WorldWideScience

Sample records for boronated porphyrin photosensitizer

  1. Photosensitization of liposomes by porphyrins

    Energy Technology Data Exchange (ETDEWEB)

    Grossweiner, L I; Goyal, G C

    1984-01-01

    Lipid peroxidation was photosensitized in egg phosphatidylcholine (EPC) liposomes by hematoporphyrin (HP), hematoporphyrin derivative (HpD) and uroporphyrin I (Uro-I). Photosensitization by HP was type II via singlet oxygen (/sup 1/O/sub 2/) for the monomeric and dimeric states and type I for aggregated HP. Uro-I was an efficient type II /sup 1/O/sub 2/ photosensitizer. The HpD fraction enriched in the active biological component (HpD-A) was a type II /sup 1/O/sub 2/ photosensitizer at high and low concentrations. The spectral differences between HpD-A in buffer and solubilized in small EPC liposomes are attributed to a conformation change of a key dimer constituent from a folded to a planar geometry. The implications of the results for the action mechanism in photoradiation therapy of tumors with these porphyrins are discussed. 73 references, 1 figure, 5 tables.

  2. Synthesis, spectroscopy and photosensitizing properties of hydroxynitrophenyl porphyrins

    Energy Technology Data Exchange (ETDEWEB)

    Maestrin, Ana Paula J.; Tedesco, Antonio Claudio; Neri, Claudio R.; Gandini, Maria Elisa F.; Serra, Osvaldo A.; Iamamoto, Yassuko [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Inst. de Quimica]. E-mail: osaserra@usp.br

    2004-10-01

    The hydroxynitrophenyl porphyrins, 5,10,15,20-tetrakis(2-hydroxy-5-nitrophenyl)porphyrin and 5-mono(carboxyphenyl)-10,15,20-tris(2-hydroxy-5-nitrophenyl)porphyrin described in this work were prepared through Adler's method. These compounds were characterized by {sup 1}H NMR and light absorption and emission spectroscopy in the visible region. In order to demonstrate the involvement of {sup 1}O{sub 2} production, the uric (UA) acid test was carried out, which considers the decrease in the absorbance of UA at 293 nm following laser light irradiation of a solution containing UA and a photosensitizer. The results obtained demonstrate that these hydroxynitrophenyl porphyrins can be considered as promising photosensitizers in PDT. (author)

  3. Tumor localization of boronated porphyrins in an intracerebral model of glioma

    International Nuclear Information System (INIS)

    Hill, J.S.; Kaye, A.H.; Gonzales, M.F.; Stylli, S.S.; Nakamura, Y.; Kahl, S.B.; Vardaxis, N.J.; Johnson, C.I.

    1992-01-01

    Treatment of the most common cerebral tumor, cerebral glioma, is unsatisfactory as the tumor recurs due to inadequate local control. Photodynamic therapy (PDT) and Boron Neutron Capture Therapy (BNCT) offer some promise as adjuvant treatments for cerebral glioma. Several clinical trials have been reported utilizing PDT and BNCT to treat the high grade glioma, glioblastoma multiforme. The authors have investigated the pharmacokinetic tissue distribution of the photosensitizer Haematoporphyrin derivative (HpD), the nido carboranyl porphyrin, boron tetraphenyl porphine (BTPP) and the closo carboranyl monomeric protoporphyrin (BOPP) in CBA mice bearing the intracerebral C6 glioma xenograft

  4. Biodistribution, toxicity and efficacy of a boronated porphyrin for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Miura, Michiko; Micca, P.; Fairchild, R.; Slatkin, D.; Gabel, D.

    1992-01-01

    Boron-containing porphyrins may be useful for boron neutron capture therapy (BNCT) in the treatment of brain tumors. Porphyrins have been shown to accumulate in tumor tissue and to be essentially excluded from normal brain. However, problems of toxicity may prevent some boron-containing porphyrins from being considered for BNCT. The authors have synthesized the boronated porphyrin 2,4-bis-vinyl-o-nidocarboranyl-deuteroporphyrin IX (VCDP). Preliminary studies in tumor-bearing mice showed considerable uptake of boron at a total dose of 150 μg/gbw with low mortality. They now report that a total dose to mice of ∼ 275 μg VCDP/gbw administered in multiple intraperitoneal (ip) injections can provide 40-50μg B per gram of tumor with acceptable toxicity. Toxicity experiments and a preliminary trial of BNCT in mice given such doses are also reported

  5. Role of complement in porphyrin-induced photosensitivity

    International Nuclear Information System (INIS)

    Lim, H.W.; Gigli, I.

    1981-01-01

    Addition of porphyrins to sera of guinea pigs in vitro, followed by irradiation with 405 nm light, resulted in dose-dependent inhibitions of hemolytic activity of complement. With guinea pig as an animal model, we also found that systemically administered porphyrins, followed by irradiation with 405 nm light, resulted in dose-dependent inhibition of CH50 in vivo. The erythrocytes from porphyrin-treated guinea pigs showed an increased susceptibility to hemolysis induced by 405 nm irradiation in vitro. Clinical changes in these animals were limited to light-exposed areas and consisted of erythema, crusting, and delayed growth of hair. Histologically, dermal edema, dilation of blood vessels, and infiltration of mononuclear and polymorphonuclear cells were observed. Guinea pigs irradiated with ultraviolet-B developed erythema, but had no alteration of their complement profiles. It is suggested that complement products may play a specific role in the pathogenesis of the cutaneous lesions of some porphyrias

  6. Photokinetic and ultrastructural studies on porphyrin photosensitization of HeLa cells

    International Nuclear Information System (INIS)

    Milanesi, Carla; Sorgato, Fiorella; Jori, Giulio

    1989-01-01

    Liposome-bound haematoporphyrin or haematoporphyrin dimethylester, as well as haematoporphyrin dissolved in phosphate-buffered saline, were added to HeLa cell monolayers at a dose of 1 μg of porphyrin per 10 5 cells. After 2 min or 20 min incubation liposome-bound porphyrins were accumulated by cells in an about two-fold larger amount than the water-dissolved haematoporphyrin. This caused a more efficient photosensitization of HeLa cells by liposome-delivered porphyrins upon illumination with 366 nm light. Ultrastructural studies of HeLa cells, which had been incubated in a physiological medium for 24 h after the end of irradiation, showed that liposomal porphyrins induce an early and extensive endocytoplasmic damage, leading to mitochondrial swelling and vesiculation; changes of permeability of the cytoplasmic membrane are also evident, especially in the case of haematoporphyrin dimethylester. On the other hand, water-dissolved haematoporphyrin predominantly photosensitizes damage of the plasma membrane. The different pattern of cell photodamage probably reflects a different subcellular distribution of the photosensitizing drugs. (author)

  7. New approaches to novel boronated porphyrins for neutron capture therapy

    International Nuclear Information System (INIS)

    Kahl, S.B.

    1986-01-01

    The use of boon compounds in the treatment of human cancer is based on the unique ability of nonradioactive 10 B nuclei to absorb thermal neutrons. The prompt nuclear reactions, which occur in neutron absorption, deliver a dose of nearly 2.8 MeV only in the vicinity of boron-containing cells, since the nuclear garments produced (alpha particles and recoil lithium atoms) travel only 10 to 15 μm. The practical, clinical use of this technique to date has been limited by the authors inability to target boron-containing compounds specifically to tumor cells in amounts sufficient for therapy and in a chemical form that has an acceptable level of toxicity. Porphyrins are one important and large class of compounds that are known to accumulate in practically all tumor systems yet examined. Such site-specific accumulation is not known to be based on any currently identifiable selective transport mechanism and yet is observed for both natural and synthetic porphyrins. Tetraphenylporphine sulfonate (TPPS) has been shown by Fairchild et al. to be an ideal model compound for assessing porphyrin uptake, and suitably boronated tetraphenyl porphine might be expected to behave similarly. This report describes the synthesis, properties, and preliminary biodistribution of such compounds

  8. New carbon-carbon linked amphiphilic carboranyl-porphyrins as boron neutron capture agents

    International Nuclear Information System (INIS)

    Vicente, M.G.H.; Wickramasinghe, A.; Shetty, S.J.; Smith, K.M.

    2000-01-01

    Novel amphiphilic carboranyl-porphyrins have been synthesized for Boron Neutron Capture Therapy (BNCT). These compounds have carbon-carbon bonds between the carborane residues and the porphyrin meso-phenyl groups, and contain 28-31% boron by weight . (author)

  9. Polystyrene nanofiber materials modified with an externally bound porphyrin photosensitizer

    Czech Academy of Sciences Publication Activity Database

    Henke, P.; Lang, Kamil; Kubát, Pavel; Sýkora, Jan; Šlouf, Miroslav; Mosinger, Jiří

    2013-01-01

    Roč. 5, č. 9 (2013), s. 3776-3783 ISSN 1944-8244 R&D Projects: GA ČR GAP208/10/1678; GA ČR GBP208/12/G016; GA ČR GA13-12496S Institutional support: RVO:61388980 ; RVO:61388955 ; RVO:61389013 Keywords : nanofiber * porphyrin * singlet oxygen * adsorption * photooxidation * antibacterial Subject RIV: CA - Inorganic Chemistry; CD - Macromolecular Chemistry (UMCH-V); CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 5.900, year: 2013

  10. In vitro and in vivo analysis of boronated porphyrins

    International Nuclear Information System (INIS)

    Edwards, Benjamin; Matthews, Kristin; Hou, Yongjin; Vicente, M.G.H.; Autry-Conwell, Susan; James, Boggan

    2000-01-01

    New series of meso-phenylporphyrins linked through carbon-carbon bonds to nido-carboranyl groups, and containing 26-31% boron by weight, have been reported. Dark toxicity, photo-toxicity, and measurements of uptake and efflux were performed using mouse, rat, and human malignant cell lines. Drug uptake and retention by log phase cells are shown by spectrophotometry (porphyrins) and ICP-MS (boron) of cellular extracts to be concentration and time dependent, and to be influenced by plasma lipoproteins. Plasma pharmacokinetics and tissues biodistribution were studied in adult male Fisher 344 rats with bilateral subcutaneous 9L tumors injected (2.2 ml, 2 mM i.v.) with carboranyl porphyrin solutions. Whole blood, brain, liver, spleen, skin and tumors were collected at 2, 8, 18, 24 and 48 hours post-injection. Blood cells were separated from plasma and stored frozen with the other tissues. Tissue boron content was determined quantitatively by ICP-MS analysis following microwave digestion of carefully weighed samples. (author)

  11. Trifluoromethyl Boron Dipyrromethene Derivatives as Potential Photosensitizers for Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Jian-Yong Liu

    2018-02-01

    Full Text Available In this study, two novel boron dipyrromethene-based photosensitizers (BDP3 and BDP6 substituted with three or six trifluoromethyl groups have been synthesized and characterized with various spectroscopic methods, and their photo-physical, photo-chemical, and photo-biological properties have also been explored. The two photosensitizers are highly soluble and remain nonaggregated in N,N-dimethylformamide as shown by the intense and sharp Q-band absorption. Under red light irradiation (λ = 660 nm, 1.5 J/cm2, both photosensitizers show high and comparable cytotoxicity towards HepG2 human hepatocarcinoma and HeLa human cervical carcinoma cells with IC50 values of 0.42–0.49 μM. The high photocytotoxicity of BDP3 and BDP6 can be due to their high cellular uptake and low aggregation tendency in biological media, which result in a high efficiency to generate reactive oxygen species inside the cells. Confocal laser fluorescence microscopic studies indicate that they have superior selective affinities to the mitochondria and lysosomes of HepG2 and HeLa cells. The results show that these two trifluoromethyl boron dipyrromethene derivatives are potential anticancer agents for photodynamic therapy.

  12. Recombination and photosensitivity centres in boron nitride irradiated with ions

    International Nuclear Information System (INIS)

    Kabyshev, A.; Konusov, F.; Lopatin, V.

    2001-01-01

    The physical-chemical processes, taking place during the irradiation of dielectrics with ions distort the electron structure of the compounds and generate additional localise state in the forbidden zone (FZ). Consequently, the semiconductor layer with the specific surface density of σ ≥ 10 -10 S/ forms on the surface of the dielectric. In addition to his, the high concentration of the radiation-induced defects changes the optical and photoelectric properties of the materials and also the energy characteristics. Analysis of the photoelectric properties indicates that the recombination processes take part in electric transport. These processes restricted the increase of the photosensitivity and changing the kinetics of relaxation of photo conductivity (σ hv ). The practical application of the boron nitride (BN) the in the thermonuclear systems (for example, Ref. 7), stimulates research into the reasons for the deceleration of its properties under the effect of radiation of various types. The conductivity of non-irradiated boron nitride is of the electron-hole nature with a large fraction of the activation component in exchange of the charge carriers between the levels of the defects and the forbidden zones. On the basis of the correlation of the energy and kinetic parameters of luminescence and , the authors of Ref. 8 constructed a model of electron transfers accompanying the electric transport of the boron nitride. In addition to ion-thermal modification, the conductivity of boron nitride is also of the electron-hole nature and is accompanied by luminescence. Examination of the characteristics of luminescence may be useful for obtaining more information on the transport mechanism. In this work, in order to clarify the main parameters of the forbidden band, detailed investigations were carried out into the spectrum of the electronic states of radiation defects which determine the photoelectric and luminescence properties of the modified boron nitride. The

  13. Boronated porphyrins in NCT: Results with a new potent tumor localizer

    International Nuclear Information System (INIS)

    Kahl, S.B.; Koo, M.S.; Laster, B.H.; Fairchild, R.G.

    1988-01-01

    Several chemical methods are available for the solubilization of boronated porphyrins. We have previously reported the tumor localization of nido carboranyl porphyrins in which the icosahedral carborane cages have been opened to give B 9 C 2 anions. One of these species has shown tumor boron levels of nearly 50 μg B/g when delivered by week-long subcutaneous infusions. We report here recent in vivo experiments with a new, highly water-soluble porphyrin based on the hematoporphyrin-type of compound in which aqueous solubility is achieved using the two propionic acid side chains of the ''natural'' porphyrin frame. 7 refs

  14. Endogenous and exogenous porphyrins as photosensitizers in the Hep-2 human carcinoma cell line.

    Science.gov (United States)

    Alvarez, M G; Milanesio, M; Rivarola, V; Durantini, E; Batlle, A; Fukuda, H

    2009-07-01

    The photodynamic activity of three photosensitizers (PS): AL-induced PPIX, the porphyrin derivative 5-(4-trimethylammoniumphenyl)-10, 5, 20-tris (2,4,6- trimethoxyphenyl) porphyrin (CP) and the molecular dyad porphyrin-C(60) (P-C(60)), the last two incorporated into liposomal vesicles, was evaluated on Hep-2 human larynx carcinoma cell line. ALA-induced accumulation of the endogenous PS PPIX, reached saturation values between 5 and 24 h incubation time; the maximal PPIX content was 5.7 nmol/106 cells. The same intracellular level was accumulated when the cationic porphyrin CP was used, while the amount of P-C(60) attained was 1.5 nmol/106 cells. Under violet-blue exciting light, the fluorescence of PPIX and P-C(60) was found in the cytoplasm showing a granular appearance indicating lysosomal localization. CP was mainly detected as a filamentous pattern characteristic of mitochondrial localization. No dark cytotoxicity was observed using 1mM ALA, 5 microM CP and 1 microM P-C(60) after 24 h incubation. Cell morphology was analyzed using Hoechst-33258, toluidine blue staining, TUNEL assay and DNA fragmentation, 24 h after irradiation with 54 J/cm2. When photosensitized with ALA and P-C(60), chromatine condensation characteristic of apoptotic cell death was found; instead, 58 % of necrotic cells were observed with CP. The results show that in the Hep-2 cells, of the three PS analyzed, the molecular dyad P-C(60) was more efficient than CP and PPIX, and confirm that PDT can induce different mechanisms of cell death depending on the PS and the irradiation dose.

  15. Effect of zinc insertion and hydrophobicity on the membrane interactions and PDT activity of porphyrin photosensitizers.

    Science.gov (United States)

    Pavani, Christiane; Uchoa, Adjaci F; Oliveira, Carla S; Iamamoto, Yassuko; Baptista, Maurício S

    2009-02-01

    A series of photosensitizers (PS), which are meso-substituted tetra-cationic porphyrins, was synthesized in order to study the role of amphiphilicity and zinc insertion in photodynamic therapy (PDT) efficacy. Several properties of the PS were evaluated and compared within the series including photophysical properties (absorption spectra, fluorescence quantum yield Phif, and singlet oxygen quantum yield PhiDelta), uptake by vesicles, mitochondria and HeLa cells, dark and phototoxicity in HeLa cells. The photophysical properties of all compounds are quite similar (Phifporphyrin ring result in higher vesicle and cell uptake. Binding in mitochondria is dependent on the PS lipophilicity and on the electrochemical membrane potential, i.e., in uncoupled mitochondria PS binding decreases by up to 53%. The porphyrin substituted with octyl groups (TC8PyP) is the compound that is most enriched in mitochondria, and its zinc derivative (ZnTC8PyP) has the highest global uptake. The stronger membrane interaction of the zinc-substituted porphyrins is attributed to a complexing effect with phosphate groups of the phospholipids. Zinc insertion was also shown to decrease the interaction with isolated mitochondria and with the mitochondria of HeLa cells, an effect that has been explained by the particular characteristics of the mitochondrial internal membrane. Phototoxicity was shown to increase proportionally with membrane binding efficiency, which is attributed to favorable membrane interactions which allow more efficient membrane photooxidation. For this series of compounds, photodynamic efficiency is directly proportional to the membrane binding and cell uptake, but it is not totally related to mitochondrial targeting.

  16. Properties of halogenated and sulfonated porphyrins relevant for the selection of photosensitizers in anticancer and antimicrobial therapies.

    Directory of Open Access Journals (Sweden)

    Barbara Pucelik

    Full Text Available The impact of substituents on the photochemical and biological properties of tetraphenylporphyrin-based photosensitizers for photodynamic therapy of cancer (PDT as well as photodynamic inactivation of microorganisms (PDI was examined. Spectroscopic and physicochemical properties were related with therapeutic efficacy in PDT of cancer and PDI of microbial cells in vitro. Less polar halogenated, sulfonamide porphyrins were most readily taken up by cells compared to hydrophilic and anionic porphyrins. The uptake and PDT of a hydrophilic porphyrin was significantly enhanced with incorporation in polymeric micelles (Pluronic L121. Photodynamic inactivation studies were performed against Gram-positive (S. aureus, E. faecalis, Gram-negative bacteria (E. coli, P. aeruginosa, S. marcescens and fungal yeast (C. albicans. We observed a 6 logs reduction of S. aureus after irradiation (10 J/cm2 in the presence of 20 μM of hydrophilic porphyrin, but this was not improved with incorporation in Pluronic L121. A 2-3 logs reduction was obtained for E. coli using similar doses, and a decrease of 3-4 logs was achieved for C. albicans. Rational substitution of tetraphenylporphyrins improves their photodynamic properties and informs on strategies to obtain photosensitizers for efficient PDT and PDI. However, the design of the photosensitizers must be accompanied by the development of tailored drug formulations.

  17. Response of the oral mucosa to porphyrin mediated boron neutron capture therapy

    International Nuclear Information System (INIS)

    Morris, G.M.

    2003-01-01

    Pre-clinical studies are now in progress to develop boron neutron capture therapy (BNCT) modalities for the treatment of head and neck carcinomas. BNCT is a bimodal therapy which involves the administration of a boron-10 enriched compound, that accumulates preferentially in tumours, prior to irradiation with low energy neutrons. These neutrons are captured by boron-10 atoms to produce a highly localised radiation exposure. More recently, it has been demonstrated that various boronated porphyrins can target a variety of tumours. Of the porphyrins evaluated to date, copper tetracarboranylphenyl porphyrin (CuTCPH) is a strong candidate for potential clinical evaluation. It has extremely high specificity for a variety of tumour models. Therapeutic efficacy of CuTCPH mediated BNCT has been demonstrated in pre-clinical studies using the murine EMT-6 carcinoma model. In the present investigation the response of the oral mucosa to CuTCPH mediated boron neutron capture (BNC) irradiation was assessed using a standard rat model (ventral tongue). Single exposure irradiation was carried out on the thermal neutron beam at the Brookhaven Medical Research Reactor, at 3 days after the final injection of the boronated porphyrin. The impact of CuTCPH mediated BNC irradiation on oral mucosa at therapeutically effective exposure times, assessed using the ventral tongue model, was minimal. This was primarily due to the fact that blood boron levels (from CuTCPH) were very low at the time of irradiation. Analysis of the dose-effect data for CuTCPH gave a compound biological effectiveness (CBE) factor of 2.5. It can be concluded that, although, the CBE factor (calculated using blood boron concentrations) was relatively high, CuTCPH mediated BNC irradiation should not cause significant damage at clinically relevant radiation doses. This is because blood boron levels would be very low at the time of irradiation

  18. EXPERIMENTAL CONFIRMATION FOR SELECTION OF IRRADIATION REGIMENS FOR INTRAPERITONEAL PHOTODYNAMIC THERAPY WITH PORPHYRIN AND PHTHALOCYANINE PHOTOSENSITIZERS

    Directory of Open Access Journals (Sweden)

    A. A. Pankratov

    2017-01-01

    Full Text Available Optimized irradiation regimens for intraperitoneal photodynamic therapy with porphyrin and phthalocyanine photosensitizers are determined in in vitro and in vivo studies.The experimental  study on НЕр2 cell line showed that reduce of power density for constant  light dose increased significantly the efficacy of photodynamic therapy (the reduce of power density from 20-80 mW/cm2 to 10 mW/cm2 had the same results (90% cell death for half as much concentration of the photosensitizer.The obtained results were confirmed in vivo in mice with grafted tumor S-37. For light dose of 90 J/cm2  and power density of 25 mW/cm2 none of animals in the experimental  group had total resorption of the tumor. For the same light dose and decrease  of power density to 12 mW/cm2  total tumor resorption was achieved in 34% of animals, 66% of animals died from phototoxic  shock. For twofold decrease  of light dose – to 45 J/cm2  with the same low-intensity power density (12 mW/cm2 we managed total tumor resorption in 100% of animals.In the following studies of optimized irradiation regimen for intrapleural photodynamic therapy the reaction of intact peritoneum of rats on photodynamic exposure was assessed and optimized parameters of laser irradiation, which did not cause necrosis and intense inflammatory reaction of peritoneum, were determined – light dose of 10 J/cm2  with power density of mW/cm2.Thus, the reasonability for use of low-intensity regimens of irradiation for intraperitoneal photodynamic therapy was confirmed experimentally with possibility of high efficacy of treatment without inflammatory reactions of peritoneum.

  19. Influence of aqueous media properties on aggregation and solubility of four structurally related meso-porphyrin photosensitizers evaluated by spectrophotometric measurements.

    Science.gov (United States)

    Sobczyński, J; Tønnesen, H H; Kristensen, S

    2013-02-01

    Porphyrin photosensitizers tend to aggregate in aqueous solutions even in the micromolar concentration range. This is a challenge during formulation of e.g., parenteral preparations for photodynamic cancer therapy, or preparations for local or topical administration in antimicrobial photodynamic therapy. Monomerization is essential to achieve biocompatible drug formulations of high bioavailability and physiological response (i.e., photoreactivity) and low toxicity. The aggregation and solubilization of four structurally related meso-tetraphenyl porphyrin photosensitizers with nonionic (4-hydroxy), anionic (4-sulphonate; 4-carboxy) and cationic (4-trimethylanilinium) substituents were evaluated in various vehicles by use of UV-Vis spectroscopy. Substituents, overall charge and charge distribution influenced the pKa-values and interaction of the porphyrins with different solvents, excipients and impurities. Modification of medium polarity and solubilization by the nonionic surfactant Tween 80 adjusted the acid-base equilibria and increased the solubility by reduction of porphyrin aggregation. The selected porphyrins were sensitive towards ionic strength, temperature and inorganic impurities to various extents. The results will be further used during development of parenteral and topical formulations of porphyrin photosensitizers for use in photodynamic therapy of cancer and bacterial infections.

  20. Comparison of two photosensitizers Al(III) phthalocyanine chloride tetrasulfonic acid and meso-tetrakis(4-sulfonatophenyl)porphyrin in the photooxidation of n-butylparaben

    Czech Academy of Sciences Publication Activity Database

    Gmurek, M.; Kubát, Pavel; Mosinger, Jiří; Miller, J. S.

    2011-01-01

    Roč. 223, č. 1 (2011), s. 50-56 ISSN 1010-6030 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : photosensitization * porphyrin * phthalocyanine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.421, year: 2011

  1. Porphyrins

    Science.gov (United States)

    Gotelli, George R.; Wall, Jeffrey H.; Kabra, Pokar M.; Marton, Laurence J.

    Historically the term porphyria has been used since it was coined in 1871 to describe a purple colored material extracted from pathological feces (1). The first case of porphyria was reported in 1874, (2, 3), but until the 1930 Nobel Prize winning work of Hans Fischer on the synthesis of protoporphyrin, there was little more than academic interest in porphyrin analysis. During the forty years between 1930 and 1970, the biosynthetic pathways leading to the formation of heme, and the details of porphyrin metabolism, were elucidated. During this time quantitative methods for porphyrins in biological fluids used complex and laborious solvent extraction techniques, requiring large sample volumes and hours to complete. We now know that these methods only partially separated the complex mixture of porphyrins found in biological fluids. These solvent extraction procedures fractionated the porphyrins into two broad groups, uroporphyrins (octacarboxylic) and coproporphyrins (tetracarboxylic). However, intermediate carboxylated porphyrin containing 2, 3, 5, 6, and 7 carboxyl groups are now known to exist in normal and pathlogical excreta, which were not differentiated, but which were included in the two broad uroporphyrin and copropophyrin groups.

  2. Nanoparticles with Embedded Porphyrin Photosensitizers for Photooxidation Reactions and Continuous Oxygen Sensing

    Czech Academy of Sciences Publication Activity Database

    Kubát, Pavel; Henke, P.; Berzediová, V.; Štěpánek, M.; Lang, Kamil; Mosinger, Jiří

    2017-01-01

    Roč. 9, č. 41 (2017), s. 36229-36238 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GA16-15020S Institutional support: RVO:61388955 ; RVO:61388980 Keywords : photooxidation * polystyrene nanoparticles * porphyrins Subject RIV: CF - Physical ; Theoretical Chemistry; CA - Inorganic Chemistry (UACH-T) OBOR OECD: Physical chemistry; Inorganic and nuclear chemistry (UACH-T) Impact factor: 7.504, year: 2016

  3. Nanoparticles with Embedded Porphyrin Photosensitizers for Photooxidation Reactions and Continuous Oxygen Sensing

    Czech Academy of Sciences Publication Activity Database

    Kubát, Pavel; Henke, P.; Berzediová, V.; Štěpánek, M.; Lang, Kamil; Mosinger, Jiří

    2017-01-01

    Roč. 9, č. 41 (2017), s. 36229-36238 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GA16-15020S Institutional support: RVO:61388955 ; RVO:61388980 Keywords : photooxidation * polystyrene nanoparticles * porphyrins Subject RIV: CF - Physical ; Theoretical Chemistry ; CA - Inorganic Chemistry (UACH-T) OBOR OECD: Physical chemistry ; Inorganic and nuclear chemistry (UACH-T) Impact factor: 7.504, year: 2016

  4. Prospects of radical-interacting porphyrin photosensitizers and their possible use in photodynamic therapy

    Science.gov (United States)

    Gal, Dezso; Shuliakovskaya, T.; Vidoczy, Tamas; Elzemzam, Saleh; Vasvari, Gabor; Suemegi, L.; Kuti, Zsolt

    1994-03-01

    Based on literature data obtained in various fields with respect to studies on the role of free radicals in biology and on the kinetics of triplet-doublet interactions, it is suggested that excited photosensitizers react in vivo with free radicals formed in malignant tissues during photodynamic therapy (PDT) and this interaction competes with sensitizer-radical + molecule and the singlet oxygen mediated effects. Experimental results by laser flash photolysis and electron spin resonance revealed that sensitizer applied in PDT react with stable free radicals presumably both by energy transfer and electron transfer.

  5. An action spectrum for blue and near ultraviolet inactivation of Propionibacterium acnes; with emphasis on a possible porphyrin photosensitization

    International Nuclear Information System (INIS)

    Kjeldstad, B.; Johnsson, A.

    1986-01-01

    Propionibacterium acnes (P. acnes), grown on Eagles medium with different pH, were irradiated with monochromatic light in the range 320 to 440 nm. Different pH leads to different porphyrin concentrations in the cells. The light sensitivity of the bacteria was estimated from the reduction in their ability to form colonies after radiation. The sensitivity was highest for the lowest wavelength (320 nm), and decreased continuously with increasing wavelength up to 380 nm. In the region between 380 and 440 nm there was a second maximum (at 415 nm) which corresponds to the maximum absorption of the fluorescing porphyrins in P. acnes. The sensitivity to 415 nm light was found to be dependent on the endogenous porphyrin concentration in the cells, while the sensitivity to 320 nm radiation was independent of the amount of porphyrin present. These results indicate that porphyrins produced by the bacteria are important for the light sensitivity of these bacteria. (author)

  6. Toxicity, biodistribution, and convection-enhanced delivery of the boronated porphyrin BOPP in the 9L intracerebral rat glioma model

    International Nuclear Information System (INIS)

    Ozawa, Tomoko; Afzal, Javed; Lamborn, Kathleen R.; Bollen, Andrew W.; Bauer, William F.; Koo, Myoung-Seo; Kahl, Stephen B.; Deen, Dennis F.

    2005-01-01

    Purpose: To investigate the toxicity, biodistribution, and convection-enhanced delivery (CED) of a boronated porphyrin (BOPP) that was designed for boron neutron capture therapy and photodynamic therapy. Methods and Materials: For the toxicity study, Fischer 344 rats were injected with graded concentrations of BOPP (35-100 mg/kg) into the tail vein. For boron biodistribution studies, 9L tumor-bearing rats received BOPP either systematically (intravenously) or locally. Results: All rats that received 70 mg/kg BOPP and 70% of rats that received ≤60 mg/kg BOPP i.v. either had to be euthanized or died within 4 days of injection. In the biodistribution study, boron levels were relatively high in liver, kidney, spleen, and adrenal gland tissue, and moderate levels were found in all other organs. The maximum tumor boron concentration was 21.4 μg/g at 48 h after i.v. injection; this concentration of boron in brain tumors is at the low end of the range considered optimal for therapy. In addition, the tumor/blood ratio (approximately 1.2) was not optimal. When BOPP was delivered directly into intracerebral 9L tumors with CED, we obtained tumor boron concentrations much greater than those obtained by i.v. injection. Convection-enhanced delivery of 1.5 mg BOPP produced an average tumor boron level of 519 μg/g and a tumor/blood ratio of approximately 1850:1. Conclusions: Our study demonstrates that changing the method of BOPP delivery from i.v. to CED significantly enhances the boron concentration in tumors and produces very favorable tumor/brain and tumor/blood ratios

  7. Binding of palladium (II) 5, 10, 15, 20-tetrakis (4-sulfonatophenyl) porphyrin to a lectin for photosensitizer targeted delivery

    Czech Academy of Sciences Publication Activity Database

    Bogoeva, V.; Petrova, L.; Kubát, Pavel

    2015-01-01

    Roč. 153, DEC 2015 (2015), s. 276-280 ISSN 1011-1344 R&D Projects: GA ČR GA13-12496S Institutional support: RVO:61388955 Keywords : palladium porphyrin * concavalin A * fluorescence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.035, year: 2015

  8. Electron transfer between a zinc porphyrin photo-sensitized in the visible, and various acceptors, in aqueous and micellar solutions

    International Nuclear Information System (INIS)

    Le Roux, Dominique

    1983-01-01

    This research thesis addresses the study of reactions occurring during the transformation of solar energy in chemical energy, and more precisely the search for photochemical systems allowing the dissociation of water into hydrogen and oxygen. In this study on water photolysis, the author chose to use a porphyrin soluble in water, the zinc tetra-meta-N-methylpyridinium porphyrin, as one of its isomer provided a good efficiency in hydrogen formation. Before reporting the study of electron photo-transfer, the author reports the study of photo-physical and photochemical properties of this porphyrin. Then, in the case of a well known electron acceptor (methyl viologen), he studied the influence of Coulomb effects on the kinetics of direct electron transfer, and on the kinetics of recombination of formed species. He also studied the influence of organised systems (cationic micelles) on these reactions when using a viologen with long chains. He finally reports the study of reactions of the triplet state of this porphyrin with metallic complexes

  9. Composites with Photosensitive 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin Entrapped into Silica Gels

    Czech Academy of Sciences Publication Activity Database

    Rychtáriková, Renata; Šabata, Stanislav; Hetflejš, Jiří; Kuncová, Gabriela

    2012-01-01

    Roč. 61, č. 1 (2012), s. 119-125 ISSN 0928-0707 R&D Projects: GA MŠk ME 892 Institutional research plan: CEZ:AV0Z40720504 Keywords : sol-gel * photosensitizer * immobilization Subject RIV: CC - Organic Chemistry Impact factor: 1.660, year: 2012

  10. Biodistribution and pharmacokinetic studies of a porphyrin dimer photosensitizer (Oxdime) by fluorescence imaging and spectroscopy in mice bearing xenograft tumors.

    Science.gov (United States)

    Khurana, Mamta; Ulrich, Sébastien; Kim, Anthony; Moriyama, Yumi; Netchev, George; Akens, Margarete K; Anderson, Harry L; Wilson, Brian C

    2012-01-01

    Herein, we present a study of the pharmacokinetics and biodistribution of a butadiyne-linked conjugated porphyrin dimer (Oxdime) designed to have high near-infrared (NIR) 2-photon absorption cross-section for photodynamic therapy (PDT). Changes in biodistribution over time were monitored in mice carrying B16-F10 melanoma xenografts, following intravenous injection. Using fluorescence imaging of live animals and analyzing isolated organs ex vivo at different time points between 30 min and 24 h after injection, accumulation of Oxdime was measured in several organs (heart, kidney and liver) and in tumor. The concentration in the plasma was about 5-10 times higher than in other tissues. The fluorescence signal peaked at 3-12 h after injection in most tissues, including the tumor and the plasma. The change in the fluorescence emission spectrum of the sensitizer over time was also monitored and a shift in the maximum from 800 to 740 nm was observed over 24 h, showing that the Oxdime is metabolized. Significant quantities accumulated in the tumor, indicating that this PDT sensitizer may be promising for cancer treatment. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  11. Distribution of a boronated porphyrin (BTPP) in osteosarcoma bearing nude mice

    International Nuclear Information System (INIS)

    Takeuchi, Akira; Ojima, N.; Kadosawa, T.; Hatanaka, H.

    1992-01-01

    Osteosarcoma is known as one of the malignant tumor which is highly resistant to the ordinary irradiation therapy, and amputation of the affected limb at an early stage has been a treatment of choice for long years. The authors final goal in this study is to find out a possibility to treat the osteosarcoma conserving the affected limb by irradiating high dose to the tumor specifically using the characteristics of boron-neutron capture therapy (BNCT). For the success of this study, the development of the boron carrier with specific affinity to tumor or osteosarcoma is essential. In this paper, a recently developed boronated derivative, boronotetraphenylporphyrin (BTPP) was studied for its distribution in osteosarcoma bearing nude mice by means of whole body alfa-track autoradiography

  12. Comparative Study on the Efficiency of the Photodynamic Inactivation of Candida albicans Using CdTe Quantum Dots, Zn(II Porphyrin and Their Conjugates as Photosensitizers

    Directory of Open Access Journals (Sweden)

    Osnir S. Viana

    2015-05-01

    Full Text Available The application of fluorescent II-VI semiconductor quantum dots (QDs as active photosensitizers in photodymanic inactivation (PDI is still being evaluated. In the present study, we prepared 3 nm size CdTe QDs coated with mercaptosuccinic acid and conjugated them electrostatically with Zn(II meso-tetrakis (N-ethyl-2-pyridinium-2-yl porphyrin (ZnTE-2-PyP or ZnP, thus producing QDs-ZnP conjugates. We evaluated the capability of the systems, bare QDs and conjugates, to produce reactive oxygen species (ROS and applied them in photodynamic inactivation in cultures of Candida albicans by irradiating the QDs and testing the hypothesis of a possible combined contribution of the PDI action. Tests of in vitro cytotoxicity and phototoxicity in fibroblasts were also performed in the presence and absence of light irradiation. The overall results showed an efficient ROS production for all tested systems and a low cytotoxicity (cell viability >90% in the absence of radiation. Fibroblasts incubated with the QDs-ZnP and subjected to irradiation showed a higher cytotoxicity (cell viability <90% depending on QD concentration compared to the bare groups. The PDI effects of bare CdTe QD on Candida albicans demonstrated a lower reduction of the cell viability (~1 log10 compared to bare ZnP which showed a high microbicidal activity (~3 log10 when photoactivated. The QD-ZnP conjugates also showed reduced photodynamic activity against C. albicans compared to bare ZnP and we suggest that the conjugation with QDs prevents the transmembrane cellular uptake of the ZnP molecules, reducing their photoactivity.

  13. Boron

    Science.gov (United States)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  14. Photosensitized oxidation of DNA and its components

    International Nuclear Information System (INIS)

    Decarroz, Chantal.

    1982-09-01

    Chemical changes in DNA components during the photodynamic effect are responsible for Mutagenic and carcinogenic phenomena. Basically two competitive mechanisns involving respectively a charge transfer (type I) and singlet oxygen (type II) are implicated in reactions photo-sensitized by different agents (acridines, phenothiazines, porphyrins, flavins, psoralenes...). A study of the photosensitized oxidation of DNA itself was approached through characterization of the main final products in the case of purine nucleosides. Methyl-2 naphthoquinone - 1,4 (vitamin K 3 ) displays a special photosensitization mechanism involving a cation radical type of intermediary [fr

  15. Effect of Pluronic F127 on the photosensitizing properties of dimegine in the presence of nanoparticles

    Science.gov (United States)

    Aksenova, N. A.; Kardumyan, V. V.; Glagolev, N. N.; Shashkova, V. T.; Matveeva, I. A.; Timashev, P. S.; Solov'eva, A. B.

    2015-08-01

    It is shown that the activity of the water-soluble porphyrin photosensitizer dimegine (DMG) in the oxidation reaction of tryptophan, a test reaction for photodynamic therapy (PDT), can be enhanced by introducing silver, gold, and hydroxyapatite nanoparticles (NP) into the reaction medium if an amphiphilic polymer (AP) with the properties of a SAS is introduced into this mixture. It is concluded that the effect of enhancing the photosensitizing activity of dimegine is due to the formation of nanoparticle-Pluronic-porphyrin triple systems in which Pluronic (PL) plays the role of a bridge, forming complex and adsorption bonds with porphyrin and nanoparticles.

  16. Interaction of porphyrins with CdTe quantum dots

    International Nuclear Information System (INIS)

    Zhang Xing; Liu Zhongxin; Ma Lun; Hossu, Marius; Chen Wei

    2011-01-01

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  17. The photodynamic and non-photodynamic actions of porphyrins

    Directory of Open Access Journals (Sweden)

    S.G. Afonso

    1999-03-01

    Full Text Available Porphyrias are a family of inherited diseases, each associated with a partial defect in one of the enzymes of the heme biosynthetic pathway. In six of the eight porphyrias described, the main clinical manifestation is skin photosensitivity brought about by the action of light on porphyrins, which are deposited in the upper epidermal layer of the skin. Porphyrins absorb light energy intensively in the UV region, and to a lesser extent in the long visible bands, resulting in transitions to excited electronic states. The excited porphyrin may react directly with biological structures (type I reactions or with molecular oxygen, generating excited singlet oxygen (type II reactions. Besides this well-known photodynamic action of porphyrins, a novel light-independent effect of porphyrins has been described. Irradiation of enzymes in the presence of porphyrins mainly induces type I reactions, although type II reactions could also occur, further increasing the direct non-photodynamic effect of porphyrins on proteins and macromolecules. Conformational changes of protein structure are induced by porphyrins in the dark or under UV light, resulting in reduced enzyme activity and increased proteolytic susceptibility. The effect of porphyrins depends not only on their physico-chemical properties but also on the specific site on the protein on which they act. Porphyrin action alters the functionality of the enzymes of the heme biosynthetic pathway exacerbating the metabolic deficiencies in porphyrias. Light energy absorption by porphyrins results in the generation of oxygen reactive species, overcoming the protective cellular mechanisms and leading to molecular, cell and tissue damage, thus amplifying the porphyric picture.

  18. Mechanism and efficiency of cell death of type II photosensitizers: effect of zinc chelation.

    Science.gov (United States)

    Pavani, Christiane; Iamamoto, Yassuko; Baptista, Maurício S

    2012-01-01

    A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  19. Photosensitive TRPs.

    Science.gov (United States)

    Hardie, Roger C

    2014-01-01

    The Drosophila "transient receptor potential" channel is the prototypical TRP channel, belonging to and defining the TRPC subfamily. Together with a second TRPC channel, trp-like (TRPL), TRP mediates the transducer current in the fly's photoreceptors. TRP and TRPL are also implicated in olfaction and Malpighian tubule function. In photoreceptors, TRP and TRPL are localised in the ~30,000 packed microvilli that form the photosensitive "rhabdomere"-a light-guiding rod, housing rhodopsin and the rest of the phototransduction machinery. TRP (but not TRPL) is assembled into multimolecular signalling complexes by a PDZ-domain scaffolding protein (INAD). TRPL (but not TRP) undergoes light-regulated translocation between cell body and rhabdomere. TRP and TRPL are also found in photoreceptor synapses where they may play a role in synaptic transmission. Like other TRPC channels, TRP and TRPL are activated by a G protein-coupled phospholipase C (PLCβ4) cascade. Although still debated, recent evidence indicates the channels can be activated by a combination of PIP2 depletion and protons released by the PLC reaction. PIP2 depletion may act mechanically as membrane area is reduced by cleavage of PIP2's bulky inositol headgroup. TRP, which dominates the light-sensitive current, is Ca(2+) selective (P Ca:P Cs >50:1), whilst TRPL has a modest Ca(2+) permeability (P Ca:P Cs ~5:1). Ca(2+) influx via the channels has profound positive and negative feedback roles, required for the rapid response kinetics, with Ca(2+) rapidly facilitating TRP (but not TRPL) and also inhibiting both channels. In trp mutants, stimulation by light results in rapid depletion of microvillar PIP2 due to lack of Ca(2+) influx required to inhibit PLC. This accounts for the "transient receptor potential" phenotype that gives the family its name and, over a period of days, leads to light-dependent retinal degeneration. Gain-of-function trp mutants with uncontrolled Ca(2+) influx also undergo retinal degeneration

  20. Novel polar sedimentary porphyrins

    Science.gov (United States)

    Prowse, W. G.; Maxwell, J. R.

    1989-11-01

    Two polar nickel porphyrins in Messel oil shale are shown to be the C 32 and C 30 components IIIa,b. In the sample examined, component IIIa is by far the major porphyrin alcohol and is present in an abundance similar to that of the major nickel alkyl porphyrin. These primary alcohols, which do not appear to be artifacts, are structurally related to alkyl porphyrins reported previously in Serpiano oil shale.

  1. Ultrastructural changes in tumor cells following boron neutron capture therapy

    International Nuclear Information System (INIS)

    Barkla, D.H.; Brown, J.K.; Meriaty, H.; Allen, B.J.

    1992-01-01

    In a previous study the authors reported on morphological changes in two human melanoma cell lines treated with 10 B-phenylalanine(BPA) and Boron Neutron Capture Therapy(BNCT). The present study describes morphological changes in melanoma and glioma cell lines treated with boron-tetraphenyl porphyrin(BTPP) and BNCT. Porphyrin compounds are selectively taken up by tumor cells and have been used clinically in phototherapy treatment of cancer patients. Boronated porphyrins show good potential as therapeutic agents in BNCT treatment of human cancer patients

  2. Inverted porphyrins and expanded porphyrins: An overview

    Indian Academy of Sciences (India)

    Unknown

    More recently, synthetic porphyrins and porphyrin-like macrocycles have ... one of the meso carbons resulting in the formation of corroles; – (d) Isomeric ... spectroscopic, chemical and physical properties, which can find applications in ..... diol 55 under TFA catalysis yielding 20–28% yield of expected rubyrins 85 and 86 as.

  3. Distribution of exogenous porphyrins in vivo; implications for neutron capture therapy

    International Nuclear Information System (INIS)

    Fairchild, R.G.; Gabel, D.; Hillman, M.; Watts, K.

    1982-01-01

    Endogenous porphyrins (HpD) are already in clinical use for phototherapy, in which red light is used to stimulate a cytotoxic response in tumors. The evident success, at least with superficial cancers, gives biological evidence of selective concentrations of porphyrins in tumors adequate for therapy. The authors have investigated, in addition, the biodistribution of a synthetic porphyrin (tetraphenylporphinesulfonate, or TPPS) in seven different animal tumor models. Their data, as well as those of others, indicate abundant accumulations of TPPS in tumor. If boronated analogs behave in the same way, boron concentrations would be up to 10 times that needed for therapy. Utilization of such porphyrin analogs in the neutron capture therapy (NCT) procedure is similar in concept to phototherapy currently being used clinically, with the distinct advantage of deeper tissue penetration produced by the activating neutrons

  4. Soluble porphyrin polymers

    Science.gov (United States)

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  5. Excitation energy deactivation funnel in 3-substituted BODIPY-porphyrin conjugate

    International Nuclear Information System (INIS)

    Nguyen, Nguyen Tran; Verbelen, Bram; Leen, Volker; Waelkens, Etienne; Dehaen, Wim; Kruk, Mikalai

    2016-01-01

    BODIPYs absorb in the visible region which is complementary to that of porphyrins and therefore can be suggested as promising antenna groups to improve the light-harvesting potential of porphyrins. A boron-dipyrromethene dye was combined at the 3-position with a Zn-porphyrin to afford a conjugate. The fluorescence of the conjugate was found to originate from the BODIPY moiety independently of the excitation wavelength due to an unique set of energy transfer rates between the BODIPY and Zn-porphyrin moieties. The fluorescence intensity was shown to be tunable over a wide range using the solvent properties. This feature makes the studied BODIPY-porphyrin conjugate a promising compound for the design of new photochromic devices.

  6. Excitation energy deactivation funnel in 3-substituted BODIPY-porphyrin conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Nguyen Tran [Chemistry Department, University of Education, The University of DaNang, Ton Duc Thang 459, Da Nang (Viet Nam); Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Verbelen, Bram; Leen, Volker [Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Waelkens, Etienne [Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 901, 3000 Leuven (Belgium); Dehaen, Wim, E-mail: wim.dehaen@kuleuven.be [Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Kruk, Mikalai, E-mail: m.kruk@belstu.by [Belarusian State Technological University, Physics Department, Sverdlov Str., 13a, Minsk 220006 (Belarus)

    2016-11-15

    BODIPYs absorb in the visible region which is complementary to that of porphyrins and therefore can be suggested as promising antenna groups to improve the light-harvesting potential of porphyrins. A boron-dipyrromethene dye was combined at the 3-position with a Zn-porphyrin to afford a conjugate. The fluorescence of the conjugate was found to originate from the BODIPY moiety independently of the excitation wavelength due to an unique set of energy transfer rates between the BODIPY and Zn-porphyrin moieties. The fluorescence intensity was shown to be tunable over a wide range using the solvent properties. This feature makes the studied BODIPY-porphyrin conjugate a promising compound for the design of new photochromic devices.

  7. Porphyrins - blood test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003372.htm Porphyrins blood test To use the sharing features on this page, ... blood or the urine . This article discusses the blood test. How the Test is Performed A blood sample ...

  8. Synthesis of porphyryl boronates with (un)saturated side-chains

    OpenAIRE

    SENGE, MATHIAS; SERGEEVA, NATALIA

    2008-01-01

    PUBLISHED Porphyrins with (un)saturated side?chains containing boron residues were developed as synthons for porphyrin functionalization. Porphyrins with mono and bis-substituted unsaturated boronyl residues were prepared in good yields (52?66 %) using a cross?metathesis approach in the presence of Grubbs I-generation catalysts. In all cases complete E?stereoselectivity (100 %) was observed. Furthermore, formal cross?metathesis products with ?,??unsaturated chains smoothly underwent additi...

  9. Push-pull quinoidal porphyrins.

    Science.gov (United States)

    Smith, Martin J; Blake, Iain M; Clegg, William; Anderson, Harry L

    2018-05-01

    A family of push-pull quinoidal porphyrin monomers has been prepared from a meso-formyl porphyrin by bromination, thioacetal formation, palladium-catalyzed coupling with malononitrile and oxidation with DDQ. Attempts at extending this synthesis to a push-pull quinoidal/cumulenic porphyrin dimer were not successful. The crystal structures of the quinoidal porphyrins indicate that there is no significant contribution from singlet biradical or zwitterionic resonance forms. The crystal structure of an ethyne-linked porphyrin dimer shows that the torsion angle between the porphyrin units is only about 3°, in keeping with crystallographic results on related compounds, but contrasting with the torsion angle of about 35° predicted by computational studies. The free-base quinoidal porphyrin monomers form tightly π-stacked layer structures, despite their curved geometries and bulky aryl substituents.

  10. A novel chlorine derivative of Meso-tris(pentafluorophenyl)-4-pyridyl porphyrin: synthesis, photophysics and photochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Maestrin, Ana Paula J.; Ribeiro, Anderson O.; Tedesco, Antonio Claudio; Neri, Claudio R.; Vinhado, Fabio S.; Serra, Osvaldo A.; Martins, Patricia R.; Iamamoto, Yassuko [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Inst. de Quimica]. E-mail: oaserra@ffclrp.usp.br; Silva, Ana Margarida G.; Tome, Augusto C.; Neves, Maria G.P.M.S.; Cavaleiro, Jose A.S. [Universidade de Aveiro (Portugal). Dept. de Quimica]. E-mail: jcavaleiro@dq.ua.pt

    2004-12-01

    Photodynamic therapy (PDT) is based on the accumulation of a photosensitizer, such as a porphyrin or a chlorine, in a malignant tissue after its administration. Chlorins exhibit photophysical properties similar to those of the porphyrin macrocycles, but with intensified and red-shifted Q bands, making chlorine-containing systems even better candidates for PDT. In this contribution, we report the synthesis of 5,10,15-tris(pentafluorophenyl)-20-(4-pyridyl)porphyrin, (2) and its transformation to the novel chlorine derivatives 4, (5,10,20-tris(pentafluorophenyl)-15-(4-pyridyl)-tetrahydro-1H- N-methyl-pyrrolo [3,4-b]porphyrin and 5, (5,10,15-tris(pentafluorophenyl)-20-(4-pyridyl)-tetrahydro-1H- N-methyl-pyrrolo[3,4-b]porphyrin) by 1,3-dipolar cycloaddition with an azomethine ylide. The new products have been characterized by UV-Vis, {sup 1}H NMR and FAB-MS. The photophysics, photochemical and photobleaching properties of chlorine 4 have been evaluated. Its quantum yield of photobleaching ({phi}{sub Pb}, mol Einstein{sup -1}) was 0.047{+-}0.014. In order to demonstrate the production of {sup 1}O{sub 2} when 4 is used as a photosensitizer, uric acid tests have been carried out. The results indicate that chlorine 4 can be considered a promising photosensitizer in PDT. (author)

  11. A novel chlorine derivative of Meso-tris(pentafluorophenyl)-4-pyridyl porphyrin: synthesis, photophysics and photochemical properties

    International Nuclear Information System (INIS)

    Maestrin, Ana Paula J.; Ribeiro, Anderson O.; Tedesco, Antonio Claudio; Neri, Claudio R.; Vinhado, Fabio S.; Serra, Osvaldo A.; Martins, Patricia R.; Iamamoto, Yassuko; Silva, Ana Margarida G.; Tome, Augusto C.; Neves, Maria G.P.M.S.; Cavaleiro, Jose A.S.

    2004-01-01

    Photodynamic therapy (PDT) is based on the accumulation of a photosensitizer, such as a porphyrin or a chlorine, in a malignant tissue after its administration. Chlorins exhibit photophysical properties similar to those of the porphyrin macrocycles, but with intensified and red-shifted Q bands, making chlorine-containing systems even better candidates for PDT. In this contribution, we report the synthesis of 5,10,15-tris(pentafluorophenyl)-20-(4-pyridyl)porphyrin, (2) and its transformation to the novel chlorine derivatives 4, (5,10,20-tris(pentafluorophenyl)-15-(4-pyridyl)-tetrahydro-1H- N-methyl-pyrrolo [3,4-b]porphyrin and 5, (5,10,15-tris(pentafluorophenyl)-20-(4-pyridyl)-tetrahydro-1H- N-methyl-pyrrolo[3,4-b]porphyrin) by 1,3-dipolar cycloaddition with an azomethine ylide. The new products have been characterized by UV-Vis, 1 H NMR and FAB-MS. The photophysics, photochemical and photobleaching properties of chlorine 4 have been evaluated. Its quantum yield of photobleaching (φ Pb , mol Einstein -1 ) was 0.047±0.014. In order to demonstrate the production of 1 O 2 when 4 is used as a photosensitizer, uric acid tests have been carried out. The results indicate that chlorine 4 can be considered a promising photosensitizer in PDT. (author)

  12. Time-resolved luminescence measurements of the magnetic field effect on paramagnetic photosensitizers in photodynamic reactions

    Science.gov (United States)

    Mermut, O.; Bouchard, J.-P.; Cormier, J.-F.; Desroches, P.; Diamond, K. R.; Fortin, M.; Gallant, P.; Leclair, S.; Marois, J.-S.; Noiseux, I.; Morin, J.-F.; Patterson, M. S.; Vernon, M.

    2008-02-01

    The development of multimodal molecular probes and photosensitizing agents for use in photodynamic therapy (PDT) is vital for optimizing and monitoring cytotoxic responses. We propose a combinatorial approach utilizing photosensitizing molecules that are both paramagnetic and luminescent with multimodal functionality to perturb, control, and monitor molecular-scale reaction pathways in PDT. To this end, a time-domain single photon counting lifetime apparatus with a 400 nm excitation source has been developed and integrated with a variable low field magnet (0- 350mT). The luminescence lifetime decay function was measured in the presence of a sweeping magnetic field for a custom designed photosensitizing molecule in which photoinduced electron transfer was studied The photosensitizer studied was a donor-acceptor complex synthesized using a porphyrin linked to a fullerene molecule. The magneto-optic properties were investigated for the free-base photosensitizer complex as well as those containing either diamagnetic (paired electron) or paramagnetic (unpaired electron) metal centers, Zn(II) and Cu(II). The magnetic field was employed to affect and modify the spin states of radical pairs of the photosensitizing agents via magnetically induced hyperfine and Zeeman effects. Since the Type 1 reaction pathway of an excited triplet state photosensitizer involves the production of radical species, lifetime measurements were conducted at low dissolved oxygen concentration (0.01ppm) to elucidate the dependence of the magnetic perturbation on the photosensitization mechanistic pathway. To optimize the magnetic response, a solvent study was performed examining the dependence of the emission properties on the magnetic field in solutions of varying dielectric constants. Lastly, the cytotoxicity in murine tumor cell suspensions was investigated for the novel porphyrin-fullerene complex by inducing photodynamic treatments and determining the associated cell survival.

  13. Synthetic Porphyrins and Metalloporphyrins

    Science.gov (United States)

    1976-12-10

    disease syndromes , drug metabolism and cancer. Porphyrins and metalloporphyrins such as tetraphenylporphine sulfonate and hema- toporphyrin have been found...267(1941). 34. A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour and L. Korsakoff , J. Org. Chem., 32, 476(1967). 35. H. W

  14. Wavelength dependence of the efficiency of singlet oxygen generation upon photoexcitation of photosensitizers

    Directory of Open Access Journals (Sweden)

    Starukhin A.

    2017-01-01

    Full Text Available The dependence of the efficiency of singlet oxygen (1Δg generation upon excitation of photosensitizer at different wavelength was observed for several derivatives of palladium porphyrin in carbon tetrachloride. The efficiency of singlet oxygen generation upon excitation in a blue region of the spectrum (Soret band exceeds by several times the efficiency at excitation in the red spectral region (Q band. The effect of enhancement of singlet oxygen generation upon CW photoexcitation to Soret band of photosensitizer may be explained by influence of high laying triplet states of a donor molecule on the triplet-triplet energy transfer.

  15. Photosensitivity to selsun shampoo

    Directory of Open Access Journals (Sweden)

    Mani M

    1994-01-01

    Full Text Available A case of photosensitive dermatitis, occurring after the second application of 2.5% selenium sulphide (Selsun shampoo, Abbot, is reported. The shampoo was diluted to half strength with water, before use. The patient had pityriasis versicolor, with extensive lesions on the covered as well as exposed areas.

  16. Mechanistic insight of the photodynamic effect induced by tri- and tetra-cationic porphyrins on Candida albicans cells.

    Science.gov (United States)

    Cormick, M Paula; Quiroga, Ezequiel D; Bertolotti, Sonia G; Alvarez, M Gabriela; Durantini, Edgardo N

    2011-10-01

    The photodynamic mechanism of action induced by 5-(4-trifluorophenyl)-10,15,20-tris(4-N,N,N-trimethylammoniumphenyl)porphyrin (TFAP(3+)), 5,10,15,20-tetrakis(4-N,N,N-trimethylammoniumphenyl)porphyrin (TMAP(4+)) and 5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin (TMPyP(4+)) was investigated on Candida albicans cells. These cationic porphyrins are effective photosensitizers, producing a ~5 log decrease of cell survival when the cultures are incubated with 5 μM photosensitizer and irradiated for 30 min with visible light. Studies under anoxic conditions indicated that oxygen is necessary for the mechanism of action of photodynamic inactivation of this yeast. Furthermore, photoinactivation of C. albicans cells was negligible in the presence of 100 mM azide ion, whereas the photocytotoxicity induced by these porphyrins increased in D(2)O. In contrast, the addition of 100 mM mannitol produced a negligible effect on the cellular phototoxicity. On the other hand, in vitro direct observation of singlet molecular oxygen, O(2)((1)Δ(g)) phosphorescence at 1270 nm was analyzed using C. albicans in D(2)O. A shorter lifetime of O(2)((1)Δ(g)) was found in yeast cellular suspensions. These cationic porphyrins bind strongly to C. albicans cells and the O(2)((1)Δ(g)) generated inside the cells is rapidly quenched by the biomolecules of the cellular microenvironment. Therefore, the results indicate that these cationic porphyrins appear to act as photosensitizers mainly via the intermediacy of O(2)((1)Δ(g)). This journal is © The Royal Society of Chemistry and Owner Societies 2011

  17. Mitochondria-targeted cationic porphyrin-triphenylamine hybrids for enhanced two-photon photodynamic therapy.

    Science.gov (United States)

    Hammerer, Fabien; Poyer, Florent; Fourmois, Laura; Chen, Su; Garcia, Guillaume; Teulade-Fichou, Marie-Paule; Maillard, Philippe; Mahuteau-Betzer, Florence

    2018-01-01

    The proof of concept for two-photon activated photodynamic therapy has already been achieved for cancer treatment but the efficiency of this approach still heavily relies on the availability of photosensitizers combining high two-photon absorption and biocompatibility. In this line we recently reported on a series of porphyrin-triphenylamine hybrids which exhibit high singlet oxygen production quantum yield as well as high two-photon absorption cross-sections but with a very poor cellular internalization. We present herein new photosensitizers of the same porphyrin-triphenylamine hybrid series but bearing cationic charges which led to strongly enhanced water solubility and thus cellular penetration. In addition the new compounds have been found localized in mitochondria that are preferential target organelles for photodynamic therapy. Altogether the strongly improved properties of the new series combined with their specific mitochondrial localization lead to a significantly enhanced two-photon activated photodynamic therapy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Photosensitive Strip RETHGEM

    CERN Document Server

    Peskov, Vladimir; Nappi, E.; Oliveira, R.; Paic, G.; Pietropaolo, F.; Picchi, P.

    2008-01-01

    An innovative photosensitive gaseous detector, consisting of a GEM like amplification structure with double layered electrodes (instead of commonly used metallic ones) coated with a CsI reflective photocathode, is described. In one of our latest designs, the inner electrode consists of a metallic grid and the outer one is made of resistive strips; the latter are manufactured by a screen printing technology on the top of the metallic strips grid The inner metallic grid is used for 2D position measurements whereas the resistive layer provides an efficient spark protected operation at high gains - close to the breakdown limit. Detectors with active areas of 10cm x10cm and 10cm x20cm were tested under various conditions including the operation in photosensitive gas mixtures containing ethylferrocene or TMAE vapors. The new technique could have many applications requiring robust and reliable large area detectors for UV visualization, as for example, in Cherenkov imaging devices.

  19. Porphyrin-phospholipid interaction and ring metallation depending on the phospholipid polar head type.

    Science.gov (United States)

    Ramos, Ana P; Pavani, Christiane; Iamamoto, Yassuko; Zaniquelli, Maria E D

    2010-10-01

    The interaction between a hydrophobically modified 5,10,15,20-tetrakis(4-N-tetradecyl-pyridyl) porphyrin and three phospholipids: two negatively charged, DMPA (the sodium salt of dimyristoyl-sn-glycero-phosphatidyl acid) and DMPG (the sodium salt of 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]) and a zwitterionic DMPC (dimyristoyl-sn-glycero-phosphatidylcholine), were studied by means of surface pressure isotherms and spectroscopic methods. The interaction results in partial or total metallation of the porphyrin with zinc ions in the presence of negatively charged phospholipids, as attested by UV-vis and luminescence spectroscopy of the transferred films. In the presence of the zwitterionic phospholipid no insertion of zinc ion in the porphyrin ring is detected. These results are relevant for the understanding of photosensitizer-lipid-carrier binding for use in photodynamic therapy. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Transforming a Targeted Porphyrin Theranostic Agent into a PET Imaging Probe for Cancer

    Directory of Open Access Journals (Sweden)

    Jiyun Shi, Tracy W.B. Liu, Juan Chen, David Green, David Jaffray, Brian C. Wilson, Fan Wang, Gang Zheng

    2011-01-01

    Full Text Available Porphyrin based photosensitizers are useful agents for photodynamic therapy (PDT and fluorescence imaging of cancer. Porphyrins are also excellent metal chelators forming highly stable metallo-complexes making them efficient delivery vehicles for radioisotopes. Here we investigated the possibility of incorporating 64Cu into a porphyrin-peptide-folate (PPF probe developed previously as folate receptor (FR targeted fluorescent/PDT agent, and evaluated the potential of turning the resulting 64Cu-PPF into a positron emission tomography (PET probe for cancer imaging. Noninvasive PET imaging followed by radioassay evaluated the tumor accumulation, pharmacokinetics and biodistribution of 64Cu-PPF. 64Cu-PPF uptake in FR-positive tumors was visible on small-animal PET images with high tumor-to-muscle ratio (8.88 ± 3.60 observed after 24 h. Competitive blocking studies confirmed the FR-mediated tracer uptake by the tumor. The ease of efficient 64Cu-radiolabeling of PPF while retaining its favorable biodistribution, pharmacokinetics and selective tumor uptake, provides a robust strategy to transform tumor-targeted porphyrin-based photosensitizers into PET imaging probes.

  1. Synthesis and biological evaluation of porphyrin-polyamine conjugates as potential agents in photodynamic therapy

    International Nuclear Information System (INIS)

    Lamarche, Francois

    2004-01-01

    The synthesis of photosensitizers that specifically recognize tumoral cells constitutes a challenging step in the field of photodynamic therapy. To this end, we designed a new class of porphyrins linked to natural polyamines (spermidine, spermine). As a first step, we synthesized para and ortho-carboxy-propyl-oxy-phenyl-tritolyl-porphyrins bearing spermidine or spermine. Then, we designed two precursors, N4-aminobutyl-spermidine-Boc2 and N4-aminobutyl-spermine-Boc3. These derivatives have been fixed on carboxy-porphyrins, protoporphyrin IX and chlorin e6. These new compounds have been characterized by MALDI spectrometry, UV-Visible and 1 H NMR spectroscopy. They have been found to produce singlet oxygen. Biological activity study of these photosensitizers has been realized on K562 cell line, irradiated with fluorescent bulbs. In vitro tests of these porphyrins have shown their photo-cytotoxic activity and protoporphyrins-polyamines have been able to trigger early apoptotic events. Finally, preliminary results obtained with chlorin e6-polyamines, irradiated with red light, seem to show that these structures are good candidates for an application in PDT. (author) [fr

  2. Antimicrobial activity of new porphyrins of synthetic and natural origin

    Science.gov (United States)

    Gyulkhandanyan, Grigor V.; Ghazaryan, Robert K.; Paronyan, Marina H.; Ulikhanyan, Ghukas I.; Gyulkhandanyan, Aram G.; Sahakyan, Lida A.

    2012-03-01

    Antimicrobial photodynamic inactivation has been successfully used against Gram (+) microorganisms, but most of the photosensitizers (PSs) on Gram (-) bacteria acts weakly. PSs are the natural or synthetic origin dyes, mainly porphyrins. We have synthesized more than 100 new cationic porphyrins and metalloporphyrins with different functional groups (hydroxyethyl, butyl, allyl, methallyl) and metals (cobalt, iron, copper, zinc, silver and other); from the nettle have also been purified pheophytin (a+b) and pheophytin (a) and have synthesized their Ag-and Zn-metalloporphyrins. It was found that in the dark (cytotoxic) mode, the most highly efficiency against microorganisms showed Agmetalloporphyrins of both types of porphyrins (synthetic and natural). Metalloporphyrin of natural origin Ag-pheophytin (a + b) is a strong antibacterial agent and causes 100% death as the Gram (+) microorganisms (St. aureus and MRSA) and the Gram (-) microorganisms (E.coli and Salmonella). It is established that for the destruction of Gram (+) and Gram (-) microorganisms in photodynamic mode cationic water-soluble synthetic metalloporphyrins, especially Zn-TBut4PyP, many times more effective than pheophytins. In vivo conditions on mice established that the best therapeutic activity against various strains of the microorganism St. aureus has the synthetic metalloporphyrin Ag-TBut4PyP. It is significantly more efficient than known drug "Chlorophyllipt" (2.5-3 times) and leads the survival rate of animals up to 50-60%.

  3. Antimicrobial and anti-biofilm effect of a novel BODIPY photosensitizer against Pseudomonas aeruginosa PAO1

    DEFF Research Database (Denmark)

    Orlandi, Viviana Teresa; Rybtke, Morten; Caruso, Enrico

    2014-01-01

    Photodynamic therapy (PDT) combines the use of organic dyes (photosensitizers, PSs) and visible light in order to elicit a photo-oxidative stress which causes bacterial death. GD11, a recently synthesized PS belonging to the boron-dipyrromethene (BODIPY) class, was demonstrated to be efficient...

  4. Porphyrin-based Nanostructure-Dependent Photodynamic and Photothermal Therapies

    Science.gov (United States)

    Jin, Cheng S.

    This thesis presents the investigation of nanostructure-dependent phototherapy. We reviewed the liposomal structures for delivery of photosensitizers, and introduced a novel class of phototransducing liposomes called "porphysomes". Porphysomes are self-assembled from high packing density of pyropheophorbide alpha-conjugated phospholipids, resulting in extreme self-quenching of porphyrin fluorescence and comparable optical absorption to gold nanoparticles for high photothermal efficiency. We demonstrated this self-assembly of porphyrin-lipid conjugates converts a singlet oxygen generating mechanism (photodynamic therapy PDT activity) of porphyrin to photothermal mechanism (photothermal therapy PTT activity). The efficacy of porphysome-enhanced PTT was then evaluated on two pre-clinical animal models. We validated porphysome-enabled focal PTT to treat orthotopic prostate cancer using MRI-guided focal laser placement to closely mimic the current clinic procedure. Furthermore, porphysome-enabled fluorescence-guided transbronchial PTT of lung cancer was demonstrated in rabbit orthotopic lung cancer models, which led to the development of an ultra-minimally invasive therapy for early-stage peripheral lung cancer. On the other hand, the nanostructure-mediated conversion of PDT to PTT can be switched back by nanoparticle dissociation. By incorporating folate-conjugated phospholipids into the formulation, porphysomes were internalized into cells rapidly via folate receptor-mediated endocytosis and resulted in efficient disruption of nanostructures, which turned back on the photodynamic activity of densely packed porphyrins, making a closed loop of conversion between PDT and PTT. The multimodal imaging and therapeutic features of porphysome make it ideal for future personalized cancer treatments.

  5. Mechanistic aspects of the photodynamic inactivation of Candida albicans induced by cationic porphyrin derivatives.

    Science.gov (United States)

    Quiroga, Ezequiel D; Cormick, M Paula; Pons, Patricia; Alvarez, M Gabriela; Durantini, Edgardo N

    2012-12-01

    Photodynamic inactivation of Candida albicans produced by 5-(4-trifluorophenyl)-10,15,20-tris(4-N,N,N-trimethylammoniumphenyl)porphyrin (TFAP(3+)), 5,10,15,20-tetrakis(4-N,N,N-trimethylammoniumphenyl)porphyrin (TMAP(4+)) and 5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin (TMPyP(4+)) was investigated to obtain insight about the mechanism of cellular damage. In solution, absorption spectroscopic studies showed that these cationic porphyrins interact strongly with calf thymus DNA. The electrophoretic analysis indicated that photocleavage of DNA induced by TFAP(3+) took place after long irradiation periods (>5 h). In contrast, TMAP(4+) produced a marked reduction in DNA band after 1 h irradiation. In C. albicans, these cationic porphyrins produced a ∼3.5 log decrease in survival when the cell suspensions (10(7) cells/mL) were incubated with 5 μM photosensitizer and irradiated for 30 min with visible light (fluence 162 J/cm(2)). After this treatment, modifications of genomic DNA isolated from C. albicans cells were not found by electrophoresis. Furthermore, transmission electron microscopy showed structural changes with appearance of low density areas into the cells and irregularities in cell barriers. However, the photodamage to the cell envelope was insufficient to cause the release of intracellular biopolymers. Therefore, modifications in the cytoplasmic biomolecules and alteration in the cell barriers could be mainly involved in C. albicans photoinactivation. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. Photodynamic inactivation of Candida albicans sensitized by tri- and tetra-cationic porphyrin derivatives.

    Science.gov (United States)

    Cormick, M Paula; Alvarez, M Gabriela; Rovera, Marisa; Durantini, Edgardo N

    2009-04-01

    The photodynamic action of 5-(4-trifluorophenyl)-10,15,20-tris(4-trimethylammoniumphenyl)porphyrin iodide (TFAP(3+)) and 5,10,15,20-tetra(4-N,N,N-trimethylammonium phenyl)porphyrin p-tosylate (TMAP(4+)) has been studied in vitro on Candida albicans. The results of these cationic porphyrins were compared with those of 5,10,15,20-tetra(4-sulphonatophenyl)porphyrin (TPPS(4-)), which characterizes an anionic sensitizer. In vitro investigations show that these cationic porphyrins are rapidly bound to C. albicans cells, reaching a value of approximately 1.4 nmol/10(6) cells, when the cellular suspensions were incubated with 5 microM sensitizer for 30 min. In contrast, TPPS(4-) is poorly uptaken by yeast cells. The fluorescence spectra of these sensitizers into the cells confirm this behaviour. The amount of porphyrin binds to cells is dependent on both sensitizer concentrations (1-5 microM) and cells densities (10(6)-10(8) cells/mL). Photosensitized inactivation of C. albicans cellular suspensions increases with sensitizer concentration, causing a approximately 5 log decrease of cell survival, when the cultures are treated with 5 microM of cationic porphyrin and irradiated for 30 min. However, the photocytotoxicity decreases with an increase in the cell density, according to its low binding to cells. Under these conditions, the photodynamic activity of TFAP(3+) is quite similar to that produced by TMAP(4+), whereas no important inactivation effect was found for TPPS(4)(-). The high photodynamic activity of cationic porphyrins was confirmed by growth delay experiments. Thus, C. albicans cell growth was not detected in the presence of 5 microM TFAP(3+). Photodynamic inactivation capacities of these sensitizers were also evaluated on C. albicans cells growing in colonies on agar surfaces. Cationic porphyrins produce a growth delay of C. albicans colonies and viability of cells was not observed after 3 h irradiation, indicating a complete inactivation of yeast cells

  7. Porphyrins at interfaces

    Science.gov (United States)

    Auwärter, Willi; Écija, David; Klappenberger, Florian; Barth, Johannes V.

    2015-02-01

    Porphyrins and other tetrapyrrole macrocycles possess an impressive variety of functional properties that have been exploited in natural and artificial systems. Different metal centres incorporated within the tetradentate ligand are key for achieving and regulating vital processes, including reversible axial ligation of adducts, electron transfer, light-harvesting and catalytic transformations. Tailored substituents optimize their performance, dictating their arrangement in specific environments and mediating the assembly of molecular nanoarchitectures. Here we review the current understanding of these species at well-defined interfaces, disclosing exquisite insights into their structural and chemical properties, and also discussing methods by which to manipulate their intramolecular and organizational features. The distinct characteristics arising from the interfacial confinement offer intriguing prospects for molecular science and advanced materials. We assess the role of surface interactions with respect to electronic and physicochemical characteristics, and describe in situ metallation pathways, molecular magnetism, rotation and switching. The engineering of nanostructures, organized layers, interfacial hybrid and bio-inspired systems is also addressed.

  8. The study of cellulosic fabrics impregnated with porphyrin compounds for use as photo-bactericidal polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Rahmatollah, E-mail: rahimi_rah@iust.ac.ir [Bioinorganic Chemistry Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Fayyaz, Fatemeh [Bioinorganic Chemistry Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Rassa, Mehdi [Department of Biology, Faculty of Science, University of Guilan, Rasht (Iran, Islamic Republic of)

    2016-02-01

    In the present work, we report on the preparation of cellulosic fabrics bearing two types of photo-sensitizers in order to prepare efficient polymeric materials for antimicrobial applications. The obtained porphyrin-grafted cellulosic fabrics were characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, diffuse reflectance UV–Vis (DRUV) spectroscopy, thermo-gravimetric analysis (TG) and scanning electron microscopy (SEM). Antimicrobial activity of the prepared porphyrin-cellulose was tested under visible light irradiation against Staphylococcus aureus, Pseudomunas aeroginosa and Escherichia coli. In addition, the effect of two parameters on photo-bactericidal activity of treated fibers was studied: illumination time and concentration of photosensitizers (PS). - Highlights: • Cellulosic fabrics were impregnated with various concentrations of porphyrins (TAPP and its zinc ion complex). • The products were characterized by ATR-FTIR, DRUV, SEM and TG. • The photo-antibacterial activity of products was determined against S. aureus, P. aeroginosa and E. coli. • The effect of two parameters were studied on photoinactivation of treated fibers: illumination time and concentration of PS.

  9. Antiviral properties of photosensitizers

    International Nuclear Information System (INIS)

    Hudson, J.B.; Towers, G.H.N.

    1988-01-01

    We have studied the antiviral properties of three different groups of photo-sensitizers, viz. (i) various furyl compounds; (ii) β-carboline alkaloids; (iii) thiophenes and their acetylene derivatives. In general the antiviral potency of the furyl compounds correlated with their ability to produce DNA photoadducts. Among the naturally occurring β-carboline alkaloids, harmine was considerably more potent (in the presence of long wavelength UV radiation, UVA) than several other harmane-related compounds. Slight alterations in chemical structure had profound effects on their antiviral activities. Harmine was shown to inactivate the DNA-virus murine cytomegalovirus (MCMV) by inhibiting viral gene expression, although other targets may also exist. Several eudistomins, carboline derivatives isolated from a tunicate, were also photoactive against viruses. Various plant thiophenes and polyacetylenes were studied in detail. These compounds also required UVA for antiviral activity, and some of them were extremely potent against viruses with membranes, e.g. α-terthienyl, which showed significant activity at only 10 -5 μg/ml. When MCMV had been treated with α-terthienyl plus UVA, the virus retained its integrity and penetrated cells normally; but the virus did not replicate. (author)

  10. Photosensitive graphene transistors.

    Science.gov (United States)

    Li, Jinhua; Niu, Liyong; Zheng, Zijian; Yan, Feng

    2014-08-20

    High performance photodetectors play important roles in the development of innovative technologies in many fields, including medicine, display and imaging, military, optical communication, environment monitoring, security check, scientific research and industrial processing control. Graphene, the most fascinating two-dimensional material, has demonstrated promising applications in various types of photodetectors from terahertz to ultraviolet, due to its ultrahigh carrier mobility and light absorption in broad wavelength range. Graphene field effect transistors are recognized as a type of excellent transducers for photodetection thanks to the inherent amplification function of the transistors, the feasibility of miniaturization and the unique properties of graphene. In this review, we will introduce the applications of graphene transistors as photodetectors in different wavelength ranges including terahertz, infrared, visible, and ultraviolet, focusing on the device design, physics and photosensitive performance. Since the device properties are closely related to the quality of graphene, the devices based on graphene prepared with different methods will be addressed separately with a view to demonstrating more clearly their advantages and shortcomings in practical applications. It is expected that highly sensitive photodetectors based on graphene transistors will find important applications in many emerging areas especially flexible, wearable, printable or transparent electronics and high frequency communications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Porphyrin mediated photo-modification of the structure and function of human serum albumin

    Science.gov (United States)

    Rozinek, Sarah C.

    Photosensitization reactions involve irradiating (with visible light) molecules with a high efficiency for either electron transfer or entering an excited triplet state (photosensitizer). Such reactions are applied to photodynamic cancer therapy, many medical laser-treatments, and a potential array of disinfection and pest elimination techniques. To understand the biophysical mechanisms of how these applications are effective at the protein level, the group of Dr. Brancaleon (UTSA) has investigated the irradiation of several dye-protein combinations, and discovered effects on protein structure and function. To further that work, we have investigated irradiation of the protein, human serum albumin (HSA), photosensitized by either protoporphyrin IX (PPIX) or meso-tetrakis(4-sulfonatophenyl)porphyrin (TSPP). HSA is the most abundant plasma protein, making it a likely substrate in PDT, and it possesses a specific binding pocket for iron-PPIX (heme) and possibly other porphyrin derivatives. The results of our research are summarized as follows. First, a thorough characterization of the binding of each photosensitizer to albumin was completed, elucidating a probable binding location for TSPP. Next, fluorescence lifetime emission of the single tryptophan residue, alongside circular dichroism, found tertiary structural changes around tryptophan and an overall 20% decrease in protein secondary structure after irradiation with TSPP bound. Finally, to determine if protein function was lost after photosensitization, size exclusion chromatography found modified albumin still recognizable by its receptor-protein, and comparative ex vivo up-take studies revealed that modified albumin is not processed the same way as native albumin in live tapeworm larva (Mesocestoides corti). Thus we found that visible light can induce partial unfolding of a protein by using a photo-activated ligand. These small structural modifications were sufficient to affect the protein's biological function.

  12. Boron reclamation

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-07-01

    A process to recover high purity 10 B enriched crystalline boron powder from a polymeric matrix was developed on a laboratory basis and ultimately scaled up to production capacity. The process is based on controlled pyrolysis of boron-filled scrap followed by an acid leach and dry sieving operation to return the powder to the required purity and particle size specifications. Typically, the recovery rate of the crystalline powder is in excess of 98.5 percent, and some of the remaining boron is recovered in the form of boric acid. The minimum purity requirement of the recovered product is 98.6 percent total boron

  13. Synthesis and photobactericidal properties of a neutral porphyrin grafted onto lignocellulosic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Nzambe Ta keki, Jean Kerim; Ouk, Tan-Sothéa [Laboratoire de chimie des substances naturelles, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges (France); Zerrouki, Rachida [Laboratoire de chimie des substances naturelles, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges (France); Centre de Recherche sur les Matériaux Lignocellulosiques, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7 (Canada); Faugeras, Pierre-Antoine; Sol, Vincent [Laboratoire de chimie des substances naturelles, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges (France); Brouillette, François [Centre de Recherche sur les Matériaux Lignocellulosiques, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7 (Canada)

    2016-05-01

    Photodynamic antimicrobial chemotherapy (PACT), as one of the promising alternative antimicrobial treatment, has received great attention in recent years. In this work, a new antimicrobial material has been elaborated by grafting a neutral porphyrin, the metallated 5-(4-azidophenyl)-10,15,20-triphenylporphyrin, onto lignocellulosic fibers by using the Copper (I)-Catalyzed Alkyne-Azide 1,3-dipolar Cycloaddition (CuAAC) reaction. The cross-linked porphyrin-Kraft pulp material was characterized by infrared and by XPS spectroscopy analyses, which proved the covalent linkage between the porphyrin and propargylated Kraft pulp fibers. The antimicrobial activity of this material was tested under visible light irradiation with a low light dose (9.5 J/cm{sup 2}) against Staphylococcus aureus and Pseudomonas aeruginosa. The two bacterial strains deposited on the resulting photosensitizing Kraft pulp are efficiently killed after illumination. Such materials could find applications in industrial, household and medical environments as an alternative to overcome the widespread microbial multiresistance to classical treatments. - Highlights: • Elaboration of new antimicrobial paper • Grafting of porphyrin on lignocellulosic fibers using click chemistry • Modification of Kraft pulp fibers, using water as solvent.

  14. Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons

    KAUST Repository

    Diev, Vyacheslav V.; Schlenker, Cody W.; Hanson, Kenneth; Zhong, Qiwen; Zimmerman, Jeramy D.; Forrest, Stephen R.; Thompson, Mark E.

    2012-01-01

    A systematic study of the preparation of porphyrins with extended conjugation by meso,β-fusion with polycyclic aromatic hydrocarbons (PAHs) is reported. The meso-positions of 5,15-unsubstituted porphyrins were readily functionalized with PAHs. Ring fusion using standard Scholl reaction conditions (FeCl 3, dichloromethane) occurs for perylene-substituted porphyrins to give a porphyrin β,meso annulated with perylene rings (0.7:1 ratio of syn and anti isomers). The naphthalene, pyrene, and coronene derivatives do not react under Scholl conditions but are fused using thermal cyclodehydrogenation at high temperatures, giving mixtures of syn and anti isomers of the meso,β-fused porphyrins. For pyrenyl-substituted porphyrins, a thermal method gives synthetically acceptable yields (>30%). Absorption spectra of the fused porphyrins undergo a progressive bathochromic shift in a series of naphthyl (λ max = 730 nm), coronenyl (λ max = 780 nm), pyrenyl (λ max = 815 nm), and perylenyl (λ max = 900 nm) annulated porphyrins. Despite being conjugated with unsubstituted fused PAHs, the β,meso-fused porphyrins are more soluble and processable than the parent nonfused precursors. Pyrenyl-fused porphyrins exhibit strong fluorescence in the near-infrared (NIR) spectral region, with a progressive improvement in luminescent efficiency (up to 13% with λ max = 829 nm) with increasing degree of fusion. Fused pyrenyl-porphyrins have been used as broadband absorption donor materials in photovoltaic cells, leading to devices that show comparatively high photovoltaic efficiencies. © 2011 American Chemical Society.

  15. Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons

    KAUST Repository

    Diev, Vyacheslav V.

    2012-01-06

    A systematic study of the preparation of porphyrins with extended conjugation by meso,β-fusion with polycyclic aromatic hydrocarbons (PAHs) is reported. The meso-positions of 5,15-unsubstituted porphyrins were readily functionalized with PAHs. Ring fusion using standard Scholl reaction conditions (FeCl 3, dichloromethane) occurs for perylene-substituted porphyrins to give a porphyrin β,meso annulated with perylene rings (0.7:1 ratio of syn and anti isomers). The naphthalene, pyrene, and coronene derivatives do not react under Scholl conditions but are fused using thermal cyclodehydrogenation at high temperatures, giving mixtures of syn and anti isomers of the meso,β-fused porphyrins. For pyrenyl-substituted porphyrins, a thermal method gives synthetically acceptable yields (>30%). Absorption spectra of the fused porphyrins undergo a progressive bathochromic shift in a series of naphthyl (λ max = 730 nm), coronenyl (λ max = 780 nm), pyrenyl (λ max = 815 nm), and perylenyl (λ max = 900 nm) annulated porphyrins. Despite being conjugated with unsubstituted fused PAHs, the β,meso-fused porphyrins are more soluble and processable than the parent nonfused precursors. Pyrenyl-fused porphyrins exhibit strong fluorescence in the near-infrared (NIR) spectral region, with a progressive improvement in luminescent efficiency (up to 13% with λ max = 829 nm) with increasing degree of fusion. Fused pyrenyl-porphyrins have been used as broadband absorption donor materials in photovoltaic cells, leading to devices that show comparatively high photovoltaic efficiencies. © 2011 American Chemical Society.

  16. Validation of Quantitative Structure-Activity Relationship (QSAR Model for Photosensitizer Activity Prediction

    Directory of Open Access Journals (Sweden)

    Sharifuddin M. Zain

    2011-11-01

    Full Text Available Photodynamic therapy is a relatively new treatment method for cancer which utilizes a combination of oxygen, a photosensitizer and light to generate reactive singlet oxygen that eradicates tumors via direct cell-killing, vasculature damage and engagement of the immune system. Most of photosensitizers that are in clinical and pre-clinical assessments, or those that are already approved for clinical use, are mainly based on cyclic tetrapyrroles. In an attempt to discover new effective photosensitizers, we report the use of the quantitative structure-activity relationship (QSAR method to develop a model that could correlate the structural features of cyclic tetrapyrrole-based compounds with their photodynamic therapy (PDT activity. In this study, a set of 36 porphyrin derivatives was used in the model development where 24 of these compounds were in the training set and the remaining 12 compounds were in the test set. The development of the QSAR model involved the use of the multiple linear regression analysis (MLRA method. Based on the method, r2 value, r2 (CV value and r2 prediction value of 0.87, 0.71 and 0.70 were obtained. The QSAR model was also employed to predict the experimental compounds in an external test set. This external test set comprises 20 porphyrin-based compounds with experimental IC50 values ranging from 0.39 µM to 7.04 µM. Thus the model showed good correlative and predictive ability, with a predictive correlation coefficient (r2 prediction for external test set of 0.52. The developed QSAR model was used to discover some compounds as new lead photosensitizers from this external test set.

  17. Probing Photosensitization by Functionalized Carbon Nanotubes

    Science.gov (United States)

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  18. Optimization of Photosensitized Tryptophan Oxidation in the Presence of Dimegin-Polyvinylpyrrolidone-Chitosan Systems.

    Science.gov (United States)

    Solovieva, Anna B; Kardumian, Valeria V; Aksenova, Nadezhda A; Belovolova, Lyudmila V; Glushkov, Mikhail V; Bezrukov, Evgeny A; Sukhanov, Roman B; Kotova, Svetlana L; Timashev, Peter S

    2018-05-23

    By the example of a model process of tryptophan photooxidation in the aqueous medium in the presence of a three-component photosensitizing complex (porphyrin photosensitizer-polyvinylpyrrolidone- chitosan, PPS-PVP-CT) in the temperature range of 20-40 °С, we have demonstrated a possibility of modification of such a process by selecting different molar ratios of the components in the reaction mixture. The actual objective of this selection is the formation of a certain PPS-PVP-CT composition in which PVP macromolecules would coordinate with PPS molecules and at the same time practically block the complex binding of PPS molecules with chitosan macromolecules. Such blocking allows utilization of the bactericidal properties of chitosan to a greater extent, since chitosan is known to depress the PPS photosensitizing activity in PPS-PVP-CT complexes when using those in photodynamic therapy (PDT). The optimal composition of photosensitizing complexes appears to be dependent on the temperature at which the PDT sessions are performed. We have analyzed the correlations of the effective rate constants of tryptophan photooxidation with the photophysical characteristics of the formed complexes.

  19. A Closer Look at Dark Toxicity of the Photosensitizer TMPyP in Bacteria.

    Science.gov (United States)

    Eckl, Daniel B; Dengler, Linda; Nemmert, Marina; Eichner, Anja; Bäumler, Wolfgang; Huber, Harald

    2018-01-01

    Photodynamic inactivation of bacteria (PIB) is based on photosensitizers which absorb light and generate reactive oxygen species (ROS), killing cells via oxidation. PIB is evaluated by comparing viability with and without irradiation, where reduction of viability in the presence of the photosensitizer without irradiation is considered as dark toxicity. This effect is controversially discussed for photosensitizers like TMPyP (5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluensulfonate). TMPyP shows a high absorption coefficient for blue light and a high yield of ROS production, especially singlet oxygen. Escherichia coli and Bacillus atrophaeus were incubated with TMPyP and irradiated with different light sources at low radiant exposures (μW per cm²), reflecting laboratory conditions of dark toxicity evaluation. Inactivation of E. coli occurs for blue light, while no effect was detectable for wavelengths >450 nm. Being more susceptible toward PIB, growth of B. atrophaeus is even reduced for light with emission >450 nm. Decreasing the light intensities to nW per cm² for B. atrophaeus, application of TMPyP still caused bacterial killing. Toxic effects of TMPyP disappeared after addition of histidine, quenching residual ROS. Our experiments demonstrate that the evaluation of dark toxicity of a powerful photosensitizer like TMPyP requires low light intensities and if necessary additional application of substances quenching any residual ROS. © 2017 The American Society of Photobiology.

  20. Supramolecular Allosteric Cofacial Porphyrin Complexes

    International Nuclear Information System (INIS)

    Oliveri, Christopher G.; Gianneschi, Nathan C.; Nguyen, Son Binh T.; Mirkin, Chad A.; Stern, Charlotte L.; Wawrzak, Zdzislaw; Pink, Maren

    2008-01-01

    Nature routinely uses cooperative interactions to regulate cellular activity. For years, chemists have designed synthetic systems that aim toward harnessing the reactivity common to natural biological systems. By learning how to control these interactions in situ, one begins to allow for the preparation of man-made biomimetic systems that can efficiently mimic the interactions found in Nature. To this end, we have designed a synthetic protocol for the preparation of flexible metal-directed supramolecular cofacial porphyrin complexes which are readily obtained in greater than 90% yield through the use of new hemilabile porphyrin ligands with bifunctional ether-phosphine or thioether-phosphine substituents at the 5 and 15 positions on the porphyrin ring. The resulting architectures contain two hemilabile ligand-metal domains (Rh I or Cu I sites) and two cofacially aligned porphyrins (Zn II sites), offering orthogonal functionalities and allowing these multimetallic complexes to exist in two states, 'condensed' or 'open'. Combining the ether-phosphine ligand with the appropriate Rh I or Cu I transition-metal precursors results in 'open' macrocyclic products. In contrast, reacting the thioether-phosphine ligand with RhI or CuI precursors yields condensed structures that can be converted into their 'open' macrocyclic forms via introduction of additional ancillary ligands. The change in cavity size that occurs allows these structures to function as allosteric catalysts for the acyl transfer reaction between X-pyridylcarbinol (where X = 2, 3, or 4) and 1-acetylimidazole. For 3- and 4-pyridylcarbinol, the 'open' macrocycle accelerates the acyl transfer reaction more than the condensed analogue and significantly more than the porphyrin monomer. In contrast, an allosteric effect was not observed for 2-pyridylcarbinol, which is expected to be a weaker binder and is unfavorably constrained inside the macrocyclic cavity.

  1. Radiation carcinogenesis: radioprotectors and photosensitizers

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1982-01-01

    This paper outlines 1) some of the salient features of radiation carcinogenesis that are pertinent to the questions of how the carcinogenic effects might be influenced, 2) the effects of radioprotectors on ionizing radiation-induced cancer, and 3) the effect of photosensitizers on UVR-induced skin cancer

  2. Radiation carcinogenesis: radioprotectors and photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1982-01-01

    This paper outlines 1) some of the salient features of radiation carcinogenesis that are pertinent to the questions of how the carcinogenic effects might be influenced, 2) the effects of radioprotectors on ionizing radiation-induced cancer, and 3) the effect of photosensitizers on UVR-induced skin cancer.

  3. Bis-Porphyrin Racks with Space-Separated Co-Planar Porphyrin Rings

    Directory of Open Access Journals (Sweden)

    Martin R. Johnston

    2001-03-01

    Full Text Available A porphyrin appended norbornenyl building block 8 has been isolated and coupled, using a 1,3-dipolar ACE reaction, to yield bis-porphyrin compounds in which the porphyrin moietes are angled upward relative to the norbornane backbone.

  4. Adsorption characteristics of a cationic porphyrin on nanoclay at various pH.

    Science.gov (United States)

    Rice, Zachary; Bergkvist, Magnus

    2009-07-15

    Natural and synthetic porphyrin derivatives offer a range of applications including enzymatic catalysis, photosensitizers for light harvesting and chemical reactions, and molecular electronics. They exhibit unique optical spectra dominated by the presence of Soret and Q-band structures whose position and shape offer a straightforward method to characterize porphyrins in various surroundings. In many applications it is often beneficial to have porphyrins adsorbed onto a solid matrix. Applications of porphyrin-clay complexes extend to numerous biological applications including pharmaceutical drug delivery, cosmetics, and agricultural applications and thus a full understanding of porphyrin-clay surface interactions are essential. Here we investigated the adsorption behavior of meso-tetra(4-N,N,N-trimethylanilinium) porphine (TMAP) onto sodium containing, natural montmorillonite clay (Cloisite Na(+)) in characteristic biological buffers over a range of pHs (approximately 2-9). Spectroscopic analyses show a linear absorption response at acidic and basic pHs but a slight deviation at intermediate pHs. Absorption spectra for TMAP on clay showed distinct red shifts of the Soret and Q-bands compared to free TMAP for all buffer conditions indicating core pi-electron delocalization into the substituent rings. At intermediate pHs, a gradual transition between protonated/deprotonated states were seen, presumably due to higher H(+) concentration at the surface than in bulk. Results indicate TMAP adsorption to clay occurs in a monolayer fashion at low/high pH while slightly acidic/neutral pH possibly rearrange on the surface and/or form aggregates. AFM images of clay saturated with TMAP are reported and show single isolated clay sheets without aggregation, similar to clay without TMAP.

  5. Porphyrin coordination polymer nanospheres and nanorods

    Science.gov (United States)

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  6. Antitumor effects evaluation of a novel porphyrin derivative in photodynamic therapy.

    Science.gov (United States)

    Li, Jian-Wei; Wu, Zhong-Ming; Magetic, Davor; Zhang, Li-Jun; Chen, Zhi-Long

    2015-12-01

    In this paper, the antitumor activity of a novel porphyrin-based photosensitizer 5,10,15,20-tetrakis[(5-diethylamino)pentyl] porphyrin (TDPP) was reported in vitro and in vivo. The photophysical and cellular properties of TDPP were investigated. The singlet oxygen generation quantum yield of TDPP was detected; it showed a high singlet oxygen quantum yield of 0.52. The intracellular distribution of photosensitizer was detected with laser scanning confocal microscopy. The efficiency of TDPP-photodynamic therapy (PDT) in vitro was analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and in situ trypan blue exclusion test. Treated with a 630-nm laser, TDPP can kill cultured human esophageal cancer cell line (Eca-109) cells and reduce the growth of Eca-109 xenograft tumors significantly in BABL/c nude mice. And histopathological study was also used to confirm the antitumor effect. It has the perspective to be developed as a new antitumor drug in photodynamic therapy and deserves further investigation.

  7. Photosensitivity: a current biological overview.

    Science.gov (United States)

    Elkeeb, Dena; Elkeeb, Laila; Maibach, Howard

    2012-12-01

    The level of interest in photoirritation (phototoxicity) has increased because of the awareness among the scientific community of the increase in the UV portion of the solar spectrum reaching the earth. The need of new chemicals and drugs puts pressure on pre-test methods for side effects, especially interactive adverse effects with UV light. So pre-marketing clinical trials conducted before a new drug is licensed are essential, as such, at the early phases of the discovery process of the drug/chemical, developing an efficacious photosensitivity testing system is prudent to avoid such potential side effects. To review published literature and provide an overview on exogenous photosensitivity and assays used to evaluate the photosensitivity potential of drugs/chemicals. As well as testing considerations by the Regulatory bodies (namely, the Organization for Economic Cooperation and Development, the U.S Food and Drug Administration and the European Union regulatory agencies). We searched medical and scientific search engines as well as websites of the EU and US Regulatory agencies and used keywords such as cutaneous phototoxicity, phototoxicity in vitro assays, phototoxicity in vivo assays and other related terms.

  8. Tetrapyrrole-photosensitizers vectorization and plasma LDL: a physico-chemical approach.

    Science.gov (United States)

    Bonneau, Stéphanie; Vever-Bizet, Christine; Mojzisova, Halina; Brault, Daniel

    2007-11-01

    A photosensitizer is defined as a chemical entity able to induce, under light-irradiation effect, a chemical or physical alteration of another chemical entity. Thanks to their preferential retention in proliferating tissues, some photosensitizers are therapeutically used such as in photodynamic therapy (PDT). Besides, this method has already been approved for several indications. The selectivity of photosenzitizers for cells in proliferation involves both their association with low density lipoproteins (LDLs) and their ability to cross membranes under various pH conditions. The photosensitizers used are in most cases based on the porphyrin structure, but other compounds, of which far-red-light absorption properties are most compatible with biological tissues irradiation, have been developed, such as phthalocyanines. This paper presents physico-chemical studies of the interaction of a disulfonated aluminium phthalocyanine (AlPcS2) with human LDLs. The data obtained are compared with the parameters of the interaction of these lipoproteins with deuteroporphyrin (DP) and chlorin e6 (Ce6). A close attention is paid to the dynamic aspects of these phenomena. The data obtained on these simple systems then allowed us to interpret the sub-cellular localization of the photosensitizers on a human line of fibroblasts, and to evaluate the influence of LDLs on the intracellular distribution of the compounds. This last point is of major importance because the localization of such photosensitizers (in particular AlPcS2) in endocytic vesicles and their subsequent ability to induce a release of the contents of these vesicles - including externally added macromolecules - into the cytosol is the basis for a recent method for macromolecule activation, named photochemical internalization (PCI). PCI has been shown to potentiate the biological activity of a large variety of macromolecules. The comprehension of the mechanisms governing this particular sub-cellular localization could allow

  9. LDL Receptors as Gateways for Intracellular Porphyrin Uptake

    International Nuclear Information System (INIS)

    Novick, S.; Laster, B.; Quastel, M.

    2004-01-01

    Boronated compounds are currently being studied for possible use in Boron Neutron Capture Therapy (BNCT). We found that one of these agents, BOPP (tetrakis-carborane-carboxylate, esters of 2,4-bis (a,b- dihydroxyethyl) deuteroporphyrin IX), could also be labeled with indium (In-BOPP) and, therefore, could also be used potentially to transport high Z atoms into tumor cell DNA for AET (Auger Electron Therapy). In order to assess the uptake of these agents into cells, the role of the LDL receptor in the intracellular accumulation of BOPP and In-BOPP was investigated. Pre-incubation of V-79 Chinese hamster cells in medium containing delipidized fetal bovine serum (FBS) markedly increased the subsequent uptake of intracellular boron transported by both BOPP and In-BOPP when compared with cells that had been pre-incubated with medium containing 10% normal FBS (lipidized). The increased uptake was characterized by elevated levels of receptor, and greater affinity was shown for both BOPP and In-BOPP, although less marked with the latter. Positive cooperativity was demonstrated by sigmoid saturation curves, Scatchard analysis and Hill plots. Increasing the amount of LDL in the incubation medium had a relatively small effect on the total accumulation of either indium or boron atoms inside the cell. Furthermore, chemical acetylation of LDL did not decrease the intracellular uptake of either boron or indium transported by BOPP or In-BOPP. It is thus concluded that BOPP and In-BOPP preferentially enter the cells directly by way of the LDL receptor and that only a small fraction of these molecules are transported into the cells indirectly using serum LDLs as their carriers. These data suggest a novel way of bringing greater amounts of boron and indium (and perhaps other agents) into tissues. Porphyrins can be used to transport different agents into tumor cells because they are tumor affinic molecules. Tumors express a higher number of LDL receptors than do most normal tissues

  10. Visible light-driven O2 reduction by a porphyrin-laccase system.

    Science.gov (United States)

    Lazarides, Theodore; Sazanovich, Igor V; Simaan, A Jalila; Kafentzi, Maria Chrisanthi; Delor, Milan; Mekmouche, Yasmina; Faure, Bruno; Réglier, Marius; Weinstein, Julia A; Coutsolelos, Athanassios G; Tron, Thierry

    2013-02-27

    Several recent studies have shown that the combination of photosensitizers with metalloenzymes can support a light-driven multielectron reduction of molecules such as CO(2) or HCN. Here we show that the association of the zinc tetramethylpyridinium porphyrin (ZnTMPyP(4+)) photosensitizer with the multicopper oxidase (MCO) laccase allows to link the oxidation of an organic molecule to the four electrons reduction of dioxygen into water. The enzyme is photoreduced within minutes with porphyrin/enzyme ratio as low as 1:40. With a 1:1 ratio, the dioxygen consumption rate is 1.7 μmol L(-1) s(-1). Flash photolysis experiments support the formation of the triplet excited state of ZnTMPyP(4+) which reduces the enzyme to form a radical cation of the porphyrin with a k(ET) ≈ 10(7) s(-1) M(-1). The long-lived triplet excited state of the ZnTMPyP(4+) (τ(0) = 0.72 ms) accounts for a substantial electron-transfer quantum yield, φ(ET) = 0.35. Consequently, the enzyme-dependent photo-oxidation of the electron donor occurs with a turnover of 8 min(-1) for the one-electron oxidation process, thereby supporting the suitability of such enzyme/sensitizer hybrid systems for aerobic photodriven transformations on substrates. This study is the first example of a phorphyrin-sensitized four-electron reduction of an enzyme of the MCO family, leading to photoreduction of dioxygen into water.

  11. Fabrication of self-written waveguide in photosensitive polyimide resin by controlling photochemical reaction of photosensitizer

    International Nuclear Information System (INIS)

    Yamashita, K.; Kuro, T.; Oe, K.; Mune, K.; Tagawa, K.; Naitou, R.; Mochizuki, A.

    2004-01-01

    We have investigated optical properties of photosensitive polyimide appropriating for long self-written waveguide fabrication. From systematic measurements of absorption properties, it was found that photochemical reaction of photosensitizer dissolved in the photosensitive polyimide resins relates to transparency after the exposure, which limits the length of the fabricated self-written waveguide. By controlling the photochemical reaction, in which the photosensitive polyimide resin has sufficient transparency during exposure, four times longer self-written waveguide core was fabricated

  12. Porphyrin-based Photocatalytic Nanolithography

    Energy Technology Data Exchange (ETDEWEB)

    Bearinger, J P; Stone, G; Dugan, L C; Dasher, B E; Stockton, C; Conway, J W; Kuenzler, T; Hubbell, J A

    2009-06-08

    Nanoarray fabrication is a multidisciplinary endeavor encompassing materials science, chemical engineering and biology. We form nanoarrays via a new technique, porphyrin-based photocatalytic nanolithography (PCNL). The nanoarrays, with controlled features as small as 200 nm, exhibit regularly ordered patterns and may be appropriate for (a) rapid and parallel proteomic screening of immobilized biomolecules, (b) protein-protein interactions and/or (c) biophysical and molecular biology studies involving spatially dictated ligand placement. We demonstrate protein immobilization utilizing nanoarrays fabricated via PCNL on silicon substrates, where the immobilized proteins are surrounded by a non-fouling polymer background.

  13. Novel drug delivery strategies for porphyrins and porphyrin precursors

    Science.gov (United States)

    Morrow, D. I. J.; Donnelly, R. F.

    2009-06-01

    superficial lesions, such as actinic keratosis. In addition, photodynamic antimicrobial chemotherapy (PACT) is attracting increasing interest for the treatment of infection. However, delivery strategies for topical PDT and PACT are still based on application of rather simplistic cream and solution formulations, with little consideration given to thermodynamics, targeting or the physicochemical properties of the active agent. Purpose-designed dosage forms for topical delivery of aminolevulinic acid or its esters include creams containing penetration enhancers and/or iron chelators, pressure sensitive patches and bioadhesive patches. Such systems aim to enhance drug delivery across the stratum corneum and keratinised debris overlying neoplastic lesions and improve subsequent protoporphyrin IX (PpIX) production. The alternative to using porphyrin precursors is the use of pre-formed photosensitisers. However, owing to their relatively high molecular weights, conventional topical application is not appropriate. Innovative strategies, such as the use of needle-free injections and microneedle arrays, bypass the stratum corneum, enabling rapid and targeted delivery not only porphyrin precursors but also pre-formed photosensitisers. This presentation will review drug delivery work published to date in the fields of PDT and PACT. In addition, the benefits of employing the latest advances in pharmaceutical technology will be highlighted.

  14. Phototreatment of Water by Organic Photosensitizers and Comparison with Inorganic Semiconductors

    Directory of Open Access Journals (Sweden)

    Merlyn Thandu

    2015-01-01

    Full Text Available Phototreatment of water is drawing the attention of many as a promising alternative to replace methods like chlorination, ozonization, and other oxidation processes, used in current disinfection methods limiting harmful side-products and by-products that can cause damage to the fauna and flora. Porphyrins, phthalocyanines, and other related organic dyes are well known for their use in photodynamic therapy (PDT. These photosensitizers cause cell death by generating reactive oxygen species (ROS especially singlet oxygen in the presence of light. Such molecules are also being explored for photodynamically treating microbial infections, killing of unwanted pathogens in the environment, and oxidation of chemical pollutants. The process of photosensitisation (phototreatment can be applied for obtaining clean, microbe-free water, thus exploiting the versatile properties of photosensitizers. This review collects the various attempts carried out for phototreatment of water using organic photosensitizers. For comparison, some reports of semiconductors (especially TiO2 used in photocatalytic treatment of water are also mentioned.

  15. Porphyrin-based polysilsesquioxane nanoparticles to improve photodynamic therapy for cancer treatment

    Science.gov (United States)

    Vivero-Escoto, Juan L.; DeCillis, Daniel; Fritts, Laura; Vega, Daniel L.

    2014-03-01

    Photodynamic therapy (PDT) has emerged as an alternative approach to chemotherapy and radiotherapy for cancer treatment. The photosensitizer (PS) is perhaps the most critical component of PDT, and continues to be an area of intense scientific research. Traditionally, PS molecules (e.g. porphyrins) have dominated the field. Nevertheless, these PS agents have several disadvantages, with low water solubility, poor light absorption and reduced selectivity for targeted tissues being some of the main drawbacks. Polysilsesquioxane (PSilQ) nanoparticles are crosslinked homopolymers formed by the condensation of functionalized trialkoxysilanes or bis(trialkoxysilanes). We believe that PSilQ particles provide an interesting platform for developing PS nanocarriers. Several advantages can be foreseen by using this platform such as carrying a large payload of PS molecules; their surface and composition can be tailored to develop multifunctional systems (e.g. target-specific); and due to their small size, nanoparticles can penetrate deep into tissues and be readily internalized by cells. In this work, PSilQ nanoparticles with a high payload of photosensitizers were synthesized, characterized, and applied in vitro. The network of this nanomaterial is formed by protoporphyrin IX (PpIX) molecules chemically connected via a redox-responsive linker. Under reducing environment such as the one found in cancer cells the nanoparticles can be degraded to efficiently release single photosensitizers in the cytoplasm. The phototoxicity of this porphyrin-based PSilQ nanomaterial was successfully demonstrated in vitro using human cervical (HeLa) cancer cells. We envision that this platform can be further functionalized with polyethylene glycol (PEG) and targeting ligands to improve its biocompatibility and target specificity.

  16. Cell-specific and pH-sensitive nanostructure hydrogel based on chitosan as a photosensitizer carrier for selective photodynamic therapy.

    Science.gov (United States)

    Belali, Simin; Karimi, Ali Reza; Hadizadeh, Mahnaz

    2018-04-15

    The major problems of porphyrins as promising materials for photodynamic therapy (PDT) are their low solubility, subsequently aggregation in biological environments, and a lack of tumor selectivity. With this in mind, a chitosan-based hydrogel conjugated with tetrakis(4-aminophenyl)porphyrin (NH 2 -TPP) and 2,4,6-tris(p-formylphenoxy)-1,3,5-triazine (TRIPOD) via Schiff base linkage, functionalized with folate was designed and synthesized as a pH-sensitive, self-healable and injectable targeted PS delivery system. This new hydrogel was characterized by FT-IR, 1 H NMR, SEM, UV-vis, fluorescence spectroscopy and zeta potential. Formation of imine bonds with the aldehyde group of TRIPOD and amine group of NH 2 -TPP and chitosan, as a dynamic connection, was approved by rheological analysis. Spectroscopic characterizations revealed that aggregation of porphyrin in aqueous media was eliminated due to diminished π stacking interaction of porphyrin in 3D cross-linked hydrogel structure. Hydrogel 3D microporous structure efficiently transfers the excitation energy to the porphyrin unit, yielding improvement singlet oxygen releases. Cytotoxicity and phototoxicity analysis of the CS/NH 2 -TPP/FA hydrogels indicating an excellent capability to kill cancer cells selectively and prevent damage to normal cells. This work presents a new and efficient model for the preparation of highly efficient and targeting photosensitizer delivery system. Copyright © 2018. Published by Elsevier B.V.

  17. Photosensitizers for radiation-curable coatings

    International Nuclear Information System (INIS)

    Cordes, W.F. III.

    1977-01-01

    2-Alkoxy-1,3-diphenyl-1,3-propanedione compounds have been found useful as photosensitizers in radiation-curable coating compositions. The novel photosensitizers of this invention have the structural formula in which R is an alkyl radical of from one eight carbon atoms. 11 claims

  18. Photoexcited iron porphyrin as biomimetic catalysts

    International Nuclear Information System (INIS)

    Bartocci, C.; Maldotti, A.; Varani, G.; Consiglio Nazionale delle Ricerche, Ferrara

    1996-01-01

    Photoexcited iron porphyrins can be of some interest in both fine and industrial chemistry in view of the preparation of new efficient biomimetic catalysts, working with high selectivity under mild temperature and pressure

  19. Nanoscaled porphyrinic metal–organic frameworks: photosensitizer delivery systems for photodynamic therapy

    Czech Academy of Sciences Publication Activity Database

    Bůžek, Daniel; Zelenka, J.; Ulbrich, P.; Ruml, T.; Křížová, I.; Lang, J.; Kubát, Pavel; Demel, Jan; Kirakci, Kaplan; Lang, Kamil

    2017-01-01

    Roč. 5, č. 9 (2017), s. 1815-1821 ISSN 2050-750X R&D Projects: GA ČR(CZ) GA16-02098S Institutional support: RVO:61388980 ; RVO:61388955 Keywords : Cell death * Crystalline materials * Cytotoxicity * Diseases * Nanoparticles Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Inorganic and nuclear chemistry; Physical chemistry (UFCH-W) Impact factor: 4.543, year: 2016

  20. Magnetic interactions in iron (III) porphyrin chlorides

    International Nuclear Information System (INIS)

    Ernst, J.; Subramanian, Japyesan; Fuhrhop, J.H.

    1977-01-01

    Intermolecular exchange interactions in iron(III) porphyrin chlorides (porphyrin = OEP, proto, TPP) have been studied by X-ray structure, EPR and magnetic susceptibility studies. The crystal structure of Fe(III)OEP-Cl was found to be different from that of the other two. Different types of exchange broadened EPR-spectra are obtained which are attributable to the arrangement in the crystals. The EPR results correlate well with magnetic susceptibility data. (orig.) [de

  1. Urinary porphyrin excretion in hepatitis C infection

    OpenAIRE

    Vogeser, Michael; Jacob, Karl; Zachoval, Reinhart

    1999-01-01

    A high prevalence of hepatitis C virus infection in porphyria cutanea tarda in some populations suggests a close link between viral hepatitis and alteration of porphyrin metabolism. Moreover, there is evidence of a role of porphyrinopathies in hepatocarcinogenesis. The aim of our study was to obtain data on the prevalence and patterns of heme metabolism alterations in patients with chronic hepatitis C virus infection. Urinary porphyrin excretion was prospectively studied in 100 consecutive ou...

  2. Electron Transport through Porphyrin Molecular Junctions

    Science.gov (United States)

    Zhou, Qi

    The goal of this work is to study the properties that would affect the electron transport through a porphyrin molecular junction. This work contributes to the field of electron transport in molecular junctions in the following 3 aspects. First of all, by carrying out experiments comparing the conductance of the iron (III) porphyrin (protected) and the free base porphyrin (protected), it is confirmed that the molecular energy level broadening and shifting occurs for porphyrin molecules when coupled with the metal electrodes, and this level broadening and shifting plays an important role in the electron transport through molecular junctions. Secondly, by carrying out an in-situ deprotection of the acetyl-protected free base porphyrin molecules, it is found out that the presence of acetyl groups reduces the conductance. Thirdly, by incorporating the Matrix-assisted laser desorption/ionization (MALDI) spectrum and the in-situ deprotection prior to formation of molecular junctions, it allows a more precise understanding of the molecules involved in the formation of molecular junctions, and therefore allows an accurate analysis of the conductance histogram. The molecules are prepared by self-assembly and the junctions are formed using a Scanning Tunneling Microscopy (STM) molecular break junction technique. The porphyrin molecules are characterized by MALDI in solution before self-assembly to a gold/mica substrate. The self-assembled monolayers (SAMs) of porphyrins on gold are characterized by Ultraviolet-visible (UV-Vis) reflection spectroscopy to confirm that the molecules are attached to the substrate. The SAMs are then characterized by Angle-Resolved X-ray photoelectron spectroscopy (ARXPS) to determine the thickness and the average molecular orientation of the molecular layer. The electron transport is measured by conductance-displacement (G-S) experiments under a given bias (-0.4V). The conductance value of a single molecule is identified by a statistical analysis

  3. Porphyrin amino acids-amide coupling, redox and photophysical properties of bis(porphyrin) amides.

    Science.gov (United States)

    Melomedov, Jascha; Wünsche von Leupoldt, Anica; Meister, Michael; Laquai, Frédéric; Heinze, Katja

    2013-07-14

    New trans-AB2C meso-substituted porphyrin amino acid esters with meso-substituents of tunable electron withdrawing power (B = mesityl, 4-C6H4F, 4-C6H4CF3, C6F5) were prepared as free amines 3a-3d, as N-acetylated derivatives Ac-3a-Ac-3d and corresponding zinc(II) complexes Zn-Ac-3a-Zn-Ac-3d. Several amide-linked bis(porphyrins) with a tunable electron density at each porphyrin site were obtained from the amino porphyrin precursors by condensation reactions (4a-4d) and mono- and bis(zinc(II)) complexes Zn(2)-4d and Zn(1)Zn(2)-4d were prepared. The electronic interaction between individual porphyrin units in bis(porphyrins) 4 is probed by electrochemical experiments (CV, EPR), electronic absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy in combination with DFT/PCM calculations on diamagnetic neutral bis(porphyrins) 4 and on respective charged mixed-valent radicals 4(+/-). The interaction via the -C6H4-NHCO-C6H4- bridge, the site of oxidation and reduction and the lowest excited singlet state S1, is tuned by the substituents on the individual porphyrins and the metalation state.

  4. Single Cell Responses to Spatially Controlled Photosensitized Production of Extracellular Singlet Oxygen

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Sinks, Louise E.; Breitenbach, Thomas

    2011-01-01

    The response of individual HeLa cells to extracellularly produced singlet oxygen was examined. The spatial domain of singlet oxygen production was controlled using the combination of a membrane-impermeable Pd porphyrin-dendrimer, which served as a photosensitizer, and a focused laser, which served...... to localize the sensitized production of singlet oxygen. Cells in close proximity to the domain of singlet oxygen production showed morphological changes commonly associated with necrotic cell death. The elapsed post-irradiation “waiting period” before necrosis became apparent depended on (a) the distance...... between the cell membrane and the domain irradiated, (b) the incident laser fluence and, as such, the initial concentration of singlet oxygen produced, and (c) the lifetime of singlet oxygen. The data imply that singlet oxygen plays a key role in this process of light-induced cell death. The approach...

  5. Prospects for photosensitive dopants in liquid argon

    International Nuclear Information System (INIS)

    Anderson, D.F.

    1990-12-01

    Evidence is presented that the addition of a few ppM of a photosensitive dopant to a U/liquid argon or Pb/liquid argon calorimeter will make a substantial reduction in the e/π ratio. Previous results indicating high voltage problems and no change in the e/π ratio in tests of photosensitive dopants with the Fermilab D0 experiment's U/liquid argon tests calorimeter are also explained. 13 refs., 3 figs

  6. Assembly of High-Potency Photosensitizer-Antibody Conjugates through Application of Dendron Multiplier Technology.

    Science.gov (United States)

    Bryden, Francesca; Maruani, Antoine; Rodrigues, João M M; Cheng, Miffy H Y; Savoie, Huguette; Beeby, Andrew; Chudasama, Vijay; Boyle, Ross W

    2018-01-17

    Exploitation of photosensitizers as payloads for antibody-based anticancer therapeutics offers a novel alternative to the small pool of commonly utilized cytotoxins. However, existing bioconjugation methodologies are incompatible with the requirement of increased antibody loading without compromising antibody function, stability, or homogeneity. Herein, we describe the first application of dendritic multiplier groups to allow the loading of more than 4 porphyrins to a full IgG antibody in a site-specific and highly homogeneous manner. Photophysical evaluation of UV-visible absorbance and singlet oxygen quantum yields highlighted porphyrin-dendron 14 as the best candidate for bioconjugation; with subsequent bioconjugation producing a HER2-targeted therapeutic with average loading ratios of 15.4:1. In vitro evaluation of conjugate 18 demonstrated a nanomolar photocytotoxic effect in a target cell line, which overexpresses HER2, with no observed photocytotoxicity at the same concentration in a control cell line which expresses native HER2 levels, or in the absence of irradiation with visible light.

  7. Porphyrin conjugated SiC/SiOx nanowires for X-ray-excited photodynamic therapy

    Science.gov (United States)

    Rossi, F.; Bedogni, E.; Bigi, F.; Rimoldi, T.; Cristofolini, L.; Pinelli, S.; Alinovi, R.; Negri, M.; Dhanabalan, S. C.; Attolini, G.; Fabbri, F.; Goldoni, M.; Mutti, A.; Benecchi, G.; Ghetti, C.; Iannotta, S.; Salviati, G.

    2015-01-01

    The development of innovative nanosystems opens new perspectives for multidisciplinary applications at the frontier between materials science and nanomedicine. Here we present a novel hybrid nanosystem based on cytocompatible inorganic SiC/SiOx core/shell nanowires conjugated via click-chemistry procedures with an organic photosensitizer, a tetracarboxyphenyl porphyrin derivative. We show that this nanosystem is an efficient source of singlet oxygen for cell oxidative stress when irradiated with 6 MV X-Rays at low doses (0.4-2 Gy). The in-vitro clonogenic survival assay on lung adenocarcinoma cells shows that 12 days after irradiation at a dose of 2 Gy, the cell population is reduced by about 75% with respect to control cells. These results demonstrate that our approach is very efficient to enhance radiation therapy effects for cancer treatments.

  8. Micro-Encapsulated Porphyrins and Phthalocyanines - New Formulations in Photodynamic Therapy

    Science.gov (United States)

    Ion, R. M.

    2017-06-01

    Photodynamic therapy (PDT), as an innovative method for cancer tretament is based on a concerted action of some drugs, called sensitizers, which generate reactive oxygen species via a photochemical mechanism, leading to cellular necrosis or apoptosis. The present work aims at loading some sensitizers, as porphyrins (P) and phthalocyanines (Pc) into alginate particles. Particles were prepared by dropping alginate into an aqueous solution containing P or Pc and CaCl2, which allows the formation of particles through ionic crosslinking. It was obtained P or Pc loaded alginate beads with an average diameter of about 100 μm. For these systems, this paper analyses the spectroscopic properties, encapsulation into microcapsules, controlled releasing action and their photosensitizer capacity (singlet oxygen generation).

  9. New Photosensitizers for Photodynamic Therapy in Gastroenterology

    Directory of Open Access Journals (Sweden)

    SG Bown

    1999-01-01

    Full Text Available Most applications of photodynamic therapy (PDT in gastroenterology to date have used porfimer sodium as the photosensitizing agent. For destroying small lesions in the wall of the gastrointestinal tract in inoperable patients, it has proved to be most effective, but attempts to achieve circumferential mucosal ablation, as in the treatment of Barrett’s esophagus, have led to a high incidence of strictures, and all patients have cutaneous photosensitivity, which can last up to three months. Two new photosensitizers are of particular interest to gastroenterologists. PDT with metatetrahydroxyphenyl chlorin produces a similar biological effect as PDT with porfimer sodium, but the light doses required are much smaller, and cutaneous photosensitivity lasts only two to three weeks. Further, it can be used with percutaneous light delivery to destroy localized pancreatic cancers. The photosensitizing agent 5-amino levulinic acid, converted in vivo into the photoactive derivative protoporphyrin IX, sensitizes the mucosa much more than the underlying layers. This makes it feasible to destroy areas of abnormal mucosa without damaging the underlying muscle and is, therefore, better for treating Barrett’s esophagus. Detailed clinical studies are required to establish the real role of PDT with the use of these and other new photosensitizers.

  10. Riboflavin photosensitized oxidation of myoglobin.

    Science.gov (United States)

    Grippa, Juliana M; de Zawadzki, Andressa; Grossi, Alberto B; Skibsted, Leif H; Cardoso, Daniel R

    2014-02-05

    The reaction of the fresh meat pigment oxymyoglobin, MbFe(II)O₂, and its oxidized form metmyoglobin, MbFe(III), with triplet-state riboflavin involves the pigment protein, which is oxidatively cleaved or dimerized as shown by SDS-PAGE and Western blotting. The overall rate constant for oxidation of MbFe(II)O₂ by ³Rib is (3.0 ± 0.5) × 10⁹ L·mol⁻¹·s⁻¹ and (3.1 ± 0.4) × 10⁹ L·mol⁻¹·s⁻¹ for MbFe(III) in phosphate buffer of pH 7.4 at 25 °C as determined by laser flash photolysis. The high rates are rationalized by ground state hydrophobic interactions as detected as static quenching of fluorescence from singlet-excited state riboflavin by myoglobins using time-resolved fluorescence spectroscopy and a Stern-Volmer approach. Binding of riboflavin to MbFe(III) has K(a) = (1.2 ± 0.2) × 10⁴ mol·L⁻¹ with ΔH° = -112 ± 22 kJ·mol⁻¹ and ΔS° = -296 ± 75 J·mol⁻¹·K⁻¹. For meat, riboflavin is concluded to be a photosensitizer for protein oxidation but not for discoloration.

  11. Dualism of Sensitivity and Selectivity of Porphyrin Dimers in Electroanalysis.

    Science.gov (United States)

    Lisak, Grzegorz; Tamaki, Takashi; Ogawa, Takuji

    2017-04-04

    This work uncovers the application of porphyrin dimers for the use in electroanalysis, such as potentiometric determination of ions. It also puts in question a current perception of an occurrence of the super-Nernstian response, as a result of the possible dimerization of single porphyrins within an ion-selective membrane. To study that, four various porphyrin dimers were used as ionophores, namely, freebase-freebase, Zn-Zn, Zn-freebase, and freebase-Zn. Since the Zn-freebase and freebase-Zn porphyrin dimers carried both anion- and cation-sensitive porphyrin units, their application in ISEs was utilized in both anion- and cation-sensitive sensors. With respect to the lipophilic salt added, both porphyrins dimers were found anion- and cation-sensitive. This allowed using a single molecule as novel type of versatile ionophore (anion- and cation-selective), simply by varying the membrane composition. All anion-sensitive sensors were perchlorate-sensitive, while the cation-selective sensors were silver-sensitive. The selectivity of the sensors depended primarily on the porphyrin dimers in the ion-selective membrane. Furthermore, the selectivity of cation-sensitive dimer based sensors was found significantly superior to the ones measured for the single porphyrin unit based sensors (precursors of the porphyrin dimers). Thus, the dimerization of single porphyrins may actually be a factor to increase or modulate porphyrin selectivity. Moreover, in the case of cation-sensitive sensors, the selectivity vastly depended on the order of porphyrin units in the dimer. This opens a new approach of regulating and adjusting sensitivity and selectivity of the sensor through the application of complex porphyrin systems with more than one porphyrin units with mix sensitive porphyrins.

  12. Photovoltaic Performance of ZnO Nanosheets Solar Cell Sensitized with Beta-Substituted Porphyrin

    Directory of Open Access Journals (Sweden)

    Arumugam Mahesh

    2011-01-01

    Full Text Available The photoanode of dye-sensitized solar cell (DSSC was fabricated using two-dimensional ZnO nanosheets (2D ZnO NSs sensitized with beta-substituted porphyrins photosensitizer, and its photovoltaic performance in solid-state DSSC with TiO2 nanotubes (TiO2 TNs modified poly (ethylene oxide (PEO polymer electrolyte was studied. The ZnO NSs were synthesized through hydrothermal method and were characterized through high-resolution scanning electron microscopy (HRSEM, diffused reflectance spectra (DRS, photoluminescence spectra (PL, and X-ray diffraction (XRD analysis. The crystallinity of the polymer electrolytes was investigated using X-ray diffraction analysis. The photovoltaic performance of the beta-substituted porphyrins sensitized solar cells was evaluated under standard AM1.5G simulated illumination (100 mW cm−2. The efficiency of energy conversion from solar to electrical due to 2D ZnO NSs based DSSCs is 0.13%, which is about 1.6 times higher than that of the control DSSC using ZnO nanoparticles (ZnO NPs as photoanode (0.08%, when TiO2 NTs fillers modified PEO electrolyte was incorporated in the DSSCs. The current-voltage (- and photocurrent-time (- curves proved stable with effective collection of electrons, when the 2D ZnO nanostructured photoanode was introduced in the solid-state DSSC.

  13. Electron injection dynamics in high-potential porphyrin photoanodes.

    Science.gov (United States)

    Milot, Rebecca L; Schmuttenmaer, Charles A

    2015-05-19

    promising sensitizers because their high reduction potentials are compatible with the energy requirements of water oxidation. TRTS of free-base and metalated pentafluorophenyl porphyrins reveal inefficient electron injection into TiO2 nanoparticles but more efficient electron injection into SnO2 nanoparticles. With SnO2, injection time scales depend strongly on the identity of the central substituent and are affected by competition with excited-state deactivation processes. Heavy or paramagnetic metal ions increase the electron injection time scale by roughly one order of magnitude relative to free-base or Zn(2+) porphyrins due to the possibility of electron injection from longer-lived, lower-lying triplet states. Furthermore, electron injection efficiency loosely correlates with DSSC performance. The carboxylate anchoring group is commonly used to bind DSSC sensitizers to metal oxide surfaces but typically is not stable under the aqueous and oxidative conditions required for water oxidation. Electron injection efficiency of several water-stable alternatives, including phosphonic acid, hydroxamic acid, acetylacetone, and boronic acid, were evaluated using TRTS, and hydroxamate was found to perform as well as the carboxylate. The next challenge is incorporating a water oxidation catalyst into the design. An early example, in which an Ir-based precatalyst is cosensitized with a fluorinated porphyrin, reveals decreased electron injection efficiency despite an increase in photocurrent. Future research will seek to better understand and address these difficulties.

  14. Targeted two-photon PDT photo-sensitizers for the treatment of subcutaneous tumors

    Science.gov (United States)

    Spangler, C. W.; Rebane, A.; Starkey, J.; Drobizhev, M.

    2009-06-01

    New porphyrin-based photo-sensitizers have been designed, synthesized and characterized that exhibit greatly enhanced intrinsic two-photon absorption. These new photo-sensitizers have been incorporated into triad formulations that also incorporate Near-infrared (NIR) imaging agents, and small-molecule targeting agents that direct the triads to cancerous tumors' over-expressed receptor sites. PDT can be initiated deep into the tissue transparency window at 780-800 nm utilizing a regeneratively amplified Ti:sapphire laser using 100-150 fs pulses of 600-800 mW. Human tumor xenografts of human breast cancer (MDA-MB-231) and both small SCLC (NCI-H69) and NSCLC (A-459) have been successfully treated using octreotate targeting of over-expressed SST2 receptors. In particular, the lung cancer xenografts can be successfully treated by irradiating from the side of the mouse opposite the implanted tumor, thereby passing through ca. 2 cm of mouse skin, tissue and organs with no discernible damage to healthy tissue while causing regression in the tumors. These results suggest a new PDT paradigm for the noninvasive treatment of subcutaneous tumors, including the possibility that the targeting moiety could be matched to individual patient genetic profiles (patient-specific therapeutics).

  15. Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers.

    Directory of Open Access Journals (Sweden)

    Patrícia M R Pereira

    Full Text Available Photodynamic Therapy (PDT relies on the use of non-toxic photosensitizers that are locally and selectively activated by light to induce cell death or apoptosis through reactive oxygen species generation. The conjugation of porphyrinoids with sugars that target cancer is increasingly viewed as an effective way to increase the selectivity of PDT. To date, in vitro PDT efficacy is mostly screened using two-dimensional monolayer cultures. Compared to monolayer cultures, three-dimensional spheroid cultures have unique spatial distributions of nutrients, metabolites, oxygen and signalling molecules; therefore better mimic in vivo conditions. We obtained 0.05 mm3 spheroids with four different human tumor cell lines (HCT-116, MCF-7, UM-UC-3 and HeLa with appropriate sizes for screening PDT agents. We observed that detachment from monolayer culture and growth as tumor spheroids was accompanied by changes in glucose metabolism, endogenous ROS levels, galectin-1 and glucose transporter GLUT1 protein levels. We compared the phototoxic responses of a porphyrin conjugated with four glucose molecules (PorGlu4 in monolayer and spheroid cultures. The uptake and phototoxicity of PorGlu4 is highly dependent on the monolayer versus spheroid model used and on the different levels of GLUT1 protein expressed by these in vitro platforms. This study demonstrates that HCT-116, MCF-7, UM-UC-3 and HeLa spheroids afford a more rational platform for the screening of new glycosylated-photosensitizers compared to monolayer cultures of these cancer cells.

  16. Synthesis of borylated porphyrin and bromo- porphyrin as building blocks for light harvesting antenna molecule

    Science.gov (United States)

    Radzuan, Nuur Haziqah Mohd; Hassan, Nurul Izzaty; Bakar, Muntaz Abu

    2018-04-01

    The building blocks for synthesis of light harvesting antenna which are 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-10,20-diphenylporphyrin, 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-10,20-dihexylporphyrin and 5,10,15,20-tetra-(bromophenyl)porphyrin were synthesized. Borylated porphyrin was synthesized by Suzuki coupling reaction between A2BC bromo-porphyrin and pinacolborane. Whereas 5,10,15,20-tetra-(bromophenyl) porphyrin was synthesized by Lindsey condensation reaction between pyrrole and 4-bromobenzaldehyde. 1H-NMR, 13C-NMR spectroscopy and UV-visible spectroscopy confirmed the successful formation of all compounds.

  17. Study of photosensitization reaction progress in a 96 well plate with photosensitizer rich condition using Talaporfin sodium

    Science.gov (United States)

    Ogawa, Emiyu; Takahashi, Mei; Arai, Tsunenori

    2013-02-01

    To quantitatively investigate photosensitization reaction in vitro against myocardial cells with photosensitizer rich condition in solution using Talaporfin sodium in the well of a 96 well plate, we studied photosensitization reaction progress in this well. We have proposed non-thermal conduction block of myocardium tissue using the photosensitization reaction with laser irradiation shortly after Talaporfin sodium injection. In above situation, the photosensitizer is located outside the myocardial cells in high concentration. To understand interaction of the photosensitization reaction in which the photosensitizer distributes outside cells, the photosensitization reaction progress in the well was studied. Talaporfin sodium (799.69 MW) solution and a 663 nm diode laser were used. The photosensitizer solution concentrations of 12.5-37.5 μM were employed. The photosensitizer fluorescence with 0.29 W/cm2 in irradiance, which was optimized in previous cell death study, was measured during the laser irradiation until 40 J/cm2. The photosensitizer solution absorbance and dissolved oxygen pressure after the laser irradiation were also measured. We found that the photosensitization reaction progress had 2 distinctive phases of different reaction rate: rapid photosensitization reaction consuming dissolved oxygen and gentle photosensitization reaction with oxygen diffusion from the solution-air boundary. The dissolved oxygen pressure and photosensitizer solution absorbance were 30% and 80% of the initial values after the laser irradiation, respectively. Therefore, oxygen was rate-controlling factor of the photosensitization reaction in the well with the photosensitizer rich condition. In the oxygen diffusion phase, the oxygen pressure was maintained around 40 mmHg until the laser irradiation of 40 J/cm2 and it is similar to that of myocardium tissue in vivo. We think that our 96 well plate in vitro system may simulate PDT in myocardial tissue with photosensitization reaction

  18. Ruthenium porphyrin-induced photodamage in bladder cancer cells.

    Science.gov (United States)

    Bogoeva, Vanya; Siksjø, Monica; Sæterbø, Kristin G; Melø, Thor Bernt; Bjørkøy, Astrid; Lindgren, Mikael; Gederaas, Odrun A

    2016-06-01

    Photodynamic therapy (PDT) is a noninvasive treatment for solid malignant and flat tumors. Light activated sensitizers catalyze photochemical reactions that produce reactive oxygen species which can cause cancer cell death. In this work we investigated the photophysical properties of the photosensitizer ruthenium(II) porphyrin (RuP), along with its PDT efficiency onto rat bladder cancer cells (AY27). Optical spectroscopy verified that RuP is capable to activate singlet oxygen via blue and red absorption bands and inter system crossing (ISC) to the triplet state. In vitro experiments on AY27 indicated increased photo-toxicity of RuP (20μM, 18h incubation) after cell illumination (at 435nm), as a function of blue light exposure. Cell survival fraction was significantly reduced to 14% after illumination of 20μM RuP with 15.6J/cm(2), whereas the "dark toxicity" of 20μM RuP was 17%. Structural and morphological changes of cells were observed, due to RuP accumulation, as well as light-dependent cell death was recorded by confocal microscopy. Flow cytometry verified that PDT-RuP (50μM) triggered significant photo-induced cellular destruction with a photoxicity of (93%±0.9%). Interestingly, the present investigation of RuP-PDT showed that the dominating mode of cell death is necrosis. RuP "dark toxicity" compared to the conventional chemotherapeutic drug cisplatin was higher, both evaluated by the MTT assay (24h). In conclusion, the present investigation shows that RuP with or without photoactivation induces cell death of bladder cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Porphyrin lipid nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model

    Science.gov (United States)

    MacLaughlin, Christina M.; Ding, Lili; Jin, Cheng; Cao, Pingjiang; Siddiqui, Iram; Hwang, David M.; Chen, Juan; Wilson, Brian C.; Zheng, Gang; Hedley, David W.

    2016-03-01

    Local disease control is a major problem in the treatment of pancreatic cancer, because curative-intent surgery is only possible in a minority of patients, and radiotherapy cannot be delivered in curative doses. Despite the promise of photothermal therapy (PTT) for ablation of pancreatic tumors, this approach remains under investigated. Using photothermal sensitizers in combination with laser light for PTT can result in more efficient conversion of light energy to heat, and confinement of thermal destruction to the tumor, thus sparing adjacent organs and vasculature. Porphyrins have been previously employed as photosensitizers for PDT and PTT, however their incorporation in to "porphysomes", lipid-based nanoparticles each containing ~80,000 porphyrins through conjugation of pyropheophorbide to phospholipids, carries two distinct advantages: 1) high-density porphyrin packing imparts the nanoparticles with enhanced photonic properties for imaging and phototherapy; 2) the enhanced permeability and retention effect may be exploited for optimal delivery of porphysomes to the tumor region thus high payload porphyrin delivery. The feasibility of porphysome-enhanced PTT for pancreatic cancer treatment was investigated using a patient-derived orthotopic pancreas xenograft tumor model. Uptake of porphysomes at the orthotopic tumor site was validated using ex vivo fluorescence imaging of intact organs of interest. The accumulation of porphysomes in orthotopic tumor microstructure was also confirmed by fluorescence imaging of excised tissue slices. PTT progress was monitored as changes in tumor surface temperature using IR optical imaging. Histological analyses were conducted to examine microstructure changes in tissue morphology, and the viability of remaining tumor tissues following exposure to heat. These studies may also provide insight as to the contribution of heat sink in application of thermal therapies to highly vascularized pancreatic tumors.

  20. Photosensitive Gaseous Detectors for Cryogenic Temperature Applications

    CERN Document Server

    Periale, L; Iacobaeus, C; Lund-Jensen, B; Picchi, P; Pietropaolo, F

    2007-01-01

    There are several proposals and projects today for building LXe Time Projection Chambers (TPCs) for dark matter search. An important element of these TPCs are the photomultipliers operating either inside LXe or in vapors above the liquid. We have recently demonstrated that photosensitive gaseous detectors (wire type and hole-type) can operate perfectly well until temperatures of LN2. In this paper results of systematic studies of operation of the photosensitive version of these detectors (combined with reflective or semi-transparent CsI photocathodes) in the temperature interval of 300-150 K are presented. In particular, it was demonstrated that both sealed and flushed by a gas detectors could operate at a quite stable fashion in a year/time scale. Obtained results, in particular the long-term stability of photosensitive gaseous detectors, strongly indicate that they can be cheap and simple alternatives to photomultipliers or avalanche solid-state detectors in LXe TPC applications.

  1. [Pharmaceutical chemistry of drug-initiated photosensitivity].

    Science.gov (United States)

    Rácz, Ákos; Tóth, Lívia

    2015-01-01

    The photosensitivity originated from drugs is a common problem in medical and pharmaceutical practice. It is of prominent importance in drug development and in regulatory issues. The photosensitizer effect of drug substances is determined by their chemical structures, and it mainly originates from aromatic chromophore systems and photo-dissociable bonds forming free radicals. The photodegradation may happen in many different types of chemical reaction pathways. Our aim is to demonstrate in this review the interrelations between structure and photodegradation. We show examples for the different reaction types, with drugs from different pharmacologic therapeutic classes. The in vivo chemical reactivity of photodegradates of pharmaceutical substances, the in vitro methods of investigation for testing photoreactivity and phototoxicity, and briefly the clinical tests for photosensitivity disorders are also discussed.

  2. Helical chirality induction of expanded porphyrin analogues

    Indian Academy of Sciences (India)

    of this figure-eight conformation in relation to the num- ber of π-electrons attracts ... porphyrin moieties.7a–d In this context, application of ... become problematic. Lindsey .... cell. [a]. CD sign (λmax/nm). UV-vis θ/ abs. Ligand of 1st Cotton effect.

  3. Porphyrin formation and its regulation in Arthrobacter

    NARCIS (Netherlands)

    Kortstee, G.J.J.

    1969-01-01

    Porphyrins (tetrapyrroles) are the basic compounds of a number of substances functioning in living organisms as carriers of oxygen (hemoglobin), carriers of electrons (cytochromes) or as a trap for radiant energy (chlorophyll). In these active forms the tetrapyrroles contain a metal and are

  4. Photodynamic Efficiency of Porphyrins Encapsulated into Polysilsesquioxanes

    Czech Academy of Sciences Publication Activity Database

    Rychtáriková, Renata; Šabata, Stanislav; Hetflejš, Jiří; Kuncová, Gabriela

    2012-01-01

    Roč. 66, č. 4 (2012), s. 269-277 ISSN 0366-6352 R&D Projects: GA MŠk ME 892; GA MŠk(CZ) LC06070 Institutional research plan: CEZ:AV0Z40720504 Keywords : porphyrin * immobilization * specific surface area Subject RIV: CC - Organic Chemistry Impact factor: 0.879, year: 2012

  5. Photoconductivity in DNA-Porphyrin Complexes

    Science.gov (United States)

    Myint, Peco; Oxford, Emma; Nyazenga, Collence; Smith, Walter; Qi, Zhengqing; Johnson, A. T.

    2015-03-01

    We have measured the photoconductivity of λ - DNA that is modified by intercalating a porphyrin compound, meso-tetrakis(N-methyl-4-pyridiniumyl)porphyrin (TMPyP), into its base stacks. Intercalation was verified by a red shift and hypochromism of the Soret absorption peak. The DNA/porphyrin strands were then deposited onto oxidized silicon substrates which had been patterned with interdigitated electrodes, and blown dry. Electrical measurements were carried out under nitrogen, using illumination from a 445 nm laser; this wavelength falls within the absorption peak of the DNA/porphyrin complexes. When initially measured under dry nitrogen, the complexes show no photoconductivity or dark conductivity. However, at relative humidities of 30% and above, we do observe dark conductivity, and also photoconductivity that grows with time. Photoconductivity gets larger at higher relative humidity. Remarkably, when the humidity is lowered again, some photoconductivity is now observed, indicating a change that persists for more than 24 hours. It may be that the humidity alters the structure of the DNA, perhaps allowing for better alignment of the bases. This work was supported by NSF Grant BMAT-1306170.

  6. Aspects of the chemistry of boron

    International Nuclear Information System (INIS)

    Moellinger, H.

    1976-01-01

    Crystal phases of elementary boron are reviewed as well as boron-sulphur, boron-selenum, boron-tellurium, and boron-nitrogen compounds, carboranes, and boron-carbohydrate complexes. A boron cadastre of rivers and lakes serves to illustrate the role of boron in environmental protection. Technically relevant boron compounds and their uses are mentioned. (orig.) 891 HK/orig. 892 MB [de

  7. Thin porphyrin composite membranes with enhanced organic solvent transport

    KAUST Repository

    Phuoc, Duong

    2018-05-01

    Extending the stability of polymeric membranes in organic solvents is important for applications in chemical and pharmaceutical industry. Thin-film composite membranes with enhanced solvent permeance are proposed, using porphyrin as a building block. Hybrid polyamide films are formed by interfacial polymerization of 5,10,15,20-(tetra-4-aminophenyl)porphyrin/m-phenylene diamine (MPD) mixtures with trimesoyl chloride. Porphyrin is a non-planar molecule, containing a heterocyclic tetrapyrrole unit. Its incorporation into a polyamide film leads to higher free volume than that of a standard polyamide film. Polyamide films derived from porphyrin and MPD amines with a fixed total amine concentration of 1wt% and various porphyrin/MPD ratios were fabricated and characterized. The porphyrin/MPD polyamide film was complexed with Cu(II), due to the binding capacity of porphyrin to metal ions. By coupling scanning transmission electron microscopy (STEM) with electron energy-loss spectroscopy (EELS), Cu mapping was obtained, revealing the distribution of porphyrin in the interfacial polymerized layer. By using porphyrin as amine-functionalized monomer a membrane with thin selective skin and enhanced solvent transport is obtained, with good dye selectivity in the nanofiltration range. For instance, an ultra-fast hexane permeance, 40-fold increased, was confirmed when using 0.5/0.5 porphyrin/MPD mixtures, instead of only MPD as amine monomer. A rejection of 94.2% Brilliant Blue R (826g/mol) in methanol was measured.

  8. Synthesis, characterization, and subcellular localization studies of amino acid-substituted porphyrinic pigments

    Science.gov (United States)

    van Diggelen, Lisa; Khin, Hnin; Conner, Kip; Shao, Jenny; Sweezy, Margaretta; Jung, Anna H.; Isaac, Meden; Simonis, Ursula

    2009-06-01

    Stopping cancer in its path occurs when photosensitizers (PSs) induce apoptotic cell death after their exposure to light and the subsequent formation of reactive oxygen species. In pursuit of our hypothesis that mitochondrial localizing PSs will enhance the efficacy of the photosensitizing process in photodynamic therapy, since they provoke cell death by inducing apoptosis, we synthesized and characterized tetraphenylporphyrins (TPPs) that are substituted at the paraphenyl positions by two amino acids and two fluoro or hydroxyl groups, respectively. They were prepared according to the Lindsey-modified Adler-Longo methodology using trifluoromethanesulfonylchloride (CF3SO2Cl) as a catalyst instead of trifluoroacetic acid. The use of CF3SO2Cl yielded cleaner products in significantly higher yields. During the synthesis, not only the yields and work-up procedure of the TPPs were improved by using CF3SO2Cl as a catalyst, but also a better means of synthesizing the precursor dipyrromethanes was tested by using indium(III) chloride. Column chromatography, HPLC, and NMR spectroscopy were used to separate and characterize the di-amino acid-dihydroxy, or difluoro-substituted porphyrins and to ascertain their purity before subcellular localization studies were carried out. Studies using androgen-sensitive human prostate adenocarcinoma cells LNCaP revealed that certain amino acid substituted porphyrins that are positively charged in the slightly acidic medium of cancer cells are very useful in shedding light on the targets of TPPs in subcellular organelles of cancer cells. Although some of these compounds have properties of promising photosensitizers by revealing increased water solubility, acidic properties, and innate ability to provoke cell death by apoptosis, the cell killing efficacy of these TPPs is low. This correlates with their subcellular localization. The di-amino acid, di-hydroxy substituted TPPs localize mainly to the lysosomes, whereas the di

  9. Building-up novel coordination polymer with Zn(II) porphyrin dimer ...

    Indian Academy of Sciences (India)

    mer with porphyrin dimer. Solution structures of the complexes along with binding studies in solution between ... porphyrin polymers by self-assembly is fascinating ..... ture determination. ..... J K M 2000 In The Porphyrin Handbook Kadish K M,.

  10. Interfacial electron transfer dynamics of photosensitized zinc oxide nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Murakoshi, Kei; Yanagida, Shozo [Osaka Univ. (Japan). Graduate School of Engineering; Capel, M. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1997-06-01

    The authors have prepared and characterized photosensitized zinc oxide (ZnO) nanoclusters, dispersed in methanol, using carboxylated coumarin dyes for surface adsorption. Femtosecond time-resolved emission spectroscopy allows the authors to measure the photo-induced charge carrier injection rate constant from the adsorbed photosensitizer to the n-type semiconductor nanocluster. These results are compared with other photosensitized semiconductors.

  11. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    Science.gov (United States)

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  12. [Renal excretion of total porphyrins and hippuric acid in rats].

    Science.gov (United States)

    Gartzke, J; Burck, D

    1986-09-01

    The amounts of total porphyrins, hippuric acid and creatinine, excreted in urine by adult male Wistar rats, exhibited normal distributions for hippuric acid and creatinine, but a bimodal distribution for total porphyrins. This typical distribution of total porphyrins was still observed when creatinine was used as reference parameter. In biochemical and toxicological experiments in rats, the tested parameters should be therefore be investigated for homogeneity.

  13. Dehalogenation of lindane by a variety of porphyrins and corrins.

    OpenAIRE

    Marks, T S; Allpress, J D; Maule, A

    1989-01-01

    The dehalogenation of lindane by a range of hemoproteins, porphyrins, and corrins has been tested under reducing conditions in the presence of dithiothreitol. In addition, a series of porphyrin-metal ion complexes have been prepared and have also been screened for the capacity to dehalogenate lindane. Hemoglobin, hemin, hematin, and chlorophyll alpha all catalyzed the dehalogenation of lindane, as did all of the corrins tested. The porphyrins which did not contain metal centers--coproporphyri...

  14. Iron porphyrins doped sol-gel glasses: a chemometric study

    International Nuclear Information System (INIS)

    Sacco, Herica C.; Vidoto, Ednalva A.; Nascimento, Otaciro R.

    2000-01-01

    This paper describes the optimized conditions for preparation of iron porphyrin-template doped silica Fe PDS-template) obtained by the sol-gel process. The following porphyrins (Fe P) were used: Fe TFPP Cl, Fe TDCSPP(Na) 4 Cl and Fe TCPP(Na) 4 Cl. Pyridine or 4-phenylimidazole was used as template. The variables that present significant influence on iron porphyrin loading on xerogel were identified and the values that maximize the iron porphyrin loading on xerogel were established . The variables (Solvent volume, fractional factorial design in two levels, 2 5-1 type, generating 16 total experiments for each Fe P studied. (author)

  15. Iron porphyrins doped sol-gel glasses: a chemometric study

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Herica C.; Vidoto, Ednalva A.; Nascimento, Otaciro R. [Soap Paulo Univ (USP), Sao Carlos (Brazil). Inst. de Fisica; Biazzotto, Juliana C.; Serra, Osvaldo A.; Iamamoto, Yassuko [Sao Paulo Univ. (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras; Ciuffi, Katia J.; Mello, Cesar A.; Oliveira, Daniela C. de [Universidade de Franca , SP (Brazil)

    2000-07-01

    This paper describes the optimized conditions for preparation of iron porphyrin-template doped silica Fe (PDS-template) obtained by the sol-gel process. The following porphyrins (Fe P) were used: Fe TFPP Cl, Fe TDCSPP(Na){sub 4}Cl and Fe TCPP(Na){sub 4} Cl. Pyridine or 4-phenylimidazole was used as template. The variables that present significant influence on iron porphyrin loading on xerogel were identified and the values that maximize the iron porphyrin loading on xerogel were established. The variables Solvent volume, fractional factorial design in two levels, 2{sup 5-1} type, generating 16 total experiments for each Fe P studied. (author)

  16. A Study of Porphyrins in Petroleum Source Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Huseby, Berit

    1997-12-31

    This thesis discusses several aspects of porphyrin geochemistry. Degradation experiments have been performed on the Messel oil shale (Eocene, Germany) to obtain information on porphyrins bound or incorporated into macromolecular structures. Thermal heating of the preextracted kerogen by hydrous pyrolysis was used to study the release of porphyrins and their temperature dependent changes during simulated diagenesis and catagenesis. Selective chemical degradation experiments were performed on the preextracted sediment to get more detailed information about porphyrins that are specifically bound to the macromolecular structures via ester bonds. From the heating experiments, in a separate study, the porphyrin nitrogen content in the generated bitumens was compared to the bulk of organic nitrogen compounds in the fraction. The bulk nitrogen contents in the generated bitumens, the water phase and the residual organic matter was recorded to establish the distribution of nitrogen between the kerogen and product phases. Porphyrins as biomarkers were examined in naturally matured Kimmeridge clay source rocks (Upper Jurassic, Norway), and the use of porphyrins as general indicators of maturity was evaluated. Underlying maturity trends in the biomarker data was investigated by Partial Least Squares analysis. Porphyrin as indicators of depositional conditions was also addressed, where the correlations between the (amounts) abundance of nickel and vanadyl porphyrins were mapped together with other descriptors that are assumed to be indicative of redox depositional conditions. 252 refs., 28 figs., 4 tabs.

  17. A Study of Porphyrins in Petroleum Source Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Huseby, Berit

    1996-12-31

    This thesis discusses several aspects of porphyrin geochemistry. Degradation experiments have been performed on the Messel oil shale (Eocene, Germany) to obtain information on porphyrins bound or incorporated into macromolecular structures. Thermal heating of the preextracted kerogen by hydrous pyrolysis was used to study the release of porphyrins and their temperature dependent changes during simulated diagenesis and catagenesis. Selective chemical degradation experiments were performed on the preextracted sediment to get more detailed information about porphyrins that are specifically bound to the macromolecular structures via ester bonds. From the heating experiments, in a separate study, the porphyrin nitrogen content in the generated bitumens was compared to the bulk of organic nitrogen compounds in the fraction. The bulk nitrogen contents in the generated bitumens, the water phase and the residual organic matter was recorded to establish the distribution of nitrogen between the kerogen and product phases. Porphyrins as biomarkers were examined in naturally matured Kimmeridge clay source rocks (Upper Jurassic, Norway), and the use of porphyrins as general indicators of maturity was evaluated. Underlying maturity trends in the biomarker data was investigated by Partial Least Squares analysis. Porphyrin as indicators of depositional conditions was also addressed, where the correlations between the (amounts) abundance of nickel and vanadyl porphyrins were mapped together with other descriptors that are assumed to be indicative of redox depositional conditions. 252 refs., 28 figs., 4 tabs.

  18. Photodynamic inactivation of Listeria innocua biofilms with food-grade photosensitizers: a curcumin-rich extract of Curcuma longa vs commercial curcumin.

    Science.gov (United States)

    Bonifácio, D; Martins, C; David, B; Lemos, C; Neves, M G P M S; Almeida, A; Pinto, D C G A; Faustino, M A F; Cunha, Â

    2018-03-22

    The aim of this work is to assess the potential of curcumin in the photosensitization of biofilms of Listeria. Biofilms of Listeria innocua, were irradiated with blue light in the presence of a curcumin-rich extract of Curcuma longa or commercial curcumin. Similar experiments were conducted with planktonic cells, for comparison. A reduction of 4·9 log in the concentration of viable biofilm cells was obtained with 3·7 mg l -1 of commercial curcumin. Planktonic cells were much more susceptible (6·1 log reduction). A tetracationic porphyrin, used as a reference photosensitizer (PS), caused a very modest inactivation of the biofilm (1·1 log) and complete inactivation of the planktonic form (>8 log). Curcumin is an effective PS for the photodynamic control of Listeria biofilms and the inactivation efficiency attained with this natural compound is higher than with the porphyrin. This result may point to a better performance of type I PSs against bacterial biofilms by circumventing the limitations to singlet-oxygen diffusion imposed by the extracellular matrix. Curcumin represents a promising alternative to the control of bacteria and bacterial biofilms in food products particularly in the case of meat products in which turmeric is used as spice. © 2018 The Society for Applied Microbiology.

  19. Studies of transfer reactions of photosensitized electrons involving complexes of transition metals in view of solar energy storage

    International Nuclear Information System (INIS)

    Takakubo, Masaaki

    1984-01-01

    This research thesis addresses electron transfer reactions occurring during photosynthesis, for example, photosensitized reaction in which chlorophyll is the sensitizer. More specifically, the author studied experimentally electron photo-transfers with type D sensitizers (riboflavin, phenoxazine and porphyrin), and various complexes of transition metals. After a presentation of these experiments, the author describes the photosensitisation process (photo-physics of riboflavin, oxygen deactivation, sensitized photo-oxidation and photo-reduction). The theoretical aspect of electron transfer is then addressed: generalities, deactivation of the riboflavin triplet, initial efficiency of electron transfer. Experimental results on three basic processes (non-radiative deactivation, energy transfer, electron transfer) are interpreted in a unified way by using the non-radiative transfer theory. Some applications are described: photo-electrochemical batteries, photo-oxidation and photo-reduction of the cobalt ion

  20. Structures and properties of spatially distorted porphyrins

    International Nuclear Information System (INIS)

    Golubchikov, Oleg A; Kuvshinova, Elizaveta M; Pukhovskaya, Svetlana G

    2005-01-01

    The published data on the structures and properties of porphyrins with distorted aromatic macrocycles are generalised and analysed. Data on the crystal structures, spectra and kinetics of formation and dissociation of their coordination derivatives are summarised. It is demonstrated that the distortion of the planar structure of the tetrapyrrole core is one of the most efficient means of controlling spectral, physicochemical and coordination properties of these compounds.

  1. 2-Bromo-5-hydroxyphenylporphyrins for photodynamic therapy: photosensitization efficiency, subcellular localization and in vivo studies.

    Science.gov (United States)

    Laranjo, Mafalda; Serra, Arménio C; Abrantes, Margarida; Piñeiro, Marta; Gonçalves, Ana C; Casalta-Lopes, João; Carvalho, Lina; Sarmento-Ribeiro, Ana B; Rocha-Gonsalves, António; Botelho, Filomena

    2013-02-01

    Photodynamic therapy (PDT) is a therapeutic modality capable of inducing cell death by oxidative stress through activation of a sensitizer by light. Aryl-porphyrin with hydroxyl groups are good photosensitizers and presence of bromine atoms can enhance the photodynamic activity through heavy atom effect. These facts and our previous work made pertinent to compare the photodynamic capacity of tetraaryl brominated porphyrin (TBr4) with the corresponding diaryl (BBr2) derivative. Cell cultures were incubated with the sensitizers, ranging from 50nM to 10μM and irradiated until 10J. Cell proliferation was analysed by MTT assay. Flow cytometry studies evaluated cell death pathways, mitochondrial membrane potential and ROS. For in vivo studies Balb/c nu/nu mice were injected with 4×10(6)cells. After PDT, monitoring was carried out for 12 days to establish Kaplan-Meier survival curves. Tumours were excised and histological analysis was performed. Both sensitizers seem to accumulate in the mitochondria. The molecules have no intrinsic cytotoxicity or in non-tumour cells at therapeutic concentrations. Both sensitizers induced a significant decrease of cell proliferation and growth of xenografts of melanoma and colorectal adenocarcinoma. Diaryl BBr2 is more efficient than tetraaryl TBr4, concerning intracellular ROS production, mitochondrial disruption and induction of cell death. The main cell death pathway is necrosis. TBr2 and BBr4 are promising sensitizers with good photodynamic properties and have the ability to induce cell death in human melanoma and colorectal adenocarcinoma in vitro and in vivo. We consider that BBr2 is a molecule that should be the subject of extensive studies towards clinical use. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Study of the photophysical properties of composite film assembled of porphyrin and TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X -S; Kang, S -Z; Liu, H -G; Mu, J [Shandong Univ., Jinan (China). Key Lab. for Colloid and Interface Chem. of Education Ministry

    1999-09-08

    In this paper, the formation, structure, and photophysical properties of functional mixed film of 5,10,15,20-tetra-4-(2-decanoic acid)phenyl porphyrin (TDPP) with TiO{sub 2} nanoparticles formed from the 2D sol-gel process of tetrabutoxyltitanium (TBT) at the air/water interface is reported. The composite multilayer films were assembled by transferring the mixed monolayer onto quartz plates. The diameter distribution and crystallinity of TiO{sub 2} particles were estimated by TEM observation and electron diffraction. The sensitization of TDPP upon TiO{sub 2} nanoparticles was confirmed by the spectral changes of UV-visible absorption and fluorescence of TDPP in the composite films. Furthermore the photosensitization greatly affected the photocatalytic activity of TiO{sub 2} particles with respect to the degradation of methylene blue (MO). (orig.)

  3. Seneciosis in cattle associated with photosensitization

    OpenAIRE

    Giaretta,Paula R.; Panziera,Welden; Galiza,Glauco J.A.; Brum,Juliana S.; Bianchi,Ronaldo M.; Hammerschmitt,Márcia E.; Bazzi,Talissa; Barros,Claudio S.L.

    2014-01-01

    Senecio spp. poisoning is the main cause of cattle mortality in the central region of Rio Grande do Sul. This paper reports an outbreak of seneciosis in cattle with high prevalence of photosensitization, where 83 out of 162 cows (51.3%) presented this clinical sign. The outbreak occurred in September 2013, affecting adult cows that were held in a 205 hectare-pasture from April to October 2013 with abundant Senecio brasiliensis infestation. Main clinical signs were weight loss, excessive lacri...

  4. Photosensitizers and radiosensitizers in dermatology and oncology

    International Nuclear Information System (INIS)

    Bruckner, V.

    1979-01-01

    Two therapeutic modalities are currently of great interest, namely photo- and radiosensitization. Whereas photosensitizers only function in combination with ultraviolet (UV) light, radiosensitizers act only in combination with ionizing radiation. Because of the small UV penetration, up to a maximum of 0,5 mm, photosensitization can take place only at the surface of the body, i.e. the skin. Photosensitizers are applied in dermatology in order to optimize and improve the UV therapy of certain diseases (mainly psoriasis, mycosis fungoides and vitiligo). Radiosensitizers lead to an increase in sensitivity of the hypoxic and therefore radioresistant parts of tumours against X- and gamma-radiation. With sufficient concentration within the tumour, they can act where the radiation can reach, even in the deeper parts of the body. They represent a modern and useful aid to radiation oncology. Because of neurotoxic effects, however, their practical use is limited. A short review of the history, mechanisms of action, application and side-effects of these photo- and radiosensitizers is presented

  5. Photosensitizers and radiosensitizers in dermatology and oncology

    Energy Technology Data Exchange (ETDEWEB)

    Bruckner, V [Stellenbosch University, Parowvallei (South Africa). Departments of Medical Physics and Radiology

    1979-09-22

    Two therapeutic modalities are currently of great interest, namely photo- and radiosensitization. Whereas photosensitizers only function in combination with ultraviolet (UV) light, radiosensitizers act only in combination with ionizing radiation. Because of the small UV penetration, up to a maximum of 0,5 mm, photosensitization can take place only at the surface of the body, i.e. the skin. Photosensitizers are applied in dermatology in order to optimize and improve the UV therapy of certain diseases (mainly psoriasis, mycosis fungoides and vitiligo). Radiosensitizers lead to an increase in sensitivity of the hypoxic and therefore radioresistant parts of tumours against X- and gamma-radiation. With sufficient concentration within the tumour, they can act where the radiation can reach, even in the deeper parts of the body. They represent a modern and useful aid to radiation oncology. Because of neurotoxic effects, however, their practical use is limited. A short review of the history, mechanisms of action, application and side-effects of these photo- and radiosensitizers is presented.

  6. Resonance Raman study on distorted symmetry of porphyrin in ...

    Indian Academy of Sciences (India)

    The resonance Raman (RR) spectra of nickel octaethyl porphyrin, Ni(OEP), ... Nickel ocatethyl porphyrin, Ni(OEP), plays a central role in studies of the molec- ..... [8] T Kitagawa and Y Ozaki, Structure and bonding (Springer-Verlag, Berlin, ... [10] R S Czernuszewicz, K A Macar, Li Xiao-Yuan, J R Kincaid and T G Spiro, J. Am.

  7. Multifunctional porphyrinic materials encapsulated into macronets with photo chemotherapeutic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ion, R. -M.; Fierascu, R. -C.; Dimitriu, I. [Valahia University, Materials Science Department, Targoviste (Romania)

    2008-07-01

    Supramolecidar chemistry is expected to keep a high developing advanced of molecular devices based on multifunctional materials. Porphyrins and their analogues should play a significant role as a consequence of their catalytic, electrocatalytic, photochemical and photoelectrochemical properties. Such molecular materials contain a high porosity with large cavities and galleries that can be functionalization yielding to a desired chirality and structure. The functionalization implies inserting into macrocydic cavity, followed by auto-assembling as columnar aggregates. The obtained cavities are used as host for different molecular guests. H and J-aggregates of some porphyrins are based on the intermolecular interactions of 3-5 Kcal/mol per porphyrin face. The columnar structure formed by porphyrins has a length of 5 to 27 porphyrin unities. In this paper we focused on our own strategy based on coordination chemistry for the design and build-up of supermolecules and supra molecular structures constituted by a porphyrin (TSPPJ and a new and revolutionary method for stabilizing porphyrins (as organic part), by their incapsulation into supports with controlled porosity as macronets (as inorganic parts), obtaining some hybrids materials. Included are also their properties and potential applications. Key words: porphyrins, macronets, photochemotherapy.

  8. The effects of urea, guanidinium chloride and sorbitol on porphyrin ...

    Indian Academy of Sciences (India)

    This paper compares the inhibition effect of porphyrin aggregation in the presence of urea, guanidinium chloride (Gdn) and sorbitol by molecular dynamics simulation. It demonstrates that porphyrin aggregation increases in sorbitol, but decreases towards addition of urea and Gdn. It shows that urea, Gdn and sorbitol can ...

  9. Porphyrin and fullerene-based artificial photosynthetic materials for photovoltaics

    International Nuclear Information System (INIS)

    Imahori, Hiroshi; Kashiwagi, Yukiyasu; Hasobe, Taku; Kimura, Makoto; Hanada, Takeshi; Nishimura, Yoshinobu; Yamazaki, Iwao; Araki, Yasuyuki; Ito, Osamu; Fukuzumi, Shunichi

    2004-01-01

    We have developed artificial photosynthetic systems in which porphyrins and fullerenes are self-assembled as building blocks into nanostructured molecular light-harvesting materials and photovoltaic devices. Multistep electron transfer strategy has been combined with our finding that porphyrin and fullerene systems have small reorganization energies, which are suitable for the construction of light energy conversion systems as well as artificial photosynthetic models. Highly efficient photosynthetic electron transfer reactions have been realized at ITO electrodes modified with self-assembled monolayers of porphyrin oligomers as well as porphyrin-fullerene linked systems. Porphyrin-modified gold nanoclusters have been found to have potential as artificial photosynthetic materials. These results provide basic information for the development of nanostructured artificial photosynthetic systems

  10. Corroles-Porphyrins: A Teamwork for Gas Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Rosamaria Capuano

    2015-04-01

    Full Text Available Porphyrins provide an excellent material for chemical sensors, and they have been used for sensing species both in air and solution. In the gas phase, the broad selectivity of porphyrins is largely dependant on molecular features, such as the metal ion complexed at the core of the aromatic ring and the peripheral substituents. Although these features have been largely exploited to design gas sensor arrays, so far, little attention has been devoted to modify the sensing properties of these macrocycles by variation of the molecular aromatic ring. In this paper, the gas sensing properties of a porphyrin analog, the corrole, are studied in comparison with those of the parent porphyrin. Results show that changes in the aromatic ring have important consequences on the sensitivity and selectivity of the sensors and that porphyrins and corroles can positively cooperate to enhance the performance of sensor arrays.

  11. One-pot synthesis of gold nanoparticles using tetradentate porphyrins

    International Nuclear Information System (INIS)

    Canitez, Fatma K.; Yavuz, Mustafa S.; Ozturk, Ramazan

    2011-01-01

    In this study, the meso-tetra (p-hydroxyphenyl) porphyrin and meso-tetra (m-hydroxyphenyl) porphyrin were coated on to gold nanoparticles (AuNPs) via thioacetate anchors which easily dissociate to form S–Au bonds. 4-tert-butyl phenyl thioacetate-AuNPs were prepared and used as a monodentate passivant to control the size of the tetradentate porphyrin-AuNPs. The porphyrin-coated AuNPs were characterized by UV–Vis, TEM, XRD, and XPS analyses. The tetradentate porphyrin-AuNPs size is within a range of 5–15 nm in diameter with exotic shapes. The plausible network formation for AuNP-p-TPP-SAc and the capping structure of the AuNP-m-TPP-SAc have been suggested.

  12. Photosensitized oxidation in the ocular lens: evidence for photosensitizers endogenous to the human lens

    International Nuclear Information System (INIS)

    Zigler, J.S. Jr.; Goosey, J.D.

    1981-01-01

    Numerous investigators have attempted to associate near UV light exposure with various changes which occur to lens crystallins during aging and cataractogenesis. Recently it was shown that in vitro singlet oxygen mediated oxidation of lens crystallins produces effects very similar to those documented for crystallins from old or cataractous lenses and it was suggested that near UV photodynamic effects may play a major role in vivo in aging in the human lens. It has now been shown that certain oxidation products of tryptophan which have been identified in human lens can act as near UV photosensitizers, producing singlet oxygen. The insoluble protein fraction from human cataracts was shown to have the capacity to act as a photosensitizer. An age-related increase in photosensitizing capacity was also demonstrated in the soluble crystallins from human lens. These findings are discussed with respect to development of pigmented nuclear cataracts. (author)

  13. Measurement of urinary porphyrins and porphyrin precursors in Dutch hospital laboratories: a review of quality control over 5 years.

    NARCIS (Netherlands)

    Zuijderhoudt, F.M.; Weykamp, C.W.; Willems, J.L.

    2003-01-01

    BACKGROUND: We evaluated a quality control scheme for the measurement of urinary uroporphyrin, coproporphyrin, total urinary porphyrins and precursors of urinary porphyrins, delta-aminolevulinic acid and porphobilinogen that was performed in The Netherlands during a period of 5 years. METHODS: Six

  14. Effect of porphyrin on photocatalytic activity of TiO2 nanoparticles toward Rhodamine B photodegradation.

    Science.gov (United States)

    Ahmed, M A; Abou-Gamra, Z M; Medien, H A A; Hamza, M A

    2017-11-01

    As known, porphyrins have central role in photosynthesis, biological oxidation and reduction and oxygen transport beside to their intensive color which qualify them to be good photosensitizers. Herein, tetra (4-carboxyphenyl) porphyrin (TCPP) was prepared by a simple one-pot synthesis to use as a visible antenna for TiO 2 nanoparticles that were prepared via a simple template-free sol-gel method. Various loading percentages of TCPP (0.05-1%) were incorporated on the surface of TiO 2 as photosensitizer for photocatalytic degradation of Rhodamine B (Rh B) dye as a primary cationic pollutant model. Among them, 0.1% TCPP-TiO 2 was the most reactive sample. It was found that the photoactivity of 0.1% TCPP-TiO 2 sample (0.5g/L) was approximately 1.5 times greater than that of pure TiO 2 (0.5g/L) toward the degradation of Rh B (1×10 -5 M) under UV-A irradiation. Transient fluorescence decay measurements showed that the life time of TiO 2 excited state has doubled after anchoring TCPP, thus the probability of electron-hole recombination has decreased. The samples were characterized by XRD, HR-TEM, DRS and N 2 adsorption-desorption isotherms. The XRD patterns confirmed the successful preparation of TiO 2 nanoparticles with average crystalline size of 25.7nm. Also, XRD patterns suggested the presence of mixed phase TiO 2 nanoparticles of 77% anatase and 23% rutile. DRS showed that the characteristic peaks of TCPP covered the whole visible range 400-700nm. HR-TEM images showed the spheroids shape of TiO 2 nanoparticles and confirmed the presence of anatase and rutile phases as suggested from XRD data. The different parameters affecting the photodegradation of Rh B dye such as catalyst dose, dye concentration and pH were studied to obtain the optimum conditions. Almost complete degradation of Rh B was obtained which confirmed by HPLC and TOC measurements. The effect of scavengers was studied to indicate the most active species. TCPP-TiO 2 gave a good response toward the

  15. A Novel Photosensitizer 31,131-phenylhydrazine -Mppa (BPHM and Its in Vitro Photodynamic Therapy against HeLa Cells

    Directory of Open Access Journals (Sweden)

    Wenting Li

    2016-04-01

    Full Text Available Photodynamic therapy (PDT has attracted widespread attention due to its potential in the treatment of various cancers. Porphyrinic pyropheophorbide-a (PPa has been shown to be a potent photosensitizer in PDT experiments. In this paper, a C-31,131 bisphenylhydrazone modified methyl pyropheophorbide-a (BPHM was designed and synthesized with the consideration that phenylhydrazone structure may extend absorption wavelength of methyl pyro-pheophorbide-a (Mppa, and make the photosensitizer potential in deep tumor treatment. The synthesis, spectral properties and in vitro photodynamic therapy (PDT against human HeLa cervical cancer cell line was studied. Methyl thiazolyl tetrazolium (MTT assay showed the title compound could achieve strong inhibition of cervical cancer cell viability under visible light (675 nm, 25 J/cm2. Cell uptake experiments were performed on HeLa cells. Morphological changes were examined and analyzed by fluorescent inverted microscope. In addition, the mechanism of the photochemical processes of PDT was investigated, which showed that the formation of singlet oxygen after treatment with PDT played a moderate important role.

  16. Porphyrin-magnetite nanoconjugates for biological imaging

    LENUS (Irish Health Repository)

    Nowostawska, Malgorzata

    2011-04-08

    Abstract Background The use of silica coated magnetic nanoparticles as contrast agents has resulted in the production of highly stable, non-toxic solutions that can be manipulated via an external magnetic field. As a result, the interaction of these nanocomposites with cells is of vital importance in understanding their behaviour and biocompatibility. Here we report the preparation, characterisation and potential application of new "two-in-one" magnetic fluorescent nanocomposites composed of silica-coated magnetite nanoparticles covalently linked to a porphyrin moiety. Method The experiments were performed by administering porphyrin functionalised silica-coated magnetite nanoparticles to THP-1 cells, a human acute monocytic leukaemia cell line. Cells were cultured in RPMI 1640 medium with 25 mM HEPES supplemented with heat-inactivated foetal bovine serum (FBS). Results We have synthesised, characterised and analysed in vitro, a new multimodal (magnetic and fluorescent) porphyrin magnetic nanoparticle composite (PMNC). Initial co-incubation experiments performed with THP-1 macrophage cells were promising; however the PMNC photobleached under confocal microscopy study. β-mercaptoethanol (β-ME) was employed to counteract this problem and resulted not only in enhanced fluorescence emission, but also allowed for elongated imaging and increased exposure times of the PMNC in a cellular environment. Conclusion Our experiments have demonstrated that β-ME visibly enhances the emission intensity. No deleterious effects to the cells were witnessed upon co-incubation with β-ME alone and no increases in background fluorescence were recorded. These results should present an interest for further development of in vitro biological imaging techniques.

  17. Porphyrin Protonation Studied by Magnetic Circular Dichroism

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, Petr; Andrushchenko, Valery; Ruud, K.; Bouř, Petr

    2012-01-01

    Roč. 116, č. 1 (2012), s. 778-783 ISSN 1089-5639 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA203/09/2037; GA ČR GAP208/10/0559; GA MŠk(CZ) LH11033 Institutional research plan: CEZ:AV0Z40550506 Keywords : magnetic circular dichroism ( MCD ) * TPPS * spectra simulations * porphyrin protonation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.771, year: 2012

  18. Valence electronic properties of porphyrin derivatives.

    Science.gov (United States)

    Stenuit, G; Castellarin-Cudia, C; Plekan, O; Feyer, V; Prince, K C; Goldoni, A; Umari, P

    2010-09-28

    We present a combined experimental and theoretical investigation of the valence electronic structure of porphyrin-derived molecules. The valence photoemission spectra of the free-base tetraphenylporphyrin and of the octaethylporphyrin molecule were measured using synchrotron radiation and compared with theoretical spectra calculated using the GW method and the density-functional method within the generalized gradient approximation. Only the GW results could reproduce the experimental data. We found that the contribution to the orbital energies due to electronic correlations has the same linear behavior in both molecules, with larger deviations in the vicinity of the HOMO level. This shows the importance of adequate treatment of electronic correlations in these organic systems.

  19. New photosensitive systems for volume phase holography

    Science.gov (United States)

    Bianco, Andrea; Colella, Letizia; Galli, Paola; Zanutta, Alessio; Bertarelli, Chiara

    2017-05-01

    Volume phase holographic elements are becoming attractive thanks to the large efficiency and good optical quality. They are based on photosensitive materials where a modulation of the refractive index is induced. In this paper, we highlight the strategies to obtain a change in the refractive index in a dielectric material, namely a change in the material density and/or in the molecular polarizability. Moreover, we show the results achieved for materials that undergo the photo-Fries reaction as function of the molecular structure and the illumination conditions. We also report the results on a system based on the diazo Meldrum's acid where volatile molecules are produced upon light exposure.

  20. Photoprocesses of photosensitizing drugs within cyclodextrin cavities.

    Science.gov (United States)

    Monti, Sandra; Sortino, Salvatore

    2002-09-01

    Recently some interest has been focused on the photobehavior of CD-drug inclusion complexes in relation to the problem of the biological photosensitization by drugs. This review is dedicated to the illustration of the mechanistic aspects of the photoprocesses occurring in some non-steroidal anti-inflammatory drugs (NSAIDs), with photosensitising side effects, within CD cavities. It is shown how the photobehavior of the CD-drug associates can help to model the photoreactivity of the drugs in biological sites. The limitations for the use of CDs as protective systems for the clinical administration of photosensitising drugs is also evidenced.

  1. Phototherapeutic, photobiologic, and photosensitizing properties of khellin

    International Nuclear Information System (INIS)

    Morliere, P.; Hoenigsmann, H.A.; Averbeck, D.; Dardalhon, M.; Hueppe, G.O.; Ortel, B.; Santus, R.; Dubertret, L.

    1988-01-01

    Khellin, whose chemical structure closely resembles that of psoralen, is reported to be an efficient drug for treating vitiligo when combined with ultraviolet A irradiation. Photobiological activity on yeast is found to be much lower than that of bifunctional psoralens such as 5-methoxypsoralen. In vitro experiments reveal that khellin is a poor photosensitizer. It behaves as a monofunctional agent with respect to DNA photoaddition. It does not photoinduce cross-links in DNA in vitro or in Chinese hamster cells in vivo. This behavior may explain the low photogenotoxicity in yeast and the lack of phototoxic erythemal response when treating vitiligo with khellin

  2. Application of fluorescence spectroscopy and imaging in the detection of a photosensitizer in photodynamic therapy

    Science.gov (United States)

    Zang, Lixin; Zhao, Huimin; Zhang, Zhiguo; Cao, Wenwu

    2017-02-01

    Photodynamic therapy (PDT) is currently an advanced optical technology in medical applications. However, the application of PDT is limited by the detection of photosensitizers. This work focuses on the application of fluorescence spectroscopy and imaging in the detection of an effective photosenzitizer, hematoporphyrin monomethyl ether (HMME). Optical properties of HMME were measured and analyzed based on its absorption and fluorescence spectra. The production mechanism of its fluorescence emission was analyzed. The detection device for HMME based on fluorescence spectroscopy was designed. Ratiometric method was applied to eliminate the influence of intensity change of excitation sources, fluctuates of excitation sources and photo detectors, and background emissions. The detection limit of this device is 6 μg/L, and it was successfully applied to the diagnosis of the metabolism of HMME in the esophageal cancer cells. To overcome the limitation of the point measurement using fluorescence spectroscopy, a two-dimensional (2D) fluorescence imaging system was established. The algorithm of the 2D fluorescence imaging system is deduced according to the fluorescence ratiometric method using bandpass filters. The method of multiple pixel point addition (MPPA) was used to eliminate fluctuates of signals. Using the method of MPPA, SNR was improved by about 30 times. The detection limit of this imaging system is 1.9 μg/L. Our systems can be used in the detection of porphyrins to improve the PDT effect.

  3. Adult-onset photosensitivity: clinical significance and epilepsy syndromes including idiopathic (possibly genetic) photosensitive occipital epilepsy.

    Science.gov (United States)

    Koutroumanidis, Michalis; Tsirka, Vasiliki; Panayiotopoulos, Chrysostomos

    2015-09-01

    To evaluate the clinical associations of adult-onset photosensitivity, we studied the clinical and EEG data of patients who were referred due to a possible first seizure and who had a photoparoxysmal response on their EEG. Patients with clinical evidence of photosensitivity before the age of 20 were excluded. Of a total of 30 patients, four had acute symptomatic seizures, two had vasovagal syncope, and 24 were diagnosed with epilepsy. Nine of the 24 patients had idiopathic (genetic) generalized epilepsies and predominantly generalized photoparoxysmal response, but also rare photically-induced seizures, while 15 had exclusively, or almost exclusively, reflex photically-induced occipital seizures with frequent secondary generalization and posterior photoparoxysmal response. Other important differences included a significantly older age at seizure onset and paucity of spontaneous interictal epileptic discharges in patients with photically-induced occipital seizures; only a quarter of these had occasional occipital spikes, in contrast to the idiopathic (genetic) generalized epilepsy patients with typically generalized epileptic discharges. On the other hand, both groups shared a positive family history of epilepsy, common seizure threshold modulators (such as tiredness and sleep deprivation), normal neurological examination and MRI, a generally benign course, and good response to valproic acid. We demonstrated that photosensitivity can first occur in adult life and manifest, either as idiopathic (possibly genetic) photosensitive occipital epilepsy with secondary generalization or as an EEG, and less often, a clinical/EEG feature of idiopathic (genetic) generalized epilepsies. Identification of idiopathic photosensitive occipital epilepsy fills a diagnostic gap in adult first-seizure epileptology and is clinically important because of its good response to antiepileptic drug treatment and fair prognosis.

  4. Porphyrin Interactions with Wild Type and Mutant Mouse Ferrochelatase

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Gloria C.; Franco, Ricardo; Lu, Yi; Ma, Jian-Guo; Shelnutt, John A.

    1999-05-19

    Ferrochelatase (EC 4.99.1.1), the terminal enzyme of the heme biosynthetic pathway, catalyzes Fe2+ chelation into protoporphyrin IX. Resonance Raman and W-visible absorbance spectroscopes of wild type and engineered variants of murine ferrochelatase were used to examine the proposed structural mechanism for iron insertion into protoporphyrin by ferrochelatase. The recombinant variants (i.e., H207N and E287Q) are enzymes in which the conserved amino acids histidine-207 and glutamate-287 of murine ferrochelatase were substituted with asparagine and glutamine, respectively. Both of these residues are at the active site of the enzyme as deduced from the Bacillus subtilis ferrochelatase three-dimensional structure. Addition of free base or metalated porphyrins to wild type ferrochelatase and H207N variant yields a quasi 1:1 complex, possibly a monomeric protein-bound species. In contrast, the addition of porphyrin (either free base or metalated) to E287Q is sub-stoichiometric, as this variant retains bound porphyrin in the active site during isolation and purification. The specificity of porphyrin binding is confirmed by the narrowing of the structure-sensitive resonance Raman lines and the vinyl vibrational mode. Resonance Raman spectra of free base and metalated porphyrins bound to the wild type ferrochelatase indicate a nonplanar distortion of the porphyrin macrocycle, although the magnitude of the distortion cannot be determined without first defining the specific type of deformation. Significantly, the extent of the nonplanar distortion varies in the case of H207N- and E287Q-bound porphyrins. In fact, resonance Raman spectral decomposition indicates a homogeneous ruffled distortion for the nickel protoporphyrin bound to the wild type ferrochelatase, whereas both a planar and ruffled conformations are present for the H207N-bound porphyrin. Perhaps more revealing is the unusual resonance , 3 Raman spectrum of the endogenous E287Q-bound porphyrin, which has

  5. Application of the boron neutron capture therapy to undifferentiated thyroid cancer using two boron compounds (BPA and BOPP)

    International Nuclear Information System (INIS)

    Viaggi, Mabel; Dagrosa, Maria A.; Juvenal, Guillermo J.; Pisarev, Mario A.; Longhino, Juan M.; Blaumann, Hernan R.; Calzetta Larrieu, Osvaldo A.; Kahl, Stephen B.

    2004-01-01

    We have shown the selective uptake of boronophenylalanine (BPA) by undifferentiated thyroid cancer (UTC) human cell line ARO, both in vitro and in vivo. Moreover, a 50% histologic cure of mice bearing the tumor was observed when the complete boron neutron capture therapy was applied. More recently we have analyzed the biodistribution of BOPP (tetrakis-carborane carboxylate ester of 2,4-bis-(ba-dihydroxyethyl)-deutero-porphyrin IX) and showed that when BOPP was injected 5 days before BPA, and the animals were sacrificed 60 min after the ip injection of BPA, a significant increase in boron uptake by the tumor was found (38-45ppm with both compounds Vs. 20 ppm with BPA alone). Five days post the ip BOPP injection and 1 hr after BPA, the ratios were: tumor/blood 3,75; tumor /distal skin 2. Other important ratios were tumor/thyroid 6,65 and tumor/lung 3,8. The present studies were performed in mice transplanted with ARO cells and injected with BOPP and BPA. Only in mice treated with the neutron beam and injected with the boronated compounds we observed a 100% control of tumor growth. Two groups of mice received different total absorbed doses: 3.00 and 6.01 Gy, but no further improvement in the outcome was found compared to the previous results using BPA alone (4.3 Gy). (author)

  6. Pulverization of boron element and proportions of boron carbide in boron

    International Nuclear Information System (INIS)

    Lang, F.M.; Finck, C.

    1956-01-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 μ. Grain sizes smaller than 1μ are required for applying thin layers of such boron. (author) [fr

  7. Nanobody-photosensitizer conjugates for targeted photodynamic therapy

    NARCIS (Netherlands)

    Heukers, Raimond; van Bergen en Henegouwen, P; Oliveira, Sabrina

    2014-01-01

    Photodynamic therapy (PDT) induces cell death through light activation of a photosensitizer (PS). Targeted delivery of PS via monoclonal antibodies has improved tumor selectivity. However, these conjugates have long half-lives, leading to relatively long photosensitivity in patients. In an attempt

  8. Electroluminescence and photosensitivity spectra of organic diode structures based on zinc complexes

    Science.gov (United States)

    Kaplunov, M. G.; Krasnikova, S. S.; Nikitenko, S. L.; Yakushchenko, I. K.

    2017-01-01

    Devices based on zinc complexes with sulphanylaminosubstituted ligands are characterized by dual function - electroluminescence (EL) and photosensitivity. Both EL and photosensitivity are associated with the formation of exciplexes.

  9. Fiber optic fluorescence detection of low-level porphyrin concentrations in preclinical and clinical studies

    Science.gov (United States)

    Mang, Thomas S.; McGinnis, Carolyn; Khan, S.

    1990-07-01

    A significant clinical problem in the local treatment of cutaneous metastases of breast cancer (by any modality--surgery, radiation therapy or photodynainic therapy) is the fact that the disease almost always extends beyond the boundary of visible lesions in the form of microscopic deposits. These deposits may be distant from the site of visible disease but are often in close proximity to it and are manifested sooner or later by the development of recurrent lesions at the border of the treated area, thus the "marginal miss" in radiation therapy, the "rim recurrence" in photodynamic therapy, and the "incisional recurrence" following surgical excision. More intelligent use of these treatment modalities demands the ability to detect microscopic deposits of tumor cells using non-invasive methodology. In vivo fluorescence measurements have been made possible by the development of an extremely sensitive fiber optic in vivo fluorescence photometer. The instrument has been used to verify that fluorescence correlated with injected porphyrin levels in various tissues. The delivery of light to excite and detect background fluorescence as well as photosensitizer fluorescence in tissues has been accomplished using two HeNe lasers emitting at 632.8 nm and 612 nm delivered through a single quartz fiber optic. Chopping at different frequencies, contributions of fluorescence may be separated. Fluorescence is picked up via a 400 micron quartz fiber optic positioned appropriately near the target tissue. Validation of these levels was made by extraction of the drug from the tissues with resultant quantitation. Recently, an extensive study was undertaken to determine if fluorescence could be used for the detection of occult, clinically non-palpable metastases in the lymph node of rats. This unique model allowed for the detection of micrometastases in lymph nodes using very low injected doses of the photosensitizer Photofrin II. Data obtained revealed the ability to detect on the order

  10. Mechanism and in vivo evaluation :photodynamic antibacterial chemotherapy of lysine-porphyrin conjugate

    Directory of Open Access Journals (Sweden)

    Zengping eXu

    2016-03-01

    Full Text Available We previously reported lysine-porphyrin conjugate 4i, which had potent photosensitive antibacterial effect on clinical isolated Methicillin-resistant Staphylococcus aureus (MRSA, Escherichia coli (E. coli and Pseudomonas aeruginosa (P. aeruginosa bacterial strains. The aim of this paper is to evaluate the mechanism of photodynamic antibacterial chemotherapy of 4i (4i-PACT in vitro and the treatment effect in vivo. Atomic force microscopy (AFM revealed 4i-PACT could effectively destroy bacterial membrane and wall, making the bacterial content leakage, which was confirmed by dual fluorescent staining with acridine orange/ethidium bromide (AO/EB and absorbance at 260 nm, agarose gel electrophoresis indicated 4i-PACT could damage genomic DNA. The results combined AFM and DNA electrophoresis revealed why the bacterial strains had no resistance to 4i-PACT. Wound healing in rat model with mixed bacteria infected wounds showed the efficiency of 4i-PACT was light-dose dependent. These results showed 4i-PACT had promising bactericidal effect both in vitro and in vivo.

  11. Porphyrin Diacid-Polyelectrolyte Assemblies: Effective Photocatalysts in Solution

    Directory of Open Access Journals (Sweden)

    Sabine Frühbeißer

    2016-05-01

    Full Text Available Developing effective and versatile photocatalytic systems is of great potential in solar energy conversion. Here we investigate the formation of supramolecular catalysts by electrostatic self-assembly in aqueous solution: Combining positively charged porphyrins with negatively charged polyelectrolytes leads to nanoscale assemblies where, next to electrostatic interactions, π–π interactions also play an important role. Porphyrin diacid-polyelectrolyte assemblies exhibit a substantially enhanced catalytic activity for the light-driven oxidation of iodide. Aggregates with the hexavalent cationic porphyrin diacids show up to 22 times higher catalytic activity than the corresponding aggregates under neutral conditions. The catalytic activity can be increased by increasing the valency of the porphyrin and by choice of the loading ratio. The structural investigation of the supramolecular catalysts took place via atomic force microscopy and small angle neutron scattering. Hence, a new facile concept for the design of efficient and tunable self-assembled photocatalysts is presented.

  12. Thin porphyrin composite membranes with enhanced organic solvent transport

    KAUST Repository

    Phuoc, Duong; Anjum, Dalaver H.; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2018-01-01

    Extending the stability of polymeric membranes in organic solvents is important for applications in chemical and pharmaceutical industry. Thin-film composite membranes with enhanced solvent permeance are proposed, using porphyrin as a building block

  13. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    Science.gov (United States)

    de Visser, Sam P.; Stillman, Martin J.

    2016-01-01

    In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties. PMID:27070578

  14. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    Directory of Open Access Journals (Sweden)

    Sam P. de Visser

    2016-04-01

    Full Text Available In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1. This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.

  15. PORPHYRIN METABOLISM AND LIVER FUNCTION IN THE BANTU

    African Journals Online (AJOL)

    method for the detection of urinary coproporphyrin, Mentz5 calculated that ... defect in porphyrin metabolism which is commonly found in the Bantu could be ..... wood,61 traces of uroporphyrin may be excreted in normal urine. As much as 5 ...

  16. Mineralogy of halloysites and their interaction with porphyrine

    Czech Academy of Sciences Publication Activity Database

    Vašutová, V.; Bezdička, Petr; Lang, Kamil; Hradil, David

    2013-01-01

    Roč. 57, č. 3 (2013), s. 243-250 ISSN 0862-5468 Institutional support: RVO:61388980 Keywords : organoclays * mineralogy * porphyrine * CEC Subject RIV: CA - Inorganic Chemistry Impact factor: 0.434, year: 2013

  17. Increase of (CdSe/ZnS)Cys quantum dot luminescence intensity in the presence of TPPS4 porphyrin

    International Nuclear Information System (INIS)

    Parra, Gustavo G.; Borissevitch, Iouri E.; Oleinikov, Vladimir A.

    2012-01-01

    Full text: Nanocrystal semiconductor particles or Quantum Dots (QD) possess extraordinary photophysical characteristics, such as extreme high fluorescence quantum yield and optical absorption and very narrow fluorescence band, which can be easily shifted by changing of QD particle size. Due to these characteristics, QD is promising for fluorescence cancer diagnostics and photodynamic treatment. The efficiency of these processes can be in- creased by energy transfer between QD and classic fluorescence probes and photosensitizers (PS). In this work we present on the study of the increase of (CdSe/ZnS)Cys quantum dot luminescence intensity, stimulated by interaction with TPPS 4 porphyrin. The optical absorption and steady-state and time-resolved fluorescence techniques were employed. Water soluble QD (CdSe/ZnS) with emission at 580 nm, functionalized with cysteine (Cys), were studied. TPPS 4 porphyrin was used as a stimulator of QD luminescence. All experiments were realized in PBS buffer (pH 7.3; 7.5 mM) in Milli-Q quality water. The TPPS 4 adding into the QD solutions until the 5μM concentration produced an increase in QD luminescence intensity and lifetime, while for TPPS 4 concentrations higher than 20μM the reduction of the fluorescence intensity was observed, the emission spectra and fluorescence decays profile being unchanged. This effect can not be due to the electrostatic interaction between (CdSe/ZnS)Cys and TPPS 4 because both, (CdSe/ZnS)Cys and TPPS 4 , are negatively charged. We suppose that TPPS 4 porphyrin interacts directly with QD (ZnS) shell, reducing the dangling bound number. This reduction decreases, in turn, the probability of nonradiative ways of the excitation energy dissipation. When the majority of dangling bound is occupied by the TPPS 4 molecules, the effect of QD luminescence reduction (quenching) by porphyrin predominates, probably, via the energy transfer from QD to TPPS 4 . However, because of complexity in the systems involving

  18. Tetrakis(4-tert-butylphenyl) substituted and fused quinoidal porphyrins

    KAUST Repository

    Zeng, Wangdong

    2012-01-01

    4-tert-Butylphenyl-substituted and fused quinoidal porphyrins 1 and 2 are prepared for the first time. They show (1) intense one-photon absorption in the far-red/near-infrared region, (2) enhanced two-photon absorption compared with aromatic porphyrin monomers, and (3) amphoteric redox behavior. Their geometry and electronic structure are studied by DFT calculations. This journal is © 2012 The Royal Society of Chemistry.

  19. Investigation of the porphyrine role at the mechanism of radioprotection

    International Nuclear Information System (INIS)

    Demoukhamedova, S.D.; Alieva, I.N.; Aliev, D.I.

    2002-01-01

    Full text: To date, it is well known that unfavourable radioecological conditions capable effect on the oxygen transport system in an living organism, particularly, on the conformational state of hemoglobin. Underlying mechanism is more active autoxidation of Hb(O 2 )4 into met-hemoglobin. Decreasing of the oxygen binding to the heme group of protein as a result of modified effect of ionization was observed into peripheral blood of people living on the polluted territory. Porphyrin, the main component of hemoglobin has been showed a wide range radioprotector properties. So, the conformational reorganization of the porphyrin ring plays an important role at the mechanism of hemoglobin functioning. In this report the result of conformational study, quantum-chemical calculations and theoretical calculation of frequencies and intensities of normal oscillations of IR-absorption spectrum of the porphyrin molecule at the NO-binding are presented. Computational program 'LEV' was used in all carried calculations. Due to changes into IR-spectrum of different complexes, the mechanism underlying the ligand bond formation are discussed. The theoretical frequencies of normal oscillations, satisfactorily described the porphyrin experimental IR-spectrum are received. On the base of both obtained normal oscillation forms and potential energy distribution of vibrational coordinates the detailed theoretical interpretation of the porphyrin molecule vibrational spectrum as well as the analysis of the nature of each absorption band the porphyrin molecule IR-spectrum have been carried out. Porphyrin molecule force field analysis has been showed that the ring electron density is irregular. The results of this study may be used at the theoretical calculations of IR-absorption spectrum of different metallo complexes of the porphyrin

  20. Impact of iron porphyrin complexes when hydroprocessing algal HTL biocrude

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Jacqueline M.; Sudasinghe, Nilusha M.; Albrecht, Karl O.; Schmidt, Andrew J.; Hallen, Richard T.; Anderson, Daniel B.; Billing, Justin M.; Schaub, Tanner M.

    2016-10-01

    We apply Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for direct characterization of iron-porphyrins in hydrothermal liquefaction (HTL) biocrude oils derived from two algae: Tetraselmis sp. and cyanobacteria. The ironporphyrin compounds are shown to cause catalyst bed plugging during hydroprocessing due to iron deposition. Inductively-coupled plasma optical emission spectrometry (ICPOES) was utilized for iron quantitation in the plugged catalyst beds formed through hydroprocessing of the two HTL biocrudes and identifies an enrichment of iron in the upper five centimeters of the catalyst bed for Tetraselmis sp. (Fe=100,728 ppm) and cyanobacteria (Fe=115,450 ppm). Direct infusion FT-ICR MS analysis of the two HTL biocrudes with optimized instrument conditions facilitates rapid screening and identification of iron-porphyrins without prior chromatographic separation. With FT-ICR MS we identify 138 unique iron-porphyrin compounds in the two HTL biocrudes that are structurally similar to metal-porphyrins (e.g. Ni and V) observed in petroleum. No ironporphyrins are observed in the cyanobacteria HTL biocrude after hydroprocessing, which indicates that iron-porphyrin structures in the HTL biocrude are degraded during hydroprocessing. Hydrodemetallization reactions that occur through hydroprocessing of HTL biocrudes could be responsible for the decomposition of iron-porphyrin structures leading to metal deposition in the catalyst bed that result in catalyst deactivation and bed plugging, and must be addressed for effective upgrading of algal HTL biocrudes.

  1. Lethal photosensitization of biofilm-grown bacteria

    Science.gov (United States)

    Wilson, Michael

    1997-12-01

    Antibacterial agents are increasingly being used for the prophylaxis and treatment of oral diseases. As these agents can be rendered ineffective by resistance development in the target organisms there is a need to develop alternative antimicrobial approaches. Light-activated antimicrobial agents release singlet oxygen and free radicals which can kill adjacent bacteria and a wide range of cariogenic and periodontopathogenic bacteria has been shown to be susceptible to such agents. In the oral cavity these organisms are present as biofilms (dental plaques) which are less susceptible to traditional antimicrobial agents than bacterial suspensions. The results of these studies have shown that biofilm-grown oral bacteria are also susceptible to lethal photosensitization although the light energy doses required are grater than those needed to kill the organisms when they are grown as aqueous suspensions.

  2. Photosensitive interaction of RSU 1069 with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.I.; Knox, R.J.; Skolimowski, I.M.; Zahoor, A.; Knight, R.C.

    1984-08-01

    RSU 1069 is a 2-nitroimidazole radiosensitizer with an aziridine-containing side chain. In light (360 nm) the absorbance maximum of the nitro group at 325 nm disappears, which is accompanied by expulsion of the nitro group as the nitrite ion. This photosensitive effect was used to determine separately the damage of DNA induced by the reduced nitro group and the alkylating property of the aziridine. The aziridine-induced DNA damage is maximized in the dark when the nitro group is either absent (electrolytically reduced prior to the addition of DNA) or non functional (unreduced). In the light, damage is reduced. Typical DNA damage includes helix disruption leading to single strand breaks and the release of thymidine. Alkaline filter elution studies show evidence only for strand breakage and none for cross-linking indicating the drug is capable of mono-functional alkylation only.

  3. Photosensitive interaction of RSU 1069 with DNA

    International Nuclear Information System (INIS)

    Edwards, D.I.; Knox, R.J.; Skolimowski, I.M.; Zahoor, A.; Knight, R.C.

    1984-01-01

    RSU 1069 is a 2-nitroimidazole radiosensitizer with an aziridine-containing side chain. In light (360 nm) the absorbance maximum of the nitro group at 325 nm disappears, which is accompanied by expulsion of the nitro group as the nitrite ion. This photosensitive effect was used to determine separately the damage of DNA induced by the reduced nitro group and the alkylating property of the aziridine. The aziridine-induced DNA damage is maximized in the dark when the nitro group is either absent (electrolytically reduced prior to the addition of DNA) or non functional (unreduced). In the light, damage is reduced. Typical DNA damage includes helix disruption leading to single strand breaks and the release of thymidine. Alkaline filter elution studies show evidence only for strand breakage and none for cross-linking indicating the drug is capable of mono-functional alkylation only

  4. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  5. Boronated liposome development and evaluation

    International Nuclear Information System (INIS)

    Hawthorne, M.F.

    1995-01-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues

  6. Influence of substituents in meso-aryl groups of iron l-oxo porphyrins\

    Czech Academy of Sciences Publication Activity Database

    Tabor, Edyta; Poltowicz, J.; Pamin, K.; Basag, S.; Kubiak, W.

    2016-01-01

    Roč. 119, NOV 2016 (2016), s. 342-349 ISSN 0277-5387 Institutional support: RVO:61388955 Keywords : iron porphyrins * μ-Oxo porphyrins * oxidation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.926, year: 2016

  7. Implantation of boron in silicon

    International Nuclear Information System (INIS)

    Hofker, W.K.

    1975-01-01

    The distribution versus depth of boron implanted in silicon and the corresponding electrical activity obtained after annealing are studied. The boron distributions are measured by secondary-ion mass spectrometry. Boron distributions implanted at energies in the range from 30 keV to 800 keV in amorphous and polycrystalline silicon are analysed. Moments of these distributions are determined by a curve-fitting programme and compared with moments calculated by Winterbon. Boron distributions obtained by implantations along a dense crystallographic direction in monocrystalline silicon are found to have penetrating tails. After investigation of some possible mechanisms of tail formation it is concluded that the tails are due to channelling. It was found that the behaviour of boron during annealing is determined by the properties of three boron fractions consisting of precipitated boron, interstitial boron and substitutional boron. The electrical activity of the boron versus depth is found to be consistent with the three boron fractions. A peculiar redistribution of boron is found which is induced by the implantation of a high dose of heavy ions and subsequent annealing. Different mechanisms which may cause the observed effects, such as thermal diffusion which is influenced by lattice strain and damage, are discussed. (Auth.)

  8. Research related to boron neutron capture therapy at The Ohio State University

    International Nuclear Information System (INIS)

    Barth, R.F.; Soloway, A.H.; Alam, F.

    1986-01-01

    Research in the area of boron neutron capture therapy (BNCT) at The Ohio State University is a highly multidisciplinary effort involving approximately twenty investigators in nine different departments. Major areas of interest include: (1) Boronation of monoclonal antibodies directed against tumor-associated antigens for the delivery of 10 B; (2) Synthesis of 10 B-containing derivatives of promazines and porphyrins that possess tumor-localizing properties; (3) Development of a rat model for the treatment of glioblastoma by BNCT; (4) Quantitation and microdistribution of 10 B in tissues by means of a solid state nuclear track detector. The ultimate goal of this research is to carry out the extensive preclinical studies that are required to bring BNCT to the point of a clinical trial. 13 references

  9. Enrichment of boron 10

    International Nuclear Information System (INIS)

    Coutinho, C.M.M.; Rodrigues Filho, J.S.R.; Umeda, K.; Echternacht, M.V.

    1990-01-01

    A isotopic separation pilot plant with five ion exchange columns interconnected in series were designed and built in the IEN. The columns are charged with a strong anionic resin in its alkaline form. The boric acid solution is introduced in the separation columns until it reaches a absorbing zone length which is sufficient to obtain the desired boron-10 isotopic concentration. The boric acid absorbing zone movement is provided by the injection of a diluted hydrochloric acid solution, which replace the boric acid throughout the columns. The absorbing zone equilibrium length is proportional to its total length. The enriched boron-10 and the depleted boron are located in the final boundary and in the initial position of the absorbing zones, respectively. (author)

  10. Thermoelectric properties of boron and boron phosphide CVD wafers

    Energy Technology Data Exchange (ETDEWEB)

    Kumashiro, Y.; Yokoyama, T.; Sato, A.; Ando, Y. [Yokohama National Univ. (Japan)

    1997-10-01

    Electrical and thermal conductivities and thermoelectric power of p-type boron and n-type boron phosphide wafers with amorphous and polycrystalline structures were measured up to high temperatures. The electrical conductivity of amorphous boron wafers is compatible to that of polycrystals at high temperatures and obeys Mott`s T{sup -{1/4}} rule. The thermoelectric power of polycrystalline boron decreases with increasing temperature, while that of amorphous boron is almost constant in a wide temperature range. The weak temperature dependence of the thermal conductivity of BP polycrystalline wafers reflects phonon scattering by grain boundaries. Thermal conductivity of an amorphous boron wafer is almost constant in a wide temperature range, showing a characteristic of a glass. The figure of merit of polycrystalline BP wafers is 10{sup -7}/K at high temperatures while that of amorphous boron is 10{sup -5}/K.

  11. Is colour modulation an independent factor in human visual photosensitivity?

    NARCIS (Netherlands)

    Parra, J.; Lopes da Silva, F.H.; Stroink, H.; Kalitzin, S.

    2007-01-01

    Considering that the role of colour in photosensitive epilepsy (PSE) remains unclear, we designed a study to determine the potential of different colours, colour combinations and white light to trigger photoparoxysmal responses (PPRs) under stringent controlled conditions. After assessing their

  12. Interaction Studies between Newly Synthesized Photosensitive Polymer and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    In Tae Kim

    2015-01-01

    Full Text Available In this information age, different kinds of photosensitive materials have been used in the manufacture of information storage devices. But these photosensitive materials have the bane of low diffraction efficiency. In order to solve this problem, we have synthesized a novel photosensitive polymer from epoxy-based azopolymers (with three types of azochromophores. Furthermore, we have studied the interaction between this newly synthesized azopolymer and ionic liquids (ILs. For this purpose, we have used the ammonium and imidazolium families of ILs, such as diethylammonium dihydrogen phosphate (DEAP, tributylammonium methyl sulfate (TBMS, triethylammonium 4-aminotoluene-3-sulfonic acid (TASA, and 1-methylimidazolium chloride ([Mim]Cl. To investigate the molecular interaction between azopolymer and ILs, we have used the following spectroscopic methods of analysis: UV-visible spectroscopy, photoluminescence (PL spectroscopy, Fourier transformed infrared spectroscopy (FT-IR, and confocal Raman spectroscopy. In this study, we have developed new photosensitive materials by combining polymer with ILs.

  13. Photosensitizing medication use and risk of skin cancer

    DEFF Research Database (Denmark)

    Kaae, Jeanette; Boyd, Heather A; Hansen, Anne

    2010-01-01

    Many commonly used medications, including both medications for long-term (daily) use and short-term use (treatment courses of finite duration), have photosensitizing properties. Whether use of these medications affects skin cancer risk, however, is unclear.......Many commonly used medications, including both medications for long-term (daily) use and short-term use (treatment courses of finite duration), have photosensitizing properties. Whether use of these medications affects skin cancer risk, however, is unclear....

  14. Inclusion of 5-[4-(1-dodecanoylpyridinium)]-10,15,20-triphenylporphine in supramolecular aggregates of cationic amphiphilic cyclodextrins: physicochemical characterization of the complexes and strengthening of the antimicrobial photosensitizing activity.

    Science.gov (United States)

    Ferro, Stefania; Jori, Giulio; Sortino, Salvatore; Stancanelli, Rosanna; Nikolov, Peter; Tognon, Giuseppe; Ricchelli, Fernanda; Mazzaglia, Antonino

    2009-09-14

    Recent findings suggest that visible light-promoted photooxidative processes mediated by sensitizers of appropriate chemical structure could represent a useful tool for properly addressing the problem of the increasing occurrence of infectious diseases caused by multiantibiotic-resistant microbial pathogens. The monocationic meso-substituted porphyrin 5-[4-(1-dodecanoylpyridinium)]-10,15,20-triphenyl-porphine (TDPyP) complexed into supramolecular aggregates of cationic amphiphilic beta-cyclodextrin (SC(6)NH(2)) (mean diameter = 20 nm) appeared to be endowed with favorable properties to act as a photosensitizing agent, including a very high quantum yield (Phi(Delta) = 0.90) for the generation of the highly reactive oxygen species, singlet oxygen ((1)O(2)). Although the yield of (1)O(2) generation was comparable to that obtained after TDPyP incorporation into cationic unilamellar liposomes of N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP) SC(6)NH(2)-bound TDPyP was more active than DOTAP-bound TDPyP in photosensitizing the inactivation of the Gram-positive methicillin-resistant bacterium Staphylococcus aureus (MRSA). At variance with DOTAP-bound TDPyP, photoactivated SC(6)NH(2)-bound TDPyP was efficient also in photokilling Gram-negative bacterial pathogens, such as Escherichia coli . These observations are in agreement with the well-known photobactericidal effect of positively charged porphyrin derivatives, which can be markedly enhanced after incorporation into carriers with multiple positive charges. In addition, transmission electron microscopy studies revealed that potentiation of the TDPyP-mediated photobactericidal effect by incorporation into SC(6)NH(2) is a consequence of the carrier's ability to promote an efficient crossing of the very tightly organized three-dimensional architecture of the bacterial outer wall by the embedded porphyrin so that a prompt interaction between the short-lived photogenerated (1)O(2) and the nearby

  15. Supramolecular assemblies of pyridyl porphyrin and diazadithia phthalocyanine

    Directory of Open Access Journals (Sweden)

    OZER BEKAROGLU

    1999-08-01

    Full Text Available In this paper we report for the first time on a mixed complex between the cationic porphyrin 5, 10, 15, 20-tetra-N- -methyl-pyrydinium-p-il porphyrin (TMPyP and a new metal phthalocyanine with four 16-membered diazadithia macrocycles (denoted here as Pc16, in order to obtain an active complex with an intense absorption on the lower energy side of the visible spectrum and with a higher sensitivity in photodynamic therapy of cancer. The dimerization constant for Pc16 and also the ratio between the oscillator strengths for monomeric and dimeric forms of this compound, were evaluated. The ratio between these oscillator strengths was 2.01 showing a certain dimerization process. The Job mathematical method allowed the establishment of the stoichiometry and the formation constants for the heteroaggregates between the porphyrin and the phthalocy- anine (a diad between one phthalocyanine molecule and one porphyrin molecule and a triad between two phthalocyanine molecules and only one porphyrin molecule. The coulombic attraction resulting from the p-p interaction of the two highly conjugated macrocycles and from the interaction between the substituents, favors a face-to-face geometry.

  16. Photosensitizing Nanoparticles and The Modulation of Reactive Oxygen Species generation

    Directory of Open Access Journals (Sweden)

    Dayane Batista Tada

    2015-05-01

    Full Text Available The association of PhotoSensitizer (PS molecules with nanoparticles (NPs forming photosensitizing NPs, has emerged as a therapeutic strategy to improve PS tumor targeting, to protect PS from deactivation reactions and to enhance both PS solubility and circulation time. Since association with NPs usually alters PS photophysical and photochemical properties, photosensitizing NPs are an important tool to modulate reactive oxygen species (ROS generation. Depending on the design of the photosensitizing NP, i.e., type of PS, the NP material and the method applied for the construction of the photosensitizing NP, the deactivation routes of the excited state can be controlled, allowing the generation of either singlet oxygen or other ROS. Controlling the type of generated ROS is desirable not only in biomedical applications, as in Photodynamic Therapy where the type of ROS affects therapeutic efficiency, but also in other technological relevant fields like energy conversion, where the electron and energy transfer processes are necessary to increase the efficiency of photoconversion cells. The current review highlights some of the recent developments in the design of Photosensitizing NPs aimed at modulating the primary photochemical events after light absorption.

  17. Primary mechanisms of photosensitization by furocoumarins

    International Nuclear Information System (INIS)

    Grossweiner, L.I.

    1981-01-01

    A proper understanding of the PUVA therapy action mechanism requires the synthesis of concepts developed at the level of molecules, single cells and whole organisms. Although progress has been made in identifying key factors within each level of organization, the interrelationships remain obscure. Important unanswered questions at the molecular and cellular levels include: (1) Which excited states of the furocoumarin in molecule (triplet or excited singlet) are involved in the formation of DNA monoadducts, and the conversion of monoadducts to cross-links. (2) How does the spectrum of the incident radiation affect the distribution of the initial photochemical products from the PUVA sensitizers. (3) What are the relative contributions of furocoumarin-DMA monoadducts, furocoumarin-DNA cross-links and singlet oxygen to mutagenesis and lethality in cells, at the furocoumarin and UV-A dose levels corresponging to PUVA therapy. Additional information about these key aspects of furocoumarin photosensitization should lead to a more definitive relationship of the cellular level events to the endpoints observed with PUVA therapy, and suggest directions for potential improvements in the current clinical procedures

  18. Photosensitizers from Spirulina for Solar Cell

    Directory of Open Access Journals (Sweden)

    Liqiu Wang

    2014-01-01

    Full Text Available Spirulina is a kind of blue-green algae with good photosynthetic efficiency and might be used for photovoltaic power generation. So this paper used living spirulina as novel photosensitizer to construct spirulina biosolar cell. The results showed that spirulina had the photoelectric conversion effect, and could let the spirulina biosolar cell have 70 μA photocurrent. Meanwhile, adding glucose sucrose or chitosan in the spirulina anode chamber, they could make the maxima current density of the cell greatly increased by 80 μA, 100 μA, and 84 μA, respectively, and the sucrose could improve the maximum power density of the cell to 63 mW/m−2. Phycobiliprotein played an important role in the photosynthesis of spirulina. So in this paper phycobiliprotein was extracted from spirulina to composite with squaraine dye to sensitize nanocrystalline TiO2 photoanode for building dye sensitized solar cell, and the photoelectric properties of the cell also were investigated.

  19. Seneciosis in cattle associated with photosensitization

    Directory of Open Access Journals (Sweden)

    Paula R. Giaretta

    2014-05-01

    Full Text Available Senecio spp. poisoning is the main cause of cattle mortality in the central region of Rio Grande do Sul. This paper reports an outbreak of seneciosis in cattle with high prevalence of photosensitization, where 83 out of 162 cows (51.3% presented this clinical sign. The outbreak occurred in September 2013, affecting adult cows that were held in a 205 hectare-pasture from April to October 2013 with abundant Senecio brasiliensis infestation. Main clinical signs were weight loss, excessive lacrimation or mucopurulent ocular discharge, nasal serous discharge, ventral diphteric glossitis, crusts in the nose, teats, dorsum of ears, and vulva. Liver biopsy was performed in all the cows under risk; the histopathological findings in the liver biopsies consisted of fibrosis, megalocytosis, and biliary ductal proliferation and were present in 73.4% of the biopsied animals. Six cows had increased serum activity of gamma glutamyl transferase. Three affected cows were necropsied. The main necropsy findings were a hard liver, distended gall bladder, edema of the mesentery and abomasum. Liver histological changes in the necropsied cows were similar to those of the biopsied livers. Spongiosis was detected in the brain of necropsied cows and is characteristic of hepatic encephalopathy.

  20. Photosensitizing anthraquinones from Heterophyllaea lycioides (Rubiaceae).

    Science.gov (United States)

    Dimmer, Jesica A; Núñez Montoya, Susana C; Mendoza, Caterine S; Cabrera, José L

    2017-05-01

    Seven anthraquinones were isolated from aerial parts of Heterophyllaea lycioides (Rusby) Sandwith (Rubiaceae), including three derivatives that have not been described before: a hetero-bianthraquinone identified as (R)-2-hydroxymethyl-2'methyl-1,1',6,6'-tetrahydroxy-5,5' bianthraquinone (lycionine), and two mono-chlorinated derivatives related to soranjidiol. One of them is a homo-bianthraquinone: (R)-7-chloro-2,2'-dimethyl-1,1',6,6'-tetrahydroxy-5,5' bianthraquinone (7-chlorobisoranjidiol), whereas the second halogenated derivative corresponds to a monomeric structure: 5-chloro-1,6-dihydroxy-2-methyl anthraquinone (5-chlorosoranjidiol). The four known compounds were already isolated from another species of this genus, H. pustulata, and they were identified as 5,5'-bisoranjidiol, soranjidiol, pustuline and heterophylline. Structural elucidation was performed by means of an extensive spectroscopic analysis, including 1D and 2D NMR data as well as by HRMS analysis. Chemical structures of 7-chlorobisoranjidiol and 5-chlorosoranjidiol were confirmed by their synthesis from 5,5'-bisoranjidiol and soranjidiol, respectively. Type I photosensitizing properties (superoxide anion radical generation, O 2 - ) were assessed by using the nitroblue tetrazolium assay. When lycionine and chlorinated derivatives were irradiated, they enhanced the O 2 - production with respect to the control; 7-chlorobisoranjidiol stood out by generating an increase of 20%, whereas the other anthraquinones only produced a slight increase of 7%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Multi-step intramolecular excitation energy transfer in dendritic pyrene-phosphorus(V)porphyrin heptads

    International Nuclear Information System (INIS)

    Hirakawa, Kazutaka; Segawa, Hiroshi

    2016-01-01

    Dendritic heptad molecules in which four pyrenyl groups are connected at the central phosphorus atom of the edge-porphyrins of the center-to-edge type porphyrin trimers were synthesized to investigate a multi-step excitation energy transfer. As the central energy acceptor, two types porphyrins which one was phosphorus(V)tetraphenylporphyrin (H2) and another was its derivative substituted by butoxy groups at four para-position of meso-phenyl groups (H1) were used. In the photoexcited state of the pyrene units, the excitation energy transfer to the central-porphyrin unit was observed in toluene. The excitation energy transfer is considered to be through two pathways; one is a stepwise pathway through the edge-porphyrin unit and another is a direct excitation energy transfer to the central porphyrin. The direct excitation energy transfer from pyrenes to the edge-porphyrin and central-porphyrin were observed in the case for H1. From the excited state of the edge-porphyrins, the excitation energy transfer to the central-porphyrin occurs in the H1 case. In the H2 case, the excitation energy of central-porphyrin is higher than that of H1, and the electron transfer from edge-porphyrin to the central-porphyrin become predominant process. - Highlights: • Dendritic pyrene-porphyrin heptads were synthesized. • Excitation energy transfer occurs from the pyrenyl moiety to the phosphorus(V)porphyrin. • The stepwise and direct energy transfer pathways were observed. • The quantum yields of these energy transfer pathways could be determined.

  2. Multi-step intramolecular excitation energy transfer in dendritic pyrene-phosphorus(V)porphyrin heptads

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, Kazutaka, E-mail: hirakawa.kazutaka@shizuoka.ac.jp [Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Segawa, Hiroshi [Department of Multi-Disciplinary Science - General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8904 (Japan); Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904 (Japan)

    2016-11-15

    Dendritic heptad molecules in which four pyrenyl groups are connected at the central phosphorus atom of the edge-porphyrins of the center-to-edge type porphyrin trimers were synthesized to investigate a multi-step excitation energy transfer. As the central energy acceptor, two types porphyrins which one was phosphorus(V)tetraphenylporphyrin (H2) and another was its derivative substituted by butoxy groups at four para-position of meso-phenyl groups (H1) were used. In the photoexcited state of the pyrene units, the excitation energy transfer to the central-porphyrin unit was observed in toluene. The excitation energy transfer is considered to be through two pathways; one is a stepwise pathway through the edge-porphyrin unit and another is a direct excitation energy transfer to the central porphyrin. The direct excitation energy transfer from pyrenes to the edge-porphyrin and central-porphyrin were observed in the case for H1. From the excited state of the edge-porphyrins, the excitation energy transfer to the central-porphyrin occurs in the H1 case. In the H2 case, the excitation energy of central-porphyrin is higher than that of H1, and the electron transfer from edge-porphyrin to the central-porphyrin become predominant process. - Highlights: • Dendritic pyrene-porphyrin heptads were synthesized. • Excitation energy transfer occurs from the pyrenyl moiety to the phosphorus(V)porphyrin. • The stepwise and direct energy transfer pathways were observed. • The quantum yields of these energy transfer pathways could be determined.

  3. Studies of porphyrin-containing specimens using an optical spectrometer connected to a confocal scanning laser microscope.

    Science.gov (United States)

    Trepte, O; Rokahr, I; Andersson-Engels, S; Carlsson, K

    1994-12-01

    A spectrometer has been developed for use with a confocal scanning laser microscope. With this unit, spectral information from a single point or a user-defined region within the microscope specimen can be recorded. A glass prism is used to disperse the spectral components of the recorded light over a linear CCD photodiode array with 256 elements. A regulated cooling unit keeps the detector at 277 K, thereby allowing integration times of up to 60 s. The spectral resolving power, lambda/delta lambda, ranges from 350 at lambda = 400 nm to 100 at lambda = 700 nm. Since the entrance aperture of the spectrometer has the same size as the detector pinhole used during normal confocal scanning, the three-dimensional spatial resolution is equivalent to that of normal confocal scanning. Light from the specimen is deflected to the spectrometer by a solenoid controlled mirror, allowing fast and easy switching between normal confocal scanning and spectrometer readings. With this equipment, studies of rodent liver specimens containing porphyrins have been made. The subcellular localization is of interest for the mechanisms of photodynamic therapy (PDT) of malignant tumours. Spectroscopic detection is necessary to distinguish the porphyrin signal from other fluorescent components in the specimen. Two different substances were administered to the tissue, Photofrin, a haematoporphyrin derivative (HPD) and delta-amino levulinic acid (ALA), a precursor to protoporphyrin IX and haem in the haem cycle. Both are substances under clinical trials for PDT of malignant tumours. Following administration of these compounds to the tissue, the potent photosensitizer and fluorescent compound Photofrin, or protoporphyrin IX, respectively, is accumulated.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. MINERALOGY OF HALLOYSITES AND THEIR INTERACTION WITH PORPHYRINE

    Directory of Open Access Journals (Sweden)

    Vašutová V.

    2013-09-01

    Full Text Available Samples representing two modifications of halloysites, dehydrated (7 Å and hydrated (10 Å forms, respectively, were examined with the aim to select suitable candidates for to be used as carriers of porphyrine photoactive molecules. The samples were analysed by powder X-ray diffraction (pXRD, infrared spectroscopy (FT-IR, and high resolution transmission electron microscopy (HRTEM. Chemical composition was also determined. For the determination of cationic exchange capacity (CEC the silver thiourea method (AgTU was used. Silver cations concentrations in the solution before and after the interaction were determined by atomic absorption spectrometry (AAS. By the interaction of two pure hydrated halloysites with porphyrine it was found that porphyrine does not intercalate the interlayer space, but it is adsorbed on the outer surface of halloysite. This interaction changed the colour of clay sample from white to green. The changes were also clearly visible on diffuse reflectance spectra (DRS.

  5. Platinum porphyrins as ionophores in polymeric membrane electrodes

    DEFF Research Database (Denmark)

    Lvova, Larisa; Verrelli, Giorgio; Nardis, Sara

    2011-01-01

    A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined...... within the electrode membranes, while those based on Pt(IV)TPPCl2 operate via a mixed mode carrier mechanism, evidencing also a partial reduction of the starting ionophore to Pt(II)TPP. Spectrophotometric measurements of thin polymeric films indicate that no spontaneous formation of hydroxide ion bridged...... porphyrin dimers occurs in the membrane plasticized both with high or low dielectric constant plasticizer, due to a low oxophilicity of central Pt. The computational study of various anion–Pt(IV)TPPCl2 complex formation by means of semi-empirical and density functional theory (DFT) methods revealed a good...

  6. Theoretical study on junctions in porphyrin oligomers for nano scale devices

    International Nuclear Information System (INIS)

    Mizuseki, Hiroshi; Belosludov, Rodion V.; Farajian, Amir A.; Igarashi, Nobuaki; Kawazoe, Yoshiyuki

    2005-01-01

    A unimolecular rectifier could be built by combining two molecular sub-units that contain acceptor or donor groups. Porphyrin possesses good electron-donating properties due to its large, easily ionized, π-conjugated system. In this study, we propose that a rectifier diode could be created by combining two metal porphyrin molecules containing different metal atoms. This function would realize an effect similar to a p-n junction in a solid-state device. A Zn porphyrin-Ni porphyrin junction in a non-conjugated porphyrin system displays a localization of frontier orbitals that is similar to a rectifier function

  7. Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells.

    Science.gov (United States)

    Hayashi, Hironobu; Higashino, Tomohiro; Kinjo, Yuriko; Fujimori, Yamato; Kurotobi, Kei; Chabera, Pavel; Sundström, Villy; Isoda, Seiji; Imahori, Hiroshi

    2015-08-26

    Memory effects in self-assembled monolayers (SAMs) of zinc porphyrin carboxylic acid on TiO2 electrodes have been demonstrated for the first time by evaluating the photovoltaic and electron transfer properties of porphyrin-sensitized solar cells prepared by using different immersion solvents sequentially. The structure of the SAM of the porphyrin on the TiO2 was maintained even after treating the porphyrin monolayer with different neat immersion solvents (memory effect), whereas it was altered by treatment with solutions containing different porphyrins (inverse memory effect). Infrared spectroscopy shows that the porphyrins in the SAM on the TiO2 could be exchanged with the same or analogous porphyrin, leading to a change in the structure of the porphyrin SAM. The memory and inverse memory effects are well correlated with a change in porphyrin geometry, mainly the tilt angle of the porphyrin along the long molecular axis from the surface normal on the TiO2, as well as with kinetics of electron transfer between the porphyrin and TiO2. Such a new structure-function relationship for DSSCs will be very useful for the rational design and optimization of photoelectrochemical and photovoltaic properties of molecular assemblies on semiconductor surfaces.

  8. Antibatic photovoltaic response in zinc-porphyrin-liked oligothiophenes

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Spanggaard, H.

    2005-01-01

    -stannylchloride and subsequent palladium catalysed Stille coupling. We further synthesised 5,15-bis(3, 4', 4", 4"', 4", 4""', 4""", 4"""'-octahexyl-[2, 2'; 5', 2" 5", 2'"; 5"', 2""; 5"", 2""'; 5""', 2"""; 5""", 2"""']octithiophene-5-yl)-10, 20-bis(3, 5-ditertbutylphenyl)zinc(II)porphyrin (5) from trimethyl(3, 4', 4", 4'", 4......"", 4""', 4""", 4"""'-Octahexyl-[2, 2'; 5', 2"; 5"; 2'"; 5"', 2""; 5"", 2"'"; 5""', 2"""; 5""", 2"""']octithiophene-5-yl)stannane (3-SnMe3) and 5, 15-dibromo-10, 20-bis(3, 5-ditertbutylphenyl)zinc(II)porphyrin (6) by Stille coupling. All the products were characterised by size exclusion chromatography...

  9. A Novel Photosensitizer 3¹,13¹-phenylhydrazine -Mppa (BPHM) and Its in Vitro Photodynamic Therapy against HeLa Cells.

    Science.gov (United States)

    Li, Wenting; Tan, Guanghui; Cheng, Jianjun; Zhao, Lishuang; Wang, Zhiqiang; Jin, Yingxue

    2016-04-29

    Photodynamic therapy (PDT) has attracted widespread attention due to its potential in the treatment of various cancers. Porphyrinic pyropheophorbide-a (PPa) has been shown to be a potent photosensitizer in PDT experiments. In this paper, a C-3¹,13¹ bisphenylhydrazone modified methyl pyropheophorbide-a (BPHM) was designed and synthesized with the consideration that phenylhydrazone structure may extend absorption wavelength of methyl pyro-pheophorbide-a (Mppa), and make the photosensitizer potential in deep tumor treatment. The synthesis, spectral properties and in vitro photodynamic therapy (PDT) against human HeLa cervical cancer cell line was studied. Methyl thiazolyl tetrazolium (MTT) assay showed the title compound could achieve strong inhibition of cervical cancer cell viability under visible light (675 nm, 25 J/cm²). Cell uptake experiments were performed on HeLa cells. Morphological changes were examined and analyzed by fluorescent inverted microscope. In addition, the mechanism of the photochemical processes of PDT was investigated, which showed that the formation of singlet oxygen after treatment with PDT played a moderate important role.

  10. Flexible and fragmentable tandem photosensitive nanocrystal skins

    Science.gov (United States)

    Akhavan, S.; Uran, C.; Bozok, B.; Gungor, K.; Kelestemur, Y.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Demir, H. V.

    2016-02-01

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of

  11. Hypoxia-targeting antitumor prodrugs and photosensitizers

    International Nuclear Information System (INIS)

    Zhang Zhouen; Nishimoto, S.I.

    2006-01-01

    Tumor hypoxia has been identified as a key subject for tumor therapy, since hypoxic tumor cells show resistance to treatment of tumor tissues by radiotherapy, chemotherapy and phototherapy. For improvement of tumor radiotherapy, we have proposed a series of radiation-activated prodrugs that could selectively release antitumor agent 5-fluorouracil or 5-fluorodeoxyuridine under hypoxic conditions. Recently, we attempted to develop two families of novel hypoxia-targeting antitumor agents, considering that tumor-hypoxic environment is favorable to biological and photochemical reductions. The first family of prodrugs was derived from camptothecin as a potent topoisomerase I inhibitor and several bioreductive motifs. These prodrugs could be activated by NADPH-cytochrome P450 reductase or DT-diaphorase to release free camptothecin, and thereby showed hypoxia-selective cytotoxictiy towards tumor cells. These prodrugs were also applicable to the real-time monitoring of activation and antitumor effect by fluorometry. Furthermore, the camptothecin-bioreductive motif conjugates was confirmed to show an oxygen-independent DAN photocleaving activity, which could overcome a drawback of back electron transfer occurring in the photosensitized one-electron oxidation of DNA. Thus, these camptothecin derivatives could be useful to both chemotherapy and phototherapy for hypoxic tumor cells. The second family of prodrugs harnessed UV light for cancer therapy, incorporating the antitumor agent 5-fluorourcil and the photolabile 2-nitrobenzyl chromophores. The attachment of a tumor-homing cyclic peptide CNGRC was also employed to construct the prototype of tumor-targeting photoactiaved antitumor prodrug. These novel prodrugs released high yield of 5-fluorourcil upon UV irradiation at λ ex =365 nm, while being quite stable in the dark. The photoactivation mechanism was also clarified by means of nanosecond laser flash photolysis. (authors)

  12. Neutron dosimetry in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na 2 B 12 H 11 SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with 10 B in boron containing cells through the 10 B(n,α) 7 Li reaction producing charged particles with a maximum range of approx. 10μm in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize 6 Li and 10 B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the 14 N(n,p) 14 C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils

  13. A New Boron Analysis Method

    Energy Technology Data Exchange (ETDEWEB)

    Weitman, J; Daaverhoeg, N; Farvolden, S

    1970-07-01

    In connection with fast neutron (n, {alpha}) cross section measurements a novel boron analysis method has been developed. The boron concentration is inferred from the mass spectrometrically determined number of helium atoms produced in the thermal and epithermal B-10 (n, {alpha}) reaction. The relation between helium amount and boron concentration is given, including corrections for self shielding effects and background levels. Direct and diffusion losses of helium are calculated and losses due to gettering, adsorption and HF-ionization in the release stage are discussed. A series of boron determinations is described and the results are compared with those obtained by other methods, showing excellent agreement. The lower limit of boron concentration which can be measured varies with type of sample. In e.g. steel, concentrations below 10-5 % boron in samples of 0.1-1 gram may be determined.

  14. Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy

    Directory of Open Access Journals (Sweden)

    L.A. Muehlmann

    2011-08-01

    Full Text Available Photodynamic therapy is a well-established and clinically approved treatment for several types of cancer. Antineoplastic photodynamic therapy is based on photosensitizers, i.e., drugs that absorb photons translating light energy into a chemical potential that damages tumor tissues. Despite the encouraging clinical results with the approved photosensitizers available today, the prolonged skin phototoxicity, poor selectivity for diseased tissues, hydrophobic nature, and extended retention in the host organism shown by these drugs have stimulated researchers to develop new formulations for photodynamic therapy. In this context, due to their amphiphilic characteristic (compatibility with both hydrophobic and hydrophilic substances, liposomes have proven to be suitable carriers for photosensitizers, improving the photophysical properties of the photosensitizers. Moreover, as nanostructured drug delivery systems, liposomes improve the efficiency and safety of antineoplastic photodynamic therapy, mainly by the classical phenomenon of extended permeation and retention. Therefore, the association of photosensitizers with liposomes has been extensively studied. In this review, both current knowledge and future perspectives on liposomal carriers for antineoplastic photodynamic therapy are critically discussed.

  15. Photosensitization of InP/ZnS quantum dots for anti-cancer and anti-microbial applications

    Science.gov (United States)

    Nadeau, Jay; Chibli, Hicham; Carlini, Lina

    2012-03-01

    Cadmium-free quantum dots (QDs), such as those made from InP, show similar optical properties to those containing toxic heavy metals and thus provide a promising alternative for imaging and therapeutics. The band gap of InP is similar to that of CdTe, so photosensitization of InP QDs with porphyrins or other dyes should lead to generation of reactive oxygen species, useful for targeted destruction of malignant cells or pathogenic bacteria. Here we show the results of measurements of singlet oxygen and superoxide generation from InP QDs with single and double ZnS shells compared with CdTe and CdSe/ZnS. Reactive oxygen species are measured using colorimetric or fluorescent reporter assays and spin-trap electron paramagnetic resonance (EPR) spectroscopy. We find that the size of the InP QDs and the thickness of the ZnS shell both strongly influence ROS generation. These results suggest future approaches to the design of therapeutic nanoparticles.

  16. Studies on Preparation of Photosensitizer Loaded Magnetic Silica Nanoparticles and Their Anti-Tumor Effects for Targeting Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Chen Zhi-Long

    2009-01-01

    Full Text Available Abstract As a fast developing alternative of traditional therapeutics, photodynamic therapy (PDT is an effective, noninvasive, nontoxic therapeutics for cancer, senile macular degeneration, and so on. But the efficacy of PDT was compromised by insufficient selectivity and low solubility. In this study, novel multifunctional silica-based magnetic nanoparticles (SMNPs were strategically designed and prepared as targeting drug delivery system to achieve higher specificity and better solubility. 2,7,12,18-Tetramethyl-3,8-di-(1-propoxyethyl-13,17-bis-(3-hydroxypropyl porphyrin, shorted as PHPP, was used as photosensitizer, which was first synthesized by our lab with good PDT effects. Magnetite nanoparticles (Fe3O4 and PHPP were incorporated into silica nanoparticles by microemulsion and sol–gel methods. The prepared nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and fluorescence spectroscopy. The nanoparticles were approximately spherical with 20–30 nm diameter. Intense fluorescence of PHPP was monitored in the cytoplasm of SW480 cells. The nanoparticles possessed good biocompatibility and could generate singlet oxygen to cause remarkable photodynamic anti-tumor effects. These suggested that PHPP-SMNPs had great potential as effective drug delivery system in targeting photodynamic therapy, diagnostic magnetic resonance imaging and magnetic hyperthermia therapy.

  17. Re(I) bridged porphyrin dyads, triads and tetrads

    Indian Academy of Sciences (India)

    DNA cleavage.4 Design strategies to develop solid-state multichromophore arrays of defined rigidity, ... lent synthetic strategies to porphyrin arrays have gen- erally proved quite limiting. The covalent synthetic ...... since retention times vary inversely with size.23 Pulsed- field-gradient NMR, which measures coefficients for.

  18. Expanded porphyrins as third order non-linear optical materials ...

    Indian Academy of Sciences (India)

    WINTEC

    function correlations ... An understanding of the structure–function corre- lations of these expanded porphyrins is an important first step for ... where χ (2) and χ (3) are the quadratic χ (2) (first- order) and χ (3) cubic (second-order) susceptibilities.

  19. Interaction of porphyrins with PAMAM dendrimers in aqueous solution

    Czech Academy of Sciences Publication Activity Database

    Kubát, Pavel; Lang, Kamil; Zelinger, Zdeněk

    2007-01-01

    Roč. 131, - (2007), s. 200-205 ISSN 0167-7322 R&D Projects: GA ČR GA203/04/0426 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : porphyrin * PAMAM dendrimer * aggragation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.982, year: 2007

  20. Synthesis of metallic nanoshells on porphyrin-stabilized emulsions

    Science.gov (United States)

    Wang, Haorong [Albuquerque, NM; Song, Yujiang [Albuquerque, NM; Shelnutt, John A [Tijeras, NM; Medforth, Craig J [Winters, CA

    2011-12-13

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  1. Trilobolide-porphyrin conjugates: On synthesis and biological effects evaluation

    Czech Academy of Sciences Publication Activity Database

    Tomanová, P.; Rimpelová, S.; Jurášek, M.; Buděšínský, Miloš; Vejvodová, L.; Ruml, T.; Kmoníčková, E.; Drašar, P. B.

    2015-01-01

    Roč. 97, SI (2015), s. 8-12 ISSN 0039-128X Grant - others:GA ČR(CZ) GA14-04329S; GA MŠk(CZ) ED2.1.00/03.0076 Institutional support: RVO:61388963 Keywords : trilobolide * porphyrin * nitric oxide * fluorescence microscopy Subject RIV: CE - Biochemistry Impact factor: 2.513, year: 2015

  2. Porphyrin involvement in redshift fluorescence in dentin decay

    Science.gov (United States)

    Slimani, A.; Panayotov, I.; Levallois, B.; Cloitre, T.; Gergely, C.; Bec, N.; Larroque, C.; Tassery, H.; Cuisinier, F.

    2014-05-01

    The aim of this study was to evaluate the porphyrin involvement in the red fluorescence observed in dental caries with Soprolife® light-induced fluorescence camera in treatments mode (SOPRO, ACTEON Group, La Ciotat, France) and Vistacam® camera (DÜRR DENTAL AG, Bietigheim-Bissingen, Germany). The International Caries Detection and Assessment System (ICDAS) was used to rand the samples. Human teeth cross-sections, ranked from ICDAS score 0 to 6, were examined by epi-fluorescence microscopy and Confocal Raman microscopy. Comparable studies were done with Protoporphyrin IX, Porphyrin I and Pentosidine solutions. An RGB analysis of Soprolife® images was performed using ImageJ Software (1.46r, National Institutes of Health, USA). Fluorescence spectroscopy and MicroRaman spectroscopy revealed the presence of Protoporphyrin IX, in carious enamel, dentin and dental plaque. However, the presence of porphyrin I and pentosidine cannot be excluded. The results indicated that not only porphyrin were implicated in the red fluorescence, Advanced Glygation Endproducts (AGEs) of the Maillard reaction also contributed to this phenomenon.

  3. Bionic catalysis of porphyrin for electrochemical detection of nucleic acids

    International Nuclear Information System (INIS)

    Li Jie; Lei Jianping; Wang Quanbo; Wang Peng; Ju Huangxian

    2012-01-01

    Highlights: ► This is the first application of bionic catalysis of porphyrin as detection probe in bioanalysis. ► Porphyrin–DNA–gold nanoparticle probe is synthesized. ► Binding model between FeTMPyP and DNA is verified. ► The detection probe shows excellent electrocatalytic behaviors toward the reduction of O 2 . ► The biosensor exhibited good performance with wide linear range and high specificity. - Abstract: A novel electrochemical strategy was designed for the detection of DNA based on the bionic catalysis of porphyrin. The detection probe was prepared via the assembly of thiolated double strand DNA (dsDNA) with gold nanoparticles (AuNPs), and then interacted with cationic iron (III) meso-tetrakis (N-methylphyridinum-4-yl) porphyrin (FeTMPyP) via groove binding along the dsDNA surface. The resulting nanocomplex was characterized with transmission electron microscopy, UV–vis absorption and circular dichroism spectroscopy. The FeTMPyP–DNA–AuNPs probe on gold electrode demonstrated the excellent electrocatalytic behaviors toward the reduction of O 2 due to the largely loading of FeTMPyP and good conductivity. Based on bionic catalysis of porphyrin for the reduction of O 2 , the resulting biosensor exhibited a good performance for the detection of DNA with a wide linear range from 1 × 10 −12 to 1 × 10 −8 mol L −1 and detection limit of 2.5 × 10 −13 mol L −1 at the signal/noise of 3. More importantly, the biosensor presented excellent ability to discriminate the perfectly complementary target and the mismatched stand. This strategy could be conveniently extended for detection of other biomolecules. To the best of our knowledge, this is the first application of bionic catalysis of porphyrin as detection probe and opens new opportunities for sensitive detection of biorecognition events.

  4. Laser inactivation of periodontal bacteria using photosensitizing dyes

    Science.gov (United States)

    Golding, Paul S.; Maddocks, L.; King, Terence A.; Drucker, D. B.

    1996-12-01

    We demonstrate the killing of the oral bacteria Prevotella nigrescens using a photosensitizer and light from a 10 Hz, frequency doubled, Q-switched Nd:YAG pumped dye laser, with modified oscillator to increase output power. This system produced light at wavelengths close to 620 nm, the absorption maximum of the photosensitizing agent, malachite green isothiocyanate, a wavelength that is not significantly absorbed by tissue. A bacterial reduction of 97.5 percent was achieved at an energy density of 0.67 J/cm2 and exposure times of 300 seconds.

  5. Electroluminescence and photosensitivity spectra of organic diode structures based on zinc complexes

    International Nuclear Information System (INIS)

    Kaplunov, M.G.; Krasnikova, S.S.; Nikitenko, S.L.; Yakushchenko, I.K.

    2017-01-01

    Devices based on zinc complexes with sulphanylaminosubstituted ligands are characterized by dual function – electroluminescence (EL) and photosensitivity. Both EL and photosensitivity are associated with the formation of exciplexes.

  6. Mechanism to preserve phrenic nerve function during photosensitization reaction: drug uptake and photosensitization reaction effect on electric propagation

    Science.gov (United States)

    Takahashi, Haruka; Hamada, Risa; Ogawa, Emiyu; Arai, Tsunenori

    2018-02-01

    To study a mechanism of phrenic nerve preservation phenomena during a photosensitization reaction, we investigated an uptake of talaporfin sodium and photosensitization reaction effect on an electric propagation. Right phrenic nerve was completely preserved after superior vena cava isolations using the photosensitization reaction in canine animal experiments, in spite of adjacent myocardium was electrically blocked. We predicted that low drug uptake and/or low photosensitization reaction effect on the nerve might be a mechanism of that phenomena. To investigate uptake to various nerve tissue, a healthy extracted crayfish ventral nerve cord and an extracted porcine phrenic nerve were immersed in 20 μg/ml talaporfin sodium solution for 0-240 min. The mean talaporfin sodium fluorescence brightness increased depending on the immersion time. This brightness saturated around the immersion time of 120 min. We found that talaporfin sodium uptake inside the perineurium which directly related to the electric propagation function was lower than that of outside in the porcine phrenic nerve. To investigate photosensitization reaction effect on electric propagation, the crayfish nerve was immersed into the same solution for 15 min and irradiated by a 663 nm laser light with 120 mW/cm2. Since we found the action potential disappeared when the irradiation time was 25-65 s, we consider that the crayfish nerve does not tolerant to the photosensitization reaction on electric propagation function at atmospheric pressure. From these results, we think that the low uptake of talaporfin sodium inside the perineurium and low oxygen partial pressure of nerve might be the possible mechanism to preserve phrenic nerve in vivo.

  7. Increase of (CdSe/ZnS)Cys quantum dot luminescence intensity in the presence of TPPS{sub 4} porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Gustavo G.; Borissevitch, Iouri E. [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filosofia, Ciencias e Letras de Ribeirao Preto. Dept. de Fisica; Kuzmin, Vladimir A. [Emanuel Institute of Biophysical Chemistry, RAS-RU, Moscow (Russian Federation); Oleinikov, Vladimir A. [Shemyakin and Ovchinnikov Institute of Biooganic Cemistry, RAS-RU, Moscow (Russian Federation)

    2012-07-01

    Full text: Nanocrystal semiconductor particles or Quantum Dots (QD) possess extraordinary photophysical characteristics, such as extreme high fluorescence quantum yield and optical absorption and very narrow fluorescence band, which can be easily shifted by changing of QD particle size. Due to these characteristics, QD is promising for fluorescence cancer diagnostics and photodynamic treatment. The efficiency of these processes can be in- creased by energy transfer between QD and classic fluorescence probes and photosensitizers (PS). In this work we present on the study of the increase of (CdSe/ZnS)Cys quantum dot luminescence intensity, stimulated by interaction with TPPS{sub 4} porphyrin. The optical absorption and steady-state and time-resolved fluorescence techniques were employed. Water soluble QD (CdSe/ZnS) with emission at 580 nm, functionalized with cysteine (Cys), were studied. TPPS{sub 4} porphyrin was used as a stimulator of QD luminescence. All experiments were realized in PBS buffer (pH 7.3; 7.5 mM) in Milli-Q quality water. The TPPS{sub 4} adding into the QD solutions until the 5{mu}M concentration produced an increase in QD luminescence intensity and lifetime, while for TPPS{sub 4} concentrations higher than 20{mu}M the reduction of the fluorescence intensity was observed, the emission spectra and fluorescence decays profile being unchanged. This effect can not be due to the electrostatic interaction between (CdSe/ZnS)Cys and TPPS{sub 4} because both, (CdSe/ZnS)Cys and TPPS{sub 4}, are negatively charged. We suppose that TPPS{sub 4} porphyrin interacts directly with QD (ZnS) shell, reducing the dangling bound number. This reduction decreases, in turn, the probability of nonradiative ways of the excitation energy dissipation. When the majority of dangling bound is occupied by the TPPS{sub 4} molecules, the effect of QD luminescence reduction (quenching) by porphyrin predominates, probably, via the energy transfer from QD to TPPS{sub 4}. However

  8. Boron supplementation in broiler diets

    Directory of Open Access Journals (Sweden)

    EJ Fassani

    2004-12-01

    Full Text Available Boron supplementation in broiler feed is not a routine practice. However, some reports suggest a positive effect of boron on performance. This study assessed the effects of boron supplementation on broiler performance. Diets were based on maize and soybean meal, using boric acid P.A. as boron source. Six supplementation levels (0, 30, 60, 90, 120 and 150 ppm were evaluated using 1,440 one-day old males housed at a density of 30 chickens in each of 48 experimental plots of 3m². A completely randomized block design was used with 8 replicates. Feed intake, weight gain and feed conversion were assessed in the periods from 1 to 7 days, 1 to 21 days and 1 to 42 days of age, and viability was evaluated for the total 42-day rearing period. No performance variable was affected by boron supplementation (p>0.05 in the period from 1 to 7 days. The regression analysis indicated an ideal level of 37.4 ppm of boron for weight gain from 1 to 21 days (p0.05, although feed intake was reduced linearly with increased boron levels (p0.05. Ash and calcium percentages in the tibias of broilers and viability in the total rearing period were not affected by boron supplementation (p>0.05.

  9. Development of Smart Phthalocyanine-based Photosensitizers for Photodynamic Therapy

    Science.gov (United States)

    Chow, Yun Sang

    Phthalocyanines are versatile functional dyes that have shown great potential in cancer theranostics, especially in photodynamic therapy (PDT). This research work aims to develop "smart" phthalocyanine-based photosensitizers for targeted PDT. This thesis describes the synthesis, spectroscopic characterization, photophysical properties, and in vitro photodynamic activities of several series of carefully designed phthalocyanine-based photosensitizers. Chapter 1 presents an overview of PDT, including its historical development, photophysical mechanisms, and biological mechanisms. Various classes of photosensitizers are introduced with emphasis putting on phthalocyanines, which exhibit ideal characteristics of photosensitizers for PDT. In recent years, several approaches have been used to develop photosensitizers with higher tumor selectivity and minimal skin photosensitivity after PDT. Activatable photosensitizers can provide a "turn on" mechanism to offer an additional control of the specificity of treatment. Photosensitizers can also work cooperatively with the tumor-targeting groups or anticancer drugs so as to achieve targeted or dual therapy, which can enhance the efficacy of PDT. The novel approaches mentioned above have been widely used and combined to form multi-functional photosensitizing agents. These novel concepts and development of PDT are discussed and illustrated with relevant examples at the end of this chapter. To minimize the prolonged skin photosensitivity, photosensitizers that can only be activated by tumor-associated stimuli have been developed. Due to the abnormal metabolism in tumor tissues, their surface usually exhibits a lower pH compared to that of the normal tissues. Also, the pH difference between the intracellular and the physiological environment provides a pH-activation mechanism. Chapter 2 presents the synthesis and spectroscopic characterization of a pH-responsive zinc(II) phthalocyanine tetramer, in which the phthalocyanine units

  10. 78 FR 18999 - Prospective Grant of Start-Up Exclusive License: Photosensitizing Antibody-Fluorophore Conjugates...

    Science.gov (United States)

    2013-03-28

    ...-Up Exclusive License: Photosensitizing Antibody-Fluorophore Conjugates for Photoimmunotherapy AGENCY...-205-2010/0-US-01), and entitled ``Photosensitizing Antibody- Fluorophore Conjugates,'' to Aspyrian... invention. The field of use may be limited to ``use of photosensitizing antibody-fluorophore conjugate by...

  11. Photophysical properties of novel Porphyrin-Flavin Dyads

    International Nuclear Information System (INIS)

    Stark, S.

    2001-10-01

    Photosynthesis belongs to the fundamentals of life on earth, therefore it is an important matter in natural sciences. The basic principle of photosynthesis is the transformation of solar light into chemical energy. The starting steps of photosynthesis are light-induced energy- and electron-transfer-steps with singular efficiency. One attempt to enlighten the molecular processes involved is to synthesize simpler model systems with similar properties. Important research goals are the dependencies of light-induced processes on distance and orientation of donor and acceptor. A second aim next to the clarification of the molecular conditions of photosynthesis is to create molecular light-driven machines. The most simple so-called biomimetic model system consists of an electron-donor connected to an electron-acceptor via a spacer-group. This simplest form is also referred to as dyad. Beyond dyads far more complicated compounds have been introduced consisting of several donors and/or acceptors, so-called triads, tetrads, pentads etc. Usually porphyrin serves as electron-donor. Next to chinones several other electron-acceptors are used, e.g. anthracene, pyromellitimide and fullerene. Artificial photosynthetic centers are often more stable and/or the excited states are easier to detect compared to the natural photosynthetic center. The photophysical characteristics of four dyads are reported in this work. The dyads consist of porphyrin (either free-base or zinc-metallated) and flavin, connected by different spacers. These dyads reveal photo-induced electron transfer from porphyrin to flavin and energy-transfer in the reversed direction with different efficiencies. The object of the study is the dependency of these processes on the structural features. The spacer of the dyads 1a-1c is an aromatic bridge which leads to well defined donor-acceptor distances. Because of this structure conjugation through the spacer is increased, whereas the absorption in the visible and near UV

  12. Tunable photophysical processes of porphyrin macrocycles on the surface of ZnO nanoparticles

    KAUST Repository

    Parida, Manas R.

    2015-01-23

    We investigated the impact of the molecular structure of cationic porphyrins on the degree of electrostatic interactions with zinc oxide nanoparticles (ZnO NPs) using steady-state and time-resolved fluorescence and transient absorption spectroscopy. Our results demonstrate that the number of cationic pyridinium units has a crucial impact on the photophysics of the porphyrin macrocycle. Fluorescence enhancement, relative to initial free porphyrin fluorescence, was found to be tuned from 3.4 to 1.3 times higher by reducing the number of cationic substituents on the porphyrin from 4 to 2. The resulting enhancement of the intensity of the fluorescence is attributed to the decrease in the intramolecular charge transfer (ICT) character between the porphyrin cavity and its meso substituent. The novel findings reported in this work provide an understanding of the key variables involved in nanoassembly, paving the way toward optimizing the interfacial chemistry of porphyrin-ZnO NP assembly for photodynamic therapy and energy conversion.

  13. Substituted group and side chain effects for the porphyrin and zinc(II)–porphyrin derivatives: A DFT and TD-DFT study

    International Nuclear Information System (INIS)

    Tai, Chin-Kuen; Chuang, Wen-Hua; Wang, Bo-Cheng

    2013-01-01

    The DFT/B3LYP/LANL2DZ and TD-DFT calculations have been performed to generate the optimized structures, electronic and photo-physical properties for the porphyrin and zinc(II)–porphyrin (metalloporphyrin) derivatives. The substituted group and side chain effects for these derivatives are discussed in this study. According to the calculation results, the side chain moiety extends the π-delocalization length from the porphyrin core to the side chain moiety. The substituted group with a stronger electron-donating ability increases the energy level of highest occupied molecular orbital (E HOMO ). The side chain moiety with a lower resonance energy decreases E HOMO , the energy level of the lowest unoccupied molecular orbital (E LUMO ), and the energy gap (E g ) between HOMO and LUMO in the porphyrin and zinc(II)–porphyrin derivatives. The natural bonding orbital (NBO) analysis determines the possible electron transfer mechanism from the electron-donating to -withdrawing groups (the side chain moiety) in these porphyrin derivatives. The projected density of state (PDOS) analysis shows that the electron-donating group affects the electron density distribution in both HOMO and LUMO, and the side chain moiety influence the electron density distribution in LUMO. The calculated photo-physical properties (absorption wavelengths and the related oscillator strength, f) in dichloromethane environment for porphyrin and zinc(II)–porphyrin derivatives have been simulated by using the TD-DFT method within the Polarizable Continuum Model (PCM). The present of both of the substituted group and the side chain moiety in these derivatives results in a red shift and broadening of the range of the absorption peaks of the Q/Soret band as compared to porphin. -- Highlights: • Side chain moiety extends the π-delocalization for the porphyrins. • Substituted group increases the energy of highest occupied molecular orbital. • Side chain moiety influences the Q/Soret band of

  14. Boron atom reactions

    International Nuclear Information System (INIS)

    Estes, R.; Tabacco, M.B.; Digiuseppe, T.G.; Davidovits, P.

    1982-01-01

    The reaction rates of atomic boron with various epoxides have been measured in a flow tube apparatus. The bimolecular rate constants, in units of cm 3 molecule -1 s -1 , are: 1,2-epoxypropane (8.6 x 10 -11 ), 1,2-epoxybutane (8.8 x 10 -11 ), 1,2,3,4-diepoxybutane (5.5 x 10 -11 ), 1-chloro-2,3-epoxypropane (5.7 x 10 -11 ), and 1,2-epoxy-3,3,3-trichloropropane (1.5 x 10 -11 ). (orig.)

  15. Singlet oxygen: photosensitized generation, detection and reaction with organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Barik, Atanu; Indira Priyadarsini, K; Mohan, Hari; Bajaj, P N; Sapre, A V; Mittal, J P; Mukherjee, T [Radiation and Photochemistry Div., Bhabha Atomic Research Centre, Mumbai (India)

    2006-10-15

    Singlet molecular oxygen ({sup 1}O{sub 2}) is an excited state of molecular oxygen, having antiparallel spin in the same {pi} antibonding orbital. The study of singlet oxygen production and reactivity has emerged as a rich and diverse area, with implication in diverse fields, such as synthetic chemistry, polymer chemistry, photodynamic therapy, etc. There are several known methods to produce singlet oxygen, and also various techniques employed to detect it. Out of these, photosensitization method is the most popular one. In this article, photosensitized production of singlet oxygen from triplet oxygen and photosensitizers in presence of light, and its detection by the infrared luminescence at 1270 nm have been presented. Further, some results using different types of photosensitizers, effect of solvent on singlet oxygen quantum yields and lifetime have been discussed. The quenching rate constants of singlet oxygen have been determined with different types of organic molecules such as derivatives of thiourea and its analogues, hydroxy indoles and antioxidants and the results have been presented. (author)

  16. Singlet oxygen: photosensitized generation, detection and reaction with organic molecules

    International Nuclear Information System (INIS)

    Barik, Atanu; Indira Priyadarsini, K.; Hari Mohan; Bajaj, P.N.; Sapre, A.V.; Mittal, J.P.; Mukherjee, T.

    2006-10-01

    Singlet molecular oxygen ( 1 O 2 ) is an excited state of molecular oxygen, having antiparallel spin in the same π antibonding orbital. The study of singlet oxygen production and reactivity has emerged as a rich and diverse area, with implication in diverse fields, such as synthetic chemistry, polymer chemistry, photodynamic therapy, etc. There are several known methods to produce singlet oxygen, and also various techniques employed to detect it. Out of these, photosensitization method is the most popular one. In this article, photosensitized production of singlet oxygen from triplet oxygen and photosensitizers in presence of light, and its detection by the infrared luminescence at 1270 nm have been presented. Further, some results using different types of photosensitizers, effect of solvent on singlet oxygen quantum yields and lifetime have been discussed. The quenching rate constants of singlet oxygen have been determined with different types of organic molecules such as derivatives of thiourea and its analogues, hydroxy indoles and antioxidants and the results have been presented. (author)

  17. Drug-delivery and multifunction possibilities of hypocrellin photosensitizers

    Directory of Open Access Journals (Sweden)

    Hong Deng

    2015-01-01

    Full Text Available Photodynamic therapy (PDT has been a routine treatment of tumors and some microvascular diseases, but clinically available photosensitizers are still scarce. Among all kinds of photosensitizers, hypocrellins possess the most characteristics of ideal photosensitizers, such as, high photo-activity but low dark toxicity, fast clearance from tissues. This review is focused on two main topics, drug-delivery problem of hypocrellins and how the environment-sensitive fluorescence of hypocrellins was used for recognition of various biomolecules. Drug-delivery of hypocrellins was mainly achieved in two strategies — preparing the drug-delivery vehicles and finding quantitatively amphiphilic derivatives. Hypocrellin fluorescence originated from the intramolecular proton transfer is very distinct from other kinds of photosensitizers. Recently, it was proved that quantitative hypocrellin fluorescence could not only recognize various biomolecules, including proteins, polysaccharides and lipids, but also distinguish the specific binding from nonspecific binding with some kind of biomolecules. Meantime, hypocrellin fluorescence was pH-sensitive. It is known that tumor cells or tissues have the features of a large amount of lipid, neonatal collagen, over-expression of polysaccharides, and lower pH values compared to normal tissues. According to the relative but not absolute specificity, further studies on quantitative recognition of various biomolecules at a cellular level, may find a new clue to treat tumors by joint usage of photodynamic diagnosis (PDD and PDT.

  18. Photosensitive N channel MOSFET device on silicon on sapphire substrate

    International Nuclear Information System (INIS)

    Le Goascoz, V.; Borel, J.

    1975-01-01

    An anomalous behavior of the N channel output current characteristic in a SOS MOSFET with a floating bulk is described. Such a phenomenon can be used in a photosensitive device with internal gain. Such devices can be used on SOS substrates to achieve integrated circuits with high insulating voltages and data transmission by optical means [fr

  19. DFT application for chlorin derivatives photosensitizer drugs modeling

    Science.gov (United States)

    Machado, Neila; Carvalho, B. G.; Téllez Soto, C. A.; Martin, A. A.; Favero, P. P.

    2018-04-01

    Photodynamic therapy is an alternative form of cancer treatment that meets the desire for a less aggressive approach to the body. It is based on the interaction between a photosensitizer, activating light, and molecular oxygen. This interaction results in a cascade of reactions that leads to localized cell death. Many studies have been conducted to discover an ideal photosensitizer, which aggregates all the desirable characteristics of a potent cell killer and generates minimal side effects. Using Density Functional Theory (DFT) implemented in the program Vienna Ab-initio Simulation Package, new chlorin derivatives with different functional groups were simulated to evaluate the different absorption wavelengths to permit resonant absorption with the incident laser. Gaussian 09 program was used to determine vibrational wave numbers and Natural Bond Orbitals. The chosen drug with the best characteristics for the photosensitizer was a modified model of the original chlorin, which was called as Thiol chlorin. According to our calculations it is stable and is 19.6% more efficient at optical absorption in 708 nm in comparison to the conventional chlorin e6. Vibrational modes, optical and electronic properties were predicted. In conclusion, this study is an attempt to improve the development of new photosensitizer drugs through computational methods that save time and contribute to decrease the numbers of animals for model application.

  20. Photochemical events during photosensitization of colloidal ZnO ...

    Indian Academy of Sciences (India)

    The photosensitization of colloidal ZnO nanoparticles with riboflavin (RF) was investigated using absorption, fluorescence spectroscopic measurements and time resolved fluorescence measurements. Riboflavin adsorbed strongly on the surface of ZnO nanoparticles. Apparent association constant was obtained from the ...

  1. Solid state photosensitive devices which employ isolated photosynthetic complexes

    Science.gov (United States)

    Peumans, Peter; Forrest, Stephen R.

    2009-09-22

    Solid state photosensitive devices including photovoltaic devices are provided which comprise a first electrode and a second electrode in superposed relation; and at least one isolated Light Harvesting Complex (LHC) between the electrodes. Preferred photosensitive devices comprise an electron transport layer formed of a first photoconductive organic semiconductor material, adjacent to the LHC, disposed between the first electrode and the LHC; and a hole transport layer formed of a second photoconductive organic semiconductor material, adjacent to the LHC, disposed between the second electrode and the LHC. Solid state photosensitive devices of the present invention may comprise at least one additional layer of photoconductive organic semiconductor material disposed between the first electrode and the electron transport layer; and at least one additional layer of photoconductive organic semiconductor material, disposed between the second electrode and the hole transport layer. Methods of generating photocurrent are provided which comprise exposing a photovoltaic device of the present invention to light. Electronic devices are provided which comprise a solid state photosensitive device of the present invention.

  2. Development of proportional counters using photosensitive gases and liquids

    International Nuclear Information System (INIS)

    Anderson, D.F.

    1984-10-01

    An introduction to the history and to the principle of operation of wire chambers using photosensitive gases and liquids is presented. Their use as light sensors coupled to Gas Scintillation Proportional Counters and BaF 2 , as well as their use in Cherenkov Ring imaging, is discussed in some detail. 42 references, 21 figures

  3. Photosensitivity and double vision as initial symptoms of colon cancer

    DEFF Research Database (Denmark)

    Rasmussen, René; Laursen, Christian Borbjerg; Graumann, Ole

    2015-01-01

    A 75-year-old man suffering from rheumatoid arthritis, myxoedema and type II diabetes mellitus, presented with occasional double vision and photosensitivity. The patient underwent an MRI of the brain showing a tumour located in the right of the sphenoid bone. A subsequent diagnostic CT scan of th...

  4. Local Electric Field Effects on Rhodium-Porphyrin and NHC-Gold Catalysts

    Science.gov (United States)

    2015-01-05

    AFRL-OSR-VA-TR-2015-0023 (NII) - Local Electric Field Effects on Rhodium -Porphyrin and NHC-Gold Catalysts MATTHEW KANAN LELAND STANFORD JUNIOR UNIV...Effects on Rhodium -Porphyrin and NHC-Gold Catalysts Principal Investigator: Matthew W. Kanan Project Publications: 1. “An Electric Field–Induced Change...Stanford University Grant/Contract Title The full title of the funded effort. (NII)-Local Electric Field Effects on Rhodium -Porphyrin and NHC-Gold

  5. Dye linked conjugated homopolymers: using conjugated polymer electroluminescence to optically pump porphyrin-dye emission

    DEFF Research Database (Denmark)

    Nielsen, K.T.; Spanggaard, H.; Krebs, Frederik C

    2004-01-01

    . Electroluminescent devices of the homopolymer itself and of the zinc-porphyrin containing polymer were prepared and the nature of the electroluminescence was characterized. The homopolymer segments were found to optically pump the emission of the zinc-porphyrin dye moities. The homopolymer exhibits blue......Zinc-porphyrin dye molecules were incorporated into the backbone of a conjugated polymer material by a method, which allowed for the incorporation of only one zinc-porphyrin dye molecule into the backbone of each conjugated polymer molecule. The electronic properties of the homopolymer were...

  6. Peripherally Metalated Porphyrins with Applications in Catalysis, Molecular Electronics and Biomedicine.

    Science.gov (United States)

    Longevial, Jean-François; Clément, Sébastien; Wytko, Jennifer A; Ruppert, Romain; Weiss, Jean; Richeter, Sébastien

    2018-04-24

    Porphyrins are conjugated, stable chromophores with a central core that binds a variety of metal ions and an easily functionalized peripheral framework. By combining the catalytic, electronic or cytotoxic properties of selected transition metal complexes with the binding and electronic properties of porphyrins, enhanced characteristics of the ensemble are generated. This review article focuses on porphyrins bearing one or more peripheral transition metal complexes and discusses their potential applications in catalysis or biomedicine. Modulation of the electronic properties and intramolecular communication through coordination bond linkages in bis-porphyrin scaffolds is also presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evaluation of carboranylporphyrins as boron delivery agents for neutron capture therapy

    International Nuclear Information System (INIS)

    Kawabata, Shinji; Barth, Rolf F.; Yang, Weilian; Wu, Gong; Binns, Peter J.; Riley, Kent J.; Ongayi, Owendi; Gottumukkala, Vijay; Vicente, Graca H.

    2006-01-01

    The goals of the present study were two-fold. First, to determine the biodistribution of three carboranyl-porphyrins, designated H 2 DCP, H 2 TCP and H 2 TBP following intracerebral (i.c.) administration by means of convection enhanced delivery (CED) to F98 glioma bearing rats. Tumor boron concentrations immediately after CED were 36 and 88 μg/g for H 2 DCP and H 2 TCP, respectively, and were 103 and 62 μg/g for H 2 TCP and H 2 TBP, respectively, 24h after termination of CED. The corresponding normal brain concentrations were 5.2, 3.3 and 0.8 μg/g, and blood and liver concentrations all were 2 TCP and H 2 TBP as boron delivery agents in F98 glioma bearing rats. BNCT was carried out at the Massachusetts Institute of Technology (MIT) Research Reactor (MITRR) 24 h after CED of 200 μl of either 0.5 mg of H 2 TCP or H 2 TBP. Untreated control rats all died within 29 days after tumor implantation and had a mean survival time (MST) of 23±3 days and irradiated controls had a MST of 27±3 days. Animals that received H 2 TCP by CED, followed by BNCT, had a MST of 35±4 days and animals received H 2 TBP had a MST of 44±10 days. Further studies were carried out using H 2 TBP at a dose of 0.2 mg administered by a Harvard pump, either alone or in combination with i.v. BPA, and the corresponding MSTs were 34±3 d and 43±9 d, respectively. Histopathologic examination of the brains of animals that died revealed large numbers of porphyrin laden macrophages and extracellular accumulations of free porphyrin indicating that tumor cell uptake was suboptimal. Further studies are planned to synthesize and evaluate new compounds that will have enhanced cellular uptake and efficacy as boron delivery agents for NCT. (author)

  8. Characterization of functionalised porphyrin films using synchrotron radiation

    International Nuclear Information System (INIS)

    Arima, V.; Matino, F.; Thompson, J.; Del Sole, R.; Mele, G.; Vasapollo, G.; Cingolani, R.; Rinaldi, R.; Blyth, R.I.R.

    2005-01-01

    Porphyrins and C 60 are strategic materials for the fabrication of nanoscale molecular devices by virtue of their optical, photo-electro-chemical and chemical properties. We have developed procedures to immobilise cobalt tetra-butyl-phenyl porphyrins (CoTBPPs) on gold surfaces via ligation to self-assembled monolayers of aromatic aminothiophenols (4-ATP). We have used synchrotron radiation photoemission and near-edge X-ray absorption, NEXAFS, to characterise such films, both in their native state, and with ligated fulleropyrrolidines N-methyl-2-(p-pyridyl)-3,4-fulleropyrrolidine (Py-C 60 ), forming charge-separation complexes which may have applications in solar cells. While photoemission spectra appear dominated by the individual CoTBPP and Py-C 60 components, we observe an apparent signature of charge separation in fulleropyrrolidine NEXAFS spectra

  9. Enhanced solar energy collection in porphyrin based photoconversion schemes

    Science.gov (United States)

    Gust, D.; Moore, T. A.

    1983-02-01

    A series of carotenoporphyrins whose conformations varied from folded (with the carotenoid (PI)-electron system stacked over that of the porphyrin) to extended (with the two chromophores widely separated) were studied. The conformations were determined by high resolution proton NMR studies. Laser flash spectroscopy revealed triplet energy transfer from porphyrin to carotenoid. Three distinct pathways for such transfer were discovered: (1) static through space transfer which does not require significant intramolecular motions; (2) dynamic through space transfer mediated by intramolecular motions; (3) triplet transfer mediated by the chemical bonds joining the chromophores. pulse radiolysis and fluorescence quenching of these ethers and related carotenoporphyrins revealed electron transfer in the systems. It is demonstrated that the natural carotenoid functions of photoprotection from singlet oxygen damage and antenna function can be mimicked by synthetic molecules, and therefore, in principle can be applied to artificial solar energy conversion systems.

  10. Characterization of functionalised porphyrin films using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Arima, V. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce Via Arnesano, 73100 Lecce (Italy)]. E-mail: valentina.arima@unile.it; Matino, F. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce Via Arnesano, 73100 Lecce (Italy); Thompson, J. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce Via Arnesano, 73100 Lecce (Italy); Del Sole, R. [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy); Mele, G. [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy); Vasapollo, G. [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy); Cingolani, R. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce Via Arnesano, 73100 Lecce (Italy); Rinaldi, R. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce Via Arnesano, 73100 Lecce (Italy); Blyth, R.I.R. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce Via Arnesano, 73100 Lecce (Italy)

    2005-07-30

    Porphyrins and C{sub 60} are strategic materials for the fabrication of nanoscale molecular devices by virtue of their optical, photo-electro-chemical and chemical properties. We have developed procedures to immobilise cobalt tetra-butyl-phenyl porphyrins (CoTBPPs) on gold surfaces via ligation to self-assembled monolayers of aromatic aminothiophenols (4-ATP). We have used synchrotron radiation photoemission and near-edge X-ray absorption, NEXAFS, to characterise such films, both in their native state, and with ligated fulleropyrrolidines N-methyl-2-(p-pyridyl)-3,4-fulleropyrrolidine (Py-C{sub 60}), forming charge-separation complexes which may have applications in solar cells. While photoemission spectra appear dominated by the individual CoTBPP and Py-C{sub 60} components, we observe an apparent signature of charge separation in fulleropyrrolidine NEXAFS spectra.

  11. Synthesis and anion binding properties of porphyrins and related compounds

    KAUST Repository

    Figueira, Flávio

    2016-12-02

    Over the last two decades the preparation of pyrrole-based receptors for anion recognition has attracted considerable attention. In this regard porphyrins, phthalocyanines and expanded porphyrins have been used as strong and selective receptors while the combination of those with different techniques and materials can boost their applicability in different applications as chemosensors and extracting systems. Improvements in the field, including the synthesis of this kind of compounds, can contribute to the development of efficient, cheap, and easy-to-prepare anion receptors. Extensive efforts have been made to improve the affinity and selectivity of these compounds and the continuous expansion of related research makes this chemistry even more promising. In this review, we summarize the most recent developments in anion binding studies while outlining the strategies that may be used to synthesize and functionalize these type of macrocycles. © 2016 World Scientific Publishing Company.

  12. Facile Preparation of Hybrid Zinc Porphyrin Dendrimer Using Coordination Complex

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Go-Eun; Shin, Eun Ju [Sunchon National University, Suncheon (Korea, Republic of)

    2016-03-15

    Porphyrins and metalloporphyrins have been investigated extensively due to their important role in natural photosynthesis, strong absorption in visible region, good light-harvesting properties, unique photophysical and electrochemical properties, and the development of simple synthetic routes for various derivatives. Dendrimers have globular structure with branches of repeating units and wide diversity of the architecture because their size, shape, and functionalities can be tailored. Numerous dendrimers have been designed and synthesized for various applications ranging from catalyst to drug delivery. Both pyridine dendrons Py-PD and Py-AD were successfully coordinated at axial position on central zinc metal cation in zinc porphyrin dendrimers ZnP-AD, ZnP-AD2, or ZnP-AD4. Therefore, it was proven that the formation of axial coordination complex between metal-centered dendrimer and ligand-containing dendron provides another facile method for the preparation of new hybrid dendrimer.

  13. Synthesis and Spectroscopic Characterization of Two Tetrasubstituted Cationic Porphyrin Derivatives

    Directory of Open Access Journals (Sweden)

    Newton M. Barbosa Neto

    2011-07-01

    Full Text Available An imidazolium tetrasubstituted cationic porphyrin derivative (the free base and its Zn(II complex with five-membered heterocyclic groups in the meso-positions were synthesized using microwave irradiation, and the compounds obtained characterized by 1H-NMR and mass spectrometry. We observed that under microwave irradiation the yield is similar to when the synthesis is performed under conventional heating, however, the time required to prepare the porphyrins decreases enormously. In order to investigate the electronic state of these compounds, we employed UV-Vis and fluorescence spectroscopy combined with quantum chemical calculations. The results reveal the presence, in both compounds, of a large number of electronic states involving the association between the Soret and a blue-shifted band. The Soret band in both compounds also shows a considerable solvent dependence. As for emission, these compounds present low quantum yield at room temperature and no solvent influence on the fluorescence spectra was observed.

  14. Emulating porphyrins with a rippled multivacancy graphene system

    Science.gov (United States)

    Mombrú, Dominique; Faccio, Ricardo; Mombrú, Alvaro W.

    2018-04-01

    The interaction between a complex porphyrin-like system formed by an iron atom and multivacant graphene layer and O2, CO and CO2 molecules is studied, using Density Functional Theory (DFT) calculations. The multivacancy graphene system used for this study, consists in the removal of a 1,4-dimethybenzene-like moiety, in a 6 × 6 supercell. This removal and the structural optimization subsequently performed, yield to a biaxial vacancy, where the location of an iron atom embedded in it, lead to a system with resemblance to iron-porphyrin systems. This similar structure could be used to form complexes where gas molecules are allowed to interact with these iron-octavacant graphene systems. The study focuses on the structure of the system and the net magnetic moment for different gas molecules: O2, CO2 and CO. Rippling in the vacant graphene is enhanced through this interaction.

  15. Supramolecular Ferric Porphyrins as Cyanide Receptors in Aqueous Solution

    Science.gov (United States)

    2011-01-01

    All fundamental data about binding of the cyanide to a supramolecular complex composed of a per-O-methylated β-cyclodextrin dimer having an imidazole linker (Im3CD) and an anionic ferric porphyrin (Fe(III)TPPS) indicate that the Fe(III)TPPS/Im3CD complex is much better as an cyanide receptor in vivo than hydroxocobalamin, whose cyanide binding ability is lowered by its strong binding to serum proteins in the blood. PMID:24900285

  16. Photoinduced electron transfer within porphyrin-cyclodextrin conjugates

    Czech Academy of Sciences Publication Activity Database

    Lang, Kamil; Král, V.; Kapusta, P.; Kubát, Pavel; Vašek, P.

    2002-01-01

    Roč. 43, - (2002), s. 4919-4922 ISSN 0040-4039 R&D Projects: GA ČR GA203/99/1163; GA ČR GA203/01/0634; GA ČR GA203/02/1483 Institutional research plan: CEZ:AV0Z4032918 Keywords : porphyrin-cyclodextrin * chiral aggregate * quenching Subject RIV: CA - Inorganic Chemistry Impact factor: 2.357, year: 2002

  17. Chemistry of supramolecular systems containing porphyrins and metal complexes

    OpenAIRE

    Araki, Koiti; Toma, Henrique Eisi

    2002-01-01

    Supramolecular chemistry is expected to keep a high developing pace in the next years, giving support to the advancement of molecular devices and nanotechnology. In this sense, porphyrins and their analogues should play a significant role as a consequence of their catalytic, electrocatalytic, photochemical and photoelectrochemical properties. In this review we focused on our own strategy based on coordination chemistry for the design and build-up of supermolecules and supramolecular structure...

  18. Separation process for boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, S D

    1975-06-12

    The method according to the invention is characterized by the steps of preparing a gaseous mixture of BCl/sub 3/ containing the isotopes of boron and oxygen as the extractor, irradiating that mixture in the tube of the separator device by means of P- or R-lines of a CO/sub 2/ laser for exciting the molecules containing a given isotope of boron, simultaneously irradiating the mixture with UV for photodissociating the excited BCl/sub 3/ molecules and separating BCl/sub 3/ from the reaction products of photodissociation and from oxygen. Such method is suitable for preparing boron used in nuclear reactors.

  19. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    Vast, N.

    1999-01-01

    The atomic structure and the lattice dynamics of α boron and of B 4 C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B 4 C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  20. Porphyrin doped vanadium pentoxide xerogel as electrode material

    Energy Technology Data Exchange (ETDEWEB)

    Anaissi, F.J.; Engelmann, F.M.; Araki, K.; Toma, H.E. [Sao Paulo Univ., SP (Brazil). Inst. de Quimica

    2003-04-01

    The lamellar composite material, VXG-TMPyP, obtained from the combination of cationic, water-soluble meso-(tetra-4-methyl-pyridinium)porphyrin (TMPyP) and vanadium pentoxide gel was investigated and employed as electrode modifying material. This material was isolated as a xerogel and characterized by X-ray diffraction, UV-Vis spectroscopy, cyclic voltammetry, spectro-electrochemistry and TG analysis. According to the X-ray diffraction data, the original VXG lamellar matrix framework is kept in the composite, evidencing a topotatic reaction. UV-Vis spectra indicated a strong interaction between VXG and TMPyP leading to the protonation of the porphyrin ring. In contrast with the vanadium oxide xerogel the new material is stable in water. The presence of the cationic porphyrin species in its structure turns it able to incorporate negatively charged ions, such as ferrocyanide and I{sup -}. The presence of the I{sub 2}/I{sup -} couple gives rise to a dramatic increase in the reversibility of the V{sup V/IV} process and in the charge capacity of the material. (authors)

  1. Nothing Boring About Boron

    Science.gov (United States)

    Pizzorno, Lara

    2015-01-01

    The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and as recent research suggests, possibly for the evolution of life on Earth. As the current article shows, boron has been proven to be an important trace mineral because it (1) is essential for the growth and maintenance of bone; (2) greatly improves wound healing; (3) beneficially impacts the body’s use of estrogen, testosterone, and vitamin D; (4) boosts magnesium absorption; (5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α); (6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase; (7) protects against pesticide-induced oxidative stress and heavy-metal toxicity; (8) improves the brains electrical activity, cognitive performance, and short-term memory for elders; (9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD+); (10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin’s lymphoma; and (11) may help ameliorate the adverse effects of traditional chemotherapeutic agents. In none of the numerous studies conducted to date, however, do boron’s beneficial effects appear at intakes > 3 mg/d. No estimated average requirements (EARs) or dietary reference intakes (DRIs) have been set for boron—only an upper intake level (UL) of 20 mg/d for individuals aged ≥ 18 y. The absence of studies showing harm in conjunction with the substantial number of articles showing benefits support the consideration of boron supplementation of 3 mg/d for any individual who is consuming a diet lacking in fruits and vegetables or who is at risk for or has osteopenia; osteoporosis

  2. HAEM SYNTHASE AND COBALT PORPHYRIN SYNTHASE IN VARIOUS MICRO-ORGANISMS.

    Science.gov (United States)

    PORRA, R J; ROSS, B D

    1965-03-01

    1. The preparation of a crude extract of Clostridium tetanomorphum containing cobalt porphyrin synthase but little haem-synthase activity is described. 2. The properties of cobalt porphyrin synthase in the clostridial extracts is compared with the properties of a haem synthase present in crude extracts of the yeast Torulopsis utilis. 3. Cobalt porphyrin synthase in extracts of C. tetanomorphum inserts Co(2+) ions into the following dicarboxylic porphyrins in descending order of rate of insertion: meso-, deutero- and proto-porphyrins. Esterification renders meso- and deutero-porphyrins inactive as substrates. Neither the tetracarboxylic (coproporphyrin III) nor the octacarboxylic (uroporphyrin III) compounds are converted into cobalt porphyrins by the extract, but the non-enzymic incorporation of Co(2+) ions into these two porphyrins is rapid. These extracts are unable to insert Mn(2+), Zn(2+), Mg(2+) or Cu(2+) ions into mesoporphyrin. 4. Crude extracts of T. utilis readily insert both Co(2+) and Fe(2+) ions into deutero-, meso, and proto-porphyrins. Unlike the extracts of C. tetanomorphum, these preparations catalyse the insertion of Co(2+) ions into deuteroporphyrin more rapidly than into mesoporphyrin. This parallels the formation of haems by the T. utilis extract. 5. Cobalt porphyrin synthase is present in the particulate fraction of the extracts of C. tetanomorphum but requires a heat-stable factor present in the soluble fraction. This soluble factor can be replaced by GSH. 6. Cobalt porphyrin synthase in the clostridial extract is inhibited by iodoacetamide and to a smaller extent by p-chloromercuribenzoate and N-ethylmaleimide. The haem synthases of T. utilis and Micrococcus denitrificans are also inhibited by various thiol reagents.

  3. Efficient sensitization of dye-sensitized solar cells by novel triazine-bridged porphyrin-porphyrin dyads.

    Science.gov (United States)

    Zervaki, Galateia E; Roy, Mahesh S; Panda, Manas K; Angaridis, Panagiotis A; Chrissos, Emmanouel; Sharma, Ganesh D; Coutsolelos, Athanassios G

    2013-09-03

    Two novel porphyrin-porphyrin dyads, the symmetrical Zn[Porph]-Zn[Porph] (2) and unsymmetrical Zn[Porph]-H2[Porph] (4), where Zn[Porph] and H2[Porph] are the metalated and free-base forms of 5-(4-aminophenyl)-10,15,20-triphenylporphyrin, respectively, in which two porphyrin units are covalently bridged by 1,3,5-triazine, have been synthesized via the stepwise amination of cyanuric chloride. The dyads are also functionalized by a terminal carboxylic acid group of a glycine moiety attached to the triazine group. Photophysical measurements of 2 and 4 showed broaden and strengthened absorptions in their visible spectra, while electrochemistry experiments and density functional theory calculations revealed negligible interaction between the two porphyrin units in their ground states but appropriate frontier orbital energy levels for use in dye-sensitized solar cells (DSSCs). The 2- and 4-based solar cells have been fabricated and found to exhibit power conversion efficiencies (PCEs) of 3.61% and 4.46%, respectively (under an illumination intensity of 100 mW/cm(2) with TiO2 films of 10 μm thickness). The higher PCE value of the 4-based DSSC, as revealed by photovoltaic measurements (J-V curves) and incident photon-to-current conversion efficiency (IPCE) spectra of the two cells, is attributed to its enhanced short-circuit current (J(sc)) under illumination, high open-circuit voltage (V(oc)), and fill factor (FF) values. Electrochemical impedance spectra demonstrated shorter electron-transport time (τd), longer electron lifetime (τe), and high charge recombination resistance for the 4-based cell, as well as larger dye loading onto TiO2.

  4. Boronization in TEXTOR

    International Nuclear Information System (INIS)

    Winter, J.; Esser, H.G.; Koenen, L.; Reimer, H.; Seggern, J. v.; Schlueter, J.; Waelbroeck, F.; Wienhold, P.; Veprek, S.

    1989-01-01

    The liner and limiters of TEXTOR have been coated in situ with a boron containing carbon film using a RG discharge in a throughflow of 0.8 He + 0.1 B 2 H 6 + 0.1 CH 4 . The average film thickness was 30-50 nm, the ratio of boron and carbon in the layer was about 1:1 according to Auger Electron Spectroscopy. Subsequent tokamak discharges are characterized by a small fraction of radiated power ( eff lower than 1.2 are derived from conductivity measurements. The most prominent change in the impurity concentration compared to good conditions in a carbonized surrounding is measured for oxygen. The value OVI/anti n e of the OVI intensity normalized to the averaged plasma density anti n e decreases by more than a factor of four. The decrease in the oxygen content manifests itself also as a reduction of the CO and CO 2 partial pressures measured during and after the discharge with a sniffer probe. The carbon levels are reduced by a factor of about two as measured by the normalized intensity CII/anti n e of the CII line and via the ratio of the C fluxes and deuterium fluxed measured at the limiter (CI/D α ). The wall shows a pronounced sorption of hydrogen from the plasma, easing the density control and the establishment of low recycling conditions. The beneficial conditions did not show a significant deterioration during more than 200 discharges, including numerous shots at ICRH power levels >2 MW. (orig.)

  5. Note on boron toxicity in oats

    Energy Technology Data Exchange (ETDEWEB)

    Langille, W M; Mahoney, J F

    1959-01-01

    Boron was applied at the rate of 35 pounds per acre of borax to a field of oats. With the first noticeable growth there appeared a definite chlorotic condition of the oat seedlings on plots receiving boron treatments. Analysis of chlorotic tissue at 3 weeks after seeding indicated 110 ppm boron, while apparently healthy tissue contained 6.1 ppm boron at the same stage of growth. There was a rapid decline in the boron content of the oat tissue as the crop grew older. At maturity the oat tissue from the boron-treated plots contained an average of 14.15 ppm boron as compared with 4.10 boron from untreated areas. Boron toxicity had no harmful effect so far as yields were concerned, under the conditions of this experiment. 3 references.

  6. Method for producing polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Alexeevskii, V.P.; Bochko, A.V.; Dzhamarov, S.S.; Karpinos, D.M.; Karyuk, G.G.; Kolomiets, I.P.; Kurdyumov, A.V.; Pivovarov, M.S.; Frantsevich, I.N.; Yarosh, V.V.

    1975-01-01

    A mixture containing less than 50 percent of graphite-like boron nitride treated by a shock wave and highly defective wurtzite-like boron nitride obtained by a shock-wave method is compressed and heated at pressure and temperature values corresponding to the region of the phase diagram for boron nitride defined by the graphite-like compact modifications of boron nitride equilibrium line and the cubic wurtzite-like boron nitride equilibrium line. The resulting crystals of boron nitride exhibit a structure of wurtzite-like boron nitride or of both wurtzite-like and cubic boron nitride. The resulting material exhibits higher plasticity as compared with polycrystalline cubic boron nitride. Tools made of this compact polycrystalline material have a longer service life under impact loads in machining hardened steel and chilled iron. (U.S.)

  7. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  8. Chlorin photosensitizers sterically designed to prevent self-aggregation.

    Science.gov (United States)

    Uchoa, Adjaci F; de Oliveira, Kleber T; Baptista, Mauricio S; Bortoluzzi, Adailton J; Iamamoto, Yassuko; Serra, Osvaldo A

    2011-11-04

    The synthesis and photophysical evaluation of new chlorin derivatives are described. The Diels-Alder reaction between protoporphyrin IX dimethyl ester and substituted maleimides furnishes endo-adducts that completely prevent the self-aggregation of the chlorins. Fluorescence, resonant light scattering (RLS) and (1)H NMR experiments, as well as X-ray crystallographic have demonstrated that the configurational arrangement of the synthesized chlorins prevent π-stacking interactions between macrocycles, thus indicating that it is a nonaggregating photosensitizer with high singlet oxygen (Φ(Δ)) and fluorescence (Φ(f)) quantum yields. Our results show that this type of synthetic strategy may provide the lead to a new generation of PDT photosensitizers.

  9. Photosensitization and phototherapy with furocoumarins: A quantum-chemical study

    International Nuclear Information System (INIS)

    Serrano-Perez, Juan Jose; Serrano-Andres, Luis; Merchan, Manuela

    2008-01-01

    The effect of electromagnetic radiation on biological objects extends from heating to complex photochemistry, and includes DNA alteration, that properly modified in damaged cells may entail beneficial effects. In this regard, psoralen + UV-A (PUVA) therapy, in which furocoumarins, psoralen-like chromophores, are used as photosensitizers and photoreactants with DNA bases, is one of the most promising strategies against a plethora of diseases. Understanding the underlying photochemical mechanisms is crucial to design effective drugs without undesired side effects. We have undertaken a quantum-mechanical study on the photophysics and photochemistry of furocoumarins, analyzing firstly the most efficient way in which the lowest excited triplet state, as protagonist of the photosensitizing action, is populated from the initially promoted singlet states, and secondly the basics of the formation of furocoumarin-DNA photoadducts

  10. A Fluorinated Cobalt(III) Porphyrin Complex for Hydroalkoxylation of Alkynes.

    Science.gov (United States)

    Ushimaru, Richiro; Nishimura, Takuho; Iwatsuki, Toshiki; Naka, Hiroshi

    2017-01-01

    A fluorinated cobalt(III) porphyrin complex [Co(TPFPP)NTf 2 ·2C 2 H 5 OH, where TPFPP=5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, Tf=CF 3 SO 2 ] promotes hydroalkoxylation of alkynes to give acetals in good to excellent yields. The acetals can be directly functionalized with nucleophiles in a one-pot procedure.

  11. Ultrafast electron injection at the cationic porphyrin-graphene interface assisted by molecular flattening

    KAUST Repository

    Aly, Shawkat Mohammede; Parida, Manas R.; Alarousu, Erkki; Mohammed, Omar F.

    2014-01-01

    The steady-state and femtosecond (fs) time-resolved data clearly demonstrate that the charge transfer (CT) process at the porphyrin-graphene carboxylate (GC) interfaces can be tuned from zero to very sufficient and ultrafast by changing the electronic structure of the meso unit and the redox properties of the porphyrin cavity. This journal is © the Partner Organisations 2014.

  12. To what extent can charge localization influence electron injection efficiency at graphene-porphyrin interfaces?

    KAUST Repository

    Parida, Manas R.

    2015-04-28

    Controlling the electron transfer process at donor- acceptor interfaces is a research direction that has not yet seen much progress. Here, with careful control of the charge localization on the porphyrin macrocycle using β -Cyclodextrin as an external cage, we are able to improve the electron injection efficiency from cationic porphyrin to graphene carboxylate by 120% . The detailed reaction mechanism is also discussed.

  13. Molecular modeling of cationic porphyrin-anthraquinone hybrids as DNA topoisomerase IIβ inhibitors.

    Science.gov (United States)

    Arba, Muhammad; Ruslin; Ihsan, Sunandar; Tri Wahyudi, Setyanto; Tjahjono, Daryono H

    2017-12-01

    Human DNA Topoisomerase II has been regarded as a promising target in anticancer drug discovery. In the present study, we designed six porphyrin-anthraquinone hybrids bearing pyrazole or pyridine group as meso substituents and evaluated their potentials as DNA Topoisomerase IIβ inhibitor. First, we investigated the binding orientation of porphyrin hybrids into DNA topoisomerase IIβ employing AutoDock 4.2 and then performed 20-ns molecular dynamics simulations to see the dynamic stability of each porphyrin-Topo IIβ complex using Amber 14. We found that the binding of porphyrin hybrids occured through intercalation and groove binding mode in addition interaction with the amino acid residues constituting the active cavity of Topo IIβ. Each porphyrin-Topo IIβ complex was stabilized during 20-ns dynamics simulations. The MM-PBSA free energy calculation shows that the binding affinities of porphyrin hybrids were modified with the number of meso substituent. Interestingly, the affinity of all porphyrin hybrids to Topo IIβ was stronger than that of native ligand (EVP), indicating the potential of the designed porphyrin to be considered in experimental research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Intrinsically photosensitive retinal ganglion cell function in relation to age

    DEFF Research Database (Denmark)

    Herbst, Kristina; Sander, Birgit; Lund-Andersen, Henrik

    2012-01-01

    The activity of melanopsin containing intrinsically photosensitive ganglion retinal cells (ipRGC) can be assessed by a means of pupil responses to bright blue (appr.480 nm) light. Due to age related factors in the eye, particularly, structural changes of the lens, less light reaches retina. The aim...... of this study was to examine how age and in vivo measured lens transmission of blue light might affect pupil light responses, in particular, mediated by the ipRGC....

  15. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  16. Extended rhodamine photosensitizers for photodynamic therapy of cancer cells.

    Science.gov (United States)

    Davies, Kellie S; Linder, Michelle K; Kryman, Mark W; Detty, Michael R

    2016-09-01

    Extended thio- and selenorhodamines with a linear or angular fused benzo group were prepared. The absorption maxima for these compounds fell between 640 and 700nm. The extended rhodamines were evaluated for their potential as photosensitizers for photodynamic therapy in Colo-26 cells. These compounds were examined for their photophysical properties (absorption, fluorescence, and ability to generate singlet oxygen), for their dark and phototoxicity toward Colo-26 cells, and for their co-localization with mitochondrial-specific agents in Colo-26 and HUT-78 cells. The angular extended rhodamines were effective photosensitizers toward Colo-26 cells with 1.0Jcm(-2) laser light delivered at λmax±2nm with values of EC50 of (2.8±0.4)×10(-7)M for sulfur-containing analogue 6-S and (6.4±0.4)×10(-8)M for selenium-containing analogue 6-Se. The linear extended rhodamines were effective photosensitizers toward Colo-26 cells with 5 and 10Jcm(-2) of broad-band light (EC50's⩽2.4×10(-7)M). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Improved combination of photosensitivity elements for use in radiography

    International Nuclear Information System (INIS)

    Doorselaer, M.K.

    1975-01-01

    It is stated that manufacturers of photosensitive elements incorporating silver halide emulsions for use in radiography are often faced with performance requirements that place conflicting demands on the composition of the photosensitive elements. Amongst such performance requirements are a minimum photographic speed, a short processing time, and a minimum standard of image density and resolution. With a view to achieving some degree of reconciliation between maximum optical image density requirements and economy in processing time, and in particular fixing time, it is advantageous to have the total silver halide content distributed in emulsion layers on opposite sides of the emulsion layer support. Such 'double sided' elements are usually exposed between two intensifying screens, that may be separate elements of integral parts of a single element that also incorporates the silver halide emulsion layers. During exposure of these 'double sided' elements light from one intensifying screen irradiates the adjacent emulsion layer and also that on the opposite side of the support; this is referred to as 'cross over'. Due to refraction and other light deflection processes within the photosensitive element this, however, impairs image definition. In commercial systems a relatively high concentration of siver halide is usually employed in order to obtain good contrast and maximum image density, but this adversely affects processing time. Instead of such high silver halide concentrations emulsions of small silver halide grain size may be used, but this lowers the photographic speed. Elements having properties that mitigate these difficulties are described, and examples of their application are given. (U.K.)

  18. Photopatch and UV-irradiated patch testing in photosensitive dermatitis

    Directory of Open Access Journals (Sweden)

    Reena Rai

    2016-01-01

    Full Text Available Background: The photopatch test is used to detect photoallergic reactions to various antigens such as sunscreens and drugs. Photosensitive dermatitis can be caused due to antigens like parthenium, fragrances, rubbers and metals. The photopatch test does not contain these antigens. Therefore, the Indian Standard Series (ISS along with the Standard photopatch series from Chemotechnique Diagnostics, Sweden was used to detect light induced antigens. Aim: To detect light induced antigens in patients with photosensitive dermatitis. Methods: This study was done in a descriptive, observer blinded manner. Photopatch test and ISS were applied in duplicate on the patient's back by the standard method. After 24 hours, readings were recorded according to ICDRG criteria. One side was closed and other side irradiated with 14 J/cm2 of UVA and a second set of readings were recorded after 48 hrs. Result: The highest positivity was obtained with parthenium, with 18 out of 35 (51% patients showing a positive patch test reaction with both photoallergic contact dermatitis and photoaggravation. Four patients (11% showed positive patch test reaction suggestive of contact dermatitis to potassium dichromate and fragrance mix. Six patients had contact dermatitis to numerous antigens such as nickel, cobalt, chinoform and para-phenylenediamine. None of these patients showed photoaggravation on patch testing. Conclusion: Parthenium was found to cause photoallergy, contact dermatitis with photoaggravation and contact allergy. Hence, photopatch test and UV irradiated patch test can be an important tool to detect light induced antigens in patients with photosensitive dermatitis.

  19. The (6-4) Dimeric Lesion as a DNA Photosensitizer.

    Science.gov (United States)

    Vendrell-Criado, Victoria; Rodríguez-Muñiz, Gemma M; Lhiaubet-Vallet, Virginie; Cuquerella, M Consuelo; Miranda, Miguel A

    2016-07-04

    Based on our previous investigations into the photophysical properties of the 5-methyl-2-pyrimidone (Pyo) chromophore, we now extend our studies to the photobehavior of the dimeric (6-4) thymine photoproducts (6-4 PP) to evaluate their capability to act as instrinsic DNA photosensitizers. The lesion presents significant absorption in the UVB/UVA region, weak fluorescence emission, a singlet-excited-state energy of approximately 351 kJ mol(-1) , and a triplet-excited-state energy of 297 kJ mol(-1) . Its triplet transient absorption has a maximum at 420-440 nm, a lifetime of around 7 μs, and a high formation quantum yield, ΦISC =0.86. This species is efficiently quenched by thymidine. Its DNA photosensitizing properties are demonstrated by a series of experiments run on a pBR322 plasmid. The lesion photoinduces both single-strand breaks and the formation of cyclobutane thymine dimers. Altogether, these results show that, the substitution of the pyrimidone ring at C4 by a 5-hydroxy-5,6-dihydrothymine does not cancel out the photosensitization properties of the chromophore. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Singlet Oxygen Detection Using Red Wine Extracts as Photosensitizers.

    Science.gov (United States)

    Lagunes, Irene; Vázquez-Ortega, Fernanda; Trigos, Ángel

    2017-09-01

    Moderate consumption of red wine provides beneficial effects to health. This is attributed to polyphenol compounds present in wine such as resveratrol, quercetin, gallic acid, rutin, and vanillic acid. The amount of these antioxidants is variable; nevertheless, the main beneficial effects of red wine are attributed to resveratrol. However, it has been found that resveratrol and quercetin are able to photosensitize singlet oxygen generation and conversely, gallic acid acts as quencher. Therefore, and since resveratrol and quercetin are some of the most important antioxidants reported in red wines, the aim of this research was to evaluate the photosensitizing ability of 12 red wine extracts through photo-oxidation of ergosterol. The presence of 1 O 2 was detected by ergosterol conversion into peroxide of ergosterol through 1 H NMR analysis. Our results showed that 10 wine extracts were able to act as photosensitizers in the generation of singlet oxygen. The presence of 1 O 2 can damage other compounds of red wine and cause possible organoleptic alterations. Finally, although the reaction conditions employed in this research do not resemble the inherent conditions in wine making processing or storing, or even during its consumption, this knowledge could be useful to prevent possible pro-oxidant effects and avoid detrimental effects in red wines. © 2017 Institute of Food Technologists®.

  1. Formation and thermodynamic stability of (polymer + porphyrin) supramolecular structures in aqueous solutions

    International Nuclear Information System (INIS)

    Costa, Viviana C.P. da; Hwang, Barrington J.; Eggen, Spencer E.; Wallace, Megan J.; Annunziata, Onofrio

    2014-01-01

    Highlights: • Thermodynamic stability of a (polymer + porphyrin) supramolecular structure was characterized. • Isothermal titration calorimetry provided two ways to determine reaction enthalpies. • Exothermic (polymer + porphyrin) binding competes with porphyrin self-association. • (Polymer + porphyrin) binding is entropically favored with respect to porphyrin self-association. • Spectral shifts show importance of porphyrin central hydrogens in polymer binding. - Abstract: Optical properties of porphyrins can be tuned through (polymer + porphyrin) (host + guest) binding in solution. This gives rise to the formation of supramolecular structures. In this paper, the formation, thermodynamic stability and spectroscopic properties of (polymer + porphyrin) supramolecular structures and their competition with porphyrin self-association were investigated by both isothermal titration calorimetry (ITC) and absorption spectroscopy. Specifically, reaction enthalpies and equilibrium constants were measured for meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS) self-association and TPPS binding to the polymer poly(vinylpyrrolidone) (PVP, 40 kg/mol) in aqueous solutions at pH 7 and three different temperatures (12, 25 and 37 °C). ITC, compared to spectroscopic techniques, provides two independent means to determine reaction enthalpies: direct measurements and Van’t Hoff plot. This was used as a criterion to assess that (1) self-association of TPPS is limited to the formation of dimers and (2) TPPS binds to PVP in its monomeric state only. The formation of TPPS dimers and (PVP + TPPS) supramolecular structures are both enthalpically driven. However, (polymer + porphyrin) binding was found to be entropically favored compared to dimerization. Furthermore, the reaction enthalpies of these two processes significantly depend on temperature. This behavior was attributed to hydrophobic interactions. Finally, the limiting absorption spectra of monomeric, dimeric and polymer

  2. Fusing porphyrins with polycyclic aromatic hydrocarbons and heterocycles for optoelectronic applications

    Science.gov (United States)

    Thompson, Mark E.; Diev, Viacheslav; Hanson, Kenneth; Forrest, Stephen R.

    2015-08-18

    A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: ##STR00001## By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,.beta. fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.

  3. Tracking of boron-labelled monoclonal antibodies by energy loss spectroscopy in the electron microscope: a preliminary report

    International Nuclear Information System (INIS)

    Moore, D.E.; Dawes, A.L.; Chandler, A.K.; Bradstock, K.F.

    1990-01-01

    A technique is being developed, based on electron energy loss spectroscopy in the transmission electron microscope, whereby the binding of monoclonal antibodies to their specific receptors and any subsequent movement or endocytosis can be studied in cell culture. The method requires that antibodies be labelled with a low atomic number element, such as boron. Two procedures have been established enabling up to 1200 boron atoms to be attached per antibody molecule without affecting the immunoreactivity. In the first method, dodecaborane cages are attached to polyornithine bridging molecules which in turn are covalently bound to the antibody using a photosensitive reagent. The second technique makes use of the extremely high biotin-avidin affinity by attaching biotin to the antibody and dodecaborane cages to avidin before mixing the two components. 13 refs., 2 figs

  4. Acidolysis small molecular phenolic ether used as accelerator in photosensitive diazonaphthaquinone systems

    Science.gov (United States)

    Zhou, Haihua; Zou, Yingquan

    2006-03-01

    The photosensitive compounds in the photosensitive coatings of positive PS plates are the diazonaphthaquinone derivatives. Some acidolysis small molecular phenolic ethers, which were synthesized by some special polyhydroxyl phenols with vinyl ethyl ether, are added in the positive diazonaphthaquinone photosensitive composition to improve its sensitivity, composed with photo-acid-generators. The effects to the photosensitivity, anti-alkali property, anti-isopropyl alcohol property, dot resolution and line resolution of the coatings are studied with different additive percent of the special phenolic ethers. In the conventional photosensitive diazonaphthaquinone systems for positive PS plates, the photosensitivity is improved without negative effects to resolution, anti-alkali and anti-isopropyl alcohol properties when added about 5% of the special acidolysis phenolic ethers, EAAE or DPHE, composed with photo-acid-generators.

  5. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Yilmaz, M. Tolga; Kocakerim, M. Muhtar

    2005-01-01

    In this study, boron removal from boron-containing wastewaters prepared synthetically was investigated. The experiments in which Amberlite IRA 743, boron specific resin was used were carried out in a column reactor. The bed volume of resin, boron concentration, flow rate and temperature were selected as experimental parameters. The experimental results showed that percent of boron removal increased with increasing amount of resin and with decreasing boron concentration in the solution. Boron removal decreased with increasing of flow rate and the effect of temperature on the percent of total boron removal increased the boron removal rate. As a result, it was seen that about 99% of boron in the wastewater could be removed at optimum conditions

  6. Lattice vibrations in α-boron

    International Nuclear Information System (INIS)

    Richter, W.

    1976-01-01

    α-rhombohedral boron is the simplest boron modification, with only 12 atoms per unit cell. The boron atoms are arranged in B 12 icosahedra, which are centered at the lattice points of a primitive rhombohedral lattice. The icosahedra are slightly deformed, as the five-fold symmetry of the ideal icosahedron is incompatible with any crystal structure. The lattice dynamics of α-boron are discussed in terms of the model developed by Weber and Thorpe. (Auth.)

  7. Magnetic Circular Dichroism of Porphyrin Lanthanide M3+ Complexes

    Czech Academy of Sciences Publication Activity Database

    Andrushchenko, Valery; Padula, Daniele; Zhivotova, E.; Yamamoto, S.; Bouř, Petr

    2014-01-01

    Roč. 26, č. 10 (2014), s. 655-662 ISSN 0899-0042 R&D Projects: GA ČR GA13-03978S; GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:GA AV ČR(CZ) M200550902 Institutional support: RVO:61388963 Keywords : magnetic circular dichroism * lanthanides * porphyrin complexes * density functional theory * sum over state computations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.886, year: 2014

  8. Fluorescent proteins as singlet oxygen photosensitizers: mechanistic studies in photodynamic inactivation of bacteria

    Science.gov (United States)

    Ruiz-González, Rubén.; White, John H.; Cortajarena, Aitziber L.; Agut, Montserrat; Nonell, Santi; Flors, Cristina

    2013-02-01

    Antimicrobial photodynamic therapy (aPDT) combines a photosensitizer, light and oxygen to produce reactive oxygen species (ROS), mainly singlet oxygen (1O2), to photo-oxidize important biomolecules and induce cell death. aPDT is a promising alternative to standard antimicrobial strategies, but its mechanisms of action are not well understood. One of the reasons for that is the lack of control of the photosensitizing drugs location. Here we report the use of geneticallyencoded fluorescent proteins that are also 1O2 photosensitizers to address the latter issue. First, we have chosen the red fluorescent protein TagRFP as a photosensitizer, which unlike other fluorescent proteins such as KillerRed, is able to produce 1O2 but not other ROS. TagRFP photosensitizes 1O2 with a small, but not negligible, quantum yield. In addition, we have used miniSOG, a more efficient 1O2 photosensitizing fluorescent flavoprotein that has been recently engineered from phototropin 2. We have genetically incorporated these two photosensitizers into the cytosol of E. coli and demonstrated that intracellular 1O2 is sufficient to kill bacteria. Additional assays have provided further insight into the mechanism of cell death. Photodamage seems to occur primarily in the inner membrane, and extends to the outer membrane if the photosensitizer's efficiency is high enough. These observations are markedly different to those reported for external photosensitizers, suggesting that the site where 1O2 is primarily generated proves crucial for inflicting different types of cell damage.

  9. The synthesis of chlorophyll-a biosynthetic precursors and methyl substituted iron porphyrins

    International Nuclear Information System (INIS)

    Matera, K.M.

    1988-01-01

    The biosynthetic intermediates were incubated in a plant system. The activity levels calculated show that magnesium 6-acrylate porphyrins and one of the magnesium 6-β-hydroxypropionate porphyrins are not intermediates. In addition, plant systems incubated with 18 O 2 were found to synthesize magnesium 2,4-divinyl pheoporphyrin-a 5 incorporated with 18 O at the 9-carbonyl oxygen. Mass spectroscopy confirmed the presence of the oxygen label, thus eliminating one of two hypothesized pathways to chlorophyll-a. An overall description is given of iron porphyrins and iron porphyrin containing proteins. The function of the propionic side chains of the heme prosthetic group during electron transport reactions will be investigated. The synthesis of a series of iron(III) hexamethyl porphyrins with increasingly longer substituents in the remaining two peripheral positions of the porphyrin is described. Models for NMR studies of iron chlorin containing enzymes are discussed. Iron(III) pyropheophorbide-a and methyl pyropheophorbide-a were synthesized in addition to 5-CD 3 , 10-CD 2 iron(III) pyropheophorbide-a and methyl pyropheophorbide-a. Together, these pyropheophorbides were used to assign NMR resonances and ultimately provide a model for other iron chlorins. The synthesis of nickel(II) anhydro-mesorhodoporphyrin from zinc(III) anhydromesorhodochlorin is described; this nickel porphyrin was used as a standard for ring current calculations of reduced nickel analogs of anhydromesorhodoporphyrin

  10. Interactions of tetracationic porphyrins with DNA and their effects on DNA cleavage

    Science.gov (United States)

    Lebedeva, Natalya Sh.; Yurina, Elena S.; Gubarev, Yury A.; Syrbu, Sergey A.

    2018-06-01

    The interaction of tetracationic porphyrins with DNA was studied using UV-Vis absorption, fluorescence spectroscopy and viscometry, and the particle sizes were determined. Аs cationic porphyrins, two isomer porphyrins, 3,3‧,3″,3‴-(5,10,15,20-Porphyrintetrayl)tetrakis(1-methylpyridinium) (TMPyP3) and 4,4‧,4″,4‴-(5,10,15,20-Porphyrintetrayl)tetrakis(1-methylpyridinium) (TMPyP4), were studied. They differ in the position of NCH3+ group in phenyl ring of the porphyrins and hence, in degree of freedom of rotation of the phenyl rings about the central macrocycle. It was found that intercalated complexes are formed at DNA/porphyrin molar ratios (R) of 2.2 and 3.9 for TMPyP3 и TMPyP4, respectively. Decreasing R up to 0.4 and 0.8 for TMPyP3 и TMPyP4, respectively, leads mainly to formation of outside complexes due to π-π stacking between the porphyrin chromophores interacting electrostatically with phosphate framework of DNA. Each type of the obtained complexes was characterized using Scatchard approach. It was ascertained that the affinity of TMPyP4 to DNA is stronger than TMPyP3, meanwhile the wedge effect of the latter is higher. The differences between the porphyrin isomers become more evident at irradiation of their complexes with DNA. It was established that irradiation of the intercalated complexes results in DNA fragmentation. In the case of TMPyP4, DNA fragments of different size are formed. The irradiation of the outside DNA/porphyrin complexes leads to cleavage of DNA (TMPyP3 and TMPyP4) and partial destruction of the complex due to photolysis of the porphyrin (TMPyP3).

  11. A Photosensitizer-Loaded DNA Origami Nanosystem for Photodynamic Therapy.

    Science.gov (United States)

    Zhuang, Xiaoxi; Ma, Xiaowei; Xue, Xiangdong; Jiang, Qiao; Song, Linlin; Dai, Luru; Zhang, Chunqiu; Jin, Shubin; Yang, Keni; Ding, Baoquan; Wang, Paul C; Liang, Xing-Jie

    2016-03-22

    Photodynamic therapy (PDT) offers an alternative for cancer treatment by using ultraviolet or visible light in the presence of a photosensitizer and molecular oxygen, which can produce highly reactive oxygen species that ultimately leading to the ablation of tumor cells by multifactorial mechanisms. However, this technique is limited by the penetration depth of incident light, the hypoxic environment of solid tumors, and the vulnerability of photobleaching reduces the efficiency of many imaging agents. In this work, we reported a cellular level dual-functional imaging and PDT nanosystem BMEPC-loaded DNA origami for photodynamic therapy with high efficiency and stable photoreactive property. The carbazole derivative BMEPC is a one- and two-photon imaging agent and photosensitizer with large two-photon absorption cross section, which can be fully excited by near-infrared light, and is also capable of destroying targets under anaerobic condition by generating reactive intermediates of Type I photodynamic reactions. However, the application of BMEPC was restricted by its poor solubility in aqueous environment and its aggregation caused quenching. We observed BMEPC-loaded DNA origami effectively reduced the photobleaching of BMEPC within cells. Upon binding to DNA origami, the intramolecular rotation of BMEPC became proper restricted, which intensify fluorescence emission and radicals production when being excited. After the BMEPC-loaded DNA origami are taken up by tumor cells, upon irradiation, BMEPC could generate free radicals and be released due to DNA photocleavage as well as the following partially degradation. Apoptosis was then induced by the generation of free radicals. This functional nanosystem provides an insight into the design of photosensitizer-loaded DNA origami for effective intracellular imaging and photodynamic therapy.

  12. Electrospun photosensitive nanofibers: potential for photocurrent therapy in skin regeneration.

    Science.gov (United States)

    Jin, Guorui; Prabhakaran, Molamma P; Kai, Dan; Kotaki, Masaya; Ramakrishna, Seeram

    2013-01-01

    Poly(3-hexylthiophene) (P3HT) is one of the most promising photovoltaic (PV) polymers in photocurrent therapy. A novel photosensitive scaffold for skin tissue engineering was fabricated by blending P3HT with polycaprolactone (PCL) and electrospun to obtain composite PCL/P3HT nanofibers with three different weight ratios of PCL : P3HT (w/w) of 150 : 2 [PCL/P3HT(2)], 150 : 10 [PCL/P3HT(10)] and 150 : 20 [PCL/P3HT(20)]. The photosensitive properties of the blend solutions and the composite nanofibers of PCL/P3HT were investigated. The incident photon-to-electron conversion efficiencies of the PCL/P3HT(2), PCL/P3HT(10), PCL/P3HT(20) were identified as 2.0 × 10(-6), 1.6 × 10(-5) and 2.9 × 10(-5), respectively, which confirm the photosensitive ability of the P3HT-containing scaffolds. The biocompatibility of the scaffold was evaluated by culturing human dermal fibroblasts and the results showed that the proliferation of HDFs under light stimulation on PCL/P3HT(10) was 12.8%, 11.9%, and 11.6% (p ≤ 0.05) higher than the cell growth on PCL, PCL/P3HT(2) and PCL/P3HT(20), respectively. Human dermal fibroblasts cultured under light stimulation on PCL/P3HT(10) not only showed better cell proliferation but also retained cell morphology similar to the phenotype observed on tissue culture plates (control). Our experimental results suggest novel and potential application of an optimized amount of P3HT-containing scaffold, especially PCL/P3HT(10) nanofibrous scaffold in photocurrent therapy for skin regeneration.

  13. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  14. Boron steel. I Part. Preparation

    International Nuclear Information System (INIS)

    Jaraiz Franco, E.; Esteban Hernandez, J. A.

    1960-01-01

    With the advent of the first nuclear reactors arise the need for control rods and shielding duties for some types of radiations. One of the materials used for this purpose has been the high boron steel. This paper describes the melting and casting procedures employed for the production, at laboratory scale, of steels with Boron content ranging from 1 to 4 per cent, as well as the metallographic and X-Ray techniques used for the identification of the present phases. The electrolytic technique employed for the isolation of the Fe 2 B phase and its subsequent X-Ray identification has proved to be satisfactory. (Author) 11 refs

  15. Chemical separation of boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF/sub 3/ gas and the liquid molecular addition compounds of BF/sub 3/. Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF/sub 3/ solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references.

  16. Chemical separation of boron isotopes

    International Nuclear Information System (INIS)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF 3 gas and the liquid molecular addition compounds of BF 3 . Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF 3 solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references

  17. High-Efficiency Iron Photosensitizer Explained with Quantum Wavepacket Dynamics

    DEFF Research Database (Denmark)

    Pápai, Mátyás Imre; Vankó, György; Rozgonyi, Tamas

    2016-01-01

    designed to destabilize the MC states. Using first-principles quantum nuclear wavepacket simulations we achieve a detailed understanding of the photoexcited decay mechanism, demonstrating that it is dominated by an ultrafast intersystem crossing from 1MLCT–3MLCT proceeded by slower kinetics associated...... with the conversion into the 3MC states. The slowest component of the 3MLCT decay, important in the context of photosensitizers, is much longer than related Fe(II) complexes because the population transfer to the 3MC states occurs in a region of the potential where the energy gap between the 3MLCT and 3MC states...

  18. Advanced smart-photosensitizers for more effective cancer treatment.

    Science.gov (United States)

    Park, Wooram; Cho, Soojeong; Han, Jieun; Shin, Heejun; Na, Kun; Lee, Byeongdu; Kim, Dong-Hyun

    2017-12-19

    Photodynamic therapy (PDT) based upon the use of light and photosensitizers (PSs) has been used as a novel treatment approach for a variety of tumors. It, however, has several major limitations in the clinic: poor water solubility, long-term phototoxicity, low tumor targeting efficacy, and limited light penetration. With advances in nanotechnology, materials science, and clinical interventional imaging procedures, various smart-PSs have been developed for improving their cancer-therapeutic efficacy while reducing the adverse effects. Here, we briefly review state-of-the-art smart-PSs and discuss the future directions of PDT technology.

  19. Liquid crystal nanoparticles for delivery of photosensitizers for photodynamic therapy

    Science.gov (United States)

    Nag, Okhil K.; Naciri, Jawad; Delehanty, James B.

    2018-02-01

    The main principle of photodynamic therapy (PDT) is to kill malignant cells by generation of reactive oxygen species (ROS). PDT appeared highly effective when ROS can be produced in subcellular location such as plasma membrane. The plasma membrane maintains the structural integrity of the cell and regulates multiple important cellular processes, such as endocytosis, trafficking, and apoptotic pathways, could be one of the best points to kill the cancer cells. Previously, we have developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs. Here we highlight the utility of this LCNP for membrane targeted delivery and imaging for a photosensitizer (PS) for PDT applications.

  20. Photosensitive Ox/GaAs heterojunctions: Creation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Rud' , V. Yu. [St. Petersburg State Polytechnical University (Russian Federation); Rud' , Yu. V., E-mail: yuryrud@mail.ioffe.ru; Terukov, E. I.; Ushakova, T. N. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2012-06-15

    A method for the thermal oxidation of GaAs crystals in air is suggested and the first photosensitive Ox/n-GaAs heterojunctions, where Ox is a native oxide, are fabricated. The steady current-voltage characteristics and spectra of relative quantum efficiency of the new structures are studied. The features of the spectra of photoactive absorption of the obtained heterojunctions are discussed. The potential of using vacuumfree thermal oxidation of the GaAs crystals in air to fabricate broadband heterophotoconverters of optical radiation on their basis is established.

  1. The (6-4) Dimeric Lesion as a DNA Photosensitizer

    OpenAIRE

    Vendrell Criado, Victoria; Rodríguez Muñiz, Gemma María; Lhiaubet ., Virginie Lyria; Cuquerella Alabort, Maria Consuelo; Miranda Alonso, Miguel Ángel

    2016-01-01

    [EN] Based on our previous investigations into the photophysical properties of the 5-methyl-2-pyrimidone (Pyo) chromophore, we now extend our studies to the photobehavior of the dimeric (6-4) thymine photoproducts (6-4 PP) to evaluate their capability to act as instrinsic DNA photosensitizers. The lesion presents significant absorption in the UVB/UVA region, weak fluorescence emission, a singlet-excited-state energy of approximately 351 kJ mol(-1), and a triplet-excited-state energy of 297 kJ...

  2. Electropolymerized supramolecular tetraruthenated porphyrins applied as a voltammetric sensor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Monize M. da; Ribeiro, Gabriel H.; Faria, Anizio M. de; Bogado, Andre L.; Dinelli, Luis R., E-mail: dinelli@pontal.ufu.br [Universidade Federal de Uberlandia (UFU), Ituiutaba, MG (Brazil). Faculdade de Ciencias Integradas do Pontal; Batista, Alzir A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2013-11-15

    Porphyrin 5,10,15,20-Tetra(4-pyridyl)manganese(III), [Mn-TPyP(H{sub 2}O){sub 2}]PF{sub 6}, and electropolymerized supramolecular porphyrins (ESP), {l_brace}Mn-TPyP(H{sub 2}O){sub 2}[RuCl{sub 3}(dppb)]{sub 4}{r_brace}PF{sub 6} (dppb = 1,4-bis(diphenylphosphine)butane), were synthesized and characterized. A thin solid film of ESP was obtained on a glass carbon electrode surface by a cyclic voltammetry method. The peak current increased with the number of voltammetric cycles, which shows a typical behavior of the species being adsorbed on the surface of the electrode. Cyclic voltammetry was also employed for acetaminophen quantification using an ESP modified electrode. The modified electrode shows a linear relationship between the anodic peak current and the concentration of acetaminophen (in the rage 0.05 to 0.7 mmol L{sup -1}. The performance of the modified electrode was verified by the determination of acetaminophen in a commercial pharmaceutical product and the results were in good agreement with those obtained by a control HPLC method. (author)

  3. Electron transfer reactions involving porphyrins and chlorophyll a

    International Nuclear Information System (INIS)

    Neta, P.; Scherz, A.; Levanon, H.

    1979-01-01

    Electron transfer reactions involving porphyrins (P) and quinones (Q) have been studied by pulse radiolysis. The porphyrins used were tetraphenylporphyrin (H 2 TPP), its tetracarboxy derivative (H 2 TCPP), the sodium and zinc compounds (Na 2 TPP and ZnTPP), and chlorophyll a (Chl a). These compounds were found to be rapidly reduced by electron transfer from (CH 3 ) 2 CO - . Reduction by (CH 3 ) 2 COH was rapid in aqueous solutions but relatively slow in i-PrOH solutions. Transient spectra of the anion radicals were determined and, in the case of H 2 TCPP - ., a pK = 9.7 was derived for its protonation. Electron-transfer reactions from the anion radical of H 2 TCPP to benzoquinone, duroquinone, 9,10-anthraquinone 2-sulfonate, and methylviologen occur in aqueous solutions with rate constants approx. 10 7 -10 9 M -1 s -1 which depend on the pH and the quinone reduction potential. Reactions of Na 2 TPP - ., ZnTPP - ., and Chl a - . with anthraquinone in basic i-PrOH solutions occur with rate constants approx. 10 9 M -1 s -1 . The spectral changes associated with these electron-transfer reactions as observed over a period of approx. 1 ms indicated, in some cases, the formation of an intermediate complex [P...Q - .]. 8 figures, 2 tables

  4. High-conductance surface-anchoring of a mechanically flexible platform-based porphyrin complex

    International Nuclear Information System (INIS)

    Hauptmann, Nadine; Buchmann, Kristof; Scheil, Katharina; Berndt, Richard; Groß, Lynn; Herrmann, Carmen; Schütt, Christian; Otte, Franziska L; Herges, Rainer

    2015-01-01

    The conductances of molecular model junctions comprising a triazatriangulenium platform with or without an ethynyl spacer and an upright Zn-porphyrin are probed with a low-temperature scanning probe microscope. The platform alone is found to be highly conductive. The ethynyl-linked Zn-porphyrin moiety reduces the conductance by three orders of magnitude and leads to an unexpected, non-monotonous variation of the force that was measured simultaneously at the tip of the microscope. Density functional theory calculations show that this variation results from an induced tilting of the porphyrin. (paper)

  5. Two-channel neutron boron meter

    International Nuclear Information System (INIS)

    Chen Yongqing; Yin Guowei; Chai Songshan; Deng Zhaoping; Zhou Bin

    1993-09-01

    The two-channel neutron boron meter is a continuous on-line measuring device to measure boron concentration of primary cooling liquid of reactors. The neutron-leakage-compensation method is taken in the measuring mechanism. In the primary measuring configuration, the mini-boron-water annulus and two-channel and central calibration loop are adopted. The calibration ring and constant-temperature of boron-water can be remotely controlled by secondary instruments. With the microcomputer data processing system the boron concentration is automatically measured and calibrated in on-line mode. The meter has many advantages such as high accuracy, fast response, multi-applications, high reliability and convenience

  6. Boron-enhanced diffusion of boron from ultralow-energy boron implantation

    International Nuclear Information System (INIS)

    Agarwal, A.; Eaglesham, D.J.; Gossmann, H.J.; Pelaz, L.; Herner, S.B.; Jacobson, D.C.

    1998-01-01

    The authors have investigated the diffusion enhancement mechanism of BED (boron enhanced diffusion), wherein the boron diffusivity is enhanced three to four times over the equilibrium diffusivity at 1,050 C in the proximity of a silicon layer containing a high boron concentration. It is shown that BED is associated with the formation of a fine-grain polycrystalline silicon boride phase within an initially amorphous Si layer having a high B concentration. For 0.5 keV B + , the threshold implantation dose which leads to BED lies between 3 x 10 14 and of 1 x 10 15 /cm -2 . Formation of the shallowest possible junctions by 0.5 keV B + requires that the implant dose be kept lower than this threshold

  7. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction ...

  8. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  9. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    high temperature reaction between elemental boron and car- bon to form B4C is .... cible was used as the container for the electrolyte and also acted as an anode. ... chosen as cathode due to its availability, low cost, ease of fabrication and ...

  10. Light-driven photosensitizer uptake increases Candida albicans photodynamic inactivation.

    Science.gov (United States)

    Romano, Renan A; Pratavieira, Sebastião; Silva, Ana P da; Kurachi, Cristina; Guimarães, Francisco E G

    2017-11-01

    Photodynamic Inactivation (PDI) is based on the use of a photosensitizer (PS) and light that results mainly in the production of reactive oxygen species, aiming to produce microorganism cell death. PS incubation time and light dose are key protocol parameters that influence PDI response; the correct choice of them can increase the efficiency of inactivation. The results of this study show that a minor change in the PDI protocol, namely light-driven incubation leads to a higher photosensitizer and more uniform cell uptake inside the irradiated zone. Furthermore, as the uptake increases, the damage caused by PDI also increases. The proposed light-driven incubation prior to the inactivation illumination dose has advantages when compared to the traditional PDI treatments since it can be more selective and effective. Using a violet light as pre-illumination (light-driven incubation) source and a red-light system as PDI source, it was possible to demonstrate that when compared to the traditional protocol of dark incubation, the pre-illuminated cell culture showed an inactivation increase of 7 log units. These in vitro results performed in Candida albicans cells may result in the introduction of a new protocol for PDI. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Implication for photosensitive patients of ultraviolet A exposure in vehicles.

    Science.gov (United States)

    Hampton, P J; Farr, P M; Diffey, B L; Lloyd, J J

    2004-10-01

    Photosensitive patients sometimes report disease flares during journeys by car. Window glass blocks all UVB but not all UVA. All car windscreens are made from laminated glass. Side and rear windows are usually made of nonlaminated glass. To determine which types of glass provide most protection from UVA with particular reference to the implications for patients with polymorphic light eruption (PLE). The percentage transmission of UVA was determined for a selection of glass, both laminated and nonlaminated, and with differing colour tints. Laminated glass transmits less UVA than nonlaminated glass. Tinted glass transmits less UVA than clear glass. Nonlaminated clear glass transmitted the highest percentage of UVA (62.8%) and grey laminated glass the lowest (0.9%). A dose of 5 J cm(-2) UVA, enough to trigger PLE in some patients, could be transmitted through clear nonlaminated glass in 30 min but would take 50 h through grey laminated glass. Patients with severe UVA-induced PLE and other photosensitivity disorders may have disease flares from solar UVA transmission through side-window glass. Protective measures such as wearing long-sleeved clothing, keeping the arm beneath the bottom of the window aperture, or choosing tinted and laminated car windows may be helpful.

  12. Evaluation of the skin phototoxicity and photosensitivity of honeybee venom.

    Science.gov (United States)

    Han, Sang Mi; Hong, In Phyo; Woo, Soon Ok; Kim, Se Gun; Jang, He Rye; Park, Kwan Kyu

    2017-12-01

    Bee (Apis mellifera L.) venom (BV) has been used as a cosmetic ingredient owing to its anti-aging, anti-inflammatory, and antibacterial effects. The aim of this study was to assess the skin safety of BV. For this purpose, skin phototoxicity and sensitization tests were conducted in healthy male Hartley guinea pigs. The animals were divided into three groups (n=5) for the phototoxicity test: G1 (negative control), G2 (BV gel treatment), and G3 (positive control). After specified treatments, the animals were irradiated with ultraviolet A (15 J/cm 2 ). The photosensitivity test was also performed in three groups: G4 (negative control, n=5), G5 (BV gel treatment, n=10), and G6 (positive control, n=5). Erythema and edema were observed after 24, 48, and 72 hours in the positive control group, but not in the negative control and BV gel groups. Application of BV to the guinea pig skin had no toxic effects on any clinical signs, body weight, or mortality. In addition, it did not evoke a skin reaction in both either the skin phototoxicity and skin photosensitization tests. Therefore, it can be concluded that BV has the potential to be developed as a drug ingredient for topical uses. © 2017 The Authors. Journal of Cosmetic Dermatology Published by Wiley Periodicals, Inc.

  13. Long-wavelength photosensitivity in coral planula larvae.

    Science.gov (United States)

    Mason, Benjamin M; Cohen, Jonathan H

    2012-04-01

    Light influences the swimming behavior and settlement of the planktonic planula larvae of coral, but little is known regarding the photosensory biology of coral at this or any life-history stage. Here we used changes in the electrical activity of coral planula tissue upon light flashes to investigate the photosensitivity of the larvae. Recordings were made from five species: two whose larvae are brooded and contain algal symbionts (Porites astreoides and Agaricia agaricites), and three whose larvae are spawned and lack algal symbionts (Acropora cervicornis, Acropora palmata,and Montastrea faveolata). Photosensitivity originated from the coral larva rather than from, or in addition to, its algal symbionts as species with and without symbionts displayed similar tissue-level electrical responses to light. All species exhibited as much (or more) sensitivity to red stimuli as to blue/green stimuli, which is consistent with a role for long-wavelength visible light in the preference for substrata observed during settlement and in facilitating vertical positioning of larvae in the water column.

  14. Photosensitive naturally derived resins toward optical 3-D printing

    Science.gov (United States)

    Skliutas, Edvinas; Kasetaite, Sigita; Jonušauskas, Linas; Ostrauskaite, Jolita; Malinauskas, Mangirdas

    2018-04-01

    Recent advances in material engineering have shown that renewable raw materials, such as plant oils or glycerol, can be applied for synthesis of polymers due to ready availability, inherent biodegradability, limited toxicity, and existence of modifiable functional groups and eventually resulting to a potentially lower cost. After additional chemical modifications (epoxidation, acrylation, double bonds metathesis, etc.), they can be applied in such high-tech areas as stereolithography, which allows fabrication of three-dimensional (3-D) objects. "Autodesk's" 3-D optical printer "Ember" using 405-nm light was implemented for dynamic projection lithography. It enabled straightforward spatio-selective photopolymerization on demand, which allows development of various photosensitive materials. The bio-based resins' photosensitivity was compared to standard "Autodesk" "PR48" and "Formlabs" "Clear" materials. It turned out that the bioresins need a higher energy dose to be cured (a least 16 J · cm - 2 for a single layer varying from 100 to 130 μm). Despite this, submillimeter range 2.5-D structural features were formed, and their morphology was assessed by optical profilometer and scanning electron microscope. It was revealed that a higher exposition dose (up to 26 J · cm - 2) results in a linear increase in the formed structures height, proving controllability of the undergoing process. Overall, the provided results show that naturally derived resins are suitable candidates for tabletop gray-tone lithography.

  15. The circadian response of intrinsically photosensitive retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Andrew J Zele

    Full Text Available Intrinsically photosensitive retinal ganglion cells (ipRGC signal environmental light level to the central circadian clock and contribute to the pupil light reflex. It is unknown if ipRGC activity is subject to extrinsic (central or intrinsic (retinal network-mediated circadian modulation during light entrainment and phase shifting. Eleven younger persons (18-30 years with no ophthalmological, medical or sleep disorders participated. The activity of the inner (ipRGC and outer retina (cone photoreceptors was assessed hourly using the pupil light reflex during a 24 h period of constant environmental illumination (10 lux. Exogenous circadian cues of activity, sleep, posture, caffeine, ambient temperature, caloric intake and ambient illumination were controlled. Dim-light melatonin onset (DLMO was determined from salivary melatonin assay at hourly intervals, and participant melatonin onset values were set to 14 h to adjust clock time to circadian time. Here we demonstrate in humans that the ipRGC controlled post-illumination pupil response has a circadian rhythm independent of external light cues. This circadian variation precedes melatonin onset and the minimum ipRGC driven pupil response occurs post melatonin onset. Outer retinal photoreceptor contributions to the inner retinal ipRGC driven post-illumination pupil response also show circadian variation whereas direct outer retinal cone inputs to the pupil light reflex do not, indicating that intrinsically photosensitive (melanopsin retinal ganglion cells mediate this circadian variation.

  16. Dosimetry of photosensitization by ultraviolet in patients treated with Haloperidol and Piportil

    International Nuclear Information System (INIS)

    Barros, M. de; Araujo, C.C.

    1982-01-01

    It has been postulated that visible light on UV may induce photosensitization in chronic psycotics, under phenotiazine or butyrofenone therapy. The possible sensitization with UV, in patients with Haloperidol (Johnson and Johnson) or Piportil (Rhodia) treatments is described. Under experimental conditions, a surpassable photosensitizations in reaction groups aren't finding, when paired with the control ones. (M.A.C.) [pt

  17. CHD2 variants are a risk factor for photosensitivity in epilepsy

    DEFF Research Database (Denmark)

    Galizia, Elizabeth C.; Myers, Candace T.; Leu, Costin

    2015-01-01

    Photosensitivity is a heritable abnormal cortical response to flickering light, manifesting as particular electroencephalographic changes, with or without seizures. Photosensitivity is prominent in a very rare epileptic encephalopathy due to de novo CHD2 mutations, but is also seen in epileptic e...

  18. In-vitro singlet oxygen threshold dose at PDT with Radachlorin photosensitizer

    Science.gov (United States)

    Klimenko, V. V.; Shmakov, S. V.; Kaydanov, N. E.; Knyazev, N. A.; Kazakov, N. V.; Rusanov, A. A.; Bogdanov, A. A.; Dubina, M. V.

    2017-07-01

    In this present study we investigate the Radachlorin photosensitizer accumulation in K562 cells and Hela cells and determined the cell viability after PDT. Using the macroscopic singlet oxygen modeling and cellular photosensitizer concentration the singlet oxygen threshold doses for K562 cells and Hela cells were calculated.

  19. In situ localization of chloroquine and immunohistological studies in UVB-irradiated skin of photosensitive patients

    NARCIS (Netherlands)

    Sjölin-Forsberg, G.; Berne, B.; Eggelte, T. A.; Karlsson-Parra, A.

    1995-01-01

    Chloroquine can prevent photosensitivity reactions, but its mechanism of action is poorly understood. To investigate if the drug may interfere with inflammatory or immunological mechanisms of the UV-induced erythema of photosensitive patients, we studied the localization of chloroquine in the skin

  20. Boron-11 MRI and MRS of intact animals infused with a boron neutron capture agent

    International Nuclear Information System (INIS)

    Kabalka, G.W.; Davis, M.; Bendel, P.

    1988-01-01

    Boron neutron capture therapy (BNCT) depends on the delivery of boron-containing drugs to a targeted lesion. Currently, the verification and quantification of in vivo boron content is a difficult problem. Boron-11 spectroscopy was utilized to confirm the presence of a dimeric sulfhydryl dodecaborane BNCT agent contained in an intact animal. Spectroscopy experiments revealed that the decay time of transverse magnetization of the boron-11 spins was less than 1 ms which precluded the use of a 2DFT imaging protocol. A back-projection protocol was developed and utilized to generate the first boron-11 image of a BNCT agent in the liver of an intact Fisher 344 rat

  1. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  2. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  3. Synthesis and characterization of a novel meso-porphyrin and its metallo derivatives

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Bega

    2014-02-01

    Full Text Available There has been a growing interest in the properties of substituted meso-tetraarylporphyrins and metallo porphyrins as catalysts for oxidation of hydrocarbons, oxygen detection, among others. This work describes the synthesis of a new porphyrin, 5,10,15,20-tetrakis(4-butoxy-3-methoxyphenylporphyrin, and its metallo complexes. Herein it was used a readily available reactant, vanillin, as starting material which was submitted to alkylation with n-bromobutane affording the synthetic precursor. The desired porphyrin was obtained by reacting the O-alkylated aldehyde with pyrrole in the presence of propionic acid (Alder-Longo method. The purified porphyrin was then subjected to the metallation process using iron (II and manganese (II salts. The synthesized compounds were characterized by IR, UV-Vis, NMR and EPR spectroscopy.

  4. Porphyrin metabolisms in human skin commensal Propionibacterium acnes bacteria: potential application to monitor human radiation risk.

    Science.gov (United States)

    Shu, M; Kuo, S; Wang, Y; Jiang, Y; Liu, Y-T; Gallo, R L; Huang, C-M

    2013-01-01

    Propionibacterium acnes (P. acnes), a Gram-positive anaerobic bacterium, is a commensal organism in human skin. Like human cells, the bacteria produce porphyrins, which exhibit fluorescence properties and make bacteria visible with a Wood's lamp. In this review, we compare the porphyrin biosynthesis in humans and P. acnes. Also, since P. acnes living on the surface of skin receive the same radiation exposure as humans, we envision that the changes in porphyrin profiles (the absorption spectra and/or metabolism) of P. acnes by radiation may mirror the response of human cells to radiation. The porphyrin profiles of P. acnes may be a more accurate reflection of radiation risk to the patient than other biodosimeters/biomarkers such as gene up-/down-regulation, which may be non-specific due to patient related factors such as autoimmune diseases. Lastly, we discuss the challenges and possible solutions for using the P. acnes response to predict the radiation risk.

  5. Thermodynamics of complex formation of natural iron(III)porphyrins with neutral ligands

    International Nuclear Information System (INIS)

    Lebedeva, Nataliya Sh.; Yakubov, Sergey P.; Vyugin, Anatoly I.; Parfenyuk, Elena V.

    2003-01-01

    Calorimetric titrations in benzene and chloroform at 298.15 K have been performed to give the complexes stability constants and the thermodynamic parameters for the complex formation of nature iron(III)porphyrins with pyridine. Stoichimetry of the complexes formed has been determined. It has been found that the thermodynamic parameters obtained depend on nature of peripheral substituents of the porphyrins. The estimation of the influence of Cl - and Ac - ions on the processes studied has been carried out. Using thermodynamic analysis method, the crystallsolvates of nature iron(III)porphyrins with benzene have been studied. Stoichiometry, thermal and energetic stability of the π-π-complexes formed have been determined. The data obtained have been used to the estimate solvent effect on the thermodynamic parameters of axial coordination of pyridine on the iron(III)porphyrins in benzene

  6. Functionalized porphyrin conjugate thin films deposited by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Iordache, S. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Popescu, A.C.; Popescu, C.E.; Dorcioman, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Ciucu, A.A. [University of Bucharest, Faculty of Chemistry, Bucharest (Romania); Balan, A.; Stamatin, I. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Fagadar-Cosma, E. [Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223-Timisoara (Romania); Chrisey, D.B. [Tulane University, Departments of Physics and Biomedical Engineering, New Orleans, LA 70118 (United States)

    2013-08-01

    We report on the deposition of nanostructured porphyrin-base, 5(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin thin films by matrix assisted pulsed laser evaporation onto silicon substrates with screen-printed electrodes. AFM investigations have shown that at 400 mJ/cm{sup 2} fluence a topographical transition takes place from the platelet-like stacking porphyrin-based nanostructures in a perpendicular arrangement to a quasi-parallel one both relative to the substrate surface. Raman spectroscopy has shown that the chemical structure of the deposited thin films is preserved for fluences within the range of 200–300 mJ/cm{sup 2}. Cyclic voltammograms have demonstrated that the free porphyrin is appropriate as a single mediator for glucose in a specific case of screen-printed electrodes, suggesting potential for designing a new class of biosensors.

  7. A New Synthesis of Porphyrins with Extended Conjugation and their Photophysics

    National Research Council Canada - National Science Library

    Ono, Noboru

    2005-01-01

    .... These molecules useful non-linear optical and optoelectronic properties. The contractor used a synthesis method based on the retro Diels-Alder reaction of porphyrins fused with bicyclo[2.2.2]octadiene units...

  8. A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cells

    KAUST Repository

    Ball, James M.; Davis, Nicola K. S.; Wilkinson, James D.; Kirkpatrick, James; Teuscher, Joë l; Gunning, Robert; Anderson, Harry L.; Snaith, Henry J.

    2012-01-01

    The development of ruthenium-free sensitizers which absorb light over a broad range of the solar spectrum is important for improving the power conversion efficiency of dye-sensitized solar cells. Here we study three chemically tailored porphyrin

  9. Graphene and Carbon-Nanotube Nanohybrids Covalently Functionalized by Porphyrins and Phthalocyanines for Optoelectronic Properties.

    Science.gov (United States)

    Wang, Aijian; Ye, Jun; Humphrey, Mark G; Zhang, Chi

    2018-04-01

    In recent years, there has been a rapid growth in studies of the optoelectronic properties of graphene, carbon nanotubes (CNTs), and their derivatives. The chemical functionalization of graphene and CNTs is a key requirement for the development of this field, but it remains a significant challenge. The focus here is on recent advances in constructing nanohybrids of graphene or CNTs covalently linked to porphyrins or phthalocyanines, as well as their application in nonlinear optics. Following a summary of the syntheses of nanohybrids constructed from graphene or CNTs and porphyrins or phthalocyanines, explicit intraconjugate electronic interactions between photoexcited porphyrins/phthalocyanines and graphene/CNTs are introduced classified by energy transfer, electron transfer, and charge transfer, and their optoelectronic applications are also highlighted. The major current challenges for the development of covalently linked nanohybrids of porphyrins or phthalocyanines and carbon nanostructures are also presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Functionalized Nanostructures: Redox-Active Porphyrin Anchors for Supramolecular DNA Assemblies

    KAUST Repository

    Börjesson, Karl; Wiberg, Joanna; El-Sagheer, Afaf H.; Ljungdahl, Thomas; Må rtensson, Jerker; Brown, Tom; Nordén, Bengt; Albinsson, Bo

    2010-01-01

    , such as orientation, strength, homogeneity, and binding site size, was determined, suggesting that the porphyrin is well suited as a photophysical and redox-active lipid anchor, in comparison to the inert cholesterol anchor commonly used today. Furthermore

  11. Electrocatalytic miRNA Detection Using Cobalt Porphyrin-Modified Reduced Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Camille De Souza

    2014-06-01

    Full Text Available Metalated porphyrins have been described to bind nucleic acids. Additionally, cobalt porphyrins present catalytic properties towards oxygen reduction. In this work, a carboxylic acid-functionalized cobalt porphyrin was physisorbed on reduced graphene oxide, then immobilized on glassy carbon electrodes. The carboxylic groups were used to covalently graft amino-terminated oligonucleotide probes which are complementary to a short microRNA target. It was shown that the catalytic oxygen electroreduction on cobalt porphyrin increases upon hybridization of miRNA strand (“signal-on” response. Current changes are amplified compared to non-catalytic amperometric system. Apart from oxygen, no added reagent is necessary. A limit of detection in the sub-nanomolar range was reached. This approach has never been described in the literature.

  12. Functionalized Nanostructures: Redox-Active Porphyrin Anchors for Supramolecular DNA Assemblies

    KAUST Repository

    Börjesson, Karl

    2010-09-28

    We have synthesized and studied a supramolecular system comprising a 39-mer DNA with porphyrin-modified thymidine nucleosides anchored to the surface of large unilamellar vesicles (liposomes). Liposome porphyrin binding characteristics, such as orientation, strength, homogeneity, and binding site size, was determined, suggesting that the porphyrin is well suited as a photophysical and redox-active lipid anchor, in comparison to the inert cholesterol anchor commonly used today. Furthermore, the binding characteristics and hybridization capabilities were studied as a function of anchor size and number of anchoring points, properties that are of importance for our future plans to use the addressability of these redox-active nodes in larger DNA-based nanoconstructs. Electron transfer from photoexcited porphyrin to a lipophilic benzoquinone residing in the lipid membrane was characterized by steady-state and time-resolved fluorescence and verified by femtosecond transient absorption. © 2010 American Chemical Society.

  13. Electrical characteristic of spin coated Fe-Porphyrin on Cu substrates

    Energy Technology Data Exchange (ETDEWEB)

    Utari, E-mail: utari@ugm.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan Surakarta 57126 (Indonesia); Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur BLS 21 Yogyakarta 55281 (Indonesia); Kusumandari,; Purnama, Budi, E-mail: bpurnama@mipa.uns.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan Surakarta 57126 (Indonesia); Mudasir [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur BLS 21 Yogyakarta 55281 (Indonesia); Abraha, Kamsul [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur BLS 21 Yogyakarta 55281 (Indonesia)

    2016-06-17

    This paper describes the electrical-characteristics of Fe-Porphyrin thin films on Cu substrates. The thin layer samples used were deposited by spin coating methods on Cu-substrates at room temperature with and without induced magnetic field in the plane direction of the surface films. Fe-porphyrin was dissolved in chloroform and mixed with a magnetic stirrer for 60 min at a rotational speed of 200 rpm. The experimental results show that the mobility carrier charge of the Fe-Porphyrin layer with induced magnetic field during deposition has lower value than that without induced magnetic field case. The decrease of the mobility can be attribute to the change of the surface morphology in Fe-porphyrin films by means of increase in the nano-granular/nano-molecular size caused by the induce magnetic field.

  14. Acid-base and coordination properties of Meso-substituted porphyrins in nonaqueous solutions

    Science.gov (United States)

    Pukhovskaya, S. G.; Nam, Dao Tkhe; Fien, Chan Ding; Domanina, E. N.; Ivanova, Yu. B.; Semeikin, A. S.

    2017-09-01

    Acid-base and coordination properties of alkyl and aryl meso-substituted porphyrins are studied spectrophotometrically in nonaqueous solutions. It is found that the nature of the substituent greatly affects the basicity of ligands for porphyrins characterized by a flat structure of macrocycle. The electronic effects of substituents have a much weaker influence on the kinetics of complexing. These effects could be due to the opposite orientation of some factors: an increase in the basicity and stability of the N-H bonds of porphyrin reaction centers. Dissociation constants p K b of the cationic forms of meso-substituted derivatives of porphyrin are measured. The values of p K b are in good agreement with classic concepts of the nature of substituents, particularly those indirectly included in the macrocycle through phenyl buffer rings.

  15. Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework

    KAUST Repository

    Chen, Chen; Joshi, Trinity; Li, Huifang; Chavez, Anton D.; Pedramrazi, Zahra; Liu, Pei-Nian; Li, Hong; Dichtel, William R.; Bredas, Jean-Luc; Crommie, Michael F.

    2017-01-01

    We have characterized the local electronic structure of a porphyrin-containing single-layer covalent organic framework (COF) exhibiting a square lattice. The COF monolayer was obtained by the deposition of 2,5-dimethoxybenzene-1,4-dicarboxaldehyde

  16. Spectral properties of porphyrins in the systems with layered silicates

    International Nuclear Information System (INIS)

    Ceklovsky, A.

    2009-03-01

    This work is focused on investigation of hybrid materials based on layered silicates, representing host inorganic component, and porphyrin dyes as organic guest. Aqueous colloidal dispersions, as well as thin solid films of layered silicate/porphyrin systems were studied. Modification of photophysical properties, such as absorption and fluorescence of molecules, adsorbed or incorporated in layered silicate hosts, were studied mainly to spread the knowledge about the environments suitable for incorporating aromatic compounds, providing photoactive properties of potential technological interest. TMPyP cations interact with the surfaces of layered silicates via electrostatic interactions. The extent of dye adsorption on colloidal particles of the silicates is influenced by the CEC values and swelling ability of silicates. Interaction of porphyrins with layered silicate hosts leads to significant changes of dye spectral properties. One of the key parameters that has a crucial impact on this interaction is the layer charge of silicate template. Other factors influence the resulting spectral properties of hybrid systems, such as the method of hybrid material preparation, the material's type (colloid, film), and the modification of the silicate host. Molecular orientation studies using linearly-polarized spectroscopies in VIS and IR regions revealed that TMPyP molecules were oriented in almost parallel fashion with respect to the silicate surface plane. Slightly higher values of the orientation angle of TMPyP transition moment were observed for the TMPyP/FHT system. Thus, flattening of the guest TMPyP molecules is the next important factor (mainly in the systems with lower layer charge), influencing its spectral properties upon the interaction with layered silicates. Fluorescence was effectively quenched in the systems based on solid films prepared from the high concentration of the dye (10-3 mol.dm-3). The quenching is most probably related to the structure of the

  17. Porphyrin molecules boost the sensitivity of epitaxial graphene for NH3 detection

    Science.gov (United States)

    Iezhokin, I.; den Boer, D.; Offermans, P.; Ridene, M.; Elemans, J. A. A. W.; Adriaans, G. P.; Flipse, C. F. J.

    2017-02-01

    The sensitivity of quasi-free standing epitaxial graphene for NH3 detection is strongly enhanced by chemical functionalization with cobalt porphyrins resulting in a detection limit well below 100 ppb. Hybridization between NH3 and cobalt porphyrins induces a charge transfer to graphene and results in a shift of the graphene Fermi-level as detected by Hall measurements and theoretically explained by electronic structure calculations.

  18. N-annulated perylene fused porphyrins with enhanced near-IR absorption and emission

    KAUST Repository

    Jiao, Chongjun

    2010-09-17

    N-Annulated perylene fused porphyrins 1 and 2 were synthesized by oxidative dehydrogenation using a Sc(OTf)3/DDQ system. These newly synthesized hybrid molecules are highly soluble in organic solvents and exhibit remarkably intense near-IR absorption, as well as detectable photoluminescence quantum yields, all of which are comparable to or even exceed those of either meso-β doubly linked porphyrin dimer/trimer or bis/tri-N-annulated rylenes. © 2010 American Chemical Society.

  19. Comparative VOCs sensing performance for conducting polymer and porphyrin functionalized carbon nanotubes based sensors

    Science.gov (United States)

    Datta, Kunal; Rushi, Arti; Ghosh, Prasanta; Shirsat, Mahendra

    2018-05-01

    We report sensors for detection of ethyl alcohol, a prominent volatile organic compound (VOC). Single walled carbon nanotubes were selected as main sensing backbone. As efficiency of sensor is dependent upon the choice of sensing materials, the performances of conducting polymer and porphyrin based sensors were compared. Chemiresistive sensing modality was adopted to observe the performance of sensors. It has been found that porphyrin based sensor shows higher affinity towards ethyl alcohol.

  20. Self-organization of porphyrin units induced by magnetic field during sol-gel polymerization.

    Science.gov (United States)

    Lerouge, Frédéric; Cerveau, Geneviève; Corriu, Robert J P; Stern, Christine; Guilard, Roger

    2007-04-21

    The use of a magnetic field as a controlling factor during the hydrolysis-polycondensation of porphyrin precursors substituted by Si(OR)(3) groups, induces a self-organization of porphyrin moieties due to the stacking of these units in the hybrid material and this study also confirms the effect of the magnetic field in the nano- and micrometric organization during the kinetically controlled polycondensation process.

  1. Pt(II) porphyrin modified TiO{sub 2} composites as photocatalysts for efficient 4-NP degradation

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Duan [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian, Shaanxi 710069 (China); Li Jun, E-mail: junli@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian, Shaanxi 710069 (China); Min, Li [Datang Wujiang Gas Turbine Power Limited Liability Company, Jiangsu 215214 (China); Zengqi, Zhang; Chen, Wang [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian, Shaanxi 710069 (China)

    2012-05-01

    Three Pt(II) porphyrins 5,10,15,20-tetra-[2 or 3 or 4-(3-phenoxy)propoxy]phenyl porphyrin]platinum(II) (1-3) were synthesized and characterized spectroscopically. The corresponding Pt(II) porphyrins-TiO{sub 2} composites were then prepared and characterized by means of FT-IR and diffused reflectance spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of Pt(II) porphyrins-TiO{sub 2} catalyst was investigated by testing the photodegradation of 4-nitrophenol (4-NP) in aqueous solution under irradiation with Xenon lamp. The results indicated that Pt(II) porphyrins greatly enhanced the photocatalytic efficiency of bare TiO{sub 2} in photodegrading the 4-NP, and the distinct space tropisms of peripheral substituents in meso-sites of porphyrin ring led to different results.

  2. Excitation energy transfer in ruthenium (II)-porphyrin conjugates led to enhanced emission quantum yield and 1O2 generation

    International Nuclear Information System (INIS)

    Pan, Jie; Jiang, Lijun; Chan, Chi-Fai; Tsoi, Tik-Hung; Shiu, Kwok-Keung; Kwong, Daniel W.J.; Wong, Wing-Tak; Wong, Wai-Kwok; Wong, Ka-Leung

    2017-01-01

    Porphyrins are good photodynamic therapy (PDT) agents due to its flexibility for modifications to achieve tumor localization and photo-cytotoxicity against cancer. Yet they are not perfect. In a Ru(polypyridyl)-porphyrin system, the Ru(polypyridyl) moiety improves the water solubility and cell permeability. Consider the similar excited state energies between Ru(polypyridyl) and porphyrin moieties; a small perturbation (e.g. Zn(II) metalation) would lead to a marked change in the energy migration process. In this work, we have synthesized a series of porphyrins conjugated with Ru(polypyridyl) complexes using different linkers and investigated their photophysical properties, which included singlet oxygen quantum yield and their in vitro biological properties, resulting from linker variation and porphyrin modification by Zn(II) metalation. - Graphical abstract: Four amphiphilic ruthenium(II)-porphyrin complexes were prepared that display energy transfer conversion with zinc coordination, lysosome specific target, low dark toxicity and efficient photodynamic therapy.

  3. Structure Optimization of 21,23-Core-Modified Porphyrins Absorbing Long-Wavelength Light as Potential Photosensitizers Against Breast Cancer Cells

    National Research Council Canada - National Science Library

    Detty, Michael R

    2007-01-01

    .... The structures of two derivatives were determined unambiguously be x-ray crystallography including the structure of a cis-ABCC meso-substituted derivative and the structure of a cis-AB disubstituted derivative...

  4. Reduced graphene oxide and porphyrin. An interactive affair in 2-D.

    Science.gov (United States)

    Wojcik, Aleksandra; Kamat, Prashant V

    2010-11-23

    Photoexcited cationic 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP) undergoes charge-transfer interaction with chemically reduced graphene oxide (RGO). Formation of the ground-state TMPyP-RGO complex in solution is marked by the red-shift of the porphyrin absorption band. This complexation was analyzed by Benesi-Hildebrand plot. Porphyrin fluorescence lifetime reduced from 5 to 1 ns upon complexation with RGO, indicating excited-state interaction between singlet excited porphyrin and RGO. Femtosecond transient absorption measurements carried out with TMPyP adsorbed on RGO film revealed fast decay of the singlet excited state, followed by the formation of a longer-living product with an absorption maximum around 515 nm indicating the formation of a porphyrin radical cation. The ability of TMPyP-RGO to undergo photoinduced charge separation was further confirmed from the photoelectrochemical measurements. TMPyP-RGO coated conducting glass electrodes are capable of generating photocurrent under visible excitation. These results are indicative of the electron transfer between photoexcited porphyrin and RGO. The role of graphene in accepting and shuttling electrons in light-harvesting assemblies is discussed.

  5. Real-time porphyrin detection in plaque and caries: a case study

    Science.gov (United States)

    Timoshchuk, Mari-Alina I.; Ridge, Jeremy S.; Rugg, Amanda L.; Nelson, Leonard Y.; Kim, Amy S.; Seibel, Eric J.

    2015-02-01

    An ultrathin scanning fiber endoscope, originally developed for cancer diagnosis, was used in a case study to locate plaque and caries. The imaging system incorporated software mitigation of background auto-fluorescence (AF). In conventional fluorescence imaging, varying AF across a tooth surface can mask low-level porphyrin signals. Laser-induced auto-fluorescence signals of dental tissue excited using a 405-nm laser typically produce fluorescence over a wavelength range extending from 440-nm to 750-nm. Anaerobic bacterial metabolism produces various porphyrin species (eg. protoporphyrin IX) that are located in carious enamel, dentin, gingivitis sites, and plaque. In our case study, these porphyrin deposits remained as long as one day after prophylaxis. Imaging the tooth surface using 405-nm excitation and subtracting the natural AF enhances the image contrast of low-level porphyrin deposits, which would otherwise be masked by the high background AF. In a case study, healthy tissues as well as sites of early and advanced caries formations were scanned for visual and quantitative signs of red fluorescence associated with porphyrin species using a background mitigation algorithm. Initial findings show increasing amplitudes of red fluorescence as caries severity increases from early to late stages. Sites of plaque accumulation also displayed red fluorescence similar to that found in carious dental tissue. The use of real-time background mitigation of natural dental AF can enhance the detection of low porphyrin concentrations that are indicators of early stage caries formation.

  6. Photoluminescence and dynamics of excitation relaxation in graphene oxide-porphyrin nanorods composite

    International Nuclear Information System (INIS)

    Khenfouch, M.; Wéry, J.; Baïtoul, M.; Maaza, M.

    2014-01-01

    Generally, porphyrin nanostructured materials are known by playing many roles such as photoconductors, photovoltaics and capable of light induced charging. Also their combination with acceptors like graphene, the rising two dimension material, added exciting physical and chemical properties. In this work, Morphology, optical absorption and photoluminescence properties were investigated in order to elucidate the interaction between the few layered graphene oxide (FGO) and pophyrin nanorods. Reporting on the photoluminescence (PL) of both porphyrin nanorods and FGO/porphyrin nanorods composite, synthesized via a self-assembly method, we have experimentally demonstrated the generation of a new photoluminescence band giving rise to a white light. This luminescence was studied by the analysis of its origins and dynamics which show a huge change of exciton life time found to be longer after the interaction with graphene oxide (GO) sheets. -- Highlights: • We prepared FGO-porphyrin nanorods composite via a simple chemical method. • Luminescence properties were studied presenting the absorption, photoluminescence and dynamics measurements. • These results show the emission of a white light which we studied its emissions origins. • TEM images show FGO sheets decorated with porphyrin nanorods. • FGO had like effect an increase of the exciton lifetime in porphyrin nanorods

  7. Uncharged water-soluble porphyrin tweezers as a supramolecular sensor for α-amino acids

    International Nuclear Information System (INIS)

    Villari, Valentina; Mineo, Placido; Micali, Norberto; Angelini, Nicola; Vitalini, Daniele; Scamporrino, Emilio

    2007-01-01

    The binding between uncharged cobalt porphyrin tweezers and L-amino acids in aqueous solutions is studied by means of UV-vis and circular dichroism spectroscopy. By varying the length of the aliphatic bridge between the two porphyrin units, the number of cobalt ions in the porphyrin cores and the pH of the solution, the chirality induction phenomenon has been investigated. The binding of the amino acid to the porphyrin seems to occur via a coordination mechanism between the metal and the nitrogen of the amino group; the steric, hydrophobic and π-π interactions operate to stabilize the complexes. The chirogenesis displays an opposite behaviour in the presence of aromatic guests with respect to the non-aromatic ones. Moreover, the UV-vis and the induced circular dichroism spectral changes suggest that the amino acid arrangement in the tweezers is determined by many factors, so that, unlike in organic solvent, the porphyrin tweezers in aqueous solution allow for two different arrangements of the same aromatic amino acid. The experimental findings indicate that the porphyrins tweezers reported in the paper are promising in opening perspectives toward their application as a selective molecular sensor in aqueous solutions directly

  8. Fluorescence quenching behaviour of uric acid interacting with water-soluble cationic porphyrin

    International Nuclear Information System (INIS)

    Makarska-Bialokoz, Magdalena; Borowski, Piotr

    2015-01-01

    The process of association between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H 2 TTMePP) and uric acid as well as its sodium salt has been studied in aqueous NaOH solution analysing its absorption and steady-state fluorescence spectra. The fluorescence quenching effect observed during interactions porphyrin-uric acid compounds points at the fractional accessibility of the fluorophore for the quencher. The association and fluorescence quenching constants are of the order of magnitude of 10 5 mol −1 . The fluorescence lifetimes and the quantum yields of the porphyrin anionic form were established. The results demonstrate that uric acid and its sodium salt can interact with H 2 TTMePP at basic pH and through formation of stacking complexes are able to quench its ability to emission. - Highlights: • Association study of water soluble cationic porphyrin with uric acid. • Porphyrin absorption spectra undergo the bathochromic and hypochromic effects. • Uric acid interacts with porphyrin in inhibiting manner, quenching its emission. • Fluorescence quenching effect testifies for the partial inactivation of a porphyrin. • The association and fluorescence quenching constants were calculated

  9. Fluorescence quenching behaviour of uric acid interacting with water-soluble cationic porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Makarska-Bialokoz, Magdalena, E-mail: makarska@hektor.umcs.lublin.pl [Department of Inorganic Chemistry, Maria Curie-Sklodowska University M. C. Sklodowska Sq. 2, 20-031 Lublin (Poland); Borowski, Piotr [Faculty of Chemistry, Maria Curie-Sklodowska University M. C. Sklodowska Sq. 3, 20-031 Lublin (Poland)

    2015-04-15

    The process of association between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H{sub 2}TTMePP) and uric acid as well as its sodium salt has been studied in aqueous NaOH solution analysing its absorption and steady-state fluorescence spectra. The fluorescence quenching effect observed during interactions porphyrin-uric acid compounds points at the fractional accessibility of the fluorophore for the quencher. The association and fluorescence quenching constants are of the order of magnitude of 10{sup 5} mol{sup −1}. The fluorescence lifetimes and the quantum yields of the porphyrin anionic form were established. The results demonstrate that uric acid and its sodium salt can interact with H{sub 2}TTMePP at basic pH and through formation of stacking complexes are able to quench its ability to emission. - Highlights: • Association study of water soluble cationic porphyrin with uric acid. • Porphyrin absorption spectra undergo the bathochromic and hypochromic effects. • Uric acid interacts with porphyrin in inhibiting manner, quenching its emission. • Fluorescence quenching effect testifies for the partial inactivation of a porphyrin. • The association and fluorescence quenching constants were calculated.

  10. Dehalogenation of chloroalkanes by nickel(i) porphyrin derivatives, a computational study.

    Science.gov (United States)

    Szatkowski, L; Hall, M B

    2016-11-14

    The nickel(i) octaethylisobacteriochlorin anion ([OEiBCh-Ni (I) ] - ) is commonly used as a synthetic model of cofactor F 430 from Methyl-Coenzyme M Reductase. In this regard, experimental studies show that [OEiBCh-Ni (I) ] - can catalyze dehalogenation of aliphatic halides in DMF solution by a highly efficient S N 2 reaction. To better understand this process, we constructed theoretical models of the dehalogenation of chloromethane by a simple nickel(i) isobacteriochlorin anion and compared its reactivity with that of similar Ni (I) complexes with other porphyrin-derived ligands: porphyrin, chlorin, bactreriochlorin, hexahydroporphyrin and octahydroporphyrin. Our calculations predict that all of the porphyrin derivative's model reactions proceed through low-spin complexes. Relative to the energy of the separate reactants the theoretical activation energies (free-energy barriers with solvation corrections) for the dehalogenation of chloromethane are similar for all of the porphyrin derivatives and range for the different functionals from 10-15 kcal mol -1 for B3LYP to 5-10 kcal mol -1 for M06-L and to 13-18 kcal mol -1 for ωB97X-D. The relative free energies of the products of the dehalogenation step, L-Ni-Me adducts, have a range from -5 to -40 kcal mol -1 for all functionals; generally becoming more negative with increasing saturation of the porphyrin ligand. Moreover, no significant differences in the theoretical chlorine kinetic isotope effect were discernable with change of porphyrin ligand.

  11. Copolymerisation of Propylene Oxide and Carbon Dioxide by Dinuclear Cobalt Porphyrins

    KAUST Repository

    Anderson, Carly E.

    2013-09-18

    Two dinuclear cobalt porphyrins comprising different structural tethering motifs at the porphyrin periphery were synthesised, along with a representative mononuclear cobalt porphyrin, and their catalytic activities tested towards carbon dioxide-propylene oxide copolymerisation in the presence of bis(triphenylphosphoranyl)ammonium chloride cocatalyst. The catalytic activities of the mononuclear and the bis-para-tethered dinuclear cobalt porphyrin with selective formation of poly(propylene carbonate) are largely comparable, showing no benefit of dinuclearity in contrast to the case of cobalt salen complexes and suggesting that polymer growth proceeds exclusively from one metal centre. The alternative bis-ortho-tethered porphyrin demonstrated considerably reduced activity, with dominant formation of cyclic propylene carbonate, as a result of hindered substrate approach at the metal centre. Time-resolved UV/Vis spectroscopic studies suggested a general intolerance of the cobalt(III) porphyrin catalysts towards the copolymerisation conditions in the absence of carbon dioxide pressure, leading to catalytically inactive cobalt(II) species. In the presence of carbon dioxide, the bis-ortho-tethered catalyst showed the fastest deactivation, which is related to an unfavourable steric arrangement of the linker fragment, as was also confirmed by NMR spectroscopic measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Copolymerisation of Propylene Oxide and Carbon Dioxide by Dinuclear Cobalt Porphyrins

    KAUST Repository

    Anderson, Carly E.; Vagin, Sergei I.; Hammann, Markus; Zimmermann, Leander; Rieger, Bernhard

    2013-01-01

    Two dinuclear cobalt porphyrins comprising different structural tethering motifs at the porphyrin periphery were synthesised, along with a representative mononuclear cobalt porphyrin, and their catalytic activities tested towards carbon dioxide-propylene oxide copolymerisation in the presence of bis(triphenylphosphoranyl)ammonium chloride cocatalyst. The catalytic activities of the mononuclear and the bis-para-tethered dinuclear cobalt porphyrin with selective formation of poly(propylene carbonate) are largely comparable, showing no benefit of dinuclearity in contrast to the case of cobalt salen complexes and suggesting that polymer growth proceeds exclusively from one metal centre. The alternative bis-ortho-tethered porphyrin demonstrated considerably reduced activity, with dominant formation of cyclic propylene carbonate, as a result of hindered substrate approach at the metal centre. Time-resolved UV/Vis spectroscopic studies suggested a general intolerance of the cobalt(III) porphyrin catalysts towards the copolymerisation conditions in the absence of carbon dioxide pressure, leading to catalytically inactive cobalt(II) species. In the presence of carbon dioxide, the bis-ortho-tethered catalyst showed the fastest deactivation, which is related to an unfavourable steric arrangement of the linker fragment, as was also confirmed by NMR spectroscopic measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural and Molecular Characterization of meso-Substituted Zinc Porphyrins: A DFT Supported Study

    Directory of Open Access Journals (Sweden)

    Giuseppe Mele

    2011-12-01

    Full Text Available Structural parameters of a range of over 100 meso-substituted zinc porphyrins were reviewed and compared to show how far the nature of the functional group may affect the interatomic distances and bond angles within the porphyrin core. It was proved that even despite evident deformations of the molecular structure, involving twisting of the porphyrin's central plane, the coupled π-bonding system remains flexible and stable. DFT calculations were applied to a number of selected porphyrins representative for the reviewed compounds to emphasize the relevance of theoretical methods in structural investigations of complex macrocyclic molecular systems. Experimental and DFT-simulated IR spectral data were reported and analyzed in context of the individual molecular features introduced by the meso substituents into the porphyrin moiety base. Raw experimental spectral data, including 1H- and 13C-NMR, UV-Vis, FTIR, XRD, and other relevant physicochemical details have been provided for a specially chosen reference zinc porphyrin functionalized by tert-butylphenyl groups.

  14. Photoluminescence and dynamics of excitation relaxation in graphene oxide-porphyrin nanorods composite

    Energy Technology Data Exchange (ETDEWEB)

    Khenfouch, M., E-mail: khenfouch@yahoo.fr [University Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar el Mahraz, Laboratory of Solid State Physics, Group of Polymers and Nanomaterials, BP 1796 Atlas, Fez 30 000 (Morocco); iThemba LABS-National Research Foundation of South Africa, Old Faure Road, PO Box 722, Somerset West 7129, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Wéry, J. [Institut des Matériaux Jean Rouxel, Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes, Cedex 3 (France); Baïtoul, M., E-mail: baitoul@yahoo.fr [University Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar el Mahraz, Laboratory of Solid State Physics, Group of Polymers and Nanomaterials, BP 1796 Atlas, Fez 30 000 (Morocco); Maaza, M. [iThemba LABS-National Research Foundation of South Africa, Old Faure Road, PO Box 722, Somerset West 7129, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa)

    2014-01-15

    Generally, porphyrin nanostructured materials are known by playing many roles such as photoconductors, photovoltaics and capable of light induced charging. Also their combination with acceptors like graphene, the rising two dimension material, added exciting physical and chemical properties. In this work, Morphology, optical absorption and photoluminescence properties were investigated in order to elucidate the interaction between the few layered graphene oxide (FGO) and pophyrin nanorods. Reporting on the photoluminescence (PL) of both porphyrin nanorods and FGO/porphyrin nanorods composite, synthesized via a self-assembly method, we have experimentally demonstrated the generation of a new photoluminescence band giving rise to a white light. This luminescence was studied by the analysis of its origins and dynamics which show a huge change of exciton life time found to be longer after the interaction with graphene oxide (GO) sheets. -- Highlights: • We prepared FGO-porphyrin nanorods composite via a simple chemical method. • Luminescence properties were studied presenting the absorption, photoluminescence and dynamics measurements. • These results show the emission of a white light which we studied its emissions origins. • TEM images show FGO sheets decorated with porphyrin nanorods. • FGO had like effect an increase of the exciton lifetime in porphyrin nanorods.

  15. π -Plasmon model for carbon nano structures: Application to porphyrin

    International Nuclear Information System (INIS)

    Ha, Dao Thu; Anh, Chu Thuy; Nga, Do Thi; Thanh, Le Minh; Van, Tran Thi Thanh; Viet, Nguyen Ai

    2016-01-01

    In traditional concept, the optical properties of semiconductors and semimetals near their fundamental optical band gaps are attributed to single excitations (such electron-hole pairs, excitons...). In our earlier article, we proposed the collective mechanism of π -plasmons for optical properties of low dimensional carbon nano structures. A simple way to calculate the peak positions of UV-vis absorption spectra was pointed out and gave a good agreement with experimental data. In this work we analyze different schemas to calculate the UV-vis absorption peaks. A new parameter k which characterizes the dependence of schema on geometry and number of carbon sites is defined. As an example, the case of porphyrin was investigated. (paper)

  16. Respiratory Monitoring by Porphyrin Modified Quartz Crystal Microbalance Sensors

    Directory of Open Access Journals (Sweden)

    Seung-Woo Lee

    2011-01-01

    Full Text Available A respiratory monitoring system based on a quartz crystal microbalance (QCM sensor with a functional film was designed and investigated. Porphyrins 5,10,15,20-tetrakis-(4-sulfophenyl-21H,23H-porphine (TSPP and 5,10,15,20-tetrakis-(4-sulfophenyl-21H, 23H-porphine manganese (III chloride (MnTSPP used as sensitive elements were assembled with a poly(diallyldimethyl ammonium chloride (PDDA. Films were deposited on the QCM resonators using layer-by-layer method in order to develop the sensor. The developed system, in which the sensor response reflects lung movements, was able to track human respiration providing respiratory rate (RR and respiratory pattern (RP. The sensor system was tested on healthy volunteers to compare RPs and calculate RRs. The operation principle of the proposed system is based on the fast adsorption/desorption behavior of water originated from human breath into the sensor films deposited on the QCM electrode.

  17. Lipophilic manganese porphyrin crosses blood-brain barrier

    International Nuclear Information System (INIS)

    Nelson, J.A.; Cegnar, J.; Spence, A.M.; Richards, T.L.; Golden, R.N.; Muzi, M.

    1987-01-01

    Most reports on manganese porphyrins as MR imaging contrast agents have focused on a water-soluble compound, Mn-TPPS4. Phototherapy researchers have noted that lipophilic components of hematoporphyrin derivative sensitize normal brain tissue to light-stimulated photodestruction. This observation suggests that a lipophilic paramagnetic agent might be useful for brain contrast enhancement. The current experiments were designed to test the MR imaging effects of a lipid-soluble compound, Mn-mesoporphyrin. An intravenous injection of 0.05 μmoles/kg was administered to rats with a well-characterized astrocytic glioma implanted into the right cerebral hemisphere. MR imaging experiments performed at 2 T on a General Electric CSI-II system revealed T1 relaxation shortening in both normal brain and tumor. Delayed images at 24 hours revealed persistent selective contrast agent enhancement at the gross tumor site

  18. FLUORESCENT DIAGNOSTICS OF MALIGNANT SKIN TUMORS WITH CHLORIN SERIES PHOTOSENSITIZERS

    Directory of Open Access Journals (Sweden)

    E. V. Yaroslavtseva-Isaeva

    2018-01-01

    Full Text Available The article shows possibilities in fluorescence imaging of malignant skin tumors with chlorin series photosensitizers (PS photolon and fotoditazin. The regularities of photosensitizer accumulation from the data of local fluorescence spectroscopy depending on the PS and its dose, the clinical picture and the histological form of the malignant skin neoplasm is investigated. It is shown that the level and selectivity of PS accumulation in the tumor focus depends on the PS dose. In studies on 10 patients with basal cell skin cancer after the introduction of fotoditazin at a dose less than 1 mg/kg, fluorescent contrast between tumor and healthy tissue varied between 1.3 and 9.5, the average was 2.8±0.3; for patients who had the administered fotoditazin dose of 1 mg/kg, fluorescent contrast was 2.9±0.4, varying from 1.4 to 5. In a study with 127 patients after the introduction of photolon in the dose of 0.7-1 mg/kg, the average value of the fluorescence intensity in relative units in the intact skin was 6.9±0.3 (min 4.6, max 12.2, at a dose of 1.1 to 1.4 mg/kg – 8.0±0.3 (min 4.6, max 12.5, at a dose of 1.5-2 mg/kg – 9.9±0.7 (min 5.7, max 20.3. It is also shown that fluorescence intensity of malignant neoplasm of the skin with the same dose of the photosensitizer depends on the neoplasm’s clinical and histological forms. So, 3 hours after the introduction of photolon at a dose of 1.3 mg/kg the average fluorescent contrast in the surface type of skin cancer was 2.7±0.5, in the nodal form – 2.3±0.2, in erosive-ulcerative form – 3.6±0.3. In patients with nodular form of squamous skin cancer after the introduction of photolon at a dose of 1.3 mg/kg fluorescent contrast was significantly higher (p<0.05 (average of 2.8±0.2 than in the nodular form of basal cell carcinoma after the introduction of photolon at the same dose (average of 2.1±0.2.

  19. Single-step electron transfer on the nanometer scale: ultra-fast charge shift in strongly coupled zinc porphyrin-gold porphyrin dyads.

    Science.gov (United States)

    Fortage, Jérôme; Boixel, Julien; Blart, Errol; Hammarström, Leif; Becker, Hans Christian; Odobel, Fabrice

    2008-01-01

    The synthesis, electrochemical properties, and photoinduced electron transfer processes of a series of three novel zinc(II)-gold(III) bisporphyrin dyads (ZnP--S--AuP(+)) are described. The systems studied consist of two trisaryl porphyrins connected directly in the meso position via an alkyne unit to tert-(phenylenethynylene) or penta(phenylenethynylene) spacers. In these dyads, the estimated center to center interporphyrin separation distance varies from 32 to 45 A. The absorption, emission, and electrochemical data indicate that there are strong electronic interactions between the linked elements, thanks to the direct attachment of the spacer on the porphyrin ring through the alkyne unit. At room temperature in toluene, light excitation of the zinc porphyrin results in almost quantitative formation of the charge shifted state (.+)ZnP--S--AuP(.), whose lifetime is in the order of hundreds of picoseconds. In this solvent, the charge-separated state decays to the ground state through the intermediate population of the zinc porphyrin triplet excited state. Excitation of the gold porphyrin leads instead to rapid energy transfer to the triplet ZnP. In dichloromethane the charge shift reactions are even faster, with time constants down to 2 ps, and may be induced also by excitation of the gold porphyrin. In this latter solvent, the longest charge-shifted lifetime (tau=2.3 ns) was obtained with the penta-(phenylenethynylene) spacer. The charge shift reactions are discussed in terms of bridge-mediated super-exchange mechanisms as electron or hole transfer. These new bis-porphyrin arrays, with strong electronic coupling, represent interesting molecular systems in which extremely fast and efficient long-range photoinduced charge shift occurs over a long distance. The rate constants are two to three orders of magnitude larger than for corresponding ZnP--AuP(+) dyads linked via meso-phenyl groups to oligo-phenyleneethynylene spacers. This study demonstrates the critical

  20. Helium diffusion in irradiated boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.

    1981-03-01

    Boron carbide has been internationally adopted as the neutron absorber material in the control and safety rods of large fast breeder reactors. Its relatively large neutron capture cross section at high neutron energies provides sufficient reactivity worth with a minimum of core space. In addition, the commercial availability of boron carbide makes it attractive from a fabrication standpoint. Instrumented irradiation experiments in EBR-II have provided continuous helium release data on boron carbide at a variety of operating temperatures. Although some microstructural and compositional variations were examined in these experiments most of the boron carbide was prototypic of that used in the Fast Flux Test Facility. The density of the boron carbide pellets was approximately 92% of theoretical. The boron carbide pellets were approximately 1.0 cm in diameter and possessed average grain sizes that varied from 8 to 30 μm. Pellet centerline temperatures were continually measured during the irradiation experiments

  1. Combination of photosensitive elements for use in radiography

    International Nuclear Information System (INIS)

    Bollen, R.H.; Vandenabeele, H.

    1976-01-01

    A new and improved combination of photosensitive elements is proposed that can be used in radiography. The combination according to the invention is composed of an X-ray fluorescence intensifying screen and a photographic halide of silver containing a color coupler. The color coupler causes a negative silver image and a color image to be formed in the material. The fluorescent layer of the fluorescence screen contains a mixture of lanthanum oxychloride or lanthanum oxybromide activated with terbium or terbium and ytterbium. Detailed information about variants in the composition of the fluorescent substance, the grain sizes of the silver halides, variations of the color couplers and about the coating of the single layers is given. (UWI) [de

  2. Photosensitized Oxygenations of Hexamethylbenzene in Phase Contact Enhanced Microreactor

    International Nuclear Information System (INIS)

    Park, Chan Yi; Park, Jeong Hyeon; Lim Hyo Jin; Hwang, Geumsook; Park, Chan Pil

    2014-01-01

    Activated singlet oxygen ( 1 O 2 ) has successfully been utilized in production of various compounds including fragrances, pharmaceuticals, and fine chemicals. However, the traditional reaction required a prolonged reaction time due to the difficulty of introducing adequate light and oxygen into the solution. Low contact probability between four species of oxygen, photosensitizer, light, and reagent is an inherent drawback of the traditional photoreaction. Molecular diffusion distance is the most important factor in the heterogeneous reactions including gas-liquid, gassolid, liquid-solid, and immiscible liquid-liquid. Therefore, rates of reaction are closely depended on the distance. Microreactor has provided a distinct advantage in the short molecular diffusion distance due to the high surface-to-volume ratio driven by narrow fluidic channels

  3. Photodynamic therapy of cancer with the photosensitizer PHOTOGEM

    Science.gov (United States)

    Sokolov, Victor V.; Chissov, Valery I.; Filonenko, E. V.; Sukhin, Garry M.; Yakubovskaya, Raisa I.; Belous, T. A.; Zharkova, Natalia N.; Kozlov, Dmitrij N.; Smirnov, V. V.

    1995-01-01

    The first clinical trials of photodynamic therapy (PDT) in Russia were started in P. A. Hertzen Moscow Research Oncology Institute in October of 1992. Up to now, 61 patients with primary or recurrent malignant tumors of the larynx (3), trachea (1), bronchus (11), nose (1), mouth (3), esophagus (12), vagina and uterine cervix (3), bladder (2), skin (6), and cutaneous and subcutaneous metastases of breast cancer and melanomas (6) have been treated by PDT with the photosensitizer Photogem. At least partial tumor response was observed in all of the cases, but complete remission indicating no evident tumors has been reached in 51% of the cases. Among 29 patients with early and first stage cancer 14 patients had multifocal tumors. Complete remission of tumors in this group reached 86%.

  4. Metal-porphyrin interactions. V. Kinetics of cyanide addition to a water soluble iron porphyrin dimer(1)

    Energy Technology Data Exchange (ETDEWEB)

    Hambright, P; Rishnamurthy, M K

    1975-01-01

    The kinetics of cyanide addition to the water-soluble oxybridged iron dimer of tetra (p-sulophenyl) porphin indicate that HCN is the reactant. The rate law is of the form: Rate = (3.8 +- 0.2) x 10/sup 4/ (Fe dimer) (HCN)/(1 + (3.1 +- 0.3) x 10/sup 10/ (H/sup +/)) at 25/sup 0/ ..mu.. = 0.7 (NaNO/sub 3/). The cyano iron dimer dissociates into dicyano iron monomers by two pathways, one first order in (H/sup +/), and one proportional to (H/sup +/)(CN/sup -/)/sup 2/. The mechanism of this dimer reaction is compared to iron porphyrin monomer systems.

  5. Induction of photosensitivity in sheep with Erodium moschatum (L. L'Hérit

    Directory of Open Access Journals (Sweden)

    J.C. Stroebel

    2002-07-01

    Full Text Available Erodium moschatum is an exotic weed in the southern and southwestern coastal areas of the Western Cape Province (WCP, South Africa. It has been suspected as the cause of photosensitivity in sheep. However, attempts to induce photosensitivity by dosing it to sheep have thus far been unsuccessful. During August 1999, 2 sheep suffering from severe photosensitivity were presented for clinical examination to the Western Cape Provincial Veterinary Laboratory (WCPVL. One sheep was sacrificed for autopsy. Except for skin lesions associated with photosensitivity, no icterus or other lesions were present. Histopathological examination of affected skin revealed epidermal necrosis while the liver had no microscopic lesions. It was therefore concluded that the sheep might have been suffering from primary photosensitivity. The farmfrom which the sheep came, situated in the Malmesbury district, WCP, was visited to determine the source of the photodynamic agent. The flock from which the sheep originated had been grazing in a camp where E. moschatum was growing abundantly and had been heavily grazed. Some remaining Erodium in the camp was collected, pulped and dosed over a period of 7 days to an adult sheep. Another sheep was dosed simultaneously with Erodium growing on the premises of the WCPVL. Both sheep developed mild photosensitivity, which was confirmed by histopathological examination of skin biopsies. It was concluded that E. moschatum can induce photosensitivity (probably the primary type in sheep if ingested in large quantities.

  6. Light-induced antibacterial activity of electrospun chitosan-based material containing photosensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Severyukhina, A.N., E-mail: severyuhina_alexandra@mail.ru [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Petrova, N.V.; Yashchenok, A.M. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Bratashov, D.N. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Department of Nano- and Biomedical Technologies, Saratov State University, 410012 Saratov (Russian Federation); Smuda, K. [Institute of Transfusion Medicine, Charité-Universitätsmedizin, 10117 Berlin (Germany); Mamonova, I.A. [Institute of Traumatology and Orthopedics, 410002 Saratov (Russian Federation); Yurasov, N.A. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Puchinyan, D.M. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Institute of Traumatology and Orthopedics, 410002 Saratov (Russian Federation); Georgieva, R. [Institute of Transfusion Medicine, Charité-Universitätsmedizin, 10117 Berlin (Germany); Department of Medical Physics, Biophysics and Radiology, Medical Faculty, Trakia University, 6000 Stara Zagora (Bulgaria); Bäumler, H. [Institute of Transfusion Medicine, Charité-Universitätsmedizin, 10117 Berlin (Germany); Lapanje, A. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Josef Stefan Institute, 1000 Ljubljana (Slovenia); Gorin, D.A. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Department of Nano- and Biomedical Technologies, Saratov State University, 410012 Saratov (Russian Federation)

    2017-01-01

    Increasing antimicrobial resistance requires the development of novel materials and approaches for treatment of various infections. Utilization of photodynamic therapy represents an advanced alternative to antibiotics and metal-based agents. Here, we report the fabrication of electrospun material that possesses benefits of both topical antimicrobial and photodynamic therapies. This material combines chitosan, as a biocompatible polymer, and a second generation photosensitizer. The incorporation of photosensitizer doesn't affect the material morphology and its nearly uniform distribution in fibers structure was observed by confocal Raman microscopy. Owing to photosensitizer the prepared material exhibits the light-induced and spatially limited antimicrobial activity that was demonstrated against Staphylococcus aureus, an important etiological infectious agent. Such material can be potentially used in antibacterial therapy of chronic wounds, infections of diabetic ulcers, and burns, as well as rapidly spreading and intractable soft-tissue infections caused by resistant bacteria. - Highlights: • Chitosan with a phthalocyanine photosensitizer was electrospun into fibers. • Photosensitizer was uniformly distributed in the electrospun material. • The incorporation of photosensitizer does not affect the fiber morphology. • Chitosan/photosensitizer composites possess light-induced antibacterial activity. • The antibacterial activity of the material is limited to the area of irradiation.

  7. Primary system boron dilution analysis

    International Nuclear Information System (INIS)

    Crump, R.J.; Naretto, C.J.; Borgen, R.A.; Rockhold, H.C.

    1978-01-01

    The results are presented for an analysis conducted to determine the potential paths through which nonborated water or water with insufficient boron concentration might enter the LOFT primary coolant piping system or reactor vessel to cause dilution of the borated primary coolant water. No attempt was made in the course of this analysis to identify possible design modifications nor to suggest changes in administrative procedures or controls

  8. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  9. Boron removal from geothermal waters by electrocoagulation

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar; Yilmaz, M. Tolga; Paluluoglu, Cihan

    2008-01-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm 2 , but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%

  10. Removal of boron (B) from waste liquors.

    Science.gov (United States)

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  11. A Study of the Operation of Especially Designed Photosensitive Gaseous Detectors at Cryogenic Temperatures

    CERN Document Server

    Periale, L; Lund-Jensen, B; Pavlopoulos, P; Peskov, Vladimir; Picchi, P; Pietropaolo, F

    2006-01-01

    In some experiments and applications there is need for large-area photosensitive detectors to operate at cryogenic temperatures. Nowadays, vacuum PMs are usually used for this purpose. We have developed special designs of planar photosensitive gaseous detectors able to operate at cryogenic temperatures. Such detectors are much cheaper PMs and are almost insensitive to magnetic fields. Results of systematic measurements of their quantum efficiencies, the maximum achievable gains and long-term stabilities will be presented. The successful operation of these detectors open realistic possibilities in replacing PMs by photosensitive gaseous detectors in some applications dealing with cryogenic liquids; for example in experiments using noble liquid TPCs or noble liquid scintillating calorimeters.

  12. Fluorescence spectroscopic studies on substituted porphyrins in homogeneous solvents and cationic micellar medium

    International Nuclear Information System (INIS)

    Phukan, Smritakshi; Mishra, Bhupendra; Chandra Shekar, K.P.; Kumar, Anil; Kumar, Dalip; Mitra, Sivaprasad

    2013-01-01

    Steady state and time-resolved fluorescence properties of porphyrin appended 1,3,4-oxadiazoles and thiazoles were described in homogeneous medium as well as in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB). The electron withdrawing substituent on the porphyrin moiety in both the cases make a donor–spacer–acceptor type of intramolecular photoinduced electron transfer (PET) system resulting substantial quenching in porphyrin fluorescence due to partial energy migration towards the acceptor in the excited state. The increase in fluorescence yield as well as appreciable difference in fluorescence decay behavior in aqueous buffer solution of pH 4.2 from that in chloroform solution is believed due to partial protonation of the porphyrin ring. All the investigated systems show preferential binding into the interfacial region of the micellar sub-domain with varying degree of penetration depending on the nature of the substituent. Almost 2–4 fold increase in fluorescence yield for the probes is explained on the basis of restricted flexibility and corresponding decrease in total nonradiative rate inside the micellar interface layer. - Highlights: ► Synthesis and detail fluorescence studies of a series of porphyrin appended 1,3,4-oxadiazoles and thiazoles. ► Comparison of homogeneous solvent study with that in CTAB. ► Substantial porphyrin fluorescence quenching in donor–spacer–acceptor type system. ► Preferential binding of the substituted porphyrins in micellar sub-domain. ► Appreciable increase in fluorescence yield in micellar interface layer is due to decrease in total nonradiative rate.

  13. Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds.

    Science.gov (United States)

    Bari, Sara E; Amorebieta, Valentín T; Gutiérrez, María M; Olabe, José A; Doctorovich, Fabio

    2010-01-01

    The reactions of hydroxylamine (HA) with several water-soluble iron(III) porphyrinate compounds, namely iron(III) meso-tetrakis-(N-ethylpyridinium-2yl)-porphyrinate ([Fe(III)(TEPyP)](5+)), iron(III) meso-tetrakis-(4-sulphonatophenyl)-porphyrinate ([Fe(III)(TPPS)](3-)), and microperoxidase 11 ([Fe(III)(MP11)]) were studied for different [Fe(III)(Porph)]/[HA] ratios, under anaerobic conditions at neutral pH. Efficient catalytic processes leading to the disproportionation of HA by these iron(III) porphyrinates were evidenced for the first time. As a common feature, only N(2) and N(2)O were found as gaseous, nitrogen-containing oxidation products, while NH(3) was the unique reduced species detected. Different N(2)/N(2)O ratios obtained with these three porphyrinates strongly suggest distinctive mechanistic scenarios: while [Fe(III)(TEPyP)](5+) and [Fe(III)(MP11)] formed unknown steady-state porphyrinic intermediates in the presence of HA, [Fe(III)(TPPS)](3-) led to the well characterized soluble intermediate, [Fe(II)(TPPS)NO](4-). Free-radical formation was only evidenced for [Fe(III)(TEPyP)](5+), as a consequence of a metal centered reduction. We discuss the catalytic pathways of HA disproportionation on the basis of the distribution of gaseous products, free radicals formation, the nature of porphyrinic intermediates, the Fe(II)/Fe(III) redox potential, the coordinating capabilities of each complex, and the kinetic analysis. The absence of NO(2)(-) revealed either that no HAO-like activity was operative under our reaction conditions, or that NO(2)(-), if formed, was consumed in the reaction milieu.

  14. REGIOSELECTIVE OXIDATIONS OF EQUILENIN DERIVATIVES CATALYZED BY A RHODIUM (III) PORPHYRIN COMPLEX-CONTRAST WITH THE MANGANESE (III) PORPHYRIN. (R826653)

    Science.gov (United States)

    AbstractEquilenin acetate and dihydroequilenin acetate were oxidized with iodosobenzene and a rhodium(III) porphyrin catalyst. The selectivity of the reactions differs from that with the corresponding Mn(III) catalyst, or from that of free radical chain oxidation.

  15. A technique to prepare boronated B72.3 monoclonal antibody for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Ranadive, G.N.; Rosenzweig, H.S.; Epperly, M.W.

    1993-01-01

    B72.3 monoclonal antibody has been successfully boronated using mercaptoundecahydro-closo-dodecaborate (boron cage compound). The reagent was incorporated by first reacting the lysine residues of the antibody with m-maleimidobenzoyl succinimide ester (MBS), followed by Michael addition to the maleimido group by the mercapto boron cage compound to form a physiologically stable thioether linkage. Boron content of the antibody was determined by atomic absorption spectroscopy. For biodistribution studies, boronated antibody was radioiodinated with iodogen. 125 I-labeled and boronated B72.3 monoclonal antibody demonstrated clear tumor localization when administered via tail vein injections to athymic nude mice bearing LS174-T tumor xenografts. Boronated antibody was calculated to deliver 10 6 boron atoms per tumor cell. Although this falls short of the specific boron content originally proposed as necessary for boron neutron capture therapy (BNCT), recent calculations suggest that far fewer atoms of 10 B per tumor cell would be necessary to effect successful BNCT when the boron is targeted to the tumor cell membrane. (author)

  16. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    Science.gov (United States)

    Zhong, Qiwen

    photosynthesis. Photosynthesis uses light from the sun to drive a series of chemical reactions. Most natural photosynthetic systems utilize chlorophylls to absorb light energy and carry out photochemical charge separation that stores energy in the form of chemical bonds. The sun produces a broad spectrum of light output that ranges from gamma rays to radio waves. The entire visible range of light (400-700 nm) and some wavelengths in the NIR (700-1000 nm), are highly active in driving photosynthesis. Although the most familiar chlorophyll-containing organisms, such as plants, algae and cyanobacteria, cannot use light longer than 700 nm, anoxygenic bacterium containing bacteriochlorophylls can use the NIR part of the solar spectrum. No organism is known to utilize light of wavelength longer than about 1000 nm for photosynthesis. NIR light has a very low-energy content in each photon, so that large numbers of these low-energy photons would have to be used to drive the chemical reactions of photosynthesis. This is thermodynamically possible but would require a fundamentally different molecular mechanism that is more akin to a heat engine than to photochemistry. Early work on developing light absorbing materials for OPVs was inspired by photosynthesis in which light is absorbed by chlorophyll. Structurally related to chlorophyll is the porphyrin family, which has accordingly drawn much interest as the potential light absorbing component in OPV applications. In this dissertation, the design and detail studies of several porphyrin-based NIR absorbing materials, including pi--extended perylenyl porphryins and pyrazole-containing carbaporphyrins, as well as porphyrin modified single-walled carbon nanotube hybrids, will be presented, dedicating efforts to develop novel and application-oriented materials for efficient utilization of sustainable solar energy.

  17. Boron carbide synthesis by carbothermic reduction of boron oxide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Paschoal, J.O.A.

    1988-01-01

    Boron carbide (B 4 C) is a ceramic material of technological applications due to its extreme hardness and high chemical as well as thermal stability. Some parameters of the process for obtaining B 4 C by carbothermic reduction of B 2 O 3 have been determined. The starting powders and the final products have been analysed by chemical, spectrographic and X-ray diffraction methods. The results show that the B 4 C obtained by the carbothermic reduction process is suitable for applications with a definite determination of the free carbon content. (author) [pt

  18. Effectiveness of partially soluble photosensitizer in photodynamic microbiological inactivation: a curcumin example

    Science.gov (United States)

    Pratavieira, Sebastião.; Matroodi, Fatima; Pinto-Júnior, Fabio Francisco; Rastelli, Alessandra Nara Souza; Bagnato, Vanderlei S.; Guimarães, Francisco E. G.

    2017-07-01

    We show that partial solubility of a photosensitizer is not necessarily a bad property when dealing with microbiological control. The presence of curcumin aggregates in solution may present advantages with respect the photoand chemical stability.

  19. White matter microstructural changes of thalamocortical networks in photosensitivity and idiopathic generalized epilepsy

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Moeller, Friederike; Siebner, Hartwig

    2012-01-01

    Photosensitivity or photoparoxysmal response (PPR) is an electroencephalography trait that is highly associated with idiopathic generalized epilepsies (IGEs) and characterized by changes in cortical excitability in response to photic stimulation. Studying functional and structural changes of PPR ...

  20. Raman and fluorescence microscopy to study the internalization and dissolution of photosensitizer nanoparticles into living cells

    Science.gov (United States)

    Scalfi-Happ, Claudia; Steiner, Rudolf; Wittig, Rainer; Graefe, Susanna; Ryabova, Anastasia; Loschenov, Victor

    2015-07-01

    In this present study we applied Raman and fluorescence microscopy to investigate the internalisation, cellular distribution and effects on cell metabolism of photosensitizer nanoparticles for photodynamic therapy in fibroblasts and macrophages.

  1. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Fitzsimmons, M.; Pynn, R.

    1997-01-01

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  2. New techniques for producing thin boron films

    International Nuclear Information System (INIS)

    Thomas, G.E.

    1988-01-01

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs

  3. Boron rates for triticale and wheat crops

    Directory of Open Access Journals (Sweden)

    Corrêa Juliano Corulli

    2005-01-01

    Full Text Available No reports are registered on responses to boron fertilization nutrient deficiency and toxicity in triticale crops. The aim of this study was to evaluate triticale response to different rates of boron in comparison to wheat in an hapludox with initial boron level at 0.08 mg dm-3 4 4 factorial design trial completely randomized blocks design (n = 4. Boron rates were 0; 0.62; 1.24 and 1.86 mg dm-3; triticale cultivars were IAC 3, BR 4 and BR 53 and IAPAR 38 wheat crop was used for comparison. The wheat (IAPAR 38 crop presented the highest boron absorption level of all. Among triticale cultivars, the most responsive was IAC 53, presenting similar characteristics to wheat, followed by BR 4; these two crops are considered tolerant to higher boron rates in soil. Regarding to BR 53, no absorption effect was observed, and the cultivars was sensitive to boron toxicity. Absorption responses differed for each genotype. That makes it possible to choose and use the best-adapted plants to soils with different boron rates.

  4. Hot flow behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; El-Wahabi, M.; Cabrera, J.M.

    2008-01-01

    This research work studies the effect of boron contents on the hot flow behavior of boron microalloyed steels. For this purpose, uniaxial hot-compression tests were carried out in a low carbon steel microalloyed with four different amounts of boron over a wide range of temperatures (950, 1000, 1050 and 1100 deg. C) and constant true strain rates (10 -3 , 10 -2 and 10 -1 s -1 ). Experimental results revealed that both peak stress and peak strain tend to decrease as boron content increases, which indicates that boron additions have a solid solution softening effect. Likewise, the flow curves show a delaying effect on the kinetics of dynamic recrystallization (DRX) when increasing boron content. Deformed microstructures show a finer austenitic grain size in the steel with higher boron content (grain refinement effect). Results are discussed in terms of boron segregation towards austenitic grain boundaries during plastic deformation, which increases the movement of dislocations, enhances the grain boundary cohesion and modificates the grain boundary structure

  5. Elastic modulus and fracture of boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Walther, G.

    1978-12-01

    The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C

  6. Synthesis and characterization of a novel series of meso (nitrophenyl and meso (carboxyphenyl substituted porphyrins

    Directory of Open Access Journals (Sweden)

    Schiavon Marco A.

    2000-01-01

    Full Text Available The anionic 5,10,15-tris(4-carboxyphenyl, 20-mono(2-nitrophenyl porphyrin (1, 5,10(or 15-bis(4-carboxyphenyl, 15(or 10,20-bis(2-nitrophenylporphyrin (2 and 5-mono(4-carboxyphenyl, 10,15,20-tris(2-nitrophenylporphyrin (3 were sinthesized directly by reaction of pyrrole with substituted benzaldehydes in nitrobenzene/propionic acid media. The benzaldehydes molar ratio was controlled to optimize the synthesis and purification of the desired porphyrins. This new series of porphyrins was characterised by TLC, mass spectrometry (FAB MS, ¹H NMR, UV/Vis, IR and electrochemistry. 5,10,15,20-Tetrakis(4-carboxyphenylporphyrin (4 and 5,10,15,20-Tetrakis(2-nitrophenylporphyrin (5 were also characterised for comparative purposes, completing the series The electrochemical reduction was investigated for the free base and corresponding iron(III porphyrins on glassy carbon and mercury electrodes. The reduction potentials showed the expected dependence on the number of electron-withdrawing nitro groups present on the porphyrin ring providing additional evidences for the characterisation of the synthesised compounds.

  7. A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cells

    KAUST Repository

    Ball, James M.

    2012-01-01

    The development of ruthenium-free sensitizers which absorb light over a broad range of the solar spectrum is important for improving the power conversion efficiency of dye-sensitized solar cells. Here we study three chemically tailored porphyrin-based dyes. We show that by fusing the porphyrin core to an anthracene unit, we can extend the conjugation length and lower the optical gap, shifting the absorption spectrum into the near-infrared (NIR). All three dyes were tested in dye-sensitized solar cells, using both titanium dioxide and tin dioxide as the electron-transport material. Solar cells incorporating the anthracene-fused porphyrin dye exhibit photocurrent collection at wavelengths up to about 1100 nm, which is the longest reported for a porphyrin-based system. Despite extending the photon absorption bandwidth, device efficiency is found to be low, which is a common property of cells based on porphyrin dyes with NIR absorption. We show that in the present case the efficiency is reduced by inefficient electron injection into the oxide, as opposed to dye regeneration, and highlight some important design considerations for panchromatic sensitizers. © 2012 The Royal Society of Chemistry.

  8. Emission properties of porphyrin compounds in new polymeric PS:CBP host

    Science.gov (United States)

    Jafari, Mohammad Reza; Bahrami, Bahram

    2015-06-01

    In this study, a device with fundamental structure of ITO/PEDOT:PSS (60 nm)/PS:CBP (70 nm)/Al (150 nm) was fabricated. The electroluminescence spectrum of device designated a red shift rather than PS:CBP photoluminescence spectra. It can be suggested that the electroplex emission occurs at PS:CBP interface. By following this step, red light-emitting devices using porphyrin compounds as a red dopant in a new host material PS:CBP with a configuration of ITO/PEDOT:PSS (60 nm)/PS:CBP:porphyrin compounds(70 nm)/Al (150 nm) have been fabricated and investigated. The electroluminescent spectra of the porphyrin compounds were red-shifted as compared with the PS:CBP blend. OLED devices based on doping 3,4PtTPP and TPPNO2 in PS:CBP showed purer red emission compared with ZnTPP and CoTPP doped devices. We believe that the electroluminescence performance of OLED devices based on porphyrin compounds depends on overlaps between the absorption of the porphyrin compounds and the emission of PS:CBP.

  9. Reduction reactions of water soluble cyano-cobalt(III)-porphyrins: Metal versus ligand centered processes

    International Nuclear Information System (INIS)

    Mosseri, S.; Neta, P.; Harriman, A.; Hambright, P.

    1990-01-01

    Reduction reactions of dicyano-cobalt(III)-porphyrins [potential in vivo cyanide scavenger drugs] were studied by radiolytic and electrochemical methods using the water soluble tetrakis(4-sulfonatophenyl)porphyrin (TPPS) and tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP). For [(CN)2CoIIITPPS]-, reduction occurs stepwise to the CoII, CoI, and finally to the phlorin anion. This behavior is similar to that of the cobalt porphyrins in the absence of cyanide, except that the cyanide ligand shifts the reduction potentials to much more negative values. On the other hand, under radiolytic conditions, [(CN)2CoIIITMPyP]- is reduced on the porphyrin macrocycle by one electron to give the CoIII pi-radical anion, which disproportionates into the initial complex and the two-electron ring reduced CoIII phlorin. The radical anion is also formed by intramolecular electron transfer subsequent to the reaction of CoIITMPyP and cyanide. The results are compared with the chemistry of Vitamin B-12

  10. Detection of a weak ring current in a nonaromatic porphyrin nanoring using magnetic circular dichroism.

    Science.gov (United States)

    Kowalska, Patrycja; Peeks, Martin D; Roliński, Tomasz; Anderson, Harry L; Waluk, Jacek

    2017-12-13

    We compare the absorption and magnetic circular dichroism (MCD) spectra of a series of porphyrin oligomers - dimer, tetramer, and hexamer - bound in a linear or cyclic fashion. The MCD signal is extremely weak for low energy transitions in the linear oligomers, but it is amplified when the cyclic porphyrin hexamer binds a template, restricting rotational freedom. The appearance of Faraday A terms in the MCD spectra demonstrates the presence of a magnetic moment, and thus, uncompensated electronic current. The value of the excited state magnetic moment estimated from the A term is very low compared with those of monomeric porphyrins, which confirms the nonaromatic character of the cyclic array and the lack of a global ring current in the ground state of the neutral nanoring. DFT calculations predict the absorption and MCD patterns reasonably well, but fail to reproduce the MCD sign inversion observed in substituted monomeric zinc porphyrins ("soft" chromophores). Interestingly, a correct sign pattern is predicted by INDO/S calculations. Analysis of the MCD spectra of the monomeric porphyrin unit allowed us to distinguish between two close-lying lowest energy transitions, which some previous assignments placed further apart. The present results prove the usefulness of MCD not only for deconvolution and assignment of electronic transitions, but also as a sensitive tool for detecting electronic ring currents.

  11. Stepwise π-extension of meso-alkylidenyl porphyrins through sequential 1,3-dipolar cycloaddition and redox reactions.

    Science.gov (United States)

    Park, Dowoo; Jeong, Seung Doo; Ishida, Masatoshi; Lee, Chang-Hee

    2014-08-25

    Several regioselectively π-extended, pyrrole fused porphyrinoids have been synthesized by the 1,3-dipolar cycloaddition of meso-alkylidene-(benzi)porphyrins. Pd(II) complexes gave oxidation resistant, bis-pyrrole fused adducts. The repeated 1,3-dipolar cycloaddition followed by oxidation-reduction of pentaphyrin analogs afforded π-extended porphyrin analogs.

  12. Syntheses and biological evaluation of F-18 and I-123 labeled porphyrins as potential tumor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Ji, D. Y. [Inha University, Incheon (Korea, Republic of); Moon, B. S.; Lee, T. S.; Lee, D. H.; Lee, K. C.; Ahn, G. I.; Yang, S. D.; Choi, C. W.; Jun, K. S. [KIRAMS, Seoul (Korea, Republic of)

    2005-07-01

    Photofrin has currently been approved for general use by licensing authorities to treatment for solid tumor and cancer using photodynamic therapy (PDT) that treat to photochemical effect induced by light. Recently, meso-tetra(3-hydroxyphenyl)porphyrin has been developed as one of best tumor localizer and also shown a favorable tissue distribution. We have studied to develop I-123 labeled meso-tetra(3-methoxyphenyl)porphyrins for tumor imaging. We have studied to develop iodine-123 labeled meso-tetra(3-carboxymethoxy phenyl)porphyrin for tumor imaging agent. The radioiodinated porphyrin compound was obtained by the iodination reaction of tin precursor (50 ig) of porphyrin with Na-123I (200 {mu}L, 100-200 mCi), in the presence of peracetic acid (40 {mu}L) in ethanol. Iodine-123 labeled porphyrin derivative was obtained in 20-30% radiochemical yield and purified by HPLC at 2 mL/min using EtOH/water gradient condition and the fraction at 24-26 min was collected and characterized to desired compound by co injection with cold porphyrin analogue. Total time was around 120 min. The in vitro and in vivo of I-123 labeled porphyrin derivative is under studying.

  13. Syntheses and biological evaluation of F-18 and I-123 labeled porphyrins as potential tumor imaging agents

    International Nuclear Information System (INIS)

    Lee, J. H.; Ji, D. Y.; Moon, B. S.; Lee, T. S.; Lee, D. H.; Lee, K. C.; Ahn, G. I.; Yang, S. D.; Choi, C. W.; Jun, K. S.

    2005-01-01

    Photofrin has currently been approved for general use by licensing authorities to treatment for solid tumor and cancer using photodynamic therapy (PDT) that treat to photochemical effect induced by light. Recently, meso-tetra(3-hydroxyphenyl)porphyrin has been developed as one of best tumor localizer and also shown a favorable tissue distribution. We have studied to develop I-123 labeled meso-tetra(3-methoxyphenyl)porphyrins for tumor imaging. We have studied to develop iodine-123 labeled meso-tetra(3-carboxymethoxy phenyl)porphyrin for tumor imaging agent. The radioiodinated porphyrin compound was obtained by the iodination reaction of tin precursor (50 ig) of porphyrin with Na-123I (200 μL, 100-200 mCi), in the presence of peracetic acid (40 μL) in ethanol. Iodine-123 labeled porphyrin derivative was obtained in 20-30% radiochemical yield and purified by HPLC at 2 mL/min using EtOH/water gradient condition and the fraction at 24-26 min was collected and characterized to desired compound by co injection with cold porphyrin analogue. Total time was around 120 min. The in vitro and in vivo of I-123 labeled porphyrin derivative is under studying

  14. Porphyrins from Messel oil shale (Eocene, Germany): Structure elucidation, geochemical and biological significance, and distribution as a function of depth

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, R.; Bauder, C.; Callot, H.J.; Albrecht, P. (Univ. Louis Pasteur, Strasbourg (France))

    1992-02-01

    The extraction and isolation procedures of twenty nickel porphyrins (seven alkylporphyrins, thirteen carboxylic acids) from lacustrine Messel shale (Eocene, Germany), as well as the unequivocal structural assignments (obtained using 200 and 400 MHz nuclear magnetic resonance (NMR), nuclear Overhauser effect, mass spectrometry, and total or partial synthesis of six reference compounds) are described. Ten porphyrins could be specifically correlated with biological precursors: algal chlorophyll c (4), bacteriochlorophylls d (3), and heme (3), while the remaining ones may arise from several chlorophylls. The structures of these fossil pigments mostly confirm the classical Treibs scheme,' including the origin of some porphyrins from nonchlorophyll sources. They also show that, even in a very immature sediment, deep modifications occur, including, in particular, extensive degradation of chlorophyll E ring. The composition of the porphyrin fractions of Messel oil shale was also studied as a function of depth. A porphyrin acids/alkylporphyrins ratio varying from 0.35 to 24.8 demonstrated that the apparent homogeneity of the shale is not reflected on the molecular scale. This was confirmed when the abundance of the twenty individual porphyrins of known structure was measured along the core. Significant correlations between individual porphyrins were found: fossils of bacteriochlorophylls d, homolog pairs of porphyrins (3-H/3-ethyl), etc.

  15. Porphyrins from Messel oil shale (Eocene, Germany): Structure elucidation, geochemical and biological significance, and distribution as a function of depth

    Science.gov (United States)

    Ocampo, Rubén; Bauder, Claude; Callot, Henry J.; Albrecht, Pierre

    1992-02-01

    The extraction and isolation procedures of twenty nickel porphyrins (seven alkylporphyrins, thirteen carboxylic acids) from lacustrine Messel shale (Eocene, Germany), as well as the unequivocal structural assignments (obtained using 200 and 400 MHz nuclear magnetic resonance (NMR), nuclear Overhauser effect, mass spectrometry and total or partial synthesis of six reference compounds) are described. Ten porphyrins could be specifically correlated with biological precursors: algal chlorophyll c (4), bacteriochlorophylls d (3) and heme (3), while the remaining ones may arise from several chlorophylls. The structures of these fossil pigments mostly confirm the classical "Treibs scheme," including the origin of some porphyrins from nonchlorophyll sources. They also show that, even in a very immature sediment, deep modifications occur, including, in particular, extensive degradation of chlorophyll E ring. The composition of the porphyrin fractions of Messel oil shale was also studied as a function of depth. A porphyrin acids/alkylporphyrins ratio varying from 0.35 to 24.8 demonstrated that the apparent homogeneity of the shale is not reflected on the molecular scale. This was confirmed when the abundance of the twenty individual porphyrins of known structure was measured along the core. Significant correlations between individual porphyrins were found: fossils of bacteriochlorophylls d, homolog pairs of porphyrins (3-H/3-ethyl), etc.

  16. Redox reactions in micellar systems. communication 4. Eosin-photosensitized reduction of methylviologen

    Energy Technology Data Exchange (ETDEWEB)

    Nadtochenko, V.; Dzhabiev, T.S.; Rubtsov, I.V.

    1985-12-10

    The authors present data on photosensitized reduction of methylviologen (MV/sup 2 +/) by disodium ethylenediaminetetraacetate (EDTA) in micellar systems modeling, in a first approximation, the structural organization of components of the chain of energy and electron transfer in natural photosynthesis. Photosensitized reduction of methylviologen by EDTA in micellar solutions can model photosystem I of plants with structure formation of reagents and transfer of excitation energy before the step of occurrence of a redox reaction in the active center.

  17. Bactericidal action of photogenerated singlet oxygen from photosensitizers used in plaque disclosing agents.

    Directory of Open Access Journals (Sweden)

    Kirika Ishiyama

    Full Text Available BACKGROUND: Photodynamic therapy (PDT has been suggested as an efficient clinical approach for the treatment of dental plaque in the field of dental care. In PDT, once the photosensitizer is irradiated with light of a specific wavelength, it transfers the excitation energy to molecular oxygen, which gives rise to singlet oxygen. METHODOLOGY/PRINCIPAL FINDINGS: Since plaque disclosing agents usually contain photosensitizers such as rose bengal, erythrosine, and phloxine, they could be used for PTD upon photoactivation. The aim of the present study is to compare the ability of these three photosensitizers to produce singlet oxygen in relation to their bactericidal activity. The generation rates of singlet oxygen determined by applying an electron spin resonance technique were in the order phloxine > erythrosine ≒ rose bengal. On the other hand, rose bengal showed the highest bactericidal activity against Streptococcus mutans, a major causative pathogen of caries, followed by erythrosine and phloxine, both of which showed activity similar to each other. One of the reasons for the discrepancy between the singlet oxygen generating ability and bactericidal activity was the incorporation efficiency of the photosensitizers into the bacterial cells. The incorporation rate of rose bengal was the highest among the three photosensitizers examined in the present study, likely leading to the highest bactericidal activity. Meanwhile, the addition of L-histidine, a singlet oxygen quencher, cancelled the bactericidal activity of any of the three photoactivated photosensitizers, proving that singlet oxygen was responsible for the bactericidal action. CONCLUSIONS: It is strongly suggested that rose bengal is a suitable photosensitizer for the plaque disclosing agents as compared to the other two photosensitizers, phloxine and erythrosine, when used for PDT.

  18. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    Mohapatra, K.K.; Bose, Arun

    2014-01-01

    10 B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10 B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH) 4 - ) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10 B and 11 B

  19. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H J; Nesper, R [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  20. A new probe of solvent accessibility of bound photosensitizers. 1. Ruthenium(II) and osmium(II) photosensitizers in sodium lauryl sulfate micelles

    International Nuclear Information System (INIS)

    Hauenstein, B.L. Jr.; Dressick, W.J.; Buell, S.L.; Demas, J.N.; DeGraff, B.A.

    1983-01-01

    A new method of measuring solvent accessibility of photosensitizers bound to organized media is presented. In particular, the solvent accessibility of a series of ruthenium(II) and osmium(II) photosensitizers bound to sodium lauryl sulfate micelles has been determined. The method takes advantage of the large solvent deuterium effect on the excited-state lifetimes of these complexes. The solvent accessibility of the bound complexes correlates with the hydrophobicity of the ligands. The potential application of this method to a variety of other systems is mentioned

  1. The protective effect of caffeine on DNA photosensitive damage: a gel electrophoresis

    International Nuclear Information System (INIS)

    Huang Liping; Ma Jianhua

    2009-01-01

    Agarose gel electrophoresis was performed to study interaction effect of caffeine on photosensitive injury of DNA caused by anthraquinone-2-sulphonic acid disodium (AQS), a model compound of strong photosensitizer, under 254 nm or 365nm UV irradiation Photosensitive injury of DNA induced by AQS under deoxidized condition was used as control. The results show that caffeine may resist effectively the injury effect of photosensitive damage and strong UV irradiation on DNA. The effects depend on the caffeine and AQS concentration, and irradiation time. Caffeine in concentration of 0.01-3.0 μg/μL, may prevent DNA from damage induced by UV light, but caffeine in concentration of >5.0 μg/μL accelerates the DNA damage. In particular, in the aqueous solution system of DNA, caffeine and AQS, at pH 6.25-7.35, the caffeine in concentration of 2.5-4.50 μg/μL may resist the photosensitive injury of DNA caused by AQS under the deoxidized condition and exposure by 254 nm UV for 10 min. And caffeine in concentration of 5 μg/μL would present a synergetic effect on the photosensitive injury of DNA. Possible molecular mechanism also is discussed. (authors)

  2. Novel approach to control Salmonella enterica by modern biophotonic technology: photosensitization.

    Science.gov (United States)

    Buchovec, I; Vaitonis, Z; Luksiene, Z

    2009-03-01

    Salmonellosis is one of the most common foodborne diseases in the world. The aim of this study was to evaluate the antibacterial efficiency of 5-aminolevulinic acid (ALA) based photosensitization against one of food pathogens Salmonella enterica. Salmonella enterica was incubated with ALA (7.5 mmol l(-1)) for 1-4 h and afterwards illuminated with visible light. The light source used for illumination of S. enterica emitted light lambda = 400 nm with energy density 20 mW cm(-2). The illumination time varied from 0 to 20 min and subsequently a total energy dose reached 0-24 J cm(-2). The data obtained indicate that S. enterica is able to produce endogenous photosensitizer PpIX when incubated with ALA. Remarkable inactivation of micro-organisms can be achieved (6 log) after photosensitization. It is obvious that photosensitization-based inactivation of S. enterica depends on illumination as well as incubation with ALA time. ALA-based photosensitization can be an effective tool against multi-drug resistant Gram-negative bacteria S. enterica serovar Typhimurium. Experimental data and mathematical evaluations support the idea that ALA-based photosensitization can be a useful tool for the development of nonthermal food preservation technology in future.

  3. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zajtsev, A.M.

    1985-01-01

    Three optically active defects are detected in mono- and polycrystal cubic boron nitride (β-BN). Analysis of intensity of temperature dependences, halfwidth and energy shift of 1.76 eV narrow phononless line (center GC-1) makes it possible to interprete the observed cathodoluminescence spectra an optical analog of the Moessbaner effect. Comparison of the obtained results with the known data for diamond monocrystals makes it possible to suggest that the detected center GC-1 is a nitrogen vacancy . The conclusion, concerning the Moessbauer optical spectra application, is made to analyze structural perfection of β-BN crystal lattice

  4. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  5. Highly Efficient Cooperative Catalysis by Co III (Porphyrin) Pairs in Interpenetrating Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zekai; Zhang, Zhi-Ming; Chen, Yu-Sheng; Lin, Wenbin (UC); (Xiamen)

    2016-12-02

    A series of porous twofold interpenetrated In-CoIII(porphyrin) metal–organic frameworks (MOFs) were constructed by in situ metalation of porphyrin bridging ligands and used as efficient cooperative catalysts for the hydration of terminal alkynes. The twofold interpenetrating structure brings adjacent CoIII(porphyrins) in the two networks parallel to each other with a distance of about 8.8 Å, an ideal distance for the simultaneous activation of both substrates in alkyne hydration reactions. As a result, the In-CoIII(porphyrin) MOFs exhibit much higher (up to 38 times) catalytic activity than either homogeneous catalysts or MOF controls with isolated CoIII(porphyrin) centers, thus highlighting the potential application of MOFs in cooperative catalysis.

  6. Synthesis and properties of 5,10,15,20-tetra[4-(3,5-dioctoxybenzamidephenyl] porphyrin and its metal complexes

    Directory of Open Access Journals (Sweden)

    Lian Wenhui

    2012-01-01

    Full Text Available A novel 5,10,15,20-tetra[4-(3,5-dioctoxybenzamidephenyl]porphyrin and its transition metal complexes are reported in this paper. Their molecular structures were characterized by elemental analysis, IR spectra, 1HNMR spectra and UV-Vis spectra. Their spectroscopic properties were studied by Raman spectra, fluorescence spectra and X-ray photoelectron spectra (XPS. The fluorescence quantum yields have been measured at room temperature. The fluorescence intensity of porphyrin ligand was stronger than that of the complexes. In Raman spectra, there was much difference between porphyrin ligand and its metal complexes due to changes of the symmetry of porphyrin plane. In the XPS spectra, the replacement of the free-base protons by a metal ion to form the metalloporphyrin increases the symmetry of the molecule also introduces an electron with-drawing group into the center of the porphyrin ligand which increases the N1s binding energy.

  7. Evidence for porphyrins bound, via ester bonds, to the Messel oil shale kerogen by selective chemical degradation experiments

    Science.gov (United States)

    Huseby, B.; Ocampo, R.

    1997-09-01

    High amounts of nickel mono- and di-acid porphyrins were released from Messel oil shale kerogen (Eocene, Germany) by selective chemical degradation (acid and base hydrolysis). The released porphyrin fractions were quantified (UV-vis) and their constituents isolated and characterized at the molecular level (UV-vis, MS, NMR). The mono-acid porphyrin fraction released contained four compounds of similar abundance which arise from an obvious chlorophyll or bacteriochlorophyll precursor. The di-acid porphyrin fraction was, however, dominated by far by one compound, mesoporphyrin IX, which must have originated from heme-like precursors (heme, cytochromes, etc.). These results show unambigously that the released mono- and di-acid porphyrins were linked to the macromolecular kerogen network via ester bonds and suggest that precursor heme-like pigments could be selectively and/or more readily incorporated into the macromolecular kerogen network than precursor chlorophylls and bacteriochlorophylls.

  8. Indirect spectrophotometric determination of trace cyanide with cationic porphyrins.

    Science.gov (United States)

    Ishii, H; Kohata, K

    1991-05-01

    Three highly sensitive methods for the determination of cyanide have been developed, based on the fact that the complexation of silver ions with three cationic porphyrins, 5,10,15,20-tetrakis-(1-methyl-2-pyridinio)porphine [T(2-MPy)P], 5,10,15,20-tetrakis(1-methyl-3-pyridinio)porphine [T(3-MPy)P] and 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphine [T(4-MPy)P], in alkaline media is inhibited by cyanide and the decrease in absorbance of the silver(II) complex is proportional to the cyanide concentration. Sensitivities of the procedures developed are 0.133, 0.126 and 0.234 ng/cm(2), respectively for an absorbance of 0.001. Cadmium(II), copper(II), mercury(II), zinc(II), iodide and sulfide interfere with the cyanide determination. One of the proposed methods was applied to the determination of cyanide in waste-water samples, with satisfactory results.

  9. Improved sensitivity of a graphene FET biosensor using porphyrin linkers

    Science.gov (United States)

    Kawata, Takuya; Ono, Takao; Kanai, Yasushi; Ohno, Yasuhide; Maehashi, Kenzo; Inoue, Koichi; Matsumoto, Kazuhiko

    2018-06-01

    Graphene FET (G-FET) biosensors have considerable potential due to the superior characteristics of graphene. Realizing this potential requires judicious choice of the linker molecule connecting the target-specific receptor molecule to the graphene surface, yet there are few reports comparing linker molecules for G-FET biosensors. In this study, tetrakis(4-carboxyphenyl)porphyrin (TCPP) was used as a linker for surface modification of a G-FET and the properties of the device were compared to those of a G-FET device modified with the conventional linker 1-pyrenebutanoic acid succinimidyl ester (PBASE). TCPP modification resulted in a higher density of receptor immunoglobulin E (IgE) aptamer molecules on the G-FET. The detection limit of the target IgE was enhanced from 13 nM for the PBASE-modified G-FET to 2.2 nM for the TCPP-modified G-FET, suggesting that the TCPP linker is a powerful candidate for G-FET modification.

  10. Relativistic effects in iron-, ruthenium-, and osmium porphyrins

    International Nuclear Information System (INIS)

    Liao Mengsheng; Scheiner, Steve

    2002-01-01

    Nonrelativistic and relativistic DFT calculations are performed on four-coordinate metal porphyrins MP and their six-coordinate adducts MP(py) 2 and MP(py)(CO) (py=pyridine) with M=Fe, Ru, and Os. The electronic structures of the MPs are investigated by considering all possible low-lying states with different configurations of nd-electrons. FeP and OsP have a 3 A 2g ground state, while this state is nearly degenerate with 3 E g for RuP. Without relativistic corrections, the ground states of both RuP and OsP would be 3 E g . For the six-coordinate adducts with py and CO, the strong-field axial ligands raise the energy of the M d z 2 -orbital, thereby making the M II ion diamagnetic. The calculated redox properties of MP(py) 2 and MP(py)(CO) are in agreement with experiment. The difference between RuP(py)(CO) and OsP(py)(CO), in terms of site of oxidation, is due to relativistic effects

  11. Quinone-fused porphyrins as contrast agents for photoacoustic imaging

    KAUST Repository

    Banala, Srinivas

    2017-06-27

    Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents with high absorption coefficients in the optical window for tissue imaging, i.e. the near infrared (NIR) range between 680 and 950 nm. We herein report the photoacoustic properties of quinone-fused porphyrins inserted with different transition metals as new highly promising candidates. These dyes exhibit intense NIR absorption, a lack of fluorescence emission, and PA sensitivity in concentrations below 3 nmol mL. In this context, the highest PA signal was obtained with a Zn(ii) inserted dye. Furthermore, this dye was stable in blood serum and free thiol solution and exhibited negligible cell toxicity. Additionally, the Zn(ii) probe could be detected with an up to 3.2 fold higher PA intensity compared to the clinically most commonly used PA agent, ICG. Thus, further exploration of the \\'quinone-fusing\\' approach to other chromophores may be an efficient way to generate highly potent PA agents that do not fluoresce and shift their absorption into the NIR range.

  12. The coordination and atom transfer chemistry of titanium porphyrin complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hays, James Allen [Iowa State Univ., Ames, IA (United States)

    1993-11-05

    Preparation, characterization, and reactivity of (η2- alkyne)(meso-tetratolylpoprphrinato)titanium(II) complexes are described, along with inetermetal oxygen atom transfer reactions involving Ti(IV) and Ti(III) porphyrin complexes. The η2- alkyne complexes are prepared by reaction of (TTP)TiCl2 with LiAlH4 in presence of alkyne. Structure of (OEP)Ti(η2-Ph-C≡C-Ph) (OEP=octaethylporphryin) was determined by XRD. The compounds undergo simple substitution to displace the alkyne and produce doubly substituted complexes. Structure of (TTP)Ti(4-picoline)2 was also determined by XRD. Reaction of (TTP)Ti=O with (OEP)Ti-Cl yields intermetal O/Cl exchange, which is a one-electron redox process mediated by O atom transfer. Also a zero-electron redox process mediated by atom transfer is observed when (TTP)TiCl2 is reacted with (OEP)Ti=O.

  13. Natural dyes as photosensitizers for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Sancun; Wu, Jihuai; Huang, Yunfang; Lin, Jianming [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, Fujian 362021 (China)

    2006-02-15

    The dye-sensitized solar cells (DSC) were assembled by using natural dyes extracted from black rice, capsicum, erythrina variegata flower, rosa xanthina, and kelp as sensitizers. The I{sub SC} from 1.142mA to 0.225mA, the V{sub OC} from 0.551V to 0.412V, the fill factor from 0.52 to 0.63, and P{sub max} from 58{mu}W to 327{mu}W were obtained from the DSC sensitized with natural dye extracts. In the extracts of natural fruit, leaves and flower chosen, the black rice extract performed the best photosensitized effect, which was due to the better interaction between the carbonyl and hydroxyl groups of anthocyanin molecule on black rice extract and the surface of TiO{sub 2} porous film. The blue-shift of absorption wavelength of the black rice extract in ethanol solution on TiO{sub 2} film and the blue-shift phenomenon from absorption spectrum to photoaction spectrum of DSC sensitized with black rice extract are discussed in the paper. Because of the simple preparation technique, widely available and low cheap cost natural dye as an alternative sensitizer for dye-sensitized solar cell is promising. (author)

  14. Carboranyl-Chlorin e6 as a Potent Antimicrobial Photosensitizer.

    Directory of Open Access Journals (Sweden)

    Elena O Omarova

    Full Text Available Antimicrobial photodynamic inactivation is currently being widely considered as alternative to antibiotic chemotherapy of infective diseases, attracting much attention to design of novel effective photosensitizers. Carboranyl-chlorin-e6 (the conjugate of chlorin e6 with carborane, applied here for the first time for antimicrobial photodynamic inactivation, appeared to be much stronger than chlorin e6 against Gram-positive bacteria, such as Bacillus subtilis, Staphyllococcus aureus and Mycobacterium sp. Confocal fluorescence spectroscopy and membrane leakage experiments indicated that bacteria cell death upon photodynamic treatment with carboranyl-chlorin-e6 is caused by loss of cell membrane integrity. The enhanced photobactericidal activity was attributed to the increased accumulation of the conjugate by bacterial cells, as evaluated both by centrifugation and fluorescence correlation spectroscopy. Gram-negative bacteria were rather resistant to antimicrobial photodynamic inactivation mediated by carboranyl-chlorin-e6. Unlike chlorin e6, the conjugate showed higher (compared to the wild-type strain dark toxicity with Escherichia coli ΔtolC mutant, deficient in TolC-requiring multidrug efflux transporters.

  15. Chemistry and technology of boron and its compounds

    International Nuclear Information System (INIS)

    Zhigach, A.F.; Parfenov, B.P.; Svitsyn, R.A.

    1995-01-01

    The results of research dealing with development of technologies of boron trichloride, boron hydride, aminoderivative boron hydrides, metal borohydrides, carboranes, carborane-containing polymers, carried out at the institute of organoelemental compounds, are presented. Physicochemical properties of the compounds have been studied and analytical methods have been developed. Data on toxicity and fire hazard of boron compounds are provided

  16. Analysis of boron nitride by flame spectrometry methods

    International Nuclear Information System (INIS)

    Telegin, G.F.; Chapysheva, G.Ya.; Shilkina, N.N.

    1989-01-01

    A rapid method has been developed for determination of free and total boron contents as well as trace impurities in boron nitride by using autoclave sample decomposition followed by atomic emission and atomic absorption determination. The relative standard deviation is not greater than 0.03 in the determination of free boron 0.012 in the determination of total boron content

  17. Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction

    DEFF Research Database (Denmark)

    Bagger, Alexander; Ju, Wen; Varela, Ana Sofia

    2017-01-01

    Currently, no catalysts are completely selective for the electrochemical CO2 Reduction Reaction (CO2RR). Based on trends in density functional theory calculations of reaction intermediates we find that the single metal site in a porphyrine-like structure has a simple advantage of limiting...... the competing Hydrogen Evolution Reaction (HER). The single metal site in a porphyrine-like structure requires an ontop site binding of hydrogen, compared to the hollow site binding of hydrogen on a metal catalyst surface. The difference in binding site structure gives a fundamental energy-shift in the scaling...... relation of ∼0.3eV between the COOH* vs. H* intermediate (CO2RR vs. HER). As a result, porphyrine-like catalysts have the advantage over metal catalyst of suppressing HER and enhancing CO2RR selectivity....

  18. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Science.gov (United States)

    Huang, Guan; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-01

    This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O2. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  19. NANOSTRUCTURED TiO2 SENSITIZED WITH PORPHYRINS FOR SOLAR WATER-SPLITTING

    Directory of Open Access Journals (Sweden)

    MARCELA-CORINA ROŞU

    2011-03-01

    Full Text Available Nanostructured TiO2 sensitized with porphyrins for Solar water-splitting.The production of hydrogen from water using solar light is very promising for generations of an ecologically pure carrier contributing to a clean, sustainable and renewable energy system. The selection of specific photocatalyst material for hydrogen production in photoelectrochemical cells (PECs is based on some important characteristics of semiconductor, such as photo-corrosion and chemical corrosion stability, photocatalytic potential, high sensitivity for UV-visible light. In the present paper, different nanocrystalline TiO2 photoanodes have been prepared via wet-chemical techniques followed by annealing treatment and sensitized with porphyrins and supramolecular complexes of porphyrins. The so obtained photocatalysts were characterized with UV-VIS absorption spectroscopy and spectrofluorimetry. The purpose of these experiments is to show if the prepared materials possess the necessary photocatalytic characteristics and if they can be used with success in H2 production from water decomposition in PECs.

  20. New porphyrin-polyoxometalate hybrid materials: synthesis, characterization and investigation of catalytic activity in acetylation reactions.

    Science.gov (United States)

    Araghi, Mehdi; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammdpoor-Baltork, Iraj

    2012-10-14

    New hybrid complexes based on covalent interaction between 5,10,15,20-tetrakis(4-aminophenyl)porphyrinatozinc(II) and 5,10,15,20-tetrakis(4-aminophenyl)porphyrinatotin(IV) chloride, and a Lindqvist-type polyoxometalate, Mo(6)O(19)(2-), were prepared. These new porphyrin-polyoxometalate hybrid materials were characterized by (1)H NMR, FT IR and UV-Vis spectroscopic methods and cyclic voltammetry. These spectro- and electrochemical studies provided several spectral data for synthesis of these compounds. Cyclic voltammetry showed the influence of the polyoxometalate on the redox process of the porphyrin ring. The catalytic activity of tin(IV)porphyrin-hexamolybdate hybrid material was investigated in the acetylation of alcohols and phenols with acetic anhydride. The reusability of this catalyst was also investigated.

  1. Effects of p-substituents on electrochemical CO oxidation by Rh porphyrin-based catalysts.

    Science.gov (United States)

    Yamazaki, Shin-ichi; Yamada, Yusuke; Takeda, Sahori; Goto, Midori; Ioroi, Tsutomu; Siroma, Zyun; Yasuda, Kazuaki

    2010-08-21

    Electrochemical CO oxidation by several carbon-supported rhodium tetraphenylporphyrins with systematically varied meso-substituents was investigated. A quantitative analysis revealed that the p-substituents on the meso-phenyl groups significantly affected CO oxidation activity. The electrocatalytic reaction was characterized in detail based on the spectroscopic and X-ray structural results as well as electrochemical analyses. The difference in the activity among Rh porphyrins is discussed in terms of the properties of p-substituents along with a proposed reaction mechanism. Rhodium tetrakis(4-carboxyphenyl)porphyrin (Rh(TCPP)), which exhibited the highest activity among the porphyrins tested, oxidized CO at a high rate at much lower potentials (means that CO is electrochemically oxidized by this catalyst when a slight overpotential is applied during the operation of a proton exchange membrane fuel cell. This catalyst exhibited little H(2) oxidation activity, in contrast to Pt-based catalysts.

  2. Study of ceramic mixed boron element as a neutron shielding

    International Nuclear Information System (INIS)

    Ismail Mustapha; Mohd Reusmaazran Yusof; Md Fakarudin Ab Rahman; Nor Paiza Mohamad Hasan; Samihah Mustaffha; Yusof Abdullah; Mohamad Rabaie Shari; Airwan Affandi Mahmood; Nurliyana Abdullah; Hearie Hassan

    2012-01-01

    Shielding upon radiation should not be underestimated as it can causes hazard to health. Precautions on the released of radioactive materials should be well concerned and considered. Therefore, the combination of ceramic and boron make them very useful for shielding purpose in areas of low and intermediate neutron. A six grades of ceramic tile have been produced namely IMN05 - 5 % boron, IMN06 - 6 % boron, IMN07 - 7 % boron, IMN08 - 8 % boron, IMN09 - 9 % boron, IMN10 - 10 % boron from mixing, press and sintered process. Boron is a material that capable of absorbing and capturing neutron, so that neutron and gamma test were conducted to analyze the effectiveness of boron material in combination with ceramic as shielding. From the finding, percent reduction number of count per minute shows the ceramic tiles are capable to capture neutron. Apart from all the percentage of boron used, 10 % is the most effective shields since the percent reduction indicating greater neutron captured increased. (author)

  3. Metal-porphyrin interactions. VI. The reactivities of several ferric porphyrin monomers with cyanide compared with ligand reactions of iron and cobalt porphyrins reconstituted with proteins. [25/sup 0/

    Energy Technology Data Exchange (ETDEWEB)

    Hambright, P. (Howard Univ., Washington, DC); Chock, P.B.

    1975-01-01

    A study of the hydrolysis and kinetics and equilibrium behavior of cyanide addition to the monomeric iron(III) complexes of meso, proto and deuteroporphyrin-IX in 2 percent sodium lauryl sulfate--0.1 M tetramethyl ammonium bromide, 25/sup 0/ is reported. The reactivity parameters are compared to reactions of the same Co(II) and Fe(II) porphyrin types reconstituted to myoglobins and hemoglobins.

  4. Ratiometric Fluorescent Detection of Pb2+ by FRET-Based Phthalocyanine-Porphyrin Dyads.

    Science.gov (United States)

    Zhang, Dongli; Zhu, Mengliang; Zhao, Luyang; Zhang, Jinghui; Wang, Kang; Qi, Dongdong; Zhou, Yang; Bian, Yongzhong; Jiang, Jianzhuang

    2017-12-04

    Sensitive and selective detection of Pb 2+ is a very worthwhile endeavor in terms of both human health and environmental protection, as the heavy metal is fairly ubiquitous and highly toxic. In this study, we designed phthalocyanine-porphyrin (Pc-Por) heterodyads, namely, H 2 Pc-α-ZnPor (1) and H 2 Pc-β-ZnPor (2), by connecting a zinc(II) porphyrin moiety to the nonperipheral (α) or peripheral (β) position of a metal-free phthalocyanine moiety. Upon excitation at the porphyrin Soret region (420 nm), both of the dyads exhibited not only a porphyrin emission (605 nm) but also a phthalocyanine emission (ca. 700 nm), indicating the occurrence of intramolecular fluorescence resonance energy transfer (FRET) processes from the porphyrin donor to the phthalocyanine acceptor. The dyads can selectively bind Pb 2+ in the phthalocyanine core leading to a red shift of the phthalocyanine absorption and thus a decrease of spectral overlap between the porphyrin emission and phthalocyanine absorption, which in turn suppresses the intramolecular FRET. In addition, the binding of Pb 2+ can highly quench the emission of phthalocyanine by heavy-metal ion effects. The synergistic coupled functions endow the dyads with remarkable ratiometric fluorescent responses at two distinct wavelengths (F 605 /F 703 for 1 and F 605 /F 700 for 2). The emission intensity ratio increased as a linear function to the concentration of Pb 2+ in the range of 0-4.0 μM, whereas the detection limits were determined to be 3.4 × 10 -9 and 2.2 × 10 -8 M for 1 and 2, respectively. Furthermore, by comparative study of 1 and 2, the effects of distance and relative orientation between Pc and ZnPor fluorophores on the FRET efficiency and sensing performance were highlighted, which is helpful for further optimizing such FRET systems.

  5. Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study.

    Science.gov (United States)

    Zhang, Ting Ting; Liu, Yong Dong; Zhong, Ru Gang

    2015-09-01

    Nitrite reduction to nitric oxide by heme proteins was reported as a protective mechanism to hypoxic injury in mammalian physiology. In this study, the pathways of nitrite reduction to nitric oxide mediated by iron(II) porphyrin (P) complexes, which were generally recognized as models for heme proteins, were investigated by using density functional theory (DFT). In view of two type isomers of combination of nitrite and Fe(II)(P), N-nitro- and O-nitrito-Fe(II)-porphyrin complexes, and two binding sites of proton to the different O atoms of nitrite moiety, four main pathways for the conversion of nitrite into nitric oxide mediated by iron(II) porphyrins were proposed. The results indicate that the pathway of N-bound Fe(II)(P)(NO2) isomer into Fe(III)(P)(NO) and water is similar to that of O-bound isomer into nitric oxide and Fe(III)(P)(OH) in both thermodynamical and dynamical aspects. Based on the initial computational studies of five-coordinate nitrite complexes, the conversion of nitrite into NO mediated by Fe(II)(P)(L) complexes with 14 kinds of proximal ligands was also investigated. Generally, the same conclusion that the pathways of N-bound isomers are similar to those of O-bound isomer was obtained for iron(II) porphyrin with ligands. Different effects of ligands on the reduction reactions were also found. It is notable that the negative proximal ligands can improve reactive abilities of N-nitro-iron(II) porphyrins in the conversion of nitrite into nitric oxide compared to neutral ligands. The findings will be helpful to expand our understanding of the mechanism of nitrite reduction to nitric oxide by iron(II) porphyrins. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Cutaneous porphyrins exhibit anti-stokes fluorescence that is detectable in sebum (Conference Presentation)

    Science.gov (United States)

    Tian, Giselle; Zeng, Haishan; Zhao, Jianhua; Wu, Zhenguo; Al Jasser, Mohammed; Lui, Harvey; Mclean, David I.

    2016-02-01

    Porphyrins produced by Propionibacterium acnes represent the principal fluorophore associated with acne, and appear as orange-red luminescence under the Wood's lamp. Assessment of acne based on Wood's lamp (UV) or visible light illumination is limited by photon penetration depth and has limited sensitivity for earlier stage lesions. Inducing fluorescence with near infrared (NIR) excitation may provide an alternative way to assess porphyrin-related skin disorders. We discovered that under 785 nm CW laser excitation PpIX powder exhibits fluorescence emission in the shorter wavelength range of 600-715 nm with an intensity that is linearly dependent on the excitation power. We attribute this shorter wavelength emission to anti-Stokes fluorescence. Similar anti-Stokes fluorescence was also detected focally in all skin-derived samples containing porphyrins. Regular (Stokes) fluorescence was present under UV and visible light excitation on ex vivo nasal skin and sebum from uninflamed acne, but not on nose surface smears or sebum from inflamed acne. Co-registered CW laser-excited anti-Stokes fluorescence and fs laser-excited multi-photon fluorescence images of PpIX powder showed similar features. In the skin samples because of the anti-Stokes effect, the NIR-induced fluorescence was presumably specific for porphyrins since there appeared to be no anti-Stokes emission signals from other typical skin fluorophores such as lipids, keratins and collagen. Anti-Stokes fluorescence under NIR CW excitation is more sensitive and specific for porphyrin detection than UV- or visible light-excited regular fluorescence and fs laser-excited multi-photon fluorescence. This approach also has higher image contrast compared to NIR fs laser-based multi-photon fluorescence imaging. The anti-Stokes fluorescence of porphyrins within sebum could potentially be applied to detecting and targeting acne lesions for treatment via fluorescence image guidance.

  7. Analysis of the in vitro and in vivo effects of photodynamic therapy on prostate cancer by using new photosensitizers, protoporphyrin IX-polyamine derivatives.

    Science.gov (United States)

    Fidanzi-Dugas, Chloë; Liagre, Bertrand; Chemin, Guillaume; Perraud, Aurélie; Carrion, Claire; Couquet, Claude-Yves; Granet, Robert; Sol, Vincent; Léger, David Yannick

    2017-07-01

    Photodynamic therapy, using porphyrins as photosensitizers (PS), has been approved in treatment of several solid tumors. However, commonly used PS induce death but also resistance pathways in cancer cells and an alteration of surrounding normal tissues. Because polyamines (PA) are actively accumulated in cancer cells by the Polyamine Transport System (PTS), they may enable PS to specifically target cancer cells. Here, we investigated whether new protoporphyrin IX-polyamine derivatives were effective PS against prostate cancer and whether PA increased PDT specificity after 630nm irradiation. CHO and CHO-MG cells (differing in their PTS activity) were used to assess efficacy of polyamine vectorization. MTT assays were performed on human prostate non-malignant (RWPE-1) and malignant (PC-3, DU 145 and LNCaP) cell lines to test PS phototoxicity. ROS generation, DNA fragmentation and cell signalling were assessed by ELISA/EIA, western-blots and gel shift assays. Finally, PS effects were studied on tumor growth in nude mice. Our PS were more effective on cancer cells compared to non-malignant cells and more effective than PpIX alone. PpIX-PA generated ROS production involved in induction of apoptotic intrinsic pathways. Different pathways involved in apoptosis resistance were studied: PS inhibited Bcl-2, Akt, and NF-κB but activated p38/COX-2/PGE 2 pathways which were not implicated in apoptosis resistance in our model. In vivo experiments showed PpIX-PA efficacy was greater than results obtained with PpIX. All together, our results showed that PpIX-PA exerted its maximum effects without activating resistance pathways and appears to be a good candidate for prostate cancer PDT treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Identification of singlet oxygen photosensitizes in lambs drinking water in an alveld risk area in West Norway

    DEFF Research Database (Denmark)

    Tønnesen, Hanne Hjorth; Mysterud, Ivar; Karlsen, Jan

    2013-01-01

    Alveld is a hepatogenous photosensitivity disorder in lambs. Although alveld has been known in Norway for more than 100years, there are still questions related to the cause of the disease. Phytoporphyrin has long been incriminated as the photosensitizer in hepatogenous photosensitivity diseases...... but previous findings suggest that the photosensitizing mechanism in alveld is more complex, possibly involving other co-factors. The current work investigates the presence of non-hepatogenous photosensitizers originating in lamb's drinking water from various sources. In addition samples of two....... Meteorological data indicate a warm and wet May with a high radiation exposure leading up to a colder and wet June with an even higher solar irradiance. The seasonal variation in the amount of photosensitizers in lamb's drinking water combined meteorological data can be important to predict the outbreak...

  9. Biomimetic oxidation of carbamazepine with hydrogen peroxide catalyzed by a manganese porphyrin

    Directory of Open Access Journals (Sweden)

    Cláudia M. B. Neves

    2012-01-01

    Full Text Available This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H2O2, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy.

  10. Biomimetic oxidation of carbamazepine with hydrogen peroxide catalyzed by a manganese porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Claudia M.B.; Simoes, Mario M.Q.; Domingues, Fernando M.J.; Neves, M. Graca P.M.S.; Cavaleiro, Jose A.S., E-mail: msimoes@ua.pt [Dept. de Quimica, QOPNA, Universidade de Aveiro (Portugal)

    2012-07-01

    This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H{sub 2}O{sub 2}, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy. (author)

  11. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  12. Density separation of boron particles. Final report

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-04-01

    A density distribution much broader than expected was observed in lots of natural boron powder supplied by two different sources. The material in both lots was found to have a rhombohedral crystal structure, and the only other parameters which seemed to account for such a distribution were impurities within the crystal structure and varying isotopic ratios. A separation technique was established to isolate boron particles in narrow densty ranges. The isolated fractions were subsequently analyzed for B 10 and total boron content in an effort to determine whether selective isotopic enrichment and nonhomogeneous impurity distribution were the causes for the broad density distribution of the boron powders. It was found that although the B 10 content remained nearly constant around 18%, the total boron content varied from 37.5 to 98.7%. One of the lots also was found to contain an apparently high level of alpha rhombohedral boron which broadened the density distribution considerably. During this work, a capability for removing boron particles containing gross amounts of impurities and, thereby, improving the overall purity of the remaining material was developed. In addition, the separation technique used in this study apparently isolated particles with alpha and beta rhombohedral crystal structures, although the only supporting evidence is density data

  13. Cell cycle dependence of boron uptake in various boron compounds used for neutron capture therapy

    International Nuclear Information System (INIS)

    Yoshida, F.; Matsumura, A.; Shibata, Y.; Yamamoto, T.; Nose, T.; Okumura, M.

    2000-01-01

    In neutron capture therapy, it is important that the tumor take boron in selectively. Furthermore, it is ideal when the uptake is equal in each tumor cell. Some indirect proof of differences in boron uptake among neoplastic cell cycles has been documented. However, no investigation has yet measured boron uptake directly. Using flow cytometry, in the present study cells were sorted by G0/G1 phase and G2/M phase, and the boron concentration of each fraction was measured with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results were that BSH (sodiumborocaptate) and BPA (p-boronophenylalanine) had higher rates of boron uptake in the G2/M group than in the G0/G1 group. However, in BPA the difference was more prominent, which revealed a 2.2-3.3 times higher uptake of boron in the G2/M group than in the G0/G1 group. (author)

  14. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    Crossley, D.; Wood, A.J.; McInnes, C.A.J.; Jones, I.G.

    1978-09-01

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 300 0 C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 1050 0 C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  15. Effects of hypericin and a chlorin based photosensitizer alone or in combination in squamous cell carcinoma cells in the dark.

    OpenAIRE

    Besic Gyenge Emina; Forny Patrick; Lüscher Daniel; Laass Andrea; Walt Heinrich; Maake Caroline

    2012-01-01

    INTRODUCTION The toxic influence of photosensitizers in the dark is poorly investigated. In our study we used the photosensitizers liposomal meso tetrahydroxyphenyl chlorin derivative (Foslipos(®)) and hypericin as well as their 1:1 combination on two different head and neck squamous cell carcinoma (HNSCC) cell lines (UMB SCC 745 and UMB SCC 969). MATERIALS AND METHODS We examined uptake efflux and localization of the photosensitizers with confocal microscopy. Fluorescence quantification was ...

  16. Microbial control of food-related surfaces: Na-Chlorophyllin-based photosensitization.

    Science.gov (United States)

    Luksiene, Zivile; Paskeviciute, Egle

    2011-10-05

    The aim of this study was to evaluate efficiency of photosensitization as surface sanitation alternative using model systems when food pathogens, their spores and biofilms were attached to the food-related surface (polyolefine). In addition it was important to compare antibacterial efficiency of Na-Chlorophyllin (Na-Chl)-based photosensitization with conventional sanitizers. Obtained results indicate that Bacilluscereus ATCC 12826 and Listeriamonocytogenes ATCC 7644 as well as their thermoresistant strains B.cereus SV90 and L.monocytogenes 56LY were effectively inactivated (7 log) by Na-Chl-based photosensitization in vitro. Inactivation rate of thermoresistant strains was slower. The number of attached to the surface B.cereus ATCC 12826 and L.monocytogenes ATCC 7644 was reduced from 4-4.5 log to 0 log after photosensitization treatment. To achieve adequate inactivation of thermoresistant strains the higher Na-Chl concentration and longer illumination times had to be used. Comparison of different surface decontamination treatments reveal that photosensitization is much more effective against all surface-attached B.cereus and L.monocytogenes strains than washing with water or 200 ppm Na-hypochlorite. It is important to note, that surface-attached B.cereus spores and L.monocytogenes biofilms can be eliminated from it by photosensitization as well. Our data support the idea that Na-Chlorophyllin-based photosensitization has high antibacterial potential which may serve in the future for the development of human and environment friendly, non-thermal surface decontamination technique. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Developments in boron magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Schweizer, M.

    1995-01-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain

  18. Vibrational spectroscopy of photosensitizer dyes for organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Perez Leon, C.

    2005-11-18

    Ruthenium(II) complexes containing polypyridyl ligands are intensely investigated as potential photosensitizers in organic solar cells. Of particular interest is their use in dye-sensitized solar cells based on nanocrystalline films of TiO{sub 2}. Functional groups of the dye allow for efficient anchoring on the semiconductor surface and promote the electronic communication between the donor orbital of the dye and the conduction band of the semiconductor. In the present work a new dye, [Ru(dcbpyH{sub 2}){sub 2}(bpy-TPA{sub 2})](PF6{sub )2}, and the well known (Bu{sub 4}N){sub 2}[Ru(dcbpyH){sub 2}(NCS){sub 2}] complex were spectroscopically characterized. The electronic transitions of both dyes showed solvatochromic shifts due to specific interactions of the ligands with the solvent molecules. The surface-enhanced Raman (SER) spectra of the dyes dissolved in water, ethanol, and acetonitrile were measured in silver and gold colloidal solutions. The results demonstrate that the dyes were adsorbed on the metallic nanoparticles in different ways for different solvents. It was also found that in the gold colloid, the aqueous solutions of both dyes did not produce any SERS signal, whereas in ethanolic solution the SERS effect was very weak. Deprotonation, H-bonding, and donor-acceptor interactions seem to determine these different behaviors. Our results indicate the important role of the charge transfer mechanism in SERS. The adsorption of the dye on two different TiO{sub 2} substrates, anatase paste films and anatase nanopowder, was also studied to clarify the role of the carboxylate groups in the anchoring process of the dyes on the semiconductor surface. The recorded spectra indicate a strong dependence of the anchoring configuration on the morphology of the semiconductor. (orig.)

  19. Physical studies of porphyrin-infiltrated opal crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sabataityte, J. [Semiconductor Physics Institute, Gostauto 11, LT 01108 Vilnius (Lithuania)], E-mail: julija@pfi.lt; Simkiene, I.; Babonas, G.-J.; Reza, A. [Semiconductor Physics Institute, Gostauto 11, LT 01108 Vilnius (Lithuania); Baran, M.; Szymczak, R. [Institute of Physics, PAN, PL 02668, Warsaw (Poland); Vaisnoras, R.; Rasteniene, L. [Vilnius Pedagogical University, LT 08106, Vilnius (Lithuania); Golubev, V.; Kurdyukov, D. [Ioffe Physico-Technical Institute RAS, 194021, St. Petersburg (Russian Federation)

    2007-09-15

    Artificial opals made of silica spheres and infiltrated with aqueous solution of iron porphyrin (FeTPPS) possessing the absorption band in a visible spectral range were studied. The structural, optical and magnetic properties of composite structures were investigated. Bulk samples of opal structure were obtained by sedimentation technique from colloidal solution of SiO{sub 2} spheres of diameter 240 and 245 nm. The structure of the samples was examined by atomic force microscopy. The properties of photonic crystals were demonstrated by optical measurements in transmission and reflection modes. The stop band was observed in the region 510-550 nm. In samples annealed at 900 deg. C the width of the stop band increased to {approx} 70 nm. Aqueous solutions of FeTPPS of concentration {approx} 1.0 mM and various pH-values were used for infiltration. The infiltration has led to a change of photonic characteristics, position of the stop band and dependence on light incidence angle. The absorption bands typical of FeTPPS were observed in the vicinity of the stop band. The photonic properties of infiltrated opal structures were determined to depend on the acidity of aqueous solution, which was used in technological procedure. Magnetic properties of FeTPPS-infiltrated opal samples, which have been studied at 5-300 K in magnetic fields up to 5 T, were discussed. From magnetic measurements it followed that magnetic Fe-Fe interactions have practically vanished in hybrid samples and Fe centers should be treated as isolated ones.

  20. Physical studies of porphyrin-infiltrated opal crystals

    International Nuclear Information System (INIS)

    Sabataityte, J.; Simkiene, I.; Babonas, G.-J.; Reza, A.; Baran, M.; Szymczak, R.; Vaisnoras, R.; Rasteniene, L.; Golubev, V.; Kurdyukov, D.

    2007-01-01

    Artificial opals made of silica spheres and infiltrated with aqueous solution of iron porphyrin (FeTPPS) possessing the absorption band in a visible spectral range were studied. The structural, optical and magnetic properties of composite structures were investigated. Bulk samples of opal structure were obtained by sedimentation technique from colloidal solution of SiO 2 spheres of diameter 240 and 245 nm. The structure of the samples was examined by atomic force microscopy. The properties of photonic crystals were demonstrated by optical measurements in transmission and reflection modes. The stop band was observed in the region 510-550 nm. In samples annealed at 900 deg. C the width of the stop band increased to ∼ 70 nm. Aqueous solutions of FeTPPS of concentration ∼ 1.0 mM and various pH-values were used for infiltration. The infiltration has led to a change of photonic characteristics, position of the stop band and dependence on light incidence angle. The absorption bands typical of FeTPPS were observed in the vicinity of the stop band. The photonic properties of infiltrated opal structures were determined to depend on the acidity of aqueous solution, which was used in technological procedure. Magnetic properties of FeTPPS-infiltrated opal samples, which have been studied at 5-300 K in magnetic fields up to 5 T, were discussed. From magnetic measurements it followed that magnetic Fe-Fe interactions have practically vanished in hybrid samples and Fe centers should be treated as isolated ones

  1. A Porphyrin Based Potentiometric Sensor for Zn2+ Determination

    Directory of Open Access Journals (Sweden)

    H. Lang

    2003-07-01

    Full Text Available PVC based membranes of disodium salt of porphyrin 3,7,12,17-tetramethyl-8, 13-divinyl 2,18-porphine dipropionic acid (I as ionophore with sodium tetra phenyl borate (NaTPB as anion excluder and dibutyl phthalate (DBP, dioctyl phthalate (DOP, dibutyl butyl phosphonate (DBBP, tris(2- ethyl hexylphosphate (TEP, tri-n-butylphosphate (TBP and 1- chloronaphthalene (CN as plasticizing solvent mediators were prepared and constructed for determination of Zn(II. The PVC based membrane of (I with DBBP as plasticizer and having anion excluder, NaTPB in the ratio PVC: I: NaTPB: DBBP (150: 10: 2: 200 gave the best results in terms of working concentration range (1.3×10-5-1.0 ×10-1M with a Nernstian slope (30.0 mV/decade of activity. The useful pH range of the sensor is 3.0 –7.4, beyond which a drift in potential was observed. The response time of the sensor is 10s and the lifetime was about 2 months during which it could be used without any measurable divergence. It had good stability and reproducibility. The membrane worked satisfactorily in non-aqueous medium up to 40% (v/v non-aqueous content. The selectivity coefficient values indicate that the electrode is highly selective for Zn2+ over a number of other cations except Na+ and Cd2+. Although Na+ and Cd2+ are likely to cause some interference, they would not interfere if present at the concentrations < 1 ×10-5 and < 5 ×10-5 M, respectively. The electrode has been used as an indicator electrode to determine the end point in the potentiometric titration of Zn2+ with EDTA.

  2. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  3. Investigation of boron extraction process with aid magnesium hydroxide from mother liquor of boron production

    International Nuclear Information System (INIS)

    Balapanova, B.S.; Zhajmina, R.E.; Serazetdinov, D.Z.

    1988-01-01

    Conditions of boron - magnesium concentrate preparation from mother liquor by coprecipitation of borate - ions by magnesium hydroxide are investigated. It is shown that boron - magnesium concentrate and products of its heat treatment at 100 - 500 deg C in water are dissolved partially, and in ammonium citrate - practically completely. Suppositions are made on the composition of the product prepared, on the the structure of its crystal lattice and the processes taking place in it during heat treatment. The conclusion is made on the perspectiveness of processing of mother liquor of boron industry for boron - magnesium concentrate

  4. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  5. Conformational switching of ethano-bridged Cu,H2-bis-porphyrin induced by aromatic amines.

    Science.gov (United States)

    Bettini, Simona; Maglie, Emanuela; Pagano, Rosanna; Borovkov, Victor; Inoue, Yoshihisa; Valli, Ludovico; Giancane, Gabriele

    2015-01-01

    Cu,H2-bis-porphyrin (Cu,H2-Por2), in which copper porphyrin and free-base porphyrin are linked together by an ethano-bridge, was dissolved in chloroform and spread at the air/liquid subphase interface of a Langmuir trough. The bis-porphyrin derivative, floating film was characterized by reflection spectroscopy and the surface pressure of the floating film was studied as a function of the mean area per molecule. When aromatic amines are dissolved in the subphase, an evident interaction between the bis-porphyrin host and the aromatic amine guest is observed. A clear-cut variation of the profile of surface pressure vs area per molecule curve is observed. Reflection spectroscopy highlights that the aromatic amines dissolved in the subphase are able to induce the syn-to-anti conformational switching in the bis-porphyrin derivative. The Langmuir-Schaefer technique has been used to transfer the floating bis-porphyrin film (when using pure water as a subphase) to a surface plasmon resonance (SPR) substrate and the resulting device was able to detect the presence of aniline at concentrations as low as 1 nM in aqueous solution. The high selectivity of the SPR sensing device has been verified by checking the spectral response of the active layer towards other analytes dissolved in the aqueous solutions.

  6. Conformational switching of ethano-bridged Cu,H2-bis-porphyrin induced by aromatic amines

    Directory of Open Access Journals (Sweden)

    Simona Bettini

    2015-11-01

    Full Text Available Cu,H2-bis-porphyrin (Cu,H2-Por2, in which copper porphyrin and free-base porphyrin are linked together by an ethano-bridge, was dissolved in chloroform and spread at the air/liquid subphase interface of a Langmuir trough. The bis-porphyrin derivative, floating film was characterized by reflection spectroscopy and the surface pressure of the floating film was studied as a function of the mean area per molecule. When aromatic amines are dissolved in the subphase, an evident interaction between the bis-porphyrin host and the aromatic amine guest is observed. A clear-cut variation of the profile of surface pressure vs area per molecule curve is observed. Reflection spectroscopy highlights that the aromatic amines dissolved in the subphase are able to induce the syn-to-anti conformational switching in the bis-porphyrin derivative. The Langmuir–Schaefer technique has been used to transfer the floating bis-porphyrin film (when using pure water as a subphase to a surface plasmon resonance (SPR substrate and the resulting device was able to detect the presence of aniline at concentrations as low as 1 nM in aqueous solution. The high selectivity of the SPR sensing device has been verified by checking the spectral response of the active layer towards other analytes dissolved in the aqueous solutions.

  7. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zaitsev, A.M.

    1985-01-01

    Three types of optically active defect were observed in single-crystal and polycrystalline cubic boron nitride (β-BN). An analysis of the temperature dependences of the intensity, half-width, and energy shift of a narrow zero-phonon line at 1.76 eV (GC-1 center) made it possible to interpret the observed cathodoluminescence spectra as an optical analog of the Moessbauer effect. A comparison of the results obtained in the present study with the available data on diamond single crystals made it possible to identify the observed GC-1 center as a nitrogen vacancy. It was concluded that optical Moessbauer-type spectra can be used to analyze structure defects in the crystal lattice of β-BN

  8. How predictive are photosensitive epilepsy models as proof of principle trials for epilepsy?

    Science.gov (United States)

    Yuen, Eunice S M; Sims, John R

    2014-06-01

    Human photosensitive epilepsy models have been used as proof of principle (POP) trials for epilepsy. Photosensitive patients are exposed to intermittent photic stimulation and the reduction in sensitivity to the number of standard visual stimulation frequencies is used as an endpoint. The aim of this research was to quantify the predictive capabilities of photosensitive POP trials, through a survey of current literature. A literature search was undertaken to identify articles describing photosensitive POP trials. Minimally efficacious doses (MEDs) in epilepsy were compared to doses in the POP trials that produced 50-100% response (ED50-100). Ratios of these doses were calculated and summarised statistically. The search identified ten articles describing a total of 17 anti-epileptic drugs. Of these, data for both MED and ED50-100 were available for 13 anti-epileptic drugs. The average ratio of MED to ED50-100 was 0.95 (95% CI 0.60-1.30). The difference in MED to ED50-100 ratios between partial epilepsy (0.82) was not significantly different from that of generalised epilepsy (1.08) (p=0.51). Photosensitive POP trials are a useful tool to quantitatively predict efficacy in epilepsy, and can be useful as early and informative indicators in anti-epileptic drug discovery and development. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  9. In Vitro Antimicrobial Photodynamic Therapy Against Trichophyton mentagrophytes Using New Methylene Blue as the Photosensitizer.

    Science.gov (United States)

    López-Chicón, P; Gulías, Ò; Nonell, S; Agut, M

    2016-11-01

    Antimicrobial photodynamic therapy combines the use of a photosensitizing drug with light and oxygen to eradicate pathogens. Trichophyton mentagrophytes is a dermatophytic fungus able to invade the skin and keratinized tissues. We have investigated the use of new methylene blue as the photosensitizing agent for antimicrobial photodynamic therapy to produce the in vitro inactivation of T mentagrophytes. A full factorial design was employed to optimize the parameters for photoinactivation of the dermatophyte. The parameters studied were new methylene blue concentration, contact time between the photosensitizing agent and the fungus prior to light treatment, and the fluence of red light (wavelength, 620-645nm) applied. The minimum concentration of new methylene blue necessary to induce the death of all T. mentagrophytes cells in the initial suspension (approximate concentration, 10 6 colony forming units per milliliter) was 50μM for a fluence of 81J/cm 2 after a contact time of 10minutes with the photosensitizing-agent. Increasing the concentration to 100μM allowed the fluence to be decreased to 9J/cm 2 . Comparison of our data with other published data shows that the susceptibility of T. mentagrophytes to antimicrobial photodynamic therapy with new methylene blue is strain-dependent. New methylene blue is a photosensitizing agent that should be considered for the treatment of fungal skin infections caused by this dermatophyte. Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Dilek [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Göl, Cem [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Çakır, Volkan [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Durmuş, Mahmut [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Bıyıklıoğlu, Zekeriya, E-mail: zekeriya_61@yahoo.com [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Kantekin, Halit [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2015-03-15

    The new peripherally and non-peripherally tetra-{2-[3-(diethylamino)phenoxy] ethoxy} substituted zinc phthalocyanines (2a and 3a) were synthesized by cyclotetramerization of phthalonitrile derivatives (2 and 3). 2-[3-(diethylamino)phenoxy] ethoxy group was chosen as substituent because the quaternization of the diethylamino functionality on the structure of this group produced water soluble zinc phthalocyanines (2b and 3b). The water solubility is very important for many different applications such as photosensitizers in the photodynamic therapy of cancer because the water soluble photosensitizers can be injected directly to the body and they can transport to cancer cells through blood stream. The new compounds were characterized by using elemental analysis, UV–vis, IR, {sup 1}H NMR, {sup 13}C NMR and mass spectroscopies. The photophysical and photochemical properties of these novel photosensitizer compounds were examined in DMSO (both non-ionic and ionic complexes) and in PBS (for ionic complexes) solutions. The investigation of these properties is very important for the usage of the compounds as photosensitizers for PDT because determination of these properties is the first stage of potential of the compounds as photosensitizers. The bovine serum albumin (BSA) and DNA binding behaviour of the studied water soluble zinc (II) phthalocyanines were also investigated in PBS solutions for the determination of biological activity of these compounds. - Highlights: • Synthesis of water soluble zinc phthalocyanines. • Photophysical and photochemical properties for phthalocyanines. • Photodynamic therapy studies.

  11. Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers

    International Nuclear Information System (INIS)

    Çakır, Dilek; Göl, Cem; Çakır, Volkan; Durmuş, Mahmut; Bıyıklıoğlu, Zekeriya; Kantekin, Halit

    2015-01-01

    The new peripherally and non-peripherally tetra-{2-[3-(diethylamino)phenoxy] ethoxy} substituted zinc phthalocyanines (2a and 3a) were synthesized by cyclotetramerization of phthalonitrile derivatives (2 and 3). 2-[3-(diethylamino)phenoxy] ethoxy group was chosen as substituent because the quaternization of the diethylamino functionality on the structure of this group produced water soluble zinc phthalocyanines (2b and 3b). The water solubility is very important for many different applications such as photosensitizers in the photodynamic therapy of cancer because the water soluble photosensitizers can be injected directly to the body and they can transport to cancer cells through blood stream. The new compounds were characterized by using elemental analysis, UV–vis, IR, 1 H NMR, 13 C NMR and mass spectroscopies. The photophysical and photochemical properties of these novel photosensitizer compounds were examined in DMSO (both non-ionic and ionic complexes) and in PBS (for ionic complexes) solutions. The investigation of these properties is very important for the usage of the compounds as photosensitizers for PDT because determination of these properties is the first stage of potential of the compounds as photosensitizers. The bovine serum albumin (BSA) and DNA binding behaviour of the studied water soluble zinc (II) phthalocyanines were also investigated in PBS solutions for the determination of biological activity of these compounds. - Highlights: • Synthesis of water soluble zinc phthalocyanines. • Photophysical and photochemical properties for phthalocyanines. • Photodynamic therapy studies

  12. Photobleaching-induced changes in photosensitizing properties of dissolved organic matter

    KAUST Repository

    Niu, Xi-Zhi; Liu, Chao; Gutié rrez, Leonardo A.; Croue, Jean-Philippe

    2014-01-01

    Photosensitizing properties of different dissolved organic matter (DOM) were investigated according to their performance in singlet oxygen (1O2), triplet state of DOM (3DOM*), and hydroxyl radical (·OH) productions. The photobleaching of DOM solutions after irradiation was characterized by fluorescence excitation-emission matrix and UV-Vis spectroscopy. The photosensitizing properties of pre-irradiated DOM solutions were changed in a sunlight simulator. The performance of DOMs in photosensitized degradation of several contaminants was investigated. For a 20h exposure, the observed degradation rate constant (kobs) of some contaminants decreased as a function of exposure time, and highly depended on the properties of both DOM and contaminant. Degradation of contaminants with lower kobs was more susceptible to DOM photobleaching-induced decrease in kobs. Under the current experimental conditions, the photobleaching-induced decrease of DOM photo-reactivity in contaminant degradation was mainly attributed to indirect phototransformation of DOM caused by the interactions between photo-inductive DOM moieties and photochemically-produced reactive species. Reactive contaminants can inhibit DOM indirect photobleaching by scavenging reactive species, photosensitized degradation of these contaminants exhibited a stable kobs as a result. This is the first study to report DOM photobleaching-induced changes in the simultaneous DOM photosensitized degradation of contaminants and the inhibitory effect of reactive contaminants on DOM photobleaching.

  13. Photobleaching-induced changes in photosensitizing properties of dissolved organic matter

    KAUST Repository

    Niu, Xi-Zhi

    2014-12-01

    Photosensitizing properties of different dissolved organic matter (DOM) were investigated according to their performance in singlet oxygen (1O2), triplet state of DOM (3DOM*), and hydroxyl radical (·OH) productions. The photobleaching of DOM solutions after irradiation was characterized by fluorescence excitation-emission matrix and UV-Vis spectroscopy. The photosensitizing properties of pre-irradiated DOM solutions were changed in a sunlight simulator. The performance of DOMs in photosensitized degradation of several contaminants was investigated. For a 20h exposure, the observed degradation rate constant (kobs) of some contaminants decreased as a function of exposure time, and highly depended on the properties of both DOM and contaminant. Degradation of contaminants with lower kobs was more susceptible to DOM photobleaching-induced decrease in kobs. Under the current experimental conditions, the photobleaching-induced decrease of DOM photo-reactivity in contaminant degradation was mainly attributed to indirect phototransformation of DOM caused by the interactions between photo-inductive DOM moieties and photochemically-produced reactive species. Reactive contaminants can inhibit DOM indirect photobleaching by scavenging reactive species, photosensitized degradation of these contaminants exhibited a stable kobs as a result. This is the first study to report DOM photobleaching-induced changes in the simultaneous DOM photosensitized degradation of contaminants and the inhibitory effect of reactive contaminants on DOM photobleaching.

  14. Behaviour of boron in Mandovi estuary (Goa)

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Anand, S.P.

    and alkalinity gave positive correlations with a linear variation. Though the overall behavioural pattern of boron indicated non-conservative nature, it showed a quasi-conservative character during premonsoon and a non-conservative during rest of the seasons...

  15. Internal stress control of boron thin film

    International Nuclear Information System (INIS)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M.

    1998-01-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s -1 and substrate temperature of 300 C. (orig.)

  16. Internal stress control of boron thin film

    Energy Technology Data Exchange (ETDEWEB)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M. [Osaka Univ., Suita (Japan). Graduate Sch. of Eng.

    1998-09-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s{sup -1} and substrate temperature of 300 C. (orig.) 12 refs.

  17. Determination of boron in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grazhulene, S.S.; Grossman, O.V.; Kuntscher, K.K.; Malygina, L.I.; Muller, E.N.; Telegin, G.F.

    1985-10-01

    In the determination of boron in amorphous alloys containingFe, Co, B, Si, Ni, and P having unusal magnetic and electrical properties, precise analysis and rapid analysis are necessary. To improve the metrological properties of the existing procedure, to find a rapid determination of boron in amorphous alloys, and to verify the accuracy of the results, in the present work the optimization of the photometric determination after extraction of the BF/sup -//sub 4/ ion pair with methylene blue has been studied, and a boron determination by flame photometry using selective methylation has been developed. The determination of boron by the flame photometric and spectrophotometric methods is shown. When a highly precise determination is needed, the spectrophotometric procedure can be used. This procedure is distinguished by its labor intensity and duration. When the need for reproducibility is less severe, the rapid flame photometric procedure is best.

  18. Boron adsorption on hematite and clinoptilolite

    International Nuclear Information System (INIS)

    Gainer, G.M.

    1993-01-01

    This thesis describes experiments performed to determine the suitability of boron as a potential reactive tracer for use in saturated-zone C-well reactive tracer studies for the Yucca Mountain Project (YMP). Experiments were performed to identify the prevalent sorption mechanism of boron and to determine adsorption of boron on hematite and clinoptilolite as a function of pH. These minerals are present in the Yucca Mountain tuff in which the C-well studies will be conducted. Evaluation of this sorption mechanism was done by determining the equilibration time of boron-mineral suspensions, by measuring changes in equilibrium to titrations, and by measuring electrophoretic mobility. Experiments were performed with the minerals suspended in NaCl electrolytes of concentrations ranging from 0.1 N NaCl to 0.001 N NaCl. Experimentalconditions included pH values between 3 and 12 and temperature of about 38 degrees C

  19. Boron-isotope fractionation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Marentes, E [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada); Vanderpool, R A [USDA/ARS Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota (United States); Shelp, B J [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada)

    1997-10-15

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, {sup 11}B and {sup 10}B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in {sup 11}B relative to the nutrient solution, and the leaves were enriched in {sup 10}B and the stem in {sup 11}B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  20. Boron-isotope fractionation in plants

    International Nuclear Information System (INIS)

    Marentes, E.; Vanderpool, R.A.; Shelp, B.J.

    1997-01-01

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, 11 B and 10 B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in 11 B relative to the nutrient solution, and the leaves were enriched in 10 B and the stem in 11 B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  1. Superplastic boronizing of duplex stainless steel under dual compression method

    International Nuclear Information System (INIS)

    Jauhari, I.; Yusof, H.A.M.; Saidan, R.

    2011-01-01

    Highlights: → Superplastic boronizing. → Dual compression method has been developed. → Hard boride layer. → Bulk deformation was significantly thicker the boronized layer. → New data on boronizing could be expanded the application of DSS in industries. - Abstract: In this work, SPB of duplex stainless steel (DSS) under compression method is studied with the objective to produce ultra hard and thick boronized layer using minimal amount of boron powder and at a much faster boronizing time as compared to the conventional process. SPB is conducted under dual compression methods. In the first method DSS is boronized using a minimal amount of boron powder under a fix pre-strained compression condition throughout the process. The compression strain is controlled in such a way that plastic deformation is restricted at the surface asperities of the substrate in contact with the boron powder. In the second method, the boronized specimen taken from the first mode is compressed superplastically up to a certain compressive strain under a certain strain rate condition. The process in the second method is conducted without the present of boron powder. As compared with the conventional boronizing process, through this SPB under dual compression methods, a much harder and thicker boronized layer thickness is able to be produced using a minimal amount of boron powder.

  2. Superplastic boronizing of duplex stainless steel under dual compression method

    Energy Technology Data Exchange (ETDEWEB)

    Jauhari, I., E-mail: iswadi@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yusof, H.A.M.; Saidan, R. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-10-25

    Highlights: {yields} Superplastic boronizing. {yields} Dual compression method has been developed. {yields} Hard boride layer. {yields} Bulk deformation was significantly thicker the boronized layer. {yields} New data on boronizing could be expanded the application of DSS in industries. - Abstract: In this work, SPB of duplex stainless steel (DSS) under compression method is studied with the objective to produce ultra hard and thick boronized layer using minimal amount of boron powder and at a much faster boronizing time as compared to the conventional process. SPB is conducted under dual compression methods. In the first method DSS is boronized using a minimal amount of boron powder under a fix pre-strained compression condition throughout the process. The compression strain is controlled in such a way that plastic deformation is restricted at the surface asperities of the substrate in contact with the boron powder. In the second method, the boronized specimen taken from the first mode is compressed superplastically up to a certain compressive strain under a certain strain rate condition. The process in the second method is conducted without the present of boron powder. As compared with the conventional boronizing process, through this SPB under dual compression methods, a much harder and thicker boronized layer thickness is able to be produced using a minimal amount of boron powder.

  3. Boron dose determination for BNCT using Fricke and EPR dosimetry

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ciesielski, B.

    1995-01-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to α and 7 Li charged particles resulting from a neutron capture by 10 B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient's dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here

  4. Boron-rich oligomers for BNCT

    International Nuclear Information System (INIS)

    Gula, M.; Perleberg, O.; Gabel, D.

    2000-01-01

    The synthesis of two BSH derivatives is described, which can be used for oligomerization in DNA-synthesizers. Synthesis pathways lead to final products in five and six steps, respectively. Because of chirality interesting results were expected. NMR-measurements confirm this expectation. Possible oligomers with high concentrations of boron can be attached to biomolecules. These oligomers can be explored with several imaging methods (EELS, PEM) to determine the lower detection limit of boron with these methods. (author)

  5. Rare earth-iron-boron premanent magnets

    International Nuclear Information System (INIS)

    Ghendehari, M.H.

    1988-01-01

    This patent describes a method for producing rare earth-iron-boron permanent magnets containing added rare earth oxide, comprising the steps of: (a) mixing a particulate alloy containing at least one rare earth metal, iron, and boron with at least one particulate rare earth oxide; (b) aligning magnetic domains of the mixture in a magnetic field; (c) compacting the aligned mixture to form a shape; and (d) sintering the compacted shape

  6. Quantitative analysis of boron by neutron radiography

    International Nuclear Information System (INIS)

    Bayuelken, A.; Boeck, H.; Schachner, H.; Buchberger, T.

    1990-01-01

    The quantitative determination of boron in ores is a long process with chemical analysis techniques. As nuclear techniques like X-ray fluorescence and activation analysis are not applicable for boron, only the neutron radiography technique, using the high neutron absorption cross section of this element, can be applied for quantitative determinations. This paper describes preliminary tests and calibration experiments carried out at a 250 kW TRIGA reactor. (orig.) [de

  7. Physical origin of third order non-linear optical response of porphyrin nanorods

    International Nuclear Information System (INIS)

    Mongwaketsi, N.; Khamlich, S.; Pranaitis, M.; Sahraoui, B.; Khammar, F.; Garab, G.; Sparrow, R.; Maaza, M.

    2012-01-01

    The non-linear optical properties of porphyrin nanorods were studied using Z-scan, Second and Third harmonic generation techniques. We investigated in details the heteroaggregate behaviour formation of [H 4 TPPS 4 ] 2- and [SnTPyP] 2+ mixture by means of the UV-VIS spectroscopy and aggregates structure and morphology by transmission electron microscopy. The porphyrin nanorods under investigation were synthesized by self assembly and molecular recognition method. They have been optimized in view of future application in the construction of the light harvesting system. The focus of this study was geared towards understanding the influence of the type of solvent used on these porphyrins nanorods using spectroscopic and microscopic techniques. Highlights: ► We synthesized porphyrin nanorods by self assembly and molecular recognition method. ► TEM images confirmed solid cylindrical shapes. ► UV-VIS spectroscopy showed the decrease in the absorbance peaks of the precursors. ► The enhanced third-order nonlinearities were observed.

  8. Synthesis, characterization, and nonlinear optical properties of graphene oxide functionalized with tetra-amino porphyrin

    Science.gov (United States)

    Yamuna, R.; Ramakrishnan, S.; Dhara, Keerthy; Devi, R.; Kothurkar, Nikhil K.; Kirubha, E.; Palanisamy, P. K.

    2013-01-01

    The synthesis of a porphyrin-graphene oxide hybrid (GO-TAP) was carried out by covalently functionalizing graphene oxide (GO) with 5,10,15,20 mesotetra (4-aminophenyl) porphyrin (TAP) through an amide linkage. The GO-TAP hybrid has been characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-visible spectroscopy. The peak intensity of the Soret band of the material was suppressed compared to neat TAP. This indicates a strong interaction between the electronic energy level of TAP and GO in the GO-TAP hybrid. The functionalization of GO with TAP significantly improved its solubility and dispersion stability in organic solvents. Scanning electron micrographs reveal that the hybrid was found to be similar to the unmodified GO but slightly more wrinkled. Transmission electron micrographs also demonstrate that GO sheet in the hybrid is more wrinkled with some dark spot due to functionalization. Atomic force microscopy results also reveal that the TAP functionalization increases the thickness of GO sheet to 2.0-3.0 nm from 1.2 to 1.8 nm. We observed improved nonlinear optical and optical limiting properties for the hybrid compared to both graphene oxide and porphyrin. GO-TAP shows fluorescence quenching compared with porphyrin, indicating excellent electron and/or energy transfer to GO from TAP. Thermogravimetric analysis confirms that the GO-TAP hybrid has outstanding thermal stability.

  9. Controlled electropolymerisation of a carbazole-functionalised iron porphyrin electrocatalyst for CO2 reduction

    DEFF Research Database (Denmark)

    Hu, Xinming; Salmi, Zakaria; Lillethorup, Mie

    2016-01-01

    Using a one-step electropolymerisation procedure, CO2 absorbing microporous carbazole-functionalised films of iron porphyrins are prepared in a controlled manner. The electrocatalytic reduction of CO2 for these films is investigated to elucidate their efficiency and the origin of their ultimate...

  10. Studies of interactions of porphyrins with transfer RNA by high-resolution NMR

    International Nuclear Information System (INIS)

    Birdsall, W.J.; Lehigh Univ., Bethlehem, PA; Anderson, W.R. Jr; Foster, N.

    1989-01-01

    The interactions of tetra-4N-methulpyridyl porphyrin and its zinc (II), copper (II) and manganese (III) complexes with brewer's yeast type V phenylalanine specific tRNA have been evaluated by high-resolution NMR. Differences in chemical shifts have been noted for thre proton resonances in response to the presence of small quantities of the fre base and the zinc and copper complexes. The protons giving rise to these signals are located on bases T54 and psi55, both of which are involved in the primary intraloop and interloop hydroen bonds that hold the D and TpsiC loops together in the tertiary structure. In addition, broadening of specific resonances due to hydrogen bonding protons in the D stem at low ratios of porphyrin to tRNA indicates that the association of porphyrins increases the rate of imino proton exchange. The titration of the tRNA with the manganese (III) complex did not eveal shifts or spcific broadening comparable to the other porpyrins at low ratios. The changes induced in the NMR spectrum of tNA by porphyrins define their site of interaction with the polynucleotide. This site, at the outside of the elbow-bend in the tRNA 'L', is different from the locus of binding in tRNA for other classical DNA intercalators. Furthermore, a new mode of binding may be involved that is neither intercalative nor simply electrostatic. (author). 36 refs.; 4 figs

  11. N-annulated perylene fused porphyrins with enhanced near-IR absorption and emission

    KAUST Repository

    Jiao, Chongjun; Huang, Kuo-Wei; Guan, Zhenping; Xu, Qinghua; Wu, Jishan

    2010-01-01

    -IR absorption, as well as detectable photoluminescence quantum yields, all of which are comparable to or even exceed those of either meso-β doubly linked porphyrin dimer/trimer or bis/tri-N-annulated rylenes. © 2010 American Chemical Society.

  12. Aspects of investigating scrambling in the synthesis of porphyrins Different analytical methods

    DEFF Research Database (Denmark)

    Nielsen, C.B.; Krebs, Frederik C

    2005-01-01

    Herein, we discuss the analyses and quantification of the different components in porphyrin mixtures, prepared from p-anisaidehyde, p-tolualdehyde, and 5-(4-bromophenyl)-dipyrromethane with acid catalysis, using NMR and HPLC. The advantages and disadvantages of these analytical methods are emphas...

  13. Redox tuning of cytochrome b562 through facile metal porphyrin substitution

    DEFF Research Database (Denmark)

    Della Pia, Eduardo Antonio; Chi, Qijin; Elliott, Martin

    2012-01-01

    The biologically and nanotechnologically important heme protein cytochrome b562 was reconstructed with zinc and copper porphyrins, leading to significant changes in the spectral, redox and electron transfer properties. The Cu form shifts the redox potential by +300 mV and exhibits high electron t...

  14. Spectral Sensitization of TiO2 Substrates by Monolayers of Porphyrin Heterodimers

    NARCIS (Netherlands)

    Koehorst, R.B.M.; Boschloo, G.K.; Savenije, T.J.; Goossens, A.; Schaafsma, T.J.

    2000-01-01

    Photoelectrochemical cells have been constructed by depositing monolayers of oriented covalently linked zinc/free base porphyrin heterodimers onto ~30 nm nonporous layers of TiO2 on ITO, deposited by metal-organic chemical vapor deposition (MO-CVD), and onto ~100 nm porous, nanostructured TiO2

  15. New ZnO@Cardanol Porphyrin Composite Nanomaterials with Enhanced Photocatalytic Capability under Solar Light Irradiation

    Directory of Open Access Journals (Sweden)

    Viviane Gomes Pereira Ribeiro

    2017-09-01

    Full Text Available This work describes the synthesis, characterization, and photocatalytic activity of new composite nanomaterials based on ZnO nanostructures impregnated by lipophlilic porphyrins derived from cashew nut shell liquid (CNSL. The obtained nanomaterials were characterized by X-ray diffraction (XRD, UV-Vis diffuse reflectance spectroscopy (DRS, Fourier transform infrared spectroscopy (FT-IR, transmission electron microscopy (TEM, and steady-state photoluminescence spectra (PL. The results confirm nanostructures showing average diameter of 55 nm and an improved absorption in the visible region. Further, the FTIR analysis proved the existence of non-covalent interactions between the porphyrin molecules and ZnO. The photocatalytic activity of prepared photocatalysts was investigated by degradation of rhodamine B (RhB in aqueous solution under visible light irradiation and natural sunlight. It was demonstrated that the photocatalytic activity increases in the presence of the porphyrins and, also, depends on the irradiation source. The development of composite photocatalysts based on porphyrins derived from CNSL provides an alternative approach to eliminate efficiently toxic wastes from water under ambient conditions.

  16. Optical acetylcholine sensor based on free base porphyrin as a chromoionophore.

    Science.gov (United States)

    Mroczkiewicz, Monika; Pietrzak, Mariusz; Górski, Łukasz; Malinowska, Elżbieta

    2011-09-21

    In this work, the possibility of application of free base porphyrin as a lipophilic pH chromoionophore for the preparation of optical cation-selective sensors was investigated. The properties of polymeric membranes, containing porphyrins of different structures, namely tetraphenylporphyrin (TPP) and octaethylporphyrin (OEP), were compared. Changes in equilibrium between protonated and deprotonated form of porphyrin, resulting from variations in ACh concentration, were evaluated. The influence of various factors (kind and quantity of anionic additive and porphyrin in the membrane phase, pH of sample solution) on initial equilibrium was studied. The best membrane composition was chosen as: TPP 3 wt.%, KTFPB 175 mol.% relative to ionophore, PVC:o-NPOE (1 : 4) and measuring buffer solution: 0.05 M MES, pH 4.5. Selectivity, response stability, reversibility and repeatability tests were carried out for chosen sensor. Developed sensor allowed for the determination of a model analyte, acetylcholine, at the concentration range of 10(-5) to 10(-2) M, both in stationary and flow-injection system. Sensor response was reversible and repeatable in the mentioned concentration range.

  17. Spherical porphyrin sensor array based on encoded colloidal crystal beads for VOC vapor detection.

    Science.gov (United States)

    Xu, Hua; Cao, Kai-Di; Ding, Hai-Bo; Zhong, Qi-Feng; Gu, Hong-Cheng; Xie, Zhuo-Ying; Zhao, Yuan-Jin; Gu, Zhong-Ze

    2012-12-01

    A spherical porphyrin sensor array using colloidal crystal beads (CCBs) as the encoding microcarriers has been developed for VOC vapor detection. Six different porphyrins were coated onto the CCBs with distinctive encoded reflection peaks via physical adsorption and the sensor array was fabricated by placing the prepared porphyrin-modified CCBs together. The change in fluorescence color of the porphyrin-modified CCBs array serves as the detection signal for discriminating between different VOC vapors and the reflection peak of the CCBs serves as the encoding signal to distinguish between different sensors. It was demonstrated that the VOC vapors detection using the prepared sensor array showed excellent discrimination: not only could the compounds from the different chemical classes be easily differentiated (e.g., alcohol vs acids vs ketones) but similar compounds from the same chemical family (e.g., methanol vs ethanol) and the same compound with different concentration ((e.g., Sat. ethanol vs 60 ppm ethanol vs 10 ppm ethanol) could also be distinguished. The detection reproducibility and the humidity effect were also investigated. The present spherical sensor array, with its simple preparation, rapid response, high sensitivity, reproducibility, and humidity insensitivity, and especially with stable and high-throughput encoding, is promising for real applications in artificial olfactory systems.

  18. Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates

    NARCIS (Netherlands)

    Helmich, F.A.; Lee, C.C.; Schenning, A.P.H.J.; Meijer, E.W.

    2010-01-01

    Chiral memory at the supramolecular level is obtained via a new approach using chiral Zn porphrins and achiral Cu porphyrins. In a "sergeant-and-soldiers" experiment, the Zn "sergeant" transfers its own chirality to Cu "soldiers" and, after chiral amplification, the "sergeant" is removed from the

  19. Thermodynamic driving force effects in the oxygen reduction catalyzed by a metal-free porphyrin

    Czech Academy of Sciences Publication Activity Database

    Trojánek, Antonín; Langmaier, Jan; Samec, Zdeněk

    2012-01-01

    Roč. 82, SI (2012), s. 457-462 ISSN 0013-4686 R&D Projects: GA ČR GAP208/11/0697 Institutional research plan: CEZ:AV0Z40400503 Keywords : oxygen reduction * metal-free porphyrin * electrocatalysis Subject RIV: CG - Electrochemistry Impact factor: 3.777, year: 2012

  20. Porphyrin metabolism in lymphocytes of miners exposed to diesel exhaust at oil shale mine.

    NARCIS (Netherlands)

    Muzyka, V.; Scheepers, P.T.J.; Bogovski, S.; Lang, I.; Schmidt, N.; Ryazanov, V.; Veidebaum, T.

    2004-01-01

    The present study was carried out on the evaluation and application of new biomarkers for populations exposed to occupational diesel exhaust at oil shale mines. Since not only genotoxic effects may play an important role in the generation of tumors, the level of porphyrin metabolism was proposed as

  1. Synthesis and photophysical properties of phosphorus(V) porphyrins functionalized with axial carbazolylvinylnaphthalimides.

    Science.gov (United States)

    Zhan, Yong; Cao, Kaiyu; Wang, Chenguang; Jia, Junhui; Xue, Pengchong; Liu, Xingliang; Duan, Xuemei; Lu, Ran

    2012-11-21

    We have synthesized new D-A-D type phosphorus(V) porphyrin derivatives and functionalized with axial carbazolylvinylnaphthalimide units. The absorption bands of the obtained phosphorus(V) porphyrins were in the range 250-640 nm with high molar absorption coefficients, meaning strong light-harvesting abilities. Notably, it is found that the devices based on phosphorus(V) porphyrins with a configuration structure of [ITO/PEDOT : PSS/organic active film/LiF/Al] give an incident-photon-to-current conversion efficiency (IPCE) response. The maximal IPCE value reaches 2.76% for the device based on compound , which is much higher than that of 0.20% for compound . The reason might be due to the low oxidation potential and the strong light-harvesting ability of the enlarged conjugation of the axial units in compound . Therefore, we deduced that photo-induced electron transfer happened in phosphorus(V) porphyrins bearing axial conjugated donor units, which would make them good candidates for photovoltaic materials that could be applied in solar cells.

  2. New ZnO@Cardanol Porphyrin Composite Nanomaterials with Enhanced Photocatalytic Capability under Solar Light Irradiation

    Science.gov (United States)

    Ribeiro, Viviane Gomes Pereira; Marcelo, Ana Maria Pereira; da Silva, Kássia Teixeira; da Silva, Fernando Luiz Firmino; Mota, João Paulo Ferreira; do Nascimento, João Paulo Costa; Sombra, Antonio Sérgio Bezerra; Clemente, Claudenilson da Silva; Mazzetto, Selma Elaine

    2017-01-01

    This work describes the synthesis, characterization, and photocatalytic activity of new composite nanomaterials based on ZnO nanostructures impregnated by lipophlilic porphyrins derived from cashew nut shell liquid (CNSL). The obtained nanomaterials were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and steady-state photoluminescence spectra (PL). The results confirm nanostructures showing average diameter of 55 nm and an improved absorption in the visible region. Further, the FTIR analysis proved the existence of non-covalent interactions between the porphyrin molecules and ZnO. The photocatalytic activity of prepared photocatalysts was investigated by degradation of rhodamine B (RhB) in aqueous solution under visible light irradiation and natural sunlight. It was demonstrated that the photocatalytic activity increases in the presence of the porphyrins and, also, depends on the irradiation source. The development of composite photocatalysts based on porphyrins derived from CNSL provides an alternative approach to eliminate efficiently toxic wastes from water under ambient conditions. PMID:28934117

  3. RAFT Synthesis and Self-Assembly of Free-Base Porphyrin Cored Star Polymers

    Directory of Open Access Journals (Sweden)

    Lin Wu

    2011-01-01

    Full Text Available Reversible addition fragmentation chain transfer (RAFT synthesis and self-assembly of free-base porphyrin cored star polymers are reported. The polymerization, in the presence of a free-base porphyrin cored chain transfer agent (CTA-FBP, produced porphyrin star polymers with controlled molecular weights and narrow polydispersities for a number of monomers including N, N-dimethylacrylamide (DMA and styrene (St. Well-defined amphiphilic star block copolymers, P-(PS-PDMA4 and P-(PDMA-PS4 (P: porphyrin, were also prepared and used for self-assembly studies. In methanol, a selective solvent for PDMA, spherical micelles were observed for both block copolymers as characterized by TEM. UV-vis studies suggested star-like micelles were formed from P-(PS-PDMA4, while P-(PDMA-PS4 aggregated into flower-like micelles. Spectrophotometric titrations indicated that the optical response of these two micelles to external ions was a function of micellar structures. These structure-related properties will be used for micelle studies and functional material development in the future.

  4. Competitive inhibition of a metal-free porphyrin oxygen-reduction catalyst by water

    Czech Academy of Sciences Publication Activity Database

    Trojánek, Antonín; Langmaier, Jan; Záliš, Stanislav; Samec, Zdeněk

    2012-01-01

    Roč. 48, č. 34 (2012), s. 4094-4096 ISSN 1359-7345 R&D Projects: GA ČR GAP208/11/0697 Institutional research plan: CEZ:AV0Z40400503 Keywords : metal -free porphyrin * competitive inhibition * liquid-liquid interfaces Subject RIV: CG - Electrochemistry Impact factor: 6.378, year: 2012

  5. Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Vanin, Marco; Karamad, Mohammedreza

    2013-01-01

    Porphyrin-like metal-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane or methanol. The late transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) and some p (B, Al, Ga) and s (Mg) metals comprised the center of the po......Porphyrin-like metal-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane or methanol. The late transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) and some p (B, Al, Ga) and s (Mg) metals comprised the center...... instead of CO2. Volcano plots were constructed on the basis of scaling relations of reaction intermediates, and from these plots the reaction steps with the highest overpotentials were deduced. The Rh-porphyrin-like functionalized graphene was identified as the most active catalyst for producing methanol...... from CO, featuring an overpotential of 0.22 V. Additionally, we have also examined the hydrogen evolution and oxidation reaction, and in their case, too, Rh-porphyrin turned out to be the best catalyst with an overpotential of 0.15 V. © 2013 American Chemical Society....

  6. NO2-induced synthesis of nitrato-iron(III) porphyrin with diverse ...

    Indian Academy of Sciences (India)

    found serendipitously in the reaction of [Fe(4-Me-TPP)Cl] with nitrous acid, which ... Nitric oxide and its derivatives nitrite and nitrate ion ... oxide.2 Nitrate is produced in heme proteins from oxi- ... and nitrogen assimilation.4 Iron nitrate(III) porphyrins ... one-pot method.15 ... of the compound was determined based on the lack.

  7. Mg-Al layered double hydroxide intercalated with porphyrin anions: molecular simulations and experiments

    Czech Academy of Sciences Publication Activity Database

    Kovář, P.; Pospíšil, M.; Káfuňková, Eva; Lang, Kamil; Kovanda, F.

    2010-01-01

    Roč. 16, č. 2 (2010), s. 223-233 ISSN 1610-2940 R&D Projects: GA ČR(CZ) GA203/06/1244; GA AV ČR KAN100500651 Institutional research plan: CEZ:AV0Z40320502 Keywords : layered double hydroxide * porphyrin * molecular simulations Subject RIV: CA - Inorganic Chemistry Impact factor: 1.871, year: 2010

  8. Ultrafast Photoinduced Electron Transfer in a π-Conjugated Oligomer/Porphyrin Complex

    KAUST Repository

    Aly, Shawkat Mohammede

    2014-10-02

    Controlling charge transfer (CT), charge separation (CS), and charge recombination (CR) at the donor-acceptor interface is extremely important to optimize the conversion efficiency in solar cell devices. In general, ultrafast CT and slow CR are desirable for optimal device performance. In this Letter, the ultrafast excited-state CT between platinum oligomer (DPP-Pt(acac)) as a new electron donor and porphyrin as an electron acceptor is monitored for the first time using femtosecond (fs) transient absorption (TA) spectroscopy with broad-band capability and 120 fs temporal resolution. Turning the CT on/off has been shown to be possible either by switching from an organometallic oligomer to a metal-free oligomer or by controlling the charge density on the nitrogen atom of the porphyrin meso unit. Our time-resolved data show that the CT and CS between DPP-Pt(acac) and cationic porphyrin are ultrafast (approximately 1.5 ps), and the CR is slow (ns time scale), as inferred from the formation and the decay of the cationic and anionic species. We also found that the metallic center in the DPP-Pt(acac) oligomer and the positive charge on the porphyrin are the keys to switching on/off the ultrafast CT process.

  9. Metal porphyrin intercalated reduced graphene oxide nanocomposite utilized for electrocatalytic oxygen reduction

    Directory of Open Access Journals (Sweden)

    Mingyan Wang

    2017-07-01

    Full Text Available In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin –MtTMPyP (Mt= Cobalt (II, Manganese (III, or Iron (III; TMPyP = 5, 10, 15, 20-tetrakis (N-methylpyridinium-4-yl porphyrin intercalated into the layer of graphene oxide (GO by the cooperative effects of electrostatic and π–π stacking interaction between positively charged metal porphyrin and negatively charged GO sheets. Followed by reduction with hydrazine vapor, a series of novel 2D MtTMPyP/rGOn were fabricated. The as-prepared 2D hybrids were fully characterized and tested as non-noble metal catalysts for oxygen reduction reaction (ORR in an alkaline medium. The MtTMPyP/rGOn hybrids, especially CoTMPyP/rGO5, demonstrated an improved electrocatalytic activity for ORR and a number of exchanged electrons close to 4-electron reaction, increased stability and excellent tolerance to methanol, showing a potential alternative catalyst for ORR in fuel cells and air batteries. Keywords: Metal porphyrin, Reduced graphene oxide, Intercalation, Oxygen reduction reaction, Catalyst

  10. Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework

    KAUST Repository

    Chen, Chen

    2017-12-20

    We have characterized the local electronic structure of a porphyrin-containing single-layer covalent organic framework (COF) exhibiting a square lattice. The COF monolayer was obtained by the deposition of 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMA) and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) onto a Au(111) surface in ultrahigh vacuum followed by annealing to facilitate Schiff-base condensations between monomers. Scanning tunneling spectroscopy (STS) experiments conducted on isolated TAPP precursor molecules and the covalently linked COF networks yield similar transport (HOMO-LUMO) gaps of 1.85 ± 0.05 eV and 1.98 ± 0.04 eV, respectively. The COF orbital energy alignment, however, undergoes a significant downward shift compared to isolated TAPP molecules due to the electron-withdrawing nature of the imine bond formed during COF synthesis. Direct imaging of the COF local density of states (LDOS) via dI/dV mapping reveals that the COF HOMO and LUMO states are localized mainly on the porphyrin cores and that the HOMO displays reduced symmetry. DFT calculations reproduce the imine-induced negative shift in orbital energies and reveal that the origin of the reduced COF wave function symmetry is a saddle-like structure adopted by the porphyrin macrocycle due to its interactions with the Au(111) substrate.

  11. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Guan, E-mail: huangg66@126.com; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-30

    Graphical abstract: A biomimetic catalyst of iron-tetrakis(4-sulfonatophenyl)porphyrin immobilized on powdered chitosan achieves efficient cyclohexane oxidation with high ketone and alcohol yields. - Highlights: • Fe (TPPS)/pd-CTS is an excellent catalyst for cyclohexane oxidation. • Amino ligation alters the electron cloud density around the iron cation. • Amino coordination likely reduces the activation energy of Fe (TPPS). • The catalyst achieved 22.9 mol% yields of cyclohexanone and cyclohexanol. - Abstract: This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O{sub 2}. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  12. ALA-based fluorescent diagnosis of malignant oral lesions in the presence of bacterial porphyrin formation

    Science.gov (United States)

    Schleier, P.; Berndt, A.; Zinner, K.; Zenk, W.; Dietel, W.; Pfister, W.

    2006-02-01

    The aminolevulinic acid (5-ALA) -based fluorescence diagnosis has been found to be promising for an early detection and demarcation of superficial oral squamous cell carcinomas (OSCC). This method has previously demonstrated high sensitivity, however this clinical trial showed a specificity of approximately 62 %. This specificity was mainly restricted by tumor detection in the oral cavity in the presence of bacteria. After topical ALA application in the mouth of patients with previously diagnosed OSSC, red fluorescent areas were observed which did not correlate to confirm histological findings. Swabs and plaque samples were taken from 44 patients and cultivated microbiologically. Fluorescence was investigated (OMA-system) from 32 different bacteria strains found naturally in the oral cavity. After ALA incubation, 30 of 32 strains were found to synthesize fluorescent porphyrins, mainly Protoporphyrin IX. Also multiple fluorescent spectra were obtained having peak wavelengths of 636 nm and around 618 nm - 620 nm indicating synthesis of different porphyrins, such as the lipophylic Protoporphyrin IX (PpIX) and hydrophylic porphyrins (water soluble porphyrins, wsp). Of the 32 fluorescent bacterial strains, 18 produced wsp, often in combination with PpIX, and 5 produced solely wsp. These results clarify that ALA-based fluorescence diagnosis without consideration or suppression of bacteria fluorescence may lead to false-positive findings. It is necessary to suppress bacteria fluorescence with suitable antiseptics before starting the procedure. In this study, when specific antiseptic pre-treatment was performed bacterial associated fluorescence was significantly reduced.

  13. Exciplex-exciplex energy transfer and annihilation in solid films of porphyrin-fullerene dyads

    NARCIS (Netherlands)

    Lehtivuori, Heli; Lemmetyinen, Helge; Tkachenko, Nikolai V.

    2006-01-01

    Exciplex-exciplex annihilation was observed for the first time in porphyrin-fullerene molecular films. The films were prepared using Langmuir-Blodgett and drop casting methods. The exciplex-exciplex interactions were studied using femtosecond pump-probe method. The exciplex-exciplex annihilation can

  14. Porphyrins and pheomelanins contribute to the reddish juvenal plumage of black-shouldered kites.

    Science.gov (United States)

    Negro, Juan J; Bortolotti, Gary R; Mateo, Rafael; García, Isabel M

    2009-07-01

    Porphyrins are a widespread group of pigments in nature, but, contrary to melanins and carotenoids, their occurrence as plumage colorants seems to be anecdotal and their function, if any, is unknown. Using thin-layer chromatography and high pressure liquid chromatography, we have found coproporphyrin III, the same porphyrin type previously reported in owls, in the plumage of nestling black-shouldered kites (Elanus caeruleus). The first plumage grown at the nest in this species includes reddish-brown contour feathers in the upperparts, and particularly in the breast area, which fade during the weeks-long post-fledging period to become either gray or white consistent with the definitive adult plumage. In these reddish feathers, we have also found small amounts of pheomelanins and traces of eumelanin. The contribution of each pigment to the final colour perceived by birds or other animals is unknown. In white and grey feathers of the same species no porphyrin was found, and only traces of eumelanin were detected in the grey ones. The fact that the reddish feathers are only found in the juvenal plumage, when individuals are vulnerable in an open nest, leads us to hypothesize a camouflage role for this ephemeral plumage. As porphyrins are involved, although not exclusively, we can for the first time ascribe them a function in the plumage of birds.

  15. Unusual near-white electroluminescence of light emitting diodes based on saddle-shaped porphyrins.

    Science.gov (United States)

    Shahroosvand, Hashem; Zakavi, Saeed; Sousaraei, Ahmad; Mohajerani, Ezeddin; Mahmoudi, Malek

    2015-05-14

    In contrast to the red electroluminescence emission frequently observed in porphyrins based OLED devices, the present devices exhibit a nearly white emission with greenish yellow, yellowish green and blue green hues in the case of Fe(II)(TCPPBr6) (TCPPBr6 = β-hexabromo-meso-tetrakis-(4-phenyl carboxyl) porphyrinato), Zn(II)(TPPBr6) and Co(II)(TPPBr6), respectively.

  16. Biosynthesis of porphyrins and immune status of children and teenagers exposed to irradiation in low doses

    International Nuclear Information System (INIS)

    Grubina, L.A.; Shavrova, Ye.N.; Vorontsova, T.V.; Vinnik, L.M.; Kuchinskaya, E.A.; Khmelevskaya, L.A.

    1999-01-01

    Immunological indices and porphyrins levels were studied in children of various ages living on the radionuclide contaminated territories. A reliable reduction of medium levels of proto- and coproporphyrins in erythrocytes of children and teenagers with the thyroid gland pathologies from radio contaminated regions was revealed. The lowest level of porphyrins was observed in children with thyroid neoplasm. The state of immune system of children with thyroid pathology was characterized by decreasing content of T-lymphocytes production and by stimulation of B-lymphocytes generation despite of the type of thyroid gland disease. Maximal changes of both porphyrins metabolism and T- and B-immune system were registered in children from the Stolin District of the Brest Region with increasing amount of incorporated cesium 137. It could be due to the complex of radio ecological factors. In another investigated groups a correlation between the immune parameters and porphyrins level from the one hand and the level of radionuclide contamination or absorbed amount of cesium 137 in organism from the other hand was not obtained

  17. Photoinduced electron transfer and photocurrent in multicomponent organic molecular films containing oriented porphyrin-fullerene dyad

    NARCIS (Netherlands)

    Kaunisto, Kimmo; Vuorinen, Tommi; Vahasalo, Heidi; Chukharev, Vladimir; Tkachenko, Nikolai V.; Efimov, Alexander; Tolkki, Antti; Lehtivuori, Heli; Lemmetyinen, Helge

    2008-01-01

    Layers of poly(3-hexylthiophene), PHT, phenyl vinyl thiophene, PVT3, poly(p-phenylene-2,3′-bis(3,2′-diphenyl)-quinoxaline-7-7′- diyl), PPQ, and covalently linked porphyrin-fullerene donor-acceptor dyad, P-F, were deposited as various multilayer films, which then were used to study photoinduced

  18. Experimental Determination of Activation Energy of Nucleophilic Aromatic Substitution on Porphyrins

    Science.gov (United States)

    Rizvi, Waqar; Khwaja, Emaad; Siddiqui, Saim; Bhupathiraju, N. V. S. Dinesh K.; Drain, Charles Michael

    2018-01-01

    A physical organic chemistry experiment is described for second-year college students. Students performed nucleophilic aromatic substitution (NAS) reactions on 5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)porphyrin (TPPF[subscript 20]) using three different nucleophiles. Substitution occurs preferentially at the 4-position ("para")…

  19. Discharge cleaning on TFTR after boronization

    International Nuclear Information System (INIS)

    Mueller, D.; Dylla, H.F.; LaMarche, P.H.; Bell, M.G.; Blanchard, W.; Bush, C.E.; Gentile, C.; Hawryluk, R.J.; HIll, K.W.; Janos, A.C.; Jobes, F.C; Owens, D.K.; Pearson, G.; Schivell, J.; Ulrickson, M.A.; Vannoy, C.; Wong, K.L.

    1991-05-01

    At the beginning of the 1990 TFTR experimental run, after replacement of POCO-AXF-5Q graphite tiles on the midplane of the bumper limiter by carbon fiber composite (CFC) tiles and prior to any Pulse Discharge Cleaning (PDC), boronization was performed. Boronization is the deposition of a layer of boron and carbon on the vacuum vessel inner surface by a glow discharge in a diborane, methane and helium mixture. The amount of discharge cleaning required after boronization was substantially reduced compared to that which was needed after previous openings when boronization was not done. Previously, after a major shutdown, about 10 5 low current (∼20 kA) Taylor Discharge Cleaning (TDC) pulses were required before high current (∼400 kA) aggressive Pulse Discharge Cleaning (PDC) pulses could be performed successfully. Aggressive PDC is used to heat the limiters from the vessel bakeout temperature of 150 degrees C to 250 degrees C for a period of several hours. Heating the limiters is important to increase the rate at which water is removed from the carbon limiter tiles. After boronization, the number of required TDC pulses was reduced to <5000. The number of aggressive PDC pulses required was approximately unchanged. 14 refs., 1 tab

  20. Boronization on NSTX using Deuterated Trimethylboron

    International Nuclear Information System (INIS)

    Blanchard, W.R.; Gernhardt, R.C.; Kugel, H.W.; LaMarche, P.H.

    2002-01-01

    Boronization on the National Spherical Torus Experiment (NSTX) has proved to be quite beneficial with increases in confinement and density, and decreases in impurities observed in the plasma. The boron has been applied to the interior surfaces of NSTX, about every 2 to 3 weeks of plasma operation, by producing a glow discharge in the vacuum vessel using deuterated trimethylboron (TMB) in a 10% mixture with helium. Special NSTX requirements restricted the selection of the candidate boronization method to the use of deuterated boron compounds. Deuterated TMB met these requirements, but is a hazardous gas and special care in the execution of the boronization process is required. This paper describes the existing GDC, Gas Injection, and Torus Vacuum Pumping System hardware used for this process, the glow discharge process, and the automated control system that allows for remote operation to maximize both the safety and efficacy of applying the boron coating. The administrative requirements and the detailed procedure for the setup, operation and shutdown of the process are also described