WorldWideScience

Sample records for boronated porphyrin photosensitizer

  1. [Analysis of porphyrin photosensitizers using HPLC method].

    Science.gov (United States)

    Jia, Min-ge; Wu, Hai-yan; Sun, Li-li; Yao, Chun-suo; Zhang, Shao-liang; Li, Ya-wei; Fang, Qi-cheng

    2015-08-01

    Photodynamic therapy (PDT), because of its good targeting, minimal invasion, and safety, is becoming a very active area in cancer prevention and treatment, in which the photosensitizers have proved to be the core element for PDT. We developed a new HPLC method for analyzing porphyrin photosensitizers using Shiseido Capcell PAK C18 (150 mm x 4.6 mm, 5 µm) as the column at 30 °C, methanol-1% aqueous solution of acetic acid as the mobile phase in a flow rate of 1.0 mL · min(-1) in a gradient elution mode, and the detection wavelength at 380 nm. This method, showing good specificity, precision, accuracy and robusty via methodology validations, can be applied to the purity test and assay of porphyrin photosensitizers, and has played a key guide role in the R&D of the new porphyrin photosensitizer--sinoporphyrin sodium. PMID:26669003

  2. Photophysical properties of porphyrin photosensitizers

    Science.gov (United States)

    Dadeko, A. V.; Murav'eva, T. D.; Starodubtsev, A. M.; Gorelov, S. I.; Dobrun, M. V.; Kris'ko, T. K.; Bagrov, I. V.; Belousova, I. M.; Ponomarev, G. V.

    2015-10-01

    The photodynamic properties of a new photosensitizer—dimegin (disodium salt of 2,4-di(1- methoxyethyl)-deuteroporphyrin-IX)—are studied in comparison with the properties of photosensitizers used in medical practice, namely, Photoditazine (dimethylglucamine salt of chlorin e6) and Radachlorin (trisodium salt of chlorin e6). The spectral characteristics, singlet oxygen generation ability, luminescence efficiency, and photostability of these photosensitizers are studied upon irradiation by light-emitting diode arrays in different spectral ranges. The ability of photosensitizers to generate singlet oxygen was estimated with the use of tryptophan as a chemical trap. The photostability was estimated by a change in the optical density of solutions in the Soret band after irradiation. It is shown that the photodynamic properties are related to the specific features of the optical absorption spectrum of the material. The results of this work testify to the possibility of using the Dimegin photosensitizer as an efficient drug for photodynamic therapy and fluorescent diagnostics. Comparative studies of luminescence, singlet oxygen generation, and photostability have shown that Dimegin surpasses Photoditazine and Radachlorin in many characteristics. In the future, these studies will help to choose the most efficient irradiation sources for photodynamic therapy and fluorescent diagnostic.

  3. The effect on photohaemolysis of variation in the structure of the porphyrin photosensitizer.

    Science.gov (United States)

    de Paolis, A; Chandra, S; Charalambides, A A; Bonnett, R; Magnus, I A

    1985-01-01

    A comparison of the photosensitizing ability of a variety of porphyrins for photohaemolysis gives the following order of activity: protoporphyrin greater than deuteroporphyrin, mesoporphyrin, haematoporphyrin dimethyl ester much greater than haematoporphyrin diacetate, haematoporphyrin greater than haematoporphyrin monoacetate, coproporphyrin III, haematoporphyrin derivative, coproporphyrin III tetramethyl ester greater than uroporphyrin I, meso-tetra-(N-methyl-4-pyridinium)porphyrin tetratoluene-p-sulphonate, meso-tetra-(p-carboxyphenyl)porphyrin, protoporphyrin dimethyl ester, meso-tetra-(p-hydroxy-sulphonylphenyl)porphyrin tetrasodium salt, uroporphyrin III, deuteroporphyrin-3,8-disulphonic acid and protohaemin. The results for the metal-free porphyrins are rationalized in terms of solubility and partition properties, and a model is proposed for the incorporation of amphipathic porphyrins into the membrane lipid bilayer. Experiments with erythrocytes from patients with erythropoeitic protoporphyria and with normal erythrocytes to which porphyrin was added in a deuterium oxide medium do not lead to an increase in the rate of photohaemolysis. A possible explanation for this somewhat surprising observation is outlined. PMID:2985045

  4. New carbon-carbon linked amphiphilic carboranyl-porphyrins as boron neutron capture agents

    International Nuclear Information System (INIS)

    Novel amphiphilic carboranyl-porphyrins have been synthesized for Boron Neutron Capture Therapy (BNCT). These compounds have carbon-carbon bonds between the carborane residues and the porphyrin meso-phenyl groups, and contain 28-31% boron by weight . (author)

  5. Polystyrene nanofiber materials modified with an externally bound porphyrin photosensitizer

    Czech Academy of Sciences Publication Activity Database

    Henke, P.; Lang, Kamil; Kubát, Pavel; Sýkora, Jan; Šlouf, Miroslav; Mosinger, Jiří

    2013-01-01

    Roč. 5, č. 9 (2013), s. 3776-3783. ISSN 1944-8244 R&D Projects: GA ČR GAP208/10/1678; GA ČR GBP208/12/G016; GA ČR GA13-12496S Institutional support: RVO:61388980 ; RVO:61388955 ; RVO:61389013 Keywords : nanofiber * porphyrin * singlet oxygen * adsorption * photooxidation * antibacterial Subject RIV: CA - Inorganic Chemistry; CD - Macromolecular Chemistry (UMCH-V); CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 5.900, year: 2013

  6. Boronated porphyrins in NCT: Results with a new potent tumor localizer

    International Nuclear Information System (INIS)

    Several chemical methods are available for the solubilization of boronated porphyrins. We have previously reported the tumor localization of nido carboranyl porphyrins in which the icosahedral carborane cages have been opened to give B9C2 anions. One of these species has shown tumor boron levels of nearly 50 μg B/g when delivered by week-long subcutaneous infusions. We report here recent in vivo experiments with a new, highly water-soluble porphyrin based on the hematoporphyrin-type of compound in which aqueous solubility is achieved using the two propionic acid side chains of the ''natural'' porphyrin frame. 7 refs

  7. Encapsulation of palladium porphyrin photosensitizer in layered metal oxide nanoparticles for photodynamic therapy against skin melanoma

    Science.gov (United States)

    Chen, Zih-An; Kuthati, Yaswanth; Kankala, Ranjith Kumar; Chang, Yu-Chuan; Liu, Chen-Lun; Weng, Ching-Feng; Mou, Chung-Yuan; Lee, Chia-Hung

    2015-10-01

    We designed a biodegradable nanocarrier of layered double hydroxide (LDH) for photodynamic therapy (PDT) based on the intercalation of a palladium porphyrin photosensitizer (PdTCPP) in the gallery of LDH for melanoma theragnosis. Physical and chemical characterizations have demonstrated the photosensitizer was stable in the layered structures. In addition, the synthesized nanocomposites rendered extremely efficacious therapy in the B16F10 melanoma cell line by improving the solubility of the hydrophobic PdTCPP photosensitizer. The detection of singlet oxygen generation under irradiation at the excitation wavelength of a 532 nm laser was indeed impressive. Furthermore, the in vivo results using a tumour xenograft model in mice indicated the apparent absence of body weight loss and relative organ weight variation to the liver and kidney demonstrated that the nanocomposites were biosafe with a significant reduction in tumour volume for the anti-cancer efficacy of PDT. This drug delivery system using the nanoparticle-photosensitizer hybrid has great potential in melanoma theragnosis.

  8. Separation of porphyrin-based photosensitizer isomers by laser-induced fluorescence capillary electrophoresis.

    Science.gov (United States)

    Peng, Xuejun; Sternberg, Ethan; Dolphin, David

    2005-10-01

    Methods for the separation of photosensitizer isomers, such as benzoporphyrin derivative monoacid, benzoporphyrin ethyl monoacid, 2-[1-hexyloxyethyl]-2-devinylpyropheophorbide-a, diethyleneglycol diester benzoporphyrin derivative, tin ethyl etiopurpurin, and phthalocyanine tetrasulfonate, have been systematically developed by CE. Detection was accomplished by UV absorption at 214 nm or by LIF with excitation at 442/488 nm and emission at 690 nm. The effects of three major experimental parameters of buffer types, organic solvents, and surfactant additives are described. The optimized separation conditions were determined so as to provide satisfactory separation efficiency and analysis time. The methods are shown to be suitable for the separation and determination of porphyrin and phthalocyanines regioisomers, diastereoisomers, and enantiomers. PMID:16231398

  9. Comparison of two photosensitizers Al(III) phthalocyanine chloride tetrasulfonic acid and meso-tetrakis(4-sulfonatophenyl)porphyrin in the photooxidation of n-butylparaben

    Czech Academy of Sciences Publication Activity Database

    Gmurek, M.; Kubát, Pavel; Mosinger, Jiří; Miller, J. S.

    2011-01-01

    Roč. 223, č. 1 (2011), s. 50-56. ISSN 1010-6030 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : photosensitization * porphyrin * phthalocyanine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.421, year: 2011

  10. Functionalization of diameter-sorted semiconductive SWCNTs with photosensitizing porphyrins: syntheses and photoinduced electron transfer.

    Science.gov (United States)

    Das, Sushanta K; Sandanayaka, Atula S D; Subbaiyan, Navaneetha K; Zandler, Melvin E; Ito, Osamu; D'Souza, Francis

    2012-09-01

    Covalent functionalization of diameter sorted SWCNTs with porphyrins (MP), and photochemistry to establish nanotube diameter-dependent charge separation efficiencies are reported. The MP-SWCNT(n,m) [M=2H or Zn, and (n,m)=(7,6) or (6,5)] nanohybrids are characterized by a variety of spectroscopic, thermogravimetric, TEM imaging techniques, and also by DFT MO calculations. The thermogravimetric, Raman and fluorescence studies reveal the presence of a moderate number of porphyrins on the SWCNT surface. The MO results suggest charge separation (CS) via the excited state of MP. Time-resolved fluorescence studies reveal quenching of the singlet excited state of the MP with SWCNT(n,m), giving the rate constants of charge separation (k(CS)) in the range of (4-5)×10(9) s(-1). Nanosecond transient absorption measurements confirm the charge-separated radical cation and the radical anion as [MP(.+)-SWCNT(.-)] with their characteristic absorption bands in the visible and near-IR regions. The charge separated states persist for about 70-100 ns thus giving an opportunity to utilize them to build photoelectrochemical cells, which allowed us to derive the structure-reactivity relationship between the nature of porphyrin and diameter of the employed nanotubes. PMID:22807374

  11. Effective Single Photodynamic Treatment of ex Vivo Onychomycosis Using a Multifunctional Porphyrin Photosensitizer and Green Light

    OpenAIRE

    Hollander, Chelsea; Visser, Jasper; Haas, Ellen; Incrocci, Luca; Smijs, Threes

    2015-01-01

    Onychomycosis is predominantly caused by the dermatophytes Trichophyton rubrum, Trichophyton mentagrophytes and Trichophyton tonsurans. The main treatment obstacle concerns low nail-plate drug permeability. In vitro antifungal photodynamic treatment (PDT) and nail penetration enhancing effectiveness have been proven for multifunctional photosensitizer 5,10,15-tris(4-N-methylpyridinium)-20-(4-(butyramido-methylcysteinyl)-hydroxyphenyl)-[21H,23H]-porphine trichloride (PORTHE). This study invest...

  12. Comparative Study on the Efficiency of the Photodynamic Inactivation of Candida albicans Using CdTe Quantum Dots, Zn(II) Porphyrin and Their Conjugates as Photosensitizers

    OpenAIRE

    Osnir S. Viana; Martha S. Ribeiro; Andréa C. D. Rodas; Rebouças, Júlio S.; Adriana Fontes; Santos, Beate S

    2015-01-01

    The application of fluorescent II-VI semiconductor quantum dots (QDs) as active photosensitizers in photodymanic inactivation (PDI) is still being evaluated. In the present study, we prepared 3 nm size CdTe QDs coated with mercaptosuccinic acid and conjugated them electrostatically with Zn(II) meso-tetrakis (N-ethyl-2-pyridinium-2-yl) porphyrin (ZnTE-2-PyP or ZnP), thus producing QDs-ZnP conjugates. We evaluated the capability of the systems, bare QDs and conjugates, to produce reactive oxyge...

  13. Toxicity, biodistribution, and convection-enhanced delivery of the boronated porphyrin BOPP in the 9L intracerebral rat glioma model

    International Nuclear Information System (INIS)

    Purpose: To investigate the toxicity, biodistribution, and convection-enhanced delivery (CED) of a boronated porphyrin (BOPP) that was designed for boron neutron capture therapy and photodynamic therapy. Methods and Materials: For the toxicity study, Fischer 344 rats were injected with graded concentrations of BOPP (35-100 mg/kg) into the tail vein. For boron biodistribution studies, 9L tumor-bearing rats received BOPP either systematically (intravenously) or locally. Results: All rats that received 70 mg/kg BOPP and 70% of rats that received ≤60 mg/kg BOPP i.v. either had to be euthanized or died within 4 days of injection. In the biodistribution study, boron levels were relatively high in liver, kidney, spleen, and adrenal gland tissue, and moderate levels were found in all other organs. The maximum tumor boron concentration was 21.4 μg/g at 48 h after i.v. injection; this concentration of boron in brain tumors is at the low end of the range considered optimal for therapy. In addition, the tumor/blood ratio (approximately 1.2) was not optimal. When BOPP was delivered directly into intracerebral 9L tumors with CED, we obtained tumor boron concentrations much greater than those obtained by i.v. injection. Convection-enhanced delivery of 1.5 mg BOPP produced an average tumor boron level of 519 μg/g and a tumor/blood ratio of approximately 1850:1. Conclusions: Our study demonstrates that changing the method of BOPP delivery from i.v. to CED significantly enhances the boron concentration in tumors and produces very favorable tumor/brain and tumor/blood ratios

  14. Medical chemistry of boron neutron capture agents having pharmacological activity

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a cancer treatment that selectively destroys cancer cells following administering a cancer-selective drug containing stable isotope boron-10 and neutron irradiation. In clinical trial of BNCT, disodium mercaptoundecahydro-closo-dodecaborate (BSH) and p-boronophenylalanine (BPA) have been used, however, development of a new drugs with high cancer selectivity and therapeutic efficiency is expected. Therefore, we review boron-containing drugs as a boron neutron capture agents having pharmacological activity, BNCT research on boron-modified porphyrin derivatives which have photosensitivity and neutron capture activity and our proposed neutron sensitizing agent. (author)

  15. Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: a model for the photosynthetic antenna-reaction center complex.

    Science.gov (United States)

    D'Souza, Francis; Smith, Phillip M; Zandler, Melvin E; McCarty, Amy L; Itou, Mitsunari; Araki, Yasuyuki; Ito, Osamu

    2004-06-30

    The first example of a working model of the photosynthetic antenna-reaction center complex, constructed via self-assembled supramolecular methodology, is reported. For this, a supramolecular triad is assembled by axially coordinating imidazole-appended fulleropyrrolidine to the zinc center of a covalently linked zinc porphyrin-boron dipyrrin dyad. Selective excitation of the boron dipyrrin moiety in the boron dipyrrin-zinc porphyrin dyad resulted in efficient energy transfer (k(ENT)(singlet) = 9.2 x 10(9) s(-)(1); Phi(ENT)(singlet) = 0.83) creating singlet excited zinc porphyrin. Upon forming the supramolecular triad, the excited zinc porphyrin resulted in efficient electron transfer to the coordinated fullerenes, resulting in a charge-separated state (k(cs)(singlet) = 4.7 x 10(9) s(-)(1); Phi(CS)(singlet) = 0.9). The observed energy transfer followed by electron transfer in the present supramolecular triad mimics the events of natural photosynthesis. Here, the boron dipyrrin acts as antenna chlorophyll that absorbs light energy and transports spatially to the photosynthetic reaction center, while the electron transfer from the excited zinc porphyrin to fullerene mimics the primary events of the reaction center where conversion of the electronic excitation energy to chemical energy in the form of charge separation takes place. The important feature of the present model system is its relative "simplicity" because of the utilized supramolecular approach to mimic rather complex "combined antenna-reaction center" events of photosynthesis. PMID:15212538

  16. Electron transfer between a zinc porphyrin photo-sensitized in the visible, and various acceptors, in aqueous and micellar solutions

    International Nuclear Information System (INIS)

    This research thesis addresses the study of reactions occurring during the transformation of solar energy in chemical energy, and more precisely the search for photochemical systems allowing the dissociation of water into hydrogen and oxygen. In this study on water photolysis, the author chose to use a porphyrin soluble in water, the zinc tetra-meta-N-methylpyridinium porphyrin, as one of its isomer provided a good efficiency in hydrogen formation. Before reporting the study of electron photo-transfer, the author reports the study of photo-physical and photochemical properties of this porphyrin. Then, in the case of a well known electron acceptor (methyl viologen), he studied the influence of Coulomb effects on the kinetics of direct electron transfer, and on the kinetics of recombination of formed species. He also studied the influence of organised systems (cationic micelles) on these reactions when using a viologen with long chains. He finally reports the study of reactions of the triplet state of this porphyrin with metallic complexes

  17. Binding of palladium (II) 5, 10, 15, 20-tetrakis (4-sulfonatophenyl) porphyrin to a lectin for photosensitizer targeted delivery

    Czech Academy of Sciences Publication Activity Database

    Bogoeva, V.; Petrova, L.; Kubát, Pavel

    2015-01-01

    Roč. 153, DEC 2015 (2015), s. 276-280. ISSN 1011-1344 R&D Projects: GA ČR GA13-12496S Institutional support: RVO:61388955 Keywords : palladium porphyrin * concavalin A * fluorescence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.960, year: 2014

  18. Composites with Photosensitive 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin Entrapped into Silica Gels

    Czech Academy of Sciences Publication Activity Database

    Rychtáriková, Renata; Šabata, Stanislav; Hetflejš, Jiří; Kuncová, Gabriela

    2012-01-01

    Roč. 61, č. 1 (2012), s. 119-125. ISSN 0928-0707 R&D Projects: GA MŠk ME 892 Institutional research plan: CEZ:AV0Z40720504 Keywords : sol- gel * photosensitizer * immobilization Subject RIV: CC - Organic Chemistry Impact factor: 1.660, year: 2012

  19. Photosynthetic antenna-reaction center mimicry: sequential energy- and electron transfer in a self-assembled supramolecular triad composed of boron dipyrrin, zinc porphyrin and fullerene.

    Science.gov (United States)

    Maligaspe, Eranda; Tkachenko, Nikolai V; Subbaiyan, Navaneetha K; Chitta, Raghu; Zandler, Melvin E; Lemmetyinen, Helge; D'Souza, Francis

    2009-07-30

    A self-assembled supramolecular triad, a model to mimic the photochemical events of photosynthetic antenna-reaction center, viz., sequential energy and electron transfer, has been newly constructed and studied. Boron dipyrrin, zinc porphyrin, and fullerene respectively constitute the energy donor, electron donor, and electron acceptor segments of the antenna-reaction center mimicry. For the construction, first, boron dipyrrin was covalently attached to a zinc porphyrin entity bearing a benzo-18-crown-6 host segment at the opposite end of the porphyrin ring. Next, an alkyl ammonium functionalized fullerene was used to self-assemble the crown ether entity via ion-dipole interactions. The newly formed supramolecular triad was fully characterized by spectroscopic, computational, and electrochemical methods. Selective excitation of the boron dipyrrin moiety in the dyad resulted in energy transfer over 97% efficiency creating singlet excited zinc porphyrin. The rate of energy transfer from the decay measurements of time-correlated singlet photon counting (TCSPC) and up-conversion techniques agreed well with that obtained by the pump-probe technique and revealed efficient photoinduced energy transfer in the dyad (time constant in the order of 10-60 ps depending upon the conformer). Upon forming the supramolecular triad by self-assembling fullerene, the excited zinc porphyrin resulted in electron transfer to the coordinated fullerene yielding a charge-separated state, thus mimicking the antenna-reaction center functionalities of photosynthesis. Nanosecond transient absorption studies yielded a lifetime of the charge-separated state to be 23 micros indicating charge stabilization in the supramolecular triad. The present supramolecular system represents a successful model to mimic the rather complex "combined antenna-reaction center" events of photosynthesis. PMID:19580310

  20. Four Gadolinium(III) Complexes Appended to a Porphyrin: A Water-Soluble Molecular Theranostic Agent with Remarkable Relaxivity Suited for MRI Tracking of the Photosensitizer.

    Science.gov (United States)

    Sour, Angélique; Jenni, Sébastien; Ortí-Suárez, Ana; Schmitt, Julie; Heitz, Valérie; Bolze, Frédéric; Loureiro de Sousa, Paulo; Po, Chrystelle; Bonnet, Célia S; Pallier, Agnès; Tóth, Éva; Ventura, Barbara

    2016-05-01

    A molecular theranostic agent for magnetic resonance imaging (MRI) and photodynamic therapy (PDT) consisting of four [GdDTTA](-) complexes (DTTA(4-) = diethylenetriamine-N,N,N″,N″-tetraacetate) linked to a meso-tetraphenylporphyrin core, as well as its yttrium(III) analogue, was synthesized. A variety of physicochemical methods were used to characterize the gadolinium(III) conjugate 1 both as an MRI contrast agent and as a photosensitizer. The proton relaxivity measured in H2O at 20 MHz and 25 °C, r1 = 43.7 mmol(-1) s(-1) per gadolinium center, is the highest reported for a bishydrated gadolinium(III)-based contrast agent of medium size and can be related to the rigidity of the molecule. The complex displays also a remarkable singlet oxygen quantum yield of ϕΔ = 0.45 in H2O, similar to that of a meso-tetrasulfonated porphyrin. We also evidenced the ability of the gadolinium(III) conjugate to penetrate in cancer cells with low cytotoxicity. Its phototoxicity on Hela cells was evaluated following incubation at low micromolar concentration and moderate light irradiation (21 J cm(-2)) induced 50% of cell death. Altogether, these results demonstrate the high potential of this conjugate as a theranostic agent for MRI and PDT. PMID:27074089

  1. Comparative Study on the Efficiency of the Photodynamic Inactivation of Candida albicans Using CdTe Quantum Dots, Zn(II) Porphyrin and Their Conjugates as Photosensitizers.

    Science.gov (United States)

    Viana, Osnir S; Ribeiro, Martha S; Rodas, Andréa C D; Rebouças, Júlio S; Fontes, Adriana; Santos, Beate S

    2015-01-01

    The application of fluorescent II-VI semiconductor quantum dots (QDs) as active photosensitizers in photodymanic inactivation (PDI) is still being evaluated. In the present study, we prepared 3 nm size CdTe QDs coated with mercaptosuccinic acid and conjugated them electrostatically with Zn(II) meso-tetrakis (N-ethyl-2-pyridinium-2-yl) porphyrin (ZnTE-2-PyP or ZnP), thus producing QDs-ZnP conjugates. We evaluated the capability of the systems, bare QDs and conjugates, to produce reactive oxygen species (ROS) and applied them in photodynamic inactivation in cultures of Candida albicans by irradiating the QDs and testing the hypothesis of a possible combined contribution of the PDI action. Tests of in vitro cytotoxicity and phototoxicity in fibroblasts were also performed in the presence and absence of light irradiation. The overall results showed an efficient ROS production for all tested systems and a low cytotoxicity (cell viability >90%) in the absence of radiation. Fibroblasts incubated with the QDs-ZnP and subjected to irradiation showed a higher cytotoxicity (cell viability CdTe QD on Candida albicans demonstrated a lower reduction of the cell viability (~1 log10) compared to bare ZnP which showed a high microbicidal activity (~3 log10) when photoactivated. The QD-ZnP conjugates also showed reduced photodynamic activity against C. albicans compared to bare ZnP and we suggest that the conjugation with QDs prevents the transmembrane cellular uptake of the ZnP molecules, reducing their photoactivity. PMID:25993419

  2. Comparative Study on the Efficiency of the Photodynamic Inactivation of Candida albicans Using CdTe Quantum Dots, Zn(II Porphyrin and Their Conjugates as Photosensitizers

    Directory of Open Access Journals (Sweden)

    Osnir S. Viana

    2015-05-01

    Full Text Available The application of fluorescent II-VI semiconductor quantum dots (QDs as active photosensitizers in photodymanic inactivation (PDI is still being evaluated. In the present study, we prepared 3 nm size CdTe QDs coated with mercaptosuccinic acid and conjugated them electrostatically with Zn(II meso-tetrakis (N-ethyl-2-pyridinium-2-yl porphyrin (ZnTE-2-PyP or ZnP, thus producing QDs-ZnP conjugates. We evaluated the capability of the systems, bare QDs and conjugates, to produce reactive oxygen species (ROS and applied them in photodynamic inactivation in cultures of Candida albicans by irradiating the QDs and testing the hypothesis of a possible combined contribution of the PDI action. Tests of in vitro cytotoxicity and phototoxicity in fibroblasts were also performed in the presence and absence of light irradiation. The overall results showed an efficient ROS production for all tested systems and a low cytotoxicity (cell viability >90% in the absence of radiation. Fibroblasts incubated with the QDs-ZnP and subjected to irradiation showed a higher cytotoxicity (cell viability <90% depending on QD concentration compared to the bare groups. The PDI effects of bare CdTe QD on Candida albicans demonstrated a lower reduction of the cell viability (~1 log10 compared to bare ZnP which showed a high microbicidal activity (~3 log10 when photoactivated. The QD-ZnP conjugates also showed reduced photodynamic activity against C. albicans compared to bare ZnP and we suggest that the conjugation with QDs prevents the transmembrane cellular uptake of the ZnP molecules, reducing their photoactivity.

  3. The coordination chemistry of boron porphyrin complexes B2OX2 (TYPP) (X = OH, F; Y = Cl, CH3) and their chemical reactivities

    Indian Academy of Sciences (India)

    G I Cárdenas-Jirón; F Espinoza-Leyton; T L Sordo

    2005-09-01

    The structure and coordination chemistry of boron porphyrin complexes B2OX2 (TYPP) (X = OH, F; Y = Cl, CH3) in connection with its chemical reactivity are analyzed at ab initio density functional theory B3LYP/6-31G∗ and restricted Hartree-Fock RHF/6-31G∗ levels of theory. Global reactivity and local selectivity descriptors are used as adequate tools to analyze the isomerism effect ( or isomer) and the substitution effect (X: in axial ligand; or Y: in porphyrin ligand). In all the cases, we find that the conformation is the most stable one, in agreement with X-ray results, and that a principle of maximum hardness in the isomerism analysis is fullfilled. In the substitution analysis, we find that the three global reactivity indexes (, , ) and the two local reactivity indexes (, electrostatic potential) used in this paper predict the same trend when an electron-withdrawing substituent is replaced by an electron donor. Finally, we show that substitution in the porphyrin ligand is slightly more significant than that in the axial ligand.

  4. Interpenetration of a 3D Icosahedral M@Ni12 (M=Al, Ga) Framework with Porphyrin-Reminiscent Boron Layers in MNi9 B8.

    Science.gov (United States)

    Zheng, Qiang; Wagner, Frank R; Ormeci, Alim; Prots, Yurii; Burkhardt, Ulrich; Schmidt, Marcus; Schnelle, Walter; Grin, Yuri; Leithe-Jasper, Andreas

    2015-11-01

    Two ternary borides MNi9 B8 (M=Al, Ga) were synthesized by thermal treatment of mixtures of the elements. Single-crystal X-ray diffraction data reveal AlNi9 B8 and GaNi9 B8 crystallizing in a new type of structure within the space group Cmcm and the lattice parameters a=7.0896(3) Å, b=8.1181(3) Å, c=10.6497(4) Å and a=7.0897(5) Å, b=8.1579(4) Å, c=10.6648(7) Å, respectively. The boron atoms build up two-dimensional layers, which consist of puckered [B16 ] rings with two tailing B atoms, whereas the M atoms reside in distorted vertices-condensed [Ni12 ] icosahedra, which form a three-dimensional framework interpenetrated by boron porphyrin-reminiscent layers. An unusual local arrangement resembling a giant metallo-porphyrin entity is formed by the [B16 ] rings, which, due to their large annular size of approximately 8 Å, chelate four of the twelve icosahedral Ni atoms. An analysis of the chemical bonding by means of the electron localizability approach reveals strong covalent B-B interactions and weak Ni-Ni interactions. Multi-center dative B-Ni interaction occurs between the Al-Ni framework and the boron layers. In agreement with the chemical bonding analysis and band structure calculations, AlNi9 B8 is a Pauli-paramagnetic metal. PMID:26418894

  5. Synthesis of o- and m-carborane derivatives of 5,10,15,20-tetra-(p-anionphenyl)porphyrin

    International Nuclear Information System (INIS)

    The data on synthesis of o- and m-carborane-containing porphyrins, which derivatives through boron atom of polyhedral nucleus are presented. The reaction of the porphyrin amino group acylation may be used for production of the porphyrin carborane derivative with high boron content (up to 30 %) with the purpose of applying them in boron neutron-capture cancer therapy

  6. The Antimicrobial Activity of Porphyrin Attached Polymers

    Science.gov (United States)

    Thompson, Lesley

    2008-03-01

    We are interested in testing the antimicrobial activity of a porphyrin that is attached to a polymer. The porphyrin (5-(4-carboxyphenyl)-10,15,20-tris-(4-pryridyl)) was synthesized from methyl 4-formyl benzoate, 4-pyridinecarboxaldehyde, and pyrrole and attached to a copolymer of polystyrene/poly(vinyl benzyl chloride), which was synthesized by free radical polymerization. The antimicrobial activity of the polymer-attached porphyrin was then determined for gram-negative E. Coli grown to 0.80 OD. In this procedure, glass slides were coated with polymer-attached porphyrin via dip-coating, and the E. Coli bacteria were plated in Luria Broth media. The plates were subsequently exposed to light overnight before they were incubated as porphyrins act as photo-sensitizers when irradiated with light. The polymer-attached porphyrin did exhibit antimicrobial activity and parameters that affect its efficiency will be discussed.

  7. Photosensitized oxidation of DNA and its components

    International Nuclear Information System (INIS)

    Chemical changes in DNA components during the photodynamic effect are responsible for Mutagenic and carcinogenic phenomena. Basically two competitive mechanisns involving respectively a charge transfer (type I) and singlet oxygen (type II) are implicated in reactions photo-sensitized by different agents (acridines, phenothiazines, porphyrins, flavins, psoralenes...). A study of the photosensitized oxidation of DNA itself was approached through characterization of the main final products in the case of purine nucleosides. Methyl-2 naphthoquinone - 1,4 (vitamin K3) displays a special photosensitization mechanism involving a cation radical type of intermediary

  8. Photoinduced oxidation of a water-soluble manganese(III) porphyrin

    OpenAIRE

    Maliyackel, Anthony C.; Otvos, John W.; Spreer, Larry O.; Calvin, Melvin

    1986-01-01

    The photoinduced oxidation of tetra(N-methyl-4-pyridyl)porphyrinmanganese(III) has been achieved in homogeneous solution. The manganese porphyrin was used as an electron donor in a three-component system with tris-(2,2′-bipyridine)ruthenium(II) as the photosensitizer and chloropentaamminecobalt(III) as the electron acceptor. The photooxidized manganese porphyrin is unstable in aqueous solution, reverting to the starting manganese(III) porphyrin. The oxidation of manganese(III) porphyrin and t...

  9. Boron

    International Nuclear Information System (INIS)

    The trace element boron (B) is of interest in reclamation situations for several reasons. It plays an essential through largely unidentified role in the growth of higher plants. In argronomic situations B deficiencies are common, and deficiencies in reclamation situations have been suggested but not documented. Among micronutrients, B is unique because the range from deficient concentrations to toxic concentrations either in the soil solution or in plant tissue is narrower than for any other micronutrient. In reclamation situations excessive amounts of B can occur in the soil or in near-surface mining wastes and thus interfere with reclamation objectives, especially in arid and semiarid regions. Also, B is mobile and appears subject to both upward transport (and possible contamination of overlying material) and downward transport (and possible contamination of surface water and groundwater)

  10. Porphyrin Tests

    Science.gov (United States)

    ... attack Table adapted from: "Iron and porphyrin metabolism," Clinical Chemistry: Theory, Analysis and Correlation , courtesy of William E. ... For Health Professionals ©2001 - by American Association for Clinical Chemistry • Contact Us | Terms of Use | Privacy We comply ...

  11. Light and drug dosimetry considerations in porphyrin precursor–based photodynamic therapy

    OpenAIRE

    2007-01-01

    This thesis concerns light and drug dosimetry for photodynamic cancer treatment – a treatment modality where a photosensitizer uses the energy of light to damage biological matter. Porphyrin precursors were used as prodrugs which are synthesized into photosensitizers inside cells. Human subjects were studied as a part of developing a treatment for non-melanotic skin cancer. A 3-hour application of a topical cream photosensitized the tumor tissue with good selectivity versus normal skin, wh...

  12. Interaction of porphyrins with CdTe quantum dots

    International Nuclear Information System (INIS)

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  13. Urinary porphyrin excretion in hepatitis C infection.

    Science.gov (United States)

    Vogeser, M; Jacob, K; Zachoval, R

    1999-08-01

    A high prevalence of hepatitis C virus infection in porphyria cutanea tarda in some populations suggests a close link between viral hepatitis and alteration of porphyrin metabolism. Moreover, there is evidence of a role of porphyrinopathies in hepatocarcinogenesis. The aim of our study was to obtain data on the prevalence and patterns of heme metabolism alterations in patients with chronic hepatitis C virus infection. Urinary porphyrin excretion was prospectively studied in 100 consecutive outpatients with chronic hepatitis C infection without signs of photosensitivity, using an ion-pair high-performance liquid chromatography method. Increased total porphyrin excretion was found in 41 patients, with predominant excretion of coproporphyrins (whole study group: mean 146 microg/g creatinine, interquartile range 76-186; normal coproporphyrin, heptacarboxyporphyrin III increased) but the total porphyrin excretion was only slightly elevated in this case. In the whole group, total urinary porphyrin excretion correlated well with serum bilirubin and was inversely correlated with albumin and thrombin time. In conclusion, secondary coproporphyrinuria occurs frequently in heptatitis C infection, whereas in Germany, preclinical porphyria cutanea tarda seems to be rare in these patients. PMID:10536928

  14. Synthesis of conjugates of polyhedral boron compounds with tumor-seeking molecules for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bregadze, V., E-mail: bre@ineos.ac.ru [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, Moscow 119991 (Russian Federation); Semioshkin, A.; Sivaev, I. [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, Moscow 119991 (Russian Federation)

    2011-12-15

    Recent achievements in design and synthesis of boronated acids, amino acids, glycerols as well as conjugates of polyhedral boron hydrides (ortho-carborane, closo-dodecaborate and cobalt bis(dicarbollide)) with natural porphyrins, carbohydrates and nucleosides are described.

  15. Inverted porphyrins and expanded porphyrins: An overview

    Indian Academy of Sciences (India)

    S K Pushpan; S Venkatraman; V G Anand; J Sankar; H Rath; T K Chandrashekar

    2002-08-01

    Porphyrins and metallopophyrins have attracted the attention of chemists for the past 100 years or more owing to their widespread involvement in biology. More recently, synthetic porphyrins and porphyrin-like macrocycles have attracted the attention of researchers due to their diverse applications as sensitizers for photodynamic therapy, MRI contrasting agents, and complexing agents for larger metal ions and also for their anion binding abilities. The number of -electrons in the porphyrin ring can be increased either by increasing the number of conjugated double bonds between the pyrrole rings or by increasing the number of heterocyclic rings. Thus, 22 sapphyrins, 26 rubyrins, 30 heptaphyrins, 34 octaphyrins and higher cyclic polypyrrole analogues containing 40, 48, 64, 80 and 96 systems have recently been reported in the literature. These macrocycles show rich structural diversity where normal and different kinds of inverted structures have been identified. In this review, an attempt has been made to collect the literature of the inverted porphyrins and expanded porphyrins reported until December 2001. Since the meso aryl expanded porphyrins have tendency to form both inverted and non-inverted structures more emphasis has been given to meso aryl expanded porphyrins.

  16. Synthesis of porphyrin nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyou; Bai, Feng

    2014-10-28

    The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

  17. Fullerene - Porphyrin constructs

    OpenAIRE

    Boyd, PDW; Reed, CA

    2005-01-01

    Porphyrins and fullerenes are spontaneously attracted to each other. This new supramolecular recognition element can be used to construct discrete host-guest complexes, as well as ordered arrays of interleaved porphyrins and fullerenes. The fullerene-porphyrin interaction underlies successful Chromatographic separations of fullerenes, and there are promising applications in the areas of porous framework solids and photovoltaic devices. © 2005 American Chemical Society.

  18. Single Cell Responses to Spatially Controlled Photosensitized Production of Extracellular Singlet Oxygen

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Sinks, Louise E.; Breitenbach, Thomas;

    2011-01-01

    The response of individual HeLa cells to extracellularly produced singlet oxygen was examined. The spatial domain of singlet oxygen production was controlled using the combination of a membrane-impermeable Pd porphyrin-dendrimer, which served as a photosensitizer, and a focused laser, which serve...

  19. Partial Unfolding of Tubulin Heterodimers Induced by Two-Photon Excitation of Bound meso-Tetrakis(sulfonatophenyl)porphyrin.

    Science.gov (United States)

    McMicken, Brady; Thomas, Robert J; Brancaleon, Lorenzo

    2016-04-21

    The water-soluble porphyrin meso-tetrakis(p-sulfonatophenyl)porphyrin (TSPP) can be noncovalently bound to tubulin and used as a photosensitizer, which upon irradiation triggers photochemical reactions that lead to conformational changes of the protein. These conformational changes in turn inhibit tubulin's primary function of polymerizing into microtubules. We explored the possibility of using two-photon excitation of the bound porphyrin to induce photosensitized protein unfolding. Although TSPP has a relatively low cross section (∼30 GM) our results did find that two-photon excitation of the ligand causes partial unfolding of the tubulin host and the inhibition of the in vitro formation of microtubules. Conversely, irradiating tubulin alone caused no such effects despite the large irradiance per pulse (97-190 GW/cm(2)). The conformational changes were characterized using spectroscopic studies and provide a promising protocol for the future application of non-native photosensitization of proteins. PMID:27035156

  20. Suppression of Cladding Mode Coupling by B/Ge Codoped Photosensitive Fiber With Photosensitive and Depressed Inner Cladding

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Excess loss on the short wavelength side of the Bragg resonant wavelength caused by cladding mode coupling limits wide use of grating in the fiber communication system, especially in densed wavelength division multiplexing (DWDM) system.A novel photosensitive fiber design that have depressed cladding and photosensitive inner cladding in the same fiber is proposed, which can suppress cladding mode coupling greatly.Using MCVD method B/Ge codoped fiber with depressed cladding was fabriceted out, which was also doped in boron and germanium and had the photosensitivity.Finally, the transmission spectrum of written grating in this fiber by phase mask method verified its larger photosensitivity and greatly suppression of cladding mode coupling.

  1. Soluble porphyrin polymers

    Science.gov (United States)

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  2. Radioactively labelled porphyrin derivatives

    International Nuclear Information System (INIS)

    Radioactive labelling of guanidine bearing tetraphenylporphyrin and Dy-texaphyrin with 166Ho and 90Y is described. UV-VIS absorption spectrometry was used to describe porphyrin and texaphyrin, including their behaviour over a wide pH range. This technique also provided preliminary information about the complexation of holmium and yttrium with porphyrin and texaphyrin. The labelling yield of the macrocyclic molecules depends on the pH of the reaction mixture, metal-to-ligand ratio and time of incubation. The optimum reaction conditions for the formation of radioactive complexes of porphyrin and texaphyrin were determined by thin layer chromatography combined with beta activity measurement. The ability of porphyrin derivatives to bind anions was also examined. Our experiments were focused on perrhenate ion (ReO4-) because radiopharmaceuticals labeled with 186Re and 188Re play an important role in the therapy of many tumorous diseases. The possibility of using the ReO4- anion directly for labeling without reduction to a lower oxidation state can simplify considerably the preparation of the radiotherapeutic pharmaceuticals. Neither UV-Vis spectrometry nor TLC gave evidence of any incorporation of the ReO4- anion into the porphyrin ring

  3. Photosensitive human syndromes.

    Science.gov (United States)

    Spivak, Graciela; Hanawalt, Philip C

    2015-06-01

    Photosensitivity in humans can result from defects in repair of light-induced DNA lesions, from photoactivation of chemicals (including certain medications) with sunlight to produce toxic mediators, and by immune reactions to sunlight exposures. Deficiencies in DNA repair and the processing of damaged DNA during replication and transcription may result in mutations and genomic instability. We will review current understanding of photosensitivity to short wavelength ultraviolet light (UV) due to genetic defects in particular DNA repair pathways; deficiencies in some are characterized by an extremely high incidence of cancer in sun-exposed tissues, while in others no cancers have been reported. PMID:26255937

  4. A novel chlorine derivative of Meso-tris(pentafluorophenyl)-4-pyridyl porphyrin: synthesis, photophysics and photochemical properties

    International Nuclear Information System (INIS)

    Photodynamic therapy (PDT) is based on the accumulation of a photosensitizer, such as a porphyrin or a chlorine, in a malignant tissue after its administration. Chlorins exhibit photophysical properties similar to those of the porphyrin macrocycles, but with intensified and red-shifted Q bands, making chlorine-containing systems even better candidates for PDT. In this contribution, we report the synthesis of 5,10,15-tris(pentafluorophenyl)-20-(4-pyridyl)porphyrin, (2) and its transformation to the novel chlorine derivatives 4, (5,10,20-tris(pentafluorophenyl)-15-(4-pyridyl)-tetrahydro-1H- N-methyl-pyrrolo [3,4-b]porphyrin and 5, (5,10,15-tris(pentafluorophenyl)-20-(4-pyridyl)-tetrahydro-1H- N-methyl-pyrrolo[3,4-b]porphyrin) by 1,3-dipolar cycloaddition with an azomethine ylide. The new products have been characterized by UV-Vis, 1H NMR and FAB-MS. The photophysics, photochemical and photobleaching properties of chlorine 4 have been evaluated. Its quantum yield of photobleaching (φPb, mol Einstein-1) was 0.047±0.014. In order to demonstrate the production of 1O2 when 4 is used as a photosensitizer, uric acid tests have been carried out. The results indicate that chlorine 4 can be considered a promising photosensitizer in PDT. (author)

  5. Photosensitivity to selsun shampoo

    OpenAIRE

    Mani M

    1994-01-01

    A case of photosensitive dermatitis, occurring after the second application of 2.5% selenium sulphide (Selsun shampoo, Abbot), is reported. The shampoo was diluted to half strength with water, before use. The patient had pityriasis versicolor, with extensive lesions on the covered as well as exposed areas.

  6. Photosensitivity to selsun shampoo

    Directory of Open Access Journals (Sweden)

    Mani M

    1994-01-01

    Full Text Available A case of photosensitive dermatitis, occurring after the second application of 2.5% selenium sulphide (Selsun shampoo, Abbot, is reported. The shampoo was diluted to half strength with water, before use. The patient had pityriasis versicolor, with extensive lesions on the covered as well as exposed areas.

  7. The fast method of Cu-porphyrin complex synthesis for potential use in positron emission tomography imaging

    Science.gov (United States)

    Kilian, Krzysztof; Pęgier, Maria; Pyrzyńska, Krystyna

    2016-04-01

    Porphyrin based photosensitizers are useful agents for photodynamic therapy and fluorescence imaging of cancer. Additionally, porphyrins are excellent metal chelators, forming stable metalo-complexes and 64Cu isotope can serve as a positron emitter (t1/2 = 12.7 h). The other advantage of 64Cu is its decay characteristics that facilitates the use of 64Cu-porphyrin complex as a therapeutic agent. Thus, 64Cu chelation with porphyrin photosensitizer may become a simple and versatile labeling strategy for clinical positron emission tomography. The present study reports a convenient method for the synthesis of Cu complex with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The experimental conditions for labeling, such as the metal-to-ligand molar ratio, pH and time of reaction were optimized to achieve a high complexation efficiency in a short period of time as possible. In order to accelerate the metallation, the use of substitution reactions of cadmium or lead porphyrin and the presence of reducing agent, such as ascorbic acid, hydroxylamine and flavonoid - morin, were evaluated. The optimum conditions for the synthesis of the copper complex were borate buffer at pH 9 with the addition of 10-fold molar excess, with respect to Cu2 + ions and TCPP and ascorbic acid which resulted in reduction of the reaction time from 30 min to below 1 min.

  8. Lanthanide porphyrin complexes

    International Nuclear Information System (INIS)

    The review summarizes literature data and results of the author's research on the synthesis, properties and possible fields of practical application of lanthanide porphyrin complexes. Emphasis is given to the application of luminescence properties of lanthanide derivatives in medicine. The bibliography includes 108 references.

  9. Lipophilicity of porphyrins and their retention in IAM, C8-C18 and HILIC chromatographic systems.

    Science.gov (United States)

    Essaid, D; Chaminade, P; Maillard, Ph; Kasselouri, A

    2015-10-10

    Porphyrins are a class of photosensitizers used in photodynamic therapy (PDT). Understanding the interaction of porphyrins with membrane cells components is important in order to improve this therapy. Many analytical methods can be used for this aim. High performance liquid chromatography (HPLC) was used for the separation of porphyrins on RP and HILIC stationary phases as well as on a biomimetic membrane IAM phase. Twenty-six tetraphenyl porphyrins (TPP) were successfully separated on an IAM column, a C18 Gravity RP column, a C8 Gravity RP column, a PolarTec RP column and a HILIC column. Stationary phases were chosen as the most appropriate to cover the study of different types of interactions. Elution was performed with a 45 min linear gradient. Obtained gradient retention times were converted to gradient chromatography hydrophobicity index (CHI) and to an apparent retention factor (kapp). The partition coefficients (logP) of the 26 compounds were measured in a 2-octanol/PBS system and estimated in silico. Correlation between kapp values was studied. Moreover, a multivariate analysis was performed to explain columns relationships. Obtained results show that porphyrins are separated mainly according to hydrophobic interactions that are relative to their structure (sugar number and the disposition around the porphyrin macrocycle). PMID:26099259

  10. Inverted organic photosensitive device

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Stephen R.; Tong, Xiaoran; Lee, Jun Yeob; Cho, Yong Joo

    2015-09-08

    There is disclosed a method for preparing the surface of a metal substrate. The present disclosure also relates to an organic photovoltaic device including a metal substrate made by such method. Also disclosed herein is an inverted photosensitive device including a stainless steel foil reflective electrode, an organic donor-acceptor heterojunction over the reflective electrode, and a transparent electrode over the donor-acceptor heterojunction.

  11. Transforming a Targeted Porphyrin Theranostic Agent into a PET Imaging Probe for Cancer

    Directory of Open Access Journals (Sweden)

    Jiyun Shi, Tracy W.B. Liu, Juan Chen, David Green, David Jaffray, Brian C. Wilson, Fan Wang, Gang Zheng

    2011-01-01

    Full Text Available Porphyrin based photosensitizers are useful agents for photodynamic therapy (PDT and fluorescence imaging of cancer. Porphyrins are also excellent metal chelators forming highly stable metallo-complexes making them efficient delivery vehicles for radioisotopes. Here we investigated the possibility of incorporating 64Cu into a porphyrin-peptide-folate (PPF probe developed previously as folate receptor (FR targeted fluorescent/PDT agent, and evaluated the potential of turning the resulting 64Cu-PPF into a positron emission tomography (PET probe for cancer imaging. Noninvasive PET imaging followed by radioassay evaluated the tumor accumulation, pharmacokinetics and biodistribution of 64Cu-PPF. 64Cu-PPF uptake in FR-positive tumors was visible on small-animal PET images with high tumor-to-muscle ratio (8.88 ± 3.60 observed after 24 h. Competitive blocking studies confirmed the FR-mediated tracer uptake by the tumor. The ease of efficient 64Cu-radiolabeling of PPF while retaining its favorable biodistribution, pharmacokinetics and selective tumor uptake, provides a robust strategy to transform tumor-targeted porphyrin-based photosensitizers into PET imaging probes.

  12. Boron distribution in normal and impaired vascular tissue

    International Nuclear Information System (INIS)

    The microdistribution of boron compounds and the response to Boron Neutron Capture Therapy (BNCT) in normal or impaired vascular structures have not been fully investigated. In this study, we measured the boron concentrations in rat normal vascular tissue for a potential application of BNCT to prevent restenosis following carotid stenting. Male inbred Wistar rats, 6 weeks of age, were used. After intravenous administration of boron compounds (BSH, BPA, or boron porphyrins), rats were killed at either 1, 2, or 3 hours, and the aortic arch, vena cava, blood, liver, kidney, muscle, skin, and brain were collected for measuring boron concentrations in the sample. Boron concentrations in vascular structures, although dependent on the time after administration, are higher than those in blood and surrounding tissue such as muscle or skin. Given that boron compounds such as boron porphyrins are incorporated into arterial tissues, and more into impaired than in normal intima, BNCT might be effective in inhibiting restenosis following carotid artery stenting or coronary artery stenting. (author)

  13. Molecular Simulations of Porphyrins and Heme Proteins

    Energy Technology Data Exchange (ETDEWEB)

    SHELNUTT,JOHN A.

    2000-01-18

    An overview of the use of classical mechanical molecular simulations of porphyrins, hydroporphyrins, and heme proteins is given. The topics cover molecular mechanics calculations of structures and conformer energies of porphyrins, energies of barriers for interconversion between stable conformers, molecular dynamics of porphyrins and heme proteins, and normal-coordinate structural analysis of experimental and calculated porphyrin structures. Molecular mechanics and dynamics are currently a fertile area of research on porphyrins. In the future, other computational methods such as Monte Carlo simulations, which have yet to be applied to porphyrins, will come into use and open new avenues of research into molecular simulations of porphyrins.

  14. The in vitro cytotoxicity of metal-complexes of porphyrin sensitizer intended for photodynamic therapy.

    Science.gov (United States)

    Malina, L; Tomankova, K Barton; Malohlava, J; Jiravova, J; Manisova, B; Zapletalova, J; Kolarova, H

    2016-08-01

    The sulphonated derivatives of porphyrins (e.g. TPPS4) are hydrophilic photosensitizers and have certain advantages like fully known structures and the possibility of synthetic production. The aim of this work was to study in vitro cytotoxicity and to compare the new photosensitizer MgTPPS4 with TPPS4 and its other metal-complexes (ZnTPPS4, PdTPPS4) on human skin melanom and mouse fibroblast cell lines. A photodynamic treatment was induced by light emitting diodes with three different total doses (1, 5 and 10J/cm(2)). For proper analysis and understanding of cell behavior after the administration of sensitizers, a complex battery of in vitro tests including the production of reactive oxygen species, the MTT viability test, a comet assay, a cell cycle and a type of cell death determination were used. We discovered that the most suitable photosensitizer is ZnTPPS4 because it had the biggest lethal influence on melanoma cells and the lowest lethal influence on fibroblast cells. The second most effective photosensitizer seemed to be MgTPPS4. On the basis of our results we can also assume that there is a higher accumulation of photosensitizer in a tumorous cell line. The higher concentration of photosensitizer and light dose resulted in more reactive oxygen species production and found more cells undergoing necrosis. PMID:27107484

  15. Photosensitivity and epilepsy.

    Science.gov (United States)

    Verrotti, Alberto; Trotta, Daniela; Salladini, Carmela; di Corcia, Giovanna; Chiarelli, Francesco

    2004-08-01

    Photosensitive epilepsy is a well-known condition characterized by seizures in patients who show photoparoxysmal responses on electroencephalography (EEG) elicited by intermittent photic stimulation. Photoparoxysmal responses can be defined as epileptiform EEG responses to intermittent photic stimulation or to other visual stimuli of everyday life and are frequently found in nonepileptic children. The modern technologic environment has led to a dramatic increase in exposure to potential trigger stimuli; nowadays, television and video games are among the most common triggers in daily life. There is ample evidence for genetic transmission of photoparoxysmal responses; systematic family studies have provided data for an autosomal dominant mode of inheritance with age-dependent penetrance for photosensitivity. The age of maximum penetrance is between 5 and 15 years. The prognosis for control of seizures induced by visual stimulation is generally very good. The large majority of patients do not need anticonvulsant therapy, but, when needed, the drug of choice is valproate. Stimulus avoidance and stimulus modification can be an effective treatment in some patients and can sometimes be combined with antiepileptic drug treatment. PMID:15605465

  16. Hybrid organic – silica nanomaterials based on novel A{sub 3}B mixed substituted porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Fagadar-Cosma, Eugenia [Institute of Chemistry -Timisoara of Romanian Academy, M. Viteazul Ave, No. 24, 300223 Timisoara (Romania); Dudás, Zoltán, E-mail: dudas.zoltan@wigner.mta.hu [Institute of Chemistry -Timisoara of Romanian Academy, M. Viteazul Ave, No. 24, 300223 Timisoara (Romania); MTA Wigner Research Center for Physics, Konkoly Thege Miklós Street, No. 29-33, 1121 Budapest (Hungary); Birdeanu, Mihaela [Institute of Chemistry -Timisoara of Romanian Academy, M. Viteazul Ave, No. 24, 300223 Timisoara (Romania); National Institute for Research and Development in Electrochemistry and Condensed Matter, 1 Plautius Andronescu Street, 300224 Timisoara (Romania); Almásy, László [MTA Wigner Research Center for Physics, Konkoly Thege Miklós Street, No. 29-33, 1121 Budapest (Hungary)

    2014-11-14

    A new A{sub 3}B porphyrin structure, namely: 5-(4-phenoxyphenyl)-10,15,20-tris(4-pyridyl)-porphyrin was synthetized and characterized by FT-IR, UV–vis, Fluorescence, MS, {sup 1}H NMR, TLC and HPLC. Novel hybrid-silica porphyrin nanomaterials were obtained by immobilizing the porphyrin in silica supports synthesized from tetraethoxysilane, tetramethoxysilane or mixtures of tetraethoxysilane/methyltriethoxysilane. Since the behavior and performance of immobilized porphyrin molecules in the silica matrices strongly depend on the structure of the porous network, a comparative characterization of the silica support and the hybrid porphyrin-silica materials was carried out using specific physicochemical characterization methods: UV–vis, Fluorencence, FT-IR spectroscopy, thermal analysis, AFM, nitrogen adsorption and small-angle neutron scattering. The UV–vis spectra show that no protonation and aggregation of porphyrin takes place in the gels made from methyltriethoxysilane precursor. Most of the emission spectra preserve both the shape and the intensity of the corresponding free porphyrin. Due to the lack of aggregation, when using the methyltriethoxysilane precursor, the quenching of fluorescence is also diminished. No matter of the preparation method the specific surface areas increase in the following order: TEOS < TMOS < TEOS/MTES 3:1 < TEOS/MTES 2:1 < TEOS/MTES 1:1. Due to their optical properties, both the novel porphyrin and its derived hybrid materials, especially those synthesized in situ with mixtures of silica precursors TEOS/MTES will be sent for further medical trials in PDT, having characteristics of second generation photosensitizers. Due to large specific surface areas, the same materials will be used as sensitive materials in microsensors for air quality control, to detect the presence of CO, NO{sub x}, excess of CO{sub 2} and low level of O{sub 2}. - Highlights: • Synthesis of new A{sub 3}B type porphyrin exhibiting high fluorescence

  17. Hybrid organic – silica nanomaterials based on novel A3B mixed substituted porphyrin

    International Nuclear Information System (INIS)

    A new A3B porphyrin structure, namely: 5-(4-phenoxyphenyl)-10,15,20-tris(4-pyridyl)-porphyrin was synthetized and characterized by FT-IR, UV–vis, Fluorescence, MS, 1H NMR, TLC and HPLC. Novel hybrid-silica porphyrin nanomaterials were obtained by immobilizing the porphyrin in silica supports synthesized from tetraethoxysilane, tetramethoxysilane or mixtures of tetraethoxysilane/methyltriethoxysilane. Since the behavior and performance of immobilized porphyrin molecules in the silica matrices strongly depend on the structure of the porous network, a comparative characterization of the silica support and the hybrid porphyrin-silica materials was carried out using specific physicochemical characterization methods: UV–vis, Fluorencence, FT-IR spectroscopy, thermal analysis, AFM, nitrogen adsorption and small-angle neutron scattering. The UV–vis spectra show that no protonation and aggregation of porphyrin takes place in the gels made from methyltriethoxysilane precursor. Most of the emission spectra preserve both the shape and the intensity of the corresponding free porphyrin. Due to the lack of aggregation, when using the methyltriethoxysilane precursor, the quenching of fluorescence is also diminished. No matter of the preparation method the specific surface areas increase in the following order: TEOS < TMOS < TEOS/MTES 3:1 < TEOS/MTES 2:1 < TEOS/MTES 1:1. Due to their optical properties, both the novel porphyrin and its derived hybrid materials, especially those synthesized in situ with mixtures of silica precursors TEOS/MTES will be sent for further medical trials in PDT, having characteristics of second generation photosensitizers. Due to large specific surface areas, the same materials will be used as sensitive materials in microsensors for air quality control, to detect the presence of CO, NOx, excess of CO2 and low level of O2. - Highlights: • Synthesis of new A3B type porphyrin exhibiting high fluorescence quantum yield. • Synthesis of hybrid

  18. Mechanistic aspects of the photodynamic inactivation of Candida albicans induced by cationic porphyrin derivatives.

    Science.gov (United States)

    Quiroga, Ezequiel D; Cormick, M Paula; Pons, Patricia; Alvarez, M Gabriela; Durantini, Edgardo N

    2012-12-01

    Photodynamic inactivation of Candida albicans produced by 5-(4-trifluorophenyl)-10,15,20-tris(4-N,N,N-trimethylammoniumphenyl)porphyrin (TFAP(3+)), 5,10,15,20-tetrakis(4-N,N,N-trimethylammoniumphenyl)porphyrin (TMAP(4+)) and 5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin (TMPyP(4+)) was investigated to obtain insight about the mechanism of cellular damage. In solution, absorption spectroscopic studies showed that these cationic porphyrins interact strongly with calf thymus DNA. The electrophoretic analysis indicated that photocleavage of DNA induced by TFAP(3+) took place after long irradiation periods (>5 h). In contrast, TMAP(4+) produced a marked reduction in DNA band after 1 h irradiation. In C. albicans, these cationic porphyrins produced a ∼3.5 log decrease in survival when the cell suspensions (10(7) cells/mL) were incubated with 5 μM photosensitizer and irradiated for 30 min with visible light (fluence 162 J/cm(2)). After this treatment, modifications of genomic DNA isolated from C. albicans cells were not found by electrophoresis. Furthermore, transmission electron microscopy showed structural changes with appearance of low density areas into the cells and irregularities in cell barriers. However, the photodamage to the cell envelope was insufficient to cause the release of intracellular biopolymers. Therefore, modifications in the cytoplasmic biomolecules and alteration in the cell barriers could be mainly involved in C. albicans photoinactivation. PMID:23142673

  19. Porphyrin-based Nanostructure-Dependent Photodynamic and Photothermal Therapies

    Science.gov (United States)

    Jin, Cheng S.

    This thesis presents the investigation of nanostructure-dependent phototherapy. We reviewed the liposomal structures for delivery of photosensitizers, and introduced a novel class of phototransducing liposomes called "porphysomes". Porphysomes are self-assembled from high packing density of pyropheophorbide alpha-conjugated phospholipids, resulting in extreme self-quenching of porphyrin fluorescence and comparable optical absorption to gold nanoparticles for high photothermal efficiency. We demonstrated this self-assembly of porphyrin-lipid conjugates converts a singlet oxygen generating mechanism (photodynamic therapy PDT activity) of porphyrin to photothermal mechanism (photothermal therapy PTT activity). The efficacy of porphysome-enhanced PTT was then evaluated on two pre-clinical animal models. We validated porphysome-enabled focal PTT to treat orthotopic prostate cancer using MRI-guided focal laser placement to closely mimic the current clinic procedure. Furthermore, porphysome-enabled fluorescence-guided transbronchial PTT of lung cancer was demonstrated in rabbit orthotopic lung cancer models, which led to the development of an ultra-minimally invasive therapy for early-stage peripheral lung cancer. On the other hand, the nanostructure-mediated conversion of PDT to PTT can be switched back by nanoparticle dissociation. By incorporating folate-conjugated phospholipids into the formulation, porphysomes were internalized into cells rapidly via folate receptor-mediated endocytosis and resulted in efficient disruption of nanostructures, which turned back on the photodynamic activity of densely packed porphyrins, making a closed loop of conversion between PDT and PTT. The multimodal imaging and therapeutic features of porphysome make it ideal for future personalized cancer treatments.

  20. Photophysical Characterization and in Vitro Phototoxicity Evaluation of 5,10,15,20-Tetra(quinolin-2-yl)porphyrin as a Potential Sensitizer for Photodynamic Therapy.

    Science.gov (United States)

    Costa, Letícia D; e Silva, Joana de A; Fonseca, Sofia M; Arranja, Cláudia T; Urbano, Ana M; Sobral, Abilio J F N

    2016-01-01

    Photodynamic therapy (PDT) is a selective and minimally invasive therapeutic approach, involving the combination of a light-sensitive compound, called a photosensitizer (PS), visible light and molecular oxygen. The interaction of these per se harmless agents results in the production of reactive species. This triggers a series of cellular events that culminate in the selective destruction of cancer cells, inside which the photosensitizer preferentially accumulates. The search for ideal PDT photosensitizers has been a very active field of research, with a special focus on porphyrins and porphyrin-related macrocycle molecules. The present study describes the photophysical characterization and in vitro phototoxicity evaluation of 5,10,15,20-tetra(quinolin-2-yl)porphyrin (2-TQP) as a potential PDT photosensitizer. Molar absorption coefficients were determined from the corresponding absorption spectrum, the fluorescence quantum yield was calculated using 5,10,15,20-tetraphenylporphyrin (TPP) as a standard and the quantum yield of singlet oxygen generation was determined by direct phosphorescence measurements. Toxicity evaluations (in the presence and absence of irradiation) were performed against HT29 colorectal adenocarcinoma cancer cells. The results from this preliminary study show that the hydrophobic 2-TQP fulfills several critical requirements for a good PDT photosensitizer, namely a high quantum yield of singlet oxygen generation (Φ∆ 0.62), absence of dark toxicity and significant in vitro phototoxicity for concentrations in the micromolar range. PMID:27043519

  1. In vitro photodynamic inactivation of conidia of the phytopathogenic fungus Colletotrichum graminicola with cationic porphyrins.

    Science.gov (United States)

    Vandresen, Camila Chevonica; Gonçalves, Alan Guilherme; Ducatti, Diogo Ricardo Bazan; Murakami, Fabio Seigi; Noseda, Miguel Daniel; Duarte, Maria Eugenia Rabello; Barreira, Sandra Mara Woranovicz

    2016-05-11

    Photodynamic inactivation (PDI) is an efficient approach for the elimination of a series of microorganisms; however, PDI involving phytopathogenic filamentous fungi is scarce in the literature. In the present study, we have demonstrated the photoinactivating properties of five cationic meso-(1-methyl-4-pyridinio)porphyrins on conidia of the phytopathogen Colletotrichum graminicola. For this purpose, photophysical properties (photostability and (1)O2 singlet production) of the porphyrins under study were first evaluated. PDI assays were then performed with a fluence of 30, 60, 90 and 120 J cm(-2) and varying the porphyrin concentration from 1 to 25 μmol L(-1). Considering the lowest concentration that enabled the best photoinactivation, with the respective lowest effective irradiation time, the meso-(1-methyl-4-pyridinio)porphyrins herein studied could be ranked as follows: triple-charged 4 (1 μmol L(-1) with a fluence of 30 J cm(-2)) > double-charged-trans2 (1 μmol L(-1) with 60 J cm(-2)) > tetra-charged 5 (15 μmol L(-1) with 90 J cm(-2)) > mono-charged 1 (25 μmol L(-1) with 120 J cm(-2)). Double-charged-cis-porphyrin 3 inactivated C. graminicola conidia in the absence of light. Evaluation of the porphyrin binding to the conidia and fluorescence microscopic analysis were also performed, which were in agreement with the PDI results. In conclusion, the cationic porphyrins herein studied were considered efficient photosensitizers to inactivate C. graminicola conidia. The amount and position of positive charges are related to the compounds' amphiphilicity and therefore to their photodynamic activity. PMID:27109559

  2. Photosensitizer-Embedded Polyacrylonitrile Nanofibers as Antimicrobial Non-Woven Textile

    Directory of Open Access Journals (Sweden)

    Sarah L. Stanley

    2016-04-01

    Full Text Available Toward the objective of developing platform technologies for anti-infective materials based upon photodynamic inactivation, we employed electrospinning to prepare a non-woven textile comprised of polyacrylonitrile nanofibers embedded with a porphyrin-based cationic photosensitizer; termed PAN-Por(+. Photosensitizer loading was determined to be 34.8 nmol/mg material; with thermostability to 300 °C. Antibacterial efficacy was evaluated against four bacteria belonging to the ESKAPE family of pathogens (Staphylococcus aureus; vancomycin-resistant Enterococcus faecium; Acinetobacter baumannii; and Klebsiella pneumonia, as well as Escherichia coli. Our results demonstrated broad photodynamic inactivation of all bacterial strains studied upon illumination (30 min; 65 ± 5 mW/cm2; 400–700 nm by a minimum of 99.9996+% (5.8 log units regardless of taxonomic classification. PAN-Por(+ also inactivated human adenovirus-5 (~99.8% reduction in PFU/mL and vesicular stomatitis virus (>7 log units reduction in PFU/mL. When compared to cellulose-based materials employing this same photosensitizer; the higher levels of photodynamic inactivation achieved here with PAN-Por(+ are likely due to the combined effects of higher photosensitizer loading and a greater surface area imparted by the use of nanofibers. These results demonstrate the potential of photosensitizer-embedded polyacrylonitrile nanofibers to serve as scalable scaffolds for anti-infective or self-sterilizing materials against both bacteria and viruses when employing a photodynamic inactivation mode of action.

  3. Synthesis and comparative toxicology of a series of polyhedral borane anion-substituted tetraphenyl porphyrins.

    Science.gov (United States)

    Koo, Myoung-Seo; Ozawa, Tomoko; Santos, Raquel A; Lamborn, Kathleen R; Bollen, Andrew W; Deen, Dennis F; Kahl, Stephen B

    2007-02-22

    Three structurally similar tetraphenylporphyrins bearing polyhedral borane anions have been synthesized and their toxicological profiles obtained in rats. These conjugates were found to have quite different acute toxicities as manifested at the maximum tolerated dose (MTD). When given at the MTD and observed over 28 days, the most acutely toxic porphyrin was found to be devoid of toxicity, as measured by blood chemistry panels. The remaining two less acutely toxic compounds both elicited significant changes, characterized by moderate to severe thrombocytopenia, failure to gain weight normally and changes in liver enzymes indicative of mild hepatotoxicity. All toxic effects were transient, with platelets rebounding to above normal levels at day 28. We conclude that thrombocytopenia is the dose limiting toxicity for boronated porphyrins in mammals and suggest that these effects may be due to the porphyrin, not the borane or carborane. PMID:17253677

  4. Electrochemical Generation of Porphyrin-Porphyrin and Porphyrin-C60 Polymeric Photoactive Organic Heterojunctions

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Photoactive organic-organic interfaces were formed by electrochemical synthesis. • Zn(II), free base porphyrin and C60 films were used to form donor-aceptor bilayers. • Photoinduced electron transfer between the interfaces were analyzed by SPV. • The heterojunctions were able to produce photoinduced charge separated states. - Abstract: Photoactive organic-organic interfaces are formed by electrochemical synthesis. The generation of porphyrin/porphyrin and porphyrin/C60 heterojunctions over indium tin oxide electrodes by successive electropolymerization steps is described. Functionalized C60 buckminsterfullerene holding a carbazol residue and porphyrins containing carbazol and phenylamino moieties are able to form electrodeposited layers by cyclic voltammetry. Photoinduced electron transfer between Zn(II), free base porphyrins and C60 films were analyzed by both, light modulated surface photovoltage spectroscopy and laser induced transient photovoltage. The results showed that the electrochemical generated polymeric heterojunctions are able to produce photoinduced charge separated states, which could present a potential application in the design and construction of organic optoelectronic devices

  5. Photosensitizer decorated iron oxide nanoparticles: bimodal agent for combined hyperthermia and photodynamic therapy

    Science.gov (United States)

    Yang, Zhimou; Xu, Keming; Zhang, Bei; Xu, Bing; Zhang, Xixiang; Chang, Chi K.

    2006-02-01

    As the PDT effect may be enhanced by localized hyperthermia (HT), it would be logical to find a single agent that could bring about these two modalities at precisely the target site for synergism. Since highly localized HT can be induced by magnetic field excitation of superparamagnetic nanoparticles, we report here the design and synthesis of photosensitizer-decorated iron oxide nanoparticles and their tumoricidal effect. Thus, a porphyrin is covalently anchored on the iron oxide nanoparticle via dihydroxybenzene which binds tightly on the surface of the nanoparticle by M-O bond. The morphology of the resultant nanoparticle was studied to show that the crystallinality is not changed and the nanoparticle remains superparamagnetic at room temperature. The conjugate is also strongly fluorescent indicating that the iron oxide hardly affects the optical properties of the surface bound porphyrin moieties. The conjugate is readily taken by cancer cell (Hela cell line) and is able to trigger apoptosis after excitation by light.

  6. Advancements in Tumor Targeting Strategies for Boron Neutron Capture Therapy.

    Science.gov (United States)

    Luderer, Micah John; de la Puente, Pilar; Azab, Abdel Kareem

    2015-09-01

    Boron neutron capture therapy (BNCT) is a promising cancer therapy modality that utilizes the nuclear capture reaction of epithermal neutrons by boron-10 resulting in a localized nuclear fission reaction and subsequent cell death. Since cellular destruction is limited to approximately the diameter of a single cell, primarily only cells in the neutron field with significant boron accumulation will be damaged. However, the emergence of BNCT as a prominent therapy has in large part been hindered by a paucity of tumor selective boron containing agents. While L-boronophenylalanine and sodium borocaptate are the most commonly investigated clinical agents, new agents are desperately needed due to their suboptimal tumor selectivity. This review will highlight the various strategies to improve tumor boron delivery including: nucleoside and carbohydrate analogs, unnatural amino acids, porphyrins, antibody-dendrimer conjugates, cationic polymers, cell-membrane penetrating peptides, liposomes and nanoparticles. PMID:26033767

  7. Anticancer activity of the new photosensitizers: dose and cell type dependence

    Science.gov (United States)

    Gyulkhandanyan, Grigor V.; Ghambaryan, Sona S.; Amelyan, Gayane V.; Ghazaryan, Robert K.; Haroutiunian, Samvel G.; Gyulkhandanyan, Aram G.; Gasparyan, Gennadi H.

    2005-04-01

    The necessity of researches of antitumor efficiency of new photosensitizers (PS) is explained by the opportunity of their application in photodynamic therapy of tumors. PS, selectively accumulated in cancer cells and activated by the light, generate the active oxygen species that cause apoptosis. Earlier, it was shown that PS chlorin e6 (0.3-0.5 μg/ml) induces rat embryo fibroblast-like cell apoptosis. In present work antitumor activity of the new photosensitizers, water-soluble cationic porphyrins and their metal complexes, is investigated. The dose-dependent destruction of cancer cells was shown on PC-12 (pheochromocytoma, rat adrenal gland) and Jurkat (human lymphoma) cell lines. Meso-tetra-[4-N-(2 `- oxyethyl) pyridyl] porphyrin (TOEPyP) and chlorin e6 possessed the same toxicity at LD50 dose on PC-12 cell line, whereas phototoxicity of TOEPyP was 3 times less compared to chlorin e6(LD50=0.2 and 0.075 μg/ml accordingly). The results have shown weak photosensitizing effect of Zn-and Ag-derivatives of TOEPyP on PC-12 cell line. TOEPyP and Zn-TOEPyP (0.1 - 50 μg/ml) were non-toxic for Jurkat cell line, whereas Ag-TOEPyP was toxic at 10 μg/ml (LD90). TOEPyP and chlorin e6 have shown phototoxic effect in the same dose range (LD50=0.5 and 0.3 μg/ml accordingly). The investigation of toxic and phototoxic effects of the new porphyrins revealed significantly different sensitivity of various cell lines to PSs.

  8. Probing Photosensitization by Functionalized Carbon Nanotubes

    Science.gov (United States)

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  9. Photosensitisation of tumor cells in vitro and in vivo using endogenous porphyrins induced with exogenous 5-aminolevulinic acid

    International Nuclear Information System (INIS)

    PhotoChemoTherapy of cancer is based on uptake of a photosensitizer by neoplastic tissue and subsequent light activation. The persistent skin photo-sensitization following such treatment does, however, put restraints on its clinical applicability. Recently, preliminary data on clinical topical application of 5-AminoLevulinic Acid for PCT on patients with cutaneous carcinomas indicate that this modality is a very efficient treatment of skin cancer. Little is known, however, about the ALA uptake or biolocalization and photosensitizing efficiency of ALA-induced porphyrins in cells and tumor tissue. An understanding of these parameters would be of great help in optimizing this most promising treatment. (author). 13 refs., 1 fig., 2 tabs

  10. Gadolinium(III) Porpholactones as Efficient and Robust Singlet Oxygen Photosensitizers.

    Science.gov (United States)

    Ke, Xian-Sheng; Ning, Yingying; Tang, Juan; Hu, Ji-Yun; Yin, Hao-Yan; Wang, Gao-Xiang; Yang, Zi-Shu; Jie, Jialong; Liu, Kunhui; Meng, Zhao-Sha; Zhang, Zongyao; Su, Hongmei; Shu, Chunying; Zhang, Jun-Long

    2016-07-01

    Construction of Gd(III) photosensitizers is important for designing theranostic agents owing to the unique properties arising from seven unpaired f electrons of the Gd(3+) ion. Combining these with the advantages of porpholactones with tunable NIR absorption, we herein report the synthesis of Gd(III) complexes Gd-1-4 (1, porphyrin; 2, porpholactone; 3 and 4, cis- and trans-porphodilactone, respectively) and investigated their function as singlet oxygen ((1) O2 ) photosensitizers. These Gd complexes displayed (1) O2 quantum yields (ΦΔ s) from 0.64-0.99 with the order Gd-1energy gap (ΔE) between the lowest triplet states (T1 ) of the ligand and the energy level of the (1) Δg →(3) Σg transition of (1) O2 . In particular, Gd-4 is capable of excitation in the visible to NIR region (400-700 nm) with a quantum yield near unity. These Gd complexes were first demonstrated as efficient photosensitizers in photocatalysis such as oxidative C-H bond functionalization of secondary or tertiary amines, and the oxygenation of the natural product cholesterol. Finally, after glycosylation, these water-soluble Gd complexes showed potential applications in photodynamic therapy (PDT) in HeLa cells. This work revealed that Gd(III) complexes of "bioinspired" β-modified porpholactones are efficient NIR photosensitizers and form a chemical basis to construct appealing photocatalysts and theranostic agents based on lanthanides. PMID:27249665

  11. Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons

    KAUST Repository

    Diev, Vyacheslav V.

    2012-01-06

    A systematic study of the preparation of porphyrins with extended conjugation by meso,β-fusion with polycyclic aromatic hydrocarbons (PAHs) is reported. The meso-positions of 5,15-unsubstituted porphyrins were readily functionalized with PAHs. Ring fusion using standard Scholl reaction conditions (FeCl 3, dichloromethane) occurs for perylene-substituted porphyrins to give a porphyrin β,meso annulated with perylene rings (0.7:1 ratio of syn and anti isomers). The naphthalene, pyrene, and coronene derivatives do not react under Scholl conditions but are fused using thermal cyclodehydrogenation at high temperatures, giving mixtures of syn and anti isomers of the meso,β-fused porphyrins. For pyrenyl-substituted porphyrins, a thermal method gives synthetically acceptable yields (>30%). Absorption spectra of the fused porphyrins undergo a progressive bathochromic shift in a series of naphthyl (λ max = 730 nm), coronenyl (λ max = 780 nm), pyrenyl (λ max = 815 nm), and perylenyl (λ max = 900 nm) annulated porphyrins. Despite being conjugated with unsubstituted fused PAHs, the β,meso-fused porphyrins are more soluble and processable than the parent nonfused precursors. Pyrenyl-fused porphyrins exhibit strong fluorescence in the near-infrared (NIR) spectral region, with a progressive improvement in luminescent efficiency (up to 13% with λ max = 829 nm) with increasing degree of fusion. Fused pyrenyl-porphyrins have been used as broadband absorption donor materials in photovoltaic cells, leading to devices that show comparatively high photovoltaic efficiencies. © 2011 American Chemical Society.

  12. Electroextraction of boron from boron carbide scrap

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Anthonysamy, S., E-mail: sas@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ghosh, C. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ravindran, T.R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Divakar, R.; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India)

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  13. Electroextraction of boron from boron carbide scrap

    International Nuclear Information System (INIS)

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron (10B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of 10B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron

  14. Functionalized zinc porphyrin as light harvester in dye sensitized solar cells

    Indian Academy of Sciences (India)

    L Giribabu; Ch Vijay Kumar; M Raghavender; K Somaiah; P Yella Reddy; P Venkateswara Rao

    2008-09-01

    A new photosensitizer having two rhodanine acetic acid groups at meso-positions of a zinc porphyrin [meso-Rhod-Zn-Rhod] has been synthesized and characterized by UV-Visible, 1H NMR, MALDI-MS, fluorescence spectroscopies and cyclic voltammetry. The new photosensitizer was tested in dye-sensitized solar cells with three different liquid redox electrolytes and compared its efficiency () with dyad. Both dyad and triad were also tested in DSSC using a polymer gel redox electrolyte and observed low efficiency because of small short circuiting current i.e. ISc though the IPCE is significantly high. The probable reason for the low efficiency small ISc has been attributed to the internal resistance of the cell.

  15. Photostability of different chlorine photosensitizers

    International Nuclear Information System (INIS)

    In this paper, we report the photodegradation of three different chlorine photosensitizers (Photoditazine®, Radachlorin®, and Foscan®). The photosensitizer degradation was analyzed by changes in the fluorescence spectrum during illumination. The rate of fluorescence variation was normalized to the solution absorption and the photon energy resulting in the determination of the necessary number of photons to be absorbed to induce photosensitizer photodegradation. The parameter for rate of the molecules decay, the photon fluence rate and optical properties of the solution allow us to determine the photosensitizer stability in solution during illumination. The results show that the order of susceptibility for photodegradation rate is: Radachlorin® < Photoditazine® < Foscan®. This difference in the photodegradation rate for Foscan can be explained by the high proportion of aggregates in solution that inhibit the photo-oxidative process that impede the singlet oxygen formation. We hypothesize that there is a correlation between photodegradation rate and photodynamic efficacy witch is governed by the singlet oxygen formation responsible for the most relevant reaction of the cell death photodynamic induction. Then its is important to know the photostability of different types of drugs since the photodegradation rate, the photodegradation as well as the photodynamic efficacy are strong correlated to the oxygen concentration in the tissue

  16. Radiation carcinogenesis: radioprotectors and photosensitizers

    International Nuclear Information System (INIS)

    This paper outlines 1) some of the salient features of radiation carcinogenesis that are pertinent to the questions of how the carcinogenic effects might be influenced, 2) the effects of radioprotectors on ionizing radiation-induced cancer, and 3) the effect of photosensitizers on UVR-induced skin cancer

  17. Supramolecular Allosteric Cofacial Porphyrin Complexes

    International Nuclear Information System (INIS)

    Nature routinely uses cooperative interactions to regulate cellular activity. For years, chemists have designed synthetic systems that aim toward harnessing the reactivity common to natural biological systems. By learning how to control these interactions in situ, one begins to allow for the preparation of man-made biomimetic systems that can efficiently mimic the interactions found in Nature. To this end, we have designed a synthetic protocol for the preparation of flexible metal-directed supramolecular cofacial porphyrin complexes which are readily obtained in greater than 90% yield through the use of new hemilabile porphyrin ligands with bifunctional ether-phosphine or thioether-phosphine substituents at the 5 and 15 positions on the porphyrin ring. The resulting architectures contain two hemilabile ligand-metal domains (RhI or CuI sites) and two cofacially aligned porphyrins (ZnII sites), offering orthogonal functionalities and allowing these multimetallic complexes to exist in two states, 'condensed' or 'open'. Combining the ether-phosphine ligand with the appropriate RhI or CuI transition-metal precursors results in 'open' macrocyclic products. In contrast, reacting the thioether-phosphine ligand with RhI or CuI precursors yields condensed structures that can be converted into their 'open' macrocyclic forms via introduction of additional ancillary ligands. The change in cavity size that occurs allows these structures to function as allosteric catalysts for the acyl transfer reaction between X-pyridylcarbinol (where X = 2, 3, or 4) and 1-acetylimidazole. For 3- and 4-pyridylcarbinol, the 'open' macrocycle accelerates the acyl transfer reaction more than the condensed analogue and significantly more than the porphyrin monomer. In contrast, an allosteric effect was not observed for 2-pyridylcarbinol, which is expected to be a weaker binder and is unfavorably constrained inside the macrocyclic cavity.

  18. Supramolecular Allosteric Cofacial Porphyrin Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveri, Christopher G.; Gianneschi, Nathan C.; Nguyen, Son Binh T.; Mirkin, Chad A.; Stern, Charlotte L.; Wawrzak, Zdzislaw; Pink, Maren (NWU); (Indiana)

    2008-04-12

    Nature routinely uses cooperative interactions to regulate cellular activity. For years, chemists have designed synthetic systems that aim toward harnessing the reactivity common to natural biological systems. By learning how to control these interactions in situ, one begins to allow for the preparation of man-made biomimetic systems that can efficiently mimic the interactions found in Nature. To this end, we have designed a synthetic protocol for the preparation of flexible metal-directed supramolecular cofacial porphyrin complexes which are readily obtained in greater than 90% yield through the use of new hemilabile porphyrin ligands with bifunctional ether-phosphine or thioether-phosphine substituents at the 5 and 15 positions on the porphyrin ring. The resulting architectures contain two hemilabile ligand-metal domains (Rh{sup I} or Cu{sup I} sites) and two cofacially aligned porphyrins (Zn{sup II} sites), offering orthogonal functionalities and allowing these multimetallic complexes to exist in two states, 'condensed' or 'open'. Combining the ether-phosphine ligand with the appropriate Rh{sup I} or Cu{sup I} transition-metal precursors results in 'open' macrocyclic products. In contrast, reacting the thioether-phosphine ligand with RhI or CuI precursors yields condensed structures that can be converted into their 'open' macrocyclic forms via introduction of additional ancillary ligands. The change in cavity size that occurs allows these structures to function as allosteric catalysts for the acyl transfer reaction between X-pyridylcarbinol (where X = 2, 3, or 4) and 1-acetylimidazole. For 3- and 4-pyridylcarbinol, the 'open' macrocycle accelerates the acyl transfer reaction more than the condensed analogue and significantly more than the porphyrin monomer. In contrast, an allosteric effect was not observed for 2-pyridylcarbinol, which is expected to be a weaker binder and is unfavorably constrained inside the

  19. A comparative study of aluminium-chloro-tetrasulfonated phthalocyanine and hematoporphyrin derivative in photodynamic cell killing effect and skin photosensitivity

    International Nuclear Information System (INIS)

    Since 1983, PhotoDynamic Therapy was conducted in patients with super-ficial bladder cancer, especially carcinoma in situ of the bladder. As side effects, skin photosensitivity and reduced bladder capacity were observed as consequence of retention of HematoPorphyrin Derivative in skin and normal portion of the bladder. these adverse reactions have, in part, restricted the development of PDT and underlie the search for alternative photosensitive compounds for clinical use. Aluminium chloro-sulfonated phthalocyanines (AISPc), which can be regarded as azaporphyrins, appear to be more suitable photosensitizers because of their strong absorption and thermal stability in solution, and relatively well defined chemical properties. Moreover, AISPc were reported to be capable of photoinactivating cells in tissue culture, to exhibit good tumor-localizing capacity, and to reduce tumor burden of various murine tumors with light irradiation. Authors therefore are interested in AISPc as second generation photosensitizers for PDT of bladder cancer. In this study, their potency as photosensitizing agents is evaluated in vitro and in vivo systems as compared with HpD. (author). 9 refs., 5 figs

  20. High content screening as high quality assay for biological evaluation of photosensitizers in vitro.

    Directory of Open Access Journals (Sweden)

    Gisela M F Vaz

    Full Text Available A novel single step assay approach to screen a library of photdynamic therapy (PDT compounds was developed. Utilizing high content analysis (HCA technologies several robust cellular parameters were identified, which can be used to determine the phototoxic effects of porphyrin compounds which have been developed as potential anticancer agents directed against esophageal carcinoma. To demonstrate the proof of principle of this approach a small detailed study on five porphyrin based compounds was performed utilizing two relevant esophageal cancer cell lines (OE21 and SKGT-4. The measurable outputs from these early studies were then evaluated by performing a pilot screen using a set of 22 compounds. These data were evaluated and validated by performing comparative studies using a traditional colorimetric assay (MTT. The studies demonstrated that the HCS assay offers significant advantages over and above the currently used methods (directly related to the intracellular presence of the compounds by analysis of their integrated intensity and area within the cells. A high correlation was found between the high content screening (HCS and MTT data. However, the HCS approach provides additional information that allows a better understanding of the behavior of these compounds when interacting at the cellular level. This is the first step towards an automated high-throughput screening of photosensitizer drug candidates and the beginnings of an integrated and comprehensive quantitative structure action relationship (QSAR study for photosensitizer libraries.

  1. Development of boronated tumor-seeking materials for application in neutron capture therapy of cancer

    International Nuclear Information System (INIS)

    Full text: At the present time the main field of application of boron compounds in medicine is Boron Neutron Capture Therapy (BNCT) of cancer. In this presentation the main principles of BNCT and main types of polyhedral boron compounds used for BNCT will be shown. The successful treatment of tumors by BNCT requires selective delivery of the boron moiety into the tumor cells. One of ways to solve this problem is attachment of boron fragment to different tumor-specific targeting molecules. Literature and our recent results on the preparation of novel boronated amino acids, carboranecarboxylic acids, a design of different conjugates of polyhedral boron compounds with tumor-seeking molecules, like porphyrins, phthalocyanines, nucleosides, carbohydrates, and lipids will be presented. Conjugates of natural porphyrins and phthalocyanines with carborane, closo-dodecaborate and cobalt bis(dicarbollide) were synthesized. The combination of these two fragments in one molecule makes these compounds potentially useful for both fluorescence diagnostics (FD) and BNCT of tumours. Boronated nucleosides are considered to be potential BNCT candidates because they can accumulate in the tumor cells. Thus, we have succeeded in preparation of the very first conjugates of closo-dodecaborate anion with one canonic nucleoside (thymidine)

  2. Porphyrin coordination polymer nanospheres and nanorods

    Science.gov (United States)

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  3. Porphyrin Microparticles for Biological and Biomedical Applications

    Science.gov (United States)

    Huynh, Elizabeth

    Lipids are one of the critical building blocks of life, forming the plasma membrane of cells. In addition, porphyrins also play an equally important role in life, for example, through carrying oxygen in blood. The importance of both these components is evident through the biological and biomedical applications of supramolecular structures generated from lipids and porphyrins. This thesis investigates new porphyrin microparticles based on porphyrin-lipid architecture and their potential applications in biology and medicine. In Chapter 1, a background on lipid and porphyrin-based supramolecular structures is presented and design considerations for generating multifunctional agents. Chapter 2 describes the generation of a monolayer porphyrin microparticle as a dual-modal ultrasound and photoacoustic contrast agent and subsequently, a trimodal ultrasound, photoacoustic and fluorescence contrast agent. Chapter 3 examines the optical and morphological response of these multimodality ultrasound-based contrast agents to low frequency, high duty cycle ultrasound that causes the porphyrin microparticles to convertinto nanoparticles. Chapter 4 examines the generation of bilayer micrometer-sized porphyrin vesicles and their properties. Chapter 5 presents a brief summary and potential future directions. Although these microscale structures are similar in structure, the applications of these structures greatly differ with potential applications in biology and also imaging and therapy of disease. This thesis aims to explore and demonstrate the potential of new simplified, supramolecular structures based on one main building block, porphyrin-lipid.

  4. Re(I) bridged porphyrin dyads, triads and tetrads

    Indian Academy of Sciences (India)

    M Yedukondalu; M Ravikanth

    2011-03-01

    Porphyrin rings containing two meso-pyridyl groups either in cis or trans fashion can be used to construct Re(I) bridged multiporphyrin assemblies. The cis-dipyridyl porphyrins with various porphyrin cores such as N4, N3O, N3S, N2S2 have been used to react with Re(CO)5Cl in THF at refluxing temperature and constructed planar Re(I) bridged porphyrin dyads containing either one type of porphyrin subunit or two types of porphyrin subunits. The trans-dipyridyl porphyrins have been used to construct Re(I) bridged porphyrin squares. The porphyrin dyads have been explored for singlet-singlet energy transfer studies and porphyrin squares have been used for catalysis, chemical sensing, molecular sieving and photocurrent production studies. An overview of synthesis of Re(I) bridged porphyrin dyads, triads and tetrads and their interesting photophysical properties are highlighted in this paper.

  5. Antitumor effects evaluation of a novel porphyrin derivative in photodynamic therapy.

    Science.gov (United States)

    Li, Jian-Wei; Wu, Zhong-Ming; Magetic, Davor; Zhang, Li-Jun; Chen, Zhi-Long

    2015-12-01

    In this paper, the antitumor activity of a novel porphyrin-based photosensitizer 5,10,15,20-tetrakis[(5-diethylamino)pentyl] porphyrin (TDPP) was reported in vitro and in vivo. The photophysical and cellular properties of TDPP were investigated. The singlet oxygen generation quantum yield of TDPP was detected; it showed a high singlet oxygen quantum yield of 0.52. The intracellular distribution of photosensitizer was detected with laser scanning confocal microscopy. The efficiency of TDPP-photodynamic therapy (PDT) in vitro was analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and in situ trypan blue exclusion test. Treated with a 630-nm laser, TDPP can kill cultured human esophageal cancer cell line (Eca-109) cells and reduce the growth of Eca-109 xenograft tumors significantly in BABL/c nude mice. And histopathological study was also used to confirm the antitumor effect. It has the perspective to be developed as a new antitumor drug in photodynamic therapy and deserves further investigation. PMID:26152290

  6. Electronic energy harvesting multi BODIPY-zinc porphyrin dyads accommodating fullerene as photosynthetic composite of antenna-reaction center.

    Science.gov (United States)

    Maligaspe, E; Kumpulainen, T; Subbaiyan, N K; Zandler, M E; Lemmetyinen, H; Tkachenko, N V; D'Souza, F

    2010-07-21

    Efficient electronic energy transfer (EET) in the newly synthesized dyads comprised of zinc porphyrin covalently linked to one, two or four numbers of boron dipyrrin (BDP) entities is investigated. Both steady-state and time-resolved emission as well as transient absorption studies revealed occurrence of efficient singlet-singlet energy transfer from BDP to zinc porphyrin with the time scale ranging between 28 and 48 ps. A decrease in time constants for energy transfer with increasing the number of BDP units is observed revealing better antenna effect of dyads bearing higher number of boron dipyrrin entities. Further, supramolecular triads to mimic the 'antenna-reaction center' functionality of photosynthetic reaction center have been successfully constructed by coordinating fulleropyrrolidine appended with an imidazole ligand to the zinc porphyrin. The structural integrity of the supramolecular triads was arrived by optical, computational and electrochemical studies. Free energy calculations revealed possibility of photoinduced electron transfer from singlet excited zinc porphyrin to fullerene, and the preliminary transient absorption studies involving pump-probe technique are supportive of occurrence of electron transfer from (1)ZnP* to fullerene in the supramolecular triads. PMID:20544099

  7. Synthesis and properties of 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl] chlorin as potential broad-spectrum antimicrobial photosensitizers.

    Science.gov (United States)

    Ferreyra, Darío D; Reynoso, Eugenia; Cordero, Paula; Spesia, Mariana B; Alvarez, M Gabriela; Milanesio, M Elisa; Durantini, Edgardo N

    2016-05-01

    A novel 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]chlorin (TAPC) was synthesized by reduction of the corresponding porphyrin TAPP with p-toluenesulfonhydrazide, followed by selective oxidation with o-chloranil. Spectroscopic properties and the photodynamic activity of these photosensitizers were compared in N,N-dimethylformamide. An increase in the absorption band at 650nm was found for the chlorin derivative with respect to TAPP. These photosensitizers emit red fluorescence with quantum yields of 0.15. Both compounds were able to photosensitize singlet molecular oxygen with quantum yields of about 0.5. Also, the formation of superoxide anion radical was detected in the presence of TAPC or TAPP and NADH. Photodynamic inactivation was investigated on a Gram-positive bacterium Staphylococcus aureus, a Gram-negative bacterium Escherichia coli and a fungal yeast Candida albicans cells. In vitro experiments showed that TAPC or TAPP were rapidly bound to microbial cells at short incubation periods. These photosensitizers, without intrinsic positive charges, contain four basic amino groups. These substituents can be protonated at physiological pH, increasing the interaction with the cell envelopment. Photosensitized inactivation improved with an increase of both photosensitizer concentrations and irradiation times. After 15min irradiation, a 7 log reduction of S. aureus was found for treated with 1μM photosensitizer. Similar result was obtained with E. coli after using 5μM photosensitizer and 30min irradiation. Also, the last conditions produced a decrease of 5 log in C. albicans cells. Therefore, TAPC was highly effective as a broad-spectrum antimicrobial photosensitizer. PMID:26994333

  8. Porphyrin dye into biopolymeric chitosan films for localized photodynamic therapy of cancer.

    Science.gov (United States)

    Ferreira, D P; Conceição, D S; Calhelha, R C; Sousa, T; Socoteanu, Radu; Ferreira, I C F R; Vieira Ferreira, L F

    2016-10-20

    Porphyrins and some of its derivatives are well known and widely used as photosensitizers (PSs) for Photodynamic Therapy of Cancer (PDT). The present study regards the characterization and evaluation of a synthesized asymmetric porphyrin dye in solution to be used as PS for PDT. This molecule was also incorporated into biopolymeric films composed by chitosan, polyethylene glycol (PEG) and gelatin in order to overtake some of the disadvantages inherent to the PS, but more important, to evaluate the potential of a system composed by the porphyrin/biopolymer to be applied as localized therapeutic agents. FTIR spectroscopy showed a strong interaction between the polymers involved in the preparation of the films under study: film 1: chitosan, film 2: chitosan/PEG and film 3: chitosan/gelatin. Photochemical studies were performed for the dye in solution and into the three different biopolymeric films. Ground state absorption showed the characteristic bands of these kinds of dyes in solution and also incorporated into the films. The films composed by porphyrin/chitosan and porphyrin into chitosan/gelatin, revealed the presence of non-emissive aggregates exhibiting a strong quenching effect in the fluorescence intensity, quantum yields and lifetimes. In this way, the system composed by the porphyrin incorporated into the chitosan/PEG film presents the best fluorescence quantum yield and lifetime. The transient absorption spectra were obtained for all the systems indicating the formation of an excited triplet state of the porphyrins following excitation, which takes special importance in the generation of phototoxic species namely singlet oxygen. Singlet oxygen quantum yields were also determined and the results obtained were very promising for the dye in solution but also for the dye into the different substrates. The release of the dye from the three different films onto a buffer solution was evaluated and we conclude that after a few days the dye was completely released

  9. Synergistic enhancement of tolerance mechanisms in response to photoactivation of cationic tetra (N-methylpyridyl) porphyrins in tomato plantlets.

    Science.gov (United States)

    Guillaumot, Damien; Issawi, Mohammad; Da Silva, Anne; Leroy-Lhez, Stephanie; Sol, Vincent; Riou, Catherine

    2016-03-01

    Antimicrobial photodynamic treatment (APDT) is largely used in medical domain and could be envisaged as a farming practice against crop pathogens such as bacteria and fungi that generate drops in agricultural yields. Thus, as a prerequisite for this potential application, we studied the effect of water-soluble anionic (TPPS and Zn-TPPS) and cationic (TMPyP and Zn-TMPyP) porphyrins tested on tomato (Solanum lycopersicum) plantlets grown in vitro under a 16 h photoperiod. First of all, under dark conditions, none of the four porphyrins inhibited germination and induced cytotoxic effects on tomato plantlets as etiolated development was not altered. The consequences of porphyrin long-term photoactivation (14 days) were thus studied on in vitro-grown tomato plantlets at phenotypic and molecular levels. Cationic porphyrins especially Zn-TMPyP were the most efficient photosensitizers and dramatically altered growth without killing plantlets. Indeed, tomato plantlets were rescued after cationic porphyrins treatment. To gain insight, the different molecular ways implied in the plantlet tolerance to photoactivated Zn-TMPyP, lipid peroxidation, antioxidative molecules (total thiols, proline, ascorbate), and ROS detoxification enzymes were evaluated. In parallel to an increase in lipid peroxidation and hydrogen peroxide production, antioxidative molecules and enzymes (guaiacol peroxidase, catalase, and superoxide dismutase) were up-regulated in root apparatus in response to photoactivated Zn-TMPyP. This study showed that tomato plantlets could overcome the pressure triggered by photoactivated cationic porphyrin by activating antioxidative molecule and enzyme arsenal and confining Zn-TMPyP into cell wall and/or apoplasm, suggesting that APDT directed against tomato pathogens could be envisaged in the future. PMID:26854612

  10. Synthesis and photobactericidal properties of a neutral porphyrin grafted onto lignocellulosic fibers.

    Science.gov (United States)

    Nzambe Ta Keki, Jean Kerim; Ouk, Tan-Sothéa; Zerrouki, Rachida; Faugeras, Pierre-Antoine; Sol, Vincent; Brouillette, François

    2016-05-01

    Photodynamic antimicrobial chemotherapy (PACT), as one of the promising alternative antimicrobial treatment, has received great attention in recent years. In this work, a new antimicrobial material has been elaborated by grafting a neutral porphyrin, the metallated 5-(4-azidophenyl)-10,15,20-triphenylporphyrin, onto lignocellulosic fibers by using the Copper (I)-Catalyzed Alkyne-Azide 1,3-dipolar Cycloaddition (CuAAC) reaction. The cross-linked porphyrin-Kraft pulp material was characterized by infrared and by XPS spectroscopy analyses, which proved the covalent linkage between the porphyrin and propargylated Kraft pulp fibers. The antimicrobial activity of this material was tested under visible light irradiation with a low light dose (9.5J/cm(2)) against Staphylococcus aureus and Pseudomonas aeruginosa. The two bacterial strains deposited on the resulting photosensitizing Kraft pulp are efficiently killed after illumination. Such materials could find applications in industrial, household and medical environments as an alternative to overcome the widespread microbial multiresistance to classical treatments. PMID:26952398

  11. Phototreatment of Water by Organic Photosensitizers and Comparison with Inorganic Semiconductors

    Directory of Open Access Journals (Sweden)

    Merlyn Thandu

    2015-01-01

    Full Text Available Phototreatment of water is drawing the attention of many as a promising alternative to replace methods like chlorination, ozonization, and other oxidation processes, used in current disinfection methods limiting harmful side-products and by-products that can cause damage to the fauna and flora. Porphyrins, phthalocyanines, and other related organic dyes are well known for their use in photodynamic therapy (PDT. These photosensitizers cause cell death by generating reactive oxygen species (ROS especially singlet oxygen in the presence of light. Such molecules are also being explored for photodynamically treating microbial infections, killing of unwanted pathogens in the environment, and oxidation of chemical pollutants. The process of photosensitisation (phototreatment can be applied for obtaining clean, microbe-free water, thus exploiting the versatile properties of photosensitizers. This review collects the various attempts carried out for phototreatment of water using organic photosensitizers. For comparison, some reports of semiconductors (especially TiO2 used in photocatalytic treatment of water are also mentioned.

  12. Determination of boron content in boron carbide, boron nitride and amorphous boron

    International Nuclear Information System (INIS)

    In the present article an analyzing method of determination of boron content in boron carbide, boron nitride and amorphous boron described. Examined samples were digested with potassium hydroxide and potassium nitrate in nickel crucible and the boron contents determined subsequently by an alcalimetric titration of boric acid in presence of mannite resp. sorbite. (author)

  13. Porphyrin-Based Nanostructures for Photocatalytic Applications

    OpenAIRE

    Yingzhi Chen; Aoxiang Li; Zheng-Hong Huang; Lu-Ning Wang; Feiyu Kang

    2016-01-01

    Well-defined organic nanostructures with controllable size and morphology are increasingly exploited in optoelectronic devices. As promising building blocks, porphyrins have demonstrated great potentials in visible-light photocatalytic applications, because of their electrical, optical and catalytic properties. From this perspective, we have summarized the recent significant advances on the design and photocatalytic applications of porphyrin-based nanostructures. The rational strategies, such...

  14. Photosensitization of experimental hepatocellular carcinoma with protoporphyrin synthesized from administered δaminolevulinic acid. Studies with cultured cells and implanted tumors

    International Nuclear Information System (INIS)

    Background/Aims: Photodynamic therapy using porphyrins or related compounds and laser light is an investigational treatment for neoplasms. The aim of this study was to establish whether this might be applicable for hepatocellular carcinoma using protoporphyrin synthesized in the tissue from administered δ-aminolevulinic acid. Methods: We measured porphyrin accumulation in normal rat hepatocytes and Morris hepatoma cells in culture, and in subcutaneously implanted hepatomas and other tissues of the rat after administration of δ-aminolevulinic acid, and assessed cell and tissue damage after application of laser light. Results: Porphyrin accumulation after δ-aminolevulinic acid was added to the medium was greater and continued to increase for a longer period of time in hepatoma cells than in hepatocytes (1337±42 vs 513±31 fluorescence units/cell at 8 h, means±SE, p<0.001). After intraperitoneal injection of δaminolevulinic acid to rats with subcutaneously growing hepatomas, porphyrin content in tumor and liver was similar at 4 h but was higher in tumor at 6 h. Laser light caused necrosis of normal and malignant liver cells in culture and subcutaneous hepatomas in vivo. Conclusions: We conclude from these in vitro and in vivo studies that porphyrin accumulation after administration of δaminolevulinic acid in this hepatoma is substantial and time dependent, and delivery of laser light locally can cause tumor photosensitization and necrosis. (au) 41 refs

  15. Real-time molecular recognition between protein and photosensitizer of photodynamic therapy by quartz crystal microbalance sensor.

    Science.gov (United States)

    Yang, Yu; Long, Yuanyuan; Li, Zhiyu; Li, Na; Li, Kean; Liu, Feng

    2009-09-01

    Real-time investigation of molecular recognition between protein and the photosensitizer of photodynamic therapy (PDT) was carried out by a quartz crystal microbalance (QCM) sensor integrated into a flow injection analysis (FIA) system. The photosensitizer meso-tetrakis(4-hydroxyphenyl)porphyrin (p-THPP) was immobilized on the gold electrode of the QCM chip by combining the sol-gel and self-assembly methods. Such a rapid screen analysis of molecular recognition showed that the p-THPP-immobilized sensor exhibited sensitive and specific interaction only with hemoglobin (Hb). The kinetic rate constants (k(ass) and k(diss)) and the equilibrium association constant (K(A)) for p-THPP-Hb interaction were calculated by linear regression. The sensing performance characteristics of the proposed sensor were investigated. The sensor showed excellent selectivity, reproducibility, and repeatability for the detection of Hb. A linear calibration plot was obtained over a range from 0.2 to 1.0 microM with a detection limit (signal/noise ratio=3) of 0.15 microM. The response mechanism of the sensor is discussed in detail. Due to its low cost and simple manipulation, this QCM-FIA system was shown to be a highly effective method for the investigation of interaction between biomacromolecules and the PDT photosensitizer. It also provides a potential strategy for screening an efficient and less harmful photosensitizer for PDT application. PMID:19481051

  16. Porphyrin-Based Photocatalytic Lithography

    Energy Technology Data Exchange (ETDEWEB)

    Bearinger, J; Stone, G; Christian, A; Dugan, L; Hiddessen, A; Wu, K J; Wu, L; Hamilton, J; Stockton, C; Hubbell, J

    2007-10-15

    Photocatalytic lithography is an emerging technique that couples light with coated mask materials in order to pattern surface chemistry. We excite porphyrins to create radical species that photocatalytically oxidize, and thereby pattern, chemistries in the local vicinity. The technique advantageously does not necessitate mass transport or specified substrates, it is fast and robust and the wavelength of light does not limit the resolution of patterned features. We have patterned proteins and cells in order to demonstrate the utility of photocatalytic lithography in life science applications.

  17. Porphyrin-based Photocatalytic Nanolithography

    Energy Technology Data Exchange (ETDEWEB)

    Bearinger, J P; Stone, G; Dugan, L C; Dasher, B E; Stockton, C; Conway, J W; Kuenzler, T; Hubbell, J A

    2009-06-08

    Nanoarray fabrication is a multidisciplinary endeavor encompassing materials science, chemical engineering and biology. We form nanoarrays via a new technique, porphyrin-based photocatalytic nanolithography (PCNL). The nanoarrays, with controlled features as small as 200 nm, exhibit regularly ordered patterns and may be appropriate for (a) rapid and parallel proteomic screening of immobilized biomolecules, (b) protein-protein interactions and/or (c) biophysical and molecular biology studies involving spatially dictated ligand placement. We demonstrate protein immobilization utilizing nanoarrays fabricated via PCNL on silicon substrates, where the immobilized proteins are surrounded by a non-fouling polymer background.

  18. Development of Phosphorus Doped Silica Photosensitive Material for Optical Waveguide Fabrication

    International Nuclear Information System (INIS)

    This research was conducted to develop an optical waveguide made from phosphorus doped silica photosensitive material. The spin coating technique was conducted using a source in liquid form called tetraethyl orthosilicate, phosphoric acid and also PBF to produced phosphorus doped silica photosensitive waveguide and boron. In range between 1 μm and 8 μm thickness, the doped silica photosensitive waveguide, showed refractive index modulation is reaching 1 x 10-14 between 3 and 8 μm thickness. For each testing and photosensitive treatment process was run using a 366 nm UV source, 0.369 mW/ cm2 at 50 Hz pulse rate. For every samples produced from this exposure shows a deviation of their index value, which the UV exposure was held about 10 minutes. By using ArF or KrF laser inscriber with 10 mW power for example, exposure period needed was just between 20 to 30 seconds to change the refractive index of waveguide. Beside, compensation process also held to improve the performance due to the tolerance effect from the simulation process. In order to improve the efficiency of refractive index and the layer thickness of BPSG, a graphical user interface program has been successfully developed to accelerate and improve the accuracy of reading measured from manual prism coupler. (author)

  19. Effect of Temperature on Photophysical Properties of Polymeric Nanofiber Materials with Porphyrin Photosensitizers

    Czech Academy of Sciences Publication Activity Database

    Suchánek, Jan; Henke, P.; Mosinger, Jiří; Zelinger, Zdeněk; Kubát, Pavel

    2014-01-01

    Roč. 118, č. 23 (2014), s. 6167-6174. ISSN 1520-6106 R&D Projects: GA ČR GA13-12496S Institutional support: RVO:61388955 ; RVO:61388980 Keywords : Diffusion * Escherichia coli * Mechanical properties Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.302, year: 2014

  20. Porphyrins as Catalysts in Scalable Organic Reactions.

    Science.gov (United States)

    Barona-Castaño, Juan C; Carmona-Vargas, Christian C; Brocksom, Timothy J; de Oliveira, Kleber T

    2016-01-01

    Catalysis is a topic of continuous interest since it was discovered in chemistry centuries ago. Aiming at the advance of reactions for efficient processes, a number of approaches have been developed over the last 180 years, and more recently, porphyrins occupy an important role in this field. Porphyrins and metalloporphyrins are fascinating compounds which are involved in a number of synthetic transformations of great interest for industry and academy. The aim of this review is to cover the most recent progress in reactions catalysed by porphyrins in scalable procedures, thus presenting the state of the art in reactions of epoxidation, sulfoxidation, oxidation of alcohols to carbonyl compounds and C-H functionalization. In addition, the use of porphyrins as photocatalysts in continuous flow processes is covered. PMID:27005601

  1. Porphyrin-Based Nanostructures for Photocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Yingzhi Chen

    2016-03-01

    Full Text Available Well-defined organic nanostructures with controllable size and morphology are increasingly exploited in optoelectronic devices. As promising building blocks, porphyrins have demonstrated great potentials in visible-light photocatalytic applications, because of their electrical, optical and catalytic properties. From this perspective, we have summarized the recent significant advances on the design and photocatalytic applications of porphyrin-based nanostructures. The rational strategies, such as texture or crystal modification and interfacial heterostructuring, are described. The applications of the porphyrin-based nanostructures in photocatalytic pollutant degradation and hydrogen evolution are presented. Finally, the ongoing challenges and opportunities for the future development of porphyrin nanostructures in high-quality nanodevices are also proposed.

  2. Elementary boron and metal-boron compounds

    International Nuclear Information System (INIS)

    Elementary boron is of interest for its peculiar and difficult bonding behaviour in solids. Due to its high oxygen affinity we find no elementary boron in nature. For the same reason it is difficult to isolate pure, elementary boron, and much confusion about 'boron crystals' has been the result of more than 100 years of research. The polymorphic forms of elementary boron and its closely related higher carbides and higher metal borides as well as the simple metal borides, B3C and BN are reported. The quantum-mechanical background responsible for structure and stoichiometry of these crystals is given. (orig.)

  3. Antimicrobial and anti-biofilm effect of a novel BODIPY photosensitizer against Pseudomonas aeruginosa PAO1

    DEFF Research Database (Denmark)

    Orlandi, Viviana Teresa; Rybtke, Morten; Caruso, Enrico;

    2014-01-01

    Photodynamic therapy (PDT) combines the use of organic dyes (photosensitizers, PSs) and visible light in order to elicit a photo-oxidative stress which causes bacterial death. GD11, a recently synthesized PS belonging to the boron-dipyrromethene (BODIPY) class, was demonstrated to be efficient...... against planktonic cultures of Pseudomonas aeruginosa, causing a 7 log unit reduction of viable cells when administered at 2.5 μM. The effectiveness of GD11 against P. aeruginosa biofilms grown in flow-cells and microtiter trays was also demonstrated. Confocal laser scanning microscopy of flow...

  4. Urinary porphyrin excretion in hepatitis C infection

    OpenAIRE

    Vogeser, Michael; Jacob, Karl; Zachoval, Reinhart

    1999-01-01

    A high prevalence of hepatitis C virus infection in porphyria cutanea tarda in some populations suggests a close link between viral hepatitis and alteration of porphyrin metabolism. Moreover, there is evidence of a role of porphyrinopathies in hepatocarcinogenesis. The aim of our study was to obtain data on the prevalence and patterns of heme metabolism alterations in patients with chronic hepatitis C virus infection. Urinary porphyrin excretion was prospectively studied in 100 consecutive ou...

  5. Porphyrin-loaded nanoparticles for cancer theranostics

    Science.gov (United States)

    Zhou, Yiming; Liang, Xiaolong; Dai, Zhifei

    2016-06-01

    Porphyrins have been used as pioneering theranostic agents not only for the photodynamic therapy, sonodynamic therapy and radiotherapy of cancer, but also for diagnostic fluorescence imaging, magnetic resonance imaging and photoacoustic imaging. A variety of porphyrins have been developed but very few of them have actually been employed in clinical trials due to their poor selectivity to tumorous tissue and high accumulation rates in the skin. In addition, most porphyrin molecules are hydrophobic and form aggregates in aqueous media. Nevertheless, the use of nanoparticles as porphyrin carriers shows great promise to overcome these shortcomings. Encapsulating or attaching porphyrins to nanoparticles makes them more suitable for tissue delivery because we can create materials with a conveniently specific tissue lifetime, specific targeting, immune tolerance, and hydrophilicity as well as other characteristics through rational design. In addition, various functional components (e.g. for targeting, imaging or therapeutic functions) can be easily introduced into a single nanoparticle platform for cancer theranostics. This review presents the current state of knowledge on porphyrin-loaded nanoparticles for the interwined imaging and therapy of cancer. The future trends and limitations of prophyrin-loaded nanoparticles are also outlined.

  6. Photosensitization Reactions In Vitro and In Vivo

    OpenAIRE

    Kruft, Bonnie I.; Greer, Alexander

    2011-01-01

    This review of Photochemistry and Photobiology summarizes articles published in 2010, and highlights progress in the area of photosensitization. The synthesis of conjugated photosensitizers is an area of interest where increasing water solubility has been a goal. Targeting infrared sensitizer absorption has been another goal, and relates to the practical need of deep tissue absorption of light. Photodynamic techniques for inactivating microbes and destroying tumors have been particularly succ...

  7. Alfalfa hay induced primary photosensitization in horses.

    Science.gov (United States)

    Puschner, B; Chen, X; Read, D; Affolter, V K

    2016-05-01

    Photosensitization, also known as photodermatitis, occurs when phototoxic or photoactive substances accumulate in the skin and interact with sunlight to result in an often severe, crusting, itching or painful dermatitis in unpigmented and/or lightly haired areas of the skin. Primary photosensitization, caused by direct ingestion of photosensitizing agents, has been reported anecdotally in horses after ingestion of alfalfa hay. Between 2004 and 2014, several large outbreaks of primary photosensitization in horses fed primarily alfalfa hay were investigated in California. Alfalfa hay samples were collected and carefully examined for the presence of known photosensitizing plants and pesticide residues but none were identified. Select hay samples were evaluated for unusual fungal infestation and for phototoxicity assay using a specific Candida albicans assay; results were negative. In the 2004 outbreak, a feeding study was conducted with three horses exclusively fed alfalfa hay that was suspected to have caused the outbreak. Two weeks after ingestion of alfalfa hay, two horses developed several lesions in non-pigmented skin characterized as chronic ulcerative and necrotizing dermatitis with superficial vasculitis, which was consistent with photosensitization. In the 2014 outbreak, seven different implicated alfalfa hay samples were analyzed for chlorophyll a and b, and pheophorbide a. These compounds had been suspected to play a role in alfalfa-induced primary photosensitization. The chlorophyll contents ranged from 0.90 to 2.30 mg/g in the alfalfa hay samples, compared to 1.37 and 2.94 mg/g in locally grown alfalfa and orchard grass hay. The pheophorbide a levels ranged from 3.36 to 89.87 µg/g in alfalfa samples compared to 81.39 and 42.33 µg/g in control alfalfa and orchard grass hay samples. These findings eliminate chlorophyll a, chlorophyll b, and pheophorbide a as possible causes for alfalfa-hay induced primary photosensitization. PMID:27040919

  8. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies.

    Science.gov (United States)

    Amin, Rehab M; Bhayana, Brijesh; Hamblin, Michael R; Dai, Tianhong

    2016-07-01

    Pseudomonas aeruginosa is among the most common pathogens that cause nosocomial infections and is responsible for about 10% of all hospital-acquired infections. In the present study, we investigated the potential development of tolerance of P. aeruginosa to antimicrobial blue light by carrying 10 successive cycles of sublethal blue light inactivation. The high-performance liquid chromatographic (HPLC) analysis was performed to identify endogenous porphyrins in P. aeruginosa cells. In addition, we tested the effectiveness of antimicrobial blue light in a mouse model of nonlethal skin abrasion infection by using a bioluminescent strain of P. aeruginosa. The results demonstrated that no tolerance was developed to antimicrobial blue light in P. aeruginosa after 10 cycles of sub-lethal inactivation. HPLC analysis showed that P. aeruginosa is capable of producing endogenous porphyrins in particularly, coproporphyrin III, which are assumed to be responsible for the photodynamic effects of blue light alone. P. aeruginosa infection was eradicated by antimicrobial blue light alone (48 J/cm(2) ) without any added photosensitizer molecules in the mouse model. In conclusion, endogenous photosensitization using blue light should gain considerable attention as an effective and safe alternative antimicrobial therapy for skin infections. Lasers Surg. Med. 48:562-568, 2016. © 2016 Wiley Periodicals, Inc. PMID:26891084

  9. Intrinsically photosensitive retinal ganglion cells

    Institute of Scientific and Technical Information of China (English)

    Gary; E.PICKARD; Patricia; J.SOLLARS

    2010-01-01

    A new mammalian photoreceptor was recently discovered to reside in the ganglion cell layer of the inner retina.These intrinsically photosensitive retinal ganglion cells(ipRGCs) express a photopigment,melanopsin,that confers upon them the ability to respond to light in the absence of all rod and cone photoreceptor input.Although relatively few in number,ipRGCs extend their dendrites across large expanses of the retina making them ideally suited to function as irradiance detectors to assess changes in ambient light levels.Phototransduction in ipRGCs appears to be mediated by transient receptor potential channels more closely resembling the phototransduction cascade of invertebrate rather than vertebrate photoreceptors.ipRGCs convey irradiance information centrally via the optic nerve to influence several functions.ipRGCs are the primary retinal input to the hypothalamic suprachiasmatic nucleus(SCN),a circadian oscillator and biological clock,and this input entrains the SCN to the day/night cycle.ipRGCs contribute irradiance signals that regulate pupil size and they also provide signals that interface with the autonomic nervous system to regulate rhythmic gene activity in major organs of the body.ipRGCs also provide excitatory drive to dopaminergic amacrine cells in the retina,providing a novel basis for the restructuring of retinal circuits by light.Here we review the ground-breaking discoveries,current progress and directions for future investigation.

  10. Mechanism and In Vivo Evaluation: Photodynamic Antibacterial Chemotherapy of Lysine-Porphyrin Conjugate.

    Science.gov (United States)

    Xu, Zengping; Gao, Yuxiang; Meng, Shuai; Yang, Baochen; Pang, Liyun; Wang, Chen; Liu, Tianjun

    2016-01-01

    Lysine-porphyrin conjugate 4i has potent photosensitive antibacterial effect on clinical isolated bacterial strains such as Methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. The mechanism of photodynamic antibacterial chemotherapy of 4i (4i-PACT) in vitro and the treatment effect in vivo was investigated in this paper. Atomic force microscopy (AFM) revealed that 4i-PACT can effectively destroy membrane and wall of bacteria, resulting in leakage of its content. This was confirmed by dual fluorescent staining with acridine orange/ethidium bromide and measuring materials absorption at 260 nm. Agarose gel electrophoresis measurement showed that 4i-PACT can damage genomic DNA. Healing of wound in rat infected by mixed bacteria showed that the efficiency of 4i-PACT is dependent on the dose of light. These results showed that 4i-PACT has promising bactericidal effect both in vitro and in vivo. PMID:26973620

  11. Porphyrin conjugated SiC/SiOx nanowires for X-ray-excited photodynamic therapy.

    Science.gov (United States)

    Rossi, F; Bedogni, E; Bigi, F; Rimoldi, T; Cristofolini, L; Pinelli, S; Alinovi, R; Negri, M; Dhanabalan, S C; Attolini, G; Fabbri, F; Goldoni, M; Mutti, A; Benecchi, G; Ghetti, C; Iannotta, S; Salviati, G

    2015-01-01

    The development of innovative nanosystems opens new perspectives for multidisciplinary applications at the frontier between materials science and nanomedicine. Here we present a novel hybrid nanosystem based on cytocompatible inorganic SiC/SiOx core/shell nanowires conjugated via click-chemistry procedures with an organic photosensitizer, a tetracarboxyphenyl porphyrin derivative. We show that this nanosystem is an efficient source of singlet oxygen for cell oxidative stress when irradiated with 6 MV X-Rays at low doses (0.4-2 Gy). The in-vitro clonogenic survival assay on lung adenocarcinoma cells shows that 12 days after irradiation at a dose of 2 Gy, the cell population is reduced by about 75% with respect to control cells. These results demonstrate that our approach is very efficient to enhance radiation therapy effects for cancer treatments. PMID:25556299

  12. Functionalised DNA - introducing and applying a versatile porphyrin molecular ruler

    OpenAIRE

    Burns, Jonathan

    2012-01-01

    Porphyrin moieties were rigidly attached to DNA to generate an accurate molecular ruler. Molecular ruler analysis was conducted using steady-state fluorescence, circular dichroism and small angle X-ray scattering spectroscopic techniques, in an attempt to analyse the FRET, exciton coupling and scattering intensity between different porphyrin-porphyrin labelled DNA combinations. A 21-mer test sequence was labelled with a porphyrin in one position on one strand, and seven different positions on...

  13. Excitation transfer and luminescence in porphyrin-carbon nanotube complexes

    OpenAIRE

    Magadur, Gurvan; Lauret, Jean-Sébastien; Alain-Rizzo, Valérie; C. Voisin; Roussignol, Ph.; Deleporte, Emmanuelle; Delaire, Jacques,

    2007-01-01

    Functionalization of carbon nanotubes with hydrosoluble porphyrins (TPPS) is achieved by "$\\pi$-stacking". The porphyrin/nanotube interaction is studied by means of optical absorption, photoluminescence and photoluminescence excitation spectroscopies. The main absorption line of the porphyrins adsorbed on nanotubes exhibits a 120 meV red shift, which we ascribe to a flattening of the molecule in order to optimize $\\pi-\\pi$ interactions. The porphyrin-nanotube complex shows a strong quenching ...

  14. Investigating the photosensitizer-potential of targeted gallium corrole using multimode optical imaging

    Science.gov (United States)

    Hwang, Jae Youn; Lubow, Jay; Chu, David; Gross, Zeev; Gray, Harry B.; Farkas, Daniel L.; Medina-Kauwe, Lali K.

    2011-02-01

    We recently developed a novel therapeutic particle, HerGa, for breast cancer treatment and detection. HerGa consists of a tumor-targeted cell penetration protein noncovalently assembled with a gallium-metallated corrole. The corrole is structurally similar to porphyrin, emits intense fluorescence, and has proven highly effective for breast tumor treatment preclinically, without light exposure. Here, we tested HerGa as a photosensitizer for photodynamic therapy and investigated its mechanism of action using multimode optical imaging. Using confocal fluorescence imaging, we observed that HerGa disrupts the mitochondrial membrane potential in situ, and this disruption is substantially augmented by light exposure. In addition, spectral and fluorescence lifetime imaging were utilized to both validate the mitochondrial membrane potential disruption and investigate HerGa internalization, allowing us to optimize the timing for light dosimetry. We observed, using advanced multimode optical imaging, that light at a specific wavelength promotes HerGa cytotoxicity, which is likely to cause disruption of mitochondrial function. Thus, we can identify for the first time the capacity of HerGa as a photosensitizer for photodynamic therapy and reveal its mechanism of action, opening possibilities for therapeutic intervention in human breast cancer management.

  15. Targeted sonodynamic therapy of cancer using a photosensitizer conjugated with antibody against carcinoembryonic antigen.

    Science.gov (United States)

    Abe, Hironori; Kuroki, Motomu; Tachibana, Katsuro; Li, Tieli; Awasthi, Aradhana; Ueno, Aruto; Matsumoto, Hisanobu; Imakiire, Takayuki; Yamauchi, Yasushi; Yamada, Hiromi; Ariyoshi, Asami; Kuroki, Masahide

    2002-01-01

    The goal of this study was to develop a strategy for the selective destruction of cancer cells by ultrasonic irradiation in the presence of an antibody-conjugated photosensitizer. To this end, a photoimmunoconjugate (PIC) was prepared between ATX-70, a photosensitizer of a gallium-porphyrin analogue, and F11-39, a high affinity monoclonal antibody (MAb) against carcinoembryonic antigen (CEA), which is often overexpressed in various carcinoma cells. This conjugate, designated F39/ATX-70, retained immunoreactivity against purified CEA and CEA-expressing cells as determined by enzyme-linked immunosorbent assay, flow cytometry and immunofluorescence microscopic analysis. The cytotoxicity of F39/ATX-70 against CEA-expressing human gastric carcinoma cells in vitro was found to be greater than that of ATX-70 when applied in combination with ultrasound irradiation. When in vivo anti-tumor effects in a mouse xenograft model were assessed, intravenous administration of F39/ATX-70 followed by ultrasonic irradiation produced a marked growth inhibition of tumor compared with irradiation alone or irradiation after administration of ATX-70. These results suggest that the PIC between anti-CEA MAb and ATX-70 may have applications in sonodynamic therapy where destruction of CEA-expressing tumor is required. PMID:12168839

  16. Activatable albumin-photosensitizer nanoassemblies for triple-modal imaging and thermal-modulated photodynamic therapy of cancer.

    Science.gov (United States)

    Hu, Dehong; Sheng, Zonghai; Gao, Guanhui; Siu, Fungming; Liu, Chengbo; Wan, Qian; Gong, Ping; Zheng, Hairong; Ma, Yifan; Cai, Lintao

    2016-07-01

    Photodynamic therapy (PDT) is a noninvasive and effective approach for cancer treatment. The main bottlenecks of clinical PDT are poor selectivity of photosensitizer and inadequate oxygen supply resulting in serious side effects and low therapeutic efficiency. Herein, a thermal-modulated reactive oxygen species (ROS) strategy using activatable human serum albumin-chlorin e6 nanoassemblies (HSA-Ce6 NAs) for promoting PDT against cancer is developed. Through intermolecular disulfide bond crosslinking and hydrophobic interaction, Ce6 photosensitizer is effectively loaded into the HSA NAs, and the obtained HSA-Ce6 NAs exhibit excellent reduction response, as well as enhanced tumor accumulation and retention. By the precision control of the overall body temperature instead of local tumor temperature increasing from 37 °C to 43 °C, the photosensitization reaction rate of HSA-Ce6 NAs increases 20%, and the oxygen saturation of tumor tissue raise 52%, significantly enhancing the generation of ROS for promoting PDT. Meanwhile, the intrinsic fluorescence and photoacoustic properties, and the chelating characteristic of porphyrin ring can endow the HSA-Ce6 NAs with fluorescence, photoacoustic and magnetic resonance triple-modal imaging functions. Upon irradiation of low-energy near-infrared laser, the tumors are completely suppressed without tumor recurrence and therapy-induced side effects. The robust thermal-modulated ROS strategy combined with albumin-based activatable nanophotosensitizer is highly potential for multi-modal imaging-guided PDT and clinical translation. PMID:27061266

  17. Studies on the preparation and the photoelectrochemical properties of the nanoporous titania films attached with and without photosensitizer TCPP

    Indian Academy of Sciences (India)

    Yun-Lan Gong; Fei-Hui Li; Fei Lu; Chang Dai

    2015-08-01

    Fabrication of TiO2 nanoporous films was carried out by anodic oxidation using two-step voltage mode while the subsequent attaching of the photosensitizer 5,10,15,20-tetra(4-carboxyphenyl) porphyrin (TCPP) on the prepared TiO2 nanoporous films was carried out by the electrochemical method. Photoelectrochemical properties of TiO2 nanoporous films attached with and without photosensitizer TCPP were analysed by fluorescence spectroscopy and electrochemical test. Effects of process parameters on the photoelectrochemical properties of TiO2 nanoporous films were also investigated. The optimized process parameters for the preparation of TiO2 nanoporous films with the best photoelectrochemical property can be concluded as follows: oxidation potentials is 70–140 V, oxidation temperature is 25°C, H2SO4 electrolyte concentration is 0.5 mol l−1 and oxidation time is 60 min. The results also show that attaching of the photosensitizer TCPP on the TiO2 nanoporous films can indeed improve the properties of TiO2 nanoporous films, and the optimized attaching temperature and attaching voltage are 25°C and 60 V, respectively.

  18. Photovoltaic Performance of ZnO Nanosheets Solar Cell Sensitized with Beta-Substituted Porphyrin

    Directory of Open Access Journals (Sweden)

    Arumugam Mahesh

    2011-01-01

    Full Text Available The photoanode of dye-sensitized solar cell (DSSC was fabricated using two-dimensional ZnO nanosheets (2D ZnO NSs sensitized with beta-substituted porphyrins photosensitizer, and its photovoltaic performance in solid-state DSSC with TiO2 nanotubes (TiO2 TNs modified poly (ethylene oxide (PEO polymer electrolyte was studied. The ZnO NSs were synthesized through hydrothermal method and were characterized through high-resolution scanning electron microscopy (HRSEM, diffused reflectance spectra (DRS, photoluminescence spectra (PL, and X-ray diffraction (XRD analysis. The crystallinity of the polymer electrolytes was investigated using X-ray diffraction analysis. The photovoltaic performance of the beta-substituted porphyrins sensitized solar cells was evaluated under standard AM1.5G simulated illumination (100 mW cm−2. The efficiency of energy conversion from solar to electrical due to 2D ZnO NSs based DSSCs is 0.13%, which is about 1.6 times higher than that of the control DSSC using ZnO nanoparticles (ZnO NPs as photoanode (0.08%, when TiO2 NTs fillers modified PEO electrolyte was incorporated in the DSSCs. The current-voltage (- and photocurrent-time (- curves proved stable with effective collection of electrons, when the 2D ZnO nanostructured photoanode was introduced in the solid-state DSSC.

  19. Resonance Raman study on distorted symmetry of porphyrin in nickel octaethyl porphyrin

    Indian Academy of Sciences (India)

    S Tewari; R Das; A Chakraborty; Ramendu Bhattacharjee

    2004-11-01

    The resonance Raman (RR) spectra of nickel octaethyl porphyrin, Ni(OEP), in CH2Cl2 (solvent) at different excitations such as 514.5, 488.0, 441.6 and 406.7 nm are recorded and analysed. The results of the theory of distortion-induced RR intensity is applied to the observed spectra to determine the excited electronic state symmetry of porphyrin in Ni(OEP). It is concluded that the porphyrin molecule (D4h structure) attains a non-polar distorted structure of D2 symmetry rather than S4 symmetry in CH2Cl2 solution.

  20. Vibrational study of magnesium complexes and porphyrins

    International Nuclear Information System (INIS)

    In the course of chlorophyll investigations by vibrational spectroscopy, the magnesium complex Mg(NH3)6Cl2 was studied by infrared and Raman techniques and two porphyrin molecules, by resonance Raman scattering. For the hexa-ammine magnesium chloride, all vibrations predicted by group theory (internal and external vibrations) were observed; ligand orientations gives- the complex ion a D3d point group symmetry. Five isotopically substituted compounds were studied and a force constant calculation showed that the Mg-N bond has a value higher than most of those calculated for other divalent hexa-ammine metal ions. Two porphyrins were studied: the prophine and the meso-porphyrin IX dimethyl-ester.' Unexpected variations of vibrational bands intensities and depolarization ratios were recorded on changing the excitation wavelength. Three resonance levels were tentatively attributed to the presence of pure electronic transitions in band IV of the absorption spectra of these compounds. (author)

  1. Blood porphyrin luminescence and tumor growth correlation

    Science.gov (United States)

    Courrol, Lilia Coronato; Silva, Flávia Rodrigues de Oliveira; Bellini, Maria Helena; Mansano, Ronaldo Domingues; Schor, Nestor; Vieira, Nilson Dias, Jr.

    2007-02-01

    Fluorescence technique appears very important for the diagnosis of cancer. Fluorescence detection has advantages over other light-based investigation methods: high sensitivity, high speed, and safety. Renal cell carcinoma (RCC) accounts for approximately 3% of new cancer incidence and mortality in the United States. Unfortunately many RCC masses remain asymptomatic and nonpalpable until they are advanced. Diagnosis and localization of early carcinoma play an important role in the prevention and curative treatment of RCC. Certain drugs or chemicals such as porphyrin derivatives accumulate substantially more in tumors than normal tissues. The autofluorescence of blood porphyrin of healthy and tumor induced male SCID mice was analyzed using fluorescence and excitation spectroscopy. A significant contrast between normal and tumor blood could be established. Blood porphyrin fluorophore showed enhanced fluorescence band (around 630 nm) in function of the tumor growth. This indicates that either the autofluorescence intensity of the blood fluorescence may provide a good parameter for the "first approximation" characterization of the tumor stage.

  2. Excitation transfer and luminescence in porphyrin-carbon nanotube complexes

    CERN Document Server

    Magadur, G; Alain-Rizzo, V; Voisin, C; Roussignol, Ph; Deleporte, E; Delaire, J A

    2007-01-01

    Functionalization of carbon nanotubes with hydrosoluble porphyrins (TPPS) is achieved by "$\\pi$-stacking". The porphyrin/nanotube interaction is studied by means of optical absorption, photoluminescence and photoluminescence excitation spectroscopies. The main absorption line of the porphyrins adsorbed on nanotubes exhibits a 120 meV red shift, which we ascribe to a flattening of the molecule in order to optimize $\\pi-\\pi$ interactions. The porphyrin-nanotube complex shows a strong quenching of the TPPS emission while the photoluminescence intensity of the nanotubes is enhanced when the excitation laser is in resonance with the porphyrin absorption band. This reveals an efficient excitation transfer from the TPPS to the carbon nanotube.

  3. Electron injection dynamics in high-potential porphyrin photoanodes.

    Science.gov (United States)

    Milot, Rebecca L; Schmuttenmaer, Charles A

    2015-05-19

    promising sensitizers because their high reduction potentials are compatible with the energy requirements of water oxidation. TRTS of free-base and metalated pentafluorophenyl porphyrins reveal inefficient electron injection into TiO2 nanoparticles but more efficient electron injection into SnO2 nanoparticles. With SnO2, injection time scales depend strongly on the identity of the central substituent and are affected by competition with excited-state deactivation processes. Heavy or paramagnetic metal ions increase the electron injection time scale by roughly one order of magnitude relative to free-base or Zn(2+) porphyrins due to the possibility of electron injection from longer-lived, lower-lying triplet states. Furthermore, electron injection efficiency loosely correlates with DSSC performance. The carboxylate anchoring group is commonly used to bind DSSC sensitizers to metal oxide surfaces but typically is not stable under the aqueous and oxidative conditions required for water oxidation. Electron injection efficiency of several water-stable alternatives, including phosphonic acid, hydroxamic acid, acetylacetone, and boronic acid, were evaluated using TRTS, and hydroxamate was found to perform as well as the carboxylate. The next challenge is incorporating a water oxidation catalyst into the design. An early example, in which an Ir-based precatalyst is cosensitized with a fluorinated porphyrin, reveals decreased electron injection efficiency despite an increase in photocurrent. Future research will seek to better understand and address these difficulties. PMID:25938858

  4. Optical properties of porphyrin: graphene oxide composites

    Science.gov (United States)

    Harsha Vardhan Reddy, M.; Al-Shammari, Rusul M.; Al-Attar, Nebras; Lopez, Sergio; Keyes, Tia E.; Rice, James H.

    2014-08-01

    In this work we aim to (via a non-invasive functionalization approach) tune and alter the intrinsic features of optically "transparent" graphene, by integrating water-soluble porphyrin aggregates. We explore the potential to combine porphyrin aggregates and graphene oxide to assess the advantages of such as a composite compared to the individual systems. We apply a range of optical spectroscopy methods including photo-absorption, fluorescence assess ground-state and excited state interactions. Our studies show that comparing resonant Raman scattering with optical transmission and fluorescence microscopy that the presence of influences the microscopic structures of the resulting composites.

  5. Sputtering behavior of boron and boron carbide

    International Nuclear Information System (INIS)

    Sputtering yields of boron were measured with D+ and B+ ions for normal and oblique angles of incidence. Self-sputtering data of boron carbide were simulated in the experiment by using Ne+ ions. The energies of the impinging ions were between 20 eV and 10 keV. The measured data are compared with computer simulated values calculated with the TRIMSP program. The boron data for normal ion impact are higher than the calculated values, whereas those for oblique ion incidence are smaller than the calculation predicts. This discrepancy is explained by the surface roughness and supported by SEM micrographs. The comparison of the boron carbide data with TRIMSP calculations shows much better agreement than the boron data. In this case the target surface was much smoother. (orig.)

  6. Boron nitride converted carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  7. Porphyrin lipid nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model

    Science.gov (United States)

    MacLaughlin, Christina M.; Ding, Lili; Jin, Cheng; Cao, Pingjiang; Siddiqui, Iram; Hwang, David M.; Chen, Juan; Wilson, Brian C.; Zheng, Gang; Hedley, David W.

    2016-03-01

    Local disease control is a major problem in the treatment of pancreatic cancer, because curative-intent surgery is only possible in a minority of patients, and radiotherapy cannot be delivered in curative doses. Despite the promise of photothermal therapy (PTT) for ablation of pancreatic tumors, this approach remains under investigated. Using photothermal sensitizers in combination with laser light for PTT can result in more efficient conversion of light energy to heat, and confinement of thermal destruction to the tumor, thus sparing adjacent organs and vasculature. Porphyrins have been previously employed as photosensitizers for PDT and PTT, however their incorporation in to "porphysomes", lipid-based nanoparticles each containing ~80,000 porphyrins through conjugation of pyropheophorbide to phospholipids, carries two distinct advantages: 1) high-density porphyrin packing imparts the nanoparticles with enhanced photonic properties for imaging and phototherapy; 2) the enhanced permeability and retention effect may be exploited for optimal delivery of porphysomes to the tumor region thus high payload porphyrin delivery. The feasibility of porphysome-enhanced PTT for pancreatic cancer treatment was investigated using a patient-derived orthotopic pancreas xenograft tumor model. Uptake of porphysomes at the orthotopic tumor site was validated using ex vivo fluorescence imaging of intact organs of interest. The accumulation of porphysomes in orthotopic tumor microstructure was also confirmed by fluorescence imaging of excised tissue slices. PTT progress was monitored as changes in tumor surface temperature using IR optical imaging. Histological analyses were conducted to examine microstructure changes in tissue morphology, and the viability of remaining tumor tissues following exposure to heat. These studies may also provide insight as to the contribution of heat sink in application of thermal therapies to highly vascularized pancreatic tumors.

  8. Reactive Oxygen Species Mediated Activation of a Dormant Singlet Oxygen Photosensitizer: From Autocatalytic Singlet Oxygen Amplification to Chemicontrolled Photodynamic Therapy.

    Science.gov (United States)

    Durantini, Andrés M; Greene, Lana E; Lincoln, Richard; Martínez, Sol R; Cosa, Gonzalo

    2016-02-01

    Here we show the design, preparation, and characterization of a dormant singlet oxygen ((1)O2) photosensitizer that is activated upon its reaction with reactive oxygen species (ROS), including (1)O2 itself, in what constitutes an autocatalytic process. The compound is based on a two segment photosensitizer-trap molecule where the photosensitizer segment consists of a Br-substituted boron-dipyrromethene (BODIPY) dye. The trap segment consists of the chromanol ring of α-tocopherol, the most potent naturally occurring lipid soluble antioxidant. Time-resolved absorption, fluorescence, and (1)O2 phosphorescence studies together with fluorescence and (1)O2 phosphorescence emission quantum yields collected on Br2B-PMHC and related bromo and iodo-substituted BODIPY dyes show that the trap segment provides a total of three layers of intramolecular suppression of (1)O2 production. Oxidation of the trap segment with ROS restores the sensitizing properties of the photosensitizer segment resulting in ∼40-fold enhancement in (1)O2 production. The juxtaposed antioxidant (chromanol) and prooxidant (Br-BODIPY) antagonistic chemical activities of the two-segment compound enable the autocatalytic, and in general ROS-mediated, activation of (1)O2 sensitization providing a chemical cue for the spatiotemporal control of (1)O2.The usefulness of this approach to selectively photoactivate the production of singlet oxygen in ROS stressed vs regular cells was successfully tested via the photodynamic inactivation of a ROS stressed Gram negative Escherichia coli strain. PMID:26789198

  9. Mass spectrometric determination of boron isotope in boron carbide

    International Nuclear Information System (INIS)

    Boron isotopes in boron carbide are measured by thermionic ionization mass spectrometry with no prior chemical separation. Boron is converted to sodium borate by fusion of the boron carbide with sodium hydroxide (or sodium carbonate) directly on the rhenium filament. The boron isotopic ratios are measured by using the Na2BO2+ ion

  10. Severe photosensitivity reaction induced by topical diclofenac

    Directory of Open Access Journals (Sweden)

    Pramod B Akat

    2013-01-01

    Full Text Available Albeit uncommon, photosensitivity reaction induced by diclofenac can be an unfortunate adverse reaction complicating its use as a topical analgesic. We here present a case of a patient who suffered such a reaction as a result of exposure to diclofenac, employed as a topical analgesic for low backache. The lesions healed with conservative management without extensive scarring or other complications.

  11. Photodynamic Efficiency of Porphyrins Encapsulated into Polysilsesquioxanes

    Czech Academy of Sciences Publication Activity Database

    Rychtáriková, Renata; Šabata, Stanislav; Hetflejš, Jiří; Kuncová, Gabriela

    2012-01-01

    Roč. 66, č. 4 (2012), s. 269-277. ISSN 0366-6352 R&D Projects: GA MŠk ME 892; GA MŠk(CZ) LC06070 Institutional research plan: CEZ:AV0Z40720504 Keywords : porphyrin * immobilization * specific surface area Subject RIV: CC - Organic Chemistry Impact factor: 0.879, year: 2012

  12. Metallic nanoshells on porphyrin-stabilized emulsions

    Science.gov (United States)

    Wang, Haorong; Song, Yujiang; Shelnutt, John A; Medforth, Craig J

    2013-10-29

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  13. Langmuir Blodgett films of porphyrins and phthalocyanines

    CERN Document Server

    Portus, D

    2002-01-01

    Phthalocyanines and porphyrins have been studied for many years as bulk, thick and thin films. Their use in Langmuir and Langmuir-Blodgett films is governed by their peripheral substituents. These can enhance or reduce their ability to form 'quality' ultra-thin films. There are a number of potential and current applications for thin films of porphyrins and phthalocyanines, which include CD-R discs and gas-sensors. It is the latter that this PhD has focussed on. Ultra-thin films of phthalocyanines, porphyrins and a porphyrin/phthalocyanine hybrid dye were deposited onto glass microscope slides, gold-coated glass microscope slides and quartz crystals. These assemblies were then characterised using Ultraviolet-Visible spectroscopy, pressure-area isotherms, surface plasmon resonance and a quartz crystal microbalance to try and determine the nature of the molecules on the surface of the substrate. The thin films were exposed to chlorine gas and the change in their absorption spectrum and (in some cases) their surf...

  14. Fluorescence and Thermostability of Nanometer Porphyrin Trimer

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A nanometer porphyrin trimer was firstly synthesized with 1,3-dibromopropane as a bridge-linked agent and the fluorescence property and thermostability were studied. The results show that the fluorescence property and thermostability of the trimer are different from those of monoporphyrin. The effects of the molecule structure on the optical property and the thermostability were also studied in detail.

  15. Porphyrin Composite Materials for Fullerene Separation

    Czech Academy of Sciences Publication Activity Database

    Šabata, Stanislav; Kuncová, Gabriela; Hetflejš, Jiří; Lhoták, P.; Slavíček, J.

    - : -, 2011, 64 /P9/. ISBN N. [Zing Nanomaterials Conference 2011. Xcaret (MX), 28.11.2011-02.12.2011] R&D Projects: GA ČR GA203/09/0691 Institutional research plan: CEZ:AV0Z40720504 Keywords : silica gel * composite materials * porphyrin Subject RIV: CC - Organic Chemistry

  16. Self-Assembly of Porphyrin J-Aggregates

    Science.gov (United States)

    Snitka, Valentinas; Rackaitis, Mindaugas; Navickaite, Gintare

    2006-03-01

    The porphyrin nanotubes were built by ionic self-assembly of two oppositely charged porphyrins in aqueous solution. The porphyrins in the acid aqueous solution self-assemble into J-aggregates, wheels or other structures. The electrostatic forces between these porphyrin blocks contribute to the formation of porphyrin aggregates in the form of nanotubes, enhance the structural stability of these nanostructures. The nanotubes were composed mixing aqueous solutions of the two porphyrins - anionic Meso-tetra(4- sulfonatophrnyl)porhine dihydrochloride (TPPS4) and cationic Meso-tetra(4-pyridyl)porphine (T4MPyP). The porphyrin nanotubes obtained are hollow structures with the length of 300 nm and diameter 50 nm. Photocatalytic porphyrins are used to reduce metal complexes from aqueous solution and to control the deposition of Au from AuHCl4 and Au nanoparticles colloid solutions onto porphyrin nanotubes. Porphyrin nanotubes are shown to reduce metal complexes and deposit the metal selectively onto the inner or outer surface of the tubes, leading to nanotube-metal composite structures.

  17. Utility of tumor-avid photosensitizers in developing bifunctional agents for tumor imaging and/or phototherapy

    Science.gov (United States)

    Pandey, Suresh K.; Chen, Yihui; Zawada, Robert H.; Oseroff, Allan; Pandey, Ravindra K.

    2006-02-01

    HPPH (a chlorophyll-a analog) was linked with a cyanine dye and the resulting conjugate was found to be an efficient tumor imaging (fluorescence imaging) and photosensitizing agent (PDT). Our preliminary results suggest that tumor-avid porphyrin-based compounds can be used as vehicles for delivering the desired fluorophores to tumor for fluorescence imaging. In an early diagnosis of microscopic lesions in pre-clinical studies (C3H mice implanted with RIF tumors) the HPPH-cyanine dye conjugate showed tumor-imaging capability (λ ex: 780 nm, λ em: 860 nm) at the non- therapeutic doses that are 100 fold lower than those used therapeutically. Compared to the cyanine dye, the corresponding HPPH-conjugate showed enhanced long-term tumor imaging ability.

  18. Synthesis and characterization of ether-linked porphyrins

    Directory of Open Access Journals (Sweden)

    Radchada Buntem

    2009-07-01

    Full Text Available The ether-linked porphyrin dimers in this research work were prepared from coupling reaction between suitableporphyrin precursors and linkers in the presence of potassium carbonate. The structures of all synthesized compounds werecharacterized by spectroscopic methods. The UV/Visible absorption maxima and extinction coefficients did not show any significant difference among these porphyrin dimers. This indicates that the length of the linker did not affect the absorption property of the dimers. However, different metal ions bonding to the porphyrin moiety affect the different absorption maxima of the porphyrin dimers. It was also found that the position of the linker on the phenyl ring of porphyrin does not affect the visible absorption pattern or the proton chemical shifts of the porphyrin core as found in the case of Zn2(metaC-dimer (13(compared with the data obtained for Zn2C2-dimer (3.

  19. Substituent effects of iron porphyrins: Structural, kinetic, and theoretical studies

    International Nuclear Information System (INIS)

    Substituent effects of iron porphyrin complexes on the structures and kinetic processes have been examined for the first time. Basing on the premise that iron porphyrin is functional analogous to heme, a series of iron porphyrin derivatives bearing different substituents at the meso positions of the corrole ring are investigated as to their electrochemistry, the relationships among the electron transfer (ET) processes, their structures, and orbital energies. The good coherence between the experiment and theory indicates that the ET rate can be accelerated when electron-donating substituents are introduced to the iron porphyrin ring. Finally, the implications of the results are discussed in the influence of stability of iron porphyrin complexes on the ability to carry molecular oxygen, which may suggest it possible to dominate the biological activity of heme by selecting the appropriate substituents to iron porphyrin ring.

  20. Substituent effects of iron porphyrins: Structural, kinetic, and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xiaoquan, E-mail: luxq@nwnu.edu.c [Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070 (China); Ma Junying; Sun Ruiping; Nan Mina; Meng Fanfu; Du Jie; Wang Xiaoyan; Shang Hui [Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070 (China)

    2010-12-15

    Substituent effects of iron porphyrin complexes on the structures and kinetic processes have been examined for the first time. Basing on the premise that iron porphyrin is functional analogous to heme, a series of iron porphyrin derivatives bearing different substituents at the meso positions of the corrole ring are investigated as to their electrochemistry, the relationships among the electron transfer (ET) processes, their structures, and orbital energies. The good coherence between the experiment and theory indicates that the ET rate can be accelerated when electron-donating substituents are introduced to the iron porphyrin ring. Finally, the implications of the results are discussed in the influence of stability of iron porphyrin complexes on the ability to carry molecular oxygen, which may suggest it possible to dominate the biological activity of heme by selecting the appropriate substituents to iron porphyrin ring.

  1. Porphyrin-Embedded Silicate Materials for Detection of Hydrocarbon Solvents

    OpenAIRE

    Mansoor Nasir; Brian J. Melde; Malanoski, Anthony P.; Johnson, Brandy J; Paul T. Charles; Anderson, Nicole E.; Deschamps, Jeffrey R.

    2011-01-01

    The development of porphyrin-embedded mesoporous organosilicate materials for application to the detection of volatile hydrocarbon solvents is described. Design of the receptor and optical indicator construct begins with parallel selection of the porphyrin indicator and design of the mesoporous sorbent. For the porphyrin indicator, high binding affinity and strong changes in spectrophotometric character upon target interaction are desired. The sorbent should provide high target binding capaci...

  2. Photophysics of the porphyrins; unusual fluorescence of europium porphyrin complex entrapped in sol-gel silica matrix

    International Nuclear Information System (INIS)

    In this paper, the study on encapsulation of water-soluble cationic porphyrins: methyl-pyridyl porphyrin (H2TMePyP) and its Eu(III) complex in the monolith gels prepared by sol-gel method are reported. The samples doped with the porphyrins were prepared by tetraethoxysilane (TEOS) hydrolysis and condensation. Their absorption and emission spectroscopic properties in comparison with the spectra of the same compounds in various solvents are investigated. The spectra of metal complex were compared with those of free-base porphyrin. The strong fluorescence of europium porphyrin in the silica matrix is observed under excitation in Q-band (530 nm), while at the same time emission neither free-base porphyrin nor europium chloride does not occur. It can be explained by the strong interaction of the Eu(III)TMePyP(acac) with the silica

  3. Photophysics of the porphyrins; unusual fluorescence of europium porphyrin complex entrapped in sol-gel silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    Dargiewicz-Nowicka, J.; Makarska, M.; Villegas, M.A.; Legendziewicz, J.; Radzki, St

    2004-10-20

    In this paper, the study on encapsulation of water-soluble cationic porphyrins: methyl-pyridyl porphyrin (H{sub 2}TMePyP) and its Eu(III) complex in the monolith gels prepared by sol-gel method are reported. The samples doped with the porphyrins were prepared by tetraethoxysilane (TEOS) hydrolysis and condensation. Their absorption and emission spectroscopic properties in comparison with the spectra of the same compounds in various solvents are investigated. The spectra of metal complex were compared with those of free-base porphyrin. The strong fluorescence of europium porphyrin in the silica matrix is observed under excitation in Q-band (530 nm), while at the same time emission neither free-base porphyrin nor europium chloride does not occur. It can be explained by the strong interaction of the Eu(III)TMePyP(acac) with the silica.

  4. A Study of Porphyrins in Petroleum Source Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Huseby, Berit

    1996-12-31

    This thesis discusses several aspects of porphyrin geochemistry. Degradation experiments have been performed on the Messel oil shale (Eocene, Germany) to obtain information on porphyrins bound or incorporated into macromolecular structures. Thermal heating of the preextracted kerogen by hydrous pyrolysis was used to study the release of porphyrins and their temperature dependent changes during simulated diagenesis and catagenesis. Selective chemical degradation experiments were performed on the preextracted sediment to get more detailed information about porphyrins that are specifically bound to the macromolecular structures via ester bonds. From the heating experiments, in a separate study, the porphyrin nitrogen content in the generated bitumens was compared to the bulk of organic nitrogen compounds in the fraction. The bulk nitrogen contents in the generated bitumens, the water phase and the residual organic matter was recorded to establish the distribution of nitrogen between the kerogen and product phases. Porphyrins as biomarkers were examined in naturally matured Kimmeridge clay source rocks (Upper Jurassic, Norway), and the use of porphyrins as general indicators of maturity was evaluated. Underlying maturity trends in the biomarker data was investigated by Partial Least Squares analysis. Porphyrin as indicators of depositional conditions was also addressed, where the correlations between the (amounts) abundance of nickel and vanadyl porphyrins were mapped together with other descriptors that are assumed to be indicative of redox depositional conditions. 252 refs., 28 figs., 4 tabs.

  5. Iron porphyrins doped sol-gel glasses: a chemometric study

    International Nuclear Information System (INIS)

    This paper describes the optimized conditions for preparation of iron porphyrin-template doped silica Fe PDS-template) obtained by the sol-gel process. The following porphyrins (Fe P) were used: Fe TFPP Cl, Fe TDCSPP(Na)4Cl and Fe TCPP(Na)4 Cl. Pyridine or 4-phenylimidazole was used as template. The variables that present significant influence on iron porphyrin loading on xerogel were identified and the values that maximize the iron porphyrin loading on xerogel were established . The variables (Solvent volume, fractional factorial design in two levels, 25-1 type, generating 16 total experiments for each Fe P studied. (author)

  6. Iron porphyrins doped sol-gel glasses: a chemometric study

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Herica C.; Vidoto, Ednalva A.; Nascimento, Otaciro R. [Soap Paulo Univ (USP), Sao Carlos (Brazil). Inst. de Fisica; Biazzotto, Juliana C.; Serra, Osvaldo A.; Iamamoto, Yassuko [Sao Paulo Univ. (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras; Ciuffi, Katia J.; Mello, Cesar A.; Oliveira, Daniela C. de [Universidade de Franca , SP (Brazil)

    2000-07-01

    This paper describes the optimized conditions for preparation of iron porphyrin-template doped silica Fe (PDS-template) obtained by the sol-gel process. The following porphyrins (Fe P) were used: Fe TFPP Cl, Fe TDCSPP(Na){sub 4}Cl and Fe TCPP(Na){sub 4} Cl. Pyridine or 4-phenylimidazole was used as template. The variables that present significant influence on iron porphyrin loading on xerogel were identified and the values that maximize the iron porphyrin loading on xerogel were established. The variables Solvent volume, fractional factorial design in two levels, 2{sup 5-1} type, generating 16 total experiments for each Fe P studied. (author)

  7. Photosensitive dopants for liquid noble gases

    Science.gov (United States)

    Anderson, David F.

    1988-01-01

    In an ionization type detector for high energy radiation wherein the energy of incident radiation is absorbed through the ionization of a liquid noble gas and resulting free charge is collected to form a signal indicative of the energy of the incident radiation, an improvement comprising doping the liquid noble gas with photosensitive molecules to convert scintillation light due to recombination of ions, to additional free charge.

  8. Photosensitizers from Spirulina for Solar Cell

    OpenAIRE

    2014-01-01

    Spirulina is a kind of blue-green algae with good photosynthetic efficiency and might be used for photovoltaic power generation. So this paper used living spirulina as novel photosensitizer to construct spirulina biosolar cell. The results showed that spirulina had the photoelectric conversion effect, and could let the spirulina biosolar cell have 70 μA photocurrent. Meanwhile, adding glucose sucrose or chitosan in the spirulina anode chamber, they could make the maxima current density of the...

  9. Solgel-derived photosensitive germanosilicate glass monoliths.

    Science.gov (United States)

    Heaney, A D; Erdogan, T

    2000-12-15

    We demonstrate volume gratings written in solgel-derived, Ge-doped silica monoliths. Glass was fabricated both with and without germanium oxygen deficient center (GODC) defects. The UV absorption and UV-induced index changes of these glasses, with and without hydrogen loading, are reported. The presence of GODC defects greatly enhances the photosensitivity of Ge-doped silica with and without the presence of hydrogen. PMID:18066337

  10. Photosensitive surfactants: Micellization and interaction with DNA

    Science.gov (United States)

    Zakrevskyy, Yuriy; Roxlau, Julian; Brezesinski, Gerald; Lomadze, Nino; Santer, Svetlana

    2014-01-01

    Recently, photosensitive surfactants have re-attracted considerable attention. It has been shown that their association with oppositely charged biologically important polyelectrolytes, such as DNA or microgels, can be efficiently manipulated simply by light exposure. In this article, we investigate the self-assembly of photosensitive surfactants as well as their interactions with DNA by calorimetric and spectroscopic methods. Critical micelle concentration (CMC), standard micellization enthalpy, entropy, and Gibbs energy were determined in different conditions (ionic strengths and temperatures) for a series of cationic surfactants with an azobenzene group in their tail. It is shown, that aggregation forces of photosensitive units play an important role in the micellization giving the major contribution to the micellization enthalpy. The onset of the aggregation can be traced from shift of the absorption peak position in the UV-visible spectrum. Titration UV-visible spectroscopy is used as an alternative, simple, and sensitive approach to estimate CMC. The titration UV-visible spectroscopy was also employed to investigate interactions (CAC: critical aggregation concentration, precipitation, and colloidal stabilization) in the DNA-surfactant complex.

  11. Immobilization of Porphyrins in Poly(hydroxymethylsiloxane)

    Czech Academy of Sciences Publication Activity Database

    Šabata, Stanislav; Hetflejš, Jiří; Rychtáriková, Renata; Kuncová, Gabriela; Lang, Kamil; Kubát, Pavel

    2009-01-01

    Roč. 63, č. 4 (2009), s. 438-444. ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA203/06/1244; GA MŠk OC 121 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : poly(hydroxymethylsiloxane) * fluorescence spectra * porphyrin Subject RIV: CC - Organic Chemistry Impact factor: 0.791, year: 2009

  12. Molecular magnetic materials based on porphyrin macrocyles

    OpenAIRE

    ÖNAL, Emel

    2014-01-01

    The preparation of Molecule-Based Magnets is based on the assembling carriers of magnetic moment. These may be the metal ions only with diamagnetic linkers or the metal ions connected through open-shell organic molecule. The building of novel Molecule-Based Magnets architectures following the metal-radical approach relies on the design of innovative open-shell organic molecular blocks. In this regard, we focus our strategy on the synthesis of porphyrins incorporating free radicals. Indeed, po...

  13. Photoinduced Charge Separation in Porphyrin Ion Pairs.

    Science.gov (United States)

    Natali, Mirco; Scandola, Franco

    2016-03-10

    Ion pairs between porphyrin-type compounds have been successfully employed for spectral sensitization of semiconductor surfaces and for the preparation of collective binary ionic materials for photonic and (photo)catalytic applications. The understanding of the photophysical processes occurring within ion-paired porphyrin dimers is thus of remarkable importance for the optimization and improvement of such systems. Herein the ion-pair species formed between ZnTMePyP(4+) (Zn1) or H2TMePyP(4+) (H21) and ZnTPPS(4-) (Zn2) or H2TPPS(4-) (H22) in a variety of solvent mixtures are characterized and their photophysics thoroughly investigated by time-resolved techniques. In all the systems studied, very fast and efficient photoinduced charge separation is observed, with the cationic porphyrin being reduced and the anionic one oxidized. Interestingly, despite the very short charge separation distance, the lifetime for charge recombination, depending on the energy gap, can extend into the nanosecond time domain, showing great potential for the utilization of this molecular design within energy conversion schemes. PMID:26905260

  14. Synthesis, antinociceptive and anti-inflammatory effects of porphyrins.

    Science.gov (United States)

    Alonso-Castro, Angel Josabad; Zapata-Morales, Juan Ramón; Hernández-Munive, Abigail; Campos-Xolalpa, Nimsi; Pérez-Gutiérrez, Salud; Pérez-González, Cuauhtémoc

    2015-05-15

    Porphyrins are natural compounds with several biological activities. We report the synthesis and the evaluation of the anti-inflammatory and antinociceptive effects of 4 porphyrins: 5,10,15,20-tetraphenylporphyrin (TPP), 5,10,15,20-tetra(4'-fluorophenyl)porphyrin (TpFPP), 5,10,15,20-tetra(4'-chlorophenyl)porphyrin (TpClPP), and 5,10,15,20-tetra(4'-bromophenyl)porphyrin (TpBrPP). The in vitro anti-inflammatory effects were evaluated on heat-induced hemolysis. The antinociceptive effects were evaluated using the hot plate and formalin tests. The in vivo anti-inflammatory assays were tested on the acute and chronic TPA (12-O-tetradecanoylphorbol 13-acetate) method to induce ear edema. The anti-arthritic effects were evaluated using carrageenan kaolin induced arthritis (CKIA). All porphyrins inhibited hemolysis with similar potency than naproxen (NPX). In the antinociceptive tests, all porphyrins tested at 200mg/kg showed similar effects compared to 100mg/kg NPX. In the in vivo anti-inflammatory acute assay, only three porphyrins (TPP, TpFPP and TpBrPP) decreased inflammation with similar activity than 2mg/ear indomethacin (IND). Further anti-inflammatory experiments were carried out with TPP, TpFPP and TpBrPP. In the in vivo anti-inflammatory chronic assay, porphyrins decreased inflammation with similar activity than 8mg/kg IND. Porphyrins tested at 200mg/kg showed anti-arthritic effects. The antinociceptive, anti-inflammatory and arthritic activities of porphyrins suggest that these compounds might be a good alternative for the treatment of inflammatory diseases. PMID:25863493

  15. Determination of boron and silicon in boron carbide

    International Nuclear Information System (INIS)

    A sodium carbonate fusion technique for the dissolution of boron carbide followed by the determination of boron by alkalimetric titration and silicon impurity by spectrophotometry is described. The elemental boron content in the commercially available boron carbide ranged from 77.2 to 77.60 % and the silicon in the range 1170 to 2500 ppm. (author)

  16. Photosensitivity in feedlot calves apparently related to cocoa shells.

    Science.gov (United States)

    Yeruham, I; Avidar, Y; Perl, S

    2003-10-01

    Primary photosensitization was observed in 11/78 cross-breed calves. The skin lesions were diffuse dermatitis with thickening and wrinkling with areas of alopecia. The severe photosensitivity dermatitis was associated with cocoa shell ingestion. The lesions resolved after removal of the cocoa shells from the feed ration and prevention of exposure to sunlight. Cocoa shells may contain photodynamic agents that cause photosensitization in calves. PMID:14513893

  17. pH- and Thiol-Responsive BODIPY-Based Photosensitizers for Targeted Photodynamic Therapy.

    Science.gov (United States)

    Jiang, Xiong-Jie; Lau, Janet T F; Wang, Qiong; Ng, Dennis K P; Lo, Pui-Chi

    2016-06-01

    A diiodo distyryl boron dipyrromethene (BODIPY) core was conjugated to two ferrocenyl quenchers through acid-labile ketal and/or thiol-cleavable disulfide linkers, of which the fluorescence and photosensitizing properties were significantly quenched through a photoinduced electron-transfer process. The two symmetrical analogues that contained either the ketal or disulfide linkers could only be activated by a single stimulus, whereas the unsymmetrical analogue was responsive to dual stimuli. Upon interaction with acid and/or dithiothreitol (DTT), these linkers were cleaved selectively. The separation of the BODIPY core and the ferrocenyl moieties restored the photoactivities of the former in phosphate buffered saline and inside the MCF-7 breast cancer cells, rendering these compounds as potential activable photosensitizers for targeted photodynamic therapy. The dual activable analogue exhibited the greatest enhancement in intracellular fluorescence intensity in both an acidic environment (pH 5) and the presence of DTT (4 mm). Its photocytotoxicity against MCF-7 cells also increased by about twofold upon preincubation with 4 mm of DTT. The activation of this compound was also demonstrated in nude mice bearing a HT29 human colorectal carcinoma. A significant increase in fluorescence intensity in the tumor was observed over 9 h after intratumoral injection. PMID:27139139

  18. Porphyrin architectures tailored for studies of molecular information storage.

    Science.gov (United States)

    Carcel, Carole M; Laha, Joydev K; Loewe, Robert S; Thamyongkit, Patchanita; Schweikart, Karl-Heinz; Misra, Veena; Bocian, David F; Lindsey, Jonathan S

    2004-10-01

    A molecular approach to information storage employs redox-active molecules tethered to an electroactive surface. Zinc porphyrins tethered to Au(111) or Si(100) provide a benchmark for studies of information storage. Three sets of porphyrins have been synthesized for studies of the interplay of molecular design and charge-storage properties: (1) A set of porphyrins is described for probing the effect of surface attachment atom on electron-transfer kinetics. Each porphyrin bears a meso-CH2X group for surface attachment where X = OH, SAc, or SeAc. (2) A set of porphyrins is described for studying the effect of surface-charge density in monolayers. Each porphyrin bears a benzyl alcohol for surface attachment and three nonlinking meso substituents of a controlled degree of bulkiness. (3) A set of porphyrins is described that enables investigation of on-chip patterning of the electrolyte. Each porphyrin bears a formyl group distal to the surface attachment group for subsequent derivatization with a molecular entity that comprises the electrolyte. Taken together, this collection of molecules enables a variety of studies to elucidate design issues in molecular-based information storage. PMID:15387598

  19. Multifunctional porphyrinic materials encapsulated into macronets with photo chemotherapeutic applications

    International Nuclear Information System (INIS)

    Supramolecidar chemistry is expected to keep a high developing advanced of molecular devices based on multifunctional materials. Porphyrins and their analogues should play a significant role as a consequence of their catalytic, electrocatalytic, photochemical and photoelectrochemical properties. Such molecular materials contain a high porosity with large cavities and galleries that can be functionalization yielding to a desired chirality and structure. The functionalization implies inserting into macrocydic cavity, followed by auto-assembling as columnar aggregates. The obtained cavities are used as host for different molecular guests. H and J-aggregates of some porphyrins are based on the intermolecular interactions of 3-5 Kcal/mol per porphyrin face. The columnar structure formed by porphyrins has a length of 5 to 27 porphyrin unities. In this paper we focused on our own strategy based on coordination chemistry for the design and build-up of supermolecules and supra molecular structures constituted by a porphyrin (TSPPJ and a new and revolutionary method for stabilizing porphyrins (as organic part), by their incapsulation into supports with controlled porosity as macronets (as inorganic parts), obtaining some hybrids materials. Included are also their properties and potential applications. Key words: porphyrins, macronets, photochemotherapy

  20. Structural features of vanadyl porphyrins of petroleum of West Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Bakirova, S.F.; Kotova, A.V.; Yag' yaeva, S.; Fedorova, N.V.; Nadirov, N.K.

    1984-01-01

    During the past 10 to 15 years studies have been published concerning petroleum porphyrins in which a description was given of the composition and structure of porphyrins of petroleums found in various regions abroad and in the Soviet Union - West Siberia, the Kama region, Tajikistan. Porphyrin structure has been established using electron and IR spectroscopy, nuclear and paramagnetic resonance, mass-spectrometry (low and high resolution), these techniques enabled the form of the main nucleus and its peripheral substituents to be established and yielded information concerning the molar mass values and the number of carbon atoms in alkyl chains. Methods developed in the Tomsk Institute of Petroleum Chemistry, USSR Academy of Sciences were used in this study, which involve the following operations: (1) extraction of porphyrins from petroleum using dimethylformamide; (2) chromatographic purification of the separated porphyrins elution from columns packed with aluminas of different activities by organic solvents and their mixtures, in order of increasing polarities; (3) mass-spectrometric examination of the purified vanadyl-porphyrin samples. The composition of porphyrins and the ratio of etioporphyrins and desoxophylloerythro-etioporphyrins was deduced from the electron spectra obtained from the purified porphyrin samples separated from petroleums.

  1. The composition of petroleum porphyrines from Western Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Bakirova, S.F.; Benkovskiy, V.G.; Kotova, A.V.; Serebrennikova, O.V.

    1984-01-01

    A high content of vanadium porphyrines in a number of oils, which is associated with their bedding conditions and the characteristics of the starting organic matter (OV) and is characteristic for oils from Western Kazakhstan, is noted. The molecular composition is studied of vanadyl porphyrines which were isolated from oils using extractive chromatographic methods and were studied using low resolution mass spectrometry (in a MAT-311 instrument) and through analytical fine layer chromatography. It is discovered that 90 to 95 percent of all the vanadyl porphyrines consist of homologs of ethioporphyrine (the M series) and desoxophylloerythroethioporphyrines (the M-2 series). Only in a single case (the Karazhanbas deposit) are there up to 30 percent compounds of the M-6 series. The ratio of M-2 to M and the content of nonpolar porphyrines (in percent), which are chromatographically identified, were used as the characteristics. The chromatographic mobility is basically determined by the molecular mass, that is, by the number of methylene groups in the lateral substituents of the porphyrine ring. A comparison of the number of nonpolar porphyrines with the oil bedding depth shows a regular increase in the volume of these compounds with a reduction in the bedding depth; the presence in the oil of less than 50 percent nonpolar porphyrines (the Pribrezhnyy, Severnyy Buzachi and Kalamkas deposits) and the absence of polar porphyrines confirms the assumption about the intermediate stage of the migratory path of the oil and about its flow from the deep layers into the overlying sediments of the persalt complex.

  2. Porphyrin-Embedded Silicate Materials for Detection of Hydrocarbon Solvents

    Directory of Open Access Journals (Sweden)

    Mansoor Nasir

    2011-01-01

    Full Text Available The development of porphyrin-embedded mesoporous organosilicate materials for application to the detection of volatile hydrocarbon solvents is described. Design of the receptor and optical indicator construct begins with parallel selection of the porphyrin indicator and design of the mesoporous sorbent. For the porphyrin indicator, high binding affinity and strong changes in spectrophotometric character upon target interaction are desired. The sorbent should provide high target binding capacity and rapid binding kinetics. A number of porphyrin/metalloporphyrin variants and organosilicate sorbents were evaluated to determine the characteristics of their interaction with the targets, benzene, toluene, and hexane. The selected porphyrin candidates were covalently immobilized within a benzene-bridged sorbent. This construct was applied to the detection of targets using both fluorescence- and reflectance-based protocols. The use of red, green, and blue (RGB color values from the constructs in a highly simplified detection scheme is described.

  3. Preparation and characterization of monosubstituted porphyrins immobilized on nanosilica

    Indian Academy of Sciences (India)

    Ebrahim Ahmadi; Ali Ramazani; Asemeh Mashhadi-Malekzadeh; Zahra Hamdi; Zahra Mohamadnia

    2014-08-01

    Three kinds of heteroaldehydes, -(3-triethoxysilylpropyl)-4-formyl benzamide (TPHA/SiO2), were prepared by the reaction of terephthalaldehydic acid with different silica supports such as hexagonal SBA-15, spherical SBA-15 and amorphous SiO2 for comparison purposes. Anchoring of this aldehyde to different supports allows the synthesis of mono-substituted porphyrins without the production of di-, tri- and tetra-substituted porphyrin side products. The exclusion of the aforementioned side products during the synthesis of monosubstituted porphyrins greatly reduced the complexity during purification of the product. Absorption spectrophotometry was performed on silica gel immobilizing porphyrin (CPTTP), free base tetraphenylporphyrin (H2TPP) and heteroaldehydes (TPHA/SiO2) using UV–Visible instrument and confirmed the presence of porphyrin on the structure of CPTTP.

  4. Corroles-Porphyrins: A Teamwork for Gas Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Rosamaria Capuano

    2015-04-01

    Full Text Available Porphyrins provide an excellent material for chemical sensors, and they have been used for sensing species both in air and solution. In the gas phase, the broad selectivity of porphyrins is largely dependant on molecular features, such as the metal ion complexed at the core of the aromatic ring and the peripheral substituents. Although these features have been largely exploited to design gas sensor arrays, so far, little attention has been devoted to modify the sensing properties of these macrocycles by variation of the molecular aromatic ring. In this paper, the gas sensing properties of a porphyrin analog, the corrole, are studied in comparison with those of the parent porphyrin. Results show that changes in the aromatic ring have important consequences on the sensitivity and selectivity of the sensors and that porphyrins and corroles can positively cooperate to enhance the performance of sensor arrays.

  5. Photochemistry of porphyrins: a model for the origin of photosynthesis

    Science.gov (United States)

    Mercer-Smith, J. A.; Mauzerall, D. C.

    1984-01-01

    A series of porphyrins and catalysts has been prepared as a model for the origin of photosynthesis on the primordial earth. These compounds have been used to test the hypotheses that (1) the biosynthetic pathway to chlorophyll recapitulates the evolutionary history of photosynthesis, and (2) the proto-photosythetic function of biogenetic porphyrins (biosynthetic chlorophyll precursors) was the oxidation of organic molecules by photoexcited porphyrins with the attendant emission of molecular hydrogen. This paper describes experiments in which photoexcited biogenetic porphyrins oxidize ethylenediamine tetraacetic acid (EDTA). The concomitant reduction of protons to hydrogen gas occurs in the presence of a colloidal platinum catalyst. The addition of methyl viologen, a one-electron shuttle, increases the amount of molecular hydrogen generated during long irradiations and the quantum yield of hydrogen production. When the porphyrin and catalyst are held in association by molecular complexes, the increased efficiency of electron transfer produces higher yields of hydrogen gas.

  6. Surface Morphology and Optical Properties of 3 Porphyrin/Au and Au/Porphyrin/Au Systems

    Czech Academy of Sciences Publication Activity Database

    Kalachyova, Y.; Lyutakov, O.; Solovyev, Andrey; Slepička, P.; Švorčík, V.

    2013-01-01

    Roč. 8, DEC 27 (2013), s. 547. ISSN 1931-7573 Grant ostatní: GA ČR(CZ) GPP108/11/P840; GA ČR(CZ) GAP108/12/1168 Institutional support: RVO:67985858 Keywords : nanostructures * gold * porphyrin * luminescence * enhancement * surface morphology Subject RIV: JJ - Other Materials Impact factor: 2.524, year: 2012

  7. Phototherapeutic, photobiologic, and photosensitizing properties of khellin

    Energy Technology Data Exchange (ETDEWEB)

    Morliere, P.; Hoenigsmann, H.A.; Averbeck, D.; Dardalhon, M.; Hueppe, G.O.; Ortel, B.; Santus, R.; Dubertret, L.

    1988-05-01

    Khellin, whose chemical structure closely resembles that of psoralen, is reported to be an efficient drug for treating vitiligo when combined with ultraviolet A irradiation. Photobiological activity on yeast is found to be much lower than that of bifunctional psoralens such as 5-methoxypsoralen. In vitro experiments reveal that khellin is a poor photosensitizer. It behaves as a monofunctional agent with respect to DNA photoaddition. It does not photoinduce cross-links in DNA in vitro or in Chinese hamster cells in vivo. This behavior may explain the low photogenotoxicity in yeast and the lack of phototoxic erythemal response when treating vitiligo with khellin.

  8. First boronization in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.H., E-mail: sukhhong@nfri.re.kr [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, K.S.; Kim, K.M.; Kim, H.T.; Kim, G.P. [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Sun, J.H.; Woo, H.J. [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Park, J.M.; Kim, W.C.; Kim, H.K.; Park, K.R.; Yang, H.L.; Na, H.K. [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Chung, K.S. [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of)

    2010-11-15

    First boronization in KSTAR is reported. KSTAR boronization system is based on a carborane (C{sub 2}B{sub 10}H{sub 12}) injection system. The design, construction, and test of the system are accomplished and it is tested by using a small vacuum vessel before it is mounted to a KSTAR port. After the boronization in KSTAR, impurity levels are significantly reduced by factor of 3 (oxygen) and by 10 (carbon). Characteristics of a-C/B:H thin films deposited by carborane vapor are investigated. Re-condensation of carborane vapor during the test phase has been reported.

  9. Prospective study of luminous radiation associated technology photosensitive compounds for treatment of diseases

    Science.gov (United States)

    Pires-Santos, Gustavo M.; de Oliveira, Susana C. P. S.; Monteiro, Juliana S. C.; Sampaio, Fernando José P.; Brugnera, Aldo; Zanin, Fátima Antônia A.; Almeida, Paulo; Pinheiro, Antônio L. B.

    2015-03-01

    Prospective studies are based on the analysis of patent documents and aims to assess the both technological history and development providing innovation opportunities. This study was a technological prospection mapping aiming to identify breakthrough in PDT and the new possibilities of the technology. Therefore, research in the bank patent 'Spacenet Patent Search' was performed using determinants descriptors associated with the theme: 'A61K41', 'A61N5 / 06'. Were analyzed in this study 326 documents. In evaluating these patents, it was possible to observe an increase in the number of deposits over time, with peak between 1990 and 2000. The highest number of inventors of this area are part of the private sector and the US appear as main producer of technology. It was also observed that blue light, porphyrins and their derivatives are the main topics. It may be concluded that PDT still offers a large opportunity for growth as several wavelengths, and photosensitizers that may be used in the technique.

  10. Photosensitizer nanocarriers modeling for photodynamic therapy applied to dermatological diseases

    Science.gov (United States)

    Salas-García, I.; Fanjul-Vélez, F.; Ortega-Quijano, N.; López-Escobar, M.; Arce-Diego, J. L.

    2011-02-01

    Photodynamic Therapy involves the therapeutic use of photosensitizers in combination with visible light. The subsequent photochemical reactions generate reactive oxygen species which are considered the principal cytotoxic agents to induce cell death. This technique has become widely used in medicine to treat tumors and other nonmalignant diseases. However, there are several factors related to illumination or the photosensitizer that limit an optimal treatment outcome. The use of nanoparticles (NP) for PDT has been proposed as a solution to current shortcomings. In this way, there are NPs that act as carriers for photosensitizers, NPs that absorb the light and transfer the energy to the photosensitizer and NPs that are themselves photodynamically active. In dermatology, the use of topical photosensitizers produces a time dependent inhomogeneous distribution within the tumor, where the stratum corneum is the main barrier to the diffusion of the photosensitizer to the deeper layers of skin. This produces an insufficient photosensitizer accumulation in tumor tissues and therefore, a low therapeutic efficiency in the case of deep lesions. This work focuses in the use of NPs as photosensitizer carriers to improve the actual topical drug distribution in malignant skin tissues. We present a mathematical model of PS distribution in tumor tissue using NPs that takes into account parameters related to nanoparticles binding. Once the concentration profile of NPs into tissue is obtained, we use a photochemical model which allows us to calculate the temporal evolution of reactive oxygen species according to PS distribution calculated previously from NPs profile.

  11. Porphyrin-magnetite nanoconjugates for biological imaging

    LENUS (Irish Health Repository)

    Nowostawska, Malgorzata

    2011-04-08

    Abstract Background The use of silica coated magnetic nanoparticles as contrast agents has resulted in the production of highly stable, non-toxic solutions that can be manipulated via an external magnetic field. As a result, the interaction of these nanocomposites with cells is of vital importance in understanding their behaviour and biocompatibility. Here we report the preparation, characterisation and potential application of new "two-in-one" magnetic fluorescent nanocomposites composed of silica-coated magnetite nanoparticles covalently linked to a porphyrin moiety. Method The experiments were performed by administering porphyrin functionalised silica-coated magnetite nanoparticles to THP-1 cells, a human acute monocytic leukaemia cell line. Cells were cultured in RPMI 1640 medium with 25 mM HEPES supplemented with heat-inactivated foetal bovine serum (FBS). Results We have synthesised, characterised and analysed in vitro, a new multimodal (magnetic and fluorescent) porphyrin magnetic nanoparticle composite (PMNC). Initial co-incubation experiments performed with THP-1 macrophage cells were promising; however the PMNC photobleached under confocal microscopy study. β-mercaptoethanol (β-ME) was employed to counteract this problem and resulted not only in enhanced fluorescence emission, but also allowed for elongated imaging and increased exposure times of the PMNC in a cellular environment. Conclusion Our experiments have demonstrated that β-ME visibly enhances the emission intensity. No deleterious effects to the cells were witnessed upon co-incubation with β-ME alone and no increases in background fluorescence were recorded. These results should present an interest for further development of in vitro biological imaging techniques.

  12. Application of the boron neutron capture therapy to undifferentiated thyroid cancer using two boron compounds (BPA and BOPP)

    International Nuclear Information System (INIS)

    We have shown the selective uptake of boronophenylalanine (BPA) by undifferentiated thyroid cancer (UTC) human cell line ARO, both in vitro and in vivo. Moreover, a 50% histologic cure of mice bearing the tumor was observed when the complete boron neutron capture therapy was applied. More recently we have analyzed the biodistribution of BOPP (tetrakis-carborane carboxylate ester of 2,4-bis-(ba-dihydroxyethyl)-deutero-porphyrin IX) and showed that when BOPP was injected 5 days before BPA, and the animals were sacrificed 60 min after the ip injection of BPA, a significant increase in boron uptake by the tumor was found (38-45ppm with both compounds Vs. 20 ppm with BPA alone). Five days post the ip BOPP injection and 1 hr after BPA, the ratios were: tumor/blood 3,75; tumor /distal skin 2. Other important ratios were tumor/thyroid 6,65 and tumor/lung 3,8. The present studies were performed in mice transplanted with ARO cells and injected with BOPP and BPA. Only in mice treated with the neutron beam and injected with the boronated compounds we observed a 100% control of tumor growth. Two groups of mice received different total absorbed doses: 3.00 and 6.01 Gy, but no further improvement in the outcome was found compared to the previous results using BPA alone (4.3 Gy). (author)

  13. Porphyrin Protonation Studied by Magnetic Circular Dichroism

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, Petr; Andrushchenko, Valery; Ruud, K.; Bouř, Petr

    2012-01-01

    Roč. 116, č. 1 (2012), s. 778-783. ISSN 1089-5639 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA203/09/2037; GA ČR GAP208/10/0559; GA MŠk(CZ) LH11033 Institutional research plan: CEZ:AV0Z40550506 Keywords : magnetic circular dichroism (MCD) * TPPS * spectra simulations * porphyrin protonation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.771, year: 2012

  14. Porphyrin metabolism in some malignant diseases.

    OpenAIRE

    el-Sharabasy, M. M.; el-Waseef, A. M.; Hafez, M. M.; Salim, S. A.

    1992-01-01

    Porphyrin metabolism was studied in 21 children of both sexes suffering from acute lymphoblastic leukaemia (ALL) and 34 adult patients of different ages and sexes suffering from ALL (n = 14), non-Hodgkin's lymphoma (NHL), n = 14, or Hodgkin's disease (HD), n = 6. In addition, two groups of healthy children (n = 14), and adults (n = 17) were studied for comparison. It was apparent from this study that the activity of uroporphyrinogen-1-synthetase (URO-1-S, E.C. 4.3.1.8) was highly significantl...

  15. Theoretical study of conjugated porphyrin polymers

    DEFF Research Database (Denmark)

    Pedersen, T.G.; Lynge, T.B.; Kristensen, P.K.; Johansen, P.M.

    The optical gap of conjugated triply linked porphyrin chains is exceptionally low (similar to 0.5 eV). Hence, such chains are candidates for organic infrared detectors and solar cells harvesting the infrared part of the solar spectrum. However, a low exciton binding energy is required for these...... applications. From a theoretical analysis of excitons in long metalloporphyrin chains, we demonstrate that the binding energy is much lower than in usual conjugated polymers. Our calculated absorption spectra are in good agreement with measurements. (c) 2004 Elsevier B.V. All rights reserved....

  16. Theoretical DFT study of phosphorescence from porphyrins

    International Nuclear Information System (INIS)

    Geometrical structure of free-base porphin (H2P) and Mg- and Zn-porphyrins together with their vibrational frequencies and vibronic intensities in phosphorescence are investigated by density functions theory (DFT) with the standard B3LYP functional. These molecules have a closed-shell singlet ground state (S0) and low-lying triplet (T1) excited states of ππ* type. The S0-T1 transition probability and radiative lifetime of phosphorescence (τ p) of these molecules are calculated by time-dependent DFT utilizing quadratic response functions for account of spin-orbit coupling (SOC) and electric-dipole transition moments including displacements along active vibrational modes. The infrared and Raman spectra in the ground singlet and first excited triplet states are also studied for proper assignment of vibronic patterns. The long radiative lifetime of free-base porphin phosphorescence (τ p ∼ 360 s at low temperature limit, 4.2 K) gets considerably shorter for the metalloporphyrins. An order of magnitude reduction of τ p is predicted for Mg-porphyrin but no change of phosphorescence polarization is found. A forty times enhancement of the radiative phosphorescence rate constant is obtained for Zn-porphyrin in comparison with the H2P molecule which is accompanied by a strong change of polarization and spin-sublevel radiative activity. A strong vibronic activity of free-base porphin phosphorescence is found for the b2g mode at 430 cm-1, while the 679 and 715 cm-1 vibronic bands of b3g symmetry are less active. These and other out-of-plane vibrations produce considerable changes in the radiative constants of different spin sublevels of the triplet state; they also promote the S1 → T1 intersystem crossing. Among the in-plane vibrations the ag mode at 1614 cm-1 is found very active; it produces a long progression in the phosphorescence spectrum. The time-dependent DFT calculations explain the effects of the transition metal atom on phosphorescence of porphyrins and

  17. PORPHYRINS WITH 1,4-BENZODIAZEPINE SUBSTITUENTS

    OpenAIRE

    Pavlovskaya, T. V.; Ishkov, Yu. V.; Mazepa, A. V.; Pavlovsky, V. І.

    2016-01-01

    The interaction of the derivatives of meso-substituted porphyrins with Взаємодією похідних лезо-заміщених порфіринів з гідразидом 7-bromo-2-oxo-5-phenyl-2,3-dihydrobenzo[e][1, 4]diazepin-1-yl)-acetic acid hydrazide lead to range of new compounds - potential antitumor agents.

  18. Boron in sillimanite.

    Science.gov (United States)

    Grew, E S; Hinthorne, J R

    1983-08-01

    Sillimanite in six granulite-facies, kornerupine-bearing rocks contains 0.035 to 0.43 percent B(2)O(3) and 0.02 to 0.23 percent MgO (by weight). Substitution of boron for silicon and magnesium for aluminum is coupled such that the ratio of magnesium to boron is about 0.5. Sillimanite incorporates more than 0.1 percent B(2)O(3) only at high temperatures in a boron-rich environment at very low partial pressures of water. In the amphibolite facies, the sillimanite boron contents are too low to appreciably affect the stability relations of sillimanite with kyanite and andalusite. PMID:17830955

  19. Boron nitride composites

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  20. Porphyrins as Theranostic Agents from Prehistoric to Modern Times

    Directory of Open Access Journals (Sweden)

    Yumiao Zhang, Jonathan F. Lovell

    2012-01-01

    Full Text Available Long before humans roamed the planet, porphyrins in blood were serving not only as indispensable oxygen carriers, but also as the bright red contrast agent that unmistakably indicates injury sites. They have proven valuable as whole body imaging modalities have emerged, with endogenous hemoglobin porphyrins being used for new approaches such as functional magnetic resonance imaging and photoacoustic imaging. With the capability for both near infrared fluorescence imaging and phototherapy, porphyrins were the first exogenous agents that were employed with intrinsic multimodal theranostic character. Porphyrins have been used as tumor-specific diagnostic fluorescence imaging agents since 1924, as positron emission agents since 1951, and as magnetic resonance (MR contrast agents since 1987. Exogenous porphyrins remain in clinical use for photodynamic therapy. Because they can chelate a wide range of metals, exogenous porphyrins have demonstrated potential for use in radiotherapy and multimodal imaging modalities. Going forward, intrinsic porphyrin biocompatibility and multimodality will keep new applications of this class of molecules at the forefront of theranostic research.

  1. Biosynthetic porphyrins and the origin of photosynthesis

    Science.gov (United States)

    Mauzerall, D.; Ley, A.; Mercer-Smith, J. A.

    1986-01-01

    Since the prebiotic atmosphere was anaerobic, if not reducing, a useful function of primordial photosynthesis would have been to photooxidize reduced substrates such as Fe(+2), S(-2) or reduced organic molecules and to emit hydrogen. Experiments have shown that the early biogenic pigments uroporphyrin and coproporphyrin do photooxidize organic compounds and emit hydrogen in the presence of a platinum catalyst. These experiments were carried out in dilute aqueous solution near neutral pH under anaerobic atmosphere, and quantum yields near 10-2 were obtained. Thus relevant prebiotic conditions were maintained. Rather then to further optimize conditions, attempts were made to replace the platinum catalyst by a more prebiotically suitable catalyst. Trials with an Fe4S4(SR)4 cluster, in analogy to the present hydrogenase and nitrogenase, were not successful. However, experiments using cobalt complexes to catalyze the formation of hydrogen are promising. In analogy with biological photosynthetic systems which group pigments, electron transfer molecules and enzymes in clusters for efficiency, it was found that binding the biogenic porphyrins to the polyvinyl alcohol used to support the platinum catalyst did increase the quantum yield of the reaction. It was also found that ultraviolet light can serve to photo-oxidize porphyrinogens to porphyrins under anaerobic conditions. Thus the formation of the colorless porphyriogens by the extraordinarily simple biosynthetic pathway would not be a problem because of the prevalence of UV light in the prebiotic, anoxic atmosphere.

  2. Meso-functionalized octamethoxyporphyrins: A new class of nonasubstituted porphyrins

    Indian Academy of Sciences (India)

    Pradeepta K Panda; V Krishnan

    2005-03-01

    Octamethoxyporphyrin containing multiple-donor substituents has been functionalized for the first time. A large number of its mono-meso-substituted derivatives with substituents such as nitro, amino, N-methylamino, formyl, hydroxymethyl, oxime, cyano and carboxy functional groups have been synthesized and characterized. They form a new class of nonasubstituted porphyrins. Crystallographic studies on the cyano derivative show that the -C N group is in conjugation with the prophyrin -system. The calculated optical transition energies and the electron densities on the imino nitrogens of the synthesised porphyrins using AMI calculations correlate well with the experimentally observed data. Mesosubstituted porphyrins are found to be essentially planar.

  3. Petroleum porphyrins as electrocatalysts for cathodic oxygen reduction

    International Nuclear Information System (INIS)

    This paper examines the possibilities for obtaining active catalysts for cathodic oxygen reduction by subjecting concentrates of vanadyl porphyrins (VONP) extracted from crude oils with dimethylformamide and then purified chromatographically on aluminum oxide and silica gel to pyrolysis on carbon. Data obtained with synthetic vanadyl tetra(nmethoxyphenyl)porphyrin (VOTMPP) are reported for comparison. It is shown that VONP-1 and VONP-3 containing more than 80 wt.% of VONP are sufficiently active catalysts for O2 reduction in alkaline solution. The lower activity of VONP-2 is evidently due to its higher impurity content. Natural vanadyl porphyrins promise to be useful as electrocatalysts of the oxygen reaction in alkaline media

  4. Pretreatment photosensitizer dosimetry reduces variation in tumor response

    International Nuclear Information System (INIS)

    Purpose: To compensate for photosensitizer uptake variation in photodynamic therapy (PDT), via control of delivered light dose through photodynamic dose calculation based on online dosimetry of photosensitizer in tissue before treatment. Methods and Materials: Photosensitizer verteporfin was quantified via multiple fluorescence microprobe measurements immediately before treatment. To compensate individual PDT treatments, photodynamic doses were calculated on an individual animal basis, by matching the light delivered to provide an equal photosensitizer dose multiplied by light dose. This was completed for the lower quartile, median, and upper quartile of the photosensitizer distribution. PDT-induced tumor responses were evaluated by the tumor regrowth assay. Results: Verteporfin uptake varied considerably among tumors and within a tumor. The coefficient of variation in the surviving fraction was found significantly decreased in groups compensated to the lower quartile (CL-PDT), the median (CM-PDT), and the upper quartile (CU-PDT) of photosensitizer distribution. The CL-PDT group was significantly less effective compared with NC-PDT (Noncompensated PDT), CM-PDT, and CU-PDT treatments. No significant difference in effectiveness was observed between NC-PDT, CM-PDT, and CU-PDT treatment groups. Conclusions: This research suggests that accurate quantification of tissue photosensitizer levels and subsequent adjustment of light dose will allow for reduced subject variation and improved treatment consistency

  5. Photosensitizer absorption coefficient modeling and necrosis prediction during Photodynamic Therapy.

    Science.gov (United States)

    Salas-García, Irene; Fanjul-Vélez, Félix; Arce-Diego, José Luis

    2012-09-01

    The development of accurate predictive models for Photodynamic Therapy (PDT) has emerged as a valuable tool to adjust the current therapy dosimetry to get an optimal treatment response, and definitely to establish new personal protocols. Several attempts have been made in this way, although the influence of the photosensitizer depletion on the optical parameters has not been taken into account so far. We present a first approach to predict the spatio-temporal variation of the photosensitizer absorption coefficient during PDT applied to dermatological diseases, taking into account the photobleaching of a topical photosensitizer. This permits us to obtain the photons density absorbed by the photosensitizer molecules as the treatment progresses and to determine necrosis maps to estimate the short term therapeutic effects in the target tissue. The model presented also takes into account an inhomogeneous initial photosensitizer distribution, light propagation in biological media and the evolution of the molecular concentrations of different components involved in the photochemical reactions. The obtained results allow to investigate how the photosensitizer depletion during the photochemical reactions affects light absorption by the photosensitizer molecules as the optical radiation propagates through the target tissue, and estimate the necrotic tumor area progression under different treatment conditions. PMID:22704663

  6. Investigation of the photosensitivity, temperature sustainability and fluorescence characteristics of several Er-doped photosensitive fibers

    CERN Document Server

    Shen, Y H; Mandal, J; Sun, T; Grattan, K T V; Wade, S A; Collins, Stephen F; Baxter, Gregory W; Dussardier, Bernard; Monnom, Gérard

    2011-01-01

    Three different types of Er doped photosensitive fibers, germanium/erbium (Ge/Er) fiber, tin/germanium/erbium fiber (Sn/Er) and antimony/germanium/erbium fiber (Sb/Er) have been manufactured and studied for use in optical sensor systems. Their characteristics of photosensitivity, the temperature sustainability of fiber Bragg gratings (FBGs) written into these fibers and the fluorescence emission from the Er dopant were investigated and compared. It has been shown in this work that these fibers all show a satisfactory degree of photosensitivity to enable the fabrication of FBGs and a significant level of fluorescence emission within the 1550 nm band for sensor use. The high temperature sustainability of the FBGs written into these fibers was investigated and seen to be quite significant at temperatures as high as 850 ^{\\circ}C, in particular for the Sn/Er and Sb/Er fibers. A fiber laser using the Sb/Er fiber as the gain medium was demonstrated, giving evidence of the strong fluorescence emission from the Er do...

  7. Relationship among eye condition sensitivities,photosensitivity and epileptic syndromes

    Institute of Scientific and Technical Information of China (English)

    YANG Zhi-xian; CAI Xiang; LIU Xiao-yan; QIN Jiong

    2008-01-01

    Background Electroencephalogram(EEG)activity in normal subjects and epileptic patients is often closely related to the eye's status such as eye opened(EO),eye closure(ECL)and eyes closed(EC).ECL is the period immediately after closing of the eyes and only Iasts for Jess than 3 seconds if the eyes remain closed.EC is the pened as long as the eyes are closed.Epileptiform changes on EEG induced by ECL or EC are called the changes of ECL sensitivity(ECLS)or EC sensitivity (ECS).ECLS occurs mainly but not exclusively in photosensitive patients and ECS has been seen rarely in photosensitive patients.This study aimed to investigate the relationships among ECLS,ECS.photosensitivity and epilepsy syndromes in children.Methods EEG records from child patients in the EEG Department of Peking University First Hospital dudng the period of May 2005 to Mav 2007 were examined for the presence of ECLS or ECS.Open-close eye tests and intermittent photic stimulations were carried out during video-EEG monitoring for examining ECLS.ECS and photosensitivity.Results Based on ECLS and ECS on their EEGs,30 patients were divided into ECLS group (16 cases)and ECS group (14 cases).There were more boys than girls in the two groups.The mean age of initial detection of ECLS and ECS was 10 years.and the average onset age of seizures was 9 years.The epilepsy syndromes in the ECLS group included idiopathic photosensitive occipital lobe epilepsy,Panayiotopoulos syndrome,symptomatic occipital lobe epilepsy,juvenile myoclonic epilepsy,juvenile absence epilepsy,eyelid myoclonia with absences,epilepsy with grand mal on awakening and pure photosensitive epilepsy with mainly generalized tonic clonic seizures.Those in the ECS group were iuvenile myoclonic epilepsy,idiopathic photosensitive occipital Iobe epilepsy,Panayiotopoulos syndrome and Gastaut type-idiclpathic children occipital epilepsy.Photosensitivity was detected in 88%of Patients with ECLS and 29%of patients with ECS.Conclusions ECLS and ECS are

  8. Platinum porphyrins as ionophores in polymeric membrane electrodes

    DEFF Research Database (Denmark)

    Lvova, Larisa; Verrelli, Giorgio; Nardis, Sara;

    2011-01-01

    A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined by potenti......A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined...... within the electrode membranes, while those based on Pt(IV)TPPCl2 operate via a mixed mode carrier mechanism, evidencing also a partial reduction of the starting ionophore to Pt(II)TPP. Spectrophotometric measurements of thin polymeric films indicate that no spontaneous formation of hydroxide ion bridged...... correlation between calculated and measured ionophore selectivity....

  9. Mineralogy of halloysites and their interaction with porphyrine

    Czech Academy of Sciences Publication Activity Database

    Vašutová, V.; Bezdička, Petr; Lang, Kamil; Hradil, David

    2013-01-01

    Roč. 57, č. 3 (2013), s. 243-250. ISSN 0862-5468 Institutional support: RVO:61388980 Keywords : organoclays * mineralogy * porphyrine * CEC Subject RIV: CA - Inorganic Chemistry Impact factor: 0.434, year: 2013

  10. Porphyrin Diacid-Polyelectrolyte Assemblies: Effective Photocatalysts in Solution

    Directory of Open Access Journals (Sweden)

    Sabine Frühbeißer

    2016-05-01

    Full Text Available Developing effective and versatile photocatalytic systems is of great potential in solar energy conversion. Here we investigate the formation of supramolecular catalysts by electrostatic self-assembly in aqueous solution: Combining positively charged porphyrins with negatively charged polyelectrolytes leads to nanoscale assemblies where, next to electrostatic interactions, π–π interactions also play an important role. Porphyrin diacid-polyelectrolyte assemblies exhibit a substantially enhanced catalytic activity for the light-driven oxidation of iodide. Aggregates with the hexavalent cationic porphyrin diacids show up to 22 times higher catalytic activity than the corresponding aggregates under neutral conditions. The catalytic activity can be increased by increasing the valency of the porphyrin and by choice of the loading ratio. The structural investigation of the supramolecular catalysts took place via atomic force microscopy and small angle neutron scattering. Hence, a new facile concept for the design of efficient and tunable self-assembled photocatalysts is presented.

  11. Boronated liposome development and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M.F. [Univ. of California, Los Angeles, CA (United States)

    1995-11-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  12. Quantitative vibrational dynamics of iron in nitrosyl porphyrins

    OpenAIRE

    Leu, B. M.; Zgierski, M. Z.; Wyllie, G. R. A.; Scheidt, W. R.; Sturhahn, W.; Alp, E. E.; Durbin, S. M.; Sage, J. T.

    2004-01-01

    We use quantitative experimental and theoretical approaches to characterize the vibrational dynamics of the Fe atom in porphyrins designed to model heme protein active sites. Nuclear resonance vibrational spectroscopy (NRVS) yields frequencies, amplitudes, and directions for 57Fe vibrations in a series of ferrous nitrosyl porphyrins, which provide a benchmark for evaluation of quantum chemical vibrational calculations. Detailed normal mode predictions result from DFT calculations on ferrous n...

  13. Tetrakis(4-tert-butylphenyl) substituted and fused quinoidal porphyrins

    KAUST Repository

    Zeng, Wangdong

    2012-01-01

    4-tert-Butylphenyl-substituted and fused quinoidal porphyrins 1 and 2 are prepared for the first time. They show (1) intense one-photon absorption in the far-red/near-infrared region, (2) enhanced two-photon absorption compared with aromatic porphyrin monomers, and (3) amphoteric redox behavior. Their geometry and electronic structure are studied by DFT calculations. This journal is © 2012 The Royal Society of Chemistry.

  14. Synthesis, Electrochemistry, and Photophysics of Aza-BODIPY Porphyrin Dyes.

    Science.gov (United States)

    Pascal, Simon; Bucher, Léo; Desbois, Nicolas; Bucher, Christophe; Andraud, Chantal; Gros, Claude P

    2016-03-24

    The synthesis of dyad and triad aza-BODIPY-porphyrin systems in two steps starting from an aryl-substituted aza-BODIPY chromophore is described. The properties of the resulting aza-BODIPY-porphyrin conjugates have been extensively investigated by means of electrochemistry, spectroelectrochemistry, and absorption/emission spectroscopy. Fluorescence measurements have revealed a dramatic loss of luminescence intensity, mainly due to competitive energy transfer and photoinduced electron transfer involving charge separation followed by recombination. PMID:26938146

  15. Magnetron sputter deposition of boron and boron carbide

    International Nuclear Information System (INIS)

    The fabrication of X-ray optical coatings with greater reflectivity required the development of sputter deposition processes for boron and boron carbide. The use of high density boron and boron carbide (B4C) and a vacuum-brazed target design was required to achieve the required sputter process stability and resistance to the thermal stress created by high rate sputtering. Our results include a description of the target fabrication procedures and sputter process parameters necessary to fabricate B4C and boron modulated thin film structures. (orig.)

  16. Progress on research of radioisotope-labeled porphyrin derivatives

    International Nuclear Information System (INIS)

    Porphyrin derivatives can be taken up by tumor cells and accumulated there for a long time. Since 1960's, radioactive isotope-labeled porphyrins have been under extensive researches around the world. The progress of labeled porphyrins with various radioactive isotopes includes 3H, 11C, 123I, 131I, 99mTc, 188Re, 117,113mSn, 153Sm, 109Pd, 111In, 57Co, 58Co, 65Zn, 64,67Cu, 90Y, 166Ho is reviewed here. Among them, we studied the labeling conditions, chemical and biochemical properties of 188Re-labeled, 117,113mSn-labeled and 153Sm-labeled T3,4CPP and TPPS4. We also studied the bio-distribution of 188Re-labeled T3,4CPP and TPPS4 in mice with transplanted liver tumor and melanoma. Other researches in porphyrins which could affect the research of radioisotope-labeled porphyrins are introduced in the end. This review could provide a reference for design of better radioisotope-labeled porphyrins. (authors)

  17. A Local CC2 and TDA-DFT Double Hybrid Study on BODIPY/aza-BODIPY Dimers as Heavy Atom Free Triplet Photosensitizers for Photodynamic Therapy Applications.

    Science.gov (United States)

    Momeni, Mohammad R; Brown, Alex

    2016-04-28

    A series of 11 different boron-dipyrromethene (BODIPY) dimers is carefully examined by means of ab initio and Tamm-Dancoff approximated density functional theory methods. Vertical and 0-0 excitation energies along with the tetraradical character of these dimers are determined. Possible application of a series of linked dimers for photodynamic therapy (PDT) was investigated through computing their excitation energies, spin-orbit coupling matrix elements, and singlet-triplet energy gaps. Finally through a systematic investigation of a series of 36 different BODIPY and aza-BODIPY dimers, a new class of near-IR heavy atom free photosensitizers for PDT action is introduced. PMID:27035753

  18. Helical chirality induction of expanded porphyrin analogues

    Indian Academy of Sciences (India)

    Jun-Ichiro Setsune

    2012-11-01

    Expanded porphyrin analogues with unique figure-eight conformation were prepared by way of useful pyrrole intermediates such as bis(azafulvene)s and 2-borylpyrrole. Supramolecular chirogenesis of cyclooctapyrrole O1 with 32-cycloconjugation was successfully applied to determine absolute configuration of chiral carboxylic acids. Dinuclear CuII complex of cyclooctapyrrole O2 with interrupted -conjugation was resolved by HPLC into enantiomers and their helical handedness was determined by theoretical simulation of their CD spectral pattern. Enantioselective induction of helicity in the metal helicate formation in the presence of a chiral promoter was demonstrated by using ()-(+)-1-(1-phenyl)ethylamine that favoured , helicity. Dinuclear CoII complexes of cyclotetrapyrroletetrapyridine O3 were found to be substitution labile and pick up amino acid anions in water. Those amino acid complexes of O3Co2 were rendered to adopt a particular unidirectional helical conformation preferentially depending on the ligated amino acid anion.

  19. Porphyrin studies in TCDD-exposed workers

    Energy Technology Data Exchange (ETDEWEB)

    Jung, D. (Inst. fuer Arbeits- und Sozialmedizin der Univ. Mainz (Germany)); Konietzko, J. (Inst. fuer Arbeits- und Sozialmedizin der Univ. Mainz (Germany)); Reill-Konietzko, G. (Inst. fuer Arbeits- und Sozialmedizin der Univ. Mainz (Germany)); Muttray, A. (Inst. fuer Arbeits- und Sozialmedizin der Univ. Mainz (Germany)); Zimmermann-Hoelz, H.J. (Ciba-Geigy Marienberg GmbH, Lampertheim (Germany)); Doss, M. (Abt. fuer Klinische Biochemie, Fachbereich Humanmedizin, Philippsuniversitaet Marburg (Germany)); Beck, H. (Bundesgesundheitsamt, Berlin (Germany)); Edler, L. (Deutsches Krebsforschungszentrum Heidelberg, Biostatistik (Germany)); Kopp-Schneider, A. (Deutsches Krebsforschungszentrum Heidelberg, Biostatistik (Germany))

    1994-09-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been shown to inhibit uroporphyrinogen decarboxylase activity resulting in chronic hepatic porphyria. From a cross-sectional study of 170 workers in chemical industry 68 showed elevated coproporphyrin levels, interpreted as secondary coproporphyrinuria. Three persons suffered from chronic hepatic porphyria in subclinical stages. None of the workers showed an overt porphyria cutanea tarda. A low-grade zinc protoporphyrinemia was observed in three persons. Forty-three of the 170 workers were evaluable for investigating the effect of TCDD on porphyrin levels. No significant correlation was found between TCDD concentration in adipose tissue and the level of uroporphyrin and coproporphyrin. The influence of a chloracne history is described. (orig.)

  20. Heptaphyrins: Expanded porphyrins with seven heterocyclic rings

    Indian Academy of Sciences (India)

    Venkataramanarao G Anand; Simi K Pushpan; Sundararaman Venkatraman; Tavarekere K Chandrashekar

    2003-10-01

    Expanded porphyrins containing seven pyrrole/heterocyclic rings linked in a cyclic fashion are termed heptaphyrins. The number of -electrons in heptaphyrins depends on the number of meso carbon bridges used to link the heterocyclic rings, accordingly heptaphyrins with 28-electrons and 30 -electrons are reported to date. Both condensation reactions of the appropriate precursors and acid-catalysed oxidative coupling reactions have been utilized to synthesise the heptaphyrins. The 30 heptaphyrins exhibit rich structural diversity where some of the heterocyclic rings in the macrocycle undergo a 180° ring flipping. An overview of the synthetic methods employed for the synthesis of heptaphyrins, their spectroscopic properties, structural behaviour and aromatic properties are highlighted in this paper.

  1. Photophysical properties of the Corrole photosensitizers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The photophysical properties of a series of hydroxyl Corroles, Corrole-F, Corrole-Cl, Corrole-Br, Corrole-I and Corrole-2I, have been investigated by steady-state and time-resolved transient spectroscopy. The absorption spectra show a strong peak around 420 nm corresponding to B band and several weak Q absorption bands between 450 nm and 650 nm, exhibiting much stronger Q band absorption than that of porphyrin. The absorptions of these Corroles increase with the atom weight and the number of halogen atoms. All samples show similar fluorescence characteristics of an emission peak at 650 nm. The fluorescence intensities significantly decrease with the atom weight and the number of halogen atoms. The fluorescence quantum yield of Corrole-I is 0.947%, which is larger than that of Corrole-2I (0.381%). The fluorescence dynamics of the hydroxyl Corroles shows that both the fluorescence lifetime and the intersystem-crossing transition time of these Corroles decrease sharply with the increase of the atom weight and the number of halogen atoms, which may lead to the increase of the triplet state quantum yield. The heavy-atom effect on active oxygen of PDT has also been discussed by the end of this paper.

  2. Research related to boron neutron capture therapy at The Ohio State University

    International Nuclear Information System (INIS)

    Research in the area of boron neutron capture therapy (BNCT) at The Ohio State University is a highly multidisciplinary effort involving approximately twenty investigators in nine different departments. Major areas of interest include: (1) Boronation of monoclonal antibodies directed against tumor-associated antigens for the delivery of 10B; (2) Synthesis of 10B-containing derivatives of promazines and porphyrins that possess tumor-localizing properties; (3) Development of a rat model for the treatment of glioblastoma by BNCT; (4) Quantitation and microdistribution of 10B in tissues by means of a solid state nuclear track detector. The ultimate goal of this research is to carry out the extensive preclinical studies that are required to bring BNCT to the point of a clinical trial. 13 references

  3. Interaction Studies between Newly Synthesized Photosensitive Polymer and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    In Tae Kim

    2015-01-01

    Full Text Available In this information age, different kinds of photosensitive materials have been used in the manufacture of information storage devices. But these photosensitive materials have the bane of low diffraction efficiency. In order to solve this problem, we have synthesized a novel photosensitive polymer from epoxy-based azopolymers (with three types of azochromophores. Furthermore, we have studied the interaction between this newly synthesized azopolymer and ionic liquids (ILs. For this purpose, we have used the ammonium and imidazolium families of ILs, such as diethylammonium dihydrogen phosphate (DEAP, tributylammonium methyl sulfate (TBMS, triethylammonium 4-aminotoluene-3-sulfonic acid (TASA, and 1-methylimidazolium chloride ([Mim]Cl. To investigate the molecular interaction between azopolymer and ILs, we have used the following spectroscopic methods of analysis: UV-visible spectroscopy, photoluminescence (PL spectroscopy, Fourier transformed infrared spectroscopy (FT-IR, and confocal Raman spectroscopy. In this study, we have developed new photosensitive materials by combining polymer with ILs.

  4. Photosensitive point defects in optical glasses: Science and applications

    International Nuclear Information System (INIS)

    The understanding and manipulation of the point defect structure in oxide glasses have been critical to the enhanced performance and reliability of optical-fiber-based, photosensitive photonic devices that currently find widespread application in telecommunications and remote sensing technologies. We provide a brief review of past research investigating photosensitive mechanisms in germanosilicate glasses, the primary material system used in telecommunications fibers. This discussion motivates an overview of ongoing work within our laboratories to migrate photosensitive glass technologies to a planar format for integrated photonic applications. Using reactive-atmosphere, RF-magnetron sputtering, we have demonstrated control of glass defect structure during synthesis, thereby controlling both the material photosensitivity (i.e., dispersion and magnitude of the refractive index change) and its environmental stability

  5. The radiation influence on physical properties in photosensitive structure

    International Nuclear Information System (INIS)

    It was shown experimentally that in photosensitive structures with gallium arsenides - cadmium sulfides heterojunction the physical properties after γ-radiation exposure could be changed essentially and their photoelectrical characteristics improved. (author). 3 refs.; 2 figs

  6. Parsley-induced photosensitivity in ostriches and ducks.

    Science.gov (United States)

    Perelman, B; Kuttin, E S

    1988-01-01

    Clinical and pathological changes suggesting an acute case of photo-sensitivity were observed in a flock of ostriches. A preliminary diagnosis of parsley (Petroselinum sativum)-induced photosensitisation was confirmed by experimental reproduction of the typical lesions in ducks. This seems to be the first report on natural and experimental induction of photosensitivity in ostriches and ducks caused by the ingestion of parsley. PMID:18766676

  7. Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy

    OpenAIRE

    L.A. Muehlmann; G.A. Joanitti; Silva, J.R.; J.P.F. Longo; Azevedo, R B

    2011-01-01

    Photodynamic therapy is a well-established and clinically approved treatment for several types of cancer. Antineoplastic photodynamic therapy is based on photosensitizers, i.e., drugs that absorb photons translating light energy into a chemical potential that damages tumor tissues. Despite the encouraging clinical results with the approved photosensitizers available today, the prolonged skin phototoxicity, poor selectivity for diseased tissues, hydrophobic nature, and extended retention in th...

  8. Photosensitizing medication use and risk of skin cancer

    DEFF Research Database (Denmark)

    Kaae, Jeanette; Boyd, Heather A; Hansen, Anne;

    2010-01-01

    Many commonly used medications, including both medications for long-term (daily) use and short-term use (treatment courses of finite duration), have photosensitizing properties. Whether use of these medications affects skin cancer risk, however, is unclear.......Many commonly used medications, including both medications for long-term (daily) use and short-term use (treatment courses of finite duration), have photosensitizing properties. Whether use of these medications affects skin cancer risk, however, is unclear....

  9. Polymer-Immobilized Photosensitizers for Continuous Eradication of Bacteria

    OpenAIRE

    Anton Valkov; Faina Nakonechny; Marina Nisnevitch

    2014-01-01

    The photosensitizers Rose Bengal (RB) and methylene blue (MB), when immobilized in polystyrene, were found to exhibit high antibacterial activity in a continuous regime. The photosensitizers were immobilized by dissolution in chloroform, together with polystyrene, with further evaporation of the solvent, yielding thin polymeric films. Shallow reservoirs, bottom-covered with these films, were used for constructing continuous-flow photoreactors for the eradication of Gram-positive Staphylococcu...

  10. Modular Synthetic Platform for the Construction of Functional Single-Chain Polymeric Nanoparticles: From Aqueous Catalysis to Photosensitization.

    Science.gov (United States)

    Liu, Yiliu; Pauloehrl, Thomas; Presolski, Stanislav I; Albertazzi, Lorenzo; Palmans, Anja R A; Meijer, E W

    2015-10-14

    Single-chain polymeric nanoparticles (SCPNs) are intriguing systems for multiple applications. In order to arrive at a controlled, but random, positioning of the different side groups to the polymer backbone, alternative synthetic routes have to be developed. Here, a general postpolymerization modification strategy of poly(pentafluorophenyl acrylate) (pPFPA) is presented as a versatile method to rapidly access functional SCPNs. We first show that the sequential addition of a benzene-1,3,5-tricarboxamide-based amine, acting as the supramolecular recognition motif, and water-soluble polyetheramine (Jeffamine) to pPFPA affords random copolymers that fold in water into SCPNs. The scope of the modular platform is illustrated by preparing two types of functional SCPNs. First, we prepared SCPNs designed for bio-orthogonal catalysis by attaching pendant mono(benzimidazoylmethyl)-bis(pyridylmethyl) (Bimpy), phenanthroline (Phen), or 2,2'-bipyridine (BiPy), ligands capable of binding either Cu(I) or Pd(II). The Bimpy- and Phen-containing SCPNs ligated to Cu(I) significantly accelerate azide-alkyne cycloaddition reactions while Bipy-containing SCPNs ligated to Pd(II) efficiently catalyze depropargylation reactions. In all cases, reactions proceeded efficiently in phosphate buffer at a physiological pH and at low substrate concentrations. Next, the potential of SCPNs for photodynamic therapy was evaluated. Introducing porphyrins in SCPNs leads to novel photosensitizers that can produce singlet oxygen ((1)O2) upon photoirradiation. Additionally, by attaching both porphyrins and prodrug models, attached via (1)O2-cleavable amino-acrylate linker, to the SCPNs, we show that irradiation of the SCPNs results in a cascade reaction of (1)O2 generation followed by cleavage of the amino-acrylate linkers, releasing the drug model. The modular synthesis strategy reported here provides rapid and controlled access to SCPNs with tunable amounts of active units that fulfill different

  11. A porous covalent porphyrin framework with exceptional uptake capacity of saturated hydrocarbons oil spill cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xi-Sen; Liu, Jian; Bonefont, Jean M.; Yuan, Da-Qiang; Thallapally, Praveen K.; Ma, Shengqian

    2013-01-21

    Yamamoto homo-coupling reaction of tetra(4-bromophenyl)porphyrin afforded a porous covalent porphyrin framework, PCPF-1, which features strong hydrophobicity and oleophilicity and demonstrates exceptional adsorptive capacities for saturated hydrocarbons and gasoline.

  12. Boron cures cancer

    International Nuclear Information System (INIS)

    In this work the authors cite a few examples of the use of radiopharmaceuticals for diagnostic and therapeutic purposes in nuclear medicine. They point to the possibility of boron neutron capture therapy and the use for the neutron capture therapy of other light elements.

  13. Boron contamination in drinking - irrigation water and boron removal methods

    Directory of Open Access Journals (Sweden)

    Meltem Bilici Başkan

    2014-03-01

    Full Text Available Boron presents in IIIA group of periodic table and has high ionization capacity. Therefore it is classified as a metalloid. Average boron concentration in earth's crust is 10 mg/kg. It presents in the environment as a salts of Ca, Na, and Mg. Boron reserves having high concentration and economical extent are found mostly in Turkey and in arid, volcanic and high hydrothermal activity regions of U.S. as compounds of boron attached to oxygen. Boron is an essential micronutrient for plants, although it may be toxic at higher levels. The range in which it is converted from a nutrient to a contaminant is quite narrow. Boron presents in water environment as a boric acid and rarely borate salts. The main boron sources, whose presence is detected in surface waters, are urban wastes and industrial wastes, which can come from a wide range of different activities as well as several chemical products used in agriculture. In Turkey, the most pollutant toxic element in drinking and irrigation water is boron. Therefore boron removal is very important in terms of human health and agricultural products in high quality. Mainly boron removal methods from drinking water and irrigation water are ion exchange, ultrafiltration, reverse osmosis, and adsorption.

  14. Primary mechanisms of photosensitization by furocoumarins

    International Nuclear Information System (INIS)

    A proper understanding of the PUVA therapy action mechanism requires the synthesis of concepts developed at the level of molecules, single cells and whole organisms. Although progress has been made in identifying key factors within each level of organization, the interrelationships remain obscure. Important unanswered questions at the molecular and cellular levels include: (1) Which excited states of the furocoumarin in molecule (triplet or excited singlet) are involved in the formation of DNA monoadducts, and the conversion of monoadducts to cross-links. (2) How does the spectrum of the incident radiation affect the distribution of the initial photochemical products from the PUVA sensitizers. (3) What are the relative contributions of furocoumarin-DMA monoadducts, furocoumarin-DNA cross-links and singlet oxygen to mutagenesis and lethality in cells, at the furocoumarin and UV-A dose levels corresponging to PUVA therapy. Additional information about these key aspects of furocoumarin photosensitization should lead to a more definitive relationship of the cellular level events to the endpoints observed with PUVA therapy, and suggest directions for potential improvements in the current clinical procedures

  15. Seneciosis in cattle associated with photosensitization

    Directory of Open Access Journals (Sweden)

    Paula R. Giaretta

    2014-05-01

    Full Text Available Senecio spp. poisoning is the main cause of cattle mortality in the central region of Rio Grande do Sul. This paper reports an outbreak of seneciosis in cattle with high prevalence of photosensitization, where 83 out of 162 cows (51.3% presented this clinical sign. The outbreak occurred in September 2013, affecting adult cows that were held in a 205 hectare-pasture from April to October 2013 with abundant Senecio brasiliensis infestation. Main clinical signs were weight loss, excessive lacrimation or mucopurulent ocular discharge, nasal serous discharge, ventral diphteric glossitis, crusts in the nose, teats, dorsum of ears, and vulva. Liver biopsy was performed in all the cows under risk; the histopathological findings in the liver biopsies consisted of fibrosis, megalocytosis, and biliary ductal proliferation and were present in 73.4% of the biopsied animals. Six cows had increased serum activity of gamma glutamyl transferase. Three affected cows were necropsied. The main necropsy findings were a hard liver, distended gall bladder, edema of the mesentery and abomasum. Liver histological changes in the necropsied cows were similar to those of the biopsied livers. Spongiosis was detected in the brain of necropsied cows and is characteristic of hepatic encephalopathy.

  16. Autofluorescent Proteins as Photosensitizer in Eukaryontes

    Science.gov (United States)

    Waldeck, Waldemar; Mueller, Gabriele; Wiessler, Manfred; Brom, Manuela; Tóth, Katalin; Braun, Klaus

    2009-01-01

    Since the discovery of the green fluorescent green protein (GFP) in 1961 many variants of fluorescent proteins (FP) were detected. The importance was underlined by the Nobel price award in chemistry 2008 for the invention, application, and development of the GFP by Shimomura, Chalfie and Tsien. GFP, first described by Shimomura now is indispensible in the scientific daily life. Since then and also in future fluorescent proteins will lead to new applications as reporters in cell biology. Such FPs can absorb visible day-light and predominantly one variant of the red fluorescent protein, the KillerRed protein (KRED) emits active electrons producing reactive oxygen species (ROS) leading to photokilling processes in eukaryotes. KRED can be activated by daylight as a photosensitizing agent. It is quite obvious that the KRED's expression and localization is critical with respect to damage, mutation and finally killing of eukaryotic cells. We found evidence that the KRED's cytotoxicity is ascendantly location-dependent from the cell membrane over the nuclear lamina to the chromatin in the cell nucleus. Daylight illumination of cells harbouring the KRED protein fused with the histone H2A, a DNA-binding protein which is critical for the formation of the chromatin structure results in cell killing. Therefore the H2A-KRED fusion protein can be considered as an appropriate candidate for the photodynamic therapy (PDT). This finding can be transferred to current photodynamic approaches and can enhance their therapeutic outcome. PMID:19960122

  17. Autofluorescent Proteins as Photosensitizer in Eukaryontes

    Directory of Open Access Journals (Sweden)

    Waldemar Waldeck, Gabriele Mueller, Manfred Wiessler, Manuela Brom, Katalin Tóth, Klaus Braun

    2009-01-01

    Full Text Available Since the discovery of the green fluorescent green protein (GFP in 1961 many variants of fluorescent proteins (FP were detected. The importance was underlined by the Nobel price award in chemistry 2008 for the invention, application, and development of the GFP by Shimomura, Chalfie and Tsien. GFP, first described by Shimomura now is indispensible in the scientific daily life. Since then and also in future fluorescent proteins will lead to new applications as reporters in cell biology. Such FPs can absorb visible day-light and predominantly one variant of the red fluorescent protein, the KillerRed protein (KRED emits active electrons producing reactive oxygen species (ROS leading to photokilling processes in eukaryotes. KRED can be activated by daylight as a photosensitizing agent. It is quite obvious that the KRED's expression and localization is critical with respect to damage, mutation and finally killing of eukaryotic cells. We found evidence that the KRED's cytotoxicity is ascendantly location-dependent from the cell membrane over the nuclear lamina to the chromatin in the cell nucleus. Daylight illumination of cells harbouring the KRED protein fused with the histone H2A, a DNA-binding protein which is critical for the formation of the chromatin structure results in cell killing. Therefore the H2A-KRED fusion protein can be considered as an appropriate candidate for the photodynamic therapy (PDT. This finding can be transferred to current photodynamic approaches and can enhance their therapeutic outcome.

  18. Photosensitizers from Spirulina for Solar Cell

    Directory of Open Access Journals (Sweden)

    Liqiu Wang

    2014-01-01

    Full Text Available Spirulina is a kind of blue-green algae with good photosynthetic efficiency and might be used for photovoltaic power generation. So this paper used living spirulina as novel photosensitizer to construct spirulina biosolar cell. The results showed that spirulina had the photoelectric conversion effect, and could let the spirulina biosolar cell have 70 μA photocurrent. Meanwhile, adding glucose sucrose or chitosan in the spirulina anode chamber, they could make the maxima current density of the cell greatly increased by 80 μA, 100 μA, and 84 μA, respectively, and the sucrose could improve the maximum power density of the cell to 63 mW/m−2. Phycobiliprotein played an important role in the photosynthesis of spirulina. So in this paper phycobiliprotein was extracted from spirulina to composite with squaraine dye to sensitize nanocrystalline TiO2 photoanode for building dye sensitized solar cell, and the photoelectric properties of the cell also were investigated.

  19. Process for microwave sintering boron carbide

    International Nuclear Information System (INIS)

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy

  20. Noncovalent functionalization of single-walled carbon nanotubes with porphyrins

    Energy Technology Data Exchange (ETDEWEB)

    Bassiouk, María; Basiuk, Vladimir A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Álvarez-Zauco, Edgar [Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Martínez-Herrera, Melchor [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Rojas-Aguilar, Aaron [Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360 México D.F. (Mexico); Puente-Lee, Iván [Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico)

    2013-06-15

    The covalent and noncovalent interactions of porphyrins and related tetraazamacrocyclic compounds with single-walled carbon nanotubes (SWNTs) is a subject of increasing research effort, directed toward the design of novel hybrid nanomaterials combining unique electronic and optical properties of both molecular species. In this report, we used different experimental techniques as well as molecular mechanics (MM) calculations to analyze the adsorption of meso-tetraphenylporphine (or 5,10,15,20-tetraphenyl-21H,23H-porphine, H{sub 2}TPP) and its complexes with Ni(II) and Co(II) (NiTPP and CoTPP, respectively), as well as hemin (a natural porphyrin), onto the surface of SWNTs. Altogether, the results suggested that all four porphyrin species noncovalently interact with SWNTs, forming hybrid nanomaterials. Nevertheless, of all four porphyrin species, the strongest interaction with SWNTs occurs in the case of CoTPP, which is able to intercalate and considerably disperse SWNT bundles, and therefore absorb onto the surface of individual SWNTs. In contrast, NiTPP, CoTPP and hemin, due to a weaker interaction, are unable to do so and therefore are only capable to adsorb onto the surface of SWNT bundles. According to the scanning tunneling microscopy (STM) imaging and MM results, the adsorption of CoTPP onto SWNT sidewalls results in the formation of porphyrin arrays in the shape of long-period interacting helixes with variable periodicity, possibly due to different diameters and chiralities of SWNTs present in the samples. Since the remaining porphyrin species were found to adsorb onto the surface of SWNT bundles, the precise geometry of the corresponding porphyrin/SWNT complexes is difficult to characterize.

  1. Noncovalent functionalization of single-walled carbon nanotubes with porphyrins

    International Nuclear Information System (INIS)

    The covalent and noncovalent interactions of porphyrins and related tetraazamacrocyclic compounds with single-walled carbon nanotubes (SWNTs) is a subject of increasing research effort, directed toward the design of novel hybrid nanomaterials combining unique electronic and optical properties of both molecular species. In this report, we used different experimental techniques as well as molecular mechanics (MM) calculations to analyze the adsorption of meso-tetraphenylporphine (or 5,10,15,20-tetraphenyl-21H,23H-porphine, H2TPP) and its complexes with Ni(II) and Co(II) (NiTPP and CoTPP, respectively), as well as hemin (a natural porphyrin), onto the surface of SWNTs. Altogether, the results suggested that all four porphyrin species noncovalently interact with SWNTs, forming hybrid nanomaterials. Nevertheless, of all four porphyrin species, the strongest interaction with SWNTs occurs in the case of CoTPP, which is able to intercalate and considerably disperse SWNT bundles, and therefore absorb onto the surface of individual SWNTs. In contrast, NiTPP, CoTPP and hemin, due to a weaker interaction, are unable to do so and therefore are only capable to adsorb onto the surface of SWNT bundles. According to the scanning tunneling microscopy (STM) imaging and MM results, the adsorption of CoTPP onto SWNT sidewalls results in the formation of porphyrin arrays in the shape of long-period interacting helixes with variable periodicity, possibly due to different diameters and chiralities of SWNTs present in the samples. Since the remaining porphyrin species were found to adsorb onto the surface of SWNT bundles, the precise geometry of the corresponding porphyrin/SWNT complexes is difficult to characterize.

  2. Promising fast energy transfer system via an easy synthesis: Bodipy-porphyrin dyads connected via a cyanuric chloride bridge, their synthesis, and electrochemical and photophysical investigations.

    Science.gov (United States)

    Lazarides, Theodore; Charalambidis, Georgios; Vuillamy, Alexandra; Réglier, Marius; Klontzas, Emmanuel; Froudakis, Georgios; Kuhri, Susanne; Guldi, Dirk M; Coutsolelos, Athanassios G

    2011-09-19

    The boron dipyrrin (Bodipy) chromophore was combined with either a free-base or a Zn porphyrin moiety (H(2)P and ZnP respectively), via an easy synthesis involving a cyanuric chloride bridging unit, yielding dyads Bodipy-H(2)P (4) and Bodipy-ZnP (5). The photophysical properties of Bodipy-H(2)P (4) and Bodipy-ZnP (5) were investigated by UV-Vis absorption and emission spectroscopy, cyclic voltammetry, and femtosecond transient absorption spectroscopy. The comparison of the absorption spectra and cyclic voltammograms of dyads Bodipy-H(2)P (4) and Bodipy-ZnP (5) with those of their model compounds Bodipy, H(2)P, and ZnP shows that the spectroscopic and electrochemical properties of the constituent chromophores are essentially retained in the dyads indicating negligible interaction between them in the ground state. In addition, luminescence and transient absorption experiments show that excitation of the Bodipy unit in Bodipy-H(2)P (4) and Bodipy-ZnP (5) into its first singlet excited state results in rapid Bodipy to porphyrin energy transfer-k(4) = 2.9 × 10(10) s(-1) and k(5) = 2.2 × 10(10) s(-1) for Bodipy-H(2)P (4) and Bodipy-ZnP (5), respectively-generating the first porphyrin-based singlet excited state. The porphyrin-based singlet excited states give rise to fluorescence or undergo intersystem crossing to the corresponding triplet excited states. The title complexes could also be used as precursors for further substitution on the third chlorine atom on the cyanuric acid moiety. PMID:21846119

  3. Synthesis and Characterization of One-dimensional and Two-Dimensional Porphyrin Polymers* (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Porphyrin polymers are of interest in relation to conductive materials[1, 2], catalysts for photosynthetic charge separation[3], or the fundamental features in biological systems[4]. There have been many versatile studies about them[5,6]. The one-dimensional “Shish Kebab” porphyrin polymers synthesized with a new method different from those reported and Schiff base porphyrin polymers with two-dimensional nano-structure have provided a new field of study. The present paper covers highly ordered porphyrin polymers.

  4. Structural and Molecular Characterization of meso-Substituted Zinc Porphyrins: A DFT Supported Study

    OpenAIRE

    Giuseppe Mele; Małgorzata A. Broda; Krzysztof Ejsmont; Gabriela Dyrda; Rudolf Słota

    2011-01-01

    Structural parameters of a range of over 100 meso-substituted zinc porphyrins were reviewed and compared to show how far the nature of the functional group may affect the interatomic distances and bond angles within the porphyrin core. It was proved that even despite evident deformations of the molecular structure, involving twisting of the porphyrin's central plane, the coupled π-bonding system remains flexible and stable. DFT calculations were applied to a number of selected porphyrins repr...

  5. Synthesis and catalytic activities of porphyrin-based PCP pincer complexes.

    OpenAIRE

    Fujimoto, Keisuke; Yoneda, Tomoki; Yorimitsu, Hideki; Osuka, Atsuhiro

    2013-01-01

    2,18-Bis(diphenylphosphino)porphyrins undergo peripheral cyclometalation with group 10 transition-metal salts to afford the corresponding porphyrin-based PCP pincer complexes. The porphyrinic plane and the PCP-pincer unit are apparently coplanar, with small strain. The catalytic activities of the porphyrin-based pincer complexes at the periphery were investigated in the allylation of benzaldehyde with allylstannane and in the 1,4-reduction of chalcone to discover the electronic interplay betw...

  6. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  7. Probing the origin of fluorescence quenching of a graphene-porphyrin hybrid material

    Directory of Open Access Journals (Sweden)

    Huijser Annemarie

    2013-03-01

    Full Text Available We report transient absorption spectroscopic studies on the hybrid material composed of porphyrin molecules covalently attached to graphene for investigating the mechanism underlying the reported fluorescence quenching of porphyrin in the hybrid [1]. Excited state dynamics of pure graphene suspension and porphyrin have also been studied as reference samples. A fast excited state decay was observed in the hybrid.

  8. Synthesis and Purification of Porphyrin-Schiff Base Using Ethyl Vanillin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel porphyrin-Schiff base was synthesized via the condensation of 5-(4-aminophenyl)-10,15,20-triphenylporphyrin and ethyl vanillin. After analyzing the level of purification of the porphyrin-Schiff base, it was successfully separated. This porphyrin-Schiff base was characterized by using UV-Vis, IR, 1 H NMR and MS spectroscopy.

  9. Synthesis of Metal Porphyrins Tailed with Salicylic Acid and their Interaction with Bovine Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    Tao JIA; Kai WANG; Yi Mei ZHAO; Zao Ying LI

    2004-01-01

    A synthetic method of porphyrins tailed with salicylic substituents is described. Reaction of bromoalkoxyphenyl porphyrin 1 with salicylic acid gave porphyrins 2~5. These new compounds were confirmed by 1H NMR, IR, UV-vis, MS and elemental analysis, and observed their interaction with bovine serum albumin (BSA) in fluorescence spectrum.

  10. A Novel Photosensitizer 3¹,13¹-phenylhydrazine -Mppa (BPHM) and Its in Vitro Photodynamic Therapy against HeLa Cells.

    Science.gov (United States)

    Li, Wenting; Tan, Guanghui; Cheng, Jianjun; Zhao, Lishuang; Wang, Zhiqiang; Jin, Yingxue

    2016-01-01

    Photodynamic therapy (PDT) has attracted widespread attention due to its potential in the treatment of various cancers. Porphyrinic pyropheophorbide-a (PPa) has been shown to be a potent photosensitizer in PDT experiments. In this paper, a C-3¹,13¹ bisphenylhydrazone modified methyl pyropheophorbide-a (BPHM) was designed and synthesized with the consideration that phenylhydrazone structure may extend absorption wavelength of methyl pyro-pheophorbide-a (Mppa), and make the photosensitizer potential in deep tumor treatment. The synthesis, spectral properties and in vitro photodynamic therapy (PDT) against human HeLa cervical cancer cell line was studied. Methyl thiazolyl tetrazolium (MTT) assay showed the title compound could achieve strong inhibition of cervical cancer cell viability under visible light (675 nm, 25 J/cm²). Cell uptake experiments were performed on HeLa cells. Morphological changes were examined and analyzed by fluorescent inverted microscope. In addition, the mechanism of the photochemical processes of PDT was investigated, which showed that the formation of singlet oxygen after treatment with PDT played a moderate important role. PMID:27136527

  11. Studies of porphyrin-containing specimens using an optical spectrometer connected to a confocal scanning laser microscope.

    Science.gov (United States)

    Trepte, O; Rokahr, I; Andersson-Engels, S; Carlsson, K

    1994-12-01

    A spectrometer has been developed for use with a confocal scanning laser microscope. With this unit, spectral information from a single point or a user-defined region within the microscope specimen can be recorded. A glass prism is used to disperse the spectral components of the recorded light over a linear CCD photodiode array with 256 elements. A regulated cooling unit keeps the detector at 277 K, thereby allowing integration times of up to 60 s. The spectral resolving power, lambda/delta lambda, ranges from 350 at lambda = 400 nm to 100 at lambda = 700 nm. Since the entrance aperture of the spectrometer has the same size as the detector pinhole used during normal confocal scanning, the three-dimensional spatial resolution is equivalent to that of normal confocal scanning. Light from the specimen is deflected to the spectrometer by a solenoid controlled mirror, allowing fast and easy switching between normal confocal scanning and spectrometer readings. With this equipment, studies of rodent liver specimens containing porphyrins have been made. The subcellular localization is of interest for the mechanisms of photodynamic therapy (PDT) of malignant tumours. Spectroscopic detection is necessary to distinguish the porphyrin signal from other fluorescent components in the specimen. Two different substances were administered to the tissue, Photofrin, a haematoporphyrin derivative (HPD) and delta-amino levulinic acid (ALA), a precursor to protoporphyrin IX and haem in the haem cycle. Both are substances under clinical trials for PDT of malignant tumours. Following administration of these compounds to the tissue, the potent photosensitizer and fluorescent compound Photofrin, or protoporphyrin IX, respectively, is accumulated.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7869364

  12. Porphyrin-anthraquinone dyads: Synthesis, spectroscopy and photochemistry

    Indian Academy of Sciences (India)

    P Prashanth Kumar; G Premaladha; Bhaskar G Maiya

    2005-03-01

    Free-base (H2L2), copper(II) (CuL2) and zinc(II) (ZnL2) derivatives of a porphyrin-anthraquinone conjugate with an azomethine group separating the two photoactive subunits have been synthesized and characterized by mass (FAB), IR, UV-visible, 1H NMR and ESR spectroscopic techniques and also by cyclic and differential pulse voltammetric methods. Analysis of the data reveals that the spectral and electrochemical properties of the individual chromophoric entities are retained and that there is no specific - interaction between the porphyrin and anthraquinone subunits. H2L2 and ZnL2 are shown to exhibit substantial quenching (88-97%) of the porphyrin fluorescence compared to their corresponding monomeric analogues. An intramolecular electron-transfer mechanism is proposed for the substantial decrease in fluorescence in both derivatives. The fluorescence decays of porphyrin-anthraquinone conjugates are fit to 2/3 exponentials and indicate that multiple orientations of the porphyrin and anthraquinone groups contribute to the electron-transfer event. These results are in good agreement with steady-state fluorescence results. From the time-resolved fluorescence data, the electron-transfer rate constants are calculated, indicating ET values in the range of 1.1 × 109 to 9.9 × 1010 s-1 that are dependent upon the solvent.

  13. Supramolecular assemblies of pyridyl porphyrin and diazadithia phthalocyanine

    Directory of Open Access Journals (Sweden)

    OZER BEKAROGLU

    1999-08-01

    Full Text Available In this paper we report for the first time on a mixed complex between the cationic porphyrin 5, 10, 15, 20-tetra-N- -methyl-pyrydinium-p-il porphyrin (TMPyP and a new metal phthalocyanine with four 16-membered diazadithia macrocycles (denoted here as Pc16, in order to obtain an active complex with an intense absorption on the lower energy side of the visible spectrum and with a higher sensitivity in photodynamic therapy of cancer. The dimerization constant for Pc16 and also the ratio between the oscillator strengths for monomeric and dimeric forms of this compound, were evaluated. The ratio between these oscillator strengths was 2.01 showing a certain dimerization process. The Job mathematical method allowed the establishment of the stoichiometry and the formation constants for the heteroaggregates between the porphyrin and the phthalocy- anine (a diad between one phthalocyanine molecule and one porphyrin molecule and a triad between two phthalocyanine molecules and only one porphyrin molecule. The coulombic attraction resulting from the p-p interaction of the two highly conjugated macrocycles and from the interaction between the substituents, favors a face-to-face geometry.

  14. Fluorescence spectroscopy for endogenous porphyrins in human facial skin

    Science.gov (United States)

    Seo, I.; Tseng, S. H.; Cula, G. O.; Bargo, P. R.; Kollias, N.

    2009-02-01

    The activity of certain bacteria in skin is known to correlate to the presence of porphyrins. In particular the presence of coproporphyrin produced by P.acnes inside plugged pores has been correlated to acne vulgaris. Another porphyrin encountered in skin is protoporphyrin IX, which is produced by the body in the pathway for production of heme. In the present work, a fluorescence spectroscopy system was developed to measure the characteristic spectrum and quantify the two types of porphyrins commonly present in human facial skin. The system is comprised of a Xe lamp both for fluorescence excitation and broadband light source for diffuse reflectance measurements. A computer-controlled filter wheel enables acquisition of sequential spectra, first excited by blue light at 405 nm then followed by the broadband light source, at the same location. The diffuse reflectance spectrum was used to correct the fluorescence spectrum due to the presence of skin chromophores, such as blood and melanin. The resulting fluorescence spectra were employed for the quantification of porphyrin concentration in a population of healthy subjects. The results show great variability on the concentration of these porphyrins and further studies are being conducted to correlate them with skin conditions such as inflammation and acne vulgaris.

  15. One-electron oxidation of nickel porphyrins. Effect of structure and medium on formation of nickel(III) porphyrin or nickel(II) porphyrin π-radical cation

    International Nuclear Information System (INIS)

    The oxidation of several nickel(II) porphyrins by various radicals has been studied by pulse radiolysis in different media (Cl2sm-bullet- and Br2sm-bullet- in aqueous systems, Br atoms in organic solvents, and peroxyl radicals in organic and aqueous/organic systems). Photochemical oxidation was also examined in some cases. The absorption spectrum of the oxidation product was monitored within several microseconds after the pulse. Two types of differential spectra were observed, a broad absorption at 640-700 nm ascribed to the π-radical cation, or a sharp absorption at 560-580 nm ascribed to nickel(III) porphyrin. NiIITPP (tetraphenylporphyrin) in several organic solvents, protic and aprotic, was oxidized to NiIIITPP. The addition of 10% water as cosolvent or 0.1 M of electrolyte changed the route of oxidation to give the radical cation NiIITPPsm-bullet+. On the other hand, NiIITSPP (tetrakis(4-sulfonatophenyl)porphyrin), which has four negative charges, was oxidized on the porphyrin ligand by all the radicals examined, in water and in several organic solvents. NiIIbis(N-methyl-4-pyridyl)diphenylporphyrin, with a charge of +2, and NiII tris(4-sulfonatophenyl)(N-methyl-4-pyridyl)porphyrin, with an overall charge of -2, were oxidized on the ligand in aqueous solution but on the metal in organic solvents. These and other results led to the conclusion that most radicals react with NiIIP by an inner-sphere mechanism to bind onto the metal and give the NiIIIP form. However, when the porphyrin is sufficiently charged to repel the axially bound anion, and/or when the medium enhances the separation of this anion from the metal, the result is oxidation of the porphyrin π-system. In all cases, however, the one-electron-oxidation products, whether NiIIPsm-bullet+ or NiIIIP, decay to yield two-electron ring oxidation products

  16. Flexible and fragmentable tandem photosensitive nanocrystal skins

    Science.gov (United States)

    Akhavan, S.; Uran, C.; Bozok, B.; Gungor, K.; Kelestemur, Y.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Demir, H. V.

    2016-02-01

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of

  17. Hypoxia-targeting antitumor prodrugs and photosensitizers

    International Nuclear Information System (INIS)

    Tumor hypoxia has been identified as a key subject for tumor therapy, since hypoxic tumor cells show resistance to treatment of tumor tissues by radiotherapy, chemotherapy and phototherapy. For improvement of tumor radiotherapy, we have proposed a series of radiation-activated prodrugs that could selectively release antitumor agent 5-fluorouracil or 5-fluorodeoxyuridine under hypoxic conditions. Recently, we attempted to develop two families of novel hypoxia-targeting antitumor agents, considering that tumor-hypoxic environment is favorable to biological and photochemical reductions. The first family of prodrugs was derived from camptothecin as a potent topoisomerase I inhibitor and several bioreductive motifs. These prodrugs could be activated by NADPH-cytochrome P450 reductase or DT-diaphorase to release free camptothecin, and thereby showed hypoxia-selective cytotoxictiy towards tumor cells. These prodrugs were also applicable to the real-time monitoring of activation and antitumor effect by fluorometry. Furthermore, the camptothecin-bioreductive motif conjugates was confirmed to show an oxygen-independent DAN photocleaving activity, which could overcome a drawback of back electron transfer occurring in the photosensitized one-electron oxidation of DNA. Thus, these camptothecin derivatives could be useful to both chemotherapy and phototherapy for hypoxic tumor cells. The second family of prodrugs harnessed UV light for cancer therapy, incorporating the antitumor agent 5-fluorourcil and the photolabile 2-nitrobenzyl chromophores. The attachment of a tumor-homing cyclic peptide CNGRC was also employed to construct the prototype of tumor-targeting photoactiaved antitumor prodrug. These novel prodrugs released high yield of 5-fluorourcil upon UV irradiation at λex=365 nm, while being quite stable in the dark. The photoactivation mechanism was also clarified by means of nanosecond laser flash photolysis. (authors)

  18. Blood porphyrins in binary mixtures of N,N-dimethylformamide with 1-octanol and chloroform: The energetics of solvation, (solute + cosolvent) interactions and model calculations

    International Nuclear Information System (INIS)

    Highlights: • The energetics of solvation of photosensitizers in binary systems was studied. • The (solute + non-electrolyte) pair interactions were examined. • Affinity of porphyrins to protein-like species in a lipid-like phase was established. • The method for predicting enthalpies of solute transfer in mixed solvents was created. - Abstract: This study provides the first accurate analysis of the energetics of solvation of blood porphyrins in binary solvents which are considered as appropriate models for a smooth transition from a polar protein-like phase to an apolar lipid-like environment. Our results do indicate that hematoporphyrin dimethylether dimethylester (HDEDE) and deuteroporphyrin dimethylether (DDE), as well as the model of their ester side-chains ethyl acetate (EtOAc), reveal more exothermic solvation in chloroform (CHCl3) than in dimethylformamide (DMF) and, especially, in 1-octanol (OctOH). The energetics of pair interaction between dissolved species and cosolvent molecules both in a protein-like and a lipid-like environment are clearly associated with these solvation effects. The interaction between blood porphyrins and DMF in OctOH is accompanied by large negative enthalpy changes at both temperatures, whereas in chloroform, forming strong H-bonds with dissolved species, the interaction is strongly thermochemically repulsive. All solute molecules interact in the energetically unfavorable way with OctOH and CHCl3 in DMF, the effect being much stronger pronounced for chloroform. The most significant result of this work is that it is possible to connect this pair interaction in a highly diluted solution with the solute behavior in the entire range of the binary mixture. The approach proposed is independent of a solute and solvent structure, it provides a good prediction of the energetics of solvation in mixed solvents and can be extended for a lot of other biologically active solutes

  19. Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy

    Directory of Open Access Journals (Sweden)

    L.A. Muehlmann

    2011-08-01

    Full Text Available Photodynamic therapy is a well-established and clinically approved treatment for several types of cancer. Antineoplastic photodynamic therapy is based on photosensitizers, i.e., drugs that absorb photons translating light energy into a chemical potential that damages tumor tissues. Despite the encouraging clinical results with the approved photosensitizers available today, the prolonged skin phototoxicity, poor selectivity for diseased tissues, hydrophobic nature, and extended retention in the host organism shown by these drugs have stimulated researchers to develop new formulations for photodynamic therapy. In this context, due to their amphiphilic characteristic (compatibility with both hydrophobic and hydrophilic substances, liposomes have proven to be suitable carriers for photosensitizers, improving the photophysical properties of the photosensitizers. Moreover, as nanostructured drug delivery systems, liposomes improve the efficiency and safety of antineoplastic photodynamic therapy, mainly by the classical phenomenon of extended permeation and retention. Therefore, the association of photosensitizers with liposomes has been extensively studied. In this review, both current knowledge and future perspectives on liposomal carriers for antineoplastic photodynamic therapy are critically discussed.

  20. Interfacial organization of achiral porphyrins via unidirectional compression: a general method for chiroptical porphyrin assemblies of selected chirality.

    Science.gov (United States)

    Zhang, Xiao; Wang, Yanping; Chen, Penglei; Rong, Yunlong; Liu, Minghua

    2016-05-18

    Porphyrins are considered to be important scaffolds bridging supramolecular chemistry and chiral chemistry, where chirality selection via physical effects such as directional stirring and spin-coating has aroused particular interest. Nevertheless, these protocols could only work on a limited number of achiral porphyrins. It still remains a formidable challenge to pave a general avenue for the construction of chiral assemblies using achiral porphyrins. By means of a unique Langmuir-Schaefer (LS) technique of a unidirectional compression configuration, we herein have demonstrated that a series of achiral porphyrins could be facilely organized to form chiral interfacial assemblies of controlled supramolecular chirality. It has been disclosed that such a fascinating chirality selection scenario is intimately related to the direction of the compression-generated vortex-like flow, while the compression speed, one of the most significant parameters of the Langmuir technique, contributes less to this issue. With regard to a surface-pressure-dependent chirality selection phenomenon, it is suggested that the directional vortex-like flow generated by lateral compression might play a role in promoting the preferential growth of chiral assemblies showing an enhanced yet controlled CD signal. Our protocol might be, to some extent, a general method for achieving chiral porphyrin assemblies of controlled chirality. PMID:27156996

  1. Antibatic photovoltaic response in zinc-porphyrin-liked oligothiophenes

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Spanggaard, H.

    2005-01-01

    -stannylchloride and subsequent palladium catalysed Stille coupling. We further synthesised 5,15-bis(3, 4', 4", 4"', 4", 4""', 4""", 4"""'-octahexyl-[2, 2'; 5', 2" 5", 2'"; 5"', 2""; 5"", 2""'; 5""', 2"""; 5""", 2"""']octithiophene-5-yl)-10, 20-bis(3, 5-ditertbutylphenyl)zinc(II)porphyrin (5) from trimethyl(3, 4', 4......", 4'", 4"", 4""', 4""", 4"""'-Octahexyl-[2, 2'; 5', 2"; 5"; 2'"; 5"', 2""; 5"", 2"'"; 5""', 2"""; 5""", 2"""']octithiophene-5-yl)stannane (3-SnMe3) and 5, 15-dibromo-10, 20-bis(3, 5-ditertbutylphenyl)zinc(II)porphyrin (6) by Stille coupling. All the products were characterised by size exclusion...... behaviour of 4 and 5. While 4 gave rise to photovoltaic devices giving a moderate photovoltaic response that was symbatic with the absorption spectrum, 5 showed a photovoltaic response that was antibatic with a part of the absorption spectrum of the zinc-porphyrin constituent. We ascribe this behaviour to...

  2. Self-assemblies of cationic porphyrins with functionalized water-soluble single-walled carbon nanotubes.

    Science.gov (United States)

    Kubát, Pavel; Lang, Kamil; Jandal, Pavel; Frank, Ota; Matulková, Irena; Sýkora, Jan; Civis, Svatopluk; Hof, Martin; Kavan, Ladislav

    2009-10-01

    5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin, 5,10,15,20-tetrakis(2-N-methylpyridyl)porphyrin, and 5,10,15,20-tetrakis(4-trimethylammoniophenyl)porphyrin form self-assemblies with single-walled carbon nanotubes (SWNT) functionalized by polyaminobenzene sulfonic acid. Both steady-state and time-resolved emission studies revealed efficient quenching of the excited singlet states of the porphyrins. Atomic force microscopy, fluorescence confocal microscopy, and fluorescence lifetime imaging allowed the visualization of individual bundles of SWNTs and the differentiation of porphyrin molecules at specific binding sites of SWNT. PMID:19908455

  3. Sintered boron, production and properties

    International Nuclear Information System (INIS)

    Microhardness HV, tensile properties and Young modulus of sintered boron of different porosity were studied. It was shown that with density growth tensile properties improve. HV and brittle-ductile transition temperature Tsub(b) of sintered boron on the one hand and for silicon and titanium carbide on the other were compared and discussed. It was noted that the general level of HV and Tsub(b) for boron is rather high and at similar relative temperatures these characteristics are much higher. Temperature dependences of linear expansion coefficient, thermal capacity, thermal and temperature conductivity of sintered boron of 20% porosity were studied. Gruneisen parameter was evaluated

  4. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties. PMID:19687534

  5. Studies on Preparation of Photosensitizer Loaded Magnetic Silica Nanoparticles and Their Anti-Tumor Effects for Targeting Photodynamic Therapy

    Science.gov (United States)

    Chen, Zhi-Long; Sun, Yun; Huang, Peng; Yang, Xiao-Xia; Zhou, Xing-Ping

    2009-05-01

    As a fast developing alternative of traditional therapeutics, photodynamic therapy (PDT) is an effective, noninvasive, nontoxic therapeutics for cancer, senile macular degeneration, and so on. But the efficacy of PDT was compromised by insufficient selectivity and low solubility. In this study, novel multifunctional silica-based magnetic nanoparticles (SMNPs) were strategically designed and prepared as targeting drug delivery system to achieve higher specificity and better solubility. 2,7,12,18-Tetramethyl-3,8-di-(1-propoxyethyl)-13,17-bis-(3-hydroxypropyl) porphyrin, shorted as PHPP, was used as photosensitizer, which was first synthesized by our lab with good PDT effects. Magnetite nanoparticles (Fe3O4) and PHPP were incorporated into silica nanoparticles by microemulsion and sol-gel methods. The prepared nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and fluorescence spectroscopy. The nanoparticles were approximately spherical with 20-30 nm diameter. Intense fluorescence of PHPP was monitored in the cytoplasm of SW480 cells. The nanoparticles possessed good biocompatibility and could generate singlet oxygen to cause remarkable photodynamic anti-tumor effects. These suggested that PHPP-SMNPs had great potential as effective drug delivery system in targeting photodynamic therapy, diagnostic magnetic resonance imaging and magnetic hyperthermia therapy.

  6. Studies on Preparation of Photosensitizer Loaded Magnetic Silica Nanoparticles and Their Anti-Tumor Effects for Targeting Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Chen Zhi-Long

    2009-01-01

    Full Text Available Abstract As a fast developing alternative of traditional therapeutics, photodynamic therapy (PDT is an effective, noninvasive, nontoxic therapeutics for cancer, senile macular degeneration, and so on. But the efficacy of PDT was compromised by insufficient selectivity and low solubility. In this study, novel multifunctional silica-based magnetic nanoparticles (SMNPs were strategically designed and prepared as targeting drug delivery system to achieve higher specificity and better solubility. 2,7,12,18-Tetramethyl-3,8-di-(1-propoxyethyl-13,17-bis-(3-hydroxypropyl porphyrin, shorted as PHPP, was used as photosensitizer, which was first synthesized by our lab with good PDT effects. Magnetite nanoparticles (Fe3O4 and PHPP were incorporated into silica nanoparticles by microemulsion and sol–gel methods. The prepared nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and fluorescence spectroscopy. The nanoparticles were approximately spherical with 20–30 nm diameter. Intense fluorescence of PHPP was monitored in the cytoplasm of SW480 cells. The nanoparticles possessed good biocompatibility and could generate singlet oxygen to cause remarkable photodynamic anti-tumor effects. These suggested that PHPP-SMNPs had great potential as effective drug delivery system in targeting photodynamic therapy, diagnostic magnetic resonance imaging and magnetic hyperthermia therapy.

  7. Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells.

    Science.gov (United States)

    Hayashi, Hironobu; Higashino, Tomohiro; Kinjo, Yuriko; Fujimori, Yamato; Kurotobi, Kei; Chabera, Pavel; Sundström, Villy; Isoda, Seiji; Imahori, Hiroshi

    2015-08-26

    Memory effects in self-assembled monolayers (SAMs) of zinc porphyrin carboxylic acid on TiO2 electrodes have been demonstrated for the first time by evaluating the photovoltaic and electron transfer properties of porphyrin-sensitized solar cells prepared by using different immersion solvents sequentially. The structure of the SAM of the porphyrin on the TiO2 was maintained even after treating the porphyrin monolayer with different neat immersion solvents (memory effect), whereas it was altered by treatment with solutions containing different porphyrins (inverse memory effect). Infrared spectroscopy shows that the porphyrins in the SAM on the TiO2 could be exchanged with the same or analogous porphyrin, leading to a change in the structure of the porphyrin SAM. The memory and inverse memory effects are well correlated with a change in porphyrin geometry, mainly the tilt angle of the porphyrin along the long molecular axis from the surface normal on the TiO2, as well as with kinetics of electron transfer between the porphyrin and TiO2. Such a new structure-function relationship for DSSCs will be very useful for the rational design and optimization of photoelectrochemical and photovoltaic properties of molecular assemblies on semiconductor surfaces. PMID:26266818

  8. Photoinduced conductivity of a porphyrin-gold composite nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Kilina, Svletana [Los Alamos National Laboratory; Balatsky, Alexander [Los Alamos National Laboratory; Kilin, Dmitri S [UNIV OF FL; Prezhdo, Oleg [UNIV OF WASHINGTON; Tsemekhman, Kiril [NON LANL

    2009-01-01

    Negatively charged phosphine groups on the backbone of DNA are known to attract gold nanoclusters from a colloid, assembling the clusters at fixed intervals. Bridging these intervals with porphyrin-dye linkers forms an infinite conducting chain, a quantum wire whose carrier mobility can be enhanced by photoexcitation. The resulting nanoassembly can be used as a gate: a wire with a controllable conductivity. The electronic structure of the porphyrin-gold wire is studied here by density functional theory, and the conductivity of the system is determined as a function of the photoexcitation energy. Photoexcitations of the dye are found to enhance the wire conductivity by orders of magnitude.

  9. Characteristics of photosensitization of Pheophorbide a in liposomal media

    Institute of Scientific and Technical Information of China (English)

    杨红英; 李美芬; 张文庚; 赵红霞; 张志义

    1999-01-01

    Pheophorbide a (PPa), a decomposition product of chlorophyll a, is a photosensitizer. The photosensitization mechanisms (Type Ⅰ and Type Ⅱ) of PPa in simple buffer solutions and in buffer solutions containing double-layered DPPC liposomes have been studied using techniques of ESR, spin-trapping, spin-counteraction and laser flash photolysis. The results showed that adding DPPC liposomes to the buffer solution caused an increase of efficiency of generating 1O2 and PPa- by photoactivating PPa. The increase could be ascribed to the disaggregation of hydrophobic PPa caused by the addition of liposomes and the protective effect of liposomal media on the triplet state of PPa. It is concluded that the photosensitization of PPa in liposomal systems is different from that in simple aqueous solutions, and shows higher efficacy. The results will be useful to elucidating the mechanisms of photodynamic therapy of cancer.

  10. Nile blue can photosensitize DNA damage through electron transfer.

    Science.gov (United States)

    Hirakawa, Kazutaka; Ota, Kazuhiro; Hirayama, Junya; Oikawa, Shinji; Kawanishi, Shosuke

    2014-04-21

    The mechanism of DNA damage photosensitized by Nile blue (NB) was studied using (32)P-5'-end-labeled DNA fragments. NB bound to the DNA strand was possibly intercalated through an electrostatic interaction. Photoirradiated NB caused DNA cleavage at guanine residues when the DNA fragments were treated with piperidine. Consecutive guanines, the underlined G in 5'-GG and 5'-GGG, were selectively damaged through photoinduced electron transfer. The fluorescence lifetime of NB was decreased by guanine-containing DNA sequence, supporting this mechanism. Single guanines were also slightly damaged by photoexcited NB, and DNA photodamage by NB was slightly enhanced in D2O. These results suggest that the singlet oxygen mechanism also partly contributes to DNA photodamage by NB. DNA damage photosensitized by NB via electron transfer may be an important mechanism in medicinal applications of photosensitizers, such as photodynamic therapy in low oxygen. PMID:24576317

  11. Photosensitized inactivation of Chinese hamster cells by phthalocyanines

    International Nuclear Information System (INIS)

    Chloroaluminum phthalocyanine was found to sensitize cultured Chinese hamster cells upon exposure to white fluorescent light. Elimination of wavelengths below 370 nm did not reduce the effect significantly, indicating that the effective wavelengths were those absorbed by the Q band (600-700 nm) of phthalocyanine. The magnitude of the photosensitizing effect increased with the dye concentration and the time of its contact with the cells prior to light exposure. Although photosensitization was drastically reduced in the absence of oxygen, the lack of effect of glycerol and D2O during exposure suggests that neither hydroxyl radicals nor 1O2 are responsible for the cytotoxic response. The efficiency of the photosensitized induced cell killing did not vary with the position of the cells in the cell cycle, in contrast to exposure to X-rays. The improved spectral properties, the reported low toxicity and the selective retention by neoplasms, make phthalocyanines promising candidates for use in photodynamic therapy of cancer. (author)

  12. Selective uptake of porphyrins within experimental atheromatous plaques: Potential for laser photodynamic therapy

    International Nuclear Information System (INIS)

    The authors investigated the selective uptake of various porphyrins atheromatous plaques. Grass and microscopic examination of atherosclorotic rabbit aortas under ultraviolet light 48 hours after porphyrin administration disclosed porphyrin fluorescence exclusively on the plaques. As judged from the fluorescence emission, the order of affinity of the porphyrins for plaque is as follows: photofrin II (PF II) > hematoporphyrin derivative (HPD) > tetrasulfonatophenyl porphyrin (TPPS) ≥ hydroxyethylvinyldeuteroporphyrin (HVD), hematoporphyrin (HP). The potential application of intravascular irradiation of plaques labeled with porphyrins in the treatment of atheroma can be investigated using the animal model. Matching the irradiation light wave length to the porphyrin absorption peak allows specific effects to be directed to the plaque without damaging the normal vessel wall

  13. BODIPY functionalized o-carborane dyads for low-energy photosensitization.

    Science.gov (United States)

    Jin, Guo Fan; Cho, Yang-Jin; Wee, Kyung-Ryang; Hong, Seong Ahn; Suh, Il-Hwan; Son, Ho-Jin; Lee, Jong-Dae; Han, Won-Sik; Cho, Dae Won; Kang, Sang Ook

    2015-02-14

    A new type of organic dyad that can induce low-energy photosensitization has been developed; electron donor and electron acceptor units are boron dipyrromethene (BODIPY) and ortho-carborane (o-Cb), respectively. The new dyads consist of a V-shaped BODIPY-(o-Cb)-BODIPY molecular array in which two BODIPY units are substituted onto two adjacent carbon atoms of the central o-Cb. In the presence of the o-Cb unit, as an electron acceptor, significant fluorescence quenching was observed which indicated that photoinduced electron transfer (PET) had occurred from the end-on BODIPY units to the central o-Cb with PET efficiencies of 63-71%. As a result, the corresponding cationic and anionic species that are responsible for the charge transfer state were detected by the serial spectroelectrochemical studies: cationic BODIPY radicals at 400 nm at the applied voltage of 1.44 V and broad absorption bands of anionic o-Cb radicals in the range of 250-490 nm at -1.84 V. Transient absorption studies further confirmed the BODIPY radical anion at 540 nm and the o-Cb radical anion at 350-475 nm with a structureless broad band. PMID:25482506

  14. Layered Hydroxide–Porphyrin Hybrid Materials: Synthesis, Structure, and Properties

    Czech Academy of Sciences Publication Activity Database

    Demel, Jan; Lang, Kamil

    2012-01-01

    Roč. 2012, č. 32 (2012), s. 5154-5164. ISSN 1434-1948 R&D Projects: GA ČR GAP207/10/1447 Institutional support: RVO:61388980 Keywords : layered compounds * intercalations * porphyrin oids * phthalocyanines * singlet oxygen Subject RIV: CA - Inorganic Chemistry Impact factor: 3.120, year: 2012

  15. Layered double hydroxides as carriers of photoactive porphyrin molecules

    Czech Academy of Sciences Publication Activity Database

    Lang, Kamil; Káfuňková, Eva; Kovanda, F.; Taviot-Guého, Ch.

    Bratislava : Institute of Inorganic Chemistry, Slovak Academy of Sciences, 2008. s. 246. ISBN 978-80-224-1019-9. [Conference on Solid State Chemistry /8./. 06.06.2008-11.06.2008, Bratislava] Institutional research plan: CEZ:AV0Z40320502 Keywords : photoactive porphyrin Subject RIV: CA - Inorganic Chemistry

  16. Intercalation of porphyrins into Mg-Al hydrotalcite

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Káfuňková, Eva; Rojka, T.; Lang, Kamil

    2008-01-01

    Roč. 15, č. 1 (2008), s. 28-32. ISSN 1211-5894 R&D Projects: GA AV ČR KAN100500651; GA ČR(CZ) GA203/06/1244 Institutional research plan: CEZ:AV0Z40320502 Keywords : Mg-Al hydrotalcite * layered double hydroxide * porphyrin Subject RIV: CA - Inorganic Chemistry

  17. Biotoxicity Evaluation of Singlet Oxygen Generated by Immobilized Porphyrin

    Czech Academy of Sciences Publication Activity Database

    Rychtáriková, Renata; Kuncová, Gabriela; Krulikovská, T.; Sviráková, E.; Hetflejš, Jiří

    - : -, 2008, P19 - 1-P19 - 4. [XVI International Conference on Bioencapsulation. Dublin (IE), 04.09.2008-06.09.2008] R&D Projects: GA ČR(CZ) GA203/06/1244; GA MŠk OC 121 Institutional research plan: CEZ:AV0Z40720504 Keywords : porphyrin s * singlet oxygen * immobilization Subject RIV: CE - Biochemistry

  18. Monitoring of Porphyrin Protonation by the Magnetic Circular Dichroism

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, Petr; Bouř, Petr

    Oxford : Diamond, 2011. s. 21-21. [CD 2011. The International Conference on Chiroptical Spectroscopy /13./. 24.07.2011-28.07.2011, Oxford] Grant ostatní: 7th European Community Framework Program(XE) 230955 Institutional research plan: CEZ:AV0Z40550506 Keywords : porphyrin * magnetic circular dichroism * DFT calculation Subject RIV: CF - Physical ; Theoretical Chemistry

  19. First observation of an iron porphyrin in heavy crude oil

    International Nuclear Information System (INIS)

    Studying one of the iron rich crudes from Orinoco river region using Moessbauer effect, an iron porphyrin was clearly identified for the first time in a heavy oil; its structure is DPEP type and the iron state is divalent (FeII) with low spin. (Auth.)

  20. Tunneling electron induced luminescence from porphyrin molecules on monolayer graphene

    International Nuclear Information System (INIS)

    Using epitaxially grown graphene on Ru(0001) as a decoupling layer, we investigate the evolution of tunneling electron induced luminescence from different number of layers of porphyrin molecules. Light emission spectra and photon maps, acquired via a combined optical setup with scanning tunneling microscopy (STM), indicate that the electronic decoupling effect of a monolayer (ML) graphene alone is still insufficient for generating molecule-specific emission from both the 1st- and 2nd-layer porphyrin molecules. Nevertheless, interestingly, the plasmonic emission is enhanced for the 1st-layer but suppressed for the 2nd-layer in comparison with the plasmonic emission on the monolayer graphene. Intrinsic intramolecular molecular fluorescence occurs at the 3rd-layer porphyrin. Such molecular thickness is about two MLs thinner than previous reports where molecules were adsorbed directly on metals. These observations suggest that the monolayer graphene does weaken the interaction between molecule and metal substrate and contribute to the reduction of nonradiative decay rates. - Highlights: • Showing molecularly resolved photon maps of graphene and porphyrins on it. • Revealing the influence of spacer thickness on molecular electroluminescence. • Graphene does weaken the interaction between molecules and metal substrate

  1. Tunneling electron induced luminescence from porphyrin molecules on monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Feng; Kuang, Yanmin; Yu, Yunjie; Liao, Yuan; Zhang, Yao; Zhang, Yang; Dong, Zhenchao, E-mail: zcdong@ustc.edu.cn

    2015-01-15

    Using epitaxially grown graphene on Ru(0001) as a decoupling layer, we investigate the evolution of tunneling electron induced luminescence from different number of layers of porphyrin molecules. Light emission spectra and photon maps, acquired via a combined optical setup with scanning tunneling microscopy (STM), indicate that the electronic decoupling effect of a monolayer (ML) graphene alone is still insufficient for generating molecule-specific emission from both the 1st- and 2nd-layer porphyrin molecules. Nevertheless, interestingly, the plasmonic emission is enhanced for the 1st-layer but suppressed for the 2nd-layer in comparison with the plasmonic emission on the monolayer graphene. Intrinsic intramolecular molecular fluorescence occurs at the 3rd-layer porphyrin. Such molecular thickness is about two MLs thinner than previous reports where molecules were adsorbed directly on metals. These observations suggest that the monolayer graphene does weaken the interaction between molecule and metal substrate and contribute to the reduction of nonradiative decay rates. - Highlights: • Showing molecularly resolved photon maps of graphene and porphyrins on it. • Revealing the influence of spacer thickness on molecular electroluminescence. • Graphene does weaken the interaction between molecules and metal substrate.

  2. Absorption Complex between Porphyrin and Phenothiazine in Reverse Micelles

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The interaction between amphiphilic porphyrin and phenothiazine in AOT/isooctane/ water reverse micelle was investigated by UV-Vis spectra. A new absorption complex between the two species is formed in such circumstances, which is ascribed to the enrichment of the components by the reverse micelle. The fluorescence quenching of CHTTP by PTH becomes more efficient after the formation of the absorption complex.

  3. Porphyrin involvement in redshift fluorescence in dentin decay

    Science.gov (United States)

    Slimani, A.; Panayotov, I.; Levallois, B.; Cloitre, T.; Gergely, C.; Bec, N.; Larroque, C.; Tassery, H.; Cuisinier, F.

    2014-05-01

    The aim of this study was to evaluate the porphyrin involvement in the red fluorescence observed in dental caries with Soprolife® light-induced fluorescence camera in treatments mode (SOPRO, ACTEON Group, La Ciotat, France) and Vistacam® camera (DÜRR DENTAL AG, Bietigheim-Bissingen, Germany). The International Caries Detection and Assessment System (ICDAS) was used to rand the samples. Human teeth cross-sections, ranked from ICDAS score 0 to 6, were examined by epi-fluorescence microscopy and Confocal Raman microscopy. Comparable studies were done with Protoporphyrin IX, Porphyrin I and Pentosidine solutions. An RGB analysis of Soprolife® images was performed using ImageJ Software (1.46r, National Institutes of Health, USA). Fluorescence spectroscopy and MicroRaman spectroscopy revealed the presence of Protoporphyrin IX, in carious enamel, dentin and dental plaque. However, the presence of porphyrin I and pentosidine cannot be excluded. The results indicated that not only porphyrin were implicated in the red fluorescence, Advanced Glygation Endproducts (AGEs) of the Maillard reaction also contributed to this phenomenon.

  4. Preparation and characterization of free-standing pure porphyrin nanoparticles

    Indian Academy of Sciences (India)

    Arun Kumar Perepogu; Prakriti Ranjan Bangal

    2008-09-01

    Preparation and characterization of absolutely pure and stable nanoparticles of 5,10,15,20-meso-tetrakis phenyl porphyrin (TPP) and catalytically repute 5,10,15,20-meso-tetrakis pentaflurophenyl porphyrin (H2F20TPP) by improved ‘reprecipitation method’ is described. The innovation of this modified `reprecipitation method’ lies on the judicial selection of organic solvent and amount of porphyrin solution to be injected in the aqueous media. Exactly similar process produces relatively small nanoparticles for TPP than that of H2F20TPP while the stability of the H2F20TPP nanoparticles is bit higher than nanoparticles of TPP. Absorption and emission spectra reveal that the formation of nanoparticles for both the cases is induced by J- and H-type aggregation. DFT calculations predict the optimized geometries and frontier molecular orbital, which favours the strength of face-to-face interaction with neighbour molecules to be more facile for TPP than that of H2F20TPP helping the latter to form bigger and relatively more stable and free-standing nanoparticles. The use of no other compounds except dichloromethane, a highly volatile organic solvent and respective porphyrins give absolutely pure nanoparticles. This improved method will lead to produce organic nanoparticles of -conjugated systems easily and efficiently.

  5. Synthesis of metallic nanoshells on porphyrin-stabilized emulsions

    Science.gov (United States)

    Wang, Haorong; Song, Yujiang; Shelnutt, John A.; Medforth, Craig J.

    2011-12-13

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  6. Photoproduction of singlet oxygen by porphyrins intercalated in layered materials

    Czech Academy of Sciences Publication Activity Database

    Lang, Kamil; Bourdelande, J.L.; Hernando, J.; Kovanda, F.; Kubát, Pavel; Mosinger, Jiří; Wagnerová, Dana Marie

    Bad Hofgastein : EPA , 2006, s. 27-27. [Central European Conference on Photochemistry. Bad Hohgastein (AT), 05.03.2006-09.03.2006] Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : porphyrin Subject RIV: CA - Inorganic Chemistry

  7. Cyclic porphyrin dimers as hosts for coordinating ligands

    Indian Academy of Sciences (India)

    G Vaijayanthimala; V Krishnan; S K Mandal

    2008-01-01

    Bicovalently linked tetraphenylporphyrins bearing dioxypentane groups at the opposite (transoid, H4A) and adjacent (cisoid, H4B) aryl groups have been synthesised. Protonation of the free-base porphyrins leads to fully protonated species H8A4+/H8A4+ accompanied by expansion of cavity size of the bisporphyrins. The electrochemical redox studies of these porphyrins and their Zinc(II) derivatives revealed that the first ring oxidation proceeds through a two-electron process while the second ring oxidation occurs at two distinct one-electron steps indicating unsymmetrical charge distribution in the oxidized intermediate. The axial ligation properties of the Zinc(Il) derivatives of H4A/H4B with DABCO and PMDA investigated by spectroscopic and single crystal X-ray diffraction studies showed predominant existence of 1 : I complex. The Zn2A.DABCO complex assumes an interesting eclipsed structure wherein DABCO is located inside the cavity between the two porphyrin planes with Zn-N distances at 2.08 and 2.22 Å. The Zn atoms are pulled into the cavity due to coordination towards nitrogen atoms of DABCO and deviate from the mean porphyrin plane by 0.35 Å. The electrochemical redox potentials of the axially ligated metal derivatives are found to be sensitive function of the relative coordinating ability of the ligands and the conformation of the hosts.

  8. Electronic transport through tape-porphyrin molecular bridges

    International Nuclear Information System (INIS)

    We investigated theoretically how molecular conjugation affects current-voltage (I-V) curves through three types of oligoporphyrin molecules, i.e., the tape-porphyrin, the butadiyne-linked porphyrin, and the edge-fused porphyrin molecules. Among these, the tape-porphyrin molecule is found to be the most conductive due to its extremely small HOMO-LUMO energy gap. Furthermore, the I-V curves through this type of molecule are found to depend considerably on atomic sites to which electrodes are connected. In particular, as long as the applied bias is weak, the current is found to flow strongest when both electrodes are connected to the atomic sites referred to as meso sites. This feature is caused by the fact that the HOMO relevant to resonant tunneling has a higher charge density on the meso sites. These findings indicate that designing not only molecules but also contact structures is highly significant for realizing a desirable function in single molecular devices

  9. Trilobolide-porphyrin conjugates: On synthesis and biological effects evaluation

    Czech Academy of Sciences Publication Activity Database

    Tomanová, P.; Rimpelová, S.; Jurášek, M.; Buděšínský, Miloš; Vejvodová, L.; Ruml, T.; Kmoníčková, E.; Drašar, P. B.

    2015-01-01

    Roč. 97, SI (2015), s. 8-12. ISSN 0039-128X Grant ostatní: GA ČR(CZ) GA14-04329S; GA MŠk(CZ) ED2.1.00/03.0076 Institutional support: RVO:61388963 Keywords : trilobolide * porphyrin * nitric oxide * fluorescence microscopy Subject RIV: CE - Biochemistry Impact factor: 2.639, year: 2014

  10. Porphyrin Induced Laser Deactivation of Trypsinogen-Trypsin Conversion

    Science.gov (United States)

    Perido, Joanna; Brancaleon, Lorenzo

    2015-03-01

    Pancreatitis is caused by the inflammation of the pancreas, where the digestive enzyme trypsin is activated from the precursor enzyme trypsinogen while still in the pancreas. The presence of trypsin in the pancreas causes auto-activation of trypsinogen, resulting in greater inflammation and auto-digestion of the pancreas. In severe cases, this cascade effect can lead to organ failure, diabetes, and pancreatic cancer. Our hypothesis is that if trypsinogen is prevented from auto-activating into trypsin, then this cascade can be stopped. We propose to do this by inducing conformational changes in trypsinogen when bound to a photoactive porphyrin dye. Porphyrins are comprised of four linked heterocyclic groups forming a flat ring, and bind well with proteins such as trypsinogen. In this study we used spectroscopic techniques to probe the binding of meso-tetrakis (4-sulfonatephenyl) porphyrin (TSPP) to trypsinogen in vitro, as a preliminary step to then prompt and characterize conformational changes of trypsinogen through irradiation. If conformational changes are detected the trypsinogen will be tested for trypsin inactivation. This investigation may provide promising initial results to the possible use of porphyrins as an inhibitor of the self-activation of trypsinogen into trypsin, and a potential inhibitor of pancreatitis. MARC*U-STAR.

  11. Structural investigation of nickel (II) octaethyl-meso-nitro-porphyrins

    International Nuclear Information System (INIS)

    Dual-channel resonance Raman spectra are presented for Ni(II) octaethyl-mononitro-porphyrin (NiOEMNP) and Ni(II) octaethyl-tetranitro-porphyrin (NiOETNP) in coordinating and non-coordinating solvents. Molecular mechanics calculations for NiOETNP predict a structure as distorted from planarity as that found for Ni(II) octaethyl-tetraphenylporphyrin (NiOETPP). Structurally-sensitive porphyrin vibrational modes ν4, ν3, ν2 and ν10 are observed at 1377 1513, 1589 and 1647 cm-1, respectively, for NiOEMNP and at 1368, 1488, 1570 and 1605 cm-1 for NiOETNP. Decreased frequencies for NiOENTP are consistent with the predicted highly non-planar conformation of the macrocycle that results from steric interactions of the ethyl substituents with the four meso-NO2 groups. The authors' results suggest that the ruffling of the porphyrin dominates the observed shifts in vibrational frequencies. Vibrational mode assignments are also made for the NO2 moieties with slightly different frequencies for the mono- and tetra-substitutioal species. unlike NiOETPP, where non-planarity prevents the binding of even strong-field ligands. NiOETNP is found to bind relatively weak ligands such as methanol. NiOETNPs high ligand affinity is probably a result of the strong electron-withdrawing character of the four NO2 groups

  12. Modulation of Group I Ribozyme Activity by Cationic Porphyrins

    Directory of Open Access Journals (Sweden)

    Shigeyoshi Matsumura

    2015-03-01

    Full Text Available The effects of cationic porphyrins on the catalytic activities of four group I ribozymes were investigated. A cationic porphyrin possessing four pyridinium moieties (pPyP inhibited two group IC3 ribozymes (Syn Rz and Azo Rz and a group IC1 ribozyme (Tet Rz. In the case of a group IA2 ribozyme (Td Rz, however, pPyP served not only as an inhibitor but also as an activator, and the effects of pPyP were dependent on its concentration. To analyze the structural and electronic factors determining the effects of pPyP on group I ribozymes, three cationic porphyrins (pPyNCP, pPyF4P, and TMPyP were also examined. As interactions between small organic molecules and nucleic acids are attractive and important issues in biochemistry and biotechnology, this study contributes to the development of porphyrin-based molecules that can modulate functions of structured RNA molecules.

  13. Boron thermal regeneration system

    International Nuclear Information System (INIS)

    An ion exchanger which allows flow in both directions along a selected flow path is described. A separator plate divides the exchanger tank into two chambers each of which has a flow conduit so that flow may enter or leave from either chamber while prohibiting the resin particles from migrating from one side of the tank to the other. This ion exchanger permits a dual-directional flow process to be practised which results in immediate changes in the boron concentration within a nuclear reactor coolant system even if the ion exchanger resins have not been completely equilibrated during a previous operation. (author)

  14. BORONIZING OF STEEL

    Directory of Open Access Journals (Sweden)

    Arzum ULUKÖY

    2006-02-01

    Full Text Available Boride layer has many advantages in comparison with traditional hardening methods. The boride layer has high hardening value and keeps it's hardeness at high temperatures, and it also shows favorible properties, such as the resistance to wear, oxidation and corrosion. The process can be applied at variety of materials, for instance steel, cast iron, cast steel, nickel and cobalt alloys and cermets. In this rewiew, boronizing process properties, boride layer on steel surfaces and specifications and the factors that effect boride layer are examined

  15. Photosensitivity and double vision as initial symptoms of colon cancer

    DEFF Research Database (Denmark)

    Rasmussen, L. R.; Laursen, C. B.; Graumann, O.

    2015-01-01

    A 75-year-old man suffering from rheumatoid arthritis, myxoedema and type II diabetes mellitus, presented with occasional double vision and photosensitivity. The patient underwent an MRI of the brain showing a tumour located in the right of the sphenoid bone. A subsequent diagnostic CT scan of th...

  16. High-Efficiency Iron Photosensitizer Explained with Quantum Wavepacket Dynamics

    DEFF Research Database (Denmark)

    Pápai, Mátyás Imre; Vankó, György; Rozgonyi, Tamas;

    2016-01-01

    Fe(II) complexes have long been assumed unsuitable as photosensitizers because of their low-lying nonemissive metal centered (MC) states, which inhibit electron transfer. Herein, we describe the excited-state relaxation of a novel Fe(II) complex that incorporates N-heterocyclic carbene ligands de...

  17. Is colour modulation an independent factor in human visual photosensitivity?

    NARCIS (Netherlands)

    J. Parra; F.H. Lopes da Silva; H. Stroink; S. Kalitzin

    2007-01-01

    Considering that the role of colour in photosensitive epilepsy (PSE) remains unclear, we designed a study to determine the potential of different colours, colour combinations and white light to trigger photoparoxysmal responses (PPRs) under stringent controlled conditions. After assessing their phot

  18. Intrinsically photosensitive retinal ganglion cell function in relation to age

    DEFF Research Database (Denmark)

    Herbst, Kristina; Sander, Birgit; Lund-Andersen, Henrik; Broendsted, Adam Elias; Kessel, Line; Hansen, Michael Stormly; Kawasaki, Aki

    2012-01-01

    The activity of melanopsin containing intrinsically photosensitive ganglion retinal cells (ipRGC) can be assessed by a means of pupil responses to bright blue (appr.480 nm) light. Due to age related factors in the eye, particularly, structural changes of the lens, less light reaches retina. The aim...

  19. Singlet oxygen: photosensitized generation, detection and reaction with organic molecules

    International Nuclear Information System (INIS)

    Singlet molecular oxygen (1O2) is an excited state of molecular oxygen, having antiparallel spin in the same π antibonding orbital. The study of singlet oxygen production and reactivity has emerged as a rich and diverse area, with implication in diverse fields, such as synthetic chemistry, polymer chemistry, photodynamic therapy, etc. There are several known methods to produce singlet oxygen, and also various techniques employed to detect it. Out of these, photosensitization method is the most popular one. In this article, photosensitized production of singlet oxygen from triplet oxygen and photosensitizers in presence of light, and its detection by the infrared luminescence at 1270 nm have been presented. Further, some results using different types of photosensitizers, effect of solvent on singlet oxygen quantum yields and lifetime have been discussed. The quenching rate constants of singlet oxygen have been determined with different types of organic molecules such as derivatives of thiourea and its analogues, hydroxy indoles and antioxidants and the results have been presented. (author)

  20. Threshold dose of three photosensitizers in dogs with spontaneous tumors.

    Science.gov (United States)

    Gloi, Aime M; Beck, Elsa

    2003-01-01

    Photodynamic threshold doses in dogs with spontaneous tumors can be achieved through a mathematical model. For this to be clinically relevant, it is important to know the treatment parameters for tissue necrosis. The threshold dose for three photosensitizers (porfimer sodium, aluminum cholorophthalocyanine [AlClPc], and tin ethyl etiopurpurin [SnET2]) commonly used in veterinary chemotherapy protocols was evaluated in 12 dogs with spontaneous tumors. To derive the photodynamic threshold dose, the tissue optical properties of each compound were determined by diffuse reflectance and thus the light fluence rate. Uptake was measured by fluorimetry using tissue solubilization techniques. The threshold values calculated were highest for AlClPc (irradiated 48 hours after administration). The radius of necrosis (4.00 to 5.48 mm) and photosensitizer uptake (3.4 to 6.91 microg/g) were elevated after injection of porfimer sodium. The threshold dose model described here is photosensitizer dependent but independent of photosensitizer uptake and light dose. This study indicates that more photon absorption is needed for tumor necrosis with AlClPc than for either SnET2 or porfimer sodium. PMID:15136988

  1. The effects of urea, guanidinium chloride and sorbitol on porphyrin aggregation: Molecular dynamics simulation

    Indian Academy of Sciences (India)

    Maryam Ghadamgahi; Davood Ajloo

    2013-05-01

    This paper compares the inhibition effect of porphyrin aggregation in the presence of urea, guanidinium chloride (Gdn) and sorbitol by molecular dynamics simulation. It demonstrates that porphyrin aggregation increases in sorbitol, but decreases towards addition of urea and Gdn. It shows that urea, Gdn and sorbitol can have a large effect — positive or negative, depending on the concentration — on the aggregation of the porphyrin. The effect of urea, Gdn and sorbitol on porphyrin aggregation has been inferred from the effect of these solutes on the hydration layer of porphyrin. It appears that the Gdn is more suitable than urea for decreasing the hydration layer of porphyrin while several osmolites like sorbitol are known to increase hydration layer and thus might stabilize the porphyrin aggregation. Results of radial distribution function (RDF), distributed atoms or molecules around target species, indicated that the increase and exclusion of solvent around porphyrin by osmolytes and Gdn would affect significantly on porphyrin aggregation. There was a sizeable difference in potency between the Gdn and urea, with the urea being less potent to decrease hydration layer and porphyrin aggregation.

  2. Synthesis, Characterization and Weak Intramolecular Interactions of Porphyrins Bearing Nucleobases

    Institute of Scientific and Technical Information of China (English)

    阮文娟; 李瑛; 赵小菁; 王传忠; 朱志昂; 缪方明

    2003-01-01

    5,10, 15-Triphenyl-20-{2- [α- (adenine-9 ) acetylamino]} phenyl porphyrin ( 1 ), 5,10, 15-triphenyl-20-{2-[α-(cytosine-1)acetylamino]} phenyl porphyrin (2), 5, 10, 15-triphenyl-20-{4-[α-(cytosine-1)ethoxy]} phenyl porphyrin (3) and their zinc complexes Zn-1, Zn-2 and Zn-3 have been prepared and characterized by 1H NMR spectra, elemental analyses, electronic absorption spectra and mass spectra (FAB). Intramolecular π-π interactions and intramolecular metal-~ interaction for 1, 2, Zn-1,and Zn-2 have been investigated by several methods. 1H NMR studies demonstrate that the porphyrin π-system in 1 and 2 is parallel to the adenine and the cytosine aromatic ring, respectively. The electronic absorption spectral properties of free porphyrin derivatives and their zinc complexes have been compared with those of H2TPP and ZnTPP. The results show that the UV-vis spectra of 1 and 2 are the same as that of H2TPP,whereas the spectra of their zinc complexes show 7 nm red shifts of the Soret bands compared to that of ZnTPP. The emission spectra of Zn-1 and Zn-2 are independent of excitation wavelength. From combination of the evidence of absorption and emission spectra it is suggested the existence of intramolecular metal-π interaction in Zn-1 and Zn-2. The results of conformational analysis agreed quite nicely with that of experiments, thus it was further to validate the experimental conclusions.

  3. Bionic catalysis of porphyrin for electrochemical detection of nucleic acids

    International Nuclear Information System (INIS)

    Highlights: ► This is the first application of bionic catalysis of porphyrin as detection probe in bioanalysis. ► Porphyrin–DNA–gold nanoparticle probe is synthesized. ► Binding model between FeTMPyP and DNA is verified. ► The detection probe shows excellent electrocatalytic behaviors toward the reduction of O2. ► The biosensor exhibited good performance with wide linear range and high specificity. - Abstract: A novel electrochemical strategy was designed for the detection of DNA based on the bionic catalysis of porphyrin. The detection probe was prepared via the assembly of thiolated double strand DNA (dsDNA) with gold nanoparticles (AuNPs), and then interacted with cationic iron (III) meso-tetrakis (N-methylphyridinum-4-yl) porphyrin (FeTMPyP) via groove binding along the dsDNA surface. The resulting nanocomplex was characterized with transmission electron microscopy, UV–vis absorption and circular dichroism spectroscopy. The FeTMPyP–DNA–AuNPs probe on gold electrode demonstrated the excellent electrocatalytic behaviors toward the reduction of O2 due to the largely loading of FeTMPyP and good conductivity. Based on bionic catalysis of porphyrin for the reduction of O2, the resulting biosensor exhibited a good performance for the detection of DNA with a wide linear range from 1 × 10−12 to 1 × 10−8 mol L−1 and detection limit of 2.5 × 10−13 mol L−1 at the signal/noise of 3. More importantly, the biosensor presented excellent ability to discriminate the perfectly complementary target and the mismatched stand. This strategy could be conveniently extended for detection of other biomolecules. To the best of our knowledge, this is the first application of bionic catalysis of porphyrin as detection probe and opens new opportunities for sensitive detection of biorecognition events.

  4. Increase of (CdSe/ZnS)Cys quantum dot luminescence intensity in the presence of TPPS{sub 4} porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Gustavo G.; Borissevitch, Iouri E. [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filosofia, Ciencias e Letras de Ribeirao Preto. Dept. de Fisica; Kuzmin, Vladimir A. [Emanuel Institute of Biophysical Chemistry, RAS-RU, Moscow (Russian Federation); Oleinikov, Vladimir A. [Shemyakin and Ovchinnikov Institute of Biooganic Cemistry, RAS-RU, Moscow (Russian Federation)

    2012-07-01

    Full text: Nanocrystal semiconductor particles or Quantum Dots (QD) possess extraordinary photophysical characteristics, such as extreme high fluorescence quantum yield and optical absorption and very narrow fluorescence band, which can be easily shifted by changing of QD particle size. Due to these characteristics, QD is promising for fluorescence cancer diagnostics and photodynamic treatment. The efficiency of these processes can be in- creased by energy transfer between QD and classic fluorescence probes and photosensitizers (PS). In this work we present on the study of the increase of (CdSe/ZnS)Cys quantum dot luminescence intensity, stimulated by interaction with TPPS{sub 4} porphyrin. The optical absorption and steady-state and time-resolved fluorescence techniques were employed. Water soluble QD (CdSe/ZnS) with emission at 580 nm, functionalized with cysteine (Cys), were studied. TPPS{sub 4} porphyrin was used as a stimulator of QD luminescence. All experiments were realized in PBS buffer (pH 7.3; 7.5 mM) in Milli-Q quality water. The TPPS{sub 4} adding into the QD solutions until the 5{mu}M concentration produced an increase in QD luminescence intensity and lifetime, while for TPPS{sub 4} concentrations higher than 20{mu}M the reduction of the fluorescence intensity was observed, the emission spectra and fluorescence decays profile being unchanged. This effect can not be due to the electrostatic interaction between (CdSe/ZnS)Cys and TPPS{sub 4} because both, (CdSe/ZnS)Cys and TPPS{sub 4}, are negatively charged. We suppose that TPPS{sub 4} porphyrin interacts directly with QD (ZnS) shell, reducing the dangling bound number. This reduction decreases, in turn, the probability of nonradiative ways of the excitation energy dissipation. When the majority of dangling bound is occupied by the TPPS{sub 4} molecules, the effect of QD luminescence reduction (quenching) by porphyrin predominates, probably, via the energy transfer from QD to TPPS{sub 4}. However

  5. Sol-gel reaction of porphyrin-based superstructures in the organogel phase: creation of mechanically reinforced porphyrin hybrids.

    Science.gov (United States)

    Kishida, Takanori; Fujita, Norifumi; Sada, Kazuki; Shinkai, Seiji

    2005-05-25

    We have demonstrated that a one-dimensional molecular assembly created by an H-aggregated porphyrin.Cu(II) stack can be immobilized, without a morphological change, by sol-gel polycondensation of the peripheral triethoxysilyl groups. The resultant gel prepared according to this flowchart has gained a very high thermal stability as well as a unique mechanical strength. PMID:15898763

  6. The Role of Porphyrin-Free-Base in the Electronic Structures and Related Properties of N-Fused Carbazole-Zinc Porphyrin Dye Sensitizers

    Directory of Open Access Journals (Sweden)

    Xing-Yu Li

    2015-11-01

    Full Text Available Dye sensitizers can significantly affect power conversion efficiency of dye-sensitized solar cells (DSSCs. Porphyrin-based dyes are promising sensitizers due to their performances in DSSCs. Here, based upon a N-fused carbazole-zinc porphyrin-free-base porphyrin triad containing an ethynyl-linkage (coded as DTBC, the novel porphyrin dyes named DTBC-MP and DTBC-TP were designed by varying the porphyrin-free-base units in the π conjugation of DTBC in order to study the effect of porphyrin-free-base in the modification of electronic structures and related properties. The calculated results indicate that, the extension of the conjugate bridge with the porphyrin-free-base unit results in elevation of the highest occupied molecular orbital (HOMO energies, decrease of the lowest unoccupied molecular orbital (LUMO energies, reduction of the HOMO-LUMO gap, red-shift of the absorption bands, and enhancement of the absorbance. The free energy changes demonstrate that introducing more porphyrin-free-base units in the conjugate bridge induces a faster rate of electron injection. The transition properties and molecular orbital characters suggest that the different transition properties might lead to a different electron injection mechanism. In terms of electronic structure, absorption spectra, light harvesting capability, and free energy changes, the designed DTBC-TP is a promising candidate dye sensitizer for DSSCs.

  7. Dietary boron, brain function, and cognitive performance.

    OpenAIRE

    Penland, J G

    1994-01-01

    Although the trace element boron has yet to be recognized as an essential nutrient for humans, recent data from animal and human studies suggest that boron may be important for mineral metabolism and membrane function. To investigate further the functional role of boron, brain electrophysiology and cognitive performance were assessed in response to dietary manipulation of boron (approximately 0.25 versus approximately 3.25 mg boron/2000 kcal/day) in three studies with healthy older men and wo...

  8. Banishing brittle bones with boron

    Energy Technology Data Exchange (ETDEWEB)

    A 6-month study indicates that boron, not even considered an essential nutrient for people and animals, may be a key to preventing osteoporosis, say nutritionist Forrest H. Nielsen and anatomist Curtiss D. Hunt at ARS' Grand Forks, North Dakota, Human Nutrition Research Center. They believe the results of the study - the first to look at the nutritional effects of boron in humans - will generate a lot of interest in the element. In the study, 12 postmenopausal women consumed a very low boron diet (0.25 milligrams per day) for 17 weeks then were given a daily 3-mg supplement - representing the boron intake from a well-balanced diet - for 7 more weeks. Within 8 days after the supplement was introduced, the lost 40 percent less calcium, one-third less magnesium, and slightly less phosphorus through the urine. In fact, their calcium and magnesium losses were lower than prestudy levels, when they were on their normal diets. Since boron isn't considered essential for people, there is not recommended intake and no boron supplement on the market. Nielsen says the supplement of sodium borate used in the study was specially prepared based on the amount of boron a person would get from a well-balanced diet containing fruits and vegetables. He says the average boron intake is about 1.5 mg - or half the experimental dose - but average means a lot of people get less and a lot get more. Hunt cautioned that large doses of boron can be toxic, even lethal. The lowest reported lethal dose of boric acid is about 45 grams (1.6 ounces) for an adult and only 2 grams (0.07 ounce) for an infant.

  9. Evaluation of carboranylporphyrins as boron delivery agents for neutron capture therapy

    International Nuclear Information System (INIS)

    The goals of the present study were two-fold. First, to determine the biodistribution of three carboranyl-porphyrins, designated H2DCP, H2TCP and H2TBP following intracerebral (i.c.) administration by means of convection enhanced delivery (CED) to F98 glioma bearing rats. Tumor boron concentrations immediately after CED were 36 and 88 μg/g for H2DCP and H2TCP, respectively, and were 103 and 62 μg/g for H2TCP and H2TBP, respectively, 24h after termination of CED. The corresponding normal brain concentrations were 5.2, 3.3 and 0.8 μg/g, and blood and liver concentrations all were 2TCP and H2TBP as boron delivery agents in F98 glioma bearing rats. BNCT was carried out at the Massachusetts Institute of Technology (MIT) Research Reactor (MITRR) 24 h after CED of 200 μl of either 0.5 mg of H2TCP or H2TBP. Untreated control rats all died within 29 days after tumor implantation and had a mean survival time (MST) of 23±3 days and irradiated controls had a MST of 27±3 days. Animals that received H2TCP by CED, followed by BNCT, had a MST of 35±4 days and animals received H2TBP had a MST of 44±10 days. Further studies were carried out using H2TBP at a dose of 0.2 mg administered by a Harvard pump, either alone or in combination with i.v. BPA, and the corresponding MSTs were 34±3 d and 43±9 d, respectively. Histopathologic examination of the brains of animals that died revealed large numbers of porphyrin laden macrophages and extracellular accumulations of free porphyrin indicating that tumor cell uptake was suboptimal. Further studies are planned to synthesize and evaluate new compounds that will have enhanced cellular uptake and efficacy as boron delivery agents for NCT. (author)

  10. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    The atomic structure and the lattice dynamics of α boron and of B4C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B4C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  11. Photophysical properties of novel Porphyrin-Flavin Dyads

    International Nuclear Information System (INIS)

    Photosynthesis belongs to the fundamentals of life on earth, therefore it is an important matter in natural sciences. The basic principle of photosynthesis is the transformation of solar light into chemical energy. The starting steps of photosynthesis are light-induced energy- and electron-transfer-steps with singular efficiency. One attempt to enlighten the molecular processes involved is to synthesize simpler model systems with similar properties. Important research goals are the dependencies of light-induced processes on distance and orientation of donor and acceptor. A second aim next to the clarification of the molecular conditions of photosynthesis is to create molecular light-driven machines. The most simple so-called biomimetic model system consists of an electron-donor connected to an electron-acceptor via a spacer-group. This simplest form is also referred to as dyad. Beyond dyads far more complicated compounds have been introduced consisting of several donors and/or acceptors, so-called triads, tetrads, pentads etc. Usually porphyrin serves as electron-donor. Next to chinones several other electron-acceptors are used, e.g. anthracene, pyromellitimide and fullerene. Artificial photosynthetic centers are often more stable and/or the excited states are easier to detect compared to the natural photosynthetic center. The photophysical characteristics of four dyads are reported in this work. The dyads consist of porphyrin (either free-base or zinc-metallated) and flavin, connected by different spacers. These dyads reveal photo-induced electron transfer from porphyrin to flavin and energy-transfer in the reversed direction with different efficiencies. The object of the study is the dependency of these processes on the structural features. The spacer of the dyads 1a-1c is an aromatic bridge which leads to well defined donor-acceptor distances. Because of this structure conjugation through the spacer is increased, whereas the absorption in the visible and near UV

  12. Tunable photophysical processes of porphyrin macrocycles on the surface of ZnO nanoparticles

    KAUST Repository

    Parida, Manas R.

    2015-01-23

    We investigated the impact of the molecular structure of cationic porphyrins on the degree of electrostatic interactions with zinc oxide nanoparticles (ZnO NPs) using steady-state and time-resolved fluorescence and transient absorption spectroscopy. Our results demonstrate that the number of cationic pyridinium units has a crucial impact on the photophysics of the porphyrin macrocycle. Fluorescence enhancement, relative to initial free porphyrin fluorescence, was found to be tuned from 3.4 to 1.3 times higher by reducing the number of cationic substituents on the porphyrin from 4 to 2. The resulting enhancement of the intensity of the fluorescence is attributed to the decrease in the intramolecular charge transfer (ICT) character between the porphyrin cavity and its meso substituent. The novel findings reported in this work provide an understanding of the key variables involved in nanoassembly, paving the way toward optimizing the interfacial chemistry of porphyrin-ZnO NP assembly for photodynamic therapy and energy conversion.

  13. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    Science.gov (United States)

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents. PMID:26877036

  14. RAFT Synthesis and Self-Assembly of Free-Base Porphyrin Cored Star Polymers

    OpenAIRE

    Lin Wu; Ronan McHale; Guoqiang Feng; Xiaosong Wang

    2011-01-01

    Reversible addition fragmentation chain transfer (RAFT) synthesis and self-assembly of free-base porphyrin cored star polymers are reported. The polymerization, in the presence of a free-base porphyrin cored chain transfer agent (CTA-FBP), produced porphyrin star polymers with controlled molecular weights and narrow polydispersities for a number of monomers including N, N-dimethylacrylamide (DMA) and styrene (St). Well-defined amphiphilic star block copolymers, P-(PS-PDMA)4 and P-(PDMA-PS)4 (...

  15. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Ashish Jain; C Ghosh; T R Ravindran; S Anthonysamy; R Divakar; E Mohandas; G S Gupta

    2013-12-01

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction patterns and the power spectrum calculated from the lattice images from thin regions of the sample. Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies showed that amorphous boron could be converted to its crystalline form at high temperatures.

  16. Synthesis and Characterization of One-dimensional and Two-Dimensional Porphyrin Polymers* (

    Institute of Scientific and Technical Information of China (English)

    LI; Xiang-qing

    2001-01-01

    Porphyrin polymers are of interest in relation to conductive materials[1, 2], catalysts for  photosynthetic charge separation[3], or the fundamental features in biological systems[4].There have been many versatile studies about them[5,6]. The one-dimensional “Shish Kebab”porphyrin polymers synthesized with a new method different from those reported and Schiff base porphyrin polymers with two-dimensional nano-structure have provided a new field of study. The present paper covers highly ordered porphyrin polymers.……

  17. Characterization of designed cobaltacarborane porphyrins using conductive probe atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Venetia D. Lyles

    2016-03-01

    Full Text Available Porphyrins and metalloporphyrins have unique chemical and electronic properties and thus provide useful model structures for studies of nanoscale electronic properties. The rigid planar structures and -conjugated backbones of porphyrins convey robust electrical characteristics. For our investigations, cobaltacarborane porphyrins were synthesized using a ring-opening zwitterionic reaction to produce isomers with selected arrangements of carborane clusters on each macrocycle. Experiments were designed to investigate how the molecular structure influences the self-organization, surface assembly, and conductive properties of three molecular structures with 2, 4, or 8 cobaltacarborane substituents. Current versus voltage (I-V spectra for designed cobaltacarborane porphyrins deposited on conductive gold substrates were acquired using conductive probe atomic force microscopy (CP-AFM. Characterizations with CP-AFM provide capabilities for obtaining physical measurements and structural information with unprecedented sensitivity. We found that the morphology of cobaltacarborane porphyrin structures formed on surfaces depends on a complex interplay of factors such as the solvent used for dissolution, the nature of the substrate, and the design of the parent molecule. The conductive properties of cobaltacarborane porphyrins were observed to change according to the arrangement of cobaltacarborane substituents. Specifically, the number and placement of the cobaltacarborane ligands on the porphyrin macrocycle affect the interactions that drive porphyrin self-assembly and crystallization. Interestingly, coulombic staircase I-V profiles were detected for a porphyrin with two cobaltacarborane substituents.

  18. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  19. Porphyrin Analogues of a Trityl Cation and Anion.

    Science.gov (United States)

    Kato, Kenichi; Kim, Woojae; Kim, Dongho; Yorimitsu, Hideki; Osuka, Atsuhiro

    2016-05-17

    Porphyrin-stabilized meso- or β-carbocations were generated upon treatment of the corresponding bis(4-tert-butylphenyl)porphyrinylcarbinols with trifluoroacetic acid (TFA). Bis(4-tert-butylphenyl)porphyrinylcarbinols were treated with TFA to generate the corresponding carbocations stabilized by a meso- or β-porphyrinyl group. The meso-porphyrinylmethyl carbocation displayed more effective charge delocalization with decreasing aromaticity compared with the β-porphyrinylmethyl carbocation. A propeller-like porphyrin trimer, tris(β-porphyrinyl)carbinol, was also synthesized and converted to the corresponding cation that displayed a more intensified absorption reaching over the NIR region. meso-Porphyrinylmethyl carbanion was generated as a stable species upon deprotonation of bis(4-tert-butylphenyl)(meso-porphyrinyl)methane with potassium bis(trimethylsilyl)amide (KHMDS) and [18]crown-6, whereas β-porphyrinylmethyl anions were highly unstable. PMID:26991021

  20. Spatially resolved micro-photoluminescence imaging of porphyrin single crystals

    Science.gov (United States)

    Marin, Dawn M.; Castaneda, Jose; Kaushal, Meesha; Kaouk, Ghallia; Jones, Daniel S.; Walter, Michael G.

    2016-08-01

    We describe the collection of both time-resolved and steady-state micro-photoluminescence data from solution-grown single crystals of 5,15-bis(4-carbomethoxyphenyl)porphyrin (BCM2PP). Linking molecular orientation and structure with excited-state dynamics is crucial for engineering efficient organic solar cells, light-emitting diodes, and related molecular electronics. Photoluminescence features of single porphyrin crystals were imaged using a laser scanning confocal microscope equipped with time-correlated single photon counting (TCSPC). We show enhanced exciton lifetimes (τs1 = 2.6 ns) and stronger steady-state emission in crystalline BCM2PP samples relative to semicrystalline thin films (τs1 = 1.8 ns).

  1. Site-isolated porphyrin catalysts in imprinted polymers.

    Science.gov (United States)

    Burri, Estelle; Ohm, Margarita; Daguenet, Corinne; Severin, Kay

    2005-08-19

    A meso-tetraaryl ruthenium porphyrin complex having four polymerizable vinylbenzoxy groups (2) has been synthesized by reaction of pyrrole with 4-(vinylbenzoxy)benzaldehyde and subsequent metalation with [Ru3(CO)12]. The porphyrin complex was immobilized by copolymerization with ethylene glycol dimethacrylate. The resulting polymer P2 was found to catalyze the oxidation of alcohols and alkanes with 2,6-dichloropyridine N-oxide without activation by mineral acids. Under similar conditions, the homogeneous catalyst 2 was completely inefficient. By using diphenylaminomethane and 1-aminoadamantane as coordinatively bound templates during the polymerization procedure, the molecularly imprinted polymers P3 and P4 have been synthesized. Compared with the polymer P2, the imprinted catalysts displayed a significantly increased activity with rate enhancements of up to a factor of 16. PMID:15977282

  2. Synthesis and Spectroscopic Characterization of Two Tetrasubstituted Cationic Porphyrin Derivatives

    Directory of Open Access Journals (Sweden)

    Newton M. Barbosa Neto

    2011-07-01

    Full Text Available An imidazolium tetrasubstituted cationic porphyrin derivative (the free base and its Zn(II complex with five-membered heterocyclic groups in the meso-positions were synthesized using microwave irradiation, and the compounds obtained characterized by 1H-NMR and mass spectrometry. We observed that under microwave irradiation the yield is similar to when the synthesis is performed under conventional heating, however, the time required to prepare the porphyrins decreases enormously. In order to investigate the electronic state of these compounds, we employed UV-Vis and fluorescence spectroscopy combined with quantum chemical calculations. The results reveal the presence, in both compounds, of a large number of electronic states involving the association between the Soret and a blue-shifted band. The Soret band in both compounds also shows a considerable solvent dependence. As for emission, these compounds present low quantum yield at room temperature and no solvent influence on the fluorescence spectra was observed.

  3. High-Efficiency Iron Photosensitizer Explained with Quantum Wavepacket Dynamics.

    Science.gov (United States)

    Pápai, Mátyás; Vankó, György; Rozgonyi, Tamás; Penfold, Thomas J

    2016-06-01

    Fe(II) complexes have long been assumed unsuitable as photosensitizers because of their low-lying nonemissive metal centered (MC) states, which inhibit electron transfer. Herein, we describe the excited-state relaxation of a novel Fe(II) complex that incorporates N-heterocyclic carbene ligands designed to destabilize the MC states. Using first-principles quantum nuclear wavepacket simulations we achieve a detailed understanding of the photoexcited decay mechanism, demonstrating that it is dominated by an ultrafast intersystem crossing from (1)MLCT-(3)MLCT proceeded by slower kinetics associated with the conversion into the (3)MC states. The slowest component of the (3)MLCT decay, important in the context of photosensitizers, is much longer than related Fe(II) complexes because the population transfer to the (3)MC states occurs in a region of the potential where the energy gap between the (3)MLCT and (3)MC states is large, making the population transfer inefficient. PMID:27187868

  4. Surface Free Energy Determination of APEX Photosensitive Glass

    Directory of Open Access Journals (Sweden)

    William R. Gaillard

    2016-02-01

    Full Text Available Surface free energy (SFE plays an important role in microfluidic device operation. Photosensitive glasses such as APEX offer numerous advantages over traditional glasses for microfluidics, yet the SFE for APEX has not been previously reported. We calculate SFE with the Owens/Wendt geometric method by using contact angles measured with the Sessile drop technique. While the total SFE for APEX is found to be similar to traditional microstructurable glasses, the polar component is lower, which is likely attributable to composition. The SFE was modified at each stage of device fabrication, but the SFE of the stock and fully processed glass was found to be approximately the same at a value of 51 mJ·m−2. APEX exhibited inconsistent wetting behavior attributable to an inhomogeneous surface chemical composition. Means to produce more consistent wetting of photosensitive glass for microfluidic applications are discussed.

  5. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  6. Photosensitized damage to telomere overhang and telomerase RNA by riboflavin

    Institute of Scientific and Technical Information of China (English)

    Yuxia Liu; Fuqiang Du; Weizhen Lin; Tiecheng Tu; Wenxin Li; Nianyun Lin

    2008-01-01

    By ESR spin elimination and photodeavage assay, the mechanisms of one-electron oxidation damage of oligonucleotides by excited triplet state of riboflavin (Rb) have been elucidated. The results demonstrate that Rb, an endogenous photosensitizer, is capable of cleaving single-stranded telomeric overhang and the template region of telomerase RNA under UVA irradiation, resulting in blocking of reverse transcription of telomeric DNA which leads to the apoptosis of cancer cells ultimately.

  7. Drug Discovery of Antimicrobial Photosensitizers Using Animal Models

    OpenAIRE

    Sharma, Sulbha K.; Dai, Tianhong; Gitika B Kharkwal; Huang, Ying-Ying; Huang, Liyi; Bil De Arce, Vida J.; Tegos, George P.; Hamblin, Michael R.

    2011-01-01

    Antimicrobial photodynamic therapy (aPDT) is an emerging alternative to antibiotics motivated by growing problems with multi-drug resistant pathogens. aPDT uses non-toxic dyes or photosensitizers (PS) in combination with harmless visible of the correct wavelength to be absorbed by the PS. The excited state PS can form a long-lived triplet state that can interact with molecular oxygen to produce reactive oxygen species such as singlet oxygen and hydroxyl radical that kill the microbial cells. ...

  8. Optical Amplification and Photosensitivity in Sol-Gel Based Waveguides

    OpenAIRE

    Selvarajan, A; T. Srinivas

    2001-01-01

    The sol-gel process has emerged as an effective route for the fabrication of optical waveguides and guided wave devices and circuits. In particular, it is possible to incorporate active dopants like neodymium, erbium, and cesium for integrated optical active devices and circuits. In this paper, a review of recent research on active devices and circuits based on sol-gel process is made. Specific studies undertaken in our laboratory on optical amplification and photosensitivity characteristi...

  9. Natural Dyes as Photosensitizers for Dye-sensitized Solar Cells

    OpenAIRE

    Hatem S. El-Ghamri; Sofyan A. Taya; Taher M. El-Agez; Amal M. Al-Kahlout; Naji Al Dahoudi; Monzir S. Abdel-Latif

    2015-01-01

    Dye-sensitized solar cells (DSSCs) were assembled using Zinc oxide (ZnO) nanoparticles as a photoelectrode and natural dyes extracted from eight natural plants as photosensitizers. The structural properties of the synthesized ZnO nanoparticles were studied using XRD, SEM and TEM characterizations. Photovoltaic parameters such as short circuit current density Jsc, open circuit voltage Voc, fill factor FF, and overall conversion efficiency η for the fabricated cells were determined under 100 mW...

  10. Layered double hydroxides with intercalated porphyrin as photofuncional materials

    Czech Academy of Sciences Publication Activity Database

    Lang, Kamil; Kubát, Pavel; Mosinger, Jiří; Bujdák, J.; Káfuňková, Eva; Kovanda, F.

    Bad Hofgastein : Graz University of Technology, 2008. s. 59. [Central European Conference on Photochemistry. 10.02.2008-14.02.2008, Bad Hofgastein] R&D Projects: GA ČR(CZ) GA203/06/1244; GA ČR GA203/07/1424 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : porphyrin Subject RIV: CA - Inorganic Chemistry

  11. Photoactive materials based on porphyrin / layered double hydroxide hybrid films

    Czech Academy of Sciences Publication Activity Database

    Bujdák, J.; Lang, Kamil; Iyi, N.

    Tours : UK Centre for Materials Education, 2009. B2.1.16. [International Conference on Multifunctional, Hybrid and Nanomaterials /1./. 15.03.2009-19.03.2009, Tours] R&D Projects: GA ČR(CZ) GA203/06/1244 Institutional research plan: CEZ:AV0Z40320502 Keywords : porphyrin * photochemistry * layered double hydroxide Subject RIV: CA - Inorganic Chemistry www.hybridmaterialsconference.com

  12. How intercalated porphyrins in layered double hydroxides produce singlet oxygen

    Czech Academy of Sciences Publication Activity Database

    Lang, Kamil; Káfuňková, Eva; Kovanda, F.; Taviot-Guého, Ch.

    Tours : UK Centre for Materials Education, 2009. B2.1.62. [International Conference on Multifunctional, Hybrid and Nanomaterials /1./. 15.03.2009-19.03.2009, Tours] R&D Projects: GA ČR(CZ) GA203/06/1244; GA AV ČR KAN100500651 Institutional research plan: CEZ:AV0Z40320502 Keywords : layered double hydroxides * porphyrin * singlet oxygen Subject RIV: CA - Inorganic Chemistry www.hybridmaterialsconference.com

  13. Design and Investigation of Novel Porphyrin(oid) Conjugate Systems

    OpenAIRE

    Biedermann, Miriam

    2013-01-01

    Within the first part of this thesis novel water-soluble donor-acceptor arrays built up by porphyrins and pyrene or perylene derivatives were designed via a copper(I)-catalysed 1,3-dipolar azide-alkyne cycloaddition reaction. For this purpose, suitable precursors, which were available by well-established synthetic literature procedures, were combined with newly developed complementary “click” counterparts. Thus, also the substance library of ortho-benzylic functionalised tetraarylporphyrins w...

  14. Quantitative vibrational dynamics of iron in nitrosyl porphyrins.

    Science.gov (United States)

    Leu, Bogdan M; Zgierski, Marek Z; Wyllie, Graeme R A; Scheidt, W Robert; Sturhahn, Wolfgang; Alp, E Ercan; Durbin, Stephen M; Sage, J Timothy

    2004-04-01

    We use quantitative experimental and theoretical approaches to characterize the vibrational dynamics of the Fe atom in porphyrins designed to model heme protein active sites. Nuclear resonance vibrational spectroscopy (NRVS) yields frequencies, amplitudes, and directions for 57Fe vibrations in a series of ferrous nitrosyl porphyrins, which provide a benchmark for evaluation of quantum chemical vibrational calculations. Detailed normal mode predictions result from DFT calculations on ferrous nitrosyl tetraphenylporphyrin Fe(TPP)(NO), its cation [Fe(TPP)(NO)]+, and ferrous nitrosyl porphine Fe(P)(NO). Differing functionals lead to significant variability in the predicted Fe-NO bond length and frequency for Fe(TPP)(NO). Otherwise, quantitative comparison of calculated and measured Fe dynamics on an absolute scale reveals good overall agreement, suggesting that DFT calculations provide a reliable guide to the character of observed Fe vibrational modes. These include a series of modes involving Fe motion in the plane of the porphyrin, which are rarely identified using infrared and Raman spectroscopies. The NO binding geometry breaks the four-fold symmetry of the Fe environment, and the resulting frequency splittings of the in-plane modes predicted for Fe(TPP)(NO) agree with observations. In contrast to expectations of a simple three-body model, mode energy remains localized on the FeNO fragment for only two modes, an N-O stretch and a mode with mixed Fe-NO stretch and FeNO bend character. Bending of the FeNO unit also contributes to several of the in-plane modes, but no primary FeNO bending mode is identified for Fe(TPP)(NO). Vibrations associated with hindered rotation of the NO and heme doming are predicted at low frequencies, where Fe motion perpendicular to the heme is identified experimentally at 73 and 128 cm-1. Identification of the latter two modes is a crucial first step toward quantifying the reactive energetics of Fe porphyrins and heme proteins. PMID

  15. Optical Biosensors with Porphyrins Immobilized into Polysilsesquioxane Matrices

    Czech Academy of Sciences Publication Activity Database

    Rychtáriková, Renata; Kuncová, Gabriela; Šabata, Stanislav; Hetflejš, Jiří; Šviráková, E.

    - : -, 2007, P3-06 /1/ -P3-06 /4/. [International Workshop on Bioencapsulation /15./. Vienna (AT), 06.09.2007-08.09.2007] R&D Projects: GA ČR(CZ) GA104/05/2637; GA ČR(CZ) GA203/06/1244; GA MŠk OC 121 Institutional research plan: CEZ:AV0Z40720504 Keywords : biosensor * porphyrin Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  16. Light harvesting with non covalent carbon nanotube / porphyrin compounds.

    OpenAIRE

    Roquelet, Cyrielle; Langlois, Benjamin; Vialla, Fabien; Garrot, Damien; Lauret, Jean-Sébastien; Voisin, Christophe

    2013-01-01

    We present recent developments in the synthesis and in the functional study of non covalently bound porphyrin/carbon nanotube compounds. The issue of the chemical stability of non covalent compounds is tackled by means of micelle assisted chemistry. The non covalent functionalization allows to preserve the electronic integrity of the nanotubes that display bright NIR luminescence. In the same time, the coupling between the subunits is very strong and leads to e cient energy transfer and PL qu...

  17. Supramolecular complex composed of a covalently linked zinc porphyrin dimer and fulleropyrrolidine bearing two axially coordinating pyridine entities.

    Science.gov (United States)

    D'Souza, Francis; Gadde, Suresh; Zandler, Melvin E; Itou, Mitsunari; Araki, Yasuyuki; Ito, Osamu

    2004-10-21

    A zinc porphyrin dimer-fullerene supramolecular complex with a large association constant is assembled; efficient intramolecular photoinduced electron transfer from the singlet excited state of zinc porphyrin to the fullerene is observed. PMID:15489978

  18. Novel photosensitizers trigger rapid death of malignant human cells and rodent tumor transplants via lipid photodamage and membrane permeabilization.

    Directory of Open Access Journals (Sweden)

    Mikhail M Moisenovich

    Full Text Available BACKGROUND: Apoptotic cascades may frequently be impaired in tumor cells; therefore, the approaches to circumvent these obstacles emerge as important therapeutic modalities. METHODOLOGY/PRINCIPAL FINDINGS: Our novel derivatives of chlorin e(6, that is, its amide (compound 2 and boronated amide (compound 5 evoked no dark toxicity and demonstrated a significantly higher photosensitizing efficacy than chlorin e(6 against transplanted aggressive tumors such as B16 melanoma and M-1 sarcoma. Compound 5 showed superior therapeutic potency. Illumination with red light of mammalian tumor cells loaded with 0.1 µM of 5 caused rapid (within the initial minutes necrosis as determined by propidium iodide staining. The laser confocal microscopy-assisted analysis of cell death revealed the following order of events: prior to illumination, 5 accumulated in Golgi cysternae, endoplasmic reticulum and in some (but not all lysosomes. In response to light, the reactive oxygen species burst was concomitant with the drop of mitochondrial transmembrane electric potential, the dramatic changes of mitochondrial shape and the loss of integrity of mitochondria and lysosomes. Within 3-4 min post illumination, the plasma membrane became permeable for propidium iodide. Compounds 2 and 5 were one order of magnitude more potent than chlorin e(6 in photodamage of artificial liposomes monitored in a dye release assay. The latter effect depended on the content of non-saturated lipids; in liposomes consisting of saturated lipids no photodamage was detectable. The increased therapeutic efficacy of 5 compared with 2 was attributed to a striking difference in the ability of these photosensitizers to permeate through hydrophobic membrane interior as evidenced by measurements of voltage jump-induced relaxation of transmembrane current on planar lipid bilayers. CONCLUSIONS/SIGNIFICANCE: The multimembrane photodestruction and cell necrosis induced by photoactivation of 2 and 5 are

  19. Extended rhodamine photosensitizers for photodynamic therapy of cancer cells.

    Science.gov (United States)

    Davies, Kellie S; Linder, Michelle K; Kryman, Mark W; Detty, Michael R

    2016-09-01

    Extended thio- and selenorhodamines with a linear or angular fused benzo group were prepared. The absorption maxima for these compounds fell between 640 and 700nm. The extended rhodamines were evaluated for their potential as photosensitizers for photodynamic therapy in Colo-26 cells. These compounds were examined for their photophysical properties (absorption, fluorescence, and ability to generate singlet oxygen), for their dark and phototoxicity toward Colo-26 cells, and for their co-localization with mitochondrial-specific agents in Colo-26 and HUT-78 cells. The angular extended rhodamines were effective photosensitizers toward Colo-26 cells with 1.0Jcm(-2) laser light delivered at λmax±2nm with values of EC50 of (2.8±0.4)×10(-7)M for sulfur-containing analogue 6-S and (6.4±0.4)×10(-8)M for selenium-containing analogue 6-Se. The linear extended rhodamines were effective photosensitizers toward Colo-26 cells with 5 and 10Jcm(-2) of broad-band light (EC50's⩽2.4×10(-7)M). PMID:27246858

  20. Photosensitized reactions initiated by 6-carboxypterin: singlet and triplet reactivity.

    Science.gov (United States)

    Tinel, L; Rossignol, S; Ciuraru, R; Dumas, S; George, C

    2016-06-22

    Pterins, derivatives of 2-aminopteridin-4(3H)-one, are natural photosensitizers, common to many biological systems. Indications that these photosensitizers are also present in the sea-surface microlayer motivated the study of the photophysical and photochemical properties of 6-carboxypterin (CPT), which was chosen as a model for this group of photoactive compounds. The kinetics of excited CPT in the singlet and triplet state in the presence of halides and organics were studied in aqueous solutions at neutral pH by means of steady-state fluorescence and laser-flash photolysis. The fluorescence of CPT was efficiently quenched by two halides (iodide and bromide) and by four carboxylic acids (lactic, malonic, propionic and citric acid) with reaction rates close to the diffusion-controlled limit. In the triplet state, the triplet absorption spectrum was measured and its pH dependence was studied. The triplet state of CPT showed relatively high reactivity towards iodide, but no reaction with bromide or chloride could be observed. No singlet or triplet state quenching in the presence of limonene could be measured. A reaction mechanism is proposed, initiated by electron transfer from the quencher to the excited photosensitizer. This type of photo-induced reaction in the sea-surface microlayer has the potential to trigger the production of many oxidized species, including halogen atoms, in the bulk and gaseous phases. PMID:27296228

  1. Photosensitized inactivation of infectious blood-borne human parasites

    Science.gov (United States)

    Judy, Millard M.; Sogandares-Bernal, Franklin M.; Matthews, James Lester

    1995-05-01

    Blood-borne viruses and protozoan parasites that are infectious to humans pose risk world-wide of infection transmission through blood and blood product transfusion. Blood-borne infectious viruses include human immunodeficiency virus (HIV-I), which causes AIDS; hepatitis C virus, which can cause chronic hepatitis; and cytomegalovirus, which can be dangerous to immunocompromised patients, e.g., the newborn, transplant recipients, and AIDS patients. Infectious blood-borne protozoan parasites include Trypanosoma cruzi, which causes Chagas' disease, endemic throughout Central and South America; the Trypanosoma species causing African sleeping sickness endemic in Central Africa; and Plasmodium falciparum, which causes malignant and increasingly drug- resistant human malaria prevalent throughout the tropics. Some researchers have focused on using photosensitizers to inactivate HIV-I and other viruses in whole blood, packed red cells, and platelet concentrates without compromising blood product function. Our group previously has reported photosensitized in vitro inactivation of P. falciparum and the mouse malaria organism Plasmodium berghei in whole blood using hematoporphyrin derivative (HPD) and of T. cruzi using benzoporphyrin derivatives BPDMA and BPDDA, dihematoporphyrin ether (DHE), and hydroxyethylvinyldeuteroporphyrin (HEVD). These results suggest that continued investigation is warranted to evaluate the potential for photosensitized inactivation of blood-borne parasites in blood banking.

  2. Polymer-Immobilized Photosensitizers for Continuous Eradication of Bacteria

    Directory of Open Access Journals (Sweden)

    Anton Valkov

    2014-08-01

    Full Text Available The photosensitizers Rose Bengal (RB and methylene blue (MB, when immobilized in polystyrene, were found to exhibit high antibacterial activity in a continuous regime. The photosensitizers were immobilized by dissolution in chloroform, together with polystyrene, with further evaporation of the solvent, yielding thin polymeric films. Shallow reservoirs, bottom-covered with these films, were used for constructing continuous-flow photoreactors for the eradication of Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli and wastewater bacteria under illumination with visible white light using a luminescent lamp at a 1.8 mW·cm−2 fluence rate. The bacterial concentration decreased by two to five orders of magnitude in separate reactors with either immobilized RB or MB, as well as in three reactors connected in series, which contained one of the photosensitizers. Bacterial eradication reached more than five orders of magnitude in two reactors connected in series, where the first reactor contained immobilized RB and the second contained immobilized MB.

  3. Photopatch and UV-irradiated patch testing in photosensitive dermatitis

    Directory of Open Access Journals (Sweden)

    Reena Rai

    2016-01-01

    Full Text Available Background: The photopatch test is used to detect photoallergic reactions to various antigens such as sunscreens and drugs. Photosensitive dermatitis can be caused due to antigens like parthenium, fragrances, rubbers and metals. The photopatch test does not contain these antigens. Therefore, the Indian Standard Series (ISS along with the Standard photopatch series from Chemotechnique Diagnostics, Sweden was used to detect light induced antigens. Aim: To detect light induced antigens in patients with photosensitive dermatitis. Methods: This study was done in a descriptive, observer blinded manner. Photopatch test and ISS were applied in duplicate on the patient's back by the standard method. After 24 hours, readings were recorded according to ICDRG criteria. One side was closed and other side irradiated with 14 J/cm2 of UVA and a second set of readings were recorded after 48 hrs. Result: The highest positivity was obtained with parthenium, with 18 out of 35 (51% patients showing a positive patch test reaction with both photoallergic contact dermatitis and photoaggravation. Four patients (11% showed positive patch test reaction suggestive of contact dermatitis to potassium dichromate and fragrance mix. Six patients had contact dermatitis to numerous antigens such as nickel, cobalt, chinoform and para-phenylenediamine. None of these patients showed photoaggravation on patch testing. Conclusion: Parthenium was found to cause photoallergy, contact dermatitis with photoaggravation and contact allergy. Hence, photopatch test and UV irradiated patch test can be an important tool to detect light induced antigens in patients with photosensitive dermatitis.

  4. Self diffraction holographic techniques for investigation of photosensitive materials

    Science.gov (United States)

    Avila, Luis F.; Nalin, Marcelo; Cescato, Lucila

    2013-05-01

    Holographic techniques are powerful tools to study photosensitive materials due to the high sensitivity of diffraction measurement and the ability to detect dynamic gratings. The self diffraction technique consists in to project an interference fringe pattern into the photosensitive material and to measure, in real time, the self-diffraction of the interfering beams, at the grating generated in the photosensitive material. Besides the higher sensitivity, such measurement allows to measure simultaneously and separately the phase and the amplitude grating contributions, as well as thin or thick gratings. In order to demonstrate potentiality of this technique we measured the kinetic constant of the photo-reaction in positive photoresists (AZ types) and negative SU-8 photoresist, as well as the maximum values of the refractive index and of the absorption coefficient modulations induced in these materials at different wavelengths of exposure. The same measurements were performed in SB based chalcogenide glasses in order to evaluate the potential of such materials to be used as optical data storage devices.

  5. Plasmon enhanced photoconduction in porphyrin-gold nanoparticle assemblies

    Science.gov (United States)

    Conklin, David J.

    2011-07-01

    This thesis describes a series of experiments to both determine the origins of charge transport and enhanced photoconduction in metal nanoparticle arrays linked with zinc-porphyrin complexes, but to also determine the nucleation and growth mechanisms related to Ferroelectric Nanolithography (FNL) as a platform for hybrid devices. The development of test structures on glass substrates was undertaken to not only allow the study of the mechanisms controlling charge transport but the photoconduction of zinc-porphyrin linked gold nanoparticle (AuNP) arrays. In this study, the dominate charge transport mechanism was determined to be thermally assisted tunneling and the origins of enhanced photoconduction in these systems was attributed to three mechanisms: direct exciton formation in the molecules, hot electrons and a field effect (optical antenna) due to the excitation of surface plasmons. In the hope of developing a platform for hybrid devices, FNL was utilized to systematically vary the parameters that effect the deposition of metal nanoparticles through domain directed deposition on ferroelectric surfaces. The nucleation and growth mechanisms were determined through this work, where the integrated photon flux controlled the particle density and the interface between the particle and the ferroelectric surface determined the particles size. Finally, with the ability to control the deposition of AuNPs on a ferroelectric surface, hybrid devices of zinc-porphyrin linked AuNPs were realized with FNL.

  6. Porphyrin doped vanadium pentoxide xerogel as electrode material

    Energy Technology Data Exchange (ETDEWEB)

    Anaissi, F.J.; Engelmann, F.M.; Araki, K.; Toma, H.E. [Sao Paulo Univ., SP (Brazil). Inst. de Quimica

    2003-04-01

    The lamellar composite material, VXG-TMPyP, obtained from the combination of cationic, water-soluble meso-(tetra-4-methyl-pyridinium)porphyrin (TMPyP) and vanadium pentoxide gel was investigated and employed as electrode modifying material. This material was isolated as a xerogel and characterized by X-ray diffraction, UV-Vis spectroscopy, cyclic voltammetry, spectro-electrochemistry and TG analysis. According to the X-ray diffraction data, the original VXG lamellar matrix framework is kept in the composite, evidencing a topotatic reaction. UV-Vis spectra indicated a strong interaction between VXG and TMPyP leading to the protonation of the porphyrin ring. In contrast with the vanadium oxide xerogel the new material is stable in water. The presence of the cationic porphyrin species in its structure turns it able to incorporate negatively charged ions, such as ferrocyanide and I{sup -}. The presence of the I{sub 2}/I{sup -} couple gives rise to a dramatic increase in the reversibility of the V{sup V/IV} process and in the charge capacity of the material. (authors)

  7. (99m)Tc-labeled porphyrin-lipid nanovesicles.

    Science.gov (United States)

    Lee, Jae-Ho; Shao, Shuai; Cheng, Kenneth T; Lovell, Jonathan F; Paik, Chang H

    2015-01-01

    Porphyrin-lipid nanovesicles (PLN) have been developed with intrinsic capabilities as activatable multimodal photonic contrast agents. Radiolabeling of PLN encapsulating drugs could eventually be able to provide quantitative in vivo information for diagnosing and treating diseases. In this study, we developed (99m)Tc-labeled porphyrin-lipid nanovesicles ((99m)Tc-PLN) as a cargo-encapsulated formulation without significant impact on liposome integrity and encapsulation stability. 50 mM calcein was encapsulated into PLN by probe sonication. The size of the PLN was about 150 nm. The PLN were then reacted with (99m)Tc using SnCl2 dissolved in 1 mM HCl as a reducing agent and incubated for 10 min at 22 °C. The radiolabeling efficiency and stability of (99m)Tc-PLN were evaluated by instant thin-layer chromatography and low-pressure liquid chromatography (LPLC). (99m)Tc labeling was successful with a >92% labeling efficiency. LPLC showed that the liposomal elution peaks of the porphyrin-lipid and the calcein overlapped with the radioactivity elution peak of (99m)Tc-labeled PLN. The (99m)Tc-labeling procedure did not change the size of PLN. Encapsulated calcein remained inert inside PLN. Thus, this work lays out a simple and effective radiolabeling method using SnCl2 in HCl in the preparation of (99m)Tc-PLN. PMID:24963601

  8. Highly Stable Mesoporous Zirconium Porphyrinic Frameworks with Distinct Flexibility.

    Science.gov (United States)

    Xu, Lei; Luo, Yan-Ping; Sun, Lin; Xu, Yan; Cai, Zhong-Sheng; Fang, Min; Yuan, Rong-Xin; Du, Hong-Bin

    2016-04-25

    The construction of highly stable metal-porphyrinic frameworks (MPFs) is appealing as these materials offer great opportunities for applications in artificial light-harvesting systems, gas storage, heterogeneous catalysis, etc. Herein, we report the synthesis of a novel mesoporous metal-porphyrinic framework (denoted as NUPF-1) and its catalytic properties. NUPF-1 is constructed from a new porphyrin linker and a Zr6 O8 structural building unit, possessing an unprecedented doubly interpenetrating scu net. The structure exhibits not only remarkable chemical and thermal stabilities, but also a distinct structural flexibility, which is seldom seen in metal-organic framework (MOF) materials. By the merit of high chemical stability, NUPF-1 could be easily post-metallized with [Ru3 (CO)12 ], and the resulting {NUPF-1-RuCO} is catalytically active as a heterogeneous catalyst for intermolecular C(sp(3) )-H amination. Excellent yields and good recyclability for amination of small substrates with various organic azides have been achieved. PMID:26960623

  9. Wettability of boron carbide

    International Nuclear Information System (INIS)

    The wettability of boron carbide has been examined by means of the sessile drop method, using the following candidate alloys: (96wt%AG-4wt%Ti), (Ag-26.5wt%Cu-3wt%Ti), (Sn-10wt%Ag-4wt%Ti), Sn(99.95wt%) and Al(99.99wt%). The results show that B4C is completely wetted by the Ag-based alloys. Sn-10wt%Ag-4wt%Ti alloy and pure Al partly wet the B4C surface, while pure Sn does not wet B4C at all. For all the alloys used, except pure Sn, a reaction layer was observed at the interface between the ceramic part and the metal drop. Although the spreading kinetics of the Al-drop was much slower compared with the Ti-containing alloys, the reaction rate was considerably higher in the former case. This suggests that aluminium is an attractive candidate material for brazing of B4C. Formation of the low melting B2O3 at the B4C surface may cause oxidation of the filler metal during joining, which, in turn, leads to a low bond strength

  10. Thermal conductivity of boron carbide-boron nitride composites

    International Nuclear Information System (INIS)

    This paper reports that because of their preferred orientation, the addition of boron nitride dispersions to hot-pressed boron carbide was found to result in a considerable degree of anisotropy in thermal conductivity of the resulting composite, indicated by an increase in the thermal conductivity perpendicular to the hot-pressing direction by as much as a factor of 3 at the highest boron nitride volume fractions of this study, and a decrease in the thermal conductivity parallel to the hot-pressing direction by as much as a factor of 2. The composite data were found to be below the values expected from composite theory, which may represent indirect evidence for the existence of an interfacial thermal barrier

  11. Air oxidation of the kerogen/asphaltene vanadyl porphyrins: an electron spin resonance study

    Directory of Open Access Journals (Sweden)

    MIRJANA S. PAVLOVIC

    2000-02-01

    Full Text Available The thermal behavior of vanadyl porphyrins was studied by electron spin resonance during heating of kerogens, isolated from the La Luna (Venezuela and Serpiano (Switzerland bituminous rocks, at 25°C for 1 to 20 days in the presence of air. During the thermal treatment of the kerogens, the vanadyl porphyrins resonance signals decrease monotonically and become quite small after 6 days of heating. Concomitantly, new vanadyl signals appear and, at longer heating times, dominate the spectrum. It is suggested that the secondary vanadyl species must have been formed from vanadyl porphyrins. Similar conversions of vanadyl porphyrins are observed under the same experimental conditions for asphaltenes extracted from the La Luna and Serpiano rocks, and floating asphalt from the Dead Sea (Israel. A comparison of the spin-Hamiltonian parameters for vanadyl porphyrins and the vanadyl compounds obtained during pyrolysis of the kerogens/asphaltenes suggests that the latter are of a non-porphyrin type. For comparison a study was conducted on Western Kentucky No. 9 coal enriched with vanadium (>>400 ppm from six mines. All the coal samples show only the presence of predominant by non-porphyrin vanadyl compounds, similar to those generated through laboratory heating of the kerogens/asphaltenes in air. In addition, some samples also contain a minor amount of vanadyl porphyrins.

  12. Palladium-Catalyzed Polyfluorophenylation of Porphyrins with Bis(polyfluorophenylzinc Reagents

    Directory of Open Access Journals (Sweden)

    Toshikatsu Takanami

    2013-10-01

    Full Text Available A facile and efficient method for the synthesis of pentafluorophenyl- and related polyfluorophenyl-substituted porphyrins has been achieved via palladium-catalyzed cross-coupling reactions of brominated porphyrins with bis(polyfluorophenylzinc reagents. The reaction is applicable to a variety of free-base bromoporphyrins, their metal complexes, and a number of bis(polyfluorophenylzinc reagents.

  13. To what extent can charge localization influence electron injection efficiency at graphene-porphyrin interfaces?

    KAUST Repository

    Mohammed, Omar F.

    2015-04-28

    Controlling the electron transfer process at donor- acceptor interfaces is a research direction that has not yet seen much progress. Here, with careful control of the charge localization on the porphyrin macrocycle using β -Cyclodextrin as an external cage, we are able to improve the electron injection efficiency from cationic porphyrin to graphene carboxylate by 120% . The detailed reaction mechanism is also discussed.

  14. Ultrafast electron injection at the cationic porphyrin-graphene interface assisted by molecular flattening

    KAUST Repository

    Aly, Shawkat Mohammede

    2014-01-01

    The steady-state and femtosecond (fs) time-resolved data clearly demonstrate that the charge transfer (CT) process at the porphyrin-graphene carboxylate (GC) interfaces can be tuned from zero to very sufficient and ultrafast by changing the electronic structure of the meso unit and the redox properties of the porphyrin cavity. This journal is © the Partner Organisations 2014.

  15. Dye linked conjugated homopolymers: using conjugated polymer electroluminescence to optically pump porphyrin-dye emission

    DEFF Research Database (Denmark)

    Nielsen, K.T.; Spanggaard, H.; Krebs, Frederik C

    2004-01-01

    Zinc-porphyrin dye molecules were incorporated into the backbone of a conjugated polymer material by a method, which allowed for the incorporation of only one zinc-porphyrin dye molecule into the backbone of each conjugated polymer molecule. The electronic properties of the homopolymer were...

  16. Liquid chromatography of urinary porphyrins for the biological monitoring of occupational exposure to porphyrinogenic substances

    Energy Technology Data Exchange (ETDEWEB)

    Colombi, A.; Maroni, M.; Ferioli, A.; Valla, C.; Coletti, G.; Foa, V.

    1983-01-01

    Very sensitive and precise analytical methods for measuring total porphyrin excretion and the relative amounts of different porphyrins in urine are required in order to monitor the biological effects of porphyrinogenic substances in workers and the general population. Many analytical steps of a HPLC method for measuring porphyrins as methyl esters in urine have been perfected. Sensitivity is 0.1 microgram/1 for each type of porphyrin, and average recovery is 92% in the range of 50-450 micrograms/liter porphyrins. The coefficient of variation is 3.4% within a series and 12.5% between series. Chemical oxidation before analysis and appropriate storing of the samples are the key points in achieving high quality results. The urinary excretion of porphyrins in healthy male workers varies within the range 21 to 161 micrograms/liter (95% limits of a group of 78 subjects). Concomitant factors, like drug use or liver disorders, were found to alter urinary porphyrin excretion. The proposed method permits the detection of extremely small alterations in porphyrin excretion resulting from occupational exposure to industrial chemicals such as, for example, mild coproporphyrinuria or early stages of chemical porphyria induced by polyhalogenated arylhydrocarbons.

  17. The boron trifluoride nitromethane adduct

    Science.gov (United States)

    Ownby, P. Darrell

    2004-02-01

    The separation of the boron isotopes using boron trifluoride·organic-donor, Lewis acid·base adducts is an essential first step in preparing 10B enriched and depleted crystalline solids so vital to nuclear studies and reactor applications such as enriched MgB 2, boron carbide, ZrB 2, HfB 2, aluminum boron alloys, and depleted silicon circuits for radiation hardening and neutron diffraction crystal structure studies. The appearance of this new adduct with such superior properties demands attention in the continuing search for more effective and efficient means of separation. An evaluation of the boron trifluoride nitromethane adduct, its thermodynamic and physical properties related to large-scale isotopic separation is presented. Its remarkably high separation factor was confirmed to be higher than the expected theoretical value. However, the reportedly high acid/donor ratio was proven to be an order of magnitude lower. On-going research is determining the crystal structure of deuterated and 11B enriched 11BF 3·CD 3NO 2 by X-ray and neutron diffraction.

  18. Boron carbide nanolumps on carbon nanotubes

    Science.gov (United States)

    Lao, J. Y.; Li, W. Z.; Wen, J. G.; Ren, Z. F.

    2002-01-01

    Boron carbide nanolumps are formed on the surface of multiwall carbon nanotubes by a solid-state reaction between boron and carbon nanotubes. The reaction is localized so that the integrity of the structure of carbon nanotubes is maintained. Inner layers of multiwall carbon nanotubes are also bonded to boron carbide nanolumps. These multiwall carbon nanotubes with boron carbide nanolumps are expected to be the ideal reinforcing fillers for high-performance composites because of the favorable morphology.

  19. CHD2 variants are a risk factor for photosensitivity in epilepsy

    DEFF Research Database (Denmark)

    Galizia, Elizabeth C.; Myers, Candace T.; Leu, Costin;

    2015-01-01

    -represented in cases overall (P = 2.17 × 10(-5)). Among epilepsy syndromes, there was over-representation of unique CHD2 variants (3/36 cases) in the archetypal photosensitive epilepsy syndrome, eyelid myoclonia with absences (P = 3.50 × 10(-4)). CHD2 variation was not over-represented in photoparoxysmal...... response without seizures. Zebrafish larvae with chd2 knockdown were tested for photosensitivity. Chd2 knockdown markedly enhanced mild innate zebrafish larval photosensitivity. CHD2 mutation is the first identified cause of the archetypal generalized photosensitive epilepsy syndrome, eyelid myoclonia with...

  20. NEW ADVANCES IN BORON SOIL CHEMISTRY

    Science.gov (United States)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  1. Characterisation of nanohybrids of porphyrins with metallic and semiconducting carbon nanotubes by EPR and optical spectroscopy.

    Science.gov (United States)

    Cambré, Sofie; Wenseleers, Wim; Culin, Jelena; Van Doorslaer, Sabine; Fonseca, Antonio; Nagy, Janos B; Goovaerts, Etienne

    2008-09-15

    Single-walled carbon nanotubes (SWCNTs) are noncovalently functionalised with octaethylporphyrins (OEPs) and the resulting nanohybrids are isolated from the free OEPs. Electron paramagnetic resonance (EPR) spectroscopy of cobalt(II)OEP, adsorbed on the nanotube walls by pi-pi-stacking, demonstrates that the CNTs act as electron acceptors. EPR is shown to be very effective in resolving the different interactions for metallic and semiconducting tubes. Moreover, molecular oxygen is shown to bind selectively to nanohybrids with semiconducting tubes. Water solubilisation of the porphyrin/CNT nanohybrids using bile salts, after applying a thorough washing procedure, yields solutions in which at least 99% of the porphyrins are interacting with the CNTs. Due to this purification, we observe, for the first time, the isolated absorption spectrum of the interacting porphyrins, which is strongly red-shifted compared to the free porphyrin absorption. In addition a quasi-complete quenching of the porphyrin fluorescence is also observed. PMID:18712730

  2. Absorption and fluorescence properties of aryl substituted porphyrins in different media

    Science.gov (United States)

    Bozkurt, Serap Seyhan; Merdivan, Melek; Ayata, Sevda

    2010-02-01

    Absorption and fluorescence properties of aryl substituted porphyrins, 5,10,15,20-tetra-4-oxy(aceticacid)phenylporphyrin (TAPP), 5,10,15,20-tetra-(4-phenoxyphenyl) porphyrin (TPPP), 5,10,15,20-tetra-(3-bromo-4-hydroxyphenyl) porphyrin (TBHPP), and 5,10,15,20-tetra-p-chloromethylphenyl porphyrin (CMPP) were investigated. The UV/vis absorption, fluorescence and excited spectra as the fluorescence quantum yields and fluorescence lifetimes for the compounds were measured in organic solvents (chloroform (CHCl 3), tetrahydrofuran (THF)) and immobilized media (PVC film, sol-gel matrix). The fluorescence quantum yields of TAPP and TPPP were higher than the others. The fluorescence lifetimes of all studied porphyrin derivates were found to be fifty percent lower and their fluorescence intensities were increased fifty percent more in both of immobilized mediums, as compared to organic solvents.

  3. Photochromic system of an acid-sensing porphyrin; Sankan`osei porufuirin no hotokuromizumu

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K.; Okumura, H.; Deguchi, M.; Iwata, S. [Seikei Univ., Musashino, Tokyo (Japan)

    1998-07-10

    The photochromism of porphyrin caused by addition and elimination of hydrogen chloride generated by the photodegradation of a solvent is investigated. The effects of solvents and porphyrin substituents on the photochromism are examined. The experiments show that 50% 2-chloroethanol/ethyl acetate is suitable as solvent because of quick generation of hydrogen chloride by photoirradiation and the facile abstraction of hydrogen chloride from porphyrin hydrochloride upon heating. Among examined porphyrins, 5,10,15,20-tetrakis(4-trifluoromethylphenyl)porphyrin (CF3TPP) is found to be fitted because of its sufficient light resistance. The photochromic system composed of CF3TPP and 50% 2-chloroethanol/ethyl acetate reveals to be stable to the repeated addition and abstraction of hydrogen chloride by irradiation and heating. 8 refs., 5 figs., 1 tab.

  4. Out-of-Plane Coordinated Porphyrin Nanotubes with Enhanced Singlet Oxygen Generation Efficiency.

    Science.gov (United States)

    Zhao, Qiang; Wang, Yao; Xu, Yanshuang; Yan, Yun; Huang, Jianbin

    2016-01-01

    A supramolecular porphyrin nanotube displaying J-aggregation feature was constructed by out-of-plane coordinated bismuth-porphyrin. Significantly, compared to traditional J-aggregated porphyrin suffering from fluorescence and singlet oxygen quenching, the nanotube exhibits excellent bio-imaging ability and enhanced production efficiency of singlet oxygen. The out-of-plane structure of bismuth to porphyrin makes the aggregation an appropriate material for theranostics. Furthermore, it is also a potential radio-therapeutic drug owing to the presence of radio-active bismuth. Thus, the self-assembly of out-of-plane coordinated porphyrin can be a facile approach toward effective therapy of tumors and other diseases. PMID:27527403

  5. Fusing porphyrins with polycyclic aromatic hydrocarbons and heterocycles for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Mark E.; Diev, Viacheslav; Hanson, Kenneth; Forrest, Stephen R.

    2015-08-18

    A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: ##STR00001## By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,.beta. fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.

  6. Boron doping a semiconductor particle

    Science.gov (United States)

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  7. Boron steel. I Part. Preparation

    International Nuclear Information System (INIS)

    With the advent of the first nuclear reactors arise the need for control rods and shielding duties for some types of radiations. One of the materials used for this purpose has been the high boron steel. This paper describes the melting and casting procedures employed for the production, at laboratory scale, of steels with Boron content ranging from 1 to 4 per cent, as well as the metallographic and X-Ray techniques used for the identification of the present phases. The electrolytic technique employed for the isolation of the Fe2B phase and its subsequent X-Ray identification has proved to be satisfactory. (Author) 11 refs

  8. Shear amorphization of boron suboxide

    International Nuclear Information System (INIS)

    We report for the first time the shear-induced local amorphization of boron suboxide subjected to nanoindentation. The amorphous bands have a width of ∼1–3 nm and a length of 200–300 nm along the (01¯11) crystal plane. We show direct experimental evidence that the amorphous shear bands of boron suboxide are driven from the coalescence of dislocation loops under high shear stresses. These observations provide insights into the microscopic deformation and failure of high-strength and lightweight ceramics

  9. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  10. Mechanical properties of boron coatings

    International Nuclear Information System (INIS)

    Internal stress of coatings will cause reliability problems, such as adhesion failure and peeling. We measured the internal stress in boron coatings, which was prepared by the ion plating method, with an apparatus based on the optically levered laser technique. The boron coatings exhibited large compressive stress in the range from -0.5 GPa to -2.6 GPa. It was found that these compressive stresses were decreasing functions of the deposition rate and were increasing functions of the ion bombardment energy. ((orig.))

  11. Photosensitive PZT gel films and their preparation for fine patterning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weihua; Zhao Gaoyang; Chen Zhiming

    2003-05-25

    A novel technique has been developed to lithographically make fine patterns on PZT films. Employing chemical modification in acetylacetone (AcAc), we have obtained an UV photosensitive PZT sol from which the PZT films to be patterned can be prepared. With methanol as solvent and AcAc as chemical modifier, three sols used to compose the PZT coating sol are obtained from Zirconium oxynitrate (ZrO(NO{sub 3}){sub 2}), lead acetate (Pb(CH{sub 3}COO){sub 2}), and tetrabutyl titanate ((C{sub 4}H{sub 9}O){sub 4}Ti), respectively. By means of UV-vis and FT-IR spectrophotometers we have found that AcAc can associate with Zr, Pb, and Ti ions to form three chelate complexes, the UV absorption peaks of which are located at wavelength 304, 315 and 329 nm, respectively. However, the photosensitive PZT coating sol has UV absorption peak at around 312 nm. Both the chelate complexes in sol and the UV absorption peak can be remained in the gel films. When the photosensitive PZT gel film is irradiated by UV light containing 312 nm wavelength, its solubility in solvents such as alcohol, acetone and so on is reduced remarkably, while the UV absorption peak disappears with the dissociation of the chelate complexes correspondingly. Utilizing the characteristics, a fine pattern can be obtained by irradiation of UV light on the PZT gel film through a pattern mask and dissolving the non-irradiated area in suitable solvent. After annealing at 680 deg. C for 30 min, the PZT films with specific fine pattern can be obtained.

  12. Photosensitive Ox/GaAs heterojunctions: Creation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Rud' , V. Yu. [St. Petersburg State Polytechnical University (Russian Federation); Rud' , Yu. V., E-mail: yuryrud@mail.ioffe.ru; Terukov, E. I.; Ushakova, T. N. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2012-06-15

    A method for the thermal oxidation of GaAs crystals in air is suggested and the first photosensitive Ox/n-GaAs heterojunctions, where Ox is a native oxide, are fabricated. The steady current-voltage characteristics and spectra of relative quantum efficiency of the new structures are studied. The features of the spectra of photoactive absorption of the obtained heterojunctions are discussed. The potential of using vacuumfree thermal oxidation of the GaAs crystals in air to fabricate broadband heterophotoconverters of optical radiation on their basis is established.

  13. Photosensitive optical waveguide film for high-speed optical interconnection

    International Nuclear Information System (INIS)

    Next generation high performance electronics requires high-speed, high-density and low power consumption signal transmission. The optical interconnection is one of the best promising solutions and the optical waveguide technology is a key driver. This paper presents photosensitive polymer film materials with high optical transparency and thermal properties. The materials are designed to fabricate high density multimode optical interconnections, using lamination and exposure development processes. The authors report design of the materials, process, and properties of optical waveguides, as well as future aspects of applications. (Author)

  14. Photosensitive holographic material with a medium of fluorescent ink

    Science.gov (United States)

    Olivares-Pérez, A.; Toxqui-López, S.; Fuentes-Tapia, I.; Ortiz-Gutiérrez, M.; Mellado-Villaseñor, G.

    2012-03-01

    Recent researches have been reported that is possible increase the diffraction efficiency parameter from holographic gratings when photosensitive material (PVA with ammonium dichromate) it is painted after register the hologram with commercial fluorescent ink. In this research we shown that PVA as a binder, with the fluorescent ink and ammonium dichromate, this mixed can be used as recording medium. We characterize this material by implementing holographic films in which holographic gratings are recorded with a He- Cd laser at 442nm, and measuring holographic parameters such as diffraction efficiency. We get increased the diffraction efficiency and also the lifetime of the film.

  15. Photoinduced apoptosis using a peptide carrying a photosensitizer.

    Science.gov (United States)

    Watanabe, Kazunori; Fujiwara, Hayato; Kitamatsu, Mizuki; Ohtsuki, Takashi

    2016-07-01

    A novel molecule, TatBim-Alexa, consisting of the HIV1 Tat cell-penetrating peptide, the Bim apoptosis-inducing peptide, and Alexa Fluor 546 was synthesized for photoinducion of apoptosis. The Alexa Fluor 546 was used as a photosensitizer and covalently attached at the C-terminus of TatBim peptide by the thiol-maleimide reaction. Photo-dependent cytosolic internalization of TatBim-Alexa and photo-dependent apoptosis using TatBim-Alexa were demonstrated in several kinds of mammalian cells including human cancer cell lines. PMID:27165853

  16. Boron-enhanced diffusion of boron from ultralow-energy boron implantation

    International Nuclear Information System (INIS)

    The authors have investigated the diffusion enhancement mechanism of BED (boron enhanced diffusion), wherein the boron diffusivity is enhanced three to four times over the equilibrium diffusivity at 1,050 C in the proximity of a silicon layer containing a high boron concentration. It is shown that BED is associated with the formation of a fine-grain polycrystalline silicon boride phase within an initially amorphous Si layer having a high B concentration. For 0.5 keV B+, the threshold implantation dose which leads to BED lies between 3 x 1014 and of 1 x 1015/cm-2. Formation of the shallowest possible junctions by 0.5 keV B+ requires that the implant dose be kept lower than this threshold

  17. Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy.

    Science.gov (United States)

    Konan, Yvette Niamien; Cerny, Radovan; Favet, Joselyne; Berton, Myriam; Gurny, Robert; Allémann, Eric

    2003-01-01

    A photosensitizer, meso-tetra(4-hydroxyphenyl)porphyrin, was incorporated into sub-150 nm nanoparticles using the emulsification-diffusion technique in order to perform sterilization by filtration using 0.22 microm membranes. The three selected polyesters (poly(D,L-lactide-co-glycolide), (50:50 PLGA, 75:25 PLGA) and poly(D,L-lactide (PLA)) for the nanoparticle production were all amorphous in nature and have similar molecular weights but different copolymer molar ratios. The influence of the copolymer molar ratio and the theoretical drug loading was investigated in terms of particle size, drug loading, entrapment efficiency and surface characteristics. With all the polymers used, sub-150 nm nanoparticles were produced with good reproducibility and narrow size distributions irrespective of both the polymer nature and the theoretical drug loading. After purification by cross-flow filtration, the nanoparticle suspensions were sterilized by membrane filtration and freeze-dried in the presence of a lyoprotectant (trehalose). For all types of nanoparticles, complete redispersion in various media could be obtained. All final freeze-dried products were refiltrable on a 0.22 microm membrane and were stable in terms of mean particle size and drug loading over a period up to 6 months. The effective drug loading increased at higher theoretical drug loading, the entrapment efficiency was however decreased. The same trend was observed with the three polyesters. The sterility of the final freeze-dried nanoparticles was confirmed by the results of the sterility testing which showed no bacterial contamination. PMID:12551712

  18. Analytical boron diffusivity model in silicon for thermal diffusion from boron silicate glass film

    Science.gov (United States)

    Kurachi, Ikuo; Yoshioka, Kentaro

    2015-09-01

    An analytical boron diffusivity model in silicon for thermal diffusion from a boron silicate glass (BSG) film has been proposed in terms of enhanced diffusion due to boron-silicon interstitial pair formation. The silicon interstitial generation is considered to be a result of the silicon kick-out mechanism by the diffused boron at the surface. The additional silicon interstitial generation in the bulk silicon is considered to be the dissociation of the diffused pairs. The former one causes the surface boron concentration dependent diffusion. The latter one causes the local boron concentration dependent diffusion. The calculated boron profiles based on the diffusivity model are confirmed to agree with the actual diffusion profiles measured by secondary ion mass spectroscopy (SIMS) for a wide range of the BSG boron concentration. This analytical diffusivity model is a helpful tool for p+ boron diffusion process optimization of n-type solar cell manufacturing.

  19. Magnetic Circular Dichroism of Porphyrin Lanthanide M3+ Complexes

    Czech Academy of Sciences Publication Activity Database

    Andrushchenko, Valery; Padula, Daniele; Zhivotova, E.; Yamamoto, S.; Bouř, Petr

    2014-01-01

    Roč. 26, č. 10 (2014), s. 655-662. ISSN 0899-0042 R&D Projects: GA ČR GA13-03978S; GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant ostatní: GA AV ČR(CZ) M200550902 Institutional support: RVO:61388963 Keywords : magnetic circular dichroism * lanthanides * porphyrin complexes * density functional theory * sum over state computations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.886, year: 2014

  20. Porphyrin/calixarene self-assemblies in aqueous solution

    Czech Academy of Sciences Publication Activity Database

    Kubát, Pavel; Lang, Kamil; Lhoták, P.; Janda, Pavel; Sýkora, Jan; Matějíček, P.; Hof, Martin; Procházka, K.; Zelinger, Zdeněk

    2008-01-01

    Roč. 198, č. 1 (2008), s. 18-25. ISSN 1010-6030 R&D Projects: GA ČR GA203/07/1424; GA ČR(CZ) GA203/06/1244; GA AV ČR KAN100500652; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : cationic porphyrin * calix[4]arene * thiacalix[4]arene Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.362, year: 2008

  1. Analysis of boronized wall in LHD

    International Nuclear Information System (INIS)

    Boronization has been carried out in some experimental fusion devices as one of wall conditioning Methods. The well-known merits of the boronization are as follows: 1) coated-boron on the first wall has strong gettering function for oxygen impurities and oxygen has been kept into boron films as a boron-oxide and 2) boron film covers first wall with apparently low Z materials facing the plasma. However, an operation scenario of boronization for next generation devices such as ITER is not optimized. In this paper, we discuss an optimized method of coated film uniformity in a wide area and a lifetime of boron film as an oxygen getter using experimental data in the large helical device (LHD). In LHD, boronization by glow discharges has been carried out a few times during each experimental campaign. Helium-diborane mixtured gas is used and plasma facing components (PFM) are stainless steel (SS) for the first wall and carbon for the divertor plates kept in the room temperature. Material probes made of SS316 and Si were installed in the vacuum vessel and exposed during the experimental campaign. Depth profiles of their impurities were analyzed using the X-ray Photoelectron Spectroscopy (XPS) and the Auger electron spectroscopy (AES). Two types of gettering process by boron film have been investigated. One is the process during boronization and the other is that after boronization. Concerning a lifetime of boron film, the distribution of oxygen near the top surface region (0 to 20 nm) indicates a process of oxygen gettering, it shows a contribution after boronization. In this paper, these kinds of process using material probes are shown. (authors)

  2. Dosimetry of photosensitization by ultraviolet in patients treated with Haloperidol and Piportil

    International Nuclear Information System (INIS)

    It has been postulated that visible light on UV may induce photosensitization in chronic psycotics, under phenotiazine or butyrofenone therapy. The possible sensitization with UV, in patients with Haloperidol (Johnson and Johnson) or Piportil (Rhodia) treatments is described. Under experimental conditions, a surpassable photosensitizations in reaction groups aren't finding, when paired with the control ones. (M.A.C.)

  3. Boron Poisoning of Plutonium Solutions

    International Nuclear Information System (INIS)

    The results of a theoretical investigation into the possible relaxation of criticality concentration limits in wet chemical reprocessing plants, due to the introduction of boron poisoning, are reported. The following systems were considered: 1. 1 in. stainless steel tubes filled with boron carbide at various pitches in homogeneous mixtures of 239Pu (NO3)4, 5H2O and water. 2. 1 in. and 2 in borosilicate glass Raschig rings in homogeneous mixtures of 239Pu (NO3)4, 5H2O and water. 3. The concentration of natural boron required for k∞ = 1 in homogeneous mixtures of 239Pu-B-H2O. The method of calculation was Monte Carlo using the GEM code with Nuclear Data File cross-sections. The Raschig rings used are those commercially available. The core model consisted of a cubic arrangement of unit cubes of solution within each of which a Raschig ring was centrally placed. The arrangement was such that the rings were regularly stacked with axes parallel, but the side of the unit cube was fixed to preserve the random packing density. Comparison is made with other reported results on boron poisoning. (author)

  4. Boron sorption characteristics in resins

    International Nuclear Information System (INIS)

    The purpose of boron addition in a nuclear power plant is to control the reactivity. In PHWRs, it is injected into the moderator system in the form of boric anhydride solution, while in PHWRs, it is added to the primary heat transport system in the form of boric acid solution. The required boron levels in PHWRs are controlled by valving in strong base anion exchangers having exchangeable species in OD- form while in PHWRs, the same can be achieved by restoring to the use of Boron Thermal Regeneration System (BTRS). This system operates on the principle of existence of different amounts of various polyborate ions at different temperatures, solution pH's and the boric acid concentrations and on the reversible sorption of these polyions on strong base anion exchange resins. This report describes the salient features of boron sorption characteristics on four types of anion exchange resins, based on experimental data generated in the chemical laboratories of Reactor Engineering Division of the Bhabha Atomic Research Centre, Bombay. The report further makes an attempt to calculate the pH of the resin and solution phases and the percentages of different polyborates and undissociated boric acid, under the experimental conditions investigated. (author). 30 refs., 4 figs., 20 tables

  5. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution. PMID:22945740

  6. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  7. Electronic Structure and Absorption Properties of Strongly Coupled Porphyrin-Perylene Arrays.

    Science.gov (United States)

    High, Judah S; Virgil, Kyle A; Jakubikova, Elena

    2015-09-24

    Porphyrin-perylene arrays are ideal candidates for light-harvesting systems capable of panchromatic absorption. In this work, we employ density functional theory (DFT) and time-dependent DFT to investigate the unique UV-vis absorption properties exhibited by a series of ethynyl-linked porphyrin-perylene arrays that were previously synthesized and characterized spectroscopically [Chem. Commun. 2014, 50, 14512-5]. We find that the ethynyl linker is responsible for strong electronic coupling of porphyrin and perylene subunits in these systems. Additionally, these arrays exhibit a low barrier to rotation around the ethynyl linker (<1.4 kcal/mol per one perylene substituent), which results in a wide range of molecular conformations characterized by different porphyrin-perylene dihedral angles being accessible at room temperature. The best match between the calculated and experimental UV-vis spectra is obtained by averaging the calculated UV-vis spectra over the range of conformations defined by the porphyrin-perylene dihedral angles. Finally, our calculations suggest that the transitions in the lower energy region (550-750 nm) can be assigned to the excitations originating from the porphyrin subunit; the mid-energy region transitions (450-550 nm) are assigned to the perylene-centered excitations, while the high-energy transitions (350-450 nm) involve contributions from both porphyrin and perylene subunits. PMID:26322743

  8. Masked imidazolyl-dipyrromethanes in the synthesis of imidazole-substituted porphyrins.

    Science.gov (United States)

    Bhaumik, Jayeeta; Yao, Zhen; Borbas, K Eszter; Taniguchi, Masahiko; Lindsey, Jonathan S

    2006-11-10

    Imidazole-substituted metalloporphyrins are valuable for studies of self-assembly and for applications where water solubility is required. Rational syntheses of porphyrins bearing one or two imidazol-2-yl or imidazol-4-yl groups at the meso positions have been developed. The syntheses employ dipyrromethanes, 1-acyldipyrromethanes, and 1,9-diacyldipyrromethanes bearing an imidazole group at the 5-position. The polar, reactive imidazole unit was successfully masked by use of (1) the 2-(trimethylsilyl)ethoxymethyl (SEM) group at the imidazole pyrrolic nitrogen, and (2) a dialkylboron motif bound to the pyrrole of the dipyrromethane and coordinated to the imidazole imino nitrogen. The nonpolar nature of such doubly masked imidazolyl-dipyrromethanes facilitated handling. Selected masked dipyrromethanes were characterized by 11B and 15N NMR spectroscopy. Five distinct methods were examined to obtain trans-A2B2-, trans-AB2C-, and trans-AB-porphyrins. Each porphyrin contained one or two SEM-protected imidazole units. The SEM group could be removed with TBAF or HCl. Two zinc(II) porphyrins and a palladium(II) porphyrin bearing a single imidazole moiety were prepared and subjected to alkylation (with ethyl iodide, 1,3-propane sultone, or 1,4-butane sultone) to give water-soluble imidazolium- porphyrins. This work establishes the foundation for the rational synthesis of a variety of porphyrins containing imidazole units. PMID:17081010

  9. Raman spectroscopy of boron carbides and related boron-containing materials

    International Nuclear Information System (INIS)

    Raman spectra of crystalline boron, boron carbide, boron arsenide (B12As2), and boron phosphide (B12P2) are reported. The spectra are compared with other boron-containing materials containing the boron icosahedron as a structural unit. The spectra exhibit similar features some of which correlate with the structure of the icosahedral units of the crystals. The highest Raman lines appear to be especially sensitive to the B-B distance in the polar triangle of the icosahedron. Such Raman structural markers are potentially useful in efforts to tailor electronic properties of these high temperature semiconductors and thermoelectrics

  10. Singlet oxygen lifetime dependence on photosensitizer concentration in lipid films

    International Nuclear Information System (INIS)

    It was shown that lipids substantially influence singlet oxygen lifetime. Question arises whether photosensitizers triplet states and excitation energy transfer to oxygen are also affected by lipids. In this contribution, the influence of lipids on excitation energy transfer from lipophilic photosensitizer tetraphenylporphyrin (TPP) to oxygen was investigated in bulk lipids and dry lipid films. Two components of TPP triplets decays were identified: quenching by oxygen which does not depend on TPP concentration and triplet-triplet annihilation. Rather long lifetimes of the TPP triplets around 1.1μs are due to low solubility and diffusion coefficient of oxygen in the lipid. They are also reflected in low signal of singlet oxygen luminescence. Kinetics of the singlet oxygen luminescence follow convolutions of two exponential decays: rise-time independent on concentration and well corresponding to the short component of TPP triplet decay and decay time decreasing from 14 to 8μs with increasing TPP concentration due to quenching of singlet oxygen by TPP.

  11. Photosensitized luminescence of thermostable polynuclear Eu(III) complexes

    International Nuclear Information System (INIS)

    Tetranuclear europium(III) complexes, [Eu4(μ-O)(L1)10] (L1=2-hydroxy-4-octyloxybenzophenone,1) and [Eu4(μ-O)(L2)10] (L2=2-hydroxy-4-dodecyloxybenzophenone,2) were synthesized by the reaction of lanthanide nitrates with L1 or L2 in the presence of triethylamine in methanol. The photosensitized emission bands of the both Eu(III) complexes in THF-d8 were observed around 579, 590, 615, 653, and 699nm by the excitation of the ligands at 380nm, whereas the emission from the mononuclear complex 3 containing ethanol molecules was almost quenched. The emission efficiencies were determined to be 3.1+/-0.1% for 1 and 3.9+/-0.1% for 2, respectively. The differential scanning calorimetry (DSC) measurements demonstrated that the decomposition points of 1 and 2 were 309 deg. C and 320 deg. C, respectively, indicating high thermostability of these complexes compared to the mononuclear Eu(III) complex 3 (250 deg. C). New strategy for designing stable rare earth compounds giving strong emission would be emphasized by introducing polynuclear complexes. Polynuclear complexes should open a wide range of molecular design for photosensitized luminescence and thermal stability

  12. Parallel scheme for real-time detection of photosensitive seizures.

    Science.gov (United States)

    Alzubaidi, Mohammad A; Otoom, Mwaffaq; Al-Tamimi, Abdel-Karim

    2016-03-01

    The production and distribution of videos and animations on gaming and self-authoring websites are booming. However, given this rise in self-authoring, there is increased concern for the health and safety of people who suffer from a neurological disorder called photosensitivity or photosensitive epilepsy. These people can suffer seizures from viewing video with hazardous content. This paper presents a spatiotemporal pattern detection algorithm that can detect hazardous content in streaming video in real time. A tool is developed for producing test videos with hazardous content, and then those test videos are used to evaluate the proposed algorithm, as well as an existing post-processing tool that is currently being used for detecting such patterns. To perform the detection in real time, the proposed algorithm was implemented on a dual core processor, using a pipelined/parallel software architecture. Results indicate that the proposed method provides better detection performance, allowing for the masking of seizure inducing patterns in real time. PMID:26829706

  13. Synthesis and properties of new chlorin and bacteriochlorin photosensitizers

    Science.gov (United States)

    Mironov, Andrei F.

    1996-01-01

    A series of novel sensitizers, which absorb in the range of 660 - 820 nm, derived from natural occurring chlorophyll and bacteriochlorophyll was synthesized. Biomass of blue-green algae Spirulina platensis was used to prepare chlorophyll a derivatives, and biomass of purple bacteria Rhodobacter capsulatus was applied for preparation of bacteriochlorophyll a. The influence of different substituents on spectral characteristics and the amphipility of the sensitizer was investigated. The route for the synthesis of porphyrin macrocycle with the spacer that bears the isothiocyanate group capable for binding with proteins was proposed. Photophysical properties of chlorin p6, purpurin 18 and their esters in different solvents are investigated. Accumulation of two chlorins in the model Erlich tumor was studied.

  14. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  15. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  16. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Directory of Open Access Journals (Sweden)

    Jia-Jia Zheng

    2016-01-01

    Full Text Available Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn. Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  17. Free Base Porphyrins as Ionophores for Heavy Metal Sensors

    Directory of Open Access Journals (Sweden)

    Liliana Olenic

    2008-08-01

    Full Text Available Two functionalized porphyrins: 5,10,15,20-tetrakis(3,4-dimethoxyphenyl porphyrin (A and 5,10,15,20-tetrakis(3-hydroxyphenylporphyrin (B obtained and characterized by us were used as ionophores (I for preparing PVC-based membrane sensors selective to Ag+, Pb2+ and Cu2+. The membranes were prepared using three different plasticizers: (bis(2-ethylhexylsebacate (DOS, dioctylphtalate (DOP, o-nitrophenyl octyl ether (NPOE and potassium tetrakis(4-chlorophenylborate (KTClPB as additive. The functional parameters (linear concentration range, slope and selectivity of the sensors with membrane composition: (I:PVC:KTClPB:Plasticizer in different ratios were investigated. The best results were obtained for the membranes in the ratio I:PVC:KTClPB:Plasticizer 10:165:5:330. The influence of pH on the sensors response was studied. The sensors were used for a period of four months and their utility has been tested on synthetic and real samples.

  18. Charge transfer energies of tetraphenyl-porphyrin-fullerene dyads

    Science.gov (United States)

    Zope, Rajendra; Olguin, Marco; Baruah, Tunna

    2011-03-01

    Porphyrin-fullerene dyads are extensively studied for their photoinduced charge transfer properties. They form a donor-acceptor pair where the fullerene is the acceptor. Accurate theoretical estimate of the charge transfer energies in such systems has proven to be a challenge. In this study we examine the charge transfer energetics for such dyads using our recently developed density functional based excited state method which can yield reliable estimates of charge transfer energetics. In this study the effect of varying both the donor and acceptor components are studied by changing the tetra-phenyl-porphyrin (TPP) to Zn-TPP. Similarly the acceptor component is changed from C60 to C70. The structures were optimized using DFT-D3 theory at the all-electron level. Among the donor-acceptor pairs studied, we find that the ZnTPP-C60 has the lowest charge transfer energy (1.69 eV) and the TPP-C70 (2.13 eV) has the highest charge transfer energy. Supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through grant DE-SC0002168.

  19. Electron transfer reactions involving porphyrins and chlorophyll a

    International Nuclear Information System (INIS)

    Electron transfer reactions involving porphyrins (P) and quinones (Q) have been studied by pulse radiolysis. The porphyrins used were tetraphenylporphyrin (H2TPP), its tetracarboxy derivative (H2TCPP), the sodium and zinc compounds (Na2TPP and ZnTPP), and chlorophyll a (Chl a). These compounds were found to be rapidly reduced by electron transfer from (CH3)2CO-. Reduction by (CH3)2COH was rapid in aqueous solutions but relatively slow in i-PrOH solutions. Transient spectra of the anion radicals were determined and, in the case of H2TCPP-., a pK = 9.7 was derived for its protonation. Electron-transfer reactions from the anion radical of H2TCPP to benzoquinone, duroquinone, 9,10-anthraquinone 2-sulfonate, and methylviologen occur in aqueous solutions with rate constants approx. 107-109 M-1 s-1 which depend on the pH and the quinone reduction potential. Reactions of Na2TPP-., ZnTPP-., and Chl a-. with anthraquinone in basic i-PrOH solutions occur with rate constants approx. 109 M-1 s-1. The spectral changes associated with these electron-transfer reactions as observed over a period of approx. 1 ms indicated, in some cases, the formation of an intermediate complex [P...Q-.]. 8 figures, 2 tables

  20. Electropolymerized supramolecular tetraruthenated porphyrins applied as a voltammetric sensor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Monize M. da; Ribeiro, Gabriel H.; Faria, Anizio M. de; Bogado, Andre L.; Dinelli, Luis R., E-mail: dinelli@pontal.ufu.br [Universidade Federal de Uberlandia (UFU), Ituiutaba, MG (Brazil). Faculdade de Ciencias Integradas do Pontal; Batista, Alzir A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2013-11-15

    Porphyrin 5,10,15,20-Tetra(4-pyridyl)manganese(III), [Mn-TPyP(H{sub 2}O){sub 2}]PF{sub 6}, and electropolymerized supramolecular porphyrins (ESP), {l_brace}Mn-TPyP(H{sub 2}O){sub 2}[RuCl{sub 3}(dppb)]{sub 4}{r_brace}PF{sub 6} (dppb = 1,4-bis(diphenylphosphine)butane), were synthesized and characterized. A thin solid film of ESP was obtained on a glass carbon electrode surface by a cyclic voltammetry method. The peak current increased with the number of voltammetric cycles, which shows a typical behavior of the species being adsorbed on the surface of the electrode. Cyclic voltammetry was also employed for acetaminophen quantification using an ESP modified electrode. The modified electrode shows a linear relationship between the anodic peak current and the concentration of acetaminophen (in the rage 0.05 to 0.7 mmol L{sup -1}. The performance of the modified electrode was verified by the determination of acetaminophen in a commercial pharmaceutical product and the results were in good agreement with those obtained by a control HPLC method. (author)

  1. Surface-confined Ullmann coupling of thiophene substituted porphyrins

    Science.gov (United States)

    Beggan, J. P.; Boyle, N. M.; Pryce, M. T.; Cafolla, A. A.

    2015-09-01

    The covalent coupling of (5,10,15,20-tetrabromothien-2-ylporphyrinato)zinc(II) (TBrThP) molecules on the Ag(111) surface has been investigated under ultra-high-vacuum conditions, using scanning tunnelling microscopy and x-ray photoelectron spectroscopy. The findings provide atomic-level insight into surface-confined Ullmann coupling of thiophene substituted porphyrins, analyzing the progression of organometallic intermediate to final coupled state. Adsorption of the TBrThP molecules on the Ag(111) surface at room temperature is found to result in the reductive dehalogenation of the bromothienyl substituents and the subsequent formation of single strand and crosslinked coordination networks. The coordinated substrate atoms bridge the proximal thienyl groups of the organometallic intermediate, while the cleaved bromine atoms are bound on the adjacent Ag(111) surface. The intermediate complex displays a thermal lability at ˜423 K that results in the dissociation of the proximal thienyl groups with the concomitant loss of the surface bound bromine. At the thermally induced dissociation of the intermediate complex the resultant thienylporphyrin derivatives covalently couple, leading to the formation of a polymeric network of thiophene linked and meso-meso fused porphyrins.

  2. Toxicity of polychlorinated biphenyl with special reference to porphyrin metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Sano, S.; Kawanishi, S.; Seki, Y.

    1985-02-01

    Oral administration of a commercial PCB mixture to chickens caused a hepatic-type porphyria characterized by hepatic accumulation and urinary excretion of uroporphyrin. To clarify the mechanism of the porphyrinogenic activity of these PCBs, the authors studied the structural requirement of synthetic PCB for porphyrinogenic activities by using the cultured chick embryo liver cells and examined the relationship between induction of delta-aminolevulinic acid (ALA) synthetase and inhibition of uroporphyrinogen decarboxylase. They established that the porphyrinogenic effect of PCBs exhibits a sharply defined structure-activity relationship in that only 3,4,3',4'-tetrachlorobiphenyl and 3,4,5,3',4',5'-hexachlorobiphenyl produced a marked accumulation of uroporphyrin. They also demonstrated that in ALA-supplemented cultures, these same compounds lead to accumulation of a large amount of uroporphyrin III, whereas with other PCBs, which were weak inducers of porphyrin synthesis, the accumulated porphyrin was mostly protoporphyrin. Kinetic studies of the sequential decarboxylation of uroporphyrinogen with purified uroporphyrinogen decarboxylase were performed. The 3,4,3',4'-tetrachlorobiphenyl and 3,4,5,3',4',5'-hexachlorobiphenyl strongly inhibit uroporphyrinogen decarboxylase directly at two steps. The results confirmed that porphyrinogenic PCBs primarily inhibit uroporphyrinogen decarboxylase, leading to a depletion of heme as a result of which synthesis of ALA synthetase increased.

  3. Magnetic and electronic properties of porphyrin-based molecular nanowires

    International Nuclear Information System (INIS)

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics

  4. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Zhao, Xiang, E-mail: xzhao@mail.xjtu.edu.cn [Institute for Chemical Physics & Department of Chemistry, MOE Key Laboratory for Non-equilibrium Condensed Matter and Quantum Engineering, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Wei-Wei [Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan)

    2016-01-15

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  5. Cu(II) porphyrins modified TiO{sub 2} photocatalysts: Accumulated patterns of Cu(II) porphyrin molecules on the surface of TiO{sub 2} and influence on photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xiao-qin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069 (China); Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an, Shaanxi 710021 (China); Li, Jun, E-mail: junli@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069 (China); Zhang, Zeng-qi; Yu, Mi-mi; Yuan, Lin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069 (China)

    2015-03-25

    Highlights: • Two new crystal structures of copper porphyrins containing meso-tetra(ester and carboxyl) were obtained. • The two copper porphyrins were used to modify TiO{sub 2} for the first time. • The accumulated patterns of copper porphyrin molecules on the TiO{sub 2} surface is an important factor for the photocatalytic activity. • The peripheral groups of copper porphyrins influence their stacking patterns in solid state. - Abstract: The accumulated patterns of porphyrin molecules on the surface of TiO{sub 2} have an important effect on the photoactivity of porphyrin/TiO{sub 2} photocatalysts. Herein, two copper porphyrins containing flexible peripheral functional groups (meso-tetra(ester, carboxy)), Cu(II)5,10,15,20-tetrakis[4-(carboethoxymethyleneoxy)phenyl]porphyrin (CuPp(2a)) and Cu(II)5,10,15,20-tetrakis[4-(carboxymethyleneoxy)phenyl]porphyrin (CuPp(2b)), were synthesized and characterized spectroscopically. Their crystal structures were also determined by single crystal X-ray diffraction. The Cu(II) porphyrin-TiO{sub 2} composites were also prepared and characterized. The accumulated patterns of synthesized copper porphyrins on the surface of TiO{sub 2} were proposed for the first time. The photoactivity of the composites was investigated by carrying out the degradation of 4-nitrophenol (4-NP) in aqueous solution under UV–visible light. The results indicated that the CuPp(2b)-TiO{sub 2} showed the higher photocatalytic activity than that of CuPp(2a)-TiO{sub 2}. Above all, it can be concluded that the accumulated patterns of porphyrins on the surface of TiO{sub 2} is an important factor for the photocatalytic efficiency of porphyrin/TiO{sub 2}.

  6. Cu(II) porphyrins modified TiO2 photocatalysts: Accumulated patterns of Cu(II) porphyrin molecules on the surface of TiO2 and influence on photocatalytic activity

    International Nuclear Information System (INIS)

    Highlights: • Two new crystal structures of copper porphyrins containing meso-tetra(ester and carboxyl) were obtained. • The two copper porphyrins were used to modify TiO2 for the first time. • The accumulated patterns of copper porphyrin molecules on the TiO2 surface is an important factor for the photocatalytic activity. • The peripheral groups of copper porphyrins influence their stacking patterns in solid state. - Abstract: The accumulated patterns of porphyrin molecules on the surface of TiO2 have an important effect on the photoactivity of porphyrin/TiO2 photocatalysts. Herein, two copper porphyrins containing flexible peripheral functional groups (meso-tetra(ester, carboxy)), Cu(II)5,10,15,20-tetrakis[4-(carboethoxymethyleneoxy)phenyl]porphyrin (CuPp(2a)) and Cu(II)5,10,15,20-tetrakis[4-(carboxymethyleneoxy)phenyl]porphyrin (CuPp(2b)), were synthesized and characterized spectroscopically. Their crystal structures were also determined by single crystal X-ray diffraction. The Cu(II) porphyrin-TiO2 composites were also prepared and characterized. The accumulated patterns of synthesized copper porphyrins on the surface of TiO2 were proposed for the first time. The photoactivity of the composites was investigated by carrying out the degradation of 4-nitrophenol (4-NP) in aqueous solution under UV–visible light. The results indicated that the CuPp(2b)-TiO2 showed the higher photocatalytic activity than that of CuPp(2a)-TiO2. Above all, it can be concluded that the accumulated patterns of porphyrins on the surface of TiO2 is an important factor for the photocatalytic efficiency of porphyrin/TiO2

  7. High-conductance surface-anchoring of a mechanically flexible platform-based porphyrin complex

    International Nuclear Information System (INIS)

    The conductances of molecular model junctions comprising a triazatriangulenium platform with or without an ethynyl spacer and an upright Zn-porphyrin are probed with a low-temperature scanning probe microscope. The platform alone is found to be highly conductive. The ethynyl-linked Zn-porphyrin moiety reduces the conductance by three orders of magnitude and leads to an unexpected, non-monotonous variation of the force that was measured simultaneously at the tip of the microscope. Density functional theory calculations show that this variation results from an induced tilting of the porphyrin. (paper)

  8. The self-aggregation of chiral threonine-linked porphyrins and their zinc(Ⅱ) complexes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The self-aggregation of chiral threonine-linked porphyrins and their zinc(Ⅱ) complexes in water-alcohol system and water-alcohol-NaCl system has been studied by circular dichroism (CD),UV-Vis absorption spectra and fluorescence spectra methods.The experiment results indicate that chiral threonine-linked porphyrins and their zinc(Ⅱ) complexes have two different kinds of aggregates in water-alcohol system and water-alcohol-NaCl system.And the porphyrins may form highly organized and orientated aggregates in water-alcohol-NaCl system.The aggregates in water-alcohol-NaCl system may have helical structures.

  9. The influence of temperature on the photo-oxidation rate of tryptophan in the presence of complexes of porphyrins with amphiphilic polymers

    Science.gov (United States)

    Kardumyan, V. V.; Aksenova, N. A.; Chernyak, A. A.; Glagolev, N. N.; Volkov, V. I.; Solovieva, A. B.

    2015-04-01

    The influence of temperature on the photocatalytic activity of the complexes of water-soluble porphyrin photosensitizers with amphiphilic polymers, such as poly-4-vinylpyrrolidone, polyethylene oxide, and Pluronic F127 (triblock copolymers of ethylene oxide and propylene oxide) in photo-oxidation reaction of tryptophan in the aqueous solution has been investigated. It has been shown that in the temperature range of 10-40 °C the addition of these polymers increases the activity of triglucamine salt of chlorine e6, tertrasodium salt of tetrasulfophenilporfirina and dimegin. The greatest influence on the rate of photo-oxidation appears to be rendered by the introduction of poly-4-vinylpyrrolidone in the presence of which the value of the rate constant increased by 30-70%. The strongest effect of the polymers is observed at 20-23 °C for dimegin, triglucamine salt of chlorine e6, and for tertrasodium salt of tetrasulfophenilporfirina at 30 °C. We suggest that the effect of the polymer on the effective rate constant relates to the restructuring of the supramolecular structure of polymers during temperature changes. This work was supported by the Russian Foundation for Basic Research (project nos. 13-02-12422ofim and 13-02-00934).

  10. Synthesis of boron nitride nanotubes by boron ink annealing.

    Science.gov (United States)

    Li, Lu Hua; Chen, Ying; Glushenkov, Alexey M

    2010-03-12

    Ball-milling and annealing is one effective method for the mass production of boron nitride nanotubes (BNNTs). We report that the method has been modified to a boron (B) ink annealing method. In this new process, the nanosize ball-milled B particles are mixed with metal nitrate in ethanol to form an ink-like solution, and then the ink is annealed in nitrogen-containing gas to form nanotubes. The new method greatly enhances the yield of BNNTs, giving a higher density of nanotubes. These improvements are caused by the addition of metal nitrate and ethanol, both of which can strongly boost the nitriding reaction, as revealed by thermogravimetric analysis. The size and structure of BNNTs can be controlled by varying the annealing conditions. This high-yield production of BNNTs in large quantities enables the large-scale application of BNNTs. PMID:20154372

  11. Synthesis of boron nitride nanotubes by boron ink annealing

    International Nuclear Information System (INIS)

    Ball-milling and annealing is one effective method for the mass production of boron nitride nanotubes (BNNTs). We report that the method has been modified to a boron (B) ink annealing method. In this new process, the nanosize ball-milled B particles are mixed with metal nitrate in ethanol to form an ink-like solution, and then the ink is annealed in nitrogen-containing gas to form nanotubes. The new method greatly enhances the yield of BNNTs, giving a higher density of nanotubes. These improvements are caused by the addition of metal nitrate and ethanol, both of which can strongly boost the nitriding reaction, as revealed by thermogravimetric analysis. The size and structure of BNNTs can be controlled by varying the annealing conditions. This high-yield production of BNNTs in large quantities enables the large-scale application of BNNTs.

  12. Synthesis of vinyl boronates from aldehydes by a practical boron-Wittig reaction.

    Science.gov (United States)

    Coombs, John R; Zhang, Liang; Morken, James P

    2015-04-01

    A highly stereoselective boron-Wittig reaction between stable and readily accessible 1,1-bis(pinacolboronates) and aldehydes furnishes a variety of synthetically useful di- and trisubstituted vinyl boronate esters. PMID:25799147

  13. Fundamental study on photodynamic therapy for atrial fibrillation: effect of photosensitization reaction parameters on myocardial necrosis in vitro

    Science.gov (United States)

    Ogawa, Emiyu; Ito, Arisa; Arai, Tsunenori

    2012-03-01

    We studied necrotic cell death effect on myocardial cells with photosensitizer existed outside the cells varying photosensitization reaction parameters widely in vitro. We have developed non-thermal ablator with the application of photosensitization reaction for atrial fibrillation. Since laser irradiation is applied shortly after photosensitizer injection, the photosensitization reaction is induced outside the cells. The interaction for the myocardial cells by the photosensitization reaction is not well understood yet on various photosensitization reaction parameters. Rat myocardial cells were cultured in 96 well plates for 7 days. The photosensitization reaction was applied with talaporfin sodium (NPe6) and the semiconductor laser of 663nm wavelength. The average drug light interval was set 8 mins. The photosensitizer concentration and radiant exposure were varied from 5 to 40 μg/ml and 1.2 to 60 J/cm2, respectively. The well bottom was irradiated by the red laser with irradiance of 293 mW/cm2. The photosensitizer fluorescence was monitored during the photosensitization reaction. Alive cell rate was measured by WST assay after 2 hours from the irradiation. In the case of the photosensitizer concentration of 10 μg/ml, the myocardial cells were almost alive even thought 60 J/cm2 in the radiant exposure was applied. In the 15 μg/ml case, the alive cell rate was almost linear relation to the photosensitizer concentration and radiant exposure. We obtained that the threshold for myocardial cell necrosis on the photosensitizer concentration was around 15 μg/ml with 20 J/cm2 in the radiant exposure. This threshold on the photosensitizer concentration was similar to the reported threshold for cancer therapy.

  14. Sewage bacteriophage inactivation by cationic porphyrins: influence of light parameters.

    Science.gov (United States)

    Costa, Liliana; Carvalho, Carla M B; Faustino, Maria A F; Neves, Maria G P M S; Tomé, João P C; Tomé, Augusto C; Cavaleiro, José A S; Cunha, Angela; Almeida, Adelaide

    2010-08-01

    Photodynamic therapy has been used to inactivate microorganisms through the use of targeted photosensitizers. Although the photoinactivation of microorganisms has already been studied under different conditions, a systematic evaluation of irradiation characteristics is still limited. The goal of this study was to test how the light dose, fluence rate and irradiation source affect the viral photoinactivation of a T4-like sewage bacteriophage. The experiments were carried out using white PAR light delivered by fluorescent PAR lamps (40 W m(-2)), sun light (600 W m(-2)) and an halogen lamp (40-1690 W m(-2)). Phage suspensions and two cationic photosensitizers (Tetra-Py(+)-Me, Tri-Py(+)-Me-PF) at concentrations of 0.5, 1.0 and 5.0 microM were used. The results showed that the efficacy of the bacteriophage photoinactivation is correlated not only with the sensitizer and its concentration but also with the light source, energy dose and fluence rate applied. Both photosensitizers at 5.0 microM were able to inactivate the T4-like phage to the limit of detection for each light source and fluence rate. However, depending of the light parameters, different irradiation times are required. The efficiency of photoinactivation is dependent on the spectral emission distribution of the light sources used. Considering the same light source and a fixed light dose applied at different fluence rates, phage inactivation was significantly higher when low fluence rates were used. In this way, the light source, fluence rate and total light dose play an important role in the effectiveness of the antimicrobial photodynamic therapy and should always be considered when establishing an optimal antimicrobial protocol. PMID:20563346

  15. Bionano donor-acceptor hybrids of porphyrin, ssDNA, and semiconductive single-wall carbon nanotubes for electron transfer via porphyrin excitation.

    Science.gov (United States)

    D'Souza, Francis; Das, Sushanta K; Zandler, Melvin E; Sandanayaka, Atula S D; Ito, Osamu

    2011-12-14

    Photoinduced electron transfer in self-assemblies of porphyrins ion-paired with ssDNA wrapped around single-wall carbon nanotubes (SWCNTs) has been reported. To accomplish the three-component hybrids, two kinds of diameter-sorted semiconducting SWCNT(n,m)s of different diameter ((n,m) = (6,5) and (7,6)) and free-base or zinc porphyrin bearing peripheral positive charges ((TMPyP(+))M (tetrakis(4-N-methylpyridyl)porphyrin); M = Zn and H(2)) serving as light-absorbing photoactive materials are utilized. The donor-acceptor hybrids are held by ion-pairing between the negatively charged phosphate groups of ssDNA on the surface of the SWCNT and the positively charged at the ring periphery porphyrin macrocycle. The newly assembled bionano donor-acceptor hybrids have been characterized by transmission electron microscopy (TEM) and spectroscopic methods. Photoinduced electron transfer from the excited singlet porphyrin to the SWCNTs directly and/or via ssDNA as an electron mediator has been established by performing systematic studies involving the steady-state and time-resolved emission as well as the transient absorption studies. Higher charge-separation efficiency has been successfully demonstrated by the selection of the appropriate semiconductive SWCNTs with the right band gap, in addition to the aid of ssDNA as the electron mediator. PMID:22088093

  16. Fluorinated Dodecaphenylporphyrins: Synthetic and Electrochemical Studies Including the First Evidence of Intramolecular Electron Transfer Between an Fe(II) Porphyrin -Anion Radical and an Fe(I) Porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, F.; Forsyth, T.P.; Fukuzumi, S.; Kadish, K.M.; Krattinger, B.; Lin, M.; Medforth, C.J.; Nakanishi, I.; Nurco, D.J.; Shelnutt, J.A.; Smith, K.M.; Van Caemelbecke, E.

    1998-10-19

    Dodecaphenylporphyrins with varying degrees of fluorination of the peripheral phenyl rings (FXDPPS) were synthesized as model compounds for studying electronic effects in nonplan~ porphyrins, and detailed electrochemical studies of the chloroiron(HI) complexes of these compounds were undertaken. The series of porphyrins, represented as FeDPPCl and as FeFXDPPCl where x = 4, 8 (two isomers), 12, 20,28 or 36, could be reversibly oxidized by two electrons in dichloromethane to give n-cation radicals and n-dications. All of the compounds investigated could also be reduced by three electrons in benzonitrile or pyridine. In benzonitrile, three reversible reductions were observed for the unfluorinated compound FeDPPC1, whereas the FeFXDPPCl complexes generally exhibited irreversible first and second reductions which were coupled to chemical reactions. The chemical reaction associated with the first reduction involved a loss of the chloride ion after generation of Fe FXDPPC1. The second chemical reaction involved a novel intramolecular electron transfer between the initially generated Fe(H) porphyrin n-anion radical and the final Fe(I) porphyrin reduction product. In pyridine, three reversible one electron reductions were observed with the second reduction affording stable Fe(II) porphyrin o - anion radicals for ail of the complexes investigated.

  17. Synthesis of Boron Nanowires, Nanotubes, and Nanosheets

    Directory of Open Access Journals (Sweden)

    Rajen B. Patel

    2015-01-01

    Full Text Available The synthesis of boron nanowires, nanotubes, and nanosheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nanomaterials. The materials were made by using various combinations of MgB2, Mg(BH42, MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nanowires, boron nanotubes, and boron nanosheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  18. Analysis of magnetron sputtered boron oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Buc, Dalibor [Slovak University of Technology in Bratislava (Slovakia); Bello, Igor [City University of Hong Kong, Kowloon, Hong Kong (China); Caplovicova, Maria [Comenius University in Bratislava (Slovakia); Mikula, Milan; Kovac, Jaroslav; Hotovy, Ivan [Slovak University of Technology in Bratislava (Slovakia); Chong, Yat Min [City University of Hong Kong, Kowloon, Hong Kong (China); Siu, Guei Gu [City University of Hong Kong, Kowloon, Hong Kong (China)], E-mail: apggsiu@cityu.edu.hk

    2007-10-15

    Boron oxide films were grown on silicon substrates by radio-frequency (rf) unbalanced magnetron sputtering of a boron target in argon-oxygen gas mixtures with different compositions. Microscopic analyses show that overall boron oxide films are amorphous. The film prepared at oxygen/argon flow rate ratio > 0.05 developed large crystallites of boric acid in localize areas of amorphous boron oxide matrices. These crystallites were unstable and at electron microscopic analysis they continuously transformed to a cubic HBO{sub 2} phase and then completely vanished leaving an underlying amorphous boron oxide film behind. The analyses indicate the coexistence of B{sub 6}O, HBO{sub 2} crystallites and amorphous boron oxide matrices. Fourier transform infrared (FTIR) spectra revealed spectral bands of BOH, BO, BOB and BH groups. Nanohardness and elastic modulus of a film prepared at low oxygen concentration approach 30 and 300 GPa, respectively. These parameters however vary with deposition conditions.

  19. Microwave sintering of boron carbide composites

    International Nuclear Information System (INIS)

    Boron carbide is an important ceramic material because of its high hardness and low specific gravity. it is used for applications involving impact and wear resistance. The disadvantages of boron carbide materials are difficulty in fabrication and sensitivity to brittle fracture. These problems are significantly reduced by production of cermets based on boron carbide and aluminum or aluminum alloys. Microwave heating of boron carbide materials results in ultrarapid heating and high temperatures. Therefore, a finer microstructure is obtained. The objective of this work was to define a technology that would allow the manufacture of boron carbide ceramics having mechanical properties similar to those exhibited by hot-pressed specimens. microwave heating would be used for the densification step. Mixtures of boron carbide and aluminum were considered for this research because aluminum simultaneously acts as a sintering aid and introduces phases that contribute to toughness enhancement

  20. Prediction of boron carbon nitrogen phase diagram

    Science.gov (United States)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  1. CVD-produced boron filaments

    Science.gov (United States)

    Wawner, F. E.; Debolt, H. E.; Suplinskas, R. D.

    1980-01-01

    A technique for producing boron filaments with an average tensile strength of 6.89 GPa has been developed which involves longitudinal splitting of the filament and core (substrate) removal by etching. Splitting is accomplished by a pinch wheel device which continuously splits filaments in lengths of 3.0 m by applying a force to the side of the filament to create a crack which is then propagated along the axis by a gentle sliding action. To facilitate the splitting, a single 10 mil tungsten substrate is used instead of the usual 0.5 mil substrate. A solution of hot 30% hydrogen peroxide is used to remove the core without attacking the boron. An alternative technique is to alter the residual stress by heavily etching the filament. Average strengths in the 4.83-5.52 GPa range have been obtained by etching an 8 mil filament to 4 mil.

  2. Boron clusters in luminescent materials.

    Science.gov (United States)

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed. PMID:26574714

  3. Induction of photosensitivity in sheep with Erodium moschatum (L. L'Hérit

    Directory of Open Access Journals (Sweden)

    J.C. Stroebel

    2002-07-01

    Full Text Available Erodium moschatum is an exotic weed in the southern and southwestern coastal areas of the Western Cape Province (WCP, South Africa. It has been suspected as the cause of photosensitivity in sheep. However, attempts to induce photosensitivity by dosing it to sheep have thus far been unsuccessful. During August 1999, 2 sheep suffering from severe photosensitivity were presented for clinical examination to the Western Cape Provincial Veterinary Laboratory (WCPVL. One sheep was sacrificed for autopsy. Except for skin lesions associated with photosensitivity, no icterus or other lesions were present. Histopathological examination of affected skin revealed epidermal necrosis while the liver had no microscopic lesions. It was therefore concluded that the sheep might have been suffering from primary photosensitivity. The farmfrom which the sheep came, situated in the Malmesbury district, WCP, was visited to determine the source of the photodynamic agent. The flock from which the sheep originated had been grazing in a camp where E. moschatum was growing abundantly and had been heavily grazed. Some remaining Erodium in the camp was collected, pulped and dosed over a period of 7 days to an adult sheep. Another sheep was dosed simultaneously with Erodium growing on the premises of the WCPVL. Both sheep developed mild photosensitivity, which was confirmed by histopathological examination of skin biopsies. It was concluded that E. moschatum can induce photosensitivity (probably the primary type in sheep if ingested in large quantities.

  4. Photosensitizing and Inhibitory Effects of Ozonated Dissolved Organic Matter on Triplet-Induced Contaminant Transformation.

    Science.gov (United States)

    Wenk, Jannis; Aeschbacher, Michael; Sander, Michael; von Gunten, Urs; Canonica, Silvio

    2015-07-21

    Dissolved organic matter (DOM) is both a promoter and an inhibitor of triplet-induced organic contaminant oxidation. This dual role was systematically investigated through photochemical experiments with three types of DOM of terrestrial and aquatic origins that were preoxidized to varying extents by ozonation. The inhibitory effect of DOM was assessed by determining the 4-carboxybenzophenone photosensitized transformation rate constants of two sulfonamide antibiotics (sulfamethoxazole and sulfadiazine) in the presence of untreated or preoxidized DOM. The inhibitory effect decreased with the increasing extent of DOM preoxidation, and it was correlated to the loss of phenolic antioxidant moieties, as quantified electrochemically, and to the loss of DOM ultraviolet absorbance. The triplet photosensitizing ability of preoxidized DOM was determined using the conversion of the probe compound 2,4,6-trimethylphenol (TMP), which is unaffected by DOM inhibition effects. The DOM photosensitized transformation rate constants of TMP decreased with increasing DOM preoxidation and were correlated to the concomitant loss of chromophores (i.e., photosensitizing moieties). The combined effects of DOM preoxidation on the inhibiting and photosensitizing properties were assessed by phototransformation experiments of the sulfonamides in DOM-containing solutions. At low extents of DOM preoxidation, the sulfonamide phototransformation rate constants remained either unchanged or slightly increased, indicating that the removal of antioxidant moieties had larger effects than the loss of photosensitizing moieties. At higher extents of DOM preoxidation, transformation rates declined, mainly reflecting the destruction of photosensitizing moieties. PMID:26091366

  5. Synthesis, characterization and photophysical studies of -triazolomethyl-bridged porphyrin-benzo--pyrone dyads

    Indian Academy of Sciences (India)

    Dileep Kumar Singh; Mahendra Nath

    2016-04-01

    A new series of zinc(II) -triazolomethyl-bridged porphyrin-benzo--pyrone dyads have been synthesized in appreciable yields through a copper(I)-catalyzed “click” reaction of zinc(II) 2-azidomethyl-5,10,15,20-tetraphenylporphyrin with various benzo--pyronoalkynes. These novel zinc(II) porphyrin-benzo--pyrone dyads successfully underwent demetallation in the presence of concentrated hydrochloric acid in chloroform at 25°C to form the corresponding free-base porphyrin analogues in good yields. The newly synthesized products were characterized on the basis of spectral data and evaluated for their electronic absorption and fluorescence properties. Some of these molecules have shown a significant intramolecular energy transfer between the benzo--pyrone and porphyrin subunits.

  6. Competetive inhibition of porphyrin oxygen reduction catalysts in one- and two-phase liquid systems

    Czech Academy of Sciences Publication Activity Database

    Trojánek, Antonín; Langmaier, Jan; Kvapilová, Hana; Záliš, Stanislav; Samec, Zdeněk

    2013-01-01

    Roč. 59, č. 3 (2013), s. 179-179. ISSN 0034-6691 R&D Projects: GA ČR GAP208/11/0697 Institutional support: RVO:61388955 Keywords : porphyrin oxygen * electrochemistry Subject RIV: CG - Electrochemistry

  7. Determination of Mass Spectrometric Sensitivity of Different Metalloporphyrin Esters Relative to Porphyrin Ester

    DEFF Research Database (Denmark)

    Larsen, Elfinn; Egsgaard, Helge; Møller, J.;

    1977-01-01

    Quantitative determination of metalloporphyrin contamination in preparations of biologically important porphyrins was achieved mass spectrometrically by application of the integrated ion current technique. For this purpose, the relative molecular ion sensitivities of the contaminating metal...... complexes were determined from the ratios of the integrated molecular ion currents of a series of calibration samples containing a porphyrin ester and one of its metal complexes in known molar ratio. Complexes formed with divalent ions of Cu, Zn, Fe, Co and Ni of copro- as well as uro......-prophyrin permethylester were all found to have the same molecular ion sensitivities as their metal-free porphyrin ester. The relative metalloporphyrin ester content in a sample of porphyrin ester was thus obtained directly as the integrated ion current ratios of the normalized molecular ions. The preparation of...

  8. Electrocatalytic miRNA Detection Using Cobalt Porphyrin-Modified Reduced Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Camille De Souza

    2014-06-01

    Full Text Available Metalated porphyrins have been described to bind nucleic acids. Additionally, cobalt porphyrins present catalytic properties towards oxygen reduction. In this work, a carboxylic acid-functionalized cobalt porphyrin was physisorbed on reduced graphene oxide, then immobilized on glassy carbon electrodes. The carboxylic groups were used to covalently graft amino-terminated oligonucleotide probes which are complementary to a short microRNA target. It was shown that the catalytic oxygen electroreduction on cobalt porphyrin increases upon hybridization of miRNA strand (“signal-on” response. Current changes are amplified compared to non-catalytic amperometric system. Apart from oxygen, no added reagent is necessary. A limit of detection in the sub-nanomolar range was reached. This approach has never been described in the literature.

  9. Functionalized Nanostructures: Redox-Active Porphyrin Anchors for Supramolecular DNA Assemblies

    KAUST Repository

    Börjesson, Karl

    2010-09-28

    We have synthesized and studied a supramolecular system comprising a 39-mer DNA with porphyrin-modified thymidine nucleosides anchored to the surface of large unilamellar vesicles (liposomes). Liposome porphyrin binding characteristics, such as orientation, strength, homogeneity, and binding site size, was determined, suggesting that the porphyrin is well suited as a photophysical and redox-active lipid anchor, in comparison to the inert cholesterol anchor commonly used today. Furthermore, the binding characteristics and hybridization capabilities were studied as a function of anchor size and number of anchoring points, properties that are of importance for our future plans to use the addressability of these redox-active nodes in larger DNA-based nanoconstructs. Electron transfer from photoexcited porphyrin to a lipophilic benzoquinone residing in the lipid membrane was characterized by steady-state and time-resolved fluorescence and verified by femtosecond transient absorption. © 2010 American Chemical Society.

  10. Synthesis and characterization of a novel meso-porphyrin and its metallo derivatives

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Bega

    2014-02-01

    Full Text Available There has been a growing interest in the properties of substituted meso-tetraarylporphyrins and metallo porphyrins as catalysts for oxidation of hydrocarbons, oxygen detection, among others. This work describes the synthesis of a new porphyrin, 5,10,15,20-tetrakis(4-butoxy-3-methoxyphenylporphyrin, and its metallo complexes. Herein it was used a readily available reactant, vanillin, as starting material which was submitted to alkylation with n-bromobutane affording the synthetic precursor. The desired porphyrin was obtained by reacting the O-alkylated aldehyde with pyrrole in the presence of propionic acid (Alder-Longo method. The purified porphyrin was then subjected to the metallation process using iron (II and manganese (II salts. The synthesized compounds were characterized by IR, UV-Vis, NMR and EPR spectroscopy.

  11. Functionalized porphyrin conjugate thin films deposited by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Iordache, S. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Popescu, A.C.; Popescu, C.E.; Dorcioman, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Ciucu, A.A. [University of Bucharest, Faculty of Chemistry, Bucharest (Romania); Balan, A.; Stamatin, I. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Fagadar-Cosma, E. [Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223-Timisoara (Romania); Chrisey, D.B. [Tulane University, Departments of Physics and Biomedical Engineering, New Orleans, LA 70118 (United States)

    2013-08-01

    We report on the deposition of nanostructured porphyrin-base, 5(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin thin films by matrix assisted pulsed laser evaporation onto silicon substrates with screen-printed electrodes. AFM investigations have shown that at 400 mJ/cm{sup 2} fluence a topographical transition takes place from the platelet-like stacking porphyrin-based nanostructures in a perpendicular arrangement to a quasi-parallel one both relative to the substrate surface. Raman spectroscopy has shown that the chemical structure of the deposited thin films is preserved for fluences within the range of 200–300 mJ/cm{sup 2}. Cyclic voltammograms have demonstrated that the free porphyrin is appropriate as a single mediator for glucose in a specific case of screen-printed electrodes, suggesting potential for designing a new class of biosensors.

  12. Photosensitized Oxygenations of Hexamethylbenzene in Phase Contact Enhanced Microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Yi; Park, Jeong Hyeon; Lim Hyo Jin; Hwang, Geumsook; Park, Chan Pil [Chungnam National Univ., Daejeon (Korea, Republic of)

    2014-04-15

    Activated singlet oxygen ({sup 1}O{sub 2}) has successfully been utilized in production of various compounds including fragrances, pharmaceuticals, and fine chemicals. However, the traditional reaction required a prolonged reaction time due to the difficulty of introducing adequate light and oxygen into the solution. Low contact probability between four species of oxygen, photosensitizer, light, and reagent is an inherent drawback of the traditional photoreaction. Molecular diffusion distance is the most important factor in the heterogeneous reactions including gas-liquid, gassolid, liquid-solid, and immiscible liquid-liquid. Therefore, rates of reaction are closely depended on the distance. Microreactor has provided a distinct advantage in the short molecular diffusion distance due to the high surface-to-volume ratio driven by narrow fluidic channels.

  13. DNA interaction with cis- and trans- isomers of photosensitive surfactant

    Science.gov (United States)

    Unksov, I. N.; Kasyanenko, N. A.

    2014-12-01

    Interaction between DNA and photosensitive cationic surfactant in a solution is studied. Studies were conducted to examine the impact of the surfactant in its cis- conformation on the size of DNA molecule and also to investigate the phase behavior of the system depending on DNA and surfactant concentration. We conclude that trans- isomer of surfactant requires its smaller concentration to reach the DNA compaction compared with cis- isomer received by UV radiation of solutions. Studies of DNA-surfactant systems were performed by means of spectrophotometry and viscometry. Variation of surfactant concentration enables us to determine the precipitation zone on phase diagram. From the viscosity study it can be indicated that precipitation zone is narrower for UV-radiated surfactant and it shifts to higher surfactant concentration. Also we examine the reversibility of DNA compaction in systems with the surfactant in its trans- form.

  14. DNA interaction with cis- and trans- isomers of photosensitive surfactant

    International Nuclear Information System (INIS)

    Interaction between DNA and photosensitive cationic surfactant in a solution is studied. Studies were conducted to examine the impact of the surfactant in its cis- conformation on the size of DNA molecule and also to investigate the phase behavior of the system depending on DNA and surfactant concentration. We conclude that trans- isomer of surfactant requires its smaller concentration to reach the DNA compaction compared with cis- isomer received by UV radiation of solutions. Studies of DNA-surfactant systems were performed by means of spectrophotometry and viscometry. Variation of surfactant concentration enables us to determine the precipitation zone on phase diagram. From the viscosity study it can be indicated that precipitation zone is narrower for UV-radiated surfactant and it shifts to higher surfactant concentration. Also we examine the reversibility of DNA compaction in systems with the surfactant in its trans- form

  15. Lantana camara POISONING IN MEHSANA BUFFALOES: A PROFILE OF PHOTOSENSITIZATION

    Directory of Open Access Journals (Sweden)

    Harshad B. Patel, , , and

    2012-07-01

    Full Text Available Lantana Camara is poisonous weed.Recently three clinical cases ofphotosensitization in milking Mehsana buffaloes were presented for treatment at Hathwara villege in Sabarkantha district of Gujarat state. History of case clearly indicated the possibility of Lantana Camara poisoning. Information given by the animal owners revealed that the Lantana Camara plants are present in surrounding of pasture,where animals were allowed to graze, which might have been consumed by animals during grazing. Clinical cases were characterized by anorexia, diarrhea, icterus,edema of the affected parts, serous fluidoozing out from affected skin lesions,sloughing off the superficial layer of skin.Animal showed tendency of itching. All the animals suffering from photosensitization were treated with antihistaminic (Injection Anhistamine 50 mg, IM and antibiotic(gentamicin 5 mg/ kg IM administrations.All the three animals recovered to normalhealthy status within five days.

  16. Fe N-Heterocyclic Carbene Complexes as Promising Photosensitizers.

    Science.gov (United States)

    Liu, Yizhu; Persson, Petter; Sundström, Villy; Wärnmark, Kenneth

    2016-08-16

    The photophysics and photochemistry of transition metal complexes (TMCs) has long been a hot field of interdisciplinary research. Rich metal-based redox processes, together with a high variety in electronic configurations and excited-state dynamics, have rendered TMCs excellent candidates for interconversion between light, chemical, and electrical energies in intramolecular, supramolecular, and interfacial arrangements. In specific applications such as photocatalytic organic synthesis, photoelectrochemical cells, and light-driven supramolecular motors, light absorption by a TMC-based photosensitizer and subsequent excited-state energy or electron transfer constitute essential steps. In this context, TMCs based on rare and expensive metals, such as ruthenium and iridium, are frequently employed as photosensitizers, which is obviously not ideal for large-scale implementation. In the search for abundant and environmentally benign solutions, six-coordinate Fe(II) complexes (Fe(II)L6) have been widely considered as highly desirable alternatives. However, not much success has been achieved due to the extremely short-lived triplet metal-to-ligand charge transfer ((3)MLCT) excited state that is deactivated by low-lying metal-centered (MC) states on a 100 fs time scale. A fundamental strategy to design useful Fe-based photosensitizers is thus to destabilize the MC states relative to the (3)MLCT state by increasing the ligand field strength, with special focus on making eg σ* orbitals on the Fe center energetically less accessible. Previous efforts to directly transplant successful strategies from Ru(II)L6 complexes unfortunately met with limited success in this regard, despite their close chemical kinship. In this Account, we summarize recent promising results from our and other groups in utilizing strongly σ-donating N-heterocyclic carbene (NHC) ligands to make strong-field Fe(II)L6 complexes with significantly extended (3)MLCT lifetimes. Already some of the first

  17. Natural Dyes as Photosensitizers for Dye-sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Hatem S. El-Ghamri

    2015-10-01

    Full Text Available Dye-sensitized solar cells (DSSCs were assembled using Zinc oxide (ZnO nanoparticles as a photoelectrode and natural dyes extracted from eight natural plants as photosensitizers. The structural properties of the synthesized ZnO nanoparticles were studied using XRD, SEM and TEM characterizations. Photovoltaic parameters such as short circuit current density Jsc, open circuit voltage Voc, fill factor FF, and overall conversion efficiency η for the fabricated cells were determined under 100 mW/cm2 illumination. It was found that the DSSC fabricated with the extracted safflower dye as a sensitizer showed the best performance. Also, its performance increased with increasing the sintering temperature of the semiconductor electrode with highest performance at 400 °C. Moreover, it was found that a semiconductor electrode of 7.5 μm thickness yielded the highest response.

  18. Target cell specific antibody-based photosensitizers for photodynamic therapy

    Science.gov (United States)

    Rosenblum, Lauren T.; Mitsunaga, Makoto; Kakareka, John W.; Morgan, Nicole Y.; Pohida, Thomas J.; Choyke, Peter L.; Kobayashi, Hisataka

    2011-03-01

    In photodynamic therapy (PDT), localized monochromatic light is used to activate targeted photosensitizers (PS) to induce cellular damage through the generation of cytotoxic species such as singlet oxygen. While first-generation PS passively targeted malignancies, a variety of targeting mechanisms have since been studied, including specifically activatable agents. Antibody internalization has previously been employed as a fluorescence activation system and could potentially enable similar activation of PS. TAMRA, Rhodamine-B and Rhodamine-6G were conjugated to trastuzumab (brand name Herceptin), a humanized monoclonal antibody with specificity for the human epidermal growth factor receptor 2 (HER2), to create quenched PS (Tra-TAM, Tra-RhoB, and Tra-Rho6G). Specific PDT with Tra-TAM and Tra-Rho6G, which formed covalently bound H-dimers, was demonstrated in HER2+ cells: Minimal cell death (SDS-PAGE).

  19. Photodynamic therapy of cancer with the photosensitizer PHOTOGEM

    Science.gov (United States)

    Sokolov, Victor V.; Chissov, Valery I.; Filonenko, E. V.; Sukhin, Garry M.; Yakubovskaya, Raisa I.; Belous, T. A.; Zharkova, Natalia N.; Kozlov, Dmitrij N.; Smirnov, V. V.

    1995-01-01

    The first clinical trials of photodynamic therapy (PDT) in Russia were started in P. A. Hertzen Moscow Research Oncology Institute in October of 1992. Up to now, 61 patients with primary or recurrent malignant tumors of the larynx (3), trachea (1), bronchus (11), nose (1), mouth (3), esophagus (12), vagina and uterine cervix (3), bladder (2), skin (6), and cutaneous and subcutaneous metastases of breast cancer and melanomas (6) have been treated by PDT with the photosensitizer Photogem. At least partial tumor response was observed in all of the cases, but complete remission indicating no evident tumors has been reached in 51% of the cases. Among 29 patients with early and first stage cancer 14 patients had multifocal tumors. Complete remission of tumors in this group reached 86%.

  20. Photosensitized Oxygenations of Hexamethylbenzene in Phase Contact Enhanced Microreactor

    International Nuclear Information System (INIS)

    Activated singlet oxygen (1O2) has successfully been utilized in production of various compounds including fragrances, pharmaceuticals, and fine chemicals. However, the traditional reaction required a prolonged reaction time due to the difficulty of introducing adequate light and oxygen into the solution. Low contact probability between four species of oxygen, photosensitizer, light, and reagent is an inherent drawback of the traditional photoreaction. Molecular diffusion distance is the most important factor in the heterogeneous reactions including gas-liquid, gassolid, liquid-solid, and immiscible liquid-liquid. Therefore, rates of reaction are closely depended on the distance. Microreactor has provided a distinct advantage in the short molecular diffusion distance due to the high surface-to-volume ratio driven by narrow fluidic channels

  1. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  2. Sintering behavior of boron carbide

    International Nuclear Information System (INIS)

    Pressureless sintering behavior of boron carbide (B4C) in argon was studied, with change in time and temperature, using carbon as sintering aid. Carbon was added via fenolic resin, acting also as a binder. After isostatic pressing the specimens were sintered in a graphite furnace at 19600C/1h, 21600C/15 minutes and 1h and 22000C/1h. The achieved density was 97% of the theoretical. Some mechanical properties and microstructural aspects have been evaluated. (author)

  3. Boron Enrichment in Martian Clay

    OpenAIRE

    James D Stephenson; Lydia J Hallis; Kazuhide Nagashima; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest minera...

  4. Porphyrin electrode films prepared by electrooxidation of metalloprotoporphyrins

    Energy Technology Data Exchange (ETDEWEB)

    Macor, K.A.; Spiro, T.G.

    1983-08-24

    Electrooxidation in organic solvents of the dimethyl esters of several metalloprotoporphyrins (PP) (Ni/sup II/PP, Zn/sup II/PP, Co/sup II/PP, (Fe/sup III/PP)Cl, (Fe/sup III/PP)/sub 2/O, and (Cr/sup III/PP)/sub 2/O) leads to the deposition of thick (approx. 1000 monolayer equivalents), electroactive porphyrin films, which have been characterized by cyclic voltammetry and absorption spectroscopy on transparent SnO/sub 2/ electrodes. The films are stable toward organic solvents and aqueous acids and bases, but are removed by treatment with hot concentrated acids. The resonance Raman spectrum of the NiPP film indicates that one of the two vinyl groups is saturated on most of the porphyrin units. Deposition continues for some minutes after the current is interrupted. This evidence is consistent with a mechanism involving electroinitiated cationic vinyl polymerization. No film is formed if the metal, rather than the ring, is oxidized. Thus the first oxidation step of Co/sup II/PP, to (Co/sup III/PP)/sup +/, does not support film formation (although the potential is as high as for ring oxidation in ZnPP), but the second step, to (Co/sup III/PP)/sup 2 +/, does. Lack of film formation for (Mn/sup III/PP)Cl and (Cr/sup IV/PP)O suggests metal, rather than ring oxidation, to Mn/sup IV/ and Cr/sup V/. However, (CrPP)/sub 2/O oxidation does produce a film, suggesting ring oxidation, analogous to (FePP)/sub 2/O, which also produces a film. However, while (CrPP)/sub 2/O is incorporated intact into the film, the (FePP)/sub 2/O film contains monomer units. Incorporation of other metal ions can be accomplished by soaking a ZnPP-coated electrode in H/sub 2/SO/sub 4/ followed by contact wtih a solution of the metal dihalide in refluxing DMF. The porphyrin sites are accessible to small ions, as shown by chloride coordination of ZnPP film upon soaking in chloride solution. 49 references, 13 figures, 1 table.

  5. Spectral properties of porphyrins in the systems with layered silicates

    International Nuclear Information System (INIS)

    This work is focused on investigation of hybrid materials based on layered silicates, representing host inorganic component, and porphyrin dyes as organic guest. Aqueous colloidal dispersions, as well as thin solid films of layered silicate/porphyrin systems were studied. Modification of photophysical properties, such as absorption and fluorescence of molecules, adsorbed or incorporated in layered silicate hosts, were studied mainly to spread the knowledge about the environments suitable for incorporating aromatic compounds, providing photoactive properties of potential technological interest. TMPyP cations interact with the surfaces of layered silicates via electrostatic interactions. The extent of dye adsorption on colloidal particles of the silicates is influenced by the CEC values and swelling ability of silicates. Interaction of porphyrins with layered silicate hosts leads to significant changes of dye spectral properties. One of the key parameters that has a crucial impact on this interaction is the layer charge of silicate template. Other factors influence the resulting spectral properties of hybrid systems, such as the method of hybrid material preparation, the material's type (colloid, film), and the modification of the silicate host. Molecular orientation studies using linearly-polarized spectroscopies in VIS and IR regions revealed that TMPyP molecules were oriented in almost parallel fashion with respect to the silicate surface plane. Slightly higher values of the orientation angle of TMPyP transition moment were observed for the TMPyP/FHT system. Thus, flattening of the guest TMPyP molecules is the next important factor (mainly in the systems with lower layer charge), influencing its spectral properties upon the interaction with layered silicates. Fluorescence was effectively quenched in the systems based on solid films prepared from the high concentration of the dye (10-3 mol.dm-3). The quenching is most probably related to the structure of the

  6. Spectroscopic properties of porphyrins and effect of lanthanide ions on their luminescence efficiency

    International Nuclear Information System (INIS)

    Spectroscopic properties of H2TPP porphyrin and Tb(III)TPP(acac) in solid and methanolic solutions have been compared. Emission from the S1 singlet state of Tb(III)TPP(acac) have been recorded at 296 and 77 K. Spectroscopic investigations of new types of porphyrins soluble in organic solvents (e.g. methanol), PP(AA)2, and porphyrins soluble in water, PP(AA)2(Arg)2 (where AA, alanine or serine; Arg, arginine), are presented. Interaction of PP(AA)2 with lanthanide ions (Yb(III), Eu(III)) has been studied. It has been found that the lanthanide (III) ions decrease efficiency of the porphyrin emission. For the alanine derivative, the stronger losses are caused by the Eu(III) ions as compared to the Yb(III) ions. On the other hand, the emission quenching by both lanthanide ions is similar in the case of the serine derivative. Influence of the Pr(III) and Eu(III) ions on the PP(AA)2(Arg)2 emission has also been investigated. An unexpected increase of the porphyrin emission intensity has been observed in solution for the lowest concentration of Pr(III) added, whereas the Eu(III) ions quench the emission in the full range of its concentration. The observed phenomena are analyzed, and the mechanisms of the excited-state dynamics in which the f-excited states take part in the porphyrin emission quenching are considered. It has been found that the lanthanide ions influence the absorption spectrum as well as the relative intensities of the respective bands in the emission spectra. The luminescence intensities of these porphyrins as a function of pH, the concentration and the type of the porphyrine substituent have been analyzed. Significant influence of the above factors on the emission properties of the porphyrins has been found and discussed. Efficiency of the emission has been determined for these M-porphyrin systems in comparison to the free porphyrins in methanol solutions. The observed effects can be explained by formation of polymeric chains and decrease of face

  7. Photosensitivity in chalcogenide glass thin films and its applications

    Science.gov (United States)

    Saliminia, Ali

    2002-08-01

    The realization and study of various photoinduced optical elements in As2S3 and As24S38Se38 chalcogenide glass (ChG) thin films constitute the main subject of the present thesis. Various isotropic and anisotropic photosensitive effects occur upon exposure of chalcogenide glass by a near bandgap light. In particular, photodarkening and giant photoexpansion effects have been studied in detail. The holographic fabrication and characterization of the scalar and vectorial volume and surface relief diffraction gratings using an interferometric technique have been presented, where the optimum writing conditions have been obtained so as to realize efficient and stable photoinduced gratings. One of the most important applications of photosensitivity is the fabrication of Bragg gratings in different guiding structures of ChG. The fabrication and characterization of Bragg filters at telecommunication wavelength of 1550 nm in single and multilayer slab/channel waveguides of ChG have been presented in detail. The observed thermal behavior of these Bragg gratings has provided a means for studying the photoinduced changes in optical properties of ChG, where some physical models have also been discussed. The realization of photoinduced Bragg gratings at 1550 nm in planar lightwave circuits (PLC) of chalcogenide glasses could provide many applications such as add-drop filters, and wavelength selective elements in integrated and photonic devices, especially in wavelength division multiplexing (WDM) networks. On the other hand, owing to the giant photoexpansion effect, one and two dimensional holographic microlens networks have been realized in ChG thin films. We also introduce a novel photoinduced anisotropic mass transport phenomenon, leading to extra-ordinary surface deformations and relief gratings in As2S3, with promising applications in grating couplers and photonics bandgap structures.

  8. Boron removal from geothermal waters by electrocoagulation

    International Nuclear Information System (INIS)

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm2, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%

  9. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  10. Boron deposition from fused salts. Final report

    International Nuclear Information System (INIS)

    A partial evaluation of the feasibility of a process to electrodeposit pure coherent coatings of elemental boron from molten fluorides has been performed. The deposit produced was powdery and acicular, unless the fluoride melt was purified to have very low oxygen concentration. When the oxygen activity was reduced in the melt by addition of crystalline elemental boron, dense, amorphous boron deposit was produced. The boron deposits produced had cracks but were otherwise pure and dense and ranged up to 0.35 mm thick. Information derived during this project suggests that similar deposits might be obtained crack-free up to 1.00 mm thick by process modifications and improvements

  11. Synthesis of a Polyimide Porous Porphyrin Polymer for Selective CO2 Capture

    OpenAIRE

    Neti, Venkata S. Pavan K.; Jun Wang; Shuguang Deng; Luis Echegoyen

    2015-01-01

    A new microporous porphyrin-based imide linked polymer, PyP, was synthesized in an m-cresol/isoquinoline mixture between a porphyrin and a naphthalene tetra-carboxylic dianhydride. The resultant amorphous polymer demonstrates a moderate surface area (SBET = 428 m2 g−1) and CO2 adsorption ability (3.5 wt%) and a CO2/CH4 selectivity of 5.6 at 273 K/1 bar.

  12. Manganese(III) Porphyrin-based Potentiometric Sensors for Diclofenac Assay in Pharmaceutical Preparations

    OpenAIRE

    Eugenia Fagadar-Cosma; Vlad Chiriac; Elena Maria Pica; Luminita Nica; Liviu Calin Bolundut; Vasile Ostafe; Stela Pruneanu; Florina Pogacean; Liliana Olenic; Dana Vlascici

    2010-01-01

    Two manganese(III) porphyrins: manganese(III) tetraphenylporphyrin chloride and manganese(III)-tetrakis(3-hydroxyphenyl)porphyrin chloride were tested as ionophores for the construction of new diclofenac−selective electrodes. The electroactive material was incorporated either in PVC or a sol−gel matrix. The effect of different plasticizers and additives (anionic and cationic) on the potentiometric response was studied. The best results were obtained for the PVC membrane plasticized with dioct...

  13. Self-organization of porphyrin units induced by magnetic field during sol-gel polymerization.

    Science.gov (United States)

    Lerouge, Frédéric; Cerveau, Geneviève; Corriu, Robert J P; Stern, Christine; Guilard, Roger

    2007-04-21

    The use of a magnetic field as a controlling factor during the hydrolysis-polycondensation of porphyrin precursors substituted by Si(OR)(3) groups, induces a self-organization of porphyrin moieties due to the stacking of these units in the hybrid material and this study also confirms the effect of the magnetic field in the nano- and micrometric organization during the kinetically controlled polycondensation process. PMID:17406705

  14. Synthesis of o- and m-carborane substituted porphyrins of natural type

    International Nuclear Information System (INIS)

    Synthesis of new mono- and dicarborane-containing porphyrins on the basis of protoporphyrin IX, its monobenzene esters, deuteroporphyrin IX, 9-hydroxymethyl-m- and 9-hydroxymethyl-o-carboranes was conducted. The yield of the products amounted to 24 - 76 %. All the compounds prepared were characterized using electronic, 1H NMR and IR spectroscopy and mass spectrometry. Relying on spectral data, the structure of porphyrin nucleus in the compounds was confirmed

  15. Dendrimers Containing Ferrocene and Porphyrin Moieties: Synthesis and Cubic Non-Linear Optical Behavior

    OpenAIRE

    Eric G. Morales-Espinoza; Sanchez-Montes, Karla E.; Elena Klimova; Tatiana Klimova; Lijanova, Irina V.; Maldonado, José L.; Gabriel Ramos-Ortíz; Simón Hernández-Ortega; Marcos Martínez-García

    2010-01-01

    Dendrons with ferrocenyl ended groups joined by styryl moieties were attached to a porphyrin core. All the dendrons used for dendrimer synthesis showed trans configuration. The chemical structure of the first generation dendron was confirmed by X-ray crystallographic studies. The structure of the synthesized dendrimers was confirmed by 1H- and 13C-NMR, electrospray mass spectrometry and elemental analysis. Cubic non-linear optical behavior of the ferrocene and porphyrin-containing dendrimers ...

  16. Parent Anions of Iron, Manganese, and Nickel Tetraphenyl Porphyrins: Photoelectron Spectroscopy and Computations.

    Science.gov (United States)

    Buytendyk, Allyson M; Graham, Jacob D; Gould, Julian; Bowen, Kit H

    2015-08-13

    The singly charged, parent anions of three transition metal, tetraphenyl porphyrins, M(TPP) [Fe(TPP), Mn(TPP), and Ni(TPP)], were studied by negative ion photoelectron spectroscopy. The observed (vertical) transitions from the ground state anions of these porphyrins to the various electronic states of their neutral counterparts were modeled by density functional theory computations. Our experimental and theoretical results were in good agreement. PMID:26186172

  17. N-annulated perylene fused porphyrins with enhanced near-IR absorption and emission

    KAUST Repository

    Jiao, Chongjun

    2010-09-17

    N-Annulated perylene fused porphyrins 1 and 2 were synthesized by oxidative dehydrogenation using a Sc(OTf)3/DDQ system. These newly synthesized hybrid molecules are highly soluble in organic solvents and exhibit remarkably intense near-IR absorption, as well as detectable photoluminescence quantum yields, all of which are comparable to or even exceed those of either meso-β doubly linked porphyrin dimer/trimer or bis/tri-N-annulated rylenes. © 2010 American Chemical Society.

  18. Mutual and self-diffusion of charged porphyrines in aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: ► Self and mutual diffusion coefficients of charged porphyrines in aqueous dilute solutions. ► Complementary molecular mechanics studies. ► Effect of association in diffusion of charged porphyrines. - Abstract: We have investigated the diffusion properties for an ionic porphyrin in water. Specifically, for the {tetrasodium tetraphenylporphyrintetrasulfonate (Na4TPPS) + water} binary system, the self-diffusion coefficients of TPPS4− and Na+, and the mutual diffusion coefficients were experimentally determined as a function of Na4TPPS concentration from (0 to 4) · 10−3 mol · dm−3 at T = 298.15 K. Absorption spectra for this system were obtained over the same concentration range. Molecular mechanics were used to compute size and shape of the TPPS4− porphyrin. We have found that, at low solute concentrations (−3 mol · dm−3), the mutual diffusion coefficient sharply decreases as the concentration increases. This can be related to both the ionic nature of the porphyrin and complex associative processes in solution. Our experimental results are discussed on the basis of the Nernst equation, Onsager–Fuoss theory and porphyrin metal ion association. In addition, self-diffusion of TPPS4− was used, together with the Stokes–Einstein equation, to determine the equivalent hydrodynamic radius of TPPS4−. By approximating this porphyrin to a disk, we have estimated structural parameters of TPPS4−. These were found to be in good agreement with those obtained using molecular mechanics. Our work shows how the self-diffusion coefficient of an ionic porphyrin in water is substantially different from the corresponding mutual-diffusion coefficient in both magnitude and concentration dependence. This aspect should be taken into account when diffusion-based transport is modelled for in vitro and in vivo applications of pharmaceutical relevance.

  19. Signature of gate-tunable magnetism in graphene grafted with Pt-porphyrins

    OpenAIRE

    Li, Chuan; Komatsu, Katsuyoshi; Bertrand, S.; Clavé, G; Campidelli, S; Filoramo, A; Guéron, S.; Bouchiat, H.

    2013-01-01

    Inducing magnetism in graphene holds great promises, such as controlling the exchange interaction with a gate electrode, and generating exotic magnetic phases. Coating graphene with magnetic molecules or atoms has so far mostly led to decreased graphene mobility. In the present work, we show that Pt-porphyrin molecules adsorbed on graphene lead both to an enhanced mobility, and to gate-dependent magnetism. We report that porphyrins can act both as donor or acceptor molecules, depending on the...

  20. Glycoconjugates of porphyrins with carbohydrates: methods of synthesis and biological activity

    International Nuclear Information System (INIS)

    Data on the main approaches to preparation of mono- and oligodentate glycoconjugates based on porphyrin scaffolds are surveyed. The prospects for using these compounds as sensitizers for photodynamic therapy of cancer and for suppression of bacterial and viral pathogens are considered. Data on the synthesis of oligodentate blocking agents for carbohydrate-binding proteins (lectins) based on porphyrin scaffolds are discussed. The bibliography includes 161 references

  1. Quantum efficiency of energy transfer in noncovalent carbon nanotube/porphyrin compounds

    OpenAIRE

    Roquelet, Cyrielle; Garrot, Damien; Lauret, Jean-Sébastien; Voisin, C.; Alain-Rizzo, Valérie; Roussignol, Philippe; Delaire, Jacques,; Deleporte, Emmanuelle

    2010-01-01

    We report on the quantum yield of excitation energy transfer in non-covalently bound nan- otube/porphyrin compounds. Evidence for energy transfer is gained from photoluminescence exci- tation experiments. We perform a quantitative evaluation of the transfer quantum yield in the case of (6,5) nanotubes through three independent methods : quantitative PLE measurements, evalu- ation of the luminescence quenching of the donor (porphyrin) and ultrafast transient absorption measurements. The latter...

  2. Structural study of a manganese(II) 'picket-fence' porphyrin complex.

    Science.gov (United States)

    Yu, Qiang; Li, Xiangjun; Liu, Diansheng; Li, Jianfeng

    2015-07-01

    'Picket-fence' porphyrin compounds are used in the investigation of interactions of hemes with dioxygen, carbon monoxide, nitric monoxide and imidazole ligands. (Cryptand-222)potassium chlorido[meso-tetra(α,α,α,α-o-pivalamidophenyl)porphyrinato]manganese tetrahydrofuran monosolvate (cryptand-222 is 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane), [K(C18H36N2O6)][Mn(C64H64N8O4)Cl]·C4H8O or [K(222)][Mn(TpivPP)Cl]·THF [systematic name for TpivPP: 5,10,15,20-tetrakis(2-tert-butanamidophenyl)porphyrin], is a five-coordinate high-spin manganese(II) picket-fence porphyrin complex. It crystallizes with a potassium cation chelated inside a cryptand-222 molecule; the average K-O and K-N distances are 2.83 (4) and 2.995 (13) Å, respectively. All four protecting tert-butyl pickets of the porphyrin are ordered. The porphyrin plane is nearly planar, as indicated by the atomic displacements and the dihedral angles between the mean planes of the pyrrole rings and the 24-atom mean plane. The axial chloride ligand is located inside the molecular cavity on the hindered porphyrin side and the Mn-Cl bond is tilted slightly off the normal to the porphyrin plane by 3.68 (2)°. The out-of-plane displacement of the metal centre relative to the 24-atom mean plane (Δ24) is 0.7013 (4) Å, indicating a noticeable porphyrin core doming. PMID:26146391

  3. Suspected buttercup (Ranunculus bulbosus) toxicosis with secondary photosensitization in a Charolais heifer.

    Science.gov (United States)

    Kelch, W J; Kerr, L A; Adair, H S; Boyd, G D

    1992-06-01

    A presumptive diagnosis of buttercup toxicosis with photosensitization secondary to hepatotoxicity was made in an 18-mo-old Charolais heifer. The differential diagnosis included salmonellosis, aflatoxicosis, bovine virus diarrhea, internal parasite infestation, and plant toxicosis with either primary or secondary photosensitization. All these possibilities were excluded except buttercup toxicosis with photosensitization secondary to hepatotoxicity. While this diagnosis was not absolutely confirmed, it was the most likely cause of the disease and raised the intriguing possibility that protoanemonin, buttercup's toxic principle, is hepatotoxic. PMID:1609496

  4. Distinctive role of activated tumor-associated macrophages in photosensitizer accumulation

    Science.gov (United States)

    Korbelik, Mladen; Krosl, Gorazd

    1995-05-01

    Cells dissociated from tumors (carcinomas and sarcomas) growing subcutaneously in mice that have been administered Photofrin or other photosensitizers were analyzed by flow cytometry. Monoclonal antibodies were used for identification of major cellular populations contained in these tumors. The results demonstrate that a subpopulation of tumor-associated macrophages (TAMs) is unique among tumor cell populations in that it excels in the accumulation of very high levels of photosensitizers. These macrophages showed an increased expression of interleukin 2 receptor, which is indicative of their activated state. since macrophages were reported to concentrate in the periphery of human neoplasms, it is suggested that activates TAMs are the determinants of tumor-localized photosensitizer fluorescence.

  5. Fluorescence quenching effect of guanine interacting with water-soluble cationic porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Makarska-Bialokoz, Magdalena, E-mail: makarska@hektor.umcs.lublin.pl

    2014-03-15

    The process of association between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H{sub 2}TTMePP) and guanine has been studied both in NaOH solution and TRIS buffer analysing its absorption and steady-state fluorescence spectra. The fluorescence quenching effect observed during interactions porphyrin-guanine points at the fractional accessibility of the fluorophore for the quencher. The association and fluorescence quenching constants are of the order of magnitude of 10{sup 5} mol{sup −1}. The fluorescence lifetimes and the quantum yields of the porphyrin monoanion form were established. The results demonstrate that guanine can interact with H{sub 2}TTMePP at basic pH and through formation of stacking complexes is able to quench its ability to emission. -- Highlights: • Association study of water soluble cationic porphyrin with guanine. • Porphyrin absorption spectra undergo the bathochromic and hypochromic effects. • Guanine interacts with porphyrin in inhibiting manner, quenching its emission. • Fluorescence quenching process is static with fractional accessibility of porphyrin. • The association and fluorescence quenching constants were calculated.

  6. Fluorescence quenching behaviour of uric acid interacting with water-soluble cationic porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Makarska-Bialokoz, Magdalena, E-mail: makarska@hektor.umcs.lublin.pl [Department of Inorganic Chemistry, Maria Curie-Sklodowska University M. C. Sklodowska Sq. 2, 20-031 Lublin (Poland); Borowski, Piotr [Faculty of Chemistry, Maria Curie-Sklodowska University M. C. Sklodowska Sq. 3, 20-031 Lublin (Poland)

    2015-04-15

    The process of association between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H{sub 2}TTMePP) and uric acid as well as its sodium salt has been studied in aqueous NaOH solution analysing its absorption and steady-state fluorescence spectra. The fluorescence quenching effect observed during interactions porphyrin-uric acid compounds points at the fractional accessibility of the fluorophore for the quencher. The association and fluorescence quenching constants are of the order of magnitude of 10{sup 5} mol{sup −1}. The fluorescence lifetimes and the quantum yields of the porphyrin anionic form were established. The results demonstrate that uric acid and its sodium salt can interact with H{sub 2}TTMePP at basic pH and through formation of stacking complexes are able to quench its ability to emission. - Highlights: • Association study of water soluble cationic porphyrin with uric acid. • Porphyrin absorption spectra undergo the bathochromic and hypochromic effects. • Uric acid interacts with porphyrin in inhibiting manner, quenching its emission. • Fluorescence quenching effect testifies for the partial inactivation of a porphyrin. • The association and fluorescence quenching constants were calculated.

  7. Structural and Molecular Characterization of meso-Substituted Zinc Porphyrins: A DFT Supported Study

    Directory of Open Access Journals (Sweden)

    Giuseppe Mele

    2011-12-01

    Full Text Available Structural parameters of a range of over 100 meso-substituted zinc porphyrins were reviewed and compared to show how far the nature of the functional group may affect the interatomic distances and bond angles within the porphyrin core. It was proved that even despite evident deformations of the molecular structure, involving twisting of the porphyrin's central plane, the coupled π-bonding system remains flexible and stable. DFT calculations were applied to a number of selected porphyrins representative for the reviewed compounds to emphasize the relevance of theoretical methods in structural investigations of complex macrocyclic molecular systems. Experimental and DFT-simulated IR spectral data were reported and analyzed in context of the individual molecular features introduced by the meso substituents into the porphyrin moiety base. Raw experimental spectral data, including 1H- and 13C-NMR, UV-Vis, FTIR, XRD, and other relevant physicochemical details have been provided for a specially chosen reference zinc porphyrin functionalized by tert-butylphenyl groups.

  8. Photoluminescence and dynamics of excitation relaxation in graphene oxide-porphyrin nanorods composite

    International Nuclear Information System (INIS)

    Generally, porphyrin nanostructured materials are known by playing many roles such as photoconductors, photovoltaics and capable of light induced charging. Also their combination with acceptors like graphene, the rising two dimension material, added exciting physical and chemical properties. In this work, Morphology, optical absorption and photoluminescence properties were investigated in order to elucidate the interaction between the few layered graphene oxide (FGO) and pophyrin nanorods. Reporting on the photoluminescence (PL) of both porphyrin nanorods and FGO/porphyrin nanorods composite, synthesized via a self-assembly method, we have experimentally demonstrated the generation of a new photoluminescence band giving rise to a white light. This luminescence was studied by the analysis of its origins and dynamics which show a huge change of exciton life time found to be longer after the interaction with graphene oxide (GO) sheets. -- Highlights: • We prepared FGO-porphyrin nanorods composite via a simple chemical method. • Luminescence properties were studied presenting the absorption, photoluminescence and dynamics measurements. • These results show the emission of a white light which we studied its emissions origins. • TEM images show FGO sheets decorated with porphyrin nanorods. • FGO had like effect an increase of the exciton lifetime in porphyrin nanorods

  9. Synthesis and characterization of porphyrin nanotubes/rods for solar radiation harvesting and solar cells

    International Nuclear Information System (INIS)

    Energy transfer and electron transfer events as they occur between well arranged light harvesting antenna molecules, the reaction center and other factors determine the function of natural photosynthesis. The overall small reorganization energy and the well-balanced electronic coupling between each component bear key characters for the unique efficiency of natural photosynthesis. Such aspects permit the design and assembly of artificial systems that efficiently process solar energy, replicating the natural processes. The rich and extensive transitions seen in porphyrin-based materials hold great expectation as light harvesting building blocks in the construction of molecular architectures, allowing an efficient use of the solar spectrum. Hence in this study porphyrin nanorods are synthesized and characterized for future application in the construction of the artificial light harvesting system. Understanding the sizes and growth mechanism of porphyrins nanorods by self-assembly and molecular recognition is essential for their successful implementation in nanodevices. Spectroscopic and microscopic studies were carried out to investigate the effect that time, concentration and solvents have on the fabrication of porphyrin nanorods by ionic self-assembly of two oppositely charged porphyrins. We investigate in details the heteroaggregate behavior formation of [H4TPPS4]2− and [SnTPyP]2+ mixture by means of the UV–vis spectroscopy and aggregates structure and morphology by transmission electron microscopy (TEM). This study demonstrates the potential for using different concentrations and solvents to influence the physical and optical properties of porphyrin based nanorods.

  10. Photoluminescence and dynamics of excitation relaxation in graphene oxide-porphyrin nanorods composite

    Energy Technology Data Exchange (ETDEWEB)

    Khenfouch, M., E-mail: khenfouch@yahoo.fr [University Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar el Mahraz, Laboratory of Solid State Physics, Group of Polymers and Nanomaterials, BP 1796 Atlas, Fez 30 000 (Morocco); iThemba LABS-National Research Foundation of South Africa, Old Faure Road, PO Box 722, Somerset West 7129, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Wéry, J. [Institut des Matériaux Jean Rouxel, Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes, Cedex 3 (France); Baïtoul, M., E-mail: baitoul@yahoo.fr [University Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar el Mahraz, Laboratory of Solid State Physics, Group of Polymers and Nanomaterials, BP 1796 Atlas, Fez 30 000 (Morocco); Maaza, M. [iThemba LABS-National Research Foundation of South Africa, Old Faure Road, PO Box 722, Somerset West 7129, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa)

    2014-01-15

    Generally, porphyrin nanostructured materials are known by playing many roles such as photoconductors, photovoltaics and capable of light induced charging. Also their combination with acceptors like graphene, the rising two dimension material, added exciting physical and chemical properties. In this work, Morphology, optical absorption and photoluminescence properties were investigated in order to elucidate the interaction between the few layered graphene oxide (FGO) and pophyrin nanorods. Reporting on the photoluminescence (PL) of both porphyrin nanorods and FGO/porphyrin nanorods composite, synthesized via a self-assembly method, we have experimentally demonstrated the generation of a new photoluminescence band giving rise to a white light. This luminescence was studied by the analysis of its origins and dynamics which show a huge change of exciton life time found to be longer after the interaction with graphene oxide (GO) sheets. -- Highlights: • We prepared FGO-porphyrin nanorods composite via a simple chemical method. • Luminescence properties were studied presenting the absorption, photoluminescence and dynamics measurements. • These results show the emission of a white light which we studied its emissions origins. • TEM images show FGO sheets decorated with porphyrin nanorods. • FGO had like effect an increase of the exciton lifetime in porphyrin nanorods.

  11. A facile one-pot synthesis of higher yield porphyrin functionalized Co3O4 nanoparticles

    International Nuclear Information System (INIS)

    Graphical abstract: Porphyrins functionalized Co3O4 nanoparticles were prepared firstly via a facile one-step method. The high yield of prophyrin functionalized Co3O4 nanoparticles is more than 90%. - Highlights: • Por-Co3O4 NPs were first prepared via a facile one-pot hydrothermal method. • The yield of porphyrin-Co3O4 nanoparticles is more than 90%. • FT-IR reveals the coordination interaction between porphyin molecules and Co3O4. • Ethanol and the appropriate temperature are necessary in this experiment. - Abstract: Porphyrin functionalized Co3O4 nanoparticles were first prepared via a facile one-pot hydrothermal method. The functionalized nanoparticles were characterized by X-ray diffraction and transmission electron microscopy. Fourier transform infrared spectra revealed the coordination interaction between porphyrin molecules and Co3O4. The high yield of prophyrin functionalized Co3O4 nanoparticles is more than 90%. The phase, morphology and size of as-prepared nanoparticles were dramatically affected by the ratio of solvents, temperature and porphyrins with different substituents, respectively. Experimental results revealed that ethanol and the appropriate temperature were necessary for the formation of single-phase Co3O4. Furthermore, a probable growth mechanism of the formation of porphyrin functionalized Co3O4 nanoparticles was proposed

  12. Real-time porphyrin detection in plaque and caries: a case study

    Science.gov (United States)

    Timoshchuk, Mari-Alina I.; Ridge, Jeremy S.; Rugg, Amanda L.; Nelson, Leonard Y.; Kim, Amy S.; Seibel, Eric J.

    2015-02-01

    An ultrathin scanning fiber endoscope, originally developed for cancer diagnosis, was used in a case study to locate plaque and caries. The imaging system incorporated software mitigation of background auto-fluorescence (AF). In conventional fluorescence imaging, varying AF across a tooth surface can mask low-level porphyrin signals. Laser-induced auto-fluorescence signals of dental tissue excited using a 405-nm laser typically produce fluorescence over a wavelength range extending from 440-nm to 750-nm. Anaerobic bacterial metabolism produces various porphyrin species (eg. protoporphyrin IX) that are located in carious enamel, dentin, gingivitis sites, and plaque. In our case study, these porphyrin deposits remained as long as one day after prophylaxis. Imaging the tooth surface using 405-nm excitation and subtracting the natural AF enhances the image contrast of low-level porphyrin deposits, which would otherwise be masked by the high background AF. In a case study, healthy tissues as well as sites of early and advanced caries formations were scanned for visual and quantitative signs of red fluorescence associated with porphyrin species using a background mitigation algorithm. Initial findings show increasing amplitudes of red fluorescence as caries severity increases from early to late stages. Sites of plaque accumulation also displayed red fluorescence similar to that found in carious dental tissue. The use of real-time background mitigation of natural dental AF can enhance the detection of low porphyrin concentrations that are indicators of early stage caries formation.

  13. Copolymerisation of Propylene Oxide and Carbon Dioxide by Dinuclear Cobalt Porphyrins

    KAUST Repository

    Anderson, Carly E.

    2013-09-18

    Two dinuclear cobalt porphyrins comprising different structural tethering motifs at the porphyrin periphery were synthesised, along with a representative mononuclear cobalt porphyrin, and their catalytic activities tested towards carbon dioxide-propylene oxide copolymerisation in the presence of bis(triphenylphosphoranyl)ammonium chloride cocatalyst. The catalytic activities of the mononuclear and the bis-para-tethered dinuclear cobalt porphyrin with selective formation of poly(propylene carbonate) are largely comparable, showing no benefit of dinuclearity in contrast to the case of cobalt salen complexes and suggesting that polymer growth proceeds exclusively from one metal centre. The alternative bis-ortho-tethered porphyrin demonstrated considerably reduced activity, with dominant formation of cyclic propylene carbonate, as a result of hindered substrate approach at the metal centre. Time-resolved UV/Vis spectroscopic studies suggested a general intolerance of the cobalt(III) porphyrin catalysts towards the copolymerisation conditions in the absence of carbon dioxide pressure, leading to catalytically inactive cobalt(II) species. In the presence of carbon dioxide, the bis-ortho-tethered catalyst showed the fastest deactivation, which is related to an unfavourable steric arrangement of the linker fragment, as was also confirmed by NMR spectroscopic measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Respiratory Monitoring by Porphyrin Modified Quartz Crystal Microbalance Sensors

    Directory of Open Access Journals (Sweden)

    Seung-Woo Lee

    2011-01-01

    Full Text Available A respiratory monitoring system based on a quartz crystal microbalance (QCM sensor with a functional film was designed and investigated. Porphyrins 5,10,15,20-tetrakis-(4-sulfophenyl-21H,23H-porphine (TSPP and 5,10,15,20-tetrakis-(4-sulfophenyl-21H, 23H-porphine manganese (III chloride (MnTSPP used as sensitive elements were assembled with a poly(diallyldimethyl ammonium chloride (PDDA. Films were deposited on the QCM resonators using layer-by-layer method in order to develop the sensor. The developed system, in which the sensor response reflects lung movements, was able to track human respiration providing respiratory rate (RR and respiratory pattern (RP. The sensor system was tested on healthy volunteers to compare RPs and calculate RRs. The operation principle of the proposed system is based on the fast adsorption/desorption behavior of water originated from human breath into the sensor films deposited on the QCM electrode.

  15. Application of clean laser transfer for porphyrin micropatterning

    International Nuclear Information System (INIS)

    Blister-based laser-induced forward transfer is proposed as a promising tool for clean, cold and liquid-free local transfer of various organic substances. The feature of the given technique is non-destructive local deformation of an absorbing metal film on a transparent support avoiding the metal sputtering. Application of the blister-based laser transfer of a Langmuir film to fabricate mesotetraphenylporphyrin micropatterns on a silica substrate has been demonstrated. The metal film thickness is found to be a key parameter, which determines the laser fluence range allowing the clean transfer, predominant mechanism of the blister formation and laser-induced heating of the transferred material. According to the numerical modelling confirmed by UV-vis absorption spectroscopy, the target with 1.5 μm thick titanium film provides negligible heating of the porphyrin transferred by 5 ns laser pulses.

  16. Manganese porphyrin sensor for the determination of bromate.

    Science.gov (United States)

    Sheen, Shanty; Jos, Theresa; Rajith, Leena; Kumar, Krishnapillai Girish

    2016-03-01

    The electro reductive behavior and determination of bromate on [5, 10, 15, 20-tetrakis (4-methoxyphenylporphyrinato] Manganese (III) chloride (TMOPPMn(III)Cl) modified Gold electrode(GE) was investigated by Square wave voltammetry (SWV). Bromate showed an irreversible reduction peak at -164 mV in 0.1 M pH 7 Na2SO4 solution. The cathodic peak of bromate showed a reduction in potential of 88 mV on modifying GE with a porphyrin film. The peak current varied linearly with concentration with a detection limit of 3.56 × 10(-9) M. The influence of pH, scan rate, supporting electrolyte and interferents on the reduction peak current of bromate were studied. The developed sensor was proposed for the determination of bromate in bread samples and compared with the standard method. PMID:27570281

  17. A new micro/nanoencapsulated porphyrin formulation for PDT treatment.

    Science.gov (United States)

    Deda, Daiana K; Uchoa, Adjaci F; Caritá, Eduardo; Baptista, Maurício S; Toma, Henrique E; Araki, Koiti

    2009-07-01

    The highly hydrophobic 5,10,15-triphenyl-20-(3-N-methylpyridinium-yl)porphyrin (3MMe) cationic species was synthesized, characterized and encapsulated in marine atelocollagen/xanthane gum microcapsules by the coacervation method. Further reduction in the capsule size, from several microns down to about 300-400 nm, was carried out successfully by ultrasonic processing in the presence of up to 1.6% Tween 20 surfactant, without affecting the distribution of 3MMe in the oily core. The resulting cream-like product exhibited enhanced photodynamic activity but negligible cytotoxicity towards HeLa cells. The polymeric micro/nanocapsule formulation was found to be about 4 times more phototoxic than the respective phosphatidylcholine lipidic emulsion, demonstrating high potentiality for photodynamic therapy applications. PMID:19409465

  18. Synthesis of Meso-Substituted Subphthalocyanine-Subporphyrin Hybrids: Boron SubTriBenzoDiAzaPorphyrins (SubTBDAPs)

    OpenAIRE

    Remiro Buenamanana, Sonia; Diaz-Moscoso, Alejandro; Hughes, David; Bochmann, Manfred; Graham J. Tizzard; Coles, Simon J.; Cammidge, Andy

    2015-01-01

    The first syntheses of hybrid structures that lie between subphthalocyanines and subporphyrins are reported. The versatile single-step synthetic method uses a preformed aminoisoindolene to provide the bridging methine unit and its substituent while trialkoxyborates simultaneously act as Lewis acid, template, and provider of the apical substituent. The selection of each component therefore allows for the controlled formation of diverse, differentially functionalized systems. The new hybrids ar...

  19. First Example of a Lipophilic Porphyrin-Cardanol Hybrid Embedded in a Cardanol-Based Micellar Nanodispersion

    OpenAIRE

    Giuseppe Vasapollo; Selma Elaine Mazzetto; Lucia D’Accolti; Luigi Carbone; Giuseppe Colafemmina; Giuseppe Mele; Ermelinda Bloise

    2012-01-01

    Cardanol is a natural and renewable organic raw material obtained as the major chemical component by vacuum distillation of cashew nut shell liquid. In this work a new sustainable procedure for producing cardanol-based micellar nanodispersions having an embedded lipophilic porphyrin itself peripherally functionalized with cardanol substituents (porphyrin-cardanol hybrid) has been described for the first time. In particular, cardanol acts as the solvent of the cardanol hybrid porphyrin and cho...

  20. Design, syntheses, and studies of supramolecular porphyrin-fullerene conjugates, using bis-18-crown-6 appended porphyrins and pyridine or alkyl ammonium functionalized fullerenes.

    Science.gov (United States)

    D'Souza, Francis; Chitta, Raghu; Gadde, Suresh; McCarty, Amy L; Karr, Paul A; Zandler, Melvin E; Sandanayaka, Atula S D; Araki, Yasuyaki; Ito, Osamu

    2006-03-30

    Photoinduced electron-transfer processes in cis and trans functionalized bis-18-crown-6 porphyrin self-assembled with fullerene functionalized with pyridine or alkylammonium cation entities are reported. The structural integrity of the newly formed supramolecular conjugates was accomplished by optical absorption and emission, electron spray ionization mass, electrochemistry, and semiempirical PM3 calculations. A 1:2 stoichiometry of the supramolecular porphyrin:fullerene conjugates was deduced from these studies. The conjugates revealed stable "two-point"' binding involving metal-ligand coordination and alkylammonium cation-crown ether binding or only the latter type of binding depending upon the functionality of the fullerene and metal ion in the porphyrin cavity. The effect of the variation on free energy changes of charge separation and the charge recombination was achieved by varying the metal ion in the porphyrin cavity. The charge-separation rates (k(CS)) determined from the picosecond time-resolved emission studies were generally higher for the cis bis-crown functionalized porphyrins than those of the corresponding trans ones. A comparison of the k(CS) values reported earlier for 1:1 porphyrin-fullerene conjugates with a similar self-assembly mechanism suggested that employing a higher number of acceptor entities improves the electron-transfer rates. The calculated charge-recombination rates (k(CR)) were 2-3 orders of magnitude smaller than the k(CS) values, suggesting the occurrence of the charge recombination process in the Marcus inverted region. The lifetimes of the radical ion pair (tau(RIP)) ranged between 46 and 233 ns indicating charge stabilization in the studied conjugates. PMID:16553397

  1. Method for determination of boron carbide in wurtzite-like boron nitride

    International Nuclear Information System (INIS)

    A technique for increase of sensitivity and analysis accuracy while boron carbide determination in wurtzite-like boron nitride is proposed. Boron nitride with an addition of boron carbide is bjected to treatment by the mixture of concentrated sulphuric acid and 0.1-0.5 N of porassium bichromate solution at ratio of (2-1):1 at the temperature of mixture boiling. Boron carboide content is calculated according to the quantity of restored Cr(3+), which is determined by titration of Cr(6+) excess with the Mohr's salt solution

  2. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Durmazucar, Hasan H.; Guenduez, Guengoer E-mail: ggunduz@metu.edu.tr

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  3. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    International Nuclear Information System (INIS)

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed

  4. Some physical properties of compacted specimens of highly dispersed boron carbide and boron suboxide

    International Nuclear Information System (INIS)

    Structure, shear modulus and internal friction (IF) of compacted specimens of boron carbide and boron suboxide have been investigated. Microtwins and stacking faults were observed along the {100} plane systems of polycrystalline specimens of boron carbide. Electrical conductivity of the specimens was that of p-type. Concentration of holes varied from 1017 to 1019 cm-3. The IF was measured in the temperature range 80-300 K. It was shown that the IF of boron carbide and that of boron suboxide were characterized with a set of similar relaxation processes. Mechanisms of the relaxation processes in boron carbide and boron suboxide are discussed in terms of the Hasiguti model of interaction between dislocations and point defects

  5. Boron carbide synthesis by carbothermic reduction of boron oxide

    International Nuclear Information System (INIS)

    Boron carbide (B4C) is a ceramic material of technological applications due to its extreme hardness and high chemical as well as thermal stability. Some parameters of the process for obtaining B4C by carbothermic reduction of B2O3 have been determined. The starting powders and the final products have been analysed by chemical, spectrographic and X-ray diffraction methods. The results show that the B4C obtained by the carbothermic reduction process is suitable for applications with a definite determination of the free carbon content. (author)

  6. White matter microstructural changes of thalamocortical networks in photosensitivity and idiopathic generalized epilepsy

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Moeller, Friederike; Siebner, Hartwig;

    2012-01-01

    Photosensitivity or photoparoxysmal response (PPR) is an electroencephalography trait that is highly associated with idiopathic generalized epilepsies (IGEs) and characterized by changes in cortical excitability in response to photic stimulation. Studying functional and structural changes of PPR...

  7. Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey

    DEFF Research Database (Denmark)

    Hannibal, J; Kankipati, L; Strang, C E; Peterson, B B; Dacey, D; Gamlin, P D

    2014-01-01

    Circadian rhythms generated by the suprachiasmatic nucleus (SCN) are entrained to the environmental light/dark cycle via intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin and the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP...

  8. 78 FR 18999 - Prospective Grant of Start-Up Exclusive License: Photosensitizing Antibody-Fluorophore Conjugates...

    Science.gov (United States)

    2013-03-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Prospective Grant of Start-Up Exclusive License: Photosensitizing Antibody-Fluorophore Conjugates for Photoimmunotherapy AGENCY: National Institutes of...

  9. Possible toxicity of boron on sugar cane

    Energy Technology Data Exchange (ETDEWEB)

    Bravo C., M.

    Analyses of necrotic and green leaf tissues from sugar cane grown in the Tambo Valley (Arequipa, Peru) have shown that the boron concentration in necrotic tissue (average 657.7 ppm) is several times higher than that in the green tissue (average 55.7 ppm). This suggests that the necrosis may be due to boron toxicity.

  10. New techniques for producing thin boron films

    International Nuclear Information System (INIS)

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs

  11. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  12. Computational Evidence for the Smallest Boron Nanotube

    Institute of Scientific and Technical Information of China (English)

    Xian Jie LIN; Dong Ju ZHANG; Cheng Bu LIU

    2006-01-01

    The structure of boron nanotubes (BNTs) was found not to be limited to hexagonal pyramidal structures. Based on density functional theory calculations we provided evidence for the smallest boron nanotube, a geometrical analog of the corresponding carbon nanotube. As shown by our calculations, the smallest BNT possesses highly structural, dynamical, and thermal stability, which should be interest for attempts at its synthesis.

  13. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  14. Boron Carbides As Thermo-electric Materials

    Science.gov (United States)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  15. Nuclear fuel management and boron carbide coating

    International Nuclear Information System (INIS)

    In recent years one way of introducing burnable absorber is to coat the fuel pellets by a thin layer of burnable absorber so called integral fuel burnable absorber (IFBA). In this method the fuel is coated with boron nitride or boron carbide. Boron has low absorption cross-section and when it exists on the surface of the fuel, it interacts with thermalized neutron. B4C is a boron compound, which can be used for coating the nuclear fuel. It has high thermal stability and withstands high pressure and temperatures. High technology product of boron carbide has different ratio of B: C. But in nuclear reactor when boron carbide is used, it must be rich with boron. In this research chemical vapor decomposition (CVD) has been using boron trichloride and carbon tetra chloride for reactant materials. The experiments were carried out at high temperatures (1050 degree Celsius, 1225 degree Celsius and 1325 degree Celsius). The coated samples were analyzed using X-Ray diffractometer (XRD), scanning electron microscopy (SEM) and will be presented in this paper. It was seen that decreasing the reaction temperature caused an increase on the quality and thickness of the coating

  16. Photosensitive EPR spectra of Pb-doped ZnS single crystals

    International Nuclear Information System (INIS)

    Photosensitive EPR investigations of lead-doped ZnS single crystals have been made. The results of excitation and quenching measurements are discussed in terms of the A-centre model, assuming a Zn vacancy associated with a neutral Pb2+ impurity on next cation site. A simple level model, involving the energetic positions of the photosensitive impurities in the band gap of ZnS, is proposed to explain the EPR excitation and quenching spectra. (author)

  17. SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation

    OpenAIRE

    Kiwamu Takemoto; Tomoki Matsuda; Naoki Sakai; Donald Fu; Masanori Noda; Susumu Uchiyama; Ippei Kotera; Yoshiyuki Arai; Masataka Horiuchi; Kiichi Fukui; Tokiyoshi Ayabe; Fuyuhiko Inagaki; Hiroshi Suzuki; Takeharu Nagai

    2013-01-01

    Chromophore-assisted light inactivation (CALI) is a powerful technique for acute perturbation of biomolecules in a spatio-temporally defined manner in living specimen with reactive oxygen species (ROS). Whereas a chemical photosensitizer including fluorescein must be added to specimens exogenously and cannot be restricted to particular cells or sub-cellular compartments, a genetically-encoded photosensitizer, KillerRed, can be controlled in its expression by tissue specific promoters or subce...

  18. LED Light Source for in vitro Study of Photosensitizing Agents for Photodynamic Therapy

    OpenAIRE

    Shilyagina N.Y.; Plekhanov V.I.; Shkunov I.V.; Shilyagin P.А.; Dubasova L.V.; Brilkina А.А.; Sokolova E.A.; Turchin I.V.; Balalaeva I.V.

    2014-01-01

    The aim of the investigation was to develop a LED light source providing a homogeneous light distribution in 96-well plates and allowing an independent irradiation of individual wells, as well as its experimental testing in in vitro study of photosensitizers for photodynamic therapy. Materials and Methods. The experiments were carried out on human cell lines of epidermoid carcinoma А-431 and human bladder carcinoma Т24. Two photosensitizers for fluorescence diagnostics and photodynamic th...

  19. Prospects of photosensitization in control of pathogenic and harmful micro-organisms.

    Science.gov (United States)

    Luksiene, Z; Zukauskas, A

    2009-11-01

    Photosensitization is a treatment involving the interaction of the two nontoxic factors, photoactive compound and visible light, which in the presence of oxygen results in the selective destruction of the target cell. Different micro-organisms, such as multidrug-resistant bacteria, yeasts, microfungi and viruses, are susceptible to this treatment. Therefore, a photosensitization phenomenon might open a new avenue for the development of nonthermal, effective and ecologically friendly antimicrobial technology, which might be applied for food safety. PMID:19457025

  20. Secondary Plant Products Causing Photosensitization in Grazing Herbivores: Their Structure, Activity and Regulation

    OpenAIRE

    Quinn, Jane C.; Allan Kessell; Weston, Leslie A.

    2014-01-01

    Photosensitivity in animals is defined as a severe dermatitis that results from a heightened reactivity of skin cells and associated dermal tissues upon their exposure to sunlight, following ingestion or contact with UV reactive secondary plant products. Photosensitivity occurs in animal cells as a reaction that is mediated by a light absorbing molecule, specifically in this case a plant-produced metabolite that is heterocyclic or polyphenolic. In sensitive animals, this reaction is most seve...

  1. Covalently Assembled Dipeptide Nanospheres as Intrinsic Photosensitizers for Efficient Photodynamic Therapy in Vitro.

    Science.gov (United States)

    Yang, Xiaoke; Fei, Jinbo; Li, Qi; Li, Junbai

    2016-05-01

    Monodispersed diphenylalanine-based nanospheres with excellent biocompatibility are fabricated through a facile covalent reaction-induced assembly. Interestingly, the nanospheres exhibit red autofluorescence. Most importantly, such assembled dipeptide nanospheres can serve as intrinsic photosensitizer to convert O2 to singlet oxygen ((1) O2 ). Thus, photodynamic therapy in vitro can be achieved effectively. The versatile strategy could be extended to other biomolecules containing a primary amine group for the fabrication of potential intrinsic photosensitizers. PMID:26934079

  2. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H.J.; Nesper, R. [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  3. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    10B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH)4-) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10B and 11B

  4. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping. PMID:25427850

  5. Stabilization of boron carbide via silicon doping

    Science.gov (United States)

    Proctor, J. E.; Bhakhri, V.; Hao, R.; Prior, T. J.; Scheler, T.; Gregoryanz, E.; Chhowalla, M.; Giulani, F.

    2015-01-01

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  6. A novel automated instrument designed to determine photosensitivity thresholds (Conference Presentation)

    Science.gov (United States)

    Aguilar, Mariela C.; Gonzalez, Alex; Rowaan, Cornelis; De Freitas, Carolina; Rosa, Potyra R.; Alawa, Karam; Lam, Byron L.; Parel, Jean-Marie A.

    2016-03-01

    As there is no clinically available instrument to systematically and reliably determine the photosensitivity thresholds of patients with dry eyes, blepharospasms, migraines, traumatic brain injuries, and genetic disorders such as Achromatopsia, retinitis pigmentosa and other retinal dysfunctions, a computer-controlled optoelectronics system was designed. The BPEI Photosensitivity System provides a light stimuli emitted from a bi-cupola concave, 210 white LED array with varying intensity ranging from 1 to 32,000 lux. The system can either utilize a normal or an enhanced testing mode for subjects with low light tolerance. The automated instrument adjusts the intensity of each light stimulus. The subject is instructed to indicate discomfort by pressing a hand-held button. Reliability of the responses is tracked during the test. The photosensitivity threshold is then calculated after 10 response reversals. In a preliminary study, we demonstrated that subjects suffering from Achromatopsia experienced lower photosensitivity thresholds than normal subjects. Hence, the system can safely and reliably determine the photosensitivity thresholds of healthy and light sensitive subjects by detecting and quantifying the individual differences. Future studies will be performed with this system to determine the photosensitivity threshold differences between normal subjects and subjects suffering from other conditions that affect light sensitivity.

  7. The protective effect of caffeine on DNA photosensitive damage: a gel electrophoresis

    International Nuclear Information System (INIS)

    Agarose gel electrophoresis was performed to study interaction effect of caffeine on photosensitive injury of DNA caused by anthraquinone-2-sulphonic acid disodium (AQS), a model compound of strong photosensitizer, under 254 nm or 365nm UV irradiation Photosensitive injury of DNA induced by AQS under deoxidized condition was used as control. The results show that caffeine may resist effectively the injury effect of photosensitive damage and strong UV irradiation on DNA. The effects depend on the caffeine and AQS concentration, and irradiation time. Caffeine in concentration of 0.01-3.0 μg/μL, may prevent DNA from damage induced by UV light, but caffeine in concentration of >5.0 μg/μL accelerates the DNA damage. In particular, in the aqueous solution system of DNA, caffeine and AQS, at pH 6.25-7.35, the caffeine in concentration of 2.5-4.50 μg/μL may resist the photosensitive injury of DNA caused by AQS under the deoxidized condition and exposure by 254 nm UV for 10 min. And caffeine in concentration of 5 μg/μL would present a synergetic effect on the photosensitive injury of DNA. Possible molecular mechanism also is discussed. (authors)

  8. Theoretical Study on the Photosensitizer Mechanism of Phenalenone in Aqueous and Lipid Media.

    Science.gov (United States)

    Espinoza, César; Trigos, Ángel; Medina, Manuel E

    2016-08-11

    The photosensitizer ability of phenalenone was studied in aqueous and lipid media through the single electron transfer reactions, employing the density functional theory. Although phenalenone is a well-known photosensitizer and is widely used as an (1)O2 reference sensitizer, little is known about the reaction mechanism involved. In this study we carried out a single electron transfer reaction between the basal, excited, oxidized and reduced state of phenalenone with oxygen molecules such as (3)O2 and O2(•-). In aqueous media the photosensitizer capacity of phenalenone was measured through both type I and type II mechanisms. In lipid media the photosensitizer ability of phenalenone was attributed to the type II mechanism. The results indicated that the photosensitizer ability of phenalenone shows a heavy reliance on the media where the reaction occurs whether this is an aqueous or lipid media. Finally, this study supports the idea about that electron transfer reactions can be used to study the photosensitizer ability of molecules. PMID:27428932

  9. Burnup performances of boron nitride and boron coated nuclear fuels

    International Nuclear Information System (INIS)

    The nuclear fuels of urania (UOV) and 5% and 10% gadolinia (Gd2O3) containing UO2 previously produced by sol-gel technique were coated with first boron nitride (BN) then boron (B) thin layer by chemical vapor deposition (CVD) and also by plasma enhanced chemical vapor deposition (PECVD) techniques to increase the fuel cycle length and to improve the physical properties. From the cross-sectional view of BN and B layers taken from scanning electron microscope (SEM), the excellent adherence of BN onto fuel and B onto BN layer was observed in both cases. The behavior of fuel burnup, depletion of BN and B, the effect of coating thickness and also Gd2O3 content on the burnup performances of the fuels were identified by using the code WIMS-D/4 for Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) cores. The optimum thickness ratio of B to BN was found as 4 and their thicknesses were chosen as 40 mm and 10 mm respectively in both reactor types to get extended cycle length. The assemblies consisting of fuels with 5% Gd2O3 and also coated with 10 mm BN and 40 mm B layers were determined as candidates for getting higher burnup in both types of reactors

  10. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  11. Boron enrichment in martian clay.

    Science.gov (United States)

    Stephenson, James D; Hallis, Lydia J; Nagashima, Kazuhide; Freeland, Stephen J

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  12. Fluorescence spectroscopic studies on substituted porphyrins in homogeneous solvents and cationic micellar medium

    International Nuclear Information System (INIS)

    Steady state and time-resolved fluorescence properties of porphyrin appended 1,3,4-oxadiazoles and thiazoles were described in homogeneous medium as well as in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB). The electron withdrawing substituent on the porphyrin moiety in both the cases make a donor–spacer–acceptor type of intramolecular photoinduced electron transfer (PET) system resulting substantial quenching in porphyrin fluorescence due to partial energy migration towards the acceptor in the excited state. The increase in fluorescence yield as well as appreciable difference in fluorescence decay behavior in aqueous buffer solution of pH 4.2 from that in chloroform solution is believed due to partial protonation of the porphyrin ring. All the investigated systems show preferential binding into the interfacial region of the micellar sub-domain with varying degree of penetration depending on the nature of the substituent. Almost 2–4 fold increase in fluorescence yield for the probes is explained on the basis of restricted flexibility and corresponding decrease in total nonradiative rate inside the micellar interface layer. - Highlights: ► Synthesis and detail fluorescence studies of a series of porphyrin appended 1,3,4-oxadiazoles and thiazoles. ► Comparison of homogeneous solvent study with that in CTAB. ► Substantial porphyrin fluorescence quenching in donor–spacer–acceptor type system. ► Preferential binding of the substituted porphyrins in micellar sub-domain. ► Appreciable increase in fluorescence yield in micellar interface layer is due to decrease in total nonradiative rate.

  13. A Sensitive A3B Porphyrin Nanomaterial for CO2 Detection

    Directory of Open Access Journals (Sweden)

    Eugenia Fagadar-Cosma

    2014-12-01

    Full Text Available The present report deals with the tailoring, preparation and characterization of novel nanomaterials sensitive to CO2 for use in detection of this gas during space habitation missions. A new nanostructured material based on mixed substituted asymmetrical A3B porphyrin: 5-(4-pyridyl-10,15,20-tris(3,4-dimethoxyphenyl-porphyrin (PyTDMeOPP was synthesized and characterized by 1H-NMR, FT-IR, UV-vis, fluorescence, MS, HPLC and AFM. Introducing one pyridyl substituent in the 5-meso-position of porphyrin macrocycle confers some degree of hydrophilicity, which may cause self-assembly properties and a better response to increased acidity. The influence of pH and nature of the solvent upon H and J aggregates of the porphyrin are discussed. Porphyrin aggregation at the air–THF interface gave a triangular type morphology, randomly distributed but uniformly oriented. When deposition was made by multiple drop-casting operations, a network of triangles of uniform size was created and a porous structure was obtained, being reorganized finally in rings. When the deposition was made from CHCl3, ring structures ranging in internal diameter from 300 nm to 1 µm, but with the same width of the corona circular of approx. 200 nm were obtained. This porphyrin-based material, capable of generating ring aggregates in both THF and CHCl3, has been proven to be sensitive to CO2 detection. The dependence between the intensity of porphyrin UV-vis absorption and the concentration of CO2 has a good correlation of 98.4%.

  14. Interaction of tetraphenyl-porphyrin derivatives with DPPC-liposomes: an EPR study.

    Science.gov (United States)

    Voszka, István; Szabó, Zsófia; Csík, Gabriella; Maillard, Philip; Gróf, Pál

    2005-05-13

    The effect of the symmetry and polarity of the porphyrin molecules on their membrane localization and interaction with membrane lipids were investigated by electron paramagnetic resonance (EPR). For this purpose, two glycoconjugated tetraphenyl porphyrin derivatives were selected, respectively, symmetrically and asymmetrically substituted. Small unilamellar liposomes composed of dipalmitoylphosphatidylcholine (DPPC) and spin labeled stearic acids were prepared. The spin probe was located at the 5th or 7th or 12th or 16th position of the hydrocarbon chain in order to monitor various regions of the lipid bilayer. EPR spectra of porphyrin-free and porphyrin-bound liposomes were recorded at various temperatures below and above the phase transition temperature of DPPC. The effect on membrane fluidity proved to be stronger with the asymmetrical porphyrin derivative than with the symmetrical one. The rigidity increased when the spin label was near lipid head groups. The difference observed between control and porphyrin-treated samples when measured below the main lipid transition temperature disappeared at higher temperature. When the spin label was near the end of the hydrophobic tails, the symmetrical porphyrin derivative caused increase in fluidity, while the asymmetrical one slightly decreased it. To explain this phenomenon we propose that the asymmetrical derivative exerts a stronger ordering effect caused by its fluorophenyl group located at the level of the lipid heads, which is attenuated to the hydrophobic tails. The perturbing effect of the symmetric derivative could not lead to similar extent of ordering at the head groups and looses the hydrocarbon chains deeper in the membrane. PMID:15878112

  15. Signature of gate-tunable magnetism in graphene grafted with Pt-porphyrins

    Science.gov (United States)

    Li, Chuan; Komatsu, Katsuyoshi; Bertrand, S.; Clavé, G.; Campidelli, S.; Filoramo, A.; Guéron, S.; Bouchiat, H.

    2016-01-01

    Inducing magnetism in graphene holds great promises, such as controlling the exchange interaction with a gate electrode, and generating exotic magnetic phases. Coating graphene with magnetic molecules or atoms has so far mostly led to decreased graphene mobility. In the present work, we show that Pt-porphyrin molecules adsorbed on graphene lead both to an enhanced mobility, and to gate-dependent magnetism. We report that porphyrins can act both as donor or acceptor molecules, depending on the initial doping of the graphene sheet. The porphyrins transfer charge and ionize around the charged impurities on graphene, and, consequently, the graphene doping is decreased and its mobility is enhanced. In addition, ionized porphyrin molecules carry a magnetic moment. Using the sensitivity of mesoscopic transport to magnetism, in particular, the superconducting proximity effect and conductance fluctuations, we explore the magnetic order induced in graphene by the interacting magnetic moments of the ionized porphyrin molecules. Among the signatures of magnetism, we find two-terminal-magnetoresistance fluctuations with an odd component, a tell-tale sign of time-reversal symmetry breaking at zero field, which does not exist in uncoated graphene samples. When graphene is connected to superconducting electrodes, the induced magnetism leads to a gate-voltage-dependent suppression of the supercurrent, modified magnetic interference patterns, and gate-voltage-dependent magnetic hysteresis. The magnetic signatures are greatest for long superconductor/graphene/superconductor junctions, and for samples with the highest initial doping, compatible with a greater number of ionized, and thus magnetic porphyrin molecules. Our findings suggest that long-range (of the order of the coherence length, or micrometers) magnetism is induced through graphene by the ionized porphyrins' magnetic moment. This magnetic interaction is controled by the density of carriers in graphene, a tunability that

  16. Urinary porphyrins as biomarkers for arsenic exposure among susceptible populations in Guizhou province, China

    International Nuclear Information System (INIS)

    Coal is widely used in PR China. Unfortunately, coal from some areas in Guizhou Province contains elevated levels of arsenic. This has caused arsenicosis in individuals who use arsenic-contaminated coal for the purposes of heating, cooking and drying of food in poorly ventilated dwellings. The population at risk has been estimated to be approximately 200,000 people. Clinical symptoms of arsenicosis may include changes of skin pigmentation, hyperkeratosis of hand and feet, skin cancers, liver damage, persistent cough and chronic bronchitis. We analyzed the porphyrin excretion profile using a HPLC method in urine samples collected from 113 villagers who lived in Xing Ren district, a coal-borne arsenicosis endemic area and from 30 villagers from Xing Yi where arsenicosis is not prevalent. Urinary porphyrins were higher in the arsenic exposed group than those in the control group. The correlation between urinary arsenic and porphyrin concentrations demonstrated the effect of arsenic on heme biosynthesis resulting in increased porphyrin excretion. Both uroporphyrin and coproporphyrin III showed significant increases in the excretion profile of the younger age (<20 years) arsenic-exposed group, suggesting that porphyrins could be used as early warning biomarkers of chronic arsenic exposure in humans. Greater increases of urinary arsenic and porphyrins in women, children and older age groups who spend much of their time indoors suggest that they might be at a higher risk. Whether elevated porphyrins could predict adverse health effects associated with both cancer and non-cancer end-points in chronically arsenic-exposed populations need further investigation

  17. Strati-bis porphyrins: a promising gauge for study of photo-induced electron transfer. Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    Mauzerall, D.

    1982-02-01

    The synthesis of a new series of strati-bisporphyrins (sbPs) is reported. The synthesis via the preparation of the first amide-linked sbP, tetra-meso-(m,m' (N-benzyl benzamide)) strati-bisporphyrin, III. This highly symmetric and well defined staked porphyrin dimer of two meso-substituted tetra phenyl porphyrins joined at the meta positions of all eight phenyl groups by four methyl formamide linkages, -CH/sub 2/NHCO-. This sbP is being prepared by the de-novo coupling procedure where a second porphyrin ring is constructed upon an initial porphyrin ring by way of the internal condensation of a porphyrin tetraaldehyde with four pyrrole molecules. This is the same general scheme which was successfully used in the synthesis of the first sbP system which had ester linkages. The necessary porphyrin tetraaldehyde for this new amide-linked dimer has already been synthesized. The porphyrin, tetraaldehyde, T-meso (m-N-benzyl(m'-formyl)benzamide) porphyrin, II, was prepared by the acylation of a porphyrin tetraamine with m-chlorocarbonyl benzaldehyde. The porphyrin tetraamine, tetra-meso-(m-aminomethyl-phenyl porphyrin, I, was prepared by the condensation of the shiff-base polymer of m-amino-methyl benzaldehyde with pyrrole in the usual way. The most effective synthetic scheme for the sbP III begins with the preparation of the essential benzaldehydes 5 and 9 by the bromination of commercially available toluene derivatives. The fluorescence and other photophysical properties of these molecules will be studied as purified samples are prepared. 3 figures. (DMC)

  18. Experimental boron neutron capture therapy for melanoma: Systemic delivery of boron to melanotic and amelanotic melanoma

    International Nuclear Information System (INIS)

    The boron-containing melanin precursor analogue p-boronophenylalanine (BPA) has previously been shown to selectively deliver boron to pigmented murine melanomas when administered in a single intragastric dose. If boron neutron capture therapy is to become a clinically useful method of radiation therapy for human malignant melanoma, the boron carrier must be capable of delivering useful amounts of boron to remote tumor sites (metastases) and to poorly pigmented melanomas. The authors have now determined the ability of BPA to accumulate in several nonpigmented melanoma models including human melanoma xenografts in nude mice. The absolute amount of boron in the nonpigmented melanomas was about 50% of the observed in the pigmented counterparts but was still selectively concentrated in the tumor relative to normal tissues in amounts sufficient for effective neutron capture therapy. Single intragastric doses of BPA resulted in selective localization of boron in the amelanotic Greene melanoma carried in the anterior chamber of the rabbit eye and in a pigmented murine melanoma growing in the lungs. The ratio of the boron concentration in these tumors to the boron concentration in the immediately adjacent normal tissue was in the range of 3:1 to 4:1. These distribution studies support the proposal that boron neutron capture therapy may be useful as a regional therapy for malignant melanoma

  19. Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: Overpotential tuning by substituents at the porphyrin rings

    Science.gov (United States)

    Zahran, Zaki N.; Mohamed, Eman A.; Naruta, Yoshinori

    2016-04-01

    Efficient reduction of CO2 into useful carbon resources particularly CO is an essential reaction for developing alternate sources of fuels and for reducing the greenhouse effect of CO2. The binuclear Ni, Fe‑containing carbon monoxide dehydrogenase (CODHs) efficiently catalyzes the reduction of CO2 to CO. The location of Ni and Fe at proper positions allows their cooperation for CO2 to CO conversion through a push‑pull mechanism. Bio‑inspired from CODHs, we used several cofacial porphyrin dimers with different substituents as suitable ligands for holding two Fe ions with suitable Fe‑Fe separation distance to efficiently and selectively promote CO2 to CO conversion with high turnover frequencies, TOFs. The substituents on the porphyrin rings greatly affect the catalysis process. By introducing electron-withdrawing/-donating groups, e.g. electron-withdrawing perfluorophenyl, at all meso positions of the porphyrin rings, the catalysis overpotential, η was minimized by ≈0.3 V compared to that obtained by introducing electron-donating mesityl groups. The Fe porphyrin dimers among reported catalysts are the most efficient ones for CO2 to CO conversion. Control experiments indicate that the high performance of the current CO2 to CO conversion catalysts is due to the presence of binuclear Fe centers at suitable Fe‑Fe separation distance.

  20. Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: Overpotential tuning by substituents at the porphyrin rings.

    Science.gov (United States)

    Zahran, Zaki N; Mohamed, Eman A; Naruta, Yoshinori

    2016-01-01

    Efficient reduction of CO2 into useful carbon resources particularly CO is an essential reaction for developing alternate sources of fuels and for reducing the greenhouse effect of CO2. The binuclear Ni, Fe-containing carbon monoxide dehydrogenase (CODHs) efficiently catalyzes the reduction of CO2 to CO. The location of Ni and Fe at proper positions allows their cooperation for CO2 to CO conversion through a push-pull mechanism. Bio-inspired from CODHs, we used several cofacial porphyrin dimers with different substituents as suitable ligands for holding two Fe ions with suitable Fe-Fe separation distance to efficiently and selectively promote CO2 to CO conversion with high turnover frequencies, TOFs. The substituents on the porphyrin rings greatly affect the catalysis process. By introducing electron-withdrawing/-donating groups, e.g. electron-withdrawing perfluorophenyl, at all meso positions of the porphyrin rings, the catalysis overpotential, η was minimized by ≈0.3 V compared to that obtained by introducing electron-donating mesityl groups. The Fe porphyrin dimers among reported catalysts are the most efficient ones for CO2 to CO conversion. Control experiments indicate that the high performance of the current CO2 to CO conversion catalysts is due to the presence of binuclear Fe centers at suitable Fe-Fe separation distance. PMID:27087483