle of the hidden photon is accounted for.

  1. The interacting boson model

    International Nuclear Information System (INIS)

    Iachello, F.; Arima, A.

    1987-01-01

    The book gives an account of some of the properties of the interacting boson model. The model was introduced in 1974 to describe in a unified way the collective properties of nuclei. The book presents the mathematical techniques used to analyse the structure of the model. The mathematical framework of the model is discussed in detail. The book also contains all the formulae that have been developed throughout the years to account for collective properties of nuclei. These formulae can be used by experimentalists to compare their data with the predictions of the model. (U.K.)

  2. Partially composite Goldstone Higgs boson

    DEFF Research Database (Denmark)

    Alanne, Tommi; Franzosi, Diogo Buarque; Frandsen, Mads T.

    2017-01-01

    We consider a model of dynamical electroweak symmetry breaking with a partially composite Goldstone Higgs boson. The model is based on a strongly interacting fermionic sector coupled to a fundamental scalar sector via Yukawa interactions. The SU(4)×SU(4) global symmetry of these two sectors...... is broken to a single SU(4) via Yukawa interactions. Electroweak symmetry breaking is dynamically induced by condensation due to the strong interactions in the new fermionic sector which further breaks the global symmetry SU(4)→Sp(4). The Higgs boson arises as a partially composite state which is an exact...... Goldstone boson in the limit where SM interactions are turned off. Terms breaking the SU(4) global symmetry explicitly generate a mass for the Goldstone Higgs boson. The model realizes in different limits both (partially) composite Higgs and (bosonic) technicolor models, thereby providing a convenient...

  3. Big bang machine searching for the Higgs boson particle

    CERN Document Server

    2015-01-01

    On July 4, 2012, scientists at the giant atom smashing facility at CERN announced the discovery of a subatomic particle that seems like a tantalizingly close match to the elusive Higgs Boson, thought to be responsible for giving all the stuff in the universe its mass. Since it was first proposed nearly fifty years ago, the Higgs has been the holy grail of particle physicists: in finding it they validate the “standard model” that underlies all of modern physics and open the door to new discoveries when CERN’s giant collider switches on at higher power in 2015.

  4. A Simulated Study Of The Potential For The Discovery Of The Supersymmetric Bottom Squark At The Atlas Experiment In Cern

    CERN Document Server

    Pravahan, R; De, K

    2001-01-01

    Supersymmetry is a theory that postulates the invariance of physical laws under the exchange of Bosons with Fermions and vice versa. As a consequence, within Supersymmetry exists a Supersymmetric partner for every fundamental particle found in the Standard Model. The partner for the bottom quark is the Sbottom squark. This study explores the possibilities of detecting the Sbottom squark at the Alternating Toroidal Large Hadron Collider Apparatus (ATLAS) in CERN. Working within the minimal Supergravity theoretical framework I simulate the mass, cross section and decay modes for the Sbottom using Monte Carlo techniques and study their possible signatures at ATLAS using the detector simulator in ISAJET. Consequently, a study of the physics objects determines the possibility of detection at the LHC energy scale.

  5. Finding potentially new multimorbidity patterns of psychiatric and somatic diseases: exploring the use of literature-based discovery in primary care research.

    Science.gov (United States)

    Vos, Rein; Aarts, Sil; van Mulligen, Erik; Metsemakers, Job; van Boxtel, Martin P; Verhey, Frans; van den Akker, Marjan

    2014-01-01

    Multimorbidity, the co-occurrence of two or more chronic medical conditions within a single individual, is increasingly becoming part of daily care of general medical practice. Literature-based discovery may help to investigate the patterns of multimorbidity and to integrate medical knowledge for improving healthcare delivery for individuals with co-occurring chronic conditions. To explore the usefulness of literature-based discovery in primary care research through the key-case of finding associations between psychiatric and somatic diseases relevant to general practice in a large biomedical literature database (Medline). By using literature based discovery for matching disease profiles as vectors in a high-dimensional associative concept space, co-occurrences of a broad spectrum of chronic medical conditions were matched for their potential in biomedicine. An experimental setting was chosen in parallel with expert evaluations and expert meetings to assess performance and to generate targets for integrating literature-based discovery in multidisciplinary medical research of psychiatric and somatic disease associations. Through stepwise reductions a reference set of 21,945 disease combinations was generated, from which a set of 166 combinations between psychiatric and somatic diseases was selected and assessed by text mining and expert evaluation. Literature-based discovery tools generate specific patterns of associations between psychiatric and somatic diseases: one subset was appraised as promising for further research; the other subset surprised the experts, leading to intricate discussions and further eliciting of frameworks of biomedical knowledge. These frameworks enable us to specify targets for further developing and integrating literature-based discovery in multidisciplinary research of general practice, psychology and psychiatry, and epidemiology.

  6. Discovering Higgs bosons of the MSSM using jet substructure

    International Nuclear Information System (INIS)

    Kribs, Graham D.; Roy, Tuhin S.; Spannowsky, Michael; Martin, Adam

    2010-01-01

    We present a qualitatively new approach to discover Higgs bosons of the minimal supersymmetric standard model (MSSM) at the LHC using jet substructure techniques applied to boosted Higgs decays. These techniques are ideally suited to the MSSM, since the lightest Higgs boson overwhelmingly decays to bb throughout the entire parameter space, while the heavier neutral Higgs bosons, if light enough to be produced in a cascade, also predominantly decay to bb. The Higgs production we consider arises from superpartner production where superpartners cascade decay into Higgs bosons. We study this mode of Higgs production for several superpartner hierarchies: m q -tilde, m g -tilde>m W -tilde ,B -tilde>m h +μ; m q -tilde, m g -tilde>m W -tilde ,B -tilde>m h,H,A +μ; and m q -tilde, m g -tilde>m W -tilde>m h +μ with m B -tilde≅μ. In these cascades, the Higgs bosons are boosted, with p T >200 GeV a large fraction of the time. Since Higgses appear in cascades originating from squarks and/or gluinos, the cross section for events with at least one Higgs can be the same order as squark/gluino production. Given 10 fb -1 of 14 TeV LHC data, with m q -tilde < or approx. 1 TeV, and one of the above superpartner mass hierarchies, our estimate of S/√(B) of the Higgs signal is sufficiently high that the bb mode can become the discovery mode of the lightest Higgs boson of the MSSM.

  7. The BEH mechanism and its scalar bosons

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    In the beginning of the 1960’s, the long range interactions within our universe were well understood from the laws of classical general relativity, Einstein’s generalisation of Newtonian gravity, and of quantum electrodynamics, the quantum version of Maxwell’s electromagnetic theory. But there was no hints of how to formulate consistent fundamental theories of short range interactions. A solution to this problem was proposed by Robert Brout and me, and independently by Peter Higgs. I shall explain our motivations for constructing this BEH mechanism and discuss its content. I will comment on how the magnificent ATLAS and CMS discovery at CERN of the scalar boson predicted by the mechanism confirms its validity and may have implications on structures at yet unexplored energies.

  8. Kondo length in bosonic lattices

    Science.gov (United States)

    Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea

    2017-09-01

    Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.

  9. Chameleon vector bosons

    International Nuclear Information System (INIS)

    Nelson, Ann E.; Walsh, Jonathan

    2008-01-01

    We show that for a force mediated by a vector particle coupled to a conserved U(1) charge, the apparent range and strength can depend on the size and density of the source, and the proximity to other sources. This chameleon effect is due to screening from a light charged scalar. Such screening can weaken astrophysical constraints on new gauge bosons. As an example we consider the constraints on chameleonic gauged B-L. We show that although Casimir measurements greatly constrain any B-L force much stronger than gravity with range longer than 0.1 μm, there remains an experimental window for a long-range chameleonic B-L force. Such a force could be much stronger than gravity, and long or infinite range in vacuum, but have an effective range near the surface of the earth which is less than a micron.

  10. Bounding the Higgs boson width through interferometry.

    Science.gov (United States)

    Dixon, Lance J; Li, Ye

    2013-09-13

    We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.

  11. Higgs boson pizza day | 4 July 2016 | Restaurant 1

    CERN Document Server

    2016-01-01

    Four years after the historic announcement of the discovery of the Higgs boson at CERN, a collaboration between INFN and CERN has declared 4 July 2016 “Higgs Boson Pizza Day”.    The Novae Restaurant 1 at CERN will offer two special “Higgs Boson Pizzas” (one vegetarian and one ham and cheese), from 11.30 a.m. to 2.15 p.m., for the usual pizza price. The idea was born in Naples (where else?), the hometown of Pierluigi Paolucci, who - while chatting with INFN president Fernando Ferroni - realised the striking resemblance between Higgs boson event displays and the delicious pizzas in front of them. A specially designed pizza was then created by the chef of the historic “Ettore” pizzeria in St. Lucia, in time for the opening of an Art&Science exhibition on 15 September 2015 in Naples. The owner of the restaurant, Ms Iolanda Canale, has been invited by INFN to come to CERN and help Novae in the preparation of 400 pizzas on thi...

  12. Finding the CP-violating Higgs bosons at e+e- colliders

    International Nuclear Information System (INIS)

    Grzadkowski, B.; Gunion, J.F.; Kalinowski, J.

    1999-01-01

    We discuss a general two-Higgs-doublet model with CP violation in the Higgs sector. In general, the three neutral Higgs fields of the model all mix and the resulting physical Higgs bosons have no definite CP properties. We derive a new sum rule relating Yukawa and Higgs-Z couplings which implies that a neutral Higgs boson cannot escape detection at an e + e - collider if it is kinematically accessible in Z+Higgs boson, b bar b+Higgs boson and t bar t+Higgs boson production, irrespective of the mixing angles and the masses of the other neutral Higgs bosons. We also discuss modifications of the sum rules and their phenomenological consequences in the case when the two-doublet Higgs sector is extended by adding one or more singlets. A brief discussion of the implications of the sum rules for Higgs boson discovery at the Fermilab Tevatron and CERN LHC is given. copyright 1999 The American Physical Society

  13. Spectroscopy of family gauge bosons

    Directory of Open Access Journals (Sweden)

    Yoshio Koide

    2014-09-01

    Full Text Available Spectroscopy of family gauge bosons is investigated based on a U(3 family gauge boson model proposed by Sumino. In his model, the family gauge bosons are in mass eigenstates in a diagonal basis of the charged lepton mass matrix. Therefore, the family numbers are defined by (e1,e2,e3=(e,μ,τ, while the assignment for quark sector are free. For possible family-number assignments (q1,q2,q3, under a constraint from K0–K¯0 mixing, we investigate possibilities of new physics, e.g. production of the lightest family gauge boson at the LHC, μ−N→e−N, rare K and B decays, and so on.

  14. Higgs boson search at ATLAS

    International Nuclear Information System (INIS)

    Hanninger, Guilherme Nunes

    2012-01-01

    Full text: The Standard Model of particle physics (SM) has been extremely successful describing the elementary particles and their interactions. It also features a theory describing the origin of particle masses: the 'Higgs mechanism', which postulates the existence of a new particle called the 'Higgs boson'. In 2011 and 2012, tantalising hints of the Higgs boson were reported by the experiments at the Large Hadron Collider (LHC). The results of the search for the Standard Model Higgs Boson with the ATLAS detector in proton-proton collisions at the LHC at 7 and 8 TeV center-of-mass energies are presented. A large number of the Higgs Boson decay channels, such as photon, tau, W and Z pairs, as well as for combined channels in the mass range from 110 GeV to 600 GeV are reviewed and discussed. The combined upper limits on the production cross section as a function of the Higgs Boson mass are derived. Practical methods to estimate the backgrounds using control samples in real data are discussed. Validation of some of the data driven background estimation methods using the early 7 TeV ATLAS data at the LHC is also presented. In addition, searches for Higgs Bosons in scenarios beyond the Standard Model (BSM) lead to improved constraints on the Higgs sector of BSM theories such as Supersymmetry. (author)

  15. The Higgs Boson as a Window to Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Vega-Morales, Roberto [Northwestern Univ., Evanston, IL (United States)

    2013-08-01

    The recent discovery of a Higgs boson at the LHC with properties resembling those predicted by the Standard Model (SM) gives strong indication that the final missing piece of the SM is now in place. In particular, the mechanism responsible for Electroweak Symmetry Breaking (EWSB) and generating masses for the Z and W vector bosons appears to have been established. Even with this amazing discovery there are still many outstanding theoretical and phenomenological questions which suggest that there must be physics Beyond the Standard Model (BSM). As we investigate in this thesis, the Higgs boson offers the exciting possibility of acting as a window to this new physics through various avenues which are experimentally testable in the coming years. We investigate a subset of these possibilities and begin by discussing them briefly below before a detailed examination in the following chapters.

  16. Volatility Discovery

    DEFF Research Database (Denmark)

    Dias, Gustavo Fruet; Scherrer, Cristina; Papailias, Fotis

    The price discovery literature investigates how homogenous securities traded on different markets incorporate information into prices. We take this literature one step further and investigate how these markets contribute to stochastic volatility (volatility discovery). We formally show...... that the realized measures from homogenous securities share a fractional stochastic trend, which is a combination of the price and volatility discovery measures. Furthermore, we show that volatility discovery is associated with the way that market participants process information arrival (market sensitivity......). Finally, we compute volatility discovery for 30 actively traded stocks in the U.S. and report that Nyse and Arca dominate Nasdaq....

  17. Exact Solutions of Scalar Bosons in the Presence of the Aharonov-Bohm and Coulomb Potentials in the Gravitational Field of Topological Defects

    Directory of Open Access Journals (Sweden)

    Abdelmalek Boumali

    2018-01-01

    Full Text Available We analyze the relativistic quantum motion of a charged scalar particles in the presence of an Aharonov-Bohm and Coulomb potentials in the space-times produced by an idealized cosmic string and global monopole. We have calculated and discussed the eigensolutions of DKP equation and their dependence on both the geometry of the space-times and coupling constants parameters.

  18. Discovery of potential protein biomarkers of lung adenocarcinoma in bronchoalveolar lavage fluid by SWATH MS data-independent acquisition and targeted data extraction.

    Science.gov (United States)

    Ortea, I; Rodríguez-Ariza, A; Chicano-Gálvez, E; Arenas Vacas, M S; Jurado Gámez, B

    2016-04-14

    Lung cancer currently ranks as the neoplasia with the highest global mortality rate. Although some improvements have been introduced in recent years, new advances in diagnosis are required in order to increase survival rates. New mildly invasive endoscopy-based diagnostic techniques include the collection of bronchoalveolar lavage fluid (BALF), which is discarded after using a portion of the fluid for standard pathological procedures. BALF proteomic analysis can contribute to clinical practice with more sensitive biomarkers, and can complement cytohistological studies by aiding in the diagnosis, prognosis, and subtyping of lung cancer, as well as the monitoring of treatment response. The range of quantitative proteomics methodologies used for biomarker discovery is currently being broadened with the introduction of data-independent acquisition (DIA) analysis-related approaches that address the massive quantitation of the components of a proteome. Here we report for the first time a DIA-based quantitative proteomics study using BALF as the source for the discovery of potential lung cancer biomarkers. The results have been encouraging in terms of the number of identified and quantified proteins. A panel of candidate protein biomarkers for adenocarcinoma in BALF is reported; this points to the activation of the complement network as being strongly over-represented and suggests this pathway as a potential target for lung cancer research. In addition, the results reported for haptoglobin, complement C4-A, and glutathione S-transferase pi are consistent with previous studies, which indicates that these proteins deserve further consideration as potential lung cancer biomarkers in BALF. Our study demonstrates that the analysis of BALF proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS), combining a simple sample pre-treatment and SWATH DIA MS, is a useful method for the discovery of potential lung cancer biomarkers. Bronchoalveolar lavage fluid (BALF

  19. Le cinquantenaire du CERN sous les feux de la rampe: vers le boson de Higgs

    CERN Multimedia

    2004-01-01

    CERN is celebrating today its 50th anniversary. Greatest physic Center in the world, he is setting up actually a new major instrument: the LHC. It should allow the discovery of the Higgs boson, angular stone of the theory of "standard model"

  20. Higgs bosons in the standard model, the МssМ and beyond

    Indian Academy of Sciences (India)

    There has been a substantial body of work addressing the phenomenology of the NMssM Higgs sector, particularly the issue of whether or not there is a. 'no-lose' theorem for Higgs discovery at a given type of collider (i.e. a guarantee that at least one of the NMssM Higgs bosons will be discovered). 298. Pramana - J. Phys.

  1. Molasses or Crowds: Making Sense of the Higgs Boson with Two Popular Analogies

    Science.gov (United States)

    Alsop, S.; Beale, S.

    2013-01-01

    The recent discovery of the Higgs boson at the Large Hadron Collider (LHC) has contributed to a surge of interest in particle physics and science education in general. Given the conceptual difficulty of the phenomenon in question, it is inevitable that teachers and science communicators rely on analogies to explain the Higgs physics and its…

  2. Charged boson stars

    Science.gov (United States)

    Pugliese, Daniela; Quevedo, Hernando; Rueda H., Jorge A.; Ruffini, Remo

    2013-07-01

    We study time-independent, spherically symmetric, self-gravitating systems minimally coupled to a scalar field with U(1) gauge symmetry: charged boson stars. We find numerical solutions to the Einstein-Maxwell equations coupled to the relativistic Klein-Gordon equation. It is shown that bound stable configurations exist only for values of the coupling constant less than or equal to a certain critical value. The metric coefficients and the relevant physical quantities, such as the total mass and charge, turn out to be, in general, bound functions of the radial coordinate, reaching their maximum values at a critical value of the scalar field at the origin. We discuss the stability problem from both the quantitative and qualitative point of view. We take into account the electromagnetic contribution to the total mass and investigate the stability issue considering the binding energy per particle. We verify the existence of configurations with positive binding energy in which objects that are apparently bound can be unstable against small perturbations, in full analogy with the effect observed in the mass-radius relation of neutron stars.

  3. [Three decades of the hepatitis C virus from the discovery to the potential global elimination: the success of translational researches].

    Science.gov (United States)

    Pár, Alajos; Pár, Gabriella

    2018-03-01

    More than 25 years after the discovery of hepatitis C virus, the development of the direct acting antivirals can lead to the regional or long-term global elimination of the virus with over 90% efficacy. This is the success of basic and clinical translational research. Yet, some unsolved challanges remain, such as the great number of unidentified patients who are not aware of their condition, the limited access to the therapy due to the high prices of the drugs, and the treatment of resistance-associated variants. In addition, the lack of vaccine is also an obstacle. In 2016, the World Health Organization (WHO) developed the first global health sector strategy for the elimination of viral hepatitis by 2030. Its evidence-based guidelines are primarily targeted at the national hepatitis programme managers who are responsible for the national testing and treatment plans. According to these recommendations, it is of basic importance to perform focused risk-based testing in higher-risk populations and after diagnosis to start treatment as "cure as prevention", furthermore, to limit the risk of reinfection. We review the events of the HCV story from the discovery to these days, including virology, epidemiology, pathogenesis, diagnosis and therapy. Orv Hetil. 2018; 159(12): 455-465.

  4. Intermediate-mass Higgs boson and isosinglet neutral heavy lepton signals at hadron supercolliders

    International Nuclear Information System (INIS)

    Bhattacharya, G.

    1992-01-01

    The signals for the Standard Model intermediate-mass Higgs boson and isosinglet neutral heavy leptons at the forthcoming hadron supercolliders-the Superconducting Super Collider (SSC) and the CERN Large Hadron Collider (LHC), are studied. The author studies inclusive production of the Standard Model Higgs boson in the intermediate-mass region (M W approx-lt m H approx-lt 2M Z ) and its subsequent decay into two on- or off-shell W bosons that decay leptonically. Backgrounds from continuum W pair production and top quark pair production with semileptonic decays are investigated. The author concludes the Higgs boson signal may be observed via the decay H → W*W* → (ell bar v ell ) (bar ell' v' ell ) at the SSC for 145 GeV H approx-lt 2M Z and at the LHC for 150 GeV H approx-lt 2M Z if m t > 150 GeV. The author analyzes the search and discovery potential of isosinglet neutral heavy leptons (NHLs) produced via real or virtual W decay at pp supercolliders. The author considers the signal resulting from the leptonic decay of the NHL, and the two major backgrounds-continuum WZ, Wγ production and t bar tj production, where j is a hadronic jet. The decay patterns of NHL depend on its mass M N , and different search strategies are needed for the two mass regions M N W and M N > M Z . The author finds for m t ≥ 150 (200) GeV the signal is observable for M N ≤ 60 (70) GeV in the mass-region M N W , and up to M N ≅ 110 GeV for M N > M W , at both SSC and LHC. It is shown the non-observance of the signal (with a 4σ statistical significance) in the region M N W could put upper limits on the NHL coupling constants that would be an improvement over the limits obtainable from the CERN Large Electron Positron Collider (LEP I)

  5. Electrophobic Scalar Boson and Muonic Puzzles.

    Science.gov (United States)

    Liu, Yu-Sheng; McKeen, David; Miller, Gerald A

    2016-09-02

    A new scalar boson which couples to the muon and proton can simultaneously solve the proton radius puzzle and the muon anomalous magnetic moment discrepancy. Using a variety of measurements, we constrain the mass of this scalar and its couplings to the electron, muon, neutron, and proton. Making no assumptions about the underlying model, these constraints and the requirement that it solve both problems limit the mass of the scalar to between about 100 keV and 100 MeV. We identify two unexplored regions in the coupling constant-mass plane. Potential future experiments and their implications for theories with mass-weighted lepton couplings are discussed.

  6. Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson ...

    Indian Academy of Sciences (India)

    We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross-section in SM and MSSM with Higgs boson mass for various MSSM parameters tan and A. We observe that at fixed ...

  7. The search for a heavy Higgs boson

    International Nuclear Information System (INIS)

    Dawson, S.

    1989-02-01

    Theoretical limits on the mass of the Higgs boson from vacuum stability and perturbative unitarity are examined. Search techniques for heavy Higgs bosons, M/sub H/ > 200 GeV, are also reviewed. 8 refs., 5 figs

  8. Discovery of SM Higgs Boson in ATLAS Experiment

    Indian Academy of Sciences (India)

    IAS Admin

    dipole magnets with a field of 8.4 Tesla each and a total weight of about 30,000 tons inside the LHC tunnel. It is cooled to 1.9 Kelvin with 96 tons of liquid helium. 3. The ATLAS Detector. ATLAS is composed of many different sub-detectors. In general, it can be divided into four categories: Track- ing and vertex detector, ...

  9. Discovery of a Boson at CERN and Indian Connections

    Indian Academy of Sciences (India)

    IAS Admin

    teaching and is always available to share with others the ever-growing excitement for ... together in a formal scientific language for the first time by Isaac. Newton in the year 1687. It was said that mass is nothing ... try of the Standard Model (SM) of particle physics [4]. The end products of this breaking are the electromagnetic ...

  10. Discovery of a Boson at CERN and Indian Connections

    Indian Academy of Sciences (India)

    IAS Admin

    Later, Albert Einstein – the Father of. Modern Physics – postulated that mass and energy are one and the ... produce and detect a Higgs if the energy of the collision is greater than or equal to its mass. Since we do .... G S Guralnik, C R Hagen and T W B Kibble, Global Conservation Laws and. Massless Particles, Phys. Rev.

  11. Do bosons condense in a homogeneous magnetic field?

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia Decebal; Zagrebnov, Valentin

    2004-01-01

    It has been known since the paper [26] and then due to a rigorous result [3] that the answer to the question in the title is negative for a three-dimensional "ideal gas of charged bosons". The present paper adds a new rigorous result in this direction. We show that the answer to the question...... becomes positive, if this "ideal gas of charged bosons" is simultaneously embedded in an appropriate periodic external potential. We prove that it is true for the Perfect Bose Gas (PBG), as well as for the Imperfect Bose Gas with a Mean-Field repulsive particle interaction....

  12. Boson spectra and correlations for thermal locally equilibrium systems

    International Nuclear Information System (INIS)

    Sinyukov, Y.M.

    1999-01-01

    The single- and multi-particle inclusive spectra for strongly inhomogeneous thermal boson systems are studied using the method of statistical operator. The thermal Wick's theorem is generalized and the analytical solution of the problem for a boost-invariant expanding boson gas is found. The results demonstrate the effects of inhomogeneity for such a system: the spectra and correlations for particles with wavelengths larger than the system's homogeneity lengths change essentially as compared with the results based on the local Bose-Einstein thermal distributions. The effects noticeably grow for overpopulated media, where the chemical potential associated with violation of chemical equilibrium is large enough. (author)

  13. Supersymmetry search via gauge boson fusion

    Indian Academy of Sciences (India)

    canonical search strategies for these particles fail. Keywords. Gauge boson fusion; supersymmetry. PACS Nos 11.30.Pb; 12.60.Jv; 14.80.Ly; 13.85.Rm. 1. Introduction. Vector boson fusion (VBF) at hadronic colliders has been suggested as a useful channel for studying the signal of the Higgs boson. Characteristic features of ...

  14. No-go theorem for static boson stars

    Directory of Open Access Journals (Sweden)

    Shahar Hod

    2018-03-01

    Full Text Available It is proved that self-gravitating static scalar fields whose self-interaction potential V(ψ2 is a monotonically increasing function of its argument cannot form spherically symmetric asymptotically flat bound matter configurations. Our compact theorem rules out, in particular, the existence of spatially regular static boson stars made of nonlinear massive scalar fields.

  15. Higgs boson and Z physics at the First Muon Collider

    International Nuclear Information System (INIS)

    Demarteau, M.; Han, T.

    1998-01-01

    The potential for the Higgs boson and Z-pole physics at the first muon collider is summarized, based on the discussions at the open-quotes Workshop on the Physics at the First Muon Collider and at the Front End of a Muon Colliderclose quotes. copyright 1998 American Institute of Physics

  16. No-go theorem for static boson stars

    Science.gov (United States)

    Hod, Shahar

    2018-03-01

    It is proved that self-gravitating static scalar fields whose self-interaction potential V (ψ2) is a monotonically increasing function of its argument cannot form spherically symmetric asymptotically flat bound matter configurations. Our compact theorem rules out, in particular, the existence of spatially regular static boson stars made of nonlinear massive scalar fields.

  17. The Discovery of the Top Quark

    Science.gov (United States)

    Sinervo, P.K.

    1995-12-01

    The top quark and the Higgs boson are the heaviest elementary particles predicted by the standard model. The four lightest quark flavours, the up, down, strange and charm quarks, were well-established by the mid-1970's. The discovery in 1977 of the {Tau} resonances, a new family of massive hadrons, required the introduction of the fifth quark flavour. Experimental and theoretical studies have indicated that this quark also has a heavier partner, the top quark.

  18. Search of New Physics with Boosted Higgs Boson in Hadronic Final States with ATLAS Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00387563

    The discovery of a Higgs boson at the Large Hadron Collider (LHC) confirms the validity of the Standard Model (SM) in the description of particle interactions at electroweak scale. However, radioactive corrections to the Higgs mass drives its value to the model's validity limit, indicating either extreme fine-tuning or the presence of new physics at higher energy scale. Since 2015, the LHC starts its Run 2 journey with unprecedented center of mass energy of 13 TeV. Along with increase in luminosity, this greatly extends the sensitivity of ATLAS experiment to heavy new particles at TeV scale. In particular, many new physics models beyond the Standard Model manifest themselves through significant coupling to the Higgs boson in decays of new particles to a Higgs boson and other SM particles. In this work, two searches for resonances decaying to either pair of Higgs bosons or a Higgs boson associated with another SM vector boson in all hadronic final states are presented using data collected by ATLAS during Run 2...

  19. Higgs production in vector boson fusion in the H{yields} {tau}{tau} {yields} ll + 4{nu} final state with ATLAS. A sensitivity study

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Martin

    2011-05-15

    A study of the expected sensitivity of the ATLAS experiment to discover the Standard Model Higgs boson produced via vector boson fusion (VBF) and its decay to H{yields} {tau}{tau} {yields} ll + 4{nu} is presented. The study is based on simulated proton-proton collisions at a centre-of-mass energy of 14 TeV. For the rst time the discovery potential is evaluated in the presence of additional proton-proton interactions (pile-up) to the process of interest in a complete and consistent way. Special emphasis is placed on the development of background estimation techniques to extract the main background processes Z{yields} {tau}{tau} and t anti t production using data. The t anti t background is estimated using a control sample selected with the VBF analysis cuts and the inverted b-jet veto. The dominant background process Z {yields} {tau}{tau} is estimated using Z{yields} {mu}{mu} events. Replacing the muons of the Z{yields} {mu}{mu} event with simulated {tau}-leptons, Z {yields} {tau}{tau} events are modelled to high precision. For the replacement of the Z boson decay products a dedicated method based on tracks and calorimeter cells is developed. Without pile-up a discovery potential of 3{sigma} to 3.4{sigma} in the mass range 115 GeV

  20. Higgs production in vector boson fusion in the H→ ττ → ll + 4ν final state with ATLAS. A sensitivity study

    International Nuclear Information System (INIS)

    Schmitz, Martin

    2011-05-01

    A study of the expected sensitivity of the ATLAS experiment to discover the Standard Model Higgs boson produced via vector boson fusion (VBF) and its decay to H→ ττ → ll + 4ν is presented. The study is based on simulated proton-proton collisions at a centre-of-mass energy of 14 TeV. For the rst time the discovery potential is evaluated in the presence of additional proton-proton interactions (pile-up) to the process of interest in a complete and consistent way. Special emphasis is placed on the development of background estimation techniques to extract the main background processes Z→ ττ and t anti t production using data. The t anti t background is estimated using a control sample selected with the VBF analysis cuts and the inverted b-jet veto. The dominant background process Z → ττ is estimated using Z→ μμ events. Replacing the muons of the Z→ μμ event with simulated τ-leptons, Z → ττ events are modelled to high precision. For the replacement of the Z boson decay products a dedicated method based on tracks and calorimeter cells is developed. Without pile-up a discovery potential of 3σ to 3.4σ in the mass range 115 GeV H -1 . In the presence of pile-up the signal sensitivity decreases to 1.7σ to 1.9σ mainly caused by the worse resolution of the reconstructed missing transverse energy. (orig.)

  1. Beyond Discovery

    DEFF Research Database (Denmark)

    Korsgaard, Steffen; Sassmannshausen, Sean Patrick

    2017-01-01

    In this chapter we explore four alternatives to the dominant discovery view of entrepreneurship; the development view, the construction view, the evolutionary view, and the Neo-Austrian view. We outline the main critique points of the discovery presented in these four alternatives, as well as the...

  2. Massive the Higgs boson and the greatest hunt in science

    CERN Document Server

    Sample, Ian

    2013-01-01

    Now fully updated -- this is the dramatic and gripping account of the greatest scientific discovery of our time. In the early 1960s, three groups of physicists, working independently in different countries, stumbled upon an idea that would change physics and fuel the imagination of scientists for decades. That idea was the Higgs boson -- to find it would be to finally understand the origins of mass -- the last building block of life itself. Now, almost 50 years later, that particle has finally been discovered.

  3. Dark Higgs bosons at the ForwArd Search ExpeRiment

    Science.gov (United States)

    Feng, Jonathan L.; Galon, Iftah; Kling, Felix; Trojanowski, Sebastian

    2018-03-01

    FASER, ForwArd Search ExpeRiment at the LHC, has been proposed as a small, very far forward detector to discover new, light, weakly-coupled particles. Previous work showed that with a total volume of just ˜0.1 - 1 m3 , FASER can discover dark photons in a large swath of currently unconstrained parameter space, extending the discovery reach of the LHC program. Here we explore FASER's discovery prospects for dark Higgs bosons. These scalar particles are an interesting foil for dark photons, as they probe a different renormalizable portal interaction and are produced dominantly through B and K meson decays, rather than pion decays, leading to less collimated signals. Nevertheless, we find that FASER is also a highly sensitive probe of dark Higgs bosons with significant discovery prospects that are comparable to, and complementary to, much larger proposed experiments.

  4. Searching for the Higgs Boson in Pairs of Tau Leptons in Data from the ATLAS Experiment Automation of the SCT prompt calibration

    CERN Document Server

    Rosendahl, Peter Lundgaard

    One of the key questions in particle physics today, is the origin of the electroweak symmetry breaking. The answer to this question will most likely be solved with the data provided by the Large Hadron Collider which started colliding protons in 2008. Many ideas have been posed to how particles gain their masses. The most promising of these ideas is the Higgs mechanism which predicts the existence of a new massive scalar boson, the Higgs boson. Since the discovery of a new particle consistent with a Standard Model Higgs boson was made on July 4 by the ATLAS and CMS experiment, the solution for the puzzle of the electroweak symmetry breaking might be very near. However, in order to fully claim a discovery of the Standard Model Higgs boson, the new particle has to be proven to be a scalar boson and its decay has to be observed in both bosonic and fermionic final states with the corrected branching ratios predicted by the Standard Model. So far the new boson has only been seen in the bosonic gamma-gamma, ZZ and ...

  5. Invisible dark gauge boson search in top decays using a kinematic method

    CERN Document Server

    Kim, Doojin; Park, Myeonghun

    2015-01-01

    We discuss the discovery potential of a dark force carrier ($Z'$) of very light mass, $m_{Z'} \\lesssim {\\cal O}(1-10)$ GeV, at hadron colliders via rare top quark decays, especially when it decays invisibly in typical search schemes. We emphasize that the top sector is promising for the discovery of new particles because top quark pairs are copiously produced at the Large Hadron Collider. The signal process is initiated by a rare top decay into a bottom quark and a charged Higgs boson ($H^\\pm$) decaying subsequently into a $W$ and one or multiple $Z'$s. The light $Z'$ can be invisible in collider searches in various scenarios, and it would be hard to distinguish the relevant collider signature from the regular $t\\bar{t}$ process in the Standard Model. We suggest a search strategy using the recently proposed on-shell constrained $M_2$ variables. Our signal process is featured by an $\\textit{asymmetric}$ event topology, while the $t\\bar{t}$ is $\\textit{symmetric}$. The essence behind the strategy is to evoke so...

  6. Looking for a hidden sector in exotic Higgs boson decays with the ATLAS experiment

    CERN Document Server

    Coccaro, Andrea; The ATLAS collaboration

    2015-01-01

    The nature of dark matter is one of the most intriguing questions in particle physics. Dark matter can be postulated to be part of a hidden sector whose interactions with the visible matter are not completely decoupled. The discovery of a fundamental scalar particle compatible with the Higgs boson predicted by the Standard Model paves the way for looking for dark matter with novel methods. An overview of the searches looking for a hidden sector in exotic Higgs decays and for invisible decays of the Higgs boson within the ATLAS experiment is presented. Prospects for searches with LHC data at a center-of-mass energy of 13 TeV are summarized.

  7. A general approach to bosonization

    Indian Academy of Sciences (India)

    We summarize recent developments in the field of higher dimensional bosonization made by Setlur and collaborators and propose a general formula for the field operator in terms of currents and densities in one dimension using a new ingredient known as a `singular complex number'. Using this formalism, we compute the ...

  8. Higgs boson properties in ATLAS

    CERN Document Server

    Mansoulie, Bruno; The ATLAS collaboration

    2017-01-01

    The measurement by the ATLAS collaboration of Higgs boson properties is presented, in terms of production cross-sections, simplified template cross-sections, couplings. The measurements are based on the analysis of the H decay channels to diphoton and 4 leptons, using 36.1 fb-1 of 13 TeV data recorded in 2015 and 2016.

  9. Search for the Higgs boson decaying to four leptons in the ATLAS detector at LHC and studies of muon isolation and energy loss

    International Nuclear Information System (INIS)

    Lenzi, B.

    2010-01-01

    The central subject of this thesis is the evaluation of the discovery potential of the Higgs boson through its decay into four leptons (electrons and muons) in the ATLAS experiment installed at the Large Hadron Collider (LHC). The LHC was designed to accelerate proton beams at a center of mass energy of 14 TeV and started its physics program with 7 TeV collisions in the beginning of 2010. An inclusive analysis involving all the production modes and an exclusive one aiming at production through vector boson fusion (VBF), studied for the first time in the collaboration, are presented. Both are capable of discovering the Higgs boson after a few years of LHC operation, with integrated luminosities of 30 fb -1 . The first one covers most part of a Higgs mass window from 130 to 500 GeV. The second one concentrates on masses around 180 GeV and above, exploiting the presence of high energy jets with large separations in pseudo-rapidity to increase the signal over background ratio. An important part of the document is devoted to the reconstruction of muon isolation and energy loss in the ATLAS calorimeters. A software package that optimized the way of treating the energy deposits was developed and tested on simulated data and cosmic-ray events, leading to improvements in the muon momentum resolution and the distinction between muons from heavy quark and vector boson decays. As a consequence of the last result, one of the dominant backgrounds to the H → 4μ channel, Zb b-bar, is expected to be reduced by almost a factor of two. (author) [fr

  10. Characterization of Si detectors, search for vertex and potentiality of detecting a light charged Higgs boson in the CMS experiment; Caracterisation des detecteurs silicium, recherche de Vertex et etude du potentiel de decouverte d'un boson de Higgs charge leger dans l'experience CMS

    Energy Technology Data Exchange (ETDEWEB)

    Estre, N

    2004-07-01

    The CMS (compact muon solenoid) detector that will be set on the future LHC (large hadron collider) accelerator will enable us to continue our search for the Higgs boson as well as to look for any hint for a new physics beyond the standard model. CMS is composed of an efficient muon detector, an electromagnetic calorimeter and of a tracker with high spatial resolution, this tracker is the topic of this thesis. The tracker will allow an accurate reconstruction of charged-particles trajectories and the reconstruction of the primary interaction vertex. The tracker's technology is based on micro-strip Si detectors, tests performed with the SPS particle beam show that these detectors have an impact reconstruction efficiency greater than 98% and a piling-up rate limited to 6%. The spatial resolution concerning particle trajectories is about 45 {mu}m for an interval of 183 {mu}m between 2 strips. The simulation for the search for a light charged Higgs boson show that an excess of {tau}{nu}{sub {tau}} + bb-bar + qq-bar' events is possible to be observed for any value of tan({beta}) up to M{sub A} = 122 GeV/c{sup 2} during the first year of operation and up to 136 GeV/c{sup 2} afterwards. With the assumption that this event excess is due to the decay of charged Higgs bosons we can state that the assessment of its mass will be possible till m{sub H} = 150 GeV/c{sup 2} with an accuracy of 15 GeV/c{sup 2}. (A.C.)

  11. Recent results from the ATLAS experiment on the Higgs boson

    CERN Document Server

    van Vulpen, Ivo; The ATLAS collaboration

    2017-01-01

    Five years ago, particle physicists announced the discovery of the Higgs boson, the last missing ingredient in the Standard Model. Since then, the enormous wealth of data collected by the ATLAS experiment has allowed us to zoom in on the properties of this fundamental scalar that is linked to electroweak symmetry breaking, a fundamental ingredient in the model that describes the elementary particles. I will present the latest results on its properties like the mass, width, observation of different decay channels and coupling(structure) and discuss their implications in the context of the Standard Model. Because of the special role of the Higgs boson, the precision measurements can be used to look for physics beyond the Standard Model that are expected to show up at the TeV energies the LHC can probe, by looking for inconsistencies between the predicted and observed properties. I will discuss our strategy, the impact current limits have on these models and describe what new Higgs boson decay channels and prope...

  12. Optimization of the ATLAS detector to search for the two-photon decaying Higgs boson at LHC; Optimisation du detecteur ATLAS pour la recherche du boson de Higgs se desintegrant en deux photons au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Tisserand, V. [Paris-11 Univ., 91 - Orsay (France). Lab. de l' Accelerateur Lineaire]|[Universite de Paris Sud, 91 - Orsay (France)

    1997-02-03

    The two photon decay channel is the most clear and promising way to detect a Higgs boson of an intermediate mass between 80 GeV/c{sup 2} and 150 GeV/c{sup 2} at the future large proton collider of CERN (LHC). As the Higgs mass is narrow in this range, the observation of this channel relies on the performance of the electromagnetic calorimeter. A full simulation study has been performed to evaluate the discovery potential of the ATLAS detector. The results of this simulation have been confirmed by beam tests with a prototype. This simulation includes different contributions such as energy resolution sampling term, electronic and pile-up noise, global constant term and angular measurement of the two photon opening angle. The levels of the irreducible background from prompt di-photon production and the reducible background from jets with isolated leading neutrals pions have been estimated, taking into account the rejection capability of the detector. After the computation of the two photon invariant mass resolution, and the evaluation of signal and background rates, the discovery potential of the Higgs boson with the ATLAS detector was calculated. The Higgs can be discovered at five sigma confidence level after less than a year of data taking at LHC with the nominal luminosity of 10{sup 34} cm{sup -2}.s{sup -1} if the Higgs mass is between 100 GeV/c{sup 2} and 150 GeV/c{sup 2}. The Higgs mass window between 80 GeV/c{sup 2} and 150 GeV/c{sup 2} will be covered with an integrated luminosity of 3.10{sup 5} pb{sup -1}. In the case of the Minimal Supersymmetric Model (MSSM) the plane (m{sub A{sup 0}}, tan({beta})) will be fully explored if m{sub A{sup 0}} > 175 GeV/c{sup 2}. (author)

  13. Flavor gauge bosons at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Burdman, Gustavo; Chivukula, R. Sekhar; Evans, Nick

    2000-01-01

    We investigate collider signals for gauged flavor symmetries that have been proposed in models of dynamical electroweak symmetry breaking and fermion mass generation. We consider the limits on the masses of the gauge bosons in these models which can be extracted from Fermilab Tevatron run I data in dijet production. Estimates of the run II search potential are provided. We show that the models also give rise to significant signals in single top quark production which may be visible at run II. In particular we study chiral quark family symmetry and SU(9) chiral flavor symmetry. The run I limits on the gauge bosons in these models lie between 1.5 and 2 TeV and should increase to about 3 TeV in run II. Finally, we show that an SU(12) enlargement of the SU(9) model, including leptonic interactions, is constrained by low energy atomic parity violation experiments to lie outside the reach of the Tevatron. (c) 2000 The American Physical Society

  14. Discovery of Potential Orthosteric and Allosteric Antagonists of P2Y1R from Chinese Herbs by Molecular Simulation Methods

    Science.gov (United States)

    Lu, Fang; Jiang, Lu-di; Qiao, Lian-sheng; Xiang, Yu-hong

    2016-01-01

    P2Y1 receptor (P2Y1R), which belongs to G protein-coupled receptors (GPCRs), is an important target in ADP-induced platelet aggregation. The crystal structure of P2Y1R has been solved recently, which revealed orthosteric and allosteric ligand-binding sites with the details of ligand-protein binding modes. And it suggests that P2Y1R antagonists, which recognize two distinct sites, could potentially provide an efficacious and safe antithrombotic profile. In present paper, 2D similarity search, pharmacophore based screening, and molecular docking were used to explore the potential natural P2Y1R antagonists. 2D similarity search was used to classify orthosteric and allosteric antagonists of P2Y1R. Based on the result, pharmacophore models were constructed and validated by the test set. Optimal models were selected to discover potential P2Y1R antagonists of orthosteric and allosteric sites from Traditional Chinese Medicine (TCM). And the hits were filtered by Lipinski's rule. Then molecular docking was used to refine the results of pharmacophore based screening and analyze the binding mode of the hits and P2Y1R. Finally, two orthosteric and one allosteric potential compounds were obtained, which might be used in future P2Y1R antagonists design. This work provides a reliable guide for discovering natural P2Y1R antagonists acting on two distinct sites from TCM. PMID:27635149

  15. Screening Method for the Discovery of Potential Bioactive Cysteine-Containing Peptides Using 3D Mass Mapping

    NARCIS (Netherlands)

    Van Oosten, L.N.; Pieterse, M.; Pinkse, M.W.H.; Verhaert, P.D.E.M.

    2015-01-01

    Animal venoms and toxins are a valuable source of bioactive peptides with pharmacologic relevance as potential drug leads. A large subset of biologically active peptides discovered up till now contain disulfide bridges that enhance stability and activity. To discover new members of this class of

  16. Weak boson emission in hadron collider processes

    International Nuclear Information System (INIS)

    Baur, U.

    2007-01-01

    The O(α) virtual weak radiative corrections to many hadron collider processes are known to become large and negative at high energies, due to the appearance of Sudakov-like logarithms. At the same order in perturbation theory, weak boson emission diagrams contribute. Since the W and Z bosons are massive, the O(α) virtual weak radiative corrections and the contributions from weak boson emission are separately finite. Thus, unlike in QED or QCD calculations, there is no technical reason for including gauge boson emission diagrams in calculations of electroweak radiative corrections. In most calculations of the O(α) electroweak radiative corrections, weak boson emission diagrams are therefore not taken into account. Another reason for not including these diagrams is that they lead to final states which differ from that of the original process. However, in experiment, one usually considers partially inclusive final states. Weak boson emission diagrams thus should be included in calculations of electroweak radiative corrections. In this paper, I examine the role of weak boson emission in those processes at the Fermilab Tevatron and the CERN LHC for which the one-loop electroweak radiative corrections are known to become large at high energies (inclusive jet, isolated photon, Z+1 jet, Drell-Yan, di-boson, tt, and single top production). In general, I find that the cross section for weak boson emission is substantial at high energies and that weak boson emission and the O(α) virtual weak radiative corrections partially cancel

  17. Measurement of the Higgs Boson Transverse Momentum in the Di-photon Channel with the ATLAS detector in Run 1

    International Nuclear Information System (INIS)

    Reed, Robert Graham

    2015-01-01

    The Standard Model (SM) of particle physics, with the discovery of the Higgs boson, is a model of the known fundamental particles and their interactions. The data taken in the 2012 run was then compared to the Monte Carlo and an excess has been found in the Higgs transverse momentum in the di-photon and ZZ decay channels. A possible explanation is a beyond the SM scalar boson is being produced which would then decay into a dark matter particle and a Higgs boson that looks like the current SM. This dark matter particle would provide the Higgs with excess momentum which may account for the discrepancy observed. A first attempt at modelling the production of the heavier than the SM Higgs (or scalar boson) showed that as the centre of mass energies increase the production cross-section of the scalar boson increased faster than the SM Higgs boson. This indicates that if the hypothesis is true then we should expect greater Higgs boson productions during the 2015 run at higher centre of mass energies. A better understanding of the observed excess is needed before any further conclusions can be made. (paper)

  18. Search for the Higgs boson produced in association with $W^\\pm$ boson, in $WH \\to \\tau \

    Energy Technology Data Exchange (ETDEWEB)

    Pianori, Elisabetta [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2011-01-01

    The search for the associated production of the Standard Model Higgs boson and a W boson is motivated and discussed here. It is performed using data corresponding to an integrated luminosity of 5.7 fb –1, collected by the CDF detector during p$\\bar{b}$ collisions at [special characters omitted] = 1.96 TeV at the Tevatron. W H → τνb$\\bar{b}$ candidate events are selected requiring two jets, a hadronically decaying τ lepton and large missing transverse energy. To increase the signal-to-background ratio, at least one of the jets must be consistent with originating from a bottom quark. A binned likelihood fit of the dijet invariant mass distribution is performed to test for a potential Higgs boson signal. In the absence of an observed excess, we set a 95% Confidence Level (C.L.) upper limit on the production rate times branching ratio for a potential Higgs boson as a function of its mass. For a test mass of 115 GeV/c², the observed (expected) 95% C.L. upper limit is 28.7 (46.6) times the Standard Model expectation.

  19. The geometric content of the interacting boson model for molecular spectra

    International Nuclear Information System (INIS)

    Levit, S.; Smilansky, U.

    1981-12-01

    The recently proposed algebraic model for collective spectra of diatomic molecules is analysed in terms of conventional geometrical degrees of freedom. We present a mapping of the algebraic Hamiltonian onto an exactly solvable geometrical Hamiltonian with the Morse potential. This mapping explains the success of the algebraic model in reproducing the low lying part of molecular spectra. At the same time the mapping shows that the expression for the dipole transition operator in terms of boson operators differs from the simplest IBM expression and in general must include many-body boson terms. The study also provides an insight into the problem of possible interpretations of the bosons in the nuclear IBM. (author)

  20. Search for a neutral Higgs boson

    International Nuclear Information System (INIS)

    Malmgren, T.G.M.

    1997-04-01

    The mass of the neutral Higgs boson cannot be predicted by models. Therefore, the particle is scanned for at different assumed masses. The search described here was done using data taken at the DELPHI detector in 1993. The Bjorken process was searched for where the decay of the Z 0* into two neutrinos was assumed. In order to reduce the background to a level where a discovery would be possible, an artificial feed-forward neural network was used. This led to a very good background rejection and high signal efficiency. An efficiency of around 30-50% was reached for a H 0 mass ranging from 35-60 GeV/c 2 leaving zero background events. One event was selected from the real data with a H 0 mass of 27.5(3.6) GeV/c 2 . These results were translated into a limit m H >58.3 GeV/c 2 at 95% confidence level

  1. Search for a neutral Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Malmgren, T.G.M.

    1997-04-01

    The mass of the neutral Higgs boson cannot be predicted by models. Therefore, the particle is scanned for at different assumed masses. The search described here was done using data taken at the DELPHI detector in 1993. The Bjorken process was searched for where the decay of the Z{sup 0*} into two neutrinos was assumed. In order to reduce the background to a level where a discovery would be possible, an artificial feed-forward neural network was used. This led to a very good background rejection and high signal efficiency. An efficiency of around 30-50% was reached for a H{sup 0} mass ranging from 35-60 GeV/c{sup 2} leaving zero background events. One event was selected from the real data with a H{sup 0} mass of 27.5(3.6) GeV/c{sup 2}. These results were translated into a limit m{sub H}>58.3 GeV/c{sup 2} at 95% confidence level.

  2. Metatranscriptomics and pyrosequencing facilitate discovery of potential viral natural enemies of the invasive Caribbean crazy ant, Nylanderia pubens.

    Science.gov (United States)

    Valles, Steven M; Oi, David H; Yu, Fahong; Tan, Xin-Xing; Buss, Eileen A

    2012-01-01

    Nylanderia pubens (Forel) is an invasive ant species that in recent years has developed into a serious nuisance problem in the Caribbean and United States. A rapidly expanding range, explosive localized population growth, and control difficulties have elevated this ant to pest status. Professional entomologists and the pest control industry in the United States are urgently trying to understand its biology and develop effective control methods. Currently, no known biological-based control agents are available for use in controlling N. pubens. Metagenomics and pyrosequencing techniques were employed to examine the transcriptome of field-collected N. pubens colonies in an effort to identify virus infections with potential to serve as control agents against this pest ant. Pyrosequencing (454-platform) of a non-normalized N. pubens expression library generated 1,306,177 raw sequence reads comprising 450 Mbp. Assembly resulted in generation of 59,017 non-redundant sequences, including 27,348 contigs and 31,669 singlets. BLAST analysis of these non-redundant sequences identified 51 of potential viral origin. Additional analyses winnowed this list of potential viruses to three that appear to replicate in N. pubens. Pyrosequencing the transcriptome of field-collected samples of N. pubens has identified at least three sequences that are likely of viral origin and, in which, N. pubens serves as host. In addition, the N. pubens transcriptome provides a genetic resource for the scientific community which is especially important at this early stage of developing a knowledgebase for this new pest.

  3. Exact Solutions of Relativistic Bound State Problem for Spinless Bosons

    Science.gov (United States)

    Aslanzadeh, M.; Rajabi, A. A.

    2017-01-01

    We investigated in detail the relativistic bound states of spin-zero bosons under the influence of Coulomb-plus-linear potentials with an arbitrary combination of scalar and vector couplings. Through an exact analytical solution of three-dimensional Klein-Gordon equation, closed form expressions were derived for energy eigenvalues and wave functions and some correlations between potential parameters were found. We also presented the relativistic description of bound states and nonrelativistic limit of the problem in some special cases.

  4. Higgs boson production in association with a photon via weak boson fusion

    CERN Document Server

    Arnold, Ken; Jäger, Barbara; Zeppenfeld, Dieter

    2011-01-01

    We present next-to-leading order QCD corrections to Higgs production in association with a photon via weak boson fusion at a hadron collider. Utilizing the fully flexible parton level Monte-Carlo program VBFNLO, we find small overall corrections, while the shape of some distributions is sensitive to radiative contributions in certain regions of phase-space. Residual scale uncertainties at next-to-leading order are at the few-percent level. Being perturbatively well under control and exhibiting kinematic features that allow to distinguish it from potential backgrounds, this process can serve as a valuable source of information on the $Hb\\bar{b}$ Yukawa coupling.

  5. The future (and past) of quantum theory after the Higgs boson: a quantum-informational viewpoint.

    Science.gov (United States)

    Plotnitsky, Arkady

    2016-05-28

    Taking as its point of departure the discovery of the Higgs boson, this article considers quantum theory, including quantum field theory, which predicted the Higgs boson, through the combined perspective of quantum information theory and the idea of technology, while also adopting anon-realistinterpretation, in 'the spirit of Copenhagen', of quantum theory and quantum phenomena themselves. The article argues that the 'events' in question in fundamental physics, such as the discovery of the Higgs boson (a particularly complex and dramatic, but not essentially different, case), are made possible by the joint workings of three technologies: experimental technology, mathematical technology and, more recently, digital computer technology. The article will consider the role of and the relationships among these technologies, focusing on experimental and mathematical technologies, in quantum mechanics (QM), quantum field theory (QFT) and finite-dimensional quantum theory, with which quantum information theory has been primarily concerned thus far. It will do so, in part, by reassessing the history of quantum theory, beginning with Heisenberg's discovery of QM, in quantum-informational and technological terms. This history, the article argues, is defined by the discoveries of increasingly complex configurations of observed phenomena and the emergence of the increasingly complex mathematical formalism accounting for these phenomena, culminating in the standard model of elementary-particle physics, defining the current state of QFT. © 2016 The Author(s).

  6. Discovery of MLL1 binding units, their localization to CpG Islands, and their potential function in mitotic chromatin.

    Science.gov (United States)

    Bina, Minou; Wyss, Phillip; Novorolsky, Elise; Zulkelfi, Noorfatin; Xue, Jing; Price, Randi; Fay, Matthew; Gutmann, Zach; Fogler, Brian; Wang, Daidong

    2013-12-28

    Mixed Lineage Leukemia 1 (MLL1) is a mammalian ortholog of the Drosophila Trithorax. In Drosophila, Trithorax complexes transmit the memory of active genes to daughter cells through interactions with Trithorax Response Elements (TREs). However, despite their functional importance, nothing is known about sequence features that may act as TREs in mammalian genomic DNA. By analyzing results of reported DNA binding assays, we identified several CpG rich motifs as potential MLL1 binding units (defined as morphemes). We find that these morphemes are dispersed within a relatively large collection of human promoter sequences and appear densely packed near transcription start sites of protein-coding genes. Genome wide analyses localized frequent morpheme occurrences to CpG islands. In the human HOX loci, the morphemes are spread across CpG islands and in some cases tail into the surrounding shores and shelves of the islands. By analyzing results of chromatin immunoprecipitation assays, we found a connection between morpheme occurrences, CpG islands, and chromatin segments reported to be associated with MLL1. Furthermore, we found a correspondence of reported MLL1-driven "bookmarked" regions in chromatin to frequent occurrences of MLL1 morphemes in CpG islands. Our results implicate the MLL1 morphemes in sequence-features that define the mammalian TREs and provide a novel function for CpG islands. Apparently, our findings offer the first evidence for existence of potential TREs in mammalian genomic DNA and the first evidence for a connection between CpG islands and gene-bookmarking by MLL1 to transmit the memory of highly active genes during mitosis. Our results further suggest a role for overlapping morphemes in producing closely packed and multiple MLL1 binding events in genomic DNA so that MLL1 molecules could interact and reside simultaneously on extended potential transcriptional maintenance elements in human chromosomes to transmit the memory of highly active genes

  7. Finding the Higgs boson: A status report

    International Nuclear Information System (INIS)

    Dawson, S.

    1995-01-01

    The search for the Higgs boson of the minimal Standard Model has been a major focus of experimental high energy physics for some years now. Here, the authors review the current experimental limits and discuss the prospects for finding the Higgs boson at future accelerators, such as LEPII and the LHC. They consider only the Standard Model Higgs boson. Since a null result which definitively excluded a Higgs boson below some mass scale would be extremely important, they emphasize the case where the Higgs boson is much heavier than the relevant collider energy (or where there is no Higgs boson at all). Many of the results given here are a summary of those obtained by the DPF Committee on Long Term Planning

  8. An Introduction to Boson-Sampling

    Science.gov (United States)

    Gard, Bryan T.; Motes, Keith R.; Olson, Jonathan P.; Rohde, Peter P.; Dowling, Jonathan P.

    2015-06-01

    Boson-sampling is a simplified model for quantum computing that may hold the key to implementing the first ever post-classical quantum computer. Boson-sampling is a non-universal quantum computer that is significantly more straightforward to build than any universal quantum computer proposed so far. We begin this chapter by motivating boson-sampling and discussing the history of linear optics quantum computing. We then summarize the boson-sampling formalism, discuss what a sampling problem is, explain why boson-sampling is easier than linear optics quantum computing, and discuss the Extended Church-Turing thesis. Next, sampling with other classes of quantum optical states is analyzed. Finally, we discuss the feasibility of building a boson-sampling device using existing technology.

  9. Phenomenology of the Higgs boson

    International Nuclear Information System (INIS)

    Ali, A.

    1981-09-01

    The phenomenology of the standard Weinberg-Salam Higgs boson is reviewed with particular emphasis on production mechanisms in high energy e + e - and hadron-hadron collisions. The production processes relevant for the ISABELLE and TEVATRON energies are discussed and their backgrounds estimated. It is argued that the toponium production and radiative decay provides the most hopeful reaction to detect a Higgs in both the e + e - and the hadron-hadron machines. (orig.)

  10. One or more Higgs bosons?

    CERN Document Server

    Barbieri, Riccardo; Kannike, Kristjan; Sala, Filippo; Tesi, Andrea

    2013-01-01

    Now that one has been found, the search for signs of more scalars is a primary task of current and future experiments. In the motivated hypothesis that the extra Higgs bosons of the next-to-minimal supersymmetric Standard Model (NMSSM) be the lightest new particles around, we outline a possible overall strategy to search for signs of the CP-even states. This work complements Ref. arXiv:1304.3670.

  11. Bosonic colored group field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ben Geloun, Joseph [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France); University of Abomey-Calavi, Cotonou (BJ). International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair); Universite Cheikh Anta Diop, Departement de Mathematiques et Informatique, Faculte des Sciences et Techniques, Dakar (Senegal); Magnen, Jacques [Ecole Polytechnique, Centre de Physique Theorique, Palaiseau Cedex (France); Rivasseau, Vincent [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)

    2010-12-15

    Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the ''ultraspin'' (large spin) limit. The results are generalized in any dimension. Finally, integrating out two colors we write a new representation, which could be useful for the constructive analysis of this type of models. (orig.)

  12. Electroweak boson production at LHCb

    CERN Document Server

    Sestini, Lorenzo

    2018-01-01

    The LHCb experiment offers a complementary phase space to ATLAS and CMS to study electroweak processes, thanks to the forward acceptance and the large bandwidth of the trigger allowing low energy thresholds. For this reason electroweak measurements at LHCb can provide unique constraints to the Parton Distribution Functions. Moreover these measurements can be used to validate reconstruction techniques. In these proceedings the latest measurements on W and Z bosons production performed during the LHC Run I and Run II data taking are presented.

  13. Domains of bosonic functional integrals

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.; Para Univ., Belem, PA

    1998-07-01

    We propose a mathematical framework for bosonic Euclidean quantum field functional integrals based on the theory of integration on the dual algebraic vector space of classical field sources. We present a generalization of the Minlos-Dao Xing theorem and apply it to determine exactly the domain of integration associated to the functional integral representation of the two-dimensional quantum electrodynamics Schwinger generating functional. (author)

  14. Standard Model Higgs boson searches in the weak boson decay channels with the ATLAS detector

    CERN Document Server

    Carrillo-Montoya, Germán; Wu, Sau Lan

    The search of the Standard Model Higgs boson decaying into a pair of weak bosons with the subsequent leptonic decay of the $W$ or $Z$ bosons is presented. The contributions achieved by this work range from the reevaluation of Higgs boson normalisation cross-sections, to the development of the analysis strategies using detailed Monte Carlo simulations and the search results for the $H\t\\to ZZ \\to l^{+}l^{-} \

  15. Discovery of membrane active benzimidazole quinolones-based topoisomerase inhibitors as potential DNA-binding antimicrobial agents.

    Science.gov (United States)

    Zhang, Ling; Addla, Dinesh; Ponmani, Jeyakkumar; Wang, Ao; Xie, Dan; Wang, Ya-Nan; Zhang, Shao-Lin; Geng, Rong-Xia; Cai, Gui-Xin; Li, Shuo; Zhou, Cheng-He

    2016-03-23

    A series of novel benzimidazole quinolones as potential antimicrobial agents were designed and synthesized. Most of the prepared compounds exhibited good or even stronger antimicrobial activities in comparison with reference drugs. The most potent compound 15m was membrane active and did not trigger the development of resistance in bacteria. It not only inhibited the formation of biofilms but also disrupted the established Staphylococcus aureus and Escherichia coli biofilms. It was able to inhibit the relaxation activity of E. coli topoisomerase IV at 10 μM concentration. Moreover, this compound also showed low toxicity against mammalian cells. Molecular modeling and experimental investigation of compound 15m with DNA suggested that this compound could effectively bind with DNA to form a steady 15m-DNA complex which might further block DNA replication to exert the powerful bioactivities. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Bosonic instability of charged black holes

    International Nuclear Information System (INIS)

    Gaina, A.B.; Ternov, I.M.

    1986-01-01

    The processes of spontaneous and induced production and accumulation of charged bosons on quasibound superradiant levels in the field of Kerr-Newman black hole is analysed. It is shown that bosonic instability may be caused exclusively by the rotation of the black hole. Particulary, the Reissner-Nordstrom configuration is stable. In the case of rotating and charged black hole the bosonic instability may cause an increase of charge of the black hole

  17. Investigation of Trilinear Vector Boson Couplings Through W Boson Pair Production in Dilepton Decay Channels

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Paul Craig [Univ. of California, Davis, CA (United States)

    1998-03-01

    An investigation of the interactions between the $W$ boson and the $Z$ boson and photon through the pair production of bosons is presented. This has been accomplished via a study of the reaction $p\\overline{p} \\to \\ell\\overline{\

  18. How well do we need to measure the Higgs boson mass and self-coupling?

    CERN Document Server

    Gupta, Rick S; Wells, James D

    2013-01-01

    Much of the discussion regarding future measurements of the Higgs boson mass and self-coupling is focussed on how well various collider options can do. In this article we ask a physics-based question of how well do we need colliders to measure these quantities to have an impact on discovery of new physics or an impact in how we understand the role of the Higgs boson in nature. We address the question within the framework of the Standard Model and various beyond the Standard Model scenarios, including supersymmetry and theories of composite Higgs bosons. We conclude that the LHC's stated ability to measure the Higgs boson to better than 150 MeV will be as good as we will ever need to know the Higgs boson mass in the foreseeable future. On the other hand, we estimate that the self-coupling will likely need to be measured to better than 20 percent to see a deviation from the Standard Model expectation. This is a challenging target for future collider and upgrade scenarios.

  19. Vector Boson Fusion Production of the Standard Model Higgs at the LHC

    CERN Document Server

    Vazquez Acosta, Monica Luisa

    2008-01-01

    The cross section measurements of the Higgs boson production in the vector boson fusion (VBF) process at the LHC followed by a Higgs boson decay into $\\tau \\tau$, $WW$ and $\\gamma \\gamma$ will significantly extend the possibility of Higgs boson coupling measurements. Prospective analyses with the CMS experiment are discussed for the $H \\rightarrow \\gamma\\gamma$, $WW$ and $\\tau\\tau$ decay channels for an integrated LHC luminosity of 30\\ fb$^{-1}$. For a Higgs boson mass in the range 115 to 140 GeV, an observation with a significance above 2 standard deviations is expected in the H to $\\gamma\\gamma$ channel, and above 3 standard deviations in the H to $\\tau\\tau$ channel. The H to WW channel offers a discovery reach above 5 sigma in the mass range 140 to 200 GeV. A new complete strategy is presented for the control of systematics and early searches at very low luminosities of the order of 1 fb$^{-1}$.

  20. Evidence for the direct decay of the 125 GeV Higgs boson to fermions

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Heracleous, Natalie; Kalogeropoulos, Alexis; Keaveney, James; Kim, Tae Jeong; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Mahrous, Ayman; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sauvan, Jean-baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Geiser, Achim; Grebenyuk, Anastasia; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Hempel, Maria; Horton, Dean; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krämer, Mira; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Nowak, Friederike; Ntomari, Eleni; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Stein, Matthias; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Enderle, Holger; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hartmann, Frank; Hauth, Thomas; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Martschei, Daniel; Mozer, Matthias Ulrich; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Gouskos, Loukas; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Jones, John; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mittal, Monika; Nishu, Nishu; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Singh, Anil; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Chatterjee, Rajdeep Mohan; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dewanjee, Ram Krishna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Ferro, Fabrizio; Lo Vetere, Maurizio; Musenich, Riccardo; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kim, Tae Yeon; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Golutvin, Igor; Gorbunov, Ilya; Karjavin, Vladimir; Konoplyanikov, Viktor; Korenkov, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Gowdy, Stephen; Guida, Roberto; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Karavakis, Edward; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Palencia Cortezon, Enrique; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Reece, William; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Ronga, Frederic Jean; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Snoek, Hella; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Wilken, Rachel; Asavapibhop, Burin; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Karapinar, Guler; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Günaydin, Yusuf Oguzhan; Vardarli, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Ilic, Jelena; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Lazic, Dragoslav; Richardson, Clint; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Felcini, Marta; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Shrinivas, Amithabh; Sturdy, Jared; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Kovalskyi, Dmytro; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Kcira, Dorian; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Eggert, Nicholas; Gibbons, Lawrence Kent; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Ratnikova, Natalia; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Gray, Julia; Kenny III, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Cremaldi, Lucien Marcus; Kroeger, Rob; Oliveros, Sandra; Perera, Lalith; Sanders, David A; Summers, Don; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Duric, Senka; Friis, Evan; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Woods, Nathaniel

    2014-06-22

    The discovery of a new boson with a mass of approximately 125 GeV in 2012 at the LHC has heralded a new era in understanding the nature of electroweak symmetry breaking and possibly completing the standard model of particle physics. Since the first observation in decays to gamma-gamma, WW, and ZZ boson pairs, an extensive set of measurements of the mass and couplings to W and Z bosons, as well as multiple tests of the spin-parity quantum numbers, have revealed that the properties of the new boson are consistent with those of the long-sought agent responsible for electroweak symmetry breaking. An important open question is whether the new particle also couples to fermions, and in particular to down-type fermions, since the current measurements mainly constrain the couplings to the up-type top quark. Determination of the couplings to down-type fermions requires direct measurement of the corresponding Higgs boson decays, as recently reported by the CMS experiment in the study of Higgs decays to bottom quarks and...

  1. Discovery of a Potential HER2 Inhibitor from Natural Products for the Treatment of HER2-Positive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jianzong Li

    2016-07-01

    Full Text Available Breast cancer is one of the most lethal types of cancer in women worldwide due to the late stage detection and resistance to traditional chemotherapy. The human epidermal growth factor receptor 2 (HER2 is considered as a validated target in breast cancer therapy. Even though a substantial effort has been made to develop HER2 inhibitors, only lapatinib has been approved by the U.S. Food and Drug Administration (FDA. Side effects were observed in a majority of the patients within one year of treatment initiation. Here, we took advantage of bioinformatics tools to identify novel effective HER2 inhibitors. The structure-based virtual screening combined with ADMET (absorption, distribution, metabolism, excretion and toxicity prediction was explored. In total, 11,247 natural compounds were screened. The top hits were evaluated by an in vitro HER2 kinase inhibition assay. The cell proliferation inhibition effect of identified inhibitors was evaluated in HER2-overexpressing SKBR3 and BT474 cell lines. We found that ZINC15122021 showed favorable ADMET properties and attained high binding affinity against HER2. Moreover, ZINC15122021 showed high kinase inhibition activity against HER2 and presented outstanding cell proliferation inhibition activity against both SKBR3 and BT474 cell lines. Results reveal that ZINC15122021 can be a potential HER2 inhibitor.

  2. Molecular dynamics simulations of sonic hedgehog-receptor and inhibitor complexes and their applications for potential anticancer agent discovery.

    Directory of Open Access Journals (Sweden)

    Swan Hwang

    Full Text Available The sonic hedgehog (Shh signaling pathway is necessary for a variety of development and differentiation during embryogenesis as well as maintenance and renascence of diverse adult tissues. However, an abnormal activation of the signaling pathway is related to various cancers. In this pathway, the Shh signaling transduction is facilitated by binding of Shh to its receptor protein, Ptch. In this study, we modeled the 3D structure of functionally important key loop peptides of Ptch based on homologous proteins. Using this loop model, the molecular interactions between the structural components present in the pseudo-active site of Shh and key residues of Ptch was investigated in atomic level through molecular dynamics (MD simulations. For the purpose of developing inhibitor candidates of the Shh signaling pathway, the Shh pseudo-active site of this interface region was selected as a target to block the direct binding between Shh and Ptch. Two different structure-based pharmacophore models were generated considering the key loop of Ptch and known inhibitor-induced conformational changes of the Shh through MD simulations. Finally two hit compounds were retrieved through a series of virtual screening combined with molecular docking simulations and we propose two hit compounds as potential inhibitory lead candidates to block the Shh signaling pathway based on their strong interactions to receptor or inhibitor induced conformations of the Shh.

  3. Electrophobic scalar boson and muonic puzzles

    Science.gov (United States)

    Miller, Gerald A.

    2017-09-01

    A new scalar boson which couples to the muon and proton can simultaneously solve the proton radius puzzle and the muon anomalous magnetic moment discrepancy. Using a variety of measurements, we constrain the mass of this scalar and its couplings to the electron, muon, neutron, and proton. Making no assumptions about the underlying model, these constraints and the requirement that it solve both problems limit the mass of the scalar to between about 100 keV and 100 MeV. We identify two unexplored regions in the coupling constant-mass plane. Potential future experiments and their implications for theories with mass-weighted lepton couplings are discussed. This work was supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER-41014.

  4. Discovery of potential drugs for human-infecting H7N9 virus containing R294K mutation

    Directory of Open Access Journals (Sweden)

    He JY

    2014-12-01

    Full Text Available Jiao-Yu He,1,* Cheng Li,2,* Guo Wu3 1College of Life Sciences and Key Laboratory for Bio-resources of Ministry of Education, Sichuan University, 2College of Agronomy, Sichuan Agricultural University, 3College of Life Sciences, Sichuan Normal University, Chengdu, People’s Republic of China *These authors contributed equally to this work Background: After the first epidemic wave from February through May 2013, the influenza A (H7N9 virus emerged and has followed a second epidemic wave since June 2013. As of June 27, 2014, the outbreak of H7N9 had caused 450 confirmed cases of human infection, with 165 deaths included. The case-fatality rate of all confirmed cases is about 36%, making the H7N9 virus a significant threat to people’s health. At present, neuraminidase inhibitors are the only licensed antiviral medications available to treat H7N9 infections in humans. Oseltamivir is the most commonly used inhibitor, and it is also a front-line drug for the threatening H7N9. Unfortunately, it has been reported that patients treated with oseltamivir can induce R294K (Arg294Lys substitution in the H7N9 virus, which is a rare mutation and can reduce the antiviral efficacy of inhibitors. Even worse, deaths caused by such mutation after oseltamivir treatment have already been reported, indicating that the need to find substitutive neuraminidase inhibitors for currently available drugs to treat drug-resistant H7N9 is really pressing.Materials and methods: First, the structure of H7N9 containing the R294K substitution was downloaded from the Protein Data Bank, and structural information of approved drugs was downloaded from the ZINC (ZINC Is Not Commercial database. Taking oseltamivir carboxylate as a reference drug, we then filtered these molecules through virtual screening to find out potential inhibitors targeting the mutated H7N9 virus. For further evaluation, we carried out a 14 ns molecular dynamic simulation for each H7N9–drug complex and

  5. Proteomics-Based Characterization of the Humoral Immune Response in Sporotrichosis: Toward Discovery of Potential Diagnostic and Vaccine Antigens

    Science.gov (United States)

    Rodrigues, Anderson Messias; Fernandes, Geisa Ferreira; Araujo, Leticia Mendes; Della Terra, Paula Portella; dos Santos, Priscila Oliveira; Pereira, Sandro Antonio; Schubach, Tânia Maria Pacheco; Burger, Eva; Lopes-Bezerra, Leila Maria; de Camargo, Zoilo Pires

    2015-01-01

    understanding of the coevolution of Sporothrix and its warm-blooded hosts. We propose that 3-carboxymuconate cyclase has potential for the serological diagnosis of sporotrichosis and as target for the development of an effective multi-species vaccine against sporotrichosis in animals and humans. PMID:26305691

  6. Amniotic fluid cathelicidin in PPROM pregnancies: from proteomic discovery to assessing its potential in inflammatory complications diagnosis.

    Science.gov (United States)

    Tambor, Vojtech; Kacerovsky, Marian; Andrys, Ctirad; Musilova, Ivana; Hornychova, Helena; Pliskova, Lenka; Link, Marek; Stulik, Jiri; Lenco, Juraj

    2012-01-01

    Preterm prelabor rupture of membranes (PPROM) complicated by microbial invasion of the amniotic cavity (MIAC) leading to histological chorioamnionitis (HCA) significantly impacts perinatal morbidity. Unfortunately, no well-established tool for identifying PPROM patients threatened by these disorders is available. We performed an unbiased exploratory analysis of amniotic fluid proteome changes due to MIAC and HCA. From among the top five proteins that showed the most profound and significant change, we sought to confirm results concerning cathelicidin (P49913, CAMP_HUMAN), since an ELISA kit was readily available for this protein. In our exploratory proteomic study, cathelicidin showed a ∼6-fold higher concentration in PPROM patients with confirmed MIAC and HCA. We verified significantly higher levels of cathelicidin in exploratory samples (women without both MIAC and HCA: median 1.4 ng/ml; women with both conditions confirmed: median 3.6 ng/ml; p = 0.0003). A prospective replication cohort was used for independent validation and for assessment of cathelicidin potential to stratify women with MIAC leading to HCA from women in whom at least one of these conditions was ruled out. We confirmed the association of higher amniotic fluid cathelicidin levels with MIAC leading to HCA (the presence of both MIAC and HCA: median 3.1 ng/ml; other women: median 1.4 ng/ml; p<0.0001). A cathelicidin concentration of 4.0 ng/ml was found to be the best cut-off point for identifying PPROM women with both MIAC and HCA. When tested on the validation cohort, a sensitivity of 48%, a specificity of 90%, a likelihood ratio of 5.0, and an area under receiver-operating characteristic curve of 71% were achieved for identification of women with MIAC leading to HCA. Our multi-stage study suggests cathelicidin as a candidate marker that should be considered for a panel of amniotic fluid proteins permitting identification of PPROM women with MIAC leading to HCA.

  7. Amniotic fluid cathelicidin in PPROM pregnancies: from proteomic discovery to assessing its potential in inflammatory complications diagnosis.

    Directory of Open Access Journals (Sweden)

    Vojtech Tambor

    Full Text Available BACKGROUND: Preterm prelabor rupture of membranes (PPROM complicated by microbial invasion of the amniotic cavity (MIAC leading to histological chorioamnionitis (HCA significantly impacts perinatal morbidity. Unfortunately, no well-established tool for identifying PPROM patients threatened by these disorders is available. METHODOLOGY/PRINCIPAL FINDINGS: We performed an unbiased exploratory analysis of amniotic fluid proteome changes due to MIAC and HCA. From among the top five proteins that showed the most profound and significant change, we sought to confirm results concerning cathelicidin (P49913, CAMP_HUMAN, since an ELISA kit was readily available for this protein. In our exploratory proteomic study, cathelicidin showed a ∼6-fold higher concentration in PPROM patients with confirmed MIAC and HCA. We verified significantly higher levels of cathelicidin in exploratory samples (women without both MIAC and HCA: median 1.4 ng/ml; women with both conditions confirmed: median 3.6 ng/ml; p = 0.0003. A prospective replication cohort was used for independent validation and for assessment of cathelicidin potential to stratify women with MIAC leading to HCA from women in whom at least one of these conditions was ruled out. We confirmed the association of higher amniotic fluid cathelicidin levels with MIAC leading to HCA (the presence of both MIAC and HCA: median 3.1 ng/ml; other women: median 1.4 ng/ml; p<0.0001. A cathelicidin concentration of 4.0 ng/ml was found to be the best cut-off point for identifying PPROM women with both MIAC and HCA. When tested on the validation cohort, a sensitivity of 48%, a specificity of 90%, a likelihood ratio of 5.0, and an area under receiver-operating characteristic curve of 71% were achieved for identification of women with MIAC leading to HCA. CONCLUSIONS: Our multi-stage study suggests cathelicidin as a candidate marker that should be considered for a panel of amniotic fluid proteins permitting identification

  8. Cosmic gamma ray detection and discovery potential with the AMS-2 spectrometer; Detection de rayons {gamma} cosmiques et potentiel de decouvertes avec le spectrometre AMS-02

    Energy Technology Data Exchange (ETDEWEB)

    Girard, L

    2004-12-15

    Yet designed to measure charged component of the cosmic rays, the foreseen Alpha Magnetic Spectrometer (AMS-02) could also release {gamma}-ray studies, in the energy range from GeV to TeV, using the tracker system, for {gamma}-rays converted in e{sup +}e{sup -} pair, and the electromagnetic calorimeter. In the first part of the thesis are described the calibrations and the performances of the engineering model of the calorimeter, obtained from the analysis of data taken during a test-beam performed at CERN in July 2002. In the second part of the thesis, the AMS-02 discovery potential for {gamma}-astrophysics is presented. While exposure maps of the {gamma}--sky are computed for one year of data taking with the {gamma}--detectors, the acceptance of the calorimeter is obtained from Monte-Carlo simulations. The AMS-02 potential is then estimated for signals from the Vela pulsar and for some supersymmetric signals from the Galactic Center. (author)

  9. Phase transitions in Bose-Fermi-Hubbard model in the heavy fermion limit: Hard-core boson approach

    Directory of Open Access Journals (Sweden)

    I.V. Stasyuk

    2015-12-01

    Full Text Available Phase transitions are investigated in the Bose-Fermi-Hubbard model in the mean field and hard-core boson approximations for the case of infinitely small fermion transfer and repulsive on-site boson-fermion interaction. The behavior of the Bose-Einstein condensate order parameter and grand canonical potential is analyzed as functions of the chemical potential of bosons at zero temperature. The possibility of change of order of the phase transition to the superfluid phase in the regime of fixed values of the chemical potentials of Bose- and Fermi-particles is established. The relevant phase diagrams are built.

  10. Vibronic Boson Sampling: Generalized Gaussian Boson Sampling for Molecular Vibronic Spectra at Finite Temperature.

    Science.gov (United States)

    Huh, Joonsuk; Yung, Man-Hong

    2017-08-07

    Molecular vibroic spectroscopy, where the transitions involve non-trivial Bosonic correlation due to the Duschinsky Rotation, is strongly believed to be in a similar complexity class as Boson Sampling. At finite temperature, the problem is represented as a Boson Sampling experiment with correlated Gaussian input states. This molecular problem with temperature effect is intimately related to the various versions of Boson Sampling sharing the similar computational complexity. Here we provide a full description to this relation in the context of Gaussian Boson Sampling. We find a hierarchical structure, which illustrates the relationship among various Boson Sampling schemes. Specifically, we show that every instance of Gaussian Boson Sampling with an initial correlation can be simulated by an instance of Gaussian Boson Sampling without initial correlation, with only a polynomial overhead. Since every Gaussian state is associated with a thermal state, our result implies that every sampling problem in molecular vibronic transitions, at any temperature, can be simulated by Gaussian Boson Sampling associated with a product of vacuum modes. We refer such a generalized Gaussian Boson Sampling motivated by the molecular sampling problem as Vibronic Boson Sampling.

  11. Strongly interacting vector bosons at the CERN LHC Quartic anomalous couplings

    CERN Document Server

    Belyaev, A; González-Garciá, M Concepción; Mizukoshi, J K; Novaes, S F; Zacharov, I E

    1999-01-01

    We analyze the potential of the CERN Large Hadron Collider to study anomalous quartic vector--boson interactions through the production of vector--boson pairs accompanied by jets. In the framework of $SU(2)_L \\otimes U(1)_Y$ chiral Lagrangians, we examine all effective operators of order $p^4$ that lead to new four--gauge--boson interactions but do not alter trilinear vertices. In our analyses, we perform the full tree level calculation of the processes leading to two jets plus vector--boson pairs, $W^+W^-$, $W^\\pm W^\\pm$, $W^\\pm Z$, or $ZZ$, taking properly into account the interference between the standard model and the anomalous contributions. We obtain the bounds that can be placed on the anomalous quartic interactions and we study the strategies to distinguish the possible new couplings.

  12. Higgs boson mass bounds in the presence of a heavy fourth quark family

    CERN Document Server

    Bulava, John; Nagy, Attila; Kallarackal, Jim; Jansen, Karl

    2012-01-01

    We present Higgs boson mass bounds in a lattice regularization allowing thus for non-perturbative investigations. In particular, we employ a lattice modified chiral invariant Higgs-Yukawa model using the overlap operator. We show results for the upper and lower Higgs boson mass bounds in the presence of a heavy mass-degenerate quark doublet with masses ranging up to 700 GeV. We perform infinite volume extrapolations in most cases, and examine several values of the lattice cutoff. Furthermore, we argue that the lower Higgs boson mass bound is stable with respect to the addition of higher dimensional operators to the scalar field potential. Our results have severe consequences for the phenomenology of a fourth generation of quarks if a light Higgs boson is discovered at the LHC.

  13. Optogenetics enlightens neuroscience drug discovery.

    Science.gov (United States)

    Song, Chenchen; Knöpfel, Thomas

    2016-02-01

    Optogenetics - the use of light and genetics to manipulate and monitor the activities of defined cell populations - has already had a transformative impact on basic neuroscience research. Now, the conceptual and methodological advances associated with optogenetic approaches are providing fresh momentum to neuroscience drug discovery, particularly in areas that are stalled on the concept of 'fixing the brain chemistry'. Optogenetics is beginning to translate and transit into drug discovery in several key domains, including target discovery, high-throughput screening and novel therapeutic approaches to disease states. Here, we discuss the exciting potential of optogenetic technologies to transform neuroscience drug discovery.

  14. Do Bosons Condense in a Homogeneous Magnetic Field ?

    CERN Document Server

    Briet, P; Zagrebnov, V A

    2003-01-01

    It has been known since the rigorous result by Angelescu and Corciovei [A-C] that the answer to the question in the title is negative for the Perfect Bose Gas(PBG). The main result of the present paper is that the answer could become positive if the bosons are simultaneously embedded in a periodic external potential. We show that it is true for PBG, as well as for the Bose gas with a mean-field repulsive particle interaction.

  15. Towards an alternative unification of massless and massive vector bosons

    International Nuclear Information System (INIS)

    Doria, R.M.; Helayel Neto, J.A.; Pugnetti, S.; Smith, A.W.

    1984-01-01

    A possible extension of the gauge principle is presented where two distinct gauge potentials are introduced in association with a single U(1) gauge group, each of them being taken to interact with a different kind of matter field. In such a picture, a massive vector boson naturally shows up in the physical spectrum. A massive photon without Higgs can be introduced. Renormalizability is seen to be a feature of the model. Possible supersymmetrizations are also contemplated. (Author) [pt

  16. Per-residue energy decomposition pharmacophore model to enhance virtual screening in drug discovery: a study for identification of reverse transcriptase inhibitors as potential anti-HIV agents

    Directory of Open Access Journals (Sweden)

    Cele FN

    2016-04-01

    Full Text Available Favourite N Cele, Muthusamy Ramesh, Mahmoud ES Soliman Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa Abstract: A novel virtual screening approach is implemented herein, which is a further improvement of our previously published “target-bound pharmacophore modeling approach”. The generated pharmacophore library is based only on highly contributing amino acid residues, instead of arbitrary pharmacophores, which are most commonly used in the conventional approaches in literature. Highly contributing amino acid residues were distinguished based on free binding energy contributions obtained from calculation from molecular dynamic (MD simulations. To the best of our knowledge; this is the first attempt in the literature using such an approach; previous approaches have relied on the docking score to generate energy-based pharmacophore models. However, docking scores are reportedly unreliable. Thus, we present a model for a per-residue energy decomposition, constructed from MD simulation ensembles generating a more trustworthy pharmacophore model, which can be applied in drug discovery workflow. This work is aimed at introducing a more rational approach to the field of drug design, rather than comparing the validity of this approach against those previously reported. We recommend additional computational and experimental work to further validate this approach. This approach was used to screen for potential reverse transcriptase inhibitors using the pharmacophoric features of compound GSK952. The complex was subjected to docking, thereafter, MD simulation confirmed the stability of the system. Experimentally determined inhibitors with known HIV-reverse transcriptase inhibitory activity were used to validate the protocol. Two potential hits (ZINC46849657 and ZINC54359621 showed a significant potential with regard to free binding energy. Reported results obtained from

  17. Supersymmetry search via gauge boson fusion

    Indian Academy of Sciences (India)

    We propose a novel method for the search of supersymmetry, especially for the electroweak gauginos at the large hadron collider (LHC). Gauge boson fusion technique was shown to be useful for heavy and intermediate mass Higgs bosons. In this article, we have shown that this method can also be applied to find the ...

  18. Goldstone bosons as fractional cosmic neutrinos.

    Science.gov (United States)

    Weinberg, Steven

    2013-06-14

    It is suggested that Goldstone bosons may be masquerading as fractional cosmic neutrinos, contributing about 0.39 to what is reported as the effective number of neutrino types in the era before recombination. The broken symmetry associated with these Goldstone bosons is further speculated to be the conservation of the particles of dark matter.

  19. Supersymmetry search via gauge boson fusion

    Indian Academy of Sciences (India)

    Abstract. We propose a novel method for the search of supersymmetry, especially for the elec- troweak gauginos at the large hadron collider (LHC). Gauge boson fusion technique was shown to be useful for heavy and intermediate mass Higgs bosons. In this article, we have shown that this method can also be applied to ...

  20. Fermion-boson interactions and quantum algebras

    International Nuclear Information System (INIS)

    Ballesteros, A.; Herranz, F.J.; Civitarese, O.; Reboiro, M.

    2002-01-01

    Quantum algebras (q algebras) are used to describe interactions between fermions and bosons. Particularly, the concept of a su q (2) dynamical symmetry is invoked in order to reproduce the ground state properties of systems of fermions and bosons interacting via schematic forces. The structure of the proposed su q (2) Hamiltonians, and the meaning of the corresponding deformation parameters, are discussed

  1. Superfluidity of bosons on a deformable lattice

    International Nuclear Information System (INIS)

    Jackeli, G.; Ranninger, J.

    2001-01-01

    We study the superfluid properties of a system of interacting bosons on a lattice, which, moreover, are coupled to the vibrational modes of this lattice, treated here in terms of Einstein phonon modes. The ground state corresponds to two correlated condensates: that of the bosons and that of the phonons. Two competing effects determine the common collective sound-wave-like mode with sound velocity v, arising from gauge symmetry breaking. (i) The sound velocity v 0 (corresponding to a weakly interacting Bose system on a rigid lattice) in the lowest-order approximation is reduced due to reduction of the repulsive boson-boson interaction, arising from the attractive part of the phonon-mediated interaction in the static limit. (ii) The second-order correction to the sound velocity is enhanced as compared to that of bosons on a rigid lattice when the boson-phonon interaction is switched on due to the retarded nature of the phonon-mediated interaction. The overall effect is that the sound velocity is essentially unaffected by the coupling with phonons, indicating the robustness of the superfluid state. The induction of a coherent state in the phonon system driven by the condensation of the bosons could be of experimental significance, permitting spectroscopic detection of superfluid properties of bosons. Our results are based on an extension of the Beliaev-Popov formalism for a weakly interacting Bose gas on a rigid lattice to one on a deformable lattice with which it interacts

  2. Introduction to interacting boson model

    International Nuclear Information System (INIS)

    Goutte, D.

    1986-01-01

    A very simple presentation of the interacting boson model is first given. The two computerized models which are presented allow, with few parameters, to reproduce an impressive quantity of data characterizing the deformed nuclei. Their excitation spectra, the reduced transition probabilities, the quadrupolar moments, the two nucleon transfer experiment results, ... Then a specific application of the model is given: radial extension reproduction of nuclear functions. It is shown first how the electron inelastic scattering allows to measure observables related to these radial functions, the transition charge densities, then, on some examples, how the model allows to reproduce them [fr

  3. Bounds on new Z bosons

    International Nuclear Information System (INIS)

    del Aguila, F.; Moreno, J.M.; Quiros, M.

    1989-01-01

    Since new Z bosons (Z') are predicted by many approaches to particle physics beyond the standard model, the absence of a signal in lepton pairs at hadron colliders implies important, but very model-dependent, lower limits on Z' masses. We present an analytical procedure for converting an experimental limit on σ(Z')B(Z'→l + l - ) into mass limits in a large set of models. Explicit results are given for present CERN and future Fermilab collider data. We include renormalization effects so that consideration can be restricted to grand-unification models

  4. Collapsing stage of 'bosonic matter'

    International Nuclear Information System (INIS)

    Manoukian, E.B.; Muthaporn, C.; Sirininlakul, S.

    2006-01-01

    We prove rigorously that for 'bosonic matter', if deflation occurs upon collapse as more and more such matter is put together, then for a non-vanishing probability of having the negatively charged particles, with Coulomb interactions, within a sphere of radius R, the latter necessarily cannot decrease faster than N -1/3 for large N, where N denotes the number of the negatively charged particles. This is in clear distinction with matter (i.e., matter with the exclusion principle) which inflates and R necessarily increases not any slower than N 1/3 for large N

  5. Boson localization and the superfluid-insulator transition

    International Nuclear Information System (INIS)

    Fisher, M.P.A.; Weichman, P.B.; Grinstein, G.; Fisher, D.S.; Condensed Matter Physics 114-36, California Institute of Technology, Pasadena, California 91125; IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598; Joseph Henry Laboratory of Physics, Jadwin Hall, Princeton University, Princeton, New Jersey 08544)

    1989-01-01

    The phase diagrams and phase transitions of bosons with short-ranged repulsive interactions moving in periodic and/or random external potentials at zero temperature are investigated with emphasis on the superfluid-insulator transition induced by varying a parameter such as the density. Bosons in periodic potentials (e.g., on a lattice) at T=0 exhibit two types of phases: a superfluid phase and Mott insulating phases characterized by integer (or commensurate) boson densities, by the existence of a gap for particle-hole excitations, and by zero compressibility. Generically, the superfluid onset transition in d dimensions from a Mott insulator to superfluidity is ''ideal,'' or mean field in character, but at special multicritical points with particle-hole symmetry it is in the universality class of the (d+1)-dimensional XY model. In the presence of disorder, a third, ''Bose glass'' phase exists. This phase is insulating because of the localization effects of the randomness and analogous to the Fermi glass phase of interacting fermions in a strongly disordered potential

  6. A Historical Profile of the Higgs Boson

    CERN Document Server

    Ellis, John; Nanopoulos, Dimitri V

    2012-01-01

    The Higgs boson was postulated in 1964, and phenomenological studies of its possible production and decays started in the early 1970s, followed by studies of its possible production in e+ e-, pbar p and pp collisions, in particular. Until recently, the most sensitive searches for the Higgs boson were at LEP between 1989 and 2000, which have been complemented by searches at the Fermilab Tevatron. The LHC has recently entered the hunt, excluding a Higgs boson over a large range of masses and revealing a tantalizing hint in the range 119 to 125 GeV, and there are good prospects that the existence or otherwise of the Higgs boson will soon be established. One of the most attractive possibilities is that the Higgs boson is accompanied by supersymmetry, though composite options have yet to be excluded. This article reviews some of the key historical developments in Higgs physics over the past half-century.

  7. Search for new heavy charged gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Magass, Carsten Martin [RWTH Aachen Univ. (Germany)

    2007-11-02

    Additional gauge bosons are introduced in many theoretical extensions to the Standard Model. A search for a new heavy charged gauge boson W' decaying into an electron and a neutrino is presented. The data used in this analysis was taken with the D0 detector at the Fermilab proton-antiproton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of about 1 fb-1. Since no significant excess is observed in the data, an upper limit is set on the production cross section times branching fraction σW'xBr (W' → ev). Using this limit, a W' boson with mass below ~1 TeV can be excluded at the 95% confidence level assuming that the new boson has the same couplings to fermions as the Standard Model W boson.

  8. Electroweak boson production in Pb+Pb

    CERN Document Server

    Balestri, T; The ATLAS collaboration

    2014-01-01

    Measurements of electroweak boson production ($\\gamma$, $\\Wboson$/$\\Zboson$) in heavy ion events provide a novel way to probe the properties of a quark-gluon plasma. Since these bosons do not interact with the strongly-coupled medium, measurements that combine their production yields with those from jets provide useful quantitative insights into the jet-quenching mechanism. In addition, the kinematic distributions of electroweak bosons are sensitive to parton distribution functions (PDF). Therefore, measuring such observables provide a means to investigate possible nuclear modifications of PDFs. This proceeding presents independent studies of $\\Wboson$ boson, $\\Zboson$ boson, and photon production in lead-lead collisions at $\\sqrt{s_{NN}} =2.76 \\TeV$ using data corresponding to an integrated luminosity of 0.14$~\\inb$ collected with the ATLAS detector at the Large Hadron Collider in 2011. The measurements were conducted in a well-defined kinematic range as a function of the average number of participating nucl...

  9. Search for the Higgs boson produced in association with a Z boson and decaying to a pair of bottom quarks with the ATLAS experiment at LHC

    International Nuclear Information System (INIS)

    Alio, L.

    2014-01-01

    This thesis will focus on the search for the Higgs boson in the channel where the Higgs boson decays to a pair of b-quarks and is produced in association with a Z boson decaying into 2 neutrinos. The Higgs mechanism, the constraints for the existence of Higgs boson and its discovery will be reviewed in the first chapter. The data collected in the proton-proton collisions at the LHC in the year of 2012 are used for this search. The center-of-mass energy of the collisions is 8 TeV. This thesis uses the data collected from the ATLAS detector. The detailed descriptions of LHC and ATLAS detector, as well as their operation will be found in the second chapter. The ZH → ν anti-ν b anti-b channel contains a pair of b-quarks and two neutrinos in the final state. The two neutrinos go through without being detected, leaving missing transverse energy in the detector. The two b-quarks will form jets in the detector. Thus identifying jets originating from b-quarks is vital for this analysis. This technique is referred to as b-tagging. The details of b-tagging algorithms and how to apply them to this Higgs analysis will be discussed in the third chapter. The work on the missing transverse energy measurements and its triggers is also important as this will help identifying the events that contain Z decays to two neutrinos and help reducing the backgrounds. In this work a new missing transverse energy trigger for the Higgs boson search will be studied, along with the other already existing triggers, and it is expected to increase the sensitivity of the Higgs boson search. The chapter four will detail the trigger parametrization, as well as application of missing transverse energy triggers in the Higgs analysis in the ZH → ν anti-ν b anti-b channel. Finally, the detailed analysis of the search of Higgs boson in the ZH → ν anti-ν b anti-b channel will be discussed in chapter five. We will go through various steps of the analysis: object identification and selection

  10. Quantum distillation of bosons

    Science.gov (United States)

    Weiss, David

    2015-05-01

    The non-equilibrium dynamics of many-body quantum systems present a series of challenges for theory and opportunities for cold atom experiments. I will describe an experiment in which a bundle of initially trapped superfluid 1D Bose lattice gases is quenched to an untrapped, flat lattice potential. This simple experimental situation in the intermediate coupling regime (U/J between 4 and 9.6) leads to interesting dynamics. These include the progressive dissolution of a fraction of the doublons, as well as the quantum distillation and long term confinement of singlons out of and within the central, doublon-dominated region. We measure these processes by combining absorption imaging, photoassociation and 3-body loss to separately reconstruct the spatial distributions of the expectation values of singlons, doublons and triplons. The qualitative dynamics is reproduced by a Gutzwiller mean field model and the essence of the experiment can be understood by considering simple spatial pictures of site occupancies. This work was supported by the NSF and the ARO.

  11. Data Discovery

    Directory of Open Access Journals (Sweden)

    Gerhard Weikum

    2013-07-01

    Full Text Available Discovery of documents, data sources, facts, and opinions is at the very heart of digital information and knowledge services. Being able to search, discover, compile, and analyse relevant information for a user’s specific tasks is of utmost importance in science (e.g., computational life sciences, digital humanities, etc., business (e.g., market and media analytics, customer relationship management, etc. , and society at large (e.g., consumer information, traffic logistics, health discussions, etc..

  12. Cosmic Discovery

    Science.gov (United States)

    Harwit, Martin

    1984-04-01

    In the remarkable opening section of this book, a well-known Cornell astronomer gives precise thumbnail histories of the 43 basic cosmic discoveries - stars, planets, novae, pulsars, comets, gamma-ray bursts, and the like - that form the core of our knowledge of the universe. Many of them, he points out, were made accidentally and outside the mainstream of astronomical research and funding. This observation leads him to speculate on how many more major phenomena there might be and how they might be most effectively sought out in afield now dominated by large instruments and complex investigative modes and observational conditions. The book also examines discovery in terms of its political, financial, and sociological context - the role of new technologies and of industry and the military in revealing new knowledge; and methods of funding, of peer review, and of allotting time on our largest telescopes. It concludes with specific recommendations for organizing astronomy in ways that will best lead to the discovery of the many - at least sixty - phenomena that Harwit estimates are still waiting to be found.

  13. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kallarackal, Jim

    2011-04-28

    upper and lower Higgs boson mass bound is studied. All numerical results presented in this work involve extensive finite volume analysis. In particular the Higgs boson mass significantly depends on the lattice volume and thus an extrapolation to infinite volume is inevitable. Both mass bounds are revised in the presence of a quark doublet with a mass around 700 GeV. The upper bound of the Higgs boson mass is only slightly enhanced by about 200 GeV with respect to the standard model. The lower bound however, is altered significantly by a factor of about five to ten. The strong dependence of the lower mass bound on the quark mass motivated to explore the Higgs boson mass bounds at a fixed cut off of 1500 GeV and varying quark masses. Preliminary data for the upper Higgs boson mass are presented. A detailed analysis at strong Yukawa couplings of both, the lower and the upper, mass bounds in a non perturbative fashion is certainly needed and may provide a reliable basis in favour or disfavour of a potential fourth generation of heavy quarks. (orig.)

  14. submitter Investigation of the discovery potential for supersymmetry in Tau final states and measurement of the Tau identification efficiency for the ATLAS experiment

    CERN Document Server

    Lumb, Debra

    Despite its success, the Standard Model has a number of short-comings that lead particle physicists to believe the it is only a low-energy approximation of a more fundamental theory. One of the most promising candidates for an extension of the Standard Model is supersymmetry. From 2009 the search for Supersymmetry will be taken into a new energy regime with the Large Hadron Collider (LHC) experiments at CERN. A new inclusive search for SUSY in tau final states has been developed for the ATLAS experiment. The search focuses on the signature of taus, jets and missing transverse energy. Analyses with different jet multiplicities (4, 3 and 2-jets) have been studied. The requirement of the tau significantly reduces the abundant QCD multijet background making the mode potentially more robust than other modes already in use that focus only on jets and missing transverse energy as the signature. The discovery reach for R-parity conserving mSUGRA models has been studied for a centre-of-mass energy of 14 TeV and an int...

  15. Mining the Proteome ofFusobacterium nucleatumsubsp.nucleatumATCC 25586 for Potential Therapeutics Discovery: AnIn SilicoApproach.

    Science.gov (United States)

    Habib, Abdul Musaweer; Islam, Md Saiful; Sohel, Md; Mazumder, Md Habibul Hasan; Sikder, Mohd Omar Faruk; Shahik, Shah Md

    2016-12-01

    The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum , a human oral pathogen having association with colorectal cancer. Our study divulged 1,499 proteins of F. nucleatum , which have no homolog's in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG) that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Automated Annotation Server (KAAS) resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the three dimensional structure of these three proteins. Finally, determination of ligand binding sites of the 2 key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against F. nucleatum .

  16. X chromosome-linked CNVs in male infertility: discovery of overall duplication load and recurrent, patient-specific gains with potential clinical relevance.

    Directory of Open Access Journals (Sweden)

    Chiara Chianese

    Full Text Available Spermatogenesis is a highly complex process involving several thousand genes, only a minority of which have been studied in infertile men. In a previous study, we identified a number of Copy Number Variants (CNVs by high-resolution array-Comparative Genomic Hybridization (a-CGH analysis of the X chromosome, including 16 patient-specific X chromosome-linked gains. Of these, five gains (DUP1A, DUP5, DUP20, DUP26 and DUP40 were selected for further analysis to evaluate their clinical significance.The copy number state of the five selected loci was analyzed by quantitative-PCR on a total of 276 idiopathic infertile patients and 327 controls in a conventional case-control setting (199 subjects belonged to the previous a-CGH study. For one interesting locus (intersecting DUP1A additional 338 subjects were analyzed.All gains were confirmed as patient-specific and the difference in duplication load between patients and controls is significant (p = 1.65 × 10(-4. Two of the CNVs are private variants, whereas 3 are found recurrently in patients and none of the controls. These CNVs include, or are in close proximity to, genes with testis-specific expression. DUP1A, mapping to the PAR1, is found at the highest frequency (1.4% that was significantly different from controls (0% (p = 0.047 after Bonferroni correction. Two mechanisms are proposed by which DUP1A may cause spermatogenic failure: i by affecting the correct regulation of a gene with potential role in spermatogenesis; ii by disturbing recombination between PAR1 regions during meiosis. This study allowed the identification of novel spermatogenesis candidate genes linked to the 5 CNVs and the discovery of the first recurrent, X-linked gain with potential clinical relevance.

  17. Single particle degrees of freedom in the interacting boson model

    NARCIS (Netherlands)

    Scholten, O.

    1985-01-01

    An overview is given of different aspects of the Interacting Boson Fermion Model, the extension of the interacting Boson Model to odd mass nuclei. The microscopic model for the coupling of single-particle degrees of freedom to the system of bosons is outlined and the interaction between the bosons

  18. Searches for neutral Higgs bosons in extended models

    NARCIS (Netherlands)

    Abdallah, J.; Blom, M.R.; Drees, J.; Palacios, J.; van der Pol, M.; Siebel, M.; van Dam, P.A.; Zupan, M.

    2004-01-01

    Searches for neutral Higgs bosons produced at LEP in association with Z bosons, in pairs and in the Yukawa process are presented in this paper. Higgs boson decays into b quarks, τ leptons, or other Higgs bosons are considered, giving rise to four-b, four-b+jets, six-b and four-τ final states, as

  19. Measurements of Gauge Boson Self-Interactions at CMS

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    A critical prediction of the Standard Model electroweak theory is the existence of triple and quartic gauge-boson self-interactions. The 2010-12 LHC run has resulted in a wealth of data in this sector, which can now be probed in many different production modes, both ordinary and potentially anomalous, with a sensitivity that is world-leading. In this seminar, recent CMS results are presented for: measurements of diboson production, with associated constraints on triple gauge boson couplings; the first LHC measurement of purely electroweak production of a Z with two forward jets; and two-photon production of W pairs, with the first LHC constraints on quartic gauge couplings.

  20. QCD in gauge-boson production at the LHC

    CERN Document Server

    Schott, Matthias; The ATLAS collaboration

    2018-01-01

    Measurements of the Drell-Yan production of W and Z/gamma* bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS and CMS collaborations have performed several high precision measurements at different center-of-mass energies, ranging from single to triple differential cross sections. These measurements are the key in improving physics modelling uncertainties of electroweak precision measurements at the LHC. Moreover, perturbative QCD can be tested further in a multi-scale environment, when studying the production of jets in association with single and di-bosons final states. In this talk, we review the latest measurements, discuss the compatibility between the experiments and compare the results to the state-of-the-art QCD calculations and Monte Carlo simulations, as well their potential impact on improving our understanding PDFs.

  1. On boson condensation considering a generalized Casimir example

    Science.gov (United States)

    Voigt, K.

    1990-12-01

    From the concept of generalized condensation [M. Van den Berg, J. T. Lewis, and J. V. Pulè, Helv. Phys. Acta 59, 1271 (1986)] it is known that two critical densities ρc and ρm exist for a free boson gas. Density ρc is the classical one and ρm is the critical density below which there can be no macroscopic occupation of ground state. A free boson gas is studied in a weak external potential which behaves asymptotically like ||x1||α1+||x2||α2+ṡṡṡ +||xd||αd near the origin. It is shown that there are only two possibilities to get ρc<ρm<∞, namely, α1=α2=∞ and d≥3 (this corresponds to Dirichlet boundary conditions), and α1=2 and d≥2 (i.e., a harmonic oscillator).

  2. Standard Model Effective Potential from Trace Anomalies

    Directory of Open Access Journals (Sweden)

    Renata Jora

    2018-01-01

    Full Text Available By analogy with the low energy QCD effective linear sigma model, we construct a standard model effective potential based entirely on the requirement that the tree level and quantum level trace anomalies must be satisfied. We discuss a particular realization of this potential in connection with the Higgs boson mass and Higgs boson effective couplings to two photons and two gluons. We find that this kind of potential may describe well the known phenomenology of the Higgs boson.

  3. Establishing the Standard Model Higgs Boson in the Decay Channel H→ττ with LHC Run II data

    CERN Document Server

    Friese, Raphael

    The subject of this thesis is the mechanism through which leptons obtain their masses. This is done via the search for the decay of Higgs bosons into pairs of the heaviest kind of leptons, the tau leptons. In the first chapter, the theoretical backgrounds are shortly recalled. Chapter 2 summarizes the analyses that led to the discovery of the Higgs boson and presents a description of the CMS experiment. Chapter 3 presents the progress achieved in the reconstruction of undetectable particles. The last chapter presents in detail the H → τ τ analysis and its results, addressing the initial question of the lepton mass generating mechanism.

  4. Hyperspherical Harmonics Expansion on Lagrange Meshes for Bosonic Systems in One Dimension

    International Nuclear Information System (INIS)

    Timofeyuk, N. K.; Baye, D.

    2017-01-01

    A one-dimensional system of bosons interacting with contact and single-Gaussian forces is studied with an expansion in hyperspherical harmonics. The hyper radial potentials are calculated using the link between the hyperspherical harmonics and the single-particle harmonic-oscillator basis while the coupled hyper radial equations are solved with the Lagrange-mesh method. Extensions of this method are proposed to achieve good convergence with small numbers of mesh points for any truncation of hyper momentum. The convergence with hyper momentum strongly depends on the range of the two-body forces: it is very good for large ranges but deteriorates as the range decreases, being the worst for the contact interaction. In all cases, the lowest-order energy is within 4.5% of the exact solution and shows the correct cubic asymptotic behaviour at large boson numbers. Details of the convergence studies are presented for 3, 5, 20 and 100 bosons. A special treatment for three bosons was found to be necessary. For single-Gaussian interactions, the convergence rate improves with increasing boson number, similar to what happens in the case of three-dimensional systems of bosons. (author)

  5. Coupled kinetic equations for fermions and bosons in the relaxation-time approximation

    Science.gov (United States)

    Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw

    2018-02-01

    Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.

  6. Higgs boson production via Z, W bosons and toponium in the E6 superstring model

    International Nuclear Information System (INIS)

    Barger, V.; Whisnant, K.

    1988-01-01

    The authors examine the production of light Higgs bosons associated with electroweak symmetry-breaking in an E 6 superstring model in Z ω HZ * decays, in e + e - annihilation and in toponium decays. They find that the couplings of the lightest scalar Higgs boson H 1 0 in these models are very similar to those of the standard Higgs boson unless the pseudoscalar P 0 in the model has mass ≤ M z . Possible new modes for Higgs boson production not found in the standard model are presented. The authors give simple analytic expressions for the Higgs boson masses and mixing angles in the limit that the extra Z' gauge boson is heavy which clearly shows the production mechanisms that are favored for a given set of model parameters

  7. Search for a Higgs Boson Decaying to Weak Boson Pairs at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2003-01-01

    A Higgs particle produced in association with a Z boson and decaying into weak boson pairs is searched for in 336.4 1/pb of data collected by the L3 experiment at LEP at centre-of-mass energies from 200 to 209 GeV. Limits on the branching fraction of the Higgs boson decay into two weak bosons as a function of the Higgs mass are derived. These results are combined with the L3 search for a Higgs boson decaying to photon pairs. A Higgs produced with a Standard Model e+e- --> Zh cross section and decaying only into electroweak boson pairs is excluded at 95% CL for a mass below 107 GeV.

  8. Discovery Mondays

    CERN Multimedia

    2003-01-01

    Many people don't realise quite how much is going on at CERN. Would you like to gain first-hand knowledge of CERN's scientific and technological activities and their many applications? Try out some experiments for yourself, or pick the brains of the people in charge? If so, then the «Lundis Découverte» or Discovery Mondays, will be right up your street. Starting on May 5th, on every first Monday of the month you will be introduced to a different facet of the Laboratory. CERN staff, non-scientists, and members of the general public, everyone is welcome. So tell your friends and neighbours and make sure you don't miss this opportunity to satisfy your curiosity and enjoy yourself at the same time. You won't have to listen to a lecture, as the idea is to have open exchange with the expert in question and for each subject to be illustrated with experiments and demonstrations. There's no need to book, as Microcosm, CERN's interactive museum, will be open non-stop from 7.30 p.m. to 9 p.m. On the first Discovery M...

  9. A novel metabolism-based phenotypic drug discovery platform in zebrafish uncovers HDACs 1 and 3 as a potential combined anti-seizure drug target.

    Science.gov (United States)

    Ibhazehiebo, Kingsley; Gavrilovici, Cezar; de la Hoz, Cristiane L; Ma, Shun-Chieh; Rehak, Renata; Kaushik, Gaurav; Meza Santoscoy, Paola L; Scott, Lucas; Nath, Nandan; Kim, Do-Young; Rho, Jong M; Kurrasch, Deborah M

    2018-01-24

    Despite the development of newer anti-seizure medications over the past 50 years, 30-40% of patients with epilepsy remain refractory to treatment. One explanation for this lack of progress is that the current screening process is largely biased towards transmembrane channels and receptors, and ignores intracellular proteins and enzymes that might serve as efficacious molecular targets. Here, we report the development of a novel drug screening platform that harnesses the power of zebrafish genetics and combines it with in vivo bioenergetics screening assays to uncover therapeutic agents that improve mitochondrial health in diseased animals. By screening commercially available chemical libraries of approved drugs, for which the molecular targets and pathways are well characterized, we were able to reverse-identify the proteins targeted by efficacious compounds and confirm the physiological roles that they play by utilizing other pharmacological ligands. Indeed, using an 870-compound screen in kcna1-morpholino epileptic zebrafish larvae, we uncovered vorinostat (Zolinza™; suberanilohydroxamic acid, SAHA) as a potent anti-seizure agent. We further demonstrated that vorinostat decreased average daily seizures by ∼60% in epileptic Kcna1-null mice using video-EEG recordings. Given that vorinostat is a broad histone deacetylase (HDAC) inhibitor, we then delineated a specific subset of HDACs, namely HDACs 1 and 3, as potential drug targets for future screening. In summary, we have developed a novel phenotypic, metabolism-based experimental therapeutics platform that can be used to identify new molecular targets for future drug discovery in epilepsy. © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain.

  10. Vector Boson Scattering at ATLAS

    CERN Document Server

    Ozcan, V E

    2009-01-01

    While the Higgs model is the best studied scenario of electroweak symmetry breaking, there is no fundamental reason for the physics responsible for the symmetry breaking to be weakly-coupled. Many alternatives exist, predicting highly model-dependent signatures. By measuring the cross-section for the W and Z scattering at the LHC, it will be possible to obtain model-independent evidence for strong symmetry breaking or to constrain these various models. ATLAS Collaboration has recently performed a realistic simulation of this process and its backgrounds, which takes into account the detector effects and has developed new jet-analysis techniques for identifying vector bosons within the immense QCD backgrounds expected at the LHC. These techniques and the prospects for measuring the scattering signal will be presented.

  11. Relativistic quantum mechanics of bosons

    International Nuclear Information System (INIS)

    Ghose, P.; Home, D.; Sinha Roy, M.N.

    1993-01-01

    We show that it is possible to use the Klein-Gordon, Proca and Maxwell formulations to construct multi-component relativistic configuration space wavefunctions of spin-0 and spin-1 bosons in an external field. These wavefunctions satisfy the first-order Kemmer-Duffin equation. The crucial ingredient is the use of the future-causal normal n μ (n μ n μ =1, n 0 >0) to the space-like hypersurfaces foliating space-time, inherent in the concept of a relativistic wavefunction, to construct a conserved future-causal probability current four-vector from the second-rank energy-momentum tensor, following Holland's prescription. The existence of a Hermitian position operator, localized solutions, compatibility with the second quantized theories and the question of interpretation are discussed. (orig.)

  12. Double boson production at CDF

    International Nuclear Information System (INIS)

    Neuberger, D.

    1996-07-01

    New measurements of boson pair production in p anti p collisions have been performed by the CDF collaboration using a data sample of approximately 110 pb -1 . The cross sections for WW and WZ production are measured in the pure leptonic decay channel to σ(p anti p → WZ) = 3.2 +5.0 -3. 2 pb and σ(p anti p → W + W - ) = 10.2 +6.5 -5.3 pb, respectively. Limits on anomalous coupling parameters are set in the searches for WW and WZ production. Assuming an energy scale of Λ FF = 2 TeV, we find for the WWZ and WWγ couplings at 95% CL: -0.4 < λ < 0.3 (δκ 0) and -0.5 < δκ < 0.5 (λ = 0)

  13. Bosonic fields in crystal manifold

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, G., E-mail: geovamaciel@gmail.com [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-554 Fortaleza, Ceará (Brazil); Tahim, M.O., E-mail: makarius.tahim@uece.br [Universidade Estadual do Ceará, Faculdade de Educação, Ciências e Letras do Sertão Central, Rua Epitácio Pessoa, 2554, 63.900-000 Quixadá, Ceará (Brazil); Landim, R.R., E-mail: renan@fisica.ufc.br [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-554 Fortaleza, Ceará (Brazil); Costa Filho, R.N., E-mail: rai@fisica.ufc.br [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-554 Fortaleza, Ceará (Brazil)

    2013-11-04

    A crystal-like universe made of membranes in extra dimensions in a Randall–Sundrum scenario is studied. A background gravitational metric satisfying the right boundary conditions is considered to study the localization of the scalar, gauge and Kalb–Ramond fields. It is found that the wave function for the fields are Bloch waves. The mass modes equations are calculated allowing us to show the zero-gap mass behavior and the mass dispersion relation for each field. Finally we generalize all these results and consider q-forms in the crystal membrane universe. We add the dilaton interaction in order to guarantee localization of forms. We show that, due to the dimension D, the form q and the dilaton coupling λ, the mass spectrum can be the same for the different bosonic fields studied. Such a result is a different way to see the duality between forms.

  14. To the clustering boson's theory

    CERN Document Server

    Kabulov, A B

    2002-01-01

    The model of dipole clusterization of nucleons in atomic nuclei is developed in the frame of the interacting boson formalism. The model's Hamiltonian of U(6) direct X U(4) -symmetry is constructed. The reductions U(4) contains U(3) contains O(3) and U(4) contains SU(3) contains O(3) is performed. The atomic nuclear sup 2 sup 8 Si, sup 3 sup 2 S, sup 3 sup sup 6 Ar, sup 4 sup 4 Ti are investigated in the frame of the vibration limit of the model of dipole clusterization. The atomic nuclei sup 1 sup 6 O and 2 sup 0 Ne are investigated in the frame of the rotational limit in this model. (author)

  15. Effective theory of bosonic superfluids

    International Nuclear Information System (INIS)

    Schakel, A.M.J.

    1994-01-01

    The authors discuss the effective theory of a bosonic superfluid whose microscopic behavior is described by a nonrelativistic, weak-coupling φ 4 theory in the phase with broken particle number symmetry, both at zero temperature and in the vicinity of the phase transition. In the zero-temperature regime, the theory is governed by the gapless Goldstone mode resulting from the broken symmetry. Although this mode is gapless, the effective theory turns out to be Gallilei invariant. The regime just below the critical temperature is approached in a high-temperature expansion which is shown to be consistent with the weak-coupling assumption of the theory. The authors calculate the critical temperature, the coefficients of the Landau theory, and the finite-temperature sound velocity. A comparison with BCS theory is given

  16. Higgs bosons in the two-doublet model with CP violation

    International Nuclear Information System (INIS)

    Akhmetzyanova, E.; Dolgopolov, M.; Dubinin, M.

    2005-01-01

    We consider the effective two-Higgs-doublet potential with complex parameters, when the CP invariance is broken both explicitly and spontaneously. The diagonal mass term in the local minimum of the potential is constructed for the physical basis of Higgs fields, keeping explicitly the limiting case of CP conservation, if the parameters are taken real. For the special case of the two-doublet Higgs sector of the minimal supersymmetric model, when CP invariance is violated by the Higgs bosons interaction with scalar quarks of the third generation, we calculate by means of the effective potential method the Higgs boson masses and evaluate the two-fermion Higgs boson decay widths and the widths of rare one-loop-mediated decays H→γγ, H→gg

  17. Direct search for Higgs boson in LHCb

    CERN Document Server

    Currat, C

    2001-01-01

    The LHCb detector is a forward one-arm spectrometer to precision measurements of CP violation in the B-meson systems. The motivation of the present work is to assess the potential of LHCb to observe a Standard Model (SM) Higgs signal. The recent results obtained at LEP give a hint of a SM Higgs boson with a mass mH = 115.0 +1.3 –0.9 GeV/c2 with a statistical significance of 2.9 standard deviations. Because of the high longitudinal boost encountered by the products in the pp collisions at LHC, a significant fraction (~30%) of light Higgs (mH = 115 GeV/c2) are produced in the LHCb acceptance 1.8 < h < 4.9. These facts potentially place LHCb in the race for the observation of the SM Higgs. Given a relatively low running luminosity of 2 x 1032 cm-2s-1- compared to the nominal 1034 cm-2s-1 at LHC and a limited geometrical acceptance, we have shown that the channels accessible to LHCb are H + W± Z0 b`b + l± X for Higgs masses in the range 100-130 GeV/c2. This work pioneered a setup for the pro...

  18. Search for the SM Higgs Boson in the Channel $WH \\to l\

    CERN Document Server

    Will, Jonas Zacharias

    One of the most important scientific challenges of ATLAS and CMS, multi-purpose de- tectors at CERN’s Large Hadron Collider (LHC), is the discovery or exclusion of the longly sought standard model Higgs boson predicted almost fifty years ago. In summer 2012, both ATLAS and CMS discovered a new particle. Its mass is determined to be 126 . 0 ± 0 . 4 (stat) ± 0 . 4 (sys) GeV (ATLAS) and 125 . 3 ± 0 . 4 (stat) ± 0 . 5 (sys) GeV (CMS) [ 1 , 2 ]. Its further properties are so far consistent with the predicted properties of a standard model Higgs boson within large uncertainties. Besides the Higgs search in the sensitive bosonic channels, H → γγ , H → ZZ , and H → WW , the fermionic channels H → ττ and H → b b contributed to the exclusion of a standard model Higgs boson below the observed excess and are essential for measuring the couplings of the new particle to fermions. In the analysis presented here, the associated Higgs production WH in the Higgs decay channel H → b b is studied on the co...

  19. Higgs Spin Determination and Unitarity of Vector-boson Scattering at the LHC

    CERN Document Server

    Frank, Jessica

    After the discovery of a new particle at the Large Hadron Collider (LHC), it is crucial to definitely verify or disprove whether this new 125 − 126 GeV resonance is the Higgs boson of the Standard Model (SM). Thus, its features, including its spin, have to be determined. In order to distinguish the two most likely spin hypotheses, spin-0 or spin-2, the phenomenology of light spin-2 resonances produced in different gluon-fusion and vectorboson-fusion processes at the LHC is studied. Starting from an effective model for the interaction of a spin-2 particle with SM gauge bosons, cross sections and differential distributions are calculated within the Monte Carlo program Vbfnlo. Whereas with specific model parameters, such a spin-2 resonance can mimic rates and transverse-momentum distributions of a SM Higgs boson in the main decay channels γγ, WW and ZZ, several distributions allow to separate spin-2 from spin-0, almost independently of model parameters. Since the SM Higgs boson ensures the unitarity of the S...

  20. Renormalizability of Open Bosonic Thermal Strings

    OpenAIRE

    Haruo, FUJISAKI; Koichi, NAKAGAWA; Department of Physics, Rikkyo University; Department of Physics, Rikkyo University

    1989-01-01

    The thermal stability of renormalization of open bosonic strings is exemplified through the Neveu-Scherk regularization of the planar tachyon self-energy within the framework of the thermofield dynamics.

  1. Strong gauge boson scattering at the LHC

    CERN Document Server

    Rindani, S.D.

    2009-01-01

    In the standard model with electroweak symmetry breaking through the Higgs mechanism, electroweak gauge-boson scattering amplitudes are large if the Higgs boson is heavy, and electroweak gauge interactions become strong. In theories with electroweak symmetry breaking through alternative mechanisms, there could be a strongly interacting gauge sector, possibly with resonances in an accessible energy region. In general, the scattering of longitudinally polarized massive gauge bosons can give information on the mechanism of spontaneous symmetry breaking. At energies below the symmetry breaking scale, the equivalence theorem relates the scattering amplitudes to those of the "would-be" Goldstone modes. In the absence of Higgs bosons, unitarity would be restored by some new physics which can be studied through WW scattering. Some representatives models are discussed. Isolating WW scattering at a hadron collider from other contributions involving W emission from parton lines needs a good understanding of the backgrou...

  2. Microscopic boson approach to nuclear collective motion

    International Nuclear Information System (INIS)

    Kuchta, R.

    1989-01-01

    A quantum mechanical approach to the maximally decoupled nuclear collective motion is proposed. The essential idea is to transcribe the original shell-model Hamiltonian in terms of boson operators, then to isolate the collective one-boson eigenstates of the mapped Hamiltonian and to perform a canonical transformation which eliminates (up to the two-body terms) the coupling between the collective and noncollective bosons. Unphysical states arising due to the violtion of the Pauli principle in the boson space are identified and removed within a suitable approximation. The method is applied to study the low-lying collective states of nuclei which are successfully described by the exactly solvable multilevel pairing Hamiltonian (Sn, Ni, Pb). 75 refs.; 8 figs

  3. A Historical Profile of the Higgs Boson

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John; Gaillard, Mary K.; Nanopoulos, Dimitri V.

    2012-01-31

    The Higgs boson was postulated in 1964, and phenomenological studies of its possible production and decays started in the early 1970s, followed by studies of its possible productionin e{sup +} e{sup -}, {anti p}p and pp collisions, in particular. Until recently, the most sensitive searches for the Higgs boson were at LEP between 1989 and 2000, which have been complemented bysearches at the Fermilab Tevatron. The LHC has recently entered the hunt, excluding a Higgs boson over a large range of masses and revealing a tantalizing hint in the range 119 to125 GeV, and there are good prospects that the existence or otherwise of the Higgs boson will soon be established. One of the most attractive possibilities is that the Higgs bosonis accompanied by supersymmetry, though composite options have yet to be excluded. This article reviews some of the key historical developments in Higgs physics over the past half-century.

  4. Boson expansion theory in the seniority scheme

    International Nuclear Information System (INIS)

    Tamura, T.; Li, C.; Pedrocchi, V.G.

    1985-01-01

    A boson expansion formalism in the seniority scheme is presented and its relation with number-conserving quasiparticle calculations is elucidated. Accuracy and convergence are demonstrated numerically. A comparative discussion with other related approaches is given

  5. Search for exclusive Higgs and Z boson decays to φγ and ργ with the ATLAS detector

    CERN Document Server

    Owen, Rhys Edward; The ATLAS collaboration

    2018-01-01

    Following the discovery of a Standard Model-like Higgs boson, efforts are now focusing on the full characterisation of its properties. Despite the progress made, little is still known about the Higgs boson couplings to light fermions from the first and second generations. Direct measurements of the Higgs boson couplings to light quarks are plagued by small rates in the SM making them difficult to separate from the huge hadronic backgrounds. This talk will describe the recent ATLAS analysis which searched for such decays involving the φ and ρ mesons obtaining 95% confidence level limits on the branching fractions of $4.8\\times10^{-4}$ and $8.8\\times10^{-4}$ respectively.

  6. From the Higgs boson to the search for new physics: the prospects for the LHC programme at CERN

    CERN Document Server

    CERN. Geneva

    2013-01-01

    The discovery of the Higgs boson, which was the subject of this year's Nobel prize for physics, has brought us the missing piece of the Standard Model of Particle Physics.  However, many observations (such as the predominance of matter over antimatter in the Universe, the existence of dark matter observed by the cosmologists and even the fact that the Higgs boson has a relatively small mass) underline that our knowledge of the structure of matter and its interactions is incomplete.   A wide-ranging programme of research spanning several decades to come thus awaits us at the LHC.  Philippe Bloch will begin his lecture by giving us the latest news on the Higgs boson, and will then go on to explain how developments at the LHC and its experiments, which will resume in 2015, will explore these fund...

  7. Structure functions of electroweak boson and leptons

    International Nuclear Information System (INIS)

    Slominski, W.; Szwed, J.

    1996-01-01

    The QCD structure of the electroweak bosons is reviewed and the lepton structure function is defined and calculated. The leading order splitting functions of electron into quarks are extracted, showing an important contribution from γ-Z interference. Leading logarithmic QCD evolution equations are constructed and solved in the asymptotic region where log 2 behavior of the Parton densities is observed. Possible applications with clear manifestation of ''resolved'' photon and weak bosons are discussed. 8 refs., 3 figs

  8. Electroweak boson production with jets at CMS

    CERN Document Server

    Hortiangtham, Apichart

    2017-01-01

    The production of electroweak bosons (W, Z or gamma) in association with jets is a stringent test of perturbative QCD and is a background process in searches for new physics. Total and differential cross-section measurements of electroweak bosons produced in association with jets (and heavy flavour quarks) in proton-proton collisions are presented. The data have been recorded with the CMS detector at the LHC and are compared to the predictions of event generators and theoretical calculations.

  9. Parity Violation by a Dark Gauge Boson

    CERN Document Server

    Lee, Hye-Sung

    2014-01-01

    We overview the dark parity violation, which means the parity violation induced by a dark gauge boson of very small mass and coupling. When a dark gauge boson has an axial coupling, as in dark Z model, it can change the effective Weinberg angle in the low-energy experiments such as the atomic parity violation and the low-Q^2 polarized electron scatterings. Such low-energy parity tests are an excellent probe of the dark force.

  10. Structure functions of electroweak boson and leptons

    Energy Technology Data Exchange (ETDEWEB)

    Slominski, W [Uniwersytet Jagiellonski, Cracow (Poland); Szwed, J. [Brookhaven National Lab., Upton, NY (United States)]|[Uniwersytet Jagiellonski, Cracow (Poland)

    1996-04-02

    The QCD structure of the electroweak bosons is reviewed and the lepton structure function is defined and calculated. The leading order splitting functions of electron into quarks are extracted, showing an important contribution from {gamma}-Z interference. Leading logarithmic QCD evolution equations are constructed and solved in the asymptotic region where log{sup 2} behavior of the Parton densities is observed. Possible applications with clear manifestation of ``resolved`` photon and weak bosons are discussed. 8 refs., 3 figs.

  11. Fermion boson metamorphosis in field theory

    International Nuclear Information System (INIS)

    Ha, Y.K.

    1982-01-01

    In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered

  12. Evidence for a standard model Higgs boson like particle decaying into four leptons with the CMS detector

    International Nuclear Information System (INIS)

    Plestina, R.

    2013-01-01

    This thesis reports the discovery of the new boson recently observed at a mass near 125 GeV in the CMS experiment at CERN. The measurements of the properties of the new boson are reviewed. The results are obtained from a comprehensive search for the standard model Higgs boson in the H → ZZ decay channel, where both Z bosons decay to electron or muon lepton pairs. The search covers Higgs boson mass hypotheses in the range 110 H -1 at √(s)=7 TeV and 12.2 fb -1 at √(s)=8 TeV. The new boson is observed with a local significance above the expected background of 4.5 standard deviations. The signal strength μ, relative to the expectation for the standard model Higgs boson, is measured to be μ=0.80+0.35-0.28 at 126 GeV. A precise measurement of its mass has been performed and gives [126.2±0.6 (stat) ±0.2 (syst)] GeV. The hypothesis 0 + of the standard model for the spin J=0 and parity P=±1 quantum numbers is found to be consistent with the observation. The data disfavour the pseudoscalar hypothesis 0 - with a CL s value of 2.4%. No other significant excess is found, and upper limits at 95% confidence level exclude the ranges 113-116 GeV and 129-720 GeV while the expected exclusion range for the standard model Higgs boson is 118-670 GeV. A special emphases throughout the thesis has been put on lepton isolation. Lepton isolation being one of the key observables for the discovery is highly susceptible to pile-up conditions of the LHC machine. This thesis establishes a robust method to reduce the effect of pile-up on isolation. The method is now used across different analysis in CMS. A special attention has also been put on measurements of the efficiencies of lepton identification, isolation and impact parameter requirements directly from data using leptonic decays of Z boson. The measurements were used to produce final per lepton scale factors when calculating the significance of excess of four lepton events. (author)

  13. Boson-fermion and boson-boson scattering in a Yang-Mills theory at high energy: Sixth-order perturbation theory

    International Nuclear Information System (INIS)

    McCoy, B.M.; Wu, T.T.

    1976-01-01

    Our previous study of Yang-Mills fields is extended by calculating the high-energy behavior of the boson-fermion and of the boson-boson amplitude in sixth-order perturbation theory. In the isovector and isoscalar channels of both these processes the behavior of the amplitude is the same as that found in fermion-fermion scattering

  14. Finding potentially new multimorbidity patterns of psychiatric and somatic diseases: exploring the use of literature-based discovery in primary care research.

    NARCIS (Netherlands)

    M. van Boxtel; R. Vos; E. van Mulligen; F.R. Verhey; J.F. Metsemakers; M. van den Akker; Dr. Sil Aarts

    2013-01-01

    BACKGROUND: Multimorbidity, the co-occurrence of two or more chronic medical conditions within a single individual, is increasingly becoming part of daily care of general medical practice. Literature-based discovery may help to investigate the patterns of multimorbidity and to integrate medical

  15. Finding potentially new multimorbidity patterns of psychiatric and somatic diseases: Exploring the use of literature-based discovery in primary care research

    NARCIS (Netherlands)

    R. Vos (Rein); S. Aarts (Sil); E.M. van Mulligen (Erik); J.F.M. Metsemakers (Job); M.P.J. van Boxtel (Martin); F,R.J. Verhey (Frans); M. van den Akker (Marjan)

    2014-01-01

    textabstractBackground Multimorbidity, the co-occurrence of two or more chronic medical conditions within a single individual, is increasingly becoming part of daily care of general medical practice. Literature-based discovery may help to investigate the patterns of multimorbidity and to integrate

  16. Search for the Higgs boson at ATLAS/LHC, in associated production with a Z boson

    CERN Document Server

    Sousa, Mário; Conde, Patricia

    A mechanism of spontaneous symmetry breaking was used to explain the mass of elementary particles and predicted the existence of the Higgs boson. The Higgs boson was discovered in 2012 by the ATLAS and CMS experiments at the LHC with a mass of about 125 GeV. It now becomes necessary to study this new boson in order to validate the Standard Model of elementary particles. The Standard Model Higgs boson with a mass of 125 GeV decays most of the times to a pair of b-quarks. However, this decay is very difficult to study in a proton-proton collider like the LHC, due to the production of a huge background of b-jets (and also non-b-jets). In the LHC, the only production process with some chance to be used in this study is the associated production with a vector boson, which can decay leptonically allowing the identification of the event. One can use three possibilities: a Z boson decaying to neutrinos (0-lepton channel), a W boson decaying to an electron or muon and a neutrino (1-lepton channel) or a Z boson decayin...

  17. Search for the Standard Model Higgs Boson in associated production with w boson at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Xu [Univ. of Michigan, Ann Arbor, MI (United States)

    2009-11-01

    A search for the Standard Model Higgs boson in proton-antiproton collisions with center-of-mass energy 1.96 TeV at the Tevatron is presented in this dissertation. The process of interest is the associated production of W boson and Higgs boson, with the W boson decaying leptonically and the Higgs boson decaying into a pair of bottom quarks. The dataset in the analysis is accumulated by the D0 detector from April 2002 to April 2008 and corresponding to an integrated luminosity of 2.7 fb-1. The events are reconstructed and selected following the criteria of an isolated lepton, missing transverse energy and two jets. The D0 Neural Network b-jet identification algorithm is further used to discriminate b jets from light jets. A multivariate analysis combining Matrix Element and Neural Network methods is explored to improve the Higgs boson signal significance. No evidence of the Higgs boson is observed in this analysis. In consequence, an observed (expected) limit on the ratio of σ (p$\\bar{p}$ → WH) x Br (H → b$\\bar{b}$) to the Standard Model prediction is set to be 6.7 (6.4) at 95% C.L. for the Higgs boson with a mass of 115 GeV.

  18. Calculation of particle production by Nambu-Goldstone bosons with application to inflation reheating and baryogenesis

    International Nuclear Information System (INIS)

    Dolgov, A.; Freese, K.

    1995-01-01

    A semiclassical calculation of particle production by a scalar field in a potential is performed. We focus on the particular case of production of fermions by a Nambu-Goldstone boson θ. We have derived a (non)local equation of motion for the θ field with the back reaction of the produced particles taken into account. The equation is solved in some special cases, namely, for purely Nambu-Goldstone bosons and for the tilted potential U(θ)∝m 2 θ 2 . Enhanced production of bosons due to parametric resonance is investigated; we argue that the resonance probably disappears when the expansion of the Universe is included. Application of our work on particle production to reheating and an idea for baryogenesis in inflation are mentioned

  19. Neutral Supersymmetric Higgs Boson Searches

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Stephen Luke [Imperial College, London (United Kingdom)

    2008-07-01

    In some Supersymmetric extensions of the Standard Model, including the Minimal Supersymmetric Standard Model (MSSM), the coupling of Higgs bosons to b-quarks is enhanced. This enhancement makes the associated production of the Higgs with b-quarks an interesting search channel for the Higgs and Supersymmetry at D0. The identification of b-quarks, both online and offline, is essential to this search effort. This thesis describes the author's involvement in the development of both types of b-tagging and in the application of these techniques to the MSSM Higgs search. Work was carried out on the Level-3 trigger b-tagging algorithms. The impact parameter (IP) b-tagger was retuned and the effects of increased instantaneous luminosity on the tagger were studied. An extension of the IP-tagger to use the z-tracking information was developed. A new b-tagger using secondary vertices was developed and commissioned. A tool was developed to allow the use of large multi-run samples for trigger studies involving b-quarks. Offline, a neural network (NN) b-tagger was trained combining the existing offline lifetime based b-tagging tools. The efficiency and fake rate of the NN b-tagger were measured in data and MC. This b-tagger was internally reviewed and certified by the Collaboration and now provides the official b-tagging for all analyses using the Run IIa dataset at D0. A search was performed for neutral MSSM Higgs bosons decaying to a b{bar b} pair and produced in association with one or more b-quarks. Limits are set on the cross-section times the branching ratio for such a process. The limits were interpreted in various MSSM scenarios. This analysis uses the NN b-tagger and was the first to use this tool. The analysis also relies on triggers using the Level-3 IP b-tagging tool described previously. A likelihood discriminant was used to improve the analysis and a neural network was developed to cross-check this technique. The result of the analysis has been submitted to PRL

  20. Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques

    CERN Document Server

    Gritsan, Andrei V; Schulze, Markus; Xiao, Meng

    2016-01-01

    In this paper we investigate anomalous interactions of the Higgs boson with heavy fermions, employing shapes of kinematic distributions. We study the processes $pp \\to t\\bar{t} + H$, $b\\bar{b} + H$, $tq+H$, and $pp \\to H\\to\\tau^+\\tau^-$, and present applications of event generation, re-weighting techniques for fast simulation of anomalous couplings, as well as matrix element techniques for optimal sensitivity. We extend the MELA technique, which proved to be a powerful matrix element tool for Higgs boson discovery and characterization during Run I of the LHC, and implement all analysis tools in the JHU generator framework. A next-to-leading order QCD description of the $pp \\to t\\bar{t} + H$ process allows us to investigate the performance of MELA in the presence of extra radiation. Finally, projections for LHC measurements through the end of Run III are presented.

  1. The great adventure of the LHC - From big bang to the Higgs boson

    International Nuclear Information System (INIS)

    Denegri, D.; Guyot, C.; Hoecker, A.; ); Roos, L.; Rubbia, C.

    2014-03-01

    This book presents what has been the biggest scientific equipment ever designed on earth: the LHC (large hadron collider) and its associated experiments (ATLAS, CMS, LHCb and ALICE) that led to the discovery of the Higgs boson in 2012. About 10.000 physicists and engineers from 50 countries have taken part into the project that began in 1989. This book is composed of the following chapters: 1) the standard model (SM) of particle physics, 2) the experimental success of SM, 3) the shortfalls of SM, 4) the new physics, 5) the original big bang, 6) the LHC, 7) particle detection, 8) ATLAS and CMS experiments, 9) the first data from LHC, 10) data analysis, 11) the quest for the Higgs boson, 12) the search for new physics, 13) LHCb and ALICE experiments, and 14) future prospects

  2. Looking for a hidden sector in exotic Higgs boson decays with the ATLAS experiment

    Directory of Open Access Journals (Sweden)

    Andrea Coccaro

    2015-12-01

    Full Text Available The nature of dark matter (DM is one of the most intriguing questions in particle physics. DM can be postulated to be part of a hidden sector whose interactions with the visible matter are not completely decoupled. The discovery of a fundamental scalar particle compatible with the Higgs boson predicted by the Standard Model paves the way for looking for DM with novel methods. An overview of the searches looking for a hidden sector in exotic Higgs decays and for invisible decays of the Higgs boson within the ATLAS experiment is presented. Prospects for searches with Large Hadron Collider data at a center-of-mass energy of 13 TeV are summarized.

  3. Search for the Higgs-Boson with the CDF experiment at Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Hennecke, Martin [Univ. of Karlsruhe (Germany)

    2005-06-10

    A search for a low-mass SM Higgs-Boson in the channel WH → lvb$\\bar{b}$ has been performed using neural networks. The data were taken by the CDF experiment at the p-$\\bar{p}$ collider Tevatron from 2000-2003, corresponding to in integrated luminosity of Lint = 162 pb-1 at a CMS-energy of √s = 1.96 TeV. 95% confidence level upper limits are set on σ × BR, the product of the production cross section times the Branching ratio, as a function of the Higgs boson mass. Cross sections above 8 pb are excluded for six different Higgs masses between 110 GeV/c2 and 150 GeV/c2. The required integrated luminosities for a 95% C.L. exclusion, 3σ evidence and 5σ discovery are calculated.

  4. Intermediate- and heavy-Higgs-boson physics at a 0.5 TeV e+e- collider

    International Nuclear Information System (INIS)

    Barger, V.; Cheung, K.; Kniehl, B.A.; Phillips, R.J.N.

    1992-01-01

    We explore the potential of a future e + e- collider in the 0.5 TeV center-of-mass energy range to detect intermediate or heavy Higgs bosons in the standard model. We first briefly assess the logistics for finding a Higgs boson of intermediate mass, with M Z H W . We then study in detail the possibility of detecting a heavy Higgs boson, with m H >2M W , through the production of pairs of weak bosons. We quantitatively analyze the sensitivity of the process e + e-→ν bar νW + W-(ZZ) to the presence of a heavy-Higgs-boson resonance in the standard model. We compare this signal to various backgrounds and to the smaller signal from e + e-→ZH→μ + μ - W+W-(ZZ), assuming the weak-boson pairs to be detected and measured in their dominant hadronic decay modes W + W-(ZZ)→4 jets. A related Higgs-boson signal in 6-jet final states is also estimated. We show how the main backgrounds from e + e-W+W-(ZZ), eνWZ, and t bar t production can be reduced by suitable acceptance cuts. Bremsstrahlung and typical beamstrahlung corrections are calculated. These corrections reduce Higgs-boson production by scattering mechanisms but increase production by annihilation mechanisms; they also smear out some dynamical features such as Jacobian peaks in p T (H). With all these corrections included, we conclude that it should be possible to detect a heavy-Higgs-boson signal in the ν bar νW + W-(ZZ) channels up to mass m H =350 GeV

  5. Point-counterpoint in physics: theoretical prediction and experimental discovery of elementary particles

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1984-01-01

    A report is given on the theoretical prediction and the experimental discovery of elementary particles from the electron to the weak intermediate vector bosons. The work of Lattes, Occhialini and Powell which put in evidence the pions predicted by Yukawa was the starting point of the modern experimental particle physics

  6. Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing

    DEFF Research Database (Denmark)

    Vester, Jan Kjølhede; Glaring, Mikkel Andreas; Stougaard, Peter

    2014-01-01

    by functional expression. Phylogenetic analysis showed that different bacterial communities were targeted with the culture dependent and independent approaches and revealed the bias of multiple displacement amplification (MDA) of DNA isolated from complex microbial communities.Conclusions: Many cold- and...... to these conditions. Since only a small fraction of the total microbial diversity can be cultured in the laboratory, a combined approach involving functional screening of a strain collection and a metagenomic library was undertaken for discovery of novel enzymes from the ikaite columns.Results: A strain collection...... with 322 cultured isolates was screened for enzymatic activities identifying a large number of enzyme producers, with a high re-discovery rate to previously characterized strains. A functional expression library established in Escherichia coli identified a number of novel cold-active enzymes. Both α...

  7. Natural inflation with pseudo Nambu-Goldstone bosons

    International Nuclear Information System (INIS)

    Freese, K.; Frieman, J.A.; Olinto, A.V.

    1990-01-01

    We show that a pseudo Nambu-Goldstone boson, with a potential of the form V(φ)=Λ 4 [1±cos(φ/f)], can naturally give rise to an epoch of inflation in the early Universe. Successful inflation can be achieved if f∼m Pl and Λ∼m GUT . Such mass scales arise in particle-physics models with a gauge group that becomes strongly interacting at a scale ∼Λ, e.g., as can happen in superstring theories. The density fluctuation spectrum is non-scale-invariant, with extra power on large length scales

  8. Muon g-2 Anomaly and Dark Leptonic Gauge Boson

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye-Sung [W& M

    2014-11-01

    One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.

  9. Ratio method of measuring W boson mass

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feng [Stony Brook Univ., NY (United States)

    2010-08-01

    This dissertation describes an alternative method of measuring the W boson mass in DØ experiment. Instead of extracting MW from the fitting of W → ev fast Monte Carlo simulations to W → ev data as in the standard method, we make the direct fit of transverse mass between W → ev data and Z → ee data. One of the two electrons from Z boson is treated as a neutrino in the calculation of transverse mass. In ratio method, the best fitted scale factor corresponds to the ratio of W and Z boson mass (MW/MZ). Given the precisely measured Z boson mass, W mass is directly fitted from W → ev and Z → ee data. This dissertation demonstrates that ratio method is a plausible method of measuring the W boson mass. With the 1 fb-1 DØ Run IIa dataset, ratio method gives MW = 80435 ± 43(stat) ± 26(sys) MeV.

  10. Our dear boson – and so what?

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    A long-sought particle finally found. On Wednesday 4 July, enthusiasm spread from CERN to the worldwide media. But a question legitimately arises: why is this particle attracting so much interest? In other words, how is it different from all the others? (And, by the way, what is a boson?).   CERN, 4 July 2012: a long-sought particle finally found. Strictly speaking, we cannot even call it the “Higgs” boson yet. Only after careful checking of its properties will physicists be able to say if the new boson corresponds to the particle that theorists predicted in 1964. However, the experimental data we have so far already tells us, unambiguously, that this new particle is different from all the other elementary particles we know. “Every particle is either a boson or a fermion,” explains John Ellis, former CERN theorist and currently professor at King's College in London. “All known particles spin like small tops, with the known bosons tha...

  11. Spectral flow of trimer states of two heavy impurities and one light condensed boson

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas

    2014-01-01

    The spectral flow of three-body (trimer) states consisting of two heavy (impurity) particles sitting in a condensate of light bosons is considered. Assuming that the condensate is weakly interaction and that an impurity and a boson have a zero-range two-body interaction, we use the Born-Oppenheim......The spectral flow of three-body (trimer) states consisting of two heavy (impurity) particles sitting in a condensate of light bosons is considered. Assuming that the condensate is weakly interaction and that an impurity and a boson have a zero-range two-body interaction, we use the Born......-Oppenheimer approximation to determine the effective three-body potential. We solve the resulting Schr\\"odinger equation numerically and determine the trimer binding energies as a function of the coherence length of the light bosonic condensate particles. The binding energy is found to be suppressed by the presence...... of the condensate when the energy scale corresponding to the coherence length becomes of order the trimer binding energy in the absence of the condensate. We find that the Efimov scaling property is reflected in the critical values of the condensate coherence length at which the trimers are pushed...

  12. High-energy scatterings of many electroweak gauge bosons

    International Nuclear Information System (INIS)

    Dunn, C.; Yan, T.M.

    1991-01-01

    We present an application of the equivalence theorem and the multispinor representation of gauge fields to the standard model of electroweak interactions at very high energies. The equivalence theorem allows us to efficiently treat the longitudinal vector bosons while the multispinor formalism makes the transverse vector bosons easy to handle. We generalize the work of Berends and Giele to derive a recursion relation for a current consisting of a pair of longitudinal vector bosons plus any number of transverse vector bosons. It is shown that for longitudinal vector bosons plus any number of transverse vector bosons. Consideration of a U(N), rather than an SU(N), gauge theory enables us to incorporate the mixing in the SU(2)xU(1) electroweak theory and to derive certain sum rules for the currents for transverse gauge bosons. We also give explicit expressions for four-particle and five-particle scattering amplitudes involving a pair of longitudinal vector bosons. (orig.)

  13. Infrared Behaviour of the Open Bosonic Thermal String

    OpenAIRE

    Haruo, FUJISAKI; Department of Physics, Rikkyo University

    1991-01-01

    The infrared behaviour of the open bosonic thermal string is elucidated through the dimensional regularization of the planar massless vector boson self-energy within the framework of the thermofield dynamics.

  14. Measurements of the Higgs boson properties with the ATLAS detector

    CERN Document Server

    Tomoto, M; The ATLAS collaboration

    2013-01-01

    Slide draft for the Crimea 2013 workshop. The subject of the talk will be measurements of the Higgs boson properties, including the spin, mass, signal strength, and couplings of a new boson discovered in 2012 at the ATLAS experiment.

  15. Lower Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model with overlap fermions

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2009-02-15

    We study the coupling parameter dependence of the Higgs boson mass in a chirally invariant lattice Higgs-Yukawa model emulating the same Yukawa coupling structure as in the Higgs-fermion sector of the Standard Model. Eventually, the aim is to establish non-perturbative upper and lower Higgs boson mass bounds derived from first principles, in particular not relying on vacuum stability considerations for the latter case. Here, we present our lattice results for the lower Higgs boson mass bound at several values of the cutoff {lambda} and compare them to corresponding analytical calculations based on the effective potential as obtained from lattice perturbation theory. Furthermore, we give a brief outlook towards the calculation of the upper Higgs boson mass bound. (orig.)

  16. Search for a heavy resonance decaying into a Z boson and a vector boson in the $\

    CERN Document Server

    Sirunyan, Albert M; CMS Collaboration; Adam, Wolfgang; Ambrogi, Federico; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Escalante Del Valle, Alberto; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Grossmann, Johannes; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krammer, Natascha; Krätschmer, Ilse; Liko, Dietrich; Madlener, Thomas; Mikulec, Ivan; Pree, Elias; Rad, Navid; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Spanring, Markus; Spitzbart, Daniel; Taurok, Anton; Waltenberger, Wolfgang; Wittmann, Johannes; Wulz, Claudia-Elisabeth; Zarucki, Mateusz; Chekhovsky, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; De Wolf, Eddi A; Di Croce, Davide; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; De Bruyn, Isabelle; De Clercq, Jarne; Deroover, Kevin; Flouris, Giannis; Lontkovskyi, Denys; Lowette, Steven; Marchesini, Ivan; Moortgat, Seth; Moreels, Lieselotte; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Beghin, Diego; Bilin, Bugra; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dorney, Brian; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Kalsi, Amandeep Kaur; Lenzi, Thomas; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Seva, Tomislav; Starling, Elizabeth; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Roskas, Christos; Salva Diblen, Sinem; Trocino, Daniele; Tytgat, Michael; Verbeke, Willem; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caputo, Claudio; Caudron, Adrien; David, Pieter; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Saggio, Alessia; Vidal Marono, Miguel; Wertz, Sébastien; Zobec, Joze; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correia Silva, Gilson; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Coelho, Eduardo; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Melo De Almeida, Miqueias; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Sanchez Rosas, Luis Junior; Santoro, Alberto; Sznajder, Andre; Thiel, Mauricio; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Misheva, Milena; Rodozov, Mircho; Shopova, Mariana; Sultanov, Georgi; Dimitrov, Anton; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Yuan, Li; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Jiang, Chun-Hua; Leggat, Duncan; Liao, Hongbo; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Yu, Taozhe; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Jing; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Fengwangdong; Wang, Yi; Avila, Carlos; Cabrera, Andrés; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Segura Delgado, Manuel Alejandro; Courbon, Benoit; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Starodumov, Andrei; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Khalil, Shaaban; Mahmoud, Mohammed; Mahrous, Ayman; Bhowmik, Sandeep; Dewanjee, Ram Krishna; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Kirschenmann, Henning; Pekkanen, Juska; Voutilainen, Mikko; Havukainen, Joona; Heikkilä, Jaana Kristiina; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Laurila, Santeri; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Siikonen, Hannu; Tuominen, Eija; Tuominiemi, Jorma; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Leloup, Clément; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Negro, Giulia; Rander, John; Rosowsky, André; Sahin, Mehmet Özgür; Titov, Maksym; Abdulsalam, Abdulla; Amendola, Chiara; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Charlot, Claude; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Lobanov, Artur; Martin Blanco, Javier; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Stahl Leiton, Andre Govinda; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Jansová, Markéta; Juillot, Pierre; Le Bihan, Anne-Catherine; Tonon, Nicolas; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Viret, Sébastien; Zhang, Sijing; Khvedelidze, Arsen; Lomidze, David; Autermann, Christian; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Teroerde, Marius; Wittmer, Bruno; Zhukov, Valery; Albert, Andreas; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Teyssier, Daniel; Thüer, Sebastian; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bermúdez Martínez, Armando; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Botta, Valeria; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Guthoff, Moritz; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Missiroli, Marino; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Raspereza, Alexei; Savitskyi, Mykola; Saxena, Pooja; Shevchenko, Rostyslav; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wen, Yiwen; Wichmann, Katarzyna; Wissing, Christoph; Zenaiev, Oleksandr; Aggleton, Robin; Bein, Samuel; Blobel, Volker; Centis Vignali, Matteo; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hinzmann, Andreas; Hoffmann, Malte; Karavdina, Anastasia; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Lapsien, Tobias; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baselga, Marta; Baur, Sebastian; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Faltermann, Nils; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Harrendorf, Marco Alexander; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Karathanasis, George; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Kousouris, Konstantinos; Evangelou, Ioannis; Foudas, Costas; Gianneios, Paraskevas; Katsoulis, Panagiotis; Kokkas, Panagiotis; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Triantis, Frixos A; Tsitsonis, Dimitrios; Csanad, Mate; Filipovic, Nicolas; Pasztor, Gabriella; Surányi, Olivér; Veres, Gabor Istvan; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Hunyadi, Ádám; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Dhingra, Nitish; Kaur, Anterpreet; Kaur, Manjit; Kaur, Sandeep; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Shah, Aashaq; Bhardwaj, Ashutosh; Chauhan, Sushil; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Bhardwaj, Rishika; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Bhawandeep, Bhawandeep; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhattacharya, Soham; Chatterjee, Suman; Das, Pallabi; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Errico, Filippo; Fiore, Luigi; Iaselli, Giuseppe; Lezki, Samet; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Borgonovi, Lisa; Braibant-Giacomelli, Sylvie; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Chatterjee, Kalyanmoy; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Ravera, Fabio; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Beschi, Andrea; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pauwels, Kristof; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Khan, Wajid Ali; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Lujan, Paul; Margoni, Martino; Meneguzzo, Anna Teresa; Pozzobon, Nicola; Ronchese, Paolo; Rossin, Roberto; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Cecchi, Claudia; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Manoni, Elisa; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Rossi, Alessandro; Santocchia, Attilio; Spiga, Daniele; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Borrello, Laura; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Giannini, Leonardo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Manca, Elisabetta; Mandorli, Giulio; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Daci, Nadir; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Moon, Chang-Seong; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Kim, Hyunchul; Moon, Dong Ho; Oh, Geonhee; Brochero Cifuentes, Javier Andres; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Kim, Jae Sung; Lee, Haneol; Lee, Kyeongpil; Nam, Kyungwook; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Reyes-Almanza, Rogelio; Ramirez-Sanchez, Gabriel; Duran-Osuna, Cecilia; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Rabadán-Trejo, Raúl Iraq; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Eysermans, Jan; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Bheesette, Srinidhi; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Galinhas, Bruno; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Strong, Giles; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Afanasiev, Serguei; Alexakhin, Vadim; Bunin, Pavel; Gavrilenko, Mikhail; Golunov, Alexander; Golutvin, Igor; Gorbounov, Nikolai; Gorbunov, Ilya; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Smirnov, Vitaly; Zarubin, Anatoli; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sosnov, Dmitry; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Stepennov, Anton; Stolin, Viatcheslav; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Bylinkin, Alexander; Chistov, Ruslan; Danilov, Mikhail; Parygin, Pavel; Philippov, Dmitry; Polikarpov, Sergey; Tarkovskii, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Perfilov, Maxim; Savrin, Viktor; Snigirev, Alexander; Blinov, Vladimir; Shtol, Dmitry; Skovpen, Yuri; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Godizov, Anton; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Mandrik, Petr; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Alcaraz Maestre, Juan; Bachiller, Irene; Barrio Luna, Mar; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Moran, Dermot; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Triossi, Andrea; Álvarez Fernández, Adrian; Albajar, Carmen; de Trocóniz, Jorge F; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chazin Quero, Barbara; Curras, Esteban; Duarte Campderros, Jordi; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Akgun, Bora; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Bianco, Michele; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chapon, Emilien; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Deelen, Nikkie; Dobson, Marc; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fallavollita, Francesco; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gilbert, Andrew; Gill, Karl; Glege, Frank; Gulhan, Doga; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Jafari, Abideh; Janot, Patrick; Karacheban, Olena; Kieseler, Jan; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Mulders, Martijn; Neugebauer, Hannes; Ngadiuba, Jennifer; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Rabady, Dinyar; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Stakia, Anna; Steggemann, Jan; Stoye, Markus; Tosi, Mia; Treille, Daniel; Tsirou, Andromachi; Veckalns, Viesturs; Verweij, Marta; Zeuner, Wolfram Dietrich; Bertl, Willi; Caminada, Lea; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Backhaus, Malte; Bäni, Lukas; Berger, Pirmin; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dorfer, Christian; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Klijnsma, Thomas; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Reichmann, Michael; Sanz Becerra, Diego Alejandro; Schönenberger, Myriam; Shchutska, Lesya; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Vesterbacka Olsson, Minna Leonora; Wallny, Rainer; Zhu, De Hua; Aarrestad, Thea Klaeboe; Amsler, Claude; Canelli, Maria Florencia; De Cosa, Annapaola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Kilminster, Benjamin; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Zucchetta, Alberto; Candelise, Vieri; Chang, Yu-Hsiang; Cheng, Kai-yu; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Paganis, Efstathios; Psallidas, Andreas; Steen, Arnaud; Tsai, Jui-fa; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Bakirci, Mustafa Numan; Bat, Ayse; Boran, Fatma; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Tok, Ufuk Guney; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Karapinar, Guler; Ocalan, Kadir; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Tekten, Sevgi; Yetkin, Elif Asli; Agaras, Merve Nazlim; Atay, Serhat; Cakir, Altan; Cankocak, Kerem; Komurcu, Yildiray; Grynyov, Boris; Levchuk, Leonid; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Davignon, Olivier; Flacher, Henning; Goldstein, Joel; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Newbold, Dave M; Paramesvaran, Sudarshan; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Linacre, Jacob; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Auzinger, Georg; Bainbridge, Robert; Bloch, Philippe; Borg, Johan; Breeze, Shane; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Elwood, Adam; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Matsushita, Takashi; Nash, Jordan; Nikitenko, Alexander; Palladino, Vito; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Shtipliyski, Antoni; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wardle, Nicholas; Winterbottom, Daniel; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Reid, Ivan; Teodorescu, Liliana; Zahid, Sema; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Smith, Caleb; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Hadley, Mary; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Lee, Jangbae; Mao, Zaixing; Narain, Meenakshi; Pazzini, Jacopo; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Yu, David; Band, Reyer; Brainerd, Christopher; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Stolp, Dustin; Tos, Kyle; Tripathi, Mani; Wang, Zhangqier; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Regnard, Simon; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Karapostoli, Georgia; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Si, Weinan; Wang, Long; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Gilbert, Dylan; Hashemi, Bobak; Holzner, André; Klein, Daniel; Kole, Gouranga; Krutelyov, Vyacheslav; Letts, James; Masciovecchio, Mario; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; Gouskos, Loukas; Heller, Ryan; Incandela, Joe; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bornheim, Adolf; Bunn, Julian; Lawhorn, Jay Mathew; Newman, Harvey B; Nguyen, Thong; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhang, Zhicai; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Mudholkar, Tanmay; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; Mulholland, Troy; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Quach, Dan; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Abdullin, Salavat; Albrow, Michael; Alyari, Maral; Apollinari, Giorgio; Apresyan, Artur; Apyan, Aram; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Canepa, Anadi; Cerati, Giuseppe Benedetto; Cheung, Harry; Chlebana, Frank; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Freeman, Jim; Gecse, Zoltan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Schneider, Basil; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Weimin; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Joshi, Bhargav Madhusudan; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Shi, Kun; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Joshi, Yagya Raj; Linn, Stephan; Markowitz, Pete; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Martinez, German; Perry, Thomas; Prosper, Harrison; Saha, Anirban; Santra, Arka; Sharma, Varun; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Sandoval Gonzalez, Irving Daniel; Tonjes, Marguerite; Trauger, Hallie; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Rogan, Christopher; Royon, Christophe; Sanders, Stephen; Schmitz, Erich; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Baron, Owen; Belloni, Alberto; Eno, Sarah Catherine; Feng, Yongbin; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bauer, Gerry; Bi, Ran; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Hu, Miao; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Hiltbrand, Joshua; Kalafut, Sean; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Turkewitz, Jared; Wadud, Mohammad Abrar; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Golf, Frank; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Freer, Chad; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Orimoto, Toyoko; Teixeira De Lima, Rafael; Wamorkar, Tanvi; Wang, Bingran; Wisecarver, Andrew; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Bucci, Rachael; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Li, Wenzhao; Loukas, Nikitas; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Siddireddy, Prasanna; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wightman, Andrew; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Higginbotham, Samuel; Kalogeropoulos, Alexis; Lange, David; Luo, Jingyu; Marlow, Daniel; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Malik, Sudhir; Norberg, Scarlet; Barker, Anthony; Barnes, Virgil E; Das, Souvik; Folgueras, Santiago; Gutay, Laszlo; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Peng, Cheng-Chieh; Qiu, Hao; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xiao, Rui; Xie, Wei; Cheng, Tongguang; Parashar, Neeti; Stupak, John; Chen, Zhenyu; Ecklund, Karl Matthew; Freed, Sarah; Geurts, Frank JM; Guilbaud, Maxime; Kilpatrick, Matthew; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Shi, Wei; Tu, Zhoudunming; Zabel, James; Zhang, Aobo; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Ciesielski, Robert; Goulianos, Konstantin; Mesropian, Christina; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Mengke, Tielige; Muthumuni, Samila; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Padeken, Klaas; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Joyce, Matthew; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Harr, Robert; Karchin, Paul Edmund; Poudyal, Nabin; Sturdy, Jared; Thapa, Prakash; Zaleski, Shawn; Brodski, Michael; Buchanan, James; Caillol, Cécile; Carlsmith, Duncan; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Rekovic, Vladimir; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2018-01-01

    A search is presented for a heavy resonance decaying into either a pair of Z bosons or a Z boson and a W boson (ZZ or WZ), with a Z boson decaying into a pair of neutrinos and the other boson decaying hadronically into two collimated quarks that are reconstructed as a highly energetic large-cone jet. The search is performed using the data collected with the CMS detector at the CERN LHC during 2016 in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to a total integrated luminosity of 35.9 fb$^{-1}$. No excess is observed in data with regard to background expectations. Results are interpreted in scenarios of physics beyond the standard model. Limits at 95% confidence level on production cross sections are set at 0.9 fb (63 fb) for spin-1 W' bosons, included in the heavy vector triplet model, with mass 4.0 TeV (1.0 TeV), and at 0.5 fb (40 fb) for spin-2 bulk gravitons with mass 4.0 TeV (1.0 TeV). Lower limits are set on the masses of W' bosons in the context of two versions of the he...

  17. Diboson Production, Vector Boson Fusion and Vector Boson Scattering measurements with the ATLAS detector

    CERN Document Server

    Geng, Cong; The ATLAS collaboration

    2017-01-01

    Measurements of the cross sections of the production of pairs of electroweak gauge bosons at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model-independent means to search for new physics at the TeV scale. The ATLAS collaboration has performed detailed measurements of integrated and differential cross sections of the production of heavy di-boson pairs, such as WW, WZ and ZZ, in the fully-leptonic and partially in the semi-leptonic final states at centre-of-mass energies of 8 and 13 TeV. Moreover, searches for the production of three W bosons or of a W boson and a photon together with a Z or W boson at a center of mass energy of 8 TeV will be presented. These studies are closely connected to the electroweak production of a heavy boson and a photon together with two jets. Evidence has been found for the exclusive production of W boson pairs, which will be presented in this talk. When selecting two jets at high invariant mass in addition to the production of th...

  18. A sensitivity study for Higgs boson production in Vector Boson Fusion in the H {yields} {tau}{tau} {yields} lh+3{nu} final state with ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Moeser, Nicolas

    2011-11-15

    For a hypothetical Higgs boson mass between 114.4 GeV and about 135 GeV the production by Vector Boson Fusion and the decay H {yields} {tau}{tau} {yields} lh + 3{nu} is one of the most promising discovery channels at the LHC. In this thesis, a study of the expected sensitivity of the ATLAS detector for this channel at a centre-of-mass energy of 14 TeV is presented. For the first time, this study includes a full treatment of additional proton-proton interactions, so-called pile-up. The presence of pile-up significantly affects the signal selection efficiency and leads to a deterioration of the reconstructed Higgs boson mass, which is used as a discriminating observable. Two methods have been developed to estimate the dominant background processes from data. By replacing the muons in Z {yields} {mu}{mu} events with simulated {tau} lepton decays, Z {yields} {tau}{tau} events can be modelled with high precision. The non-resonant background, t anti t production and W+jets, is estimated by selecting events where lepton and hadronic {tau} decay have the same electric charge. Assuming a dataset corresponding to an integrated luminosity of 30 fb{sup -1}, an expected signal significance between 3.0 {sigma} and 4.4{sigma} is obtained for a Higgs boson mass between 115 GeV and 135 GeV. The expected significance decreases to 1.6-2.0{sigma} in the presence of pile-up. (orig.)

  19. A sensitivity study for Higgs boson production in Vector Boson Fusion in the H → ττ → lh+3ν final state with ATLAS

    International Nuclear Information System (INIS)

    Moeser, Nicolas

    2011-11-01

    For a hypothetical Higgs boson mass between 114.4 GeV and about 135 GeV the production by Vector Boson Fusion and the decay H → ττ → lh + 3ν is one of the most promising discovery channels at the LHC. In this thesis, a study of the expected sensitivity of the ATLAS detector for this channel at a centre-of-mass energy of 14 TeV is presented. For the first time, this study includes a full treatment of additional proton-proton interactions, so-called pile-up. The presence of pile-up significantly affects the signal selection efficiency and leads to a deterioration of the reconstructed Higgs boson mass, which is used as a discriminating observable. Two methods have been developed to estimate the dominant background processes from data. By replacing the muons in Z → μμ events with simulated τ lepton decays, Z → ττ events can be modelled with high precision. The non-resonant background, t anti t production and W+jets, is estimated by selecting events where lepton and hadronic τ decay have the same electric charge. Assuming a dataset corresponding to an integrated luminosity of 30 fb -1 , an expected signal significance between 3.0 σ and 4.4σ is obtained for a Higgs boson mass between 115 GeV and 135 GeV. The expected significance decreases to 1.6-2.0σ in the presence of pile-up. (orig.)

  20. Energy spectrum and phase diagrams of two-sublattice hard-core boson model

    Directory of Open Access Journals (Sweden)

    I.V. Stasyuk

    2013-06-01

    Full Text Available The energy spectrum, spectral density and phase diagrams have been obtained for two-sublattice hard-core boson model in frames of random phase approximation approach. Reconstruction of boson spectrum at the change of temperature, chemical potential and energy difference between local positions in sublattices is studied. The phase diagrams illustrating the regions of existence of a normal phase which can be close to Mott-insulator (MI or charge-density (CDW phase diagrams as well as the phase with the Bose-Einstein condensate (SF phase are built.

  1. Correlations in charged bosons systems

    International Nuclear Information System (INIS)

    Almeida Caparica, A. de.

    1985-02-01

    The two and three-dimensional charge Bose gas have been studied. In the bidimensional case two different types of interaction were considered: l/r and l n(r). The method of self-consistent-field was applied to these systems, which takes into account the short range correlations between the bosons through a local-field correction. By using self-consistent numerical calculations, the structure factor S(k → ) was determined. The pair-correlation function, the ground-state energy, the pressure of the gas and the spectrum of elementary excitations were obtained from S (k → ). The screening density induced by a fixed charged impurity was calculated. In the high-density limit our calculations reproduce the results given by Bogoliubov's perturbation theory. In the intermediate-density region, corresponding to the strongly coupled systems, the results are in very good agreement with calculations based on HNC approximation as well as Monte Carlo method. The results are compared in several situations with RPA results showing that the self-consistent method is much more accurate. The two-dimensional systems showed to be more correlated than the three-dimensional systems showed to be more correlated than the three-dimensional one; the gas with interaction l/r is also more correlated than the logarithmic one at high densities, but it begins to be less correlated than this one in the low-density region. The thermodynamic functions of the two and three-dimensional systems at finite temperatures near absolute zero are calculated based upon the gas excitation spectra at zero temperature. (author)

  2. W Boson Polarisation at LEP2

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Couchman, J.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    Elements of the spin density matrix for W bosons in e+e- -> W+W- -> qqln events are measured from data recorded by the OPAL detector at LEP. This information is used calculate polarised differential cross-sections and to search for CP-violating effects. Results are presented for W bosons produced in e+e- collisions with centre-of-mass energies between 183 GeV and 209 GeV. The average fraction of W bosons that are longitudinally polarised is found to be (23.9 +- 2.1 +- 1.1)% compared to a Standard Model prediction of (23.9 +- 0.1)%. All results are consistent with CP conservation.

  3. Grand unified models including extra Z bosons

    International Nuclear Information System (INIS)

    Li Tiezhong

    1989-01-01

    The grand unified theories (GUT) of the simple Lie groups including extra Z bosons are discussed. Under authors's hypothesis there are only SU 5+m SO 6+4n and E 6 groups. The general discussion of SU 5+m is given, then the SU 6 and SU 7 are considered. In SU 6 the 15+6 * +6 * fermion representations are used, which are not same as others in fermion content, Yukawa coupling and broken scales. A conception of clans of particles, which are not families, is suggested. These clans consist of extra Z bosons and the corresponding fermions of the scale. The all of fermions in the clans are down quarks except for the standard model which consists of Z bosons and 15 fermions, therefore, the spectrum of the hadrons which are composed of these down quarks are different from hadrons at present

  4. Invisible Decays of Supersymmetric Higgs Bosons

    International Nuclear Information System (INIS)

    Aparicio Mendez, M. del R; Guevara, J. E. Barradas; Beltran, O. Felix

    2009-01-01

    We study the detection of the complete spectrum of Higgs bosons of the minimal supersymmetric standard model, through their decays into chargino (χ-tilde i ± ) and neutralinos (χ-tilde i o ), for several parametric scenarios. In the minimal supersymmetric model there are two charginos and four neutralinos, and the Higgs boson spectrum contains three neutral scalars, two CP-even (h 0 and H 0 with m H 0 >m h 0 ) and one CP-odd (A 0 , with m A 0 as a free parameter); as well as a charged pair (H ± ). An interesting signal comes from the decays of the Higgs bosons into invisible SUSY modes (h 0 , H 0 ,A 0 →χ-tilde 1 o χ-tilde 1 o ), which could be detected at present and future high energy machines.

  5. Elementary Goldstone Higgs Boson and Dark Matter

    DEFF Research Database (Denmark)

    Alanne, Tommi; Gertov, Helene; Sannino, Francesco

    2015-01-01

    We investigate a perturbative extension of the Standard Model featuring elementary pseudo-Goldstone Higgs and dark matter particles. These are two of the five Goldstone bosons parametrising the SU(4)/Sp(4) coset space. They acquire masses, and therefore become pseudo-Goldstone bosons, due...... of the theory, the quantum corrections are precisely calculable. The remaining pseudo-Goldstone boson is identified with the dark matter candidate because it is neutral with respect to the Standard Model and stable. By a direct comparison with the Large Hadron Collider experiments, the model is found...... to be phenomenologically viable. Furthermore the dark matter particle leads to the observed thermal relic density while respecting the most stringent current experimental constraints....

  6. Extracting Higgs boson couplings from LHC data

    CERN Document Server

    Dührssen, M; Logan, H; Rainwater, D L; Weiglein, Georg; Zeppenfeld, Dieter

    2004-01-01

    We show how LHC Higgs boson production and decay data can be used to extract gauge and fermion couplings of Higgs bosons. We show that very mild theoretical assumptions, which are valid in general multi-Higgs doublet models, are sufficient to allow the extraction of absolute values for the couplings rather than just ratios of the couplings. For Higgs masses below 200 GeV we find accuracies of 10-40% for the Higgs boson couplings and total width after several years of LHC running. Slightly stronger assumptions on the Higgs gauge couplings even lead to a determination of couplings to fermions at the level of 10-20%. We also study the sensitivity to deviations from SM predictions in several supersymmetric benchmark scenarios as a subset of the analysis.

  7. Search for heavy resonances in vector boson fusion

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00423270; The ATLAS collaboration

    2016-01-01

    If the Higgs boson discovered at the Large Hadron Collider (LHC) is not exactly the one in the Standard Model, an alternative mechanism is needed to restore unitarity in the scattering amplitude of longitudinal gauge bosons, and new resonances may appear. This paper presents a search for new heavy neutral resonances ($R$) produced through vector boson fusion process $qq \\rightarrow Rqq \\rightarrow \\ell^+ \

  8. Recent ATLAS Higgs measurements using di-boson decays

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The seminar presents recent measurements of Higgs boson production properties using decays to pairs of W bosons, Z bosons or photons. The results are based on 36 fb-1 of pp collision data taken in 2015 and 2016 at 13 TeV by the ATLAS experiment.

  9. Search for invisibly decaying Higgs boson at Large Hadron Collider

    Indian Academy of Sciences (India)

    In several scenarios of Beyond Standard Model physics, the invisible decay mode of the Higgs boson is an interesting possibility. The search strategy for an invisible Higgs boson at the Large Hadron Collider (LHC), using weak boson fusion process, has been studied in detail, by taking into account all possible ...

  10. Searches for Invisibly Decaying Higgs Boson with ATLAS

    CERN Document Server

    Shaw, K; The ATLAS collaboration

    2014-01-01

    A theoretically well motivated and interesting decay channel of the Higgs boson involves stable weakly interacting or neutral particles that do not interact with the detector. Searches have been performed in proton-proton collisions at the LHC using the ATLAS Detector for an invisibly decaying Higgs Boson produced in association with a Z Boson.

  11. The Higgs boson and Top quark masses as tests of Electroweak Vacuum Stability

    Energy Technology Data Exchange (ETDEWEB)

    Masina, Isabella

    2013-04-15

    The measurements of the Higgs boson and top quark masses can be used to extrapolate the Standard Model Higgs potential at energies up to the Planck scale. Adopting a Next-to-Next-to-Leading Order renormalization procedure, we argue that electroweak vacuum stability is at present allowed, discuss the associated theoretical and experimental errors and the prospects for its future tests.

  12. Effective three-body interactions for bosons in a double-well confinement

    DEFF Research Database (Denmark)

    Dobrzyniecki, Jacek; Li, Xikun; Nielsen, Anne E. B.

    2018-01-01

    When describing the low-energy physics of bosons in a double-well potential with a high barrier between the wells and sufficiently weak atom-atom interactions, one can, to a good approximation, ignore the high-energy states and thereby obtain an effective two-mode model. Here we show that the reg...

  13. Inflation and pseudo-Goldstone Higgs boson

    DEFF Research Database (Denmark)

    Alanne, Tommi; Sannino, Francesco; Tenkanen, Tommi

    2017-01-01

    We consider inflation within a model framework where the Higgs boson arises as a pseudo-Goldstone boson associated with the breaking of a global symmetry at a scale significantly larger than the electroweak one. We show that in such a model the scalar self-couplings can be parametrically suppressed...... and, consequently, the nonminimal couplings to gravity can be of order one or less, while the inflationary predictions of the model remain compatible with the precision cosmological observations. Furthermore, in the model we study, the existence of the electroweak scale is entirely due to the inflaton...

  14. Quantum Szilard Engine with Attractively Interacting Bosons

    Science.gov (United States)

    Bengtsson, J.; Tengstrand, M. Nilsson; Wacker, A.; Samuelsson, P.; Ueda, M.; Linke, H.; Reimann, S. M.

    2018-03-01

    We show that a quantum Szilard engine containing many bosons with attractive interactions enhances the conversion between information and work. Using an ab initio approach to the full quantum-mechanical many-body problem, we find that the average work output increases significantly for a larger number of bosons. The highest overshoot occurs at a finite temperature, demonstrating how thermal and quantum effects conspire to enhance the conversion between information and work. The predicted effects occur over a broad range of interaction strengths and temperatures.

  15. Supersymmetric Higgs boson production in Z decays

    International Nuclear Information System (INIS)

    Gamberini, G.; Giudice, G.F.; Ridolfi, G.

    1987-01-01

    The problem of distinguishing between the standard model and the supersymmetric Higgs bosons is considered in the context of Z 0 decays. We find that, for some choices of the parameters, the branching ratio for Z 0 → H 0 γ is strongly enhanced by the exchange of supersymmetric fermions as virtual particles. This makes the study of this process at LEP very interesting, since other Z 0 branching modes into Higgs bosons, such as Z 0 → H 0 μ + μ - , are not so clearly modified by supersymmetry. (orig.)

  16. Search for charged Higg bosons at LEP

    OpenAIRE

    Achard, P.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M. G.; Anderhub, H.; Andreev, V. P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.

    2003-01-01

    A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at centre-of-mass energies between 189 and 209 GeV, corresponding to an integrated luminosity of 629.4 pb(-1). Decays into a charm and a strange quark or into a tau lepton and its neutrino are considered. No significant excess is observed and lower limits on the mass of the charged Higgs boson are derived at the 95% confidence level. They vary from 76.5 to 82.7 GeV, as a function of t...

  17. Search for Charged Higgs Bosons at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2003-01-01

    A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at centre-of-mass energies between 189 and 209GeV, corresponding to an integrated luminosity of 629.4/pb. Decays into a charm and a strange quark or into a tau lepton and its neutrino are considered. No significant excess is observed and lower limits on the mass of the charged Higgs boson are derived at the 95% confidence level. They vary from 76.5 to 82.7GeV, as a function of the H->tv branching ratio.

  18. Z Boson Pair-Production at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2003-01-01

    Events stemming from the pair-production of Z bosons in e^+e^- collisions are studied using 217.4 pb^-1 of data collected with the L3 detector at centre-of-mass energies from 200 GeV up to 209 GeV. The special case of events with b quarks is also investigated. Combining these events with those collected at lower centre-of-mass energies, the Standard Model predictions for the production mechanism are verified. In addition, limits are set on anomalous couplings of neutral gauge bosons and on effects of extra space dimensions.

  19. The Higgs boson in the Standard Model theoretical constraints and a direct search in the wh channel at the Tevatron

    International Nuclear Information System (INIS)

    Huske, Nils Kristian

    2010-01-01

    running and successfully collecting first data, it is worth looking at projections of Higgs boson sensitivity at the current center of mass energy of 7 TeV of the LHC accelerator. Fig. 113 shows a projection of a possible SM Higgs boson exclusion using 1 fb -1 of LHC data collected by the ATLAS experiment. An exclusion is expected between 135 and 188 GeV at 95% C.L., combining the three decay channels H → WW, H → ZZ and H → γγ. A combination between LHC experiments would possibly yield an even broader range of excluded Higgs boson mass points. Therefore, whether at the Tevatron or the LHC, exciting times in the exclusion or possible discovery of the SM Higgs boson lie ahead.

  20. Search for the Higgs Boson Using High-pT Isolated Like-Sign Dil Events in 1.96-TeV Proton-Antiproton Collisions

    International Nuclear Information System (INIS)

    Kobayashi, Hirokazu; Tsukuba U.

    2005-01-01

    Our physics objective is to search for the neutral on using events containing a like-sign dilepton pair in the following reaction: q(bar q)' → W ± H → W ± W*W* → (ell) ± (ell) ± + X. The relevant Higgs boson mass region is above 160 GeV/c 2 for the Standard Model Higgs boson where the branching fraction of H → W*W* supersedes that of H → b(bar b). The search for this signature in the region at low mass (less than 135 GeV/c 2 ) is, however, still important because we need to investigate various Higgs boson couplings as an essential test to convince that signals are attributed to the Higgs boson production. This channel also covers the case beyond the Standard Model that the Higgs boson couples only to the gauge bosons, which is referred to as the bosophilic or fermiophobic Higgs boson. The corresponding mass region suitable to our signature is above 110 GeV/c 2 where the branching fraction of H → γγ is overtaken by this channel. On the experimental side, the like-sign dilepton event is one of the cleanest signature in hadron collisions. This analysis exploiting such a distinctive signature is therefore expected to have a high potential of the sensitivity for the search of the Higgs boson

  1. Observation and Measurement of the Higgs-like Boson at 125 GEV in the Two-Photon Decay Channel with the CMS Experiment

    CERN Document Server

    Quan, Xiaohang

    We present results for the search for the Standard Model Higgs boson in the twophoton channel using the full 2011+2012 dataset recorded by the CMS experiment at the LHC. The MVA analysis, most sensitive for discovery, observes an excess of events at 125 GeV with a local significance of 3.2σ. The mass of the observed boson is measured to be 125.4±0.5(stat.)±0.6(syst.) GeV. For a Higgs boson mass hypothesis of 125 GeV, the best fit signal strength is $0.78^{+0.28}_{−0.26}$ times the SM Higgs boson cross-section. An upper limit on its natural width is found to be $6.9 GeV/c^2$ at 95% confidence level. We also present results from searches for an additional Higgs boson decaying into two photons, treating the observed resonance as a background process. Cases in which the additional state is SM-like, fermiophobic or gauge-phobic have been considered. In addition, we present a search targeted at discriminating between a single Higgs boson at 125 GeV and two very close-by ones.

  2. Search for the Higgs boson decaying into $\\tau$ lepton pairs with the Matrix Element Method and $\\tau$ trigger optimization in the CMS experiment at the LHC

    CERN Document Server

    AUTHOR|(CDS)2083962; Beaudette, Florian; Beaudette, Florian

    2016-01-01

    I performed my thesis work in Particle Physics at the laboratoire Leprince-Ringuet of the Ecole Polytechnique. I have been involved in the analysis of the data produced in the proton-proton collisions at the Large Hadron Collider (CERN) and collected by the CMS experiment. Particle physics is a scientific field which is currently undergoing very important breakthroughs. The discovery of the Higgs boson is a major step forward as the mass of vector bosons are explained through their interactions with the corresponding field. I worked on the newly discovered heavy boson analysis. As its direct coupling to fermions remained to be exhibited, I focused on the search for the Higgs boson decaying in tau lepton pairs. The Higgs decay into tau pairs is the most promising decay channel to measure the couplings between the Standard Model Higgs boson and the fermions. Indeed, this decay channel benefits from a large expected event rate compared to the other leptonic decay modes. The Higgs boson decaying to tau lepton ana...

  3. Search for Heavy Top Quark Partners with Charge 5/3 and Anomalous Higgs $(→b\\overline{b})$ Couplings to Vector Bosons

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00425797

    In this thesis, we present two searches for new physics performed using the data collected by the CMS experiment at the LHC at two different center of mass energies. In the first part, we present a search for anomalous Higgs couplings. In 2012, the ATLAS and CMS experiments at the LHC discovered a new boson. This discovery completed a long search for the final missing piece of the standard model (SM). The measurements so far confirm that the new boson is consistent with the Higgs boson predicted by the SM. However, there are decay channels that are yet to be confirmed experimentally; e.g., the decay to a pair of bottom quarks. In addition, precision measurements of the Higgs couplings to all SM particles need to be performed in order to make sure there is no deviation from the predictions of the SM. We present the first search at the LHC for anomalous couplings of the Higgs boson H to vector bosons V (= W or Z) using associated Higgs production with the Higgs boson decaying to a pair of bottom quarks. We use...

  4. Search for the Standard Model Higgs boson at D0 in the $\\mu~+~\\tau({\\rm hadrons})~+~{\\rm 2\\ jets}$ final state

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Wanyu [State Univ. of New York (SUNY), Stony Brook, NY (United States)

    2012-12-01

    The Standard Model has been a successful theory in various aspects. It predicted and led to discovery of many new particles, including the Higgs boson recently found, the last missing piece of the Standard Model. The Higgs mechanism allows the vector bosons and fermions to be massive via the electroweak symmetry breaking. This dissertation presents the search of the Standard Model Higgs through the decay products: one muon, one hadronically decaying tau, and two or more jets using the full 9.7 fb$^{-1}$ of Tevatron collider Run II data set collected in the Dzero detector at Fermilab. The main production channels are gluon-gluon fusion, vector boson fusion, and Higgs production associated with a $W/Z$ boson. No evidence of the Standard Model Higgs boson is observed in these channels with hypothesized Higgs mass between 105 GeV and 150 GeV, but the data do not exclude it either. We set the upper limits on the ratio of the 95% CL exclusion to the SM Higgs cross section. Combining with other analyses in Tevatron, the Higgs mass is ruled out at 95 % confidence level between 147 and 180 GeV, and a 2.9 $\\sigma$ excess of events indicates a Higgs boson possibly lies in the mass range from 115 to 140 GeV.

  5. Inside CERN's Large Hadron Collider from the proton to the Higgs boson

    CERN Document Server

    AUTHOR|(CDS)2051256

    2016-01-01

    The book aims to explain the historical development of particle physics, with special emphasis on CERN and collider physics. It describes in detail the LHC accelerator and its detectors, describing the science involved as well as the sociology of big collaborations, culminating with the discovery of the Higgs boson. Readers are led step-by-step to understanding why we do particle physics, as well as the tools and problems involved in the field. It provides an insider's view on the experiments at the Large Hadron Collider.

  6. Bosonic-seesaw portal dark matter

    Science.gov (United States)

    Ishida, Hiroyuki; Matsuzaki, Shinya; Yamaguchi, Yuya

    2017-10-01

    We discuss a new type of Higgs-portal dark matter (DM) production mechanism, called the bosonic-seesaw portal (BSP) scenario. The BS provides the dynamical origin of the electroweak symmetry breaking, triggered by mixing between the elementary Higgs and a composite Higgs generated by a new-color strong dynamics, hypercolor (HC). At the HC strong coupling scale, the classical-scale invariance assumed in the model is dynamically broken, as well as the "chiral" symmetry present in the HC sector. In addition to the composite Higgs, HC baryons emerge to potentially be stable because of the unbroken HC baryon number symmetry. Hence the lightest HC baryon can be a DM candidate. Of interest in the present scenario is that HC pions can be as heavy as the HC baryon due to the possibly enhanced explicit "chiral"-breaking effect triggered after the BS mechanism, so the HC baryon pair cannot annihilate into HC pions. As in the standard setup of the freeze-in scenario, it is assumed that the DM was never in the thermal equilibrium, which ends up with no thermal abundance. It is then the non-thermal BSP process that crucially comes into the game below the HC scale: the HC baryon significantly couples to the standard-model Higgs via the BS mechanism, and can non-thermally be produced from the thermal plasma below the HC scale, which turns out to allow the TeV mass scale for the composite baryonic DM, much smaller than the generic bound placed in the conventional thermal freeze-out scenario, to account for the observed relic abundance. Thus the DM can closely be related to the mechanism of the electroweak symmetry breaking.

  7. The CMS electromagnetic calorimeter and the search for the Higgs boson in the decay channel H → WW* → 2e2ν

    International Nuclear Information System (INIS)

    Rovelli, I.Ch.

    2006-01-01

    CMS is one of the four experiments that will take data at the LHC. Large part of my work was devoted to the development of electron reconstruction tools aimed at improving the Higgs boson discovery potential in the H → WW * → 2e2ν channel. A major role in the electron reconstruction is played by the electromagnetic calorimeter ECAL, an homogeneous calorimeter made of scintillating PbWO 4 crystals. The first 3 chapters give an overview of LHC and CMS.In chapter 4 the analysis of the data collected during the 2003 electromagnetic calorimeter test beam is presented. First the problem of the intercalibration at the test beam is addressed. This is a major task, since the precision of the intercalibration directly affects the constant term of the energy resolution, for which the CMS goal is to reach a precision better than 0.5%. The good initial intercalibration, anyway, could be spoiled during the data taking by the effects of the radiation on the crystals, which can change the relative responses of the channels. A monitoring laser system is foreseen at CMS. The possibility to check the calibration stability and to correct the changes in the response with a precision within the required limits is demonstrated. Chapter five describes the electron reconstruction and identification in CMS. A crucial problem for the electron reconstruction is represented by the Bremsstrahlung emission in the tracker. A tracking procedure dealing with the Bremsstrahlung energy loss is discussed. Together with an improvement in the reconstruction efficiency, the procedure allows to identify electrons with a small fraction of radiated energy, which can be usefully exploited for the ECAL calibration. The developed algorithms are applied in chapter 6, which presents the study of the CMS discovery potential of the Higgs boson in the H → WW * → 2e2ν channel. This is the discovery channel in the range of masses between 2m W and 2m Z . Here the possibility to extend the study also to the

  8. Microscopy of bosonic models using Schwinger and Holstein - Primakoff bosonization techniques

    International Nuclear Information System (INIS)

    Pinto, M.E.B.

    1988-01-01

    Two kinds of bosonic expansions for the SU(2) case, one being finite (Schwinger) and the other being infinite (Holstein-Primakoff) are analysed. The existence of a transformation connecting them was discussed. Utilizing the two methods, the Two Level Model hamiltonian into the many boson space is mapped. Considering systems composed by 4, 6 and 14 particles, calculations for the eigenenergies within the ''vibrational limit'' of the model were performed. The results show that the Schwinger mapping is exact. Approximated bosonic images with the Holstein-Primakoff mapping are obtained. Indeed, the anharmonicities observed in the region between the ideal '' spherical limit'' and the ''transitional point'', were well described by the approximation containing up to quartic terms on the bosonic operators. (author) [pt

  9. Interacting vector boson model and other versions of IBM

    International Nuclear Information System (INIS)

    Asherova, R.M.; Fursa, D.V.; Georgieva, A.; Smirnov, Yu.F.

    1991-01-01

    The Dyson mapping of interacting vector boson model (IVBM) on the standard IBM with dynamical symmetry U(21) is obtained. This version of IBM contains the S(T=1), D(T=1) and P(T=0) bosons, where T is isospin of bosons. From group theory view point it corresponds to the realization of the Sp(12,R) generators in terms of generators of HW(21)xU(6) group. The problem of elimination of spurious states and Hermitization of this boson representation is discussed. The image of the IVBM Hamiltonian in the space of above mentioned S, D, P-bosons is found. 22 refs

  10. SUSY and BSM Higgs boson searches with ATLAS and CMS

    CERN Document Server

    Dasu, S

    2012-01-01

    Results of searches for super-symmetric and other beyond the Standard Model Higgs boson searches from ATLAS and CMS experiments at the LHC arc presented. Some Standard Model (SM) higgs searches are reinterpreted in SM with four quark generations and fermio­ phobic models. Stringent limits) covering a large portion of the allowed parameter space in (MA, tan/3) plane are set for MSSM neutral higgs bosons decaying to T-lepton pairs, and charged higgs boson decaying to TV. Limits are set on a light NMSSM neutral higgs boson and on doubly charged higgs bosons predicted in some models are also set.

  11. New CMS measurements of Higgs boson production and decay properties

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Combined measurements of the Higgs boson production and decay rates, as well its couplings to vector bosons and fermions, are presented. The analyses are based on the LHC proton-proton collision dataset recorded by the CMS detector at 13 TeV. The combination is based on the analysis of all the production processes gluon fusion, vector boson fusion and production with a W or a Z boson or a pair of top quarks, and of the H→ZZ, WW, γγ, ττ, bb, and μμ decay modes. Dedicated searches for invisible Higgs boson decays are also considered.

  12. Jet energy measurements at ILC. Calorimeter DAQ requirements and application in Higgs boson mass measurements

    International Nuclear Information System (INIS)

    Ebrahimi, Aliakbar

    2017-11-01

    The idea of spontaneous symmetry breaking as the mechanism through which elementary particles gain mass has been confirmed by the discovery of the Higgs boson at the CERN Large Hadron Collider. Studying the Higgs boson properties are of great importance to verify the Standard Model predictions. Any deviation from these predictions could uncover physics beyond the Standard Model. The mass of the Higgs boson is one of the important parameters of the Standard Model. The precise determination of the Higgs boson mass is of interest in its own right and also for other Higgs physics studies since it enters as parametric uncertainty into the extraction of the partial width from branching ratio measurements. The International Linear Collider (ILC) is a future polarised e + e - collider designed for precision physics studies. The Higgs boson decay to a pair of bottom quarks H→b anti b has the largest branching ratio of all Higgs decays, providing a large dataset for physics analyses. The possibility of measuring the Higgs boson mass in the e + e - →ZH→q anti qb anti b channel is investigated in this thesis for centre-of-mass energies of 350 GeV and 500 GeV. Since the Higgs boson mass is reconstructed from two b jets, the jet energy resolution hasa high impact on the measurement. A new method to estimate the jet energy resolution for each jet individually is developed in this thesis. The jet-specific energy resolution is then used in the analysis for the Higgs boson mass measurements. Various strategies for the Higgs boson mass measurement are investigated. For an integrated luminosity of 1000 fb -1 and a beam polarisation of (-0.8,+0.3), statistical uncertainties of 42 MeV and 89 MeV are achieved for the centre-of-mass energies of 350 GeV and 500 GeV, respectively. Various sources of systematic uncertainties are also discussed. These results are obtained using a full GEANT4-based simulation of the International Large Detector (ILD) concept. The jet energy resolution

  13. Search for the standard model Higgs boson in the dimuon decay channel with the ATLAS detector

    International Nuclear Information System (INIS)

    Rudolph, Joerg Christian

    2014-01-01

    addressed in a unique way as signal acceptance uncertainties. In addition, a new approach to assess the systematic uncertainty associated with the choice of the background model is designed for the combined analysis. For the first time, the spurious signal technique is performed on generator-level simulated background samples, which allows for a precise determination of the background fit bias. No statistically significant excess in the dimuon invariant mass spectrum is observed in either analysis, and upper limits are set on the signal strength μ=σ/σ SM as a function of the Higgs boson mass. Signal strengths of μ≥10.13 and μ≥7.05 are excluded for a Higgs boson mass of 125.5 GeV with a confidence level of 95% by the standalone and combined analysis, respectively. In the light of the discovery of a particle consistent with the predictions for a Standard Model Higgs boson with a mass of m H =125.5 GeV, the search results are reinterpreted for this special case, setting upper limits on the Higgs boson branching ratio of BR(H→μμ)≤1.3 x 10 -3 , and on the muon Yukawa coupling of λ μ ≤1.6 x 10 -3 , both with a confidence level of 95 %.

  14. Jet energy measurements at ILC. Calorimeter DAQ requirements and application in Higgs boson mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Aliakbar

    2017-11-15

    The idea of spontaneous symmetry breaking as the mechanism through which elementary particles gain mass has been confirmed by the discovery of the Higgs boson at the CERN Large Hadron Collider. Studying the Higgs boson properties are of great importance to verify the Standard Model predictions. Any deviation from these predictions could uncover physics beyond the Standard Model. The mass of the Higgs boson is one of the important parameters of the Standard Model. The precise determination of the Higgs boson mass is of interest in its own right and also for other Higgs physics studies since it enters as parametric uncertainty into the extraction of the partial width from branching ratio measurements. The International Linear Collider (ILC) is a future polarised e{sup +}e{sup -} collider designed for precision physics studies. The Higgs boson decay to a pair of bottom quarks H→b anti b has the largest branching ratio of all Higgs decays, providing a large dataset for physics analyses. The possibility of measuring the Higgs boson mass in the e{sup +}e{sup -}→ZH→q anti qb anti b channel is investigated in this thesis for centre-of-mass energies of 350 GeV and 500 GeV. Since the Higgs boson mass is reconstructed from two b jets, the jet energy resolution hasa high impact on the measurement. A new method to estimate the jet energy resolution for each jet individually is developed in this thesis. The jet-specific energy resolution is then used in the analysis for the Higgs boson mass measurements. Various strategies for the Higgs boson mass measurement are investigated. For an integrated luminosity of 1000 fb{sup -1} and a beam polarisation of (-0.8,+0.3), statistical uncertainties of 42 MeV and 89 MeV are achieved for the centre-of-mass energies of 350 GeV and 500 GeV, respectively. Various sources of systematic uncertainties are also discussed. These results are obtained using a full GEANT4-based simulation of the International Large Detector (ILD) concept. The

  15. Computational methods in drug discovery

    Directory of Open Access Journals (Sweden)

    Sumudu P. Leelananda

    2016-12-01

    Full Text Available The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein–ligand docking, pharmacophore modeling and QSAR techniques are reviewed.

  16. Tunneling dynamics in open ultracold bosonic systems. Numerically exact dynamics - Analytical models - Control schemes

    Energy Technology Data Exchange (ETDEWEB)

    Lode, Axel U.J.

    2013-06-03

    This thesis explores the quantum many-body tunneling dynamics of open ultracold bosonic systems with the recently developed multiconfigurational time-dependent Hartree for bosons (MCTDHB) method. The capabilities of MCTDHB to provide solutions to the full time-dependent many-body problem are assessed in a benchmark using the analytically solvable harmonic interaction Hamiltonian and a generalization of it with time-dependent both one- and two-body potentials. In a comparison with numerically exact MCTDHB results, it is shown that e.g. lattice methods fail qualitatively to describe the tunneling dynamics. A model assembling the many-body physics of the process from basic simultaneously happening single-particle processes is derived and verified with a numerically exact MCTDHB description. The generality of the model is demonstrated even for strong interactions and large particle numbers. The ejection of the bosons from the source occurs with characteristic velocities. These velocities are defined by the chemical potentials of systems with different particle numbers which are converted to kinetic energy. The tunneling process is accompanied by fragmentation: the ejected bosons lose their coherence with the source and among each other. It is shown that the various aspects of the tunneling dynamics' can be controlled well with the interaction and the potential threshold.

  17. Search for the Higgs boson in the ZH to ℓ+-b$\\bar{b}$ channel at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Efron, Jonathan Zvi [The Ohio State Univ., Columbus, OH (United States)

    2007-01-01

    The Standard Model of particle physics is in excellent agreement with the observed phenomena of particle physics. Within the Standard Model, the weak and electromagnetic forces are successfully combined. However, this combination is only valid if the masses of the force carriers of the weak force, the Z and W bosons, are massless. In fact, these two particles are the second and third most massive observed elementary particles. Within the minimal Standard Model, the Higgs mechanism is introduced to reconcile this contradiction. Conclusive proof of this theory would come with the discovery of the Higgs boson.

  18. Higher order corrections to Higgs boson decays in the MSSM with complex parameters

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Karina E. [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Rzehak, Heidi [Freiburg Univ. (Germany). Physikalisches Inst.; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-03-15

    We discuss Higgs boson decays in the CP-violating MSSM, and examine their phe- nomenological impact using cross section limits from the LEP Higgs searches. This includes a discussion of the full 1-loop results for the partial decay widths of neutral Higgs bosons into lighter neutral Higgs bosons (h{sub a}{yields}h{sub b}h{sub c}) and of neutral Higgs bosons into fermions (h{sub a}{yields}f anti f). In calculating the genuine vertex corrections, we take into account the full spectrum of supersymmetric particles and all complex phases of the supersymmetric parameters. These genuine vertex corrections are supplemented with Higgs propagator corrections incorporating the full one-loop and the dominant two-loop contributions, and we illustrate a method of consistently treating diagrams involving mixing with Goldstone and Z bosons. In particular, the genuine vertex corrections to the process h{sub a}{yields}h{sub b}h{sub c} are found to be very large and, where this process is kinematically allowed, can have a significant effect on the regions of the CPX bench- mark scenario which can be excluded by the results of the Higgs searches at LEP. However, there remains an unexcluded region of CPX parameter space at a lightest neutral Higgs boson mass of {proportional_to}45 GeV. In the analysis, we pay particular attention to the conversion between parameters defined in different renormalisation schemes and are therefore able to make a comparison to the results found using renormalisation group improved/effective potential calculations. (orig.)

  19. Bosons & More: Celebrating CERN / Part 2

    CERN Multimedia

    Team, CERN

    2013-01-01

    The "Bosons & More" event for CERN people this evening celebrated the success of the Open Days, and the exceptional achievements of the Large Hadron Collider (LHC). The British progressive rock band the Alan Parsons Live Project lead the celebrations until late in the night.

  20. Chiral bosons with Green-Schwarz supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barcelos-Neto, J. (Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Fisica); Srivastava, P.P. (Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro (Brazil))

    1991-05-02

    The supersymmetric extension of the formulation of Floreanini and Jackiw for the chiral boson is constructed adapting the Green-Schwarz procedure as applied to the strong theory. Dirac brackets which implement the two-second class constraints are also constructed. (orig.).

  1. Vector boson production in hadron nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Walker, W.D. (Duke Univ., Durham, NC (USA)); Whitmore, J. (Pennsylvania State Univ., University Park, PA (USA). Lab. for Elementary Particle Science); Toothacker, W.S. (Pennsylvania State Univ., Mont Alto (USA)); Hill, J.C.; Neale, W.W. (Cambridge Univ. (UK)); Lucas, P.; Voyvodic, L. (Fermi National Accelerator Lab., Batavia, IL (USA)); Ammar, R.; Gress, J. (Kansas Univ., Lawrence (USA)); Bishop, J.M.; Biswas, N.N.; Cason, N.M.; Mattingly, M.C.K.; Ruchti, R.C.; Shephard, W.D. (Notre Dame Univ., IN (USA))

    1991-01-31

    We report a search for the production of light quark vector bosons in hadron-nucleus collisions at 100 GeV bombarding energy. We find surprisingly few of these resonances produced. The lack of these particles is though to be due to the absorption by the many modestly energetic nucleons and the few anti-nucleons in the final state. (orig.).

  2. Scalable Boson Sampling with Noisy Components

    Science.gov (United States)

    Keating, Tyler; Slote, Joseph; Muraleedharan, Gopikrishnan; Carrasco, Ezequiel; Deutsch, Ivan

    The goal of a Boson Sampler is to efficiently and scalably sample from a probability distribution that cannot be simulated efficiently on a classical computer, thus violating the Extended Church-Turing Thesis (ECTT). To properly falsify the ECTT, the physical device must do so even in the face of realistic noise. Scaling a Boson Sampler requires increasing quantities of a set of fixed-size components (beamsplitters, detectors, etc.), so it is natural to consider noise models that act on each component independently. We show that for any such model, the per-component noise need only decrease polynomially to keep the sampling problem hard. In this sense, Boson Sampling with noise is scalable. However, the same result applies to a number of other quantum information systems, including universal circuit-model quantum computers. Such devices are widely believed to require error correction in order to be truly scalable, even though polynomial reduction of per-component errors would allow them to work without error correction. This belief is consistent with the stricter requirement that error rates should be not just polynomially small, but constant in problem size. We conclude that a more precise definition of scalability with noise is needed to properly evaluate Boson Samplers.

  3. Measurement of the W Boson Mass

    Energy Technology Data Exchange (ETDEWEB)

    Saltzberg, David Paul [Univ. of Chicago, IL (United States)

    1994-01-01

    This thesis presents a measurement of the mass of the W boson using data collected during the 1992-93 oollider run at the Fermilab Tevatron with the Collider Detector at Fermilab ( CDF). A fit to the transverse mass spectrum of a. sample of 5718 $W \\to e \

  4. Production of electroweak bosons at colliders

    Indian Academy of Sciences (India)

    the ATLAS and CMS experiments and to a lesser degree, the LHCb experiment). With the end of the Tevatron running in 2011, the LHC will for now remain as the dominant accelerator for producing electroweak bosons. While the Tevatron has currently collected about twice as much integrated luminosity as the LHC, there ...

  5. Search for the Higgs boson theoretical perspectives

    CERN Document Server

    Ridolfi, G

    2001-01-01

    We present a short review of experimental and theoretical constraints on the mass of the Standard Model Higgs boson. We briefly illustrate the unsatisfactory aspects of the standard theory, and we present some general considerations about possible non-standard scenarios.

  6. Quantum geometry of bosonic strings - revisited

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Luiz C.L.; Botelho, Raimundo C.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Universidade Federal Rural do Rio de Janeiro, RJ (Brazil). Dept. de Fisica

    1999-07-01

    We review the original paper by A.M. Polyakov (Quantum Geometry of Bosonic Strings) with corrections and improvements the concepts exposed there and following as closely as possible to the original A.M. Polyakov's paper. (author)

  7. Goldstone bosons and a dynamical Higgs field

    NARCIS (Netherlands)

    Mooij, S.; Postma, M.

    2011-01-01

    Higgs inflation uses the gauge variant Higgs field as the inflaton. During inflation the Higgs field is displaced from its minimum, which results in associated Goldstone bosons that are apparently massive. Working in a minimally coupled U(1) toy model, we use the closed-time-path formalism to show

  8. The LIPSS search for light neutral bosons

    Energy Technology Data Exchange (ETDEWEB)

    Andrei Afanasev; Oliver K. Baker; Kevin Beard; George Biallas; James Boyce; Minarni Minarni; Roopchan Ramdon; Michelle D. Shinn; Penny Slocum

    2009-07-01

    An overview is presented of the LIPSS experimental search for very light neutral bosons using laser light from Jefferson Lab's Free Electron Laser. This facility provides very high power beams of photons over a large optical range, particularly at infrared wavelengths. Data has been collected in several experimental runs during the course of the past three years, most recently in the Fall of 2009.

  9. La chasse au boson de Higgs

    CERN Multimedia

    Grousson, Mathieu

    2007-01-01

    AT the end of 2007, the most powerful particle accelerator in the world will come into force. Protons will collide at the speed of the light. The great hope of searchers: to find in the remains resulting from these shocks, the famous Higgs boson. (6 pages)

  10. Accelerating research into the Higgs boson particle

    CERN Multimedia

    Nikolaidou, Rosy

    "The only Standard Model particle yet to be observed, the search for the Higgs Boson - the so-called 'God Particle' - demands advanced facilities and physics expertise. At the Cern laboratory in Switzerland, the ARTEMIS project is well-placed to pursue research in this area" (2 pages)

  11. Bosonic and fermionic dipoles on a ring

    DEFF Research Database (Denmark)

    Zöllner, Sascha; Pethick, C. J.; Bruun, Georg Morten

    2011-01-01

    We show that dipolar bosons and fermions confined in a quasi-one-dimensional ring trap exhibit a rich variety of states because their interaction is inhomogeneous. For purely repulsive interactions, with increasing strength of the dipolar coupling there is a crossover from a gaslike state...

  12. W boson physics at LEP2

    International Nuclear Information System (INIS)

    Tonazzo, A.

    2000-01-01

    The precision study of W boson properties is one of the most important goals of the LEP2 physics programme. This paper provides an overview of the measurements performed by the four LEP experiments, with particular emphasis on the extraction of the W mass. A review of the results obtained with the data collected until 1999 is also presented

  13. Goldstone-Boson Dynamics for Constituent Quarks

    Science.gov (United States)

    Plessas, W.

    2003-07-01

    We address some essential features of the Goldstone-boson-exchange constituent quark model. Starting from its background we discuss the motivation for its construction and show its performance in light and strange baryon spectroscopy. Then we quote results from first applications of this type of constituent quark model in covariant calculations of electroweak nucleon form factors.

  14. Non-linear realizations and bosonic branes

    International Nuclear Information System (INIS)

    West, P.

    2001-01-01

    In this very short note, following hep-th/0001216, we express the well known bosonic brane as a non-linear realization. The reader may also consult hep-th/9912226, 0001216 and 0005270 where the branes of M theory are constructed as a non-linear realisation. The automorphisms of the supersymmetry algebra play an essential role. (author)

  15. Fermion-boson scattering in ladder approximation

    International Nuclear Information System (INIS)

    Jafarov, R.G.; Hadjiev, S.A.

    1992-10-01

    A method of calculation of forward scattering amplitude for fermions and scalar bosons with exchanging of scalar particle is suggested. The Bethe-Salpeter ladder equation for the imaginary part of the amplitude is constructed and a solution in Regge asymptotical form is found and the corrections to the amplitude due to the exit from mass shell are calculated. (author). 8 refs

  16. Combination of ATLAS Higgs Boson measurements

    CERN Document Server

    Monticelli, Fernando; The ATLAS collaboration

    2018-01-01

    The results obtained from the different decay channels are combined to study the properties of the Higgs boson mass, production and decay, and test the SM theoretical precision with increased accuracy, using about 36 fb^{-1} of p-p collisions data collected at 13 TeV.

  17. Studies in boson reconstruction for SUSY searches

    CERN Document Server

    Aguado Lopez, Jesus

    2017-01-01

    The aim of this study is to compare different algorithms of reconstructionf of Higgs bosons in events hh →4b. This study has been developed as part of a summer student program from Instituto de F´ısica de Altas Energ´ıas (Barcelona), and supervised by Chiara Rizzi.

  18. Privacy of a lossy bosonic memory channel

    International Nuclear Information System (INIS)

    Ruggeri, Giovanna; Mancini, Stefano

    2007-01-01

    We study the security of the information transmission between two honest parties realized through a lossy bosonic memory channel when losses are captured by a dishonest party. We then show that entangled inputs can enhance the private information of such a channel, which however does never overcome that of unentangled inputs in absence of memory

  19. Goldstone bosons in presence of charge density

    Czech Academy of Sciences Publication Activity Database

    Brauner, Tomáš

    2007-01-01

    Roč. 75, č. 10 (2007), s. 105014-105014 ISSN 0556-2821 R&D Projects: GA ČR GA202/06/0734 Institutional research plan: CEZ:AV0Z10480505 Keywords : spontaneous symmetry breaking * goldstone boson counting * two- color QCD Subject RIV: BE - Theoretical Physics Impact factor: 4.852, year: 2005

  20. Search for new heavy charged gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Magass, Carsten Martin

    2007-11-02

    The TEVATRON proton-antiproton collider at FERMILAB (near Chicago/USA) is operating at a center-of-mass energy of {radical}(s)=1.96 TeV since March 2001. This analysis uses data taken with the DOe detector until February 2006 corresponding to an integrated luminosity of about {integral}Ldt=1 fb{sup -1}. Using this dataset, a search for a new heavy charged gauge boson W{sup '} and its subsequent decay into an electron and a neutrino is performed: p anti p{yields}W{sup '}+X{yields}e{nu}+X. Additional gauge bosons (including the equivalent to the Z, the Z{sup '}) are introduced in many extensions to the Standard Model of particle physics. Assuming the most general case, the new gauge group can comprise a new mixing angle and new couplings. Here, the Altarelli Reference Model is considered which represents a generalization of the Manifest Left-Right Symmetric Model with light right-handed neutrinos. This model makes the assumptions that the new gauge boson W{sup '} has the same couplings as the Standard Model W boson and that there is no mixing. Hence, the W{sup '} is a heavy copy of the Standard Model W boson. The clear decay signature (in analogy to the decay of the W) contains an isolated electron with extreme high energy which is important for triggering. The neutrino can not be detected, but it gives rise to missing energy in the detector. The Jacobian peak in the transverse mass distribution stemming from the W decay is used for calibration, whereas the tail of the transverse mass distribution is searched for a possible W{sup '} signal. The data agrees with the expectation from background processes. For instance, in the data 37 events are reconstructed with transverse masses above 300 GeV compared to a prediction of 37.1{+-}2.1(stat){sup +6.0}{sub -3.7}(sys) background events. Since no significant excess is found in the data, an upper limit is set on the production cross section for heavy charged gauge bosons decaying into electron

  1. Search for new heavy charged gauge bosons

    International Nuclear Information System (INIS)

    Magass, Carsten Martin

    2007-01-01

    The TEVATRON proton-antiproton collider at FERMILAB (near Chicago/USA) is operating at a center-of-mass energy of √(s)=1.96 TeV since March 2001. This analysis uses data taken with the DOe detector until February 2006 corresponding to an integrated luminosity of about ∫Ldt=1 fb -1 . Using this dataset, a search for a new heavy charged gauge boson W ' and its subsequent decay into an electron and a neutrino is performed: p anti p→W ' +X→eν+X. Additional gauge bosons (including the equivalent to the Z, the Z ' ) are introduced in many extensions to the Standard Model of particle physics. Assuming the most general case, the new gauge group can comprise a new mixing angle and new couplings. Here, the Altarelli Reference Model is considered which represents a generalization of the Manifest Left-Right Symmetric Model with light right-handed neutrinos. This model makes the assumptions that the new gauge boson W ' has the same couplings as the Standard Model W boson and that there is no mixing. Hence, the W ' is a heavy copy of the Standard Model W boson. The clear decay signature (in analogy to the decay of the W) contains an isolated electron with extreme high energy which is important for triggering. The neutrino can not be detected, but it gives rise to missing energy in the detector. The Jacobian peak in the transverse mass distribution stemming from the W decay is used for calibration, whereas the tail of the transverse mass distribution is searched for a possible W ' signal. The data agrees with the expectation from background processes. For instance, in the data 37 events are reconstructed with transverse masses above 300 GeV compared to a prediction of 37.1±2.1(stat) +6.0 -3.7 (sys) background events. Since no significant excess is found in the data, an upper limit is set on the production cross section for heavy charged gauge bosons decaying into electron and neutrino, σ W ' x Br(W ' →eν). Using this limit, a lower bound on the mass of the new gauge

  2. Search for Higgs bosons and for Supersymmetric particles at particle collider experiments

    CERN Document Server

    Muanza, Steve

    The corner stone of the Standard Model (SM) of Particle Physics is the Higgs mechanism. It explains how the bosons W, Z and H acquire a mass via weak interactions. In addition it explains how the charged fermions also acquire a mass through Yukawa interactions. And on top of this, it regularizes the scattering of longitudinal W and Z bosons at high energy. The discovery of a Higgs boson by the ATLAS and the CMS collaborations in 2012 marked the culminating success of the SM at explaining most of the known phenomena. However a few other phenomena such as the Dark Matter and the Dark energy cannot be explained by the SM particles. What's more, the SM leaves several open questions such as a quest for a quantum theory for gravity, the naturalness in the Higgs sector, a possible Grand Unification,... The common thread in topics presented in this habilitation thesis is the search for manifestations of a TeV scale supersymmetric (SUSY) extension of the Standard Model at particle collider experiments. Among the predi...

  3. First measurement of the associated production of a Z boson with b jets at the LHC

    CERN Document Server

    Ceard, Ludivine

    2015-01-01

    The start of the LHC in 2009 opened a new era in particle physics. The collisions, produced at an energy and a rate unequalled, allowing to probe energysectors and rare processes so far inaccessible. In summer 2012 the announcement of the discovery a new boson, presenting the properties of the long-soughtHiggs boson was confirming the last prediction of the particle physics theoretical framework called the standard model. This theory, even though highlypredictive and never defeated experimentally, is known to have limitations andlacks explanation for several physics observations.The production of a Z boson in association with b jets is a process for which different theoretical predictions from the standard model differ, depending on thetreatment of the b jets in the calculation (so-called 4- and 5-flavour schemes).The measurement of the Z plus b jets cross section and the study of its kinematics constitute then a strong QCD test. The Z plus at least two b jets processconstitutes the main background for stu...

  4. Insect-Specific Flaviviruses: A Systematic Review of Their Discovery, Host Range, Mode of Transmission, Superinfection Exclusion Potential and Genomic Organization

    Directory of Open Access Journals (Sweden)

    Bradley J. Blitvich

    2015-04-01

    Full Text Available There has been a dramatic increase in the number of insect-specific flaviviruses (ISFs discovered in the last decade. Historically, these viruses have generated limited interest due to their inability to infect vertebrate cells. This viewpoint has changed in recent years because some ISFs have been shown to enhance or suppress the replication of medically important flaviviruses in co-infected mosquito cells. Additionally, comparative studies between ISFs and medically important flaviviruses can provide a unique perspective as to why some flaviviruses possess the ability to infect and cause devastating disease in humans while others do not. ISFs have been isolated exclusively from mosquitoes in nature but the detection of ISF-like sequences in sandflies and chironomids indicates that they may also infect other dipterans. ISFs can be divided into two distinct phylogenetic groups. The first group currently consists of approximately 12 viruses and includes cell fusing agent virus, Kamiti River virus and Culex flavivirus. These viruses are phylogenetically distinct from all other known flaviviruses. The second group, which is apparently not monophyletic, currently consists of nine viruses and includes Chaoyang virus, Nounané virus and Lammi virus. These viruses phylogenetically affiliate with mosquito/vertebrate flaviviruses despite their apparent insect-restricted phenotype. This article provides a review of the discovery, host range, mode of transmission, superinfection exclusion ability and genomic organization of ISFs. This article also attempts to clarify the ISF nomenclature because some of these viruses have been assigned more than one name due to their simultaneous discoveries by independent research groups.

  5. Vector boson scattering, triple gauge-boson final states and limits on anomalous quartic gauge couplings with the ATLAS detector

    CERN Document Server

    Nitta, Tatsumi; The ATLAS collaboration

    2018-01-01

    Measurements of the cross sections of the production of three electroweak gauge bosons and of vector-boson scattering processes at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model-independent means to search for new physics at the TeV scale. The ATLAS collaboration searched for the production of three W bosons or of a W boson and a photon together with a Z or W boson at a center of mass energy of 8 TeV. ATLAS has also searched for the electroweak production of a heavy boson and a photon together with two jets. Evidence has been found for the exclusive production of W boson pairs. All results have been used to constrain anomalous quartic gauge couplings and have been compared to the latest theory predictions.

  6. Vector Boson Scattering, Triple Gauge-Boson Final States, and Limits on Anomalous Quartic Gauge Couplings with the ATLAS Detector

    CERN Document Server

    Johnson, Christian; The ATLAS collaboration

    2017-01-01

    Measurements of the cross sections of the production of three electroweak gauge bosons and of vector-boson scattering processes at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model-independent means to search for new physics at the TeV scale. The ATLAS collaboration searched for the production of three W bosons or of a W boson and a photon together with a Z or W boson at a center of mass energy of 8 TeV. ATLAS has also searched for the electroweak production of a heavy boson and a photon together with two jets. Evidence has been found for the exclusive production of W boson pairs. All results have been used to constrain anomalous quartic gauge couplings and have been compared to the latest theory predictions.

  7. Proceedings of RIKEN BNL Research Center Workshop: The Physics of W and Z Bosons

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, S.; Okada, K.; Patwa, A.; Qiu, J.; Surrow, B.

    2010-06-24

    A two-day workshop on 'The Physics of Wand Z Bosons' Was held at the RIKEN BNL Research Center at Brookhaven National Laboratory on June 24-25, 2010. With the recent release of the first measurement of W bosons in proton-proton collisions at RHIC and the first observation of W events at the LHC, the workshop was a timely opportunity to bring together experts from both the high energy particle and nuclear physics communities to share their ideas and expertise on the physics of Wand Z bosons, with the aim of fully exploring the potential of the W/Z physics programs at RHIC and the LHC. The focus was on the production and measurement of W/Z bosons in both polarized and unpolarized proton-proton collisions, and the role of W/Z production in probing the parton flavor and helicity structure of the colliding proton and in the search for new physics. There were lively discussions about the potential and future prospects of W/Z programs at RHIC, Tevatron, and the LHC.

  8. Calibration of the Atlas electromagnetic calorimeter. Search for the Higgs boson in its invisible decays; Etalonnage du calorimetre electromagnetique d'ATLAS. Recherche du boson de Higgs dans ses desintegrations invisibles

    Energy Technology Data Exchange (ETDEWEB)

    Neukermans, L

    2002-05-01

    The most promising channels for an intermediate mass Higgs boson discovery at LHC are leptonic and photonic decays. Therefore, a good uniformity of response of the electromagnetic calorimeter is required to reach the 0.7% constant term needed. This thesis deals with the absolute calibration of this detector. An electrical description of the calibration system, the detector and its read-out chain has been made for a better comprehension of the signal pulse shapes. A method, using a convolution of the calibration waveforms, has been developed to predict physics response, leading to absolute calibration. The level of accuracy obtained allows to reach the 0.3% contribution to the constant term required. Test beam analysis of a prototype module showed the performance of the electromagnetic calorimeter in terms of local resolution and linearity. A uniformity study has been made, leading to a 0.8% dispersion on a {delta}{eta} x {delta}{phi} = 1.2 x 0.75 area. In a second part, the observability of an invisible Higgs boson produced via weak boson fusion at the LHC is presented. A level 1 trigger strategy for this purely jet and missing E{sub T} final states is discussed. A method to measure the level of background using physics events is presented. This analysis shows that an invisible branching ratio of 25% could be reached at 95% CL with only 30 fb{sup -1} for a Higgs boson mass of 120 GeV/c{sup 2}. (author)

  9. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    activities as the potential discovery of elements heavier than uranium [5]. He drew this conclusion ... alkaline earth metals in the irradiation of uranium by neutrons) Hahn and Strassmann did. 458. Pramana – J. ... the production of active barium isotopes from uranium and thorium by neutron irradiation;. Proof of further active ...

  10. Effects of Goldstone bosons on gamma-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Huitzu; Ng, Kin-Wang, E-mail: huitzu2@gate.sinica.edu.tw, E-mail: nkw@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan (China)

    2016-03-01

    Gamma-ray bursts (GRBs) are the most energetic explosion events in the universe. An amount of gravitational energy of the order of the rest-mass energy of the Sun is released from a small region within a short time. This should lead to the formation of a fireball of temperature in the MeV range, consisting of electrons/positrons, photons, and a small fraction of baryons. We exploit the potential of GRB fireballs for being a laboratory for testing particle physics beyond the Standard Model, where we find that Weinberg's Higgs portal model serves as a good candidate for this purpose. Due to the resonance effects, the Goldstone bosons can be rapidly produced by electron-positron annihilation process in the initial fireballs of the gamma-ray bursts. On the other hand, the mean free path of the Goldstone bosons is larger than the size of the GRB initial fireballs, so they are not coupled to the GRB's relativistic flow and can lead to significant energy loss. Using generic values for the GRB initial fireball energy, temperature, radius, expansion rate, and baryon number density, we find that the GRB bounds on the parameters of Weinberg's Higgs portal model are indeed competitive to current laboratory constraints.

  11. Very light dilaton and naturally light Higgs boson

    Science.gov (United States)

    Hong, Deog Ki

    2018-02-01

    We study very light dilaton, arising from a scale-invariant ultraviolet theory of the Higgs sector in the standard model of particle physics. Imposing the scale symmetry below the ultraviolet scale of the Higgs sector, we alleviate the fine-tuning problem associated with the Higgs mass. When the electroweak symmetry is spontaneously broken radiatively à la Coleman-Weinberg, the dilaton develops a vacuum expectation value away from the origin to give an extra contribution to the Higgs potential so that the Higgs mass becomes naturally around the electroweak scale. The ultraviolet scale of the Higgs sector can be therefore much higher than the electroweak scale, as the dilaton drives the Higgs mass to the electroweak scale. We also show that the light dilaton in this scenario is a good candidate for dark matter of mass m D ˜ 1 eV - 10 keV, if the ultraviolet scale is about 10-100 TeV. Finally we propose a dilaton-assisted composite Higgs model to realize our scenario. In addition to the light dilaton the model predicts a heavy U(1) axial vector boson and two massive, oppositely charged, pseudo Nambu-Goldstone bosons, which might be accessible at LHC.

  12. Higgs as a holographic pseudo-Goldstone boson

    International Nuclear Information System (INIS)

    Contino, Roberto; Nomura, Yasunori; Pomarol, Alex

    2003-01-01

    The AdS/CFT correspondence allows one to relate 4D strongly coupled theories to weakly coupled theories in 5D AdS. We use this correspondence to study a scenario in which the Higgs appears as a composite pseudo-Goldstone boson (PGB) of a strongly coupled theory. We show how a non-linearly realized global symmetry protects the Higgs mass and guarantees the absence of quadratic divergences at any loop order. The gauge and Yukawa interactions for the PGB Higgs are simple to introduce in the 5D AdS theory, and their one-loop contributions to the Higgs potential are calculated using perturbation theory. These contributions are finite, giving a squared-mass to the Higgs which is one-loop smaller than the mass of the first Kaluza-Klein state. We also show that if the symmetry breaking is caused by boundary conditions in the extra dimension, the PGB Higgs corresponds to the fifth component of the bulk gauge boson. To make the model fully realistic, a tree-level Higgs quartic coupling must be induced. We present a possible mechanism to generate it and discuss the conditions under which an unwanted large Higgs mass term is avoided

  13. Higgs-boson contributions to gauge-boson mass shifts in extended electroweak models

    International Nuclear Information System (INIS)

    Moore, S.R.

    1985-10-01

    In the minimal standard model, the difference between the tree-level and one-loop-corrected predictions for the gauge-boson masses, known as the mass shifts, are of the order of 4%. The dominant contribution is from light-fermion loops. The Higgs-dependent terms are small, even if the Higgs boson is heavy. We have analyzed the mass shifts for models with a more complicated Higgs sector. We use the on-shell renormalization scheme, in which the parameters of the theory are the physical masses and couplings. We have considered the 2-doublet, n-doublet, triplet and doublet-triplet models. We have found that the Z-boson mass prediction has a strong dependence on the charged-Higgs mass. In the limit that the charged Higgs is much heavier than the gauge bosons, the Higgs-dependent terms become significant, and may even cancel the light-fermion terms. In the models with a Higgs triplet, there is also a strong dependence on the neutral-Higgs masses, although this contribution tends to be suppressed in realistic models. The W-boson mass shift does not have a strong Higgs dependence. If we use the Z mass as input in determining the parameters of the theory, a scenario which will become attractive as the mass of the Z is accurately measured in the next few years, we find that the W-boson mass shift exhibits the same sort of behavior, differing from the minimal model for the case of the charged Higgs being heavy. We have found that when radiative corrections are taken into account, models with extended Higgs sectors may differ significantly from the minimal standard model in their predictions for the gauge-boson masses. Thus, an accurate measurement of the masses will help shed light on the structure of the Higgs sector. 68 refs

  14. Exactly solvable models of proton and neutron interacting bosons

    International Nuclear Information System (INIS)

    Lerma, S.H.; Errea, B.; Dukelsky, J.; Pittel, S.; Van Isacker, P.

    2006-01-01

    We describe a class of exactly-solvable models of interacting bosons based on the algebra SO(3, 2). Each copy of the algebra represents a system of neutron and proton bosons in a given bosonic level interacting via a pairing interaction. The model that includes s and d bosons is a specific realization of the IBM2, restricted to the transition regime between vibrational and γ-soft nuclei. By including additional copies of the algebra, we can generate proton-neutron boson models involving other boson degrees of freedom, while still maintaining exact solvability. In each of these models, we can study not only the states of maximal symmetry, but also those of mixed symmetry, albeit still in the vibrational to γ-soft transition regime. Furthermore, in each of these models we can study some features of F-spin symmetry breaking. We report systematic calculations as a function of the pairing strength for models based on s,d, and g bosons and on s,d, and f bosons. The formalism of exactly-solvable models based on the SO(3, 2) algebra is not limited to systems of proton and neutron bosons, however, but can also be applied to other scenarios that involve two species of interacting bosons

  15. Review of Physics Results from the Tevatron: Higgs Boson Physics

    International Nuclear Information System (INIS)

    Junk, Thomas R.; Juste, Aurelio

    2015-01-01

    We review the techniques and results of the searches for the Higgs boson performed by the two Tevatron collaborations, CDF and DO. The Higgs boson predicted by the Standard Model was sought in the mass range 90 GeVboson fusion, and tt ¯ H production, and in five main decay modes: H→bb ¯ , H→τ + τ − , H→WW (∗) , H→ZZ (∗) , and H→γγ . An excess of events was seen in the H→bb ¯ searches consistent with a Standard Model Higgs boson with a mass in the range 115 GeVboson mass of m H =125 GeV, studies of Higgs boson properties were performed, including measurements of the product of the cross section times branching the ratio in various production and decay modes, constraints on Higgs boson couplings to fermions and vector bosons, and tests of spin and parity. We also summarize the results of searches for supersymmetric Higgs bosons, and Higgs bosons in other extensions of the Standard Model

  16. Seniority mappings for probing phenomenological nuclear boson models

    International Nuclear Information System (INIS)

    De Kock, E.A.

    1988-12-01

    The interacting boson model (IBM) and interacting boson-fermion model (IBFM) are discussed. The main ideas of boson mapping of fermion systems are introduced using Holstein-Primakoff and Dyson-Maleev mappings of angular momentum operators. Generalized Dyson-Maleev (GDM) and Holstein-Primakoff (GHP) mappings are included. In fermoin problems, the degrees of freedom of collective motion are described by a collective subalgebra of the complete bifermion subalgebra. GDM mapping of Sp(6) generators, the transformation to collect bosons and truncation to these bosons led to collective sd-boson realization of Sp(6) algebra. This resulted in an IBM-like description of the collective subspace. Non-hermitian and existing hermitian forms are indicated in the assumed structure of an IBM Hamiltonian Boson mapping based on seniority considerations and involving single-j shell approximations of the shell model are examined. One method utilized truncation of a shell model space to a space spanned by monopole (S) and quadrupole (D) pairs. The association between states in truncated fermion and sd-boson spaces constructs boson images of fermion operators by equating boson and fermion matrix elements. To obtain boson images with IBM-like structures, a zero-order approximation was adopted. This approximation retains only N-body terms in the images of N-body fermion operators. A similarity transformation re-expressing GDM images of single-j shell fermion operators in seniority bosons was applied to the GDM image of a general shell model Hamiltonian. Numerical results for the surface-delta interaction show that truncation to s- and d-bosons in the seniority image of a two-body operator is not allowed if N≥2. This transformation was extended to odd fermion systems and applied to the image of the quadrupole pairing interaction. 79 refs., 3 figs., 4 tabs

  17. Fermion local charged boson model and cuprate superconductors

    International Nuclear Information System (INIS)

    Sinha, K.P.; Kakani, S.L.

    2002-01-01

    One of the most exciting developments in Science in past few years is the discovery of high temperature superconductivity (HTSC) in cuprates. It has been observed that the superconducting state in these cuprates is rather normal compared to the anomalous normal state. This discovery has led to deluge of experimental and theoretical researches all along the world. These cuprates are close to metal-insulator transition and the stability of the insulating and metallic phase depends on the degree of doping. Measurements of physical properties of these systems have revealed many anomalous results both in the superconducting and normal states, e.g. d-wave superconducting gap, the presence of pseudo gap in the normal state, static or dynamic striped structure of CuO 2 planes etc. These have posed serious theoretical challenges towards formulating the mechanisms of pairing and explanation of anomalous behaviour. Several theoretical proposals have been advanced and only a few are likely to survive in the teeth of some reliable experimental data. A combined mechanism mediated by phonons and lochons (local charged bosons, local pairs or bipolarons) for the pairing of fermions (holes or electrons) belonging to a wide band provides a microscopic explanation of anomalous normal state properties of HTSC cuprates and vindicates features of the phenomenological marginal Fermi liquid formulation. In the present review article detailed features of combined lochon and phonon mediated pairing mechanism are presented and a contact with the normal and superconducting state properties of HTSC in YBa 2 Cu 3 O x does indicate pair hopping between planes via such resonant centres lying in between the CuO 2 planes. (author)

  18. The CMS electromagnetic calorimeter and the search for the Higgs boson in the decay channel H {yields} WW{sup *} {yields} 2e2{nu}; Le calorimetre electromagnetique de CMS et la recherche du boson de Higgs dans le canal de desintegration H {yields} WW{sup *} {yields} 2e2{nu}

    Energy Technology Data Exchange (ETDEWEB)

    Rovelli, I.Ch

    2006-01-15

    CMS is one of the four experiments that will take data at the LHC. Large part of my work was devoted to the development of electron reconstruction tools aimed at improving the Higgs boson discovery potential in the H {yields} WW{sup *} {yields} 2e2{nu} channel. A major role in the electron reconstruction is played by the electromagnetic calorimeter ECAL, an homogeneous calorimeter made of scintillating PbWO{sub 4} crystals. The first 3 chapters give an overview of LHC and CMS.In chapter 4 the analysis of the data collected during the 2003 electromagnetic calorimeter test beam is presented. First the problem of the intercalibration at the test beam is addressed. This is a major task, since the precision of the intercalibration directly affects the constant term of the energy resolution, for which the CMS goal is to reach a precision better than 0.5%. The good initial intercalibration, anyway, could be spoiled during the data taking by the effects of the radiation on the crystals, which can change the relative responses of the channels. A monitoring laser system is foreseen at CMS. The possibility to check the calibration stability and to correct the changes in the response with a precision within the required limits is demonstrated. Chapter five describes the electron reconstruction and identification in CMS. A crucial problem for the electron reconstruction is represented by the Bremsstrahlung emission in the tracker. A tracking procedure dealing with the Bremsstrahlung energy loss is discussed. Together with an improvement in the reconstruction efficiency, the procedure allows to identify electrons with a small fraction of radiated energy, which can be usefully exploited for the ECAL calibration. The developed algorithms are applied in chapter 6, which presents the study of the CMS discovery potential of the Higgs boson in the H {yields} WW{sup *} {yields} 2e2{nu} channel. This is the discovery channel in the range of masses between 2m{sub W} and 2m{sub Z}. Here

  19. Investigation of spin-zero bosons in q-deformed relativistic quantum mechanics

    Science.gov (United States)

    Sobhani, H.; Chung, W. S.; Hassanabadi, H.

    2018-04-01

    In this article, Scattering states of Klein-Gordon equation for three scatter potentials of single and double Dirac delta and a potential well in the q-deformed formalism of relativistic quantum mechanics have been derived. At first, we discussed how q-deformed formalism can be constructed and used. Postulates of this q-deformed quantum mechanics are noted. Then scattering problems for spin-zero bosons are studied.

  20. A Search for the Standard Model Higgs Boson Produced in Association with a $W$ Boson

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Martin Johannes [Baylor Univ., Waco, TX (United States)

    2011-05-01

    We present a search for a standard model Higgs boson produced in association with a W boson using data collected with the CDF II detector from p$\\bar{p}$ collisions at √s = 1.96 TeV. The search is performed in the WH → ℓvb$\\bar{b}$ channel. The two quarks usually fragment into two jets, but sometimes a third jet can be produced via gluon radiation, so we have increased the standard two-jet sample by including events that contain three jets. We reconstruct the Higgs boson using two or three jets depending on the kinematics of the event. We find an improvement in our search sensitivity using the larger sample together with this multijet reconstruction technique. Our data show no evidence of a Higgs boson, so we set 95% confidence level upper limits on the WH production rate. We set limits between 3.36 and 28.7 times the standard model prediction for Higgs boson masses ranging from 100 to 150 GeV/c2.

  1. Dark side of the Higgs boson

    International Nuclear Information System (INIS)

    Low, I.; Schwaller, P.; Shaughnessy, G.; Wagner, C.E.M.

    2012-01-01

    Current limits from the Large Hadron Collider exclude a standard model-like Higgs mass above 150 GeV, by placing an upper bound on the Higgs production rate. We emphasize that, alternatively, the limit could be interpreted as a lower bound on the total decay width of the Higgs boson. If the invisible decay width of the Higgs is of the same order as the visible decay width, a heavy Higgs boson could be consistent with null results from current searches. We propose a method to infer the invisible decay of the Higgs by using the width of the measured h → ZZ → 4 (ell) line shape, and study the effect on the width extraction due to a reduced signal strength. Assuming the invisible decay product is the dark matter, we show that minimal models are tightly constrained by limits from Higgs searches at the LHC and direct detection experiments of dark matter, unless the relic density constraint is relaxed.

  2. Direct measurement of the W boson width

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Aguilo, E.; /Alberta U. /Simon Fraser U. /McGill U.; Ahsan, M.; /Kansas State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP; Alton, A.; /Michigan U. /Northeastern U.

    2009-09-01

    We present a direct measurement of the width of the W boson using the shape of the transverse mass distribution of W {yields} e{nu} candidates selected in 1 fb{sup -1} of data collected with the D0 detector at the Fermilab Tevatron collider in p{bar p} collisions at {radical}s = 1.96 TeV. We use the same methods and data sample that were used for our recently published W boson mass measurement, except for the modeling of the recoil, which is done with a new method based on a recoil library. Our result, 2.028 {+-} 0.072 GeV, is in agreement with the predictions of the standard model and is the most precise direct measurement result from a single experiment to date.

  3. Lepton flavor violation with light vector bosons

    Directory of Open Access Journals (Sweden)

    Julian Heeck

    2016-07-01

    Full Text Available New sub-GeV vector bosons with couplings to muons but not electrons have been discussed in order to explain the muon's magnetic moment, the gap of high-energy neutrinos in IceCube or the proton radius puzzle. If such a light Z′ not only violates lepton universality but also lepton flavor, as expected for example from the recent hint for h→μτ at CMS, the two-body decay mode τ→μZ′ opens up and for MZ′<2mμ gives better constraints than τ→3μ already with 20-year-old ARGUS limits. We discuss the general prospects and motivation of light vector bosons with lepton-flavor-violating couplings.

  4. Topological edge states for disordered bosonic systems

    Science.gov (United States)

    Peano, Vittorio; Schulz-Baldes, Hermann

    2018-03-01

    Quadratic bosonic Hamiltonians over a one-particle Hilbert space can be described by a Bogoliubov-de Gennes (BdG) Hamiltonian on a particle-hole Hilbert space. In general, the BdG Hamiltonian is not self-adjoint, but only J-self-adjoint on the particle-hole space viewed as a Krein space. Nevertheless, its energy bands can have non-trivial topological invariants like Chern numbers or winding numbers. By a thorough analysis for tight-binding models, it is proved that these invariants lead to bosonic edge modes which are robust to a large class of possibly disordered perturbations. Furthermore, general scenarios are presented for these edge states to be dynamically unstable even though the bulk modes are stable.

  5. Supersymmetric Heavy Higgs Bosons at the LHC

    CERN Document Server

    Arbey, Alexandre; Mahmoudi, Farvah

    2013-01-01

    The search for heavy Higgs bosons is an essential step in the exploration of the Higgs sector and in probing the Supersymmetric parameter space. This paper discusses the constraints on the M(A) and tan beta parameters derived from the bounds on the different decay channels of the neutral H and A bosons accessible at the LHC, in the framework of the phenomenological MSSM. The implications from the present LHC results and the expected sensitivity of the 14 TeV data are discussed in terms of the coverage of the [M(A) - tan beta] plane. New channels becoming important at 13 and 14 TeV for low values of tan beta are characterised in terms of their kinematics and the reconstruction strategies. The effect of QCD systematics, SUSY loop effects and decays into pairs of SUSY particles on these constraints are discussed in details.

  6. Probing The Three Gauge-boson Couplings in 14 TeV Proton-Proton Collisions

    CERN Document Server

    Dobbs, Matthew

    2002-01-01

    The potential for probing the Standard Model of elementary particle physics by measuring the interactions of W-bosons with Z0-bosons and photons (WW and WWZ triple gauge-boson couplings) using TeV-scale proton-proton collisions is described in the context of the ATLAS detector at the 14 TeV Large Hadron Collider (LHC). The ATLAS detector and LHC are currently under construction at the European Organization for Nuclear Research (CERN), with the first data expected in 2006. New analysis techniques are presented in this thesis: (1) A new strategy for placing limits on the consistency of measured anomalous triple gauge-boson coupling parameters with the Standard Model is presented. The strategy removes the ambiguities of form factors, by reporting the limits as a function of a cutoff operating on the diboson system invariant mass. (2) The `optimal observables' analysis strategy is investigated in the context of hadron colliders, and found to be not competitive, as compared to other strategies. (3) Techniques for ...

  7. Higgs boson events and background lep. A Monte Carlo study

    International Nuclear Information System (INIS)

    Ekspong, G.; Hultqvist, K.

    1982-06-01

    Higgs boson production at LEP using e+ e- to Z 0 to H 0 + e+ e- has been studied by Monte Carlo generation of events with realistic errors of measurement added. The results show the recoil mass (Higgs boson mass) resolution to be reasonably good for boson masses bigger than 5 Ge V. The events are found to populate a phase space region free of physical background for all boson masses below about 35 GeV. For masses above 40 GeV the Higgs boson signal merges with the physical background produced by semileptonic decays of heavy flavour quarks while diminishing in strength to low levels. The geometrical acceptance of a detector like DELPHI is about 80 per cent for Higgs boson events. (Author)

  8. General Rules for Bosonic Bunching in Multimode Interferometers

    Science.gov (United States)

    Spagnolo, Nicolò; Vitelli, Chiara; Sansoni, Linda; Maiorino, Enrico; Mataloni, Paolo; Sciarrino, Fabio; Brod, Daniel J.; Galvão, Ernesto F.; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2013-09-01

    We perform a comprehensive set of experiments that characterize bosonic bunching of up to three photons in interferometers of up to 16 modes. Our experiments verify two rules that govern bosonic bunching. The first rule, obtained recently, predicts the average behavior of the bunching probability and is known as the bosonic birthday paradox. The second rule is new and establishes a n!-factor quantum enhancement for the probability that all n bosons bunch in a single output mode, with respect to the case of distinguishable bosons. In addition to its fundamental importance in phenomena such as Bose-Einstein condensation, bosonic bunching can be exploited in applications such as linear optical quantum computing and quantum-enhanced metrology.

  9. A Precise Measurement of the W Boson Mass with CDF

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The W boson mass measurement probes quantum corrections to the W propagator, such as those arising from supersymmetric particles or Higgs bosons. The new measurement from CDF is more precise than the previous world average, providing a stringent constraint on the mass of the Higgs boson in the context of the Standard Model. I describe this measurement, performed with 2.2/fb of data using 1.1 million candidates in the electron and muon decay channels, with three kinematic fits in each channel. The measurement uses in-situ calibrations from cosmic rays, J/psi and Upsilon data, and W- and Z-boson decays, with multiple cross-checks including independent determinations of the Z boson mass in both channels. The W-boson mass is measured to be 80387 +- 19 MeV/c^2.

  10. How well do we need to measure Higgs boson couplings?

    CERN Document Server

    Gupta, Rick S.; Wells, James D.

    2012-01-01

    Most of the discussion regarding the Higgs boson couplings to Standard Model vector bosons and fermions is presented with respect to what present and future collider detectors will be able to measure. Here, we ask the more physics-based question of how well do we need to measure the Higgs boson couplings? We first present a reasonable definition of "need" and then investigate the answer in the context of various highly motivated new physics scenarios: supersymmetry, mixed-in hidden sector Higgs bosons, and a composite Higgs boson. We find the largest coupling deviations away from the SM Higgs couplings that are possible if no other state related to EWSB is directly accessible at the LHC. Depending on the physics scenario under consideration, we find targets that range from less than 1% to 10% for vector bosons, and from a few percent to tens of percent for couplings to fermions.

  11. Multi-Boson Interactions at the Run 1 LHC

    Energy Technology Data Exchange (ETDEWEB)

    Green, Daniel R. [Fermilab; Meade, Patrick [YITP, Stony Brook; Pleier, Marc-Andre [Brookhaven

    2016-10-24

    This review article covers results on the production of all possible electroweak boson pairs and 2-to-1 vector boson fusion (VBF) at the CERN Large Hadron Collider (LHC) in proton-proton collisions at a center-of-mass energy of 7 TeV and 8 TeV. The data was taken between 2010 and 2012. Limits on anomalous triple gauge couplings (aTGCs) then follow. In addition, data on electroweak triple gauge boson production and 2-to-2 vector boson scattering (VBS) yield limits on anomalous quartic gauge boson couplings (aQGCs). The LHC hosts two general purpose experiments, ATLAS and CMS, which both have reported limits on aTGCs and aQGCs which are herein summarized. The interpretation of these limits in terms of an effective field theory (EFT) is reviewed, and recommendations are made for testing other types of new physics using multi-gauge boson production.

  12. Direct measurement of the W boson width

    International Nuclear Information System (INIS)

    Abe, F.; Albrow, M.G.; Amidei, D.; Antos, J.; Anway-Wiese, C.; Apollinari, G.; Areti, H.; Atac, M.; Auchincloss, P.; Azfar, F.; Azzi, P.; Bacchetta, N.; Badgett, W.; Bailey, M.W.; Bao, J.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Bartalini, P.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Bensinger, J.; Benton, D.; Beretvas, A.; Berge, J.P.; Bertolucci, S.; Bhatti, A.; Biery, K.; Binkley, M.; Bird, F.; Bisello, D.; Blair, R.E.; Blocker, C.; Bodek, A.; Bokhari, W.; Bolognesi, V.; Bortoletto, D.; Boswell, C.; Boulos, T.; Brandenburg, G.; Buckley-Geer, E.; Budd, H.S.; Burkett, K.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Cammerata, J.; Campagnari, C.; Campbell, M.; Caner, A.; Carithers, W.; Carlsmith, D.; Castro, A.; Cen, Y.; Cervelli, F.; Chapman, J.; Cheng, M.; Chiarelli, G.; Chikamatsu, T.; Cihangir, S.; Clark, A.G.; Cobal, M.; Contreras, M.; Conway, J.; Cooper, J.; Cordelli, M.; Crane, D.; Cunningham, J.D.; Daniels, T.; DeJongh, F.; Delchamps, S.; Dell'Agnello, S.; Dell'Orso, M.; Demortier, L.; Denby, B.; Deninno, M.; Derwent, P.F.; Devlin, T.; Dickson, M.; Donati, S.; Drucker, R.B.; Dunn, A.; Einsweiler, K.; Elias, J.E.; Ely, R.; Engels, E. Jr.; Eno, S.; Errede, D.; Errede, S.; Fan, Q.; Farhat, B.; Fiori, I.; Flaugher, B.; Foster, G.W.; Franklin, M.; Frautschi, M.; Freeman, J.; Friedman, J.; Frisch, H.; Fry, A.; Fuess, T.A.; Fukui, Y.; Funaki, S.; Gagliardi, G.; Galeotti, S.; Gallinaro, M.; Garfinkel, A.F.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Glenzinski, D.; Gold, M.; Gonzalez, J.; Gordon, A.; Goshaw, A.T.; Goulianos, K.; Grassmann, H.; Grewal, A.; Grieco, G.; Groer, L.; Grosso-Pilcher, C.; Haber, C.; Hahn, S.R.; Hamilton, R.; Handler, R.; Hans, R.M.; Hara, K.; Harral, B.; Harris, R.M.; Hauger, S.A.; Hauser, J.; Hawk, C.; Heinrich, J.; Cronin-Hennessy, D.; Hollebeek, R.; Holloway, L.; Hoelscher, A.

    1995-01-01

    This Letter describes a direct measurement of the W boson decay width, Γ(W), using the high-mass tail of the transverse mass spectrum of W→eν decays recorded by the Collider Detector at Fermilab. We find Γ(W)=2.11±0.28(stat) ± 0.16(syst) GeV and compare this direct measurement with indirect means of obtaining the width

  13. Computational Complexity of Bosons in Linear Networks

    Science.gov (United States)

    2017-03-01

    source is quiet—lacking higher-order photon terms that introduce noise —allowing the direct exploration of the effect of partial distinguishability in...Introduction: A core tenet of computer science is the Extended Church -Turing thesis, which states that all computational problems that are efficiently...the Extended Church -Turing thesis. The most experimentally accessible boson is the photon: to date full BOSONSAMPLING protocols have been performed

  14. Anatomizing Exotic Production of the Higgs Boson

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Felix [Fermilab

    2014-07-10

    We discuss exotic production modes of the Higgs boson and how their phenomenology can be probed in current Higgs analyses. We highlight the importance of differential distributions in disentangling standard production mechanisms from exotic modes. We present two model benchmarks for exotic Higgs production arising from chargino-neutralino production and study their impact on the current Higgs dataset. As a corollary, we emphasize that current Higgs coupling fits do not fully explore the space of new physics deviations possible in Higgs data.

  15. Measurement of the W boson mass

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, Victor Mukhamedovich; /Dubna, JINR; Abbott, Braden Keim; /Oklahoma U.; Abolins, Maris A.; /Michigan State U.; Acharya, Bannanje Sripath; /Tata Inst.; Adams, Mark Raymond; /Illinois U., Chicago; Adams, Todd; /Florida State U.; Aguilo, Ernest; /Alberta U. /Simon Fraser U. /York U., Canada /McGill U.; Ahsan, Mahsana; /Kansas State U.; Alexeev, Guennadi D.; /Dubna, JINR; Alkhazov, Georgiy D.; /St. Petersburg, INP; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls /Northeastern U.

    2009-08-01

    The authors present a measurement of the W boson mass in W {yields} e{nu} decays using 1 fb{sup -1} of data collected with the D0 detector during Run II of the Fermilab Tevatron collider. With a sample of 499830 W {yields} e{nu} candidate events, they measure M{sub W} = 80.401 {+-} 0.043 GeV. This is the most precise measurement from a single experiment.

  16. Measurement of the W boson mass

    NARCIS (Netherlands)

    Abazov, V.M.; et al., [Unknown; Ancu, L.S.; de Jong, S.J.; Filthaut, F.; Galea, C.F.; Hegeman, J.G.; Houben, P.; Meijer, M.M.; Svoisky, P.; van den Berg, P.J.; van Leeuwen, W.M.

    2009-01-01

    We present a measurement of the W boson mass in W -> e nu decays using 1 fb(-1) of data collected with the D0 detector during Run II of the Fermilab Tevatron collider. With a sample of 499830 W -> e nu candidate events, we measure M-W=80.401 +/- 0.043 GeV. This is the most precise measurement from a

  17. Scattering amplitudes of regularized bosonic strings

    Science.gov (United States)

    Ambjørn, J.; Makeenko, Y.

    2017-10-01

    We compute scattering amplitudes of the regularized bosonic Nambu-Goto string in the mean-field approximation, disregarding fluctuations of the Lagrange multiplier and an independent metric about their mean values. We use the previously introduced Lilliputian scaling limit to recover the Regge behavior of the amplitudes with the usual linear Regge trajectory in space-time dimensions d >2 . We demonstrate a stability of this minimum of the effective action under fluctuations for d <26 .

  18. Electroweak Measurements with Multiple Gauge Boson Interactions

    CERN Document Server

    Sood, A; The ATLAS collaboration

    2014-01-01

    This talk presents measurements from ATLAS and CMS that are sensitive interactions between EW gauge bosons. Included analyses sensitive to triple gauge couplings are EW $Z$ production, and $VV^{\\prime}$ cross sections where $V=W/Z$ and $V^{\\prime}=W/Z/\\gamma$, while $\\gamma\\gamma\\rightarrow WW$, $WV\\gamma$ where $V=W/Z$, and $W^{\\pm}W^{\\pm}jj$ production are present as probes of quartic gauge couplings.

  19. Quantum Kinematics of Bosonic Vortex Loops

    International Nuclear Information System (INIS)

    Goldin, G.A.; Owczarek, R.; Sharp, D.H.

    1999-01-01

    Poisson structure for vortex filaments (loops and arcs) in 2D ideal incompressible fluid is analyzed in detail. Canonical coordinates and momenta on coadjoint orbits of the area-preserving diffeomorphism group, associated with such vortices, are found. The quantum space of states in the simplest case of ''bosonic'' vortex loops is built within a geometric quantization approach to the description of a quantum fluid. Fock-like structure and non-local creation and annihilation operators of quantum vortex filaments are introduced

  20. Higgs boson studies at the Tevatron

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, L.; Abbott, B.; Abazov, V. M.; Kupčo, Alexander; Lokajíček, Miloš; Lysák, Roman

    2013-01-01

    Roč. 88, č. 5 (2013), "052014-1"-"052014-29" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG12006 Institutional support: RVO:68378271 Keywords : Higgs particle * mass * vector boson * gluon * fusion * Batavia TEVATRON Coll * CDF * DZERO * anti-p p * interaction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 4.864, year: 2013