WorldWideScience

Sample records for boron doped silicon

  1. Iron solubility in highly boron-doped silicon

    International Nuclear Information System (INIS)

    McHugo, S.A.; McDonald, R.J.; Smith, A.R.; Hurley, D.L.; Weber, E.R.

    1998-01-01

    We have directly measured the solubility of iron in high and low boron-doped silicon using instrumental neutron activation analysis. Iron solubilities were measured at 800, 900, 1000, and 1100thinsp degree C in silicon doped with either 1.5x10 19 or 6.5x10 14 thinspboronthinspatoms/cm 3 . We have measured a greater iron solubility in high boron-doped silicon as compared to low boron-doped silicon, however, the degree of enhancement is lower than anticipated at temperatures >800thinsp degree C. The decreased enhancement is explained by a shift in the iron donor energy level towards the valence band at elevated temperatures. Based on this data, we have calculated the position of the iron donor level in the silicon band gap at elevated temperatures. We incorporate the iron energy level shift in calculations of iron solubility in silicon over a wide range of temperatures and boron-doping levels, providing a means to accurately predict iron segregation between high and low boron-doped silicon. copyright 1998 American Institute of Physics

  2. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    Science.gov (United States)

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  3. Superconductivity in heavily boron-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  4. Structures of Pt clusters on graphene doped with nitrogen, boron, and silicon: a theoretical study

    Institute of Scientific and Technical Information of China (English)

    Dai Xian-Qi; Tang Ya-Nan; Dai Ya-Wei; Li Yan-Hui; Zhao Jian-Hua; Zhao Bao; Yang Zong-Xian

    2011-01-01

    The structures of Pt clusters on nitrogen-, boron-, silicon- doped graphenes are theoretically studied using densityfunctional theory. These dopants (nitrogen, boron and silicon) each do not induce a local curvature in the graphene and the doped graphenes all retain their planar form. The formation energy of the silicon-graphene system is lower than those of the nitrogen-, boron-doped graphenes, indicating that the silicon atom is easier to incorporate into the graphene.All the substitutional impurities enhance the interaction between the Pt atom and the graphene. The adsorption energy of a Pt adsorbed on the silicon-doped graphene is much higher than those on the nitrogen- and boron-doped graphenes.The doped silicon atom can provide more charges to enhance the Pt-graphene interaction and the formation of Pt clusters each with a large size. The stable structures of Pt clusters on the doped-graphenes are dimeric, triangle and tetrahedron with the increase of the Pt coverage. Of all the studied structures, the tetrahedron is the most stable cluster which has the least influence on the planar surface of doped-graphene.

  5. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Behzad, Somayeh, E-mail: somayeh.behzad@gmail.co [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Moradian, Rostam [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of); Computational Physical Science Research Laboratory, Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2010-12-01

    The effects of boron doping on the structural and electronic properties of (6,0)-(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  6. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    International Nuclear Information System (INIS)

    Behzad, Somayeh; Moradian, Rostam; Chegel, Raad

    2010-01-01

    The effects of boron doping on the structural and electronic properties of (6,0)-(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  7. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    Science.gov (United States)

    Behzad, Somayeh; Moradian, Rostam; Chegel, Raad

    2010-12-01

    The effects of boron doping on the structural and electronic properties of (6,0)@(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  8. Light-induced enhancement of the minority carrier lifetime in boron-doped Czochralski silicon passivated by doped silicon nitride

    International Nuclear Information System (INIS)

    Wang, Hongzhe; Chen, Chao; Pan, Miao; Sun, Yiling; Yang, Xi

    2015-01-01

    Graphical abstract: - Highlights: • The phosphorus-doped SiN x with negative fixed charge was deposited by PECVD. • The increase of lifetime was observed on P-doped SiN x passivated Si under illumination. • The enhancement of lifetime was caused by the increase of negative fixed charges. - Abstract: This study reports a doubling of the effective minority carrier lifetime under light soaking conditions, observed in a boron-doped p-type Czochralski grown silicon wafer passivated by a phosphorus-doped silicon nitride thin film. The analysis of capacitance–voltage curves revealed that the fixed charge in this phosphorus-doped silicon nitride film was negative, which was unlike the well-known positive fixed charges observed in traditional undoped silicon nitride. The analysis results revealed that the enhancement phenomenon of minority carrier lifetime was caused by the abrupt increase in the density of negative fixed charge (from 7.2 × 10 11 to 1.2 × 10 12 cm −2 ) after light soaking.

  9. Boron, phosphorus, and gallium determination in silicon crystals doped with gallium

    International Nuclear Information System (INIS)

    Shklyar, B.L.; Dankovskij, Yu.V.; Trubitsyn, Yu.V.

    1989-01-01

    When studying IR transmission spectra of silicon doped with gallium in the range of concentrations 1 x 10 14 - 5 x 10 16 cm -3 , the possibility to quantity at low (∼ 20 K) temperatures residual impurities of boron and phosphorus is ascertained. The lower determination limit of boron is 1 x 10 12 cm -3 for a sample of 10 nm thick. The level of the impurities in silicon crystals, grown by the Czochralski method and method of crucible-free zone melting, is measured. Values of boron and phosphorus concentrations prior to and after their alloying with gallium are compared

  10. Complex boron redistribution kinetics in strongly doped polycrystalline-silicon/nitrogen-doped-silicon thin bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Abadli, S. [Department of Electrical Engineering, University Aout 1955, Skikda, 21000 (Algeria); LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Mansour, F. [LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Pereira, E. Bedel [CNRS-LAAS, 7 avenue du colonel Roche, 31077 Toulouse (France)

    2012-10-15

    We have investigated the complex behaviour of boron (B) redistribution process via silicon thin bi-layers interface. It concerns the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method at 480 C, by using in-situ nitrogen-doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P{sup +}) layer. To avoid long-range B redistributions, thermal annealing was carried out at relatively low-temperatures (600 C and 700 C) for various times ranging between 30 min and 2 h. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of two thin layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders. The increasing kinetics of the B peak concentration near the bi-layers interface is well reproduced by the established model. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Investigation of charges carrier density in phosphorus and boron doped SiNx:H layers for crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Paviet-Salomon, B.; Gall, S.; Slaoui, A.

    2013-01-01

    Highlights: ► We investigate the properties of phosphorus and boron-doped silicon nitride films. ► Phosphorus-doped layers yield higher lifetimes than undoped ones. ► The fixed charges density decreases when increasing the films phosphorus content. ► Boron-doped films feature very low lifetimes. ► These doped layers are of particular interest for crystalline silicon solar cells. -- Abstract: Dielectric layers are of major importance in crystalline silicon solar cells processing, especially as anti-reflection coatings and for surface passivation purposes. In this paper we investigate the fixed charge densities (Q fix ) and the effective lifetimes (τ eff ) of phosphorus (P) and boron (B) doped silicon nitride layers deposited by plasma-enhanced chemical vapour deposition. P-doped layers exhibit a higher τ eff than standard undoped layers. In contrast, B-doped layers exhibit lower τ eff . A strong Q fix decrease is to be seen when increasing the P content within the film. Based on numerical simulations we also demonstrate that the passivation obtained with P- and B-doped layers are limited by the interface states rather than by the fixed charges

  12. Complex Boron Redistribution in P+ Doped-polysilicon / Nitrogen Doped Silicon Bi-layers during Activation Annealing

    Science.gov (United States)

    Abadli, S.; Mansour, F.; Perrera, E. Bedel

    We have investigated and modeled the complex phenomenon of boron (B) redistribution process in strongly doped silicon bilayers structure. A one-dimensional two stream transfer model well adapted to the particular structure of bi- layers and to the effects of strong-concentrations has been developed. This model takes into account the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method, using in-situ nitrogen- doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P+) layer. To avoid long redistributions, thermal annealing was carried out at relatively lowtemperatures (600 °C and 700 °C) for various times ranging between 30 minutes and 2 hours. The good adjustment of the simulated profiles with the experimental secondary ion mass spectroscopy (SIMS) profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders kinetics.

  13. Effect of low level doping of boron and phosphorus on the properties of amorphous silicon films

    International Nuclear Information System (INIS)

    Tran, N.T.; Epstein, K.A.; Grimmer, D.P.; Vernstrom, G.D.

    1987-01-01

    Effect of the low level doping of boron and phosphorus on the properties of amorphous silicon films (a-Si:H) were studied. Doping level of both boron and phosphorus was in the range of 10/sup 17/ atoms/cm/sup 3/. Apparent improvement in the stability of dark and photoconductivity of a-Si: films upon low level doping does not result from the elimination of light-induced defects. The stability of the dark and photoconductivity upon doping is an indication of pinning of the Fermi level

  14. Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen

    Science.gov (United States)

    Young, Matthew Garett

    The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type silicon solar cells. This required the development of a boron diffusion process that maintained the bulk lifetime of n-type silicon such that the recombination current density could be extracted by photoconductance spectroscopy. It is demonstrated that by hydrogenating boron diffusions, the majority carrier concentration can be controlled. By using symmetrically diffused test structures with quinhydrone-methanol surface passivation the recombination current density of a hydrogenated boron profile is shown to be less than that of a standard boron profile, by as much as 30%. This is then applied to a modified industrial silicon solar cell process to demonstrate an efficiency enhancement of 0.4%.

  15. Use of B{sub 2}O{sub 3} films grown by plasma-assisted atomic layer deposition for shallow boron doping in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kalkofen, Bodo, E-mail: bodo.kalkofen@ovgu.de; Amusan, Akinwumi A.; Bukhari, Muhammad S. K.; Burte, Edmund P. [Institute of Micro and Sensor Systems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Garke, Bernd [Institute for Experimental Physics, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Lisker, Marco [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Gargouri, Hassan [SENTECH Instruments GmbH, Schwarzschildstraße 2, 12489 Berlin (Germany)

    2015-05-15

    Plasma-assisted atomic layer deposition (PALD) was carried for growing thin boron oxide films onto silicon aiming at the formation of dopant sources for shallow boron doping of silicon by rapid thermal annealing (RTA). A remote capacitively coupled plasma source powered by GaN microwave oscillators was used for generating oxygen plasma in the PALD process with tris(dimethylamido)borane as boron containing precursor. ALD type growth was obtained; growth per cycle was highest with 0.13 nm at room temperature and decreased with higher temperature. The as-deposited films were highly unstable in ambient air and could be protected by capping with in-situ PALD grown antimony oxide films. After 16 weeks of storage in air, degradation of the film stack was observed in an electron microscope. The instability of the boron oxide, caused by moisture uptake, suggests the application of this film for testing moisture barrier properties of capping materials particularly for those grown by ALD. Boron doping of silicon was demonstrated using the uncapped PALD B{sub 2}O{sub 3} films for RTA processes without exposing them to air. The boron concentration in the silicon could be varied depending on the source layer thickness for very thin films, which favors the application of ALD for semiconductor doping processes.

  16. Precision interplanar spacings measurements of boron doped silicon

    International Nuclear Information System (INIS)

    Soares, D.A.W.; Pimentel, C.A.F.

    1982-05-01

    A study of lattice parameters of boron doped silicon (10 14 -10 19 atom/cc) grown in and directions by Czochralski technique has been undertaken. Interplanar spacings (d) were measured by pseudo-Kossel technique to a precision up to 0,001%; different procedures to obtain d and the errors are discussed. It is concluded that the crystallographic planes contract preferentially and the usual study of parameter variation must be made as a function of d. The diffused B particularly contracts the [333] plane and in a more pronunciate way in high concentrations. An orientation dependence of the diffusion during growth was observed. (Author) [pt

  17. Investigations of different doping concentration of phosphorus and boron into silicon substrate on the variable temperature Raman characteristics

    Science.gov (United States)

    Li, Xiaoli; Ding, Kai; Liu, Jian; Gao, Junxuan; Zhang, Weifeng

    2018-01-01

    Different doped silicon substrates have different device applications and have been used to fabricate solar panels and large scale integrated circuits. The thermal transport in silicon substrates are dominated by lattice vibrations, doping type, and doping concentration. In this paper, a variable-temperature Raman spectroscopic system is applied to record the frequency and linewidth changes of the silicon peak at 520 cm-1 in five chips of silicon substrate with different doping concentration of phosphorus and boron at the 83K to 1473K temperature range. The doping has better heat sensitive to temperature on the frequency shift over the low temperature range from 83K to 300K but on FWHM in high temperature range from 300K to 1473K. The results will be helpful for fundamental study and practical applications of silicon substrates.

  18. Nanopores creation in boron and nitrogen doped polycrystalline graphene: A molecular dynamics study

    Science.gov (United States)

    Izadifar, Mohammadreza; Abadi, Rouzbeh; Nezhad Shirazi, Ali Hossein; Alajlan, Naif; Rabczuk, Timon

    2018-05-01

    In the present paper, molecular dynamic simulations have been conducted to investigate the nanopores creation on 10% of boron and nitrogen doped polycrystalline graphene by silicon and diamond nanoclusters. Two types of nanoclusters based on silicon and diamond are used to investigate their effect for the fabrication of nanopores. Therefore, three different diameter sizes of the clusters with five kinetic energies of 10, 50, 100, 300 and 500 eV/atom at four different locations in boron or nitrogen doped polycrystalline graphene nanosheets have been perused. We also study the effect of 3% and 6% of boron doped polycrystalline graphene with the best outcome from 10% of doping. Our results reveal that the diamond cluster with diameter of 2 and 2.5 nm fabricates the largest nanopore areas on boron and nitrogen doped polycrystalline graphene, respectively. Furthermore, the kinetic energies of 10 and 50 eV/atom can not fabricate nanopores in some cases for silicon and diamond clusters on boron doped polycrystalline graphene nanosheets. On the other hand, silicon and diamond clusters fabricate nanopores for all locations and all tested energies on nitrogen doped polycrystalline graphene. The area sizes of nanopores fabricated by silicon and diamond clusters with diameter of 2 and 2.5 nm are close to the actual area size of the related clusters for the kinetic energy of 300 eV/atom in all locations on boron doped polycrystalline graphene. The maximum area and the average maximum area of nanopores are fabricated by the kinetic energy of 500 eV/atom inside the grain boundary at the center of the nanosheet and in the corner of nanosheet with diameters of 2 and 3 nm for silicon and diamond clusters on boron and nitrogen doped polycrystalline graphene.

  19. Growth of boron doped hydrogenated nanocrystalline cubic silicon carbide (3C-SiC) films by Hot Wire-CVD

    Energy Technology Data Exchange (ETDEWEB)

    Pawbake, Amit [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Mayabadi, Azam; Waykar, Ravindra; Kulkarni, Rupali; Jadhavar, Ashok [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Waman, Vaishali [Modern College of Arts, Science and Commerce, Shivajinagar, Pune 411 005 (India); Parmar, Jayesh [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Bhattacharyya, Somnath [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Ma, Yuan‐Ron [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Devan, Rupesh; Pathan, Habib [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Jadkar, Sandesh, E-mail: sandesh@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-04-15

    Highlights: • Boron doped nc-3C-SiC films prepared by HW-CVD using SiH{sub 4}/CH{sub 4}/B{sub 2}H{sub 6}. • 3C-Si-C films have preferred orientation in (1 1 1) direction. • Introduction of boron into SiC matrix retard the crystallanity in the film structure. • Film large number of SiC nanocrystallites embedded in the a-Si matrix. • Band gap values, E{sub Tauc} and E{sub 04} (E{sub 04} > E{sub Tauc}) decreases with increase in B{sub 2}H{sub 6} flow rate. - Abstract: Boron doped nanocrystalline cubic silicon carbide (3C-SiC) films have been prepared by HW-CVD using silane (SiH{sub 4})/methane (CH{sub 4})/diborane (B{sub 2}H{sub 6}) gas mixture. The influence of boron doping on structural, optical, morphological and electrical properties have been investigated. The formation of 3C-SiC films have been confirmed by low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy and high resolution-transmission electron microscopy (HR-TEM) analysis whereas effective boron doping in nc-3C-SiC have been confirmed by conductivity, charge carrier activation energy, and Hall measurements. Raman spectroscopy and HR-TEM analysis revealed that introduction of boron into the SiC matrix retards the crystallanity in the film structure. The field emission scanning electron microscopy (FE-SEM) and non contact atomic force microscopy (NC-AFM) results signify that 3C-SiC film contain well resolved, large number of silicon carbide (SiC) nanocrystallites embedded in the a-Si matrix having rms surface roughness ∼1.64 nm. Hydrogen content in doped films are found smaller than that of un-doped films. Optical band gap values, E{sub Tauc} and E{sub 04} decreases with increase in B{sub 2}H{sub 6} flow rate.

  20. Boron diffusion into nitrogen doped silicon films for P{sup +} polysilicon gate structures

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, Farida; Mahamdi, Ramdane; Jalabert, Laurent; Temple-Boyer, Pierre

    2003-06-23

    This paper deals with the study of the boron diffusion in nitrogen doped silicon (NIDOS) deposited from disilane Si{sub 2}H{sub 6} and ammonia NH{sub 3} for the development of P{sup +} polysilicon gate metal oxide semiconductor (MOS) devices. NIDOS films with varied nitrogen content have been boron implanted, then annealed and finally analysed by secondary ion mass spectroscopy (SIMS). In order to simulate the experimental SIMS of boron concentration profiles in the NIDOS films, a model adapted to the particular conditions of the samples elaboration, i.e. the very high boron concentration and the nitrogen content, has been established. The boron diffusion reduction in NIDOS films with increasing nitrogen rates has been evidenced by the profiles as well as by the obtained diffusion coefficients, which shows that the nitrogen incorporation reduces the boron diffusion. This has been confirmed by capacitance-voltage (C-V) measurements performed on MOS capacitors: the higher the nitrogen content, the lower the flat-band voltage. Finally, these results demonstrate that the improvement of the gate oxide quality occurs with the suppression of the boron penetration.

  1. Effects of substrate temperature on structural and electrical properties of SiO2-matrix boron-doped silicon nanocrystal thin films

    International Nuclear Information System (INIS)

    Huang, Junjun; Zeng, Yuheng; Tan, Ruiqin; Wang, Weiyan; Yang, Ye; Dai, Ning; Song, Weijie

    2013-01-01

    In this work, silicon-rich SiO 2 (SRSO) thin films were deposited at different substrate temperatures (T s ) and then annealed by rapid thermal annealing to form SiO 2 -matrix boron-doped silicon-nanocrystals (Si-NCs). The effects of T s on the micro-structure and electrical properties of the SiO 2 -matrix boron-doped Si-NC thin films were investigated using Raman spectroscopy and Hall measurements. Results showed that the crystalline fraction and dark conductivity of the SiO 2 -matrix boron-doped Si-NC thin films both increased significantly when the T s was increased from room temperature to 373 K. When the T s was further increased from 373 K to 676 K, the crystalline fraction of 1373 K-annealed thin films decreased from 52.2% to 38.1%, and the dark conductivity reduced from 8 × 10 −3 S/cm to 5.5 × 10 −5 S/cm. The changes in micro-structure and dark conductivity of the SiO 2 -matrix boron-doped Si-NC thin films were most possibly due to the different amount of Si-O 4 bond in the as-deposited SRSO thin films. Our work indicated that there was an optimal T s , which could significantly increase the crystallization and conductivity of Si-NC thin films. Also, it was illumined that the low-resistivity SiO 2 -matrix boron-doped Si-NC thin films can be achieved under the optimal substrate temperatures, T s .

  2. Fabrication and characterization of boron-doped nanocrystalline diamond-coated MEMS probes

    Science.gov (United States)

    Bogdanowicz, Robert; Sobaszek, Michał; Ficek, Mateusz; Kopiec, Daniel; Moczała, Magdalena; Orłowska, Karolina; Sawczak, Mirosław; Gotszalk, Teodor

    2016-04-01

    Fabrication processes of thin boron-doped nanocrystalline diamond (B-NCD) films on silicon-based micro- and nano-electromechanical structures have been investigated. B-NCD films were deposited using microwave plasma assisted chemical vapour deposition method. The variation in B-NCD morphology, structure and optical parameters was particularly investigated. The use of truncated cone-shaped substrate holder enabled to grow thin fully encapsulated nanocrystalline diamond film with a thickness of approx. 60 nm and RMS roughness of 17 nm. Raman spectra present the typical boron-doped nanocrystalline diamond line recorded at 1148 cm-1. Moreover, the change in mechanical parameters of silicon cantilevers over-coated with boron-doped diamond films was investigated with laser vibrometer. The increase of resonance to frequency of over-coated cantilever is attributed to the change in spring constant caused by B-NCD coating. Topography and electrical parameters of boron-doped diamond films were investigated by tapping mode AFM and electrical mode of AFM-Kelvin probe force microscopy (KPFM). The crystallite-grain size was recorded at 153 and 238 nm for boron-doped film and undoped, respectively. Based on the contact potential difference data from the KPFM measurements, the work function of diamond layers was estimated. For the undoped diamond films, average CPD of 650 mV and for boron-doped layer 155 mV were achieved. Based on CPD values, the values of work functions were calculated as 4.65 and 5.15 eV for doped and undoped diamond film, respectively. Boron doping increases the carrier density and the conductivity of the material and, consequently, the Fermi level.

  3. Study of Nitrogen Effect on the Boron Diffusion during Heat Treatment in Polycrystalline Silicon/Nitrogen-Doped Silicon Thin Films

    Science.gov (United States)

    Saci, Lynda; Mahamdi, Ramdane; Mansour, Farida; Boucher, Jonathan; Collet, Maéva; Bedel Pereira, Eléna; Temple-Boyer, Pierre

    2011-05-01

    The present paper studies the boron (B) diffusion in nitrogen (N) doped amorphous silicon (a-Si) layer in original bi-layer B-doped polycrystalline silicon (poly-Si)/in-situ N-doped Si layers (NIDOS) thin films deposited by low pressure chemical vapor deposition (LPCVD) technique. The B diffusion in the NIDOS layer was investigated by secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy (FTIR) analysis. A new extended diffusion model is proposed to fit the SIMS profile of the bi-layer films. This model introduces new terms which take into account the effect of N concentration on the complex diffusion phenomena of B atoms in bi-layer films. SIMS results show that B diffusion does not exceed one third of NIDOS layer thickness after annealing. The reduction of the B diffusion in the NIDOS layer is due to the formation of complex B-N as shown by infrared absorption measurements. Electrical measurements using four-probe and Hall effect techniques show the good conductivity of the B-doped poly-Si layer after annealing treatment.

  4. Modeling the Microstructure Curvature of Boron-Doped Silicon in Bulk Micromachined Accelerometer

    Directory of Open Access Journals (Sweden)

    Xiaoping He

    2013-01-01

    Full Text Available Microstructure curvature, or buckling, is observed in the micromachining of silicon sensors because of the doping of impurities for realizing certain electrical and mechanical processes. This behavior can be a key source of error in inertial sensors. Therefore, identifying the factors that influence the buckling value is important in designing MEMS devices. In this study, the curvature in the proof mass of an accelerometer is modeled as a multilayered solid model. Modeling is performed according to the characteristics of the solid diffusion mechanism in the bulk-dissolved wafer process (BDWP based on the self-stopped etch technique. Moreover, the proposed multilayered solid model is established as an equivalent composite structure formed by a group of thin layers that are glued together. Each layer has a different Young’s modulus value and each undergoes different volume shrinkage strain owing to boron doping in silicon. Observations of five groups of proof mass blocks of accelerometers suggest that the theoretical model is effective in determining the buckling value of a fabricated structure.

  5. Room-temperature near-infrared electroluminescence from boron-diffused silicon pn junction diodes

    Directory of Open Access Journals (Sweden)

    Si eLi

    2015-02-01

    Full Text Available Silicon pn junction diodes with different doping concentrations were prepared by boron diffusion into Czochralski (CZ n-type silicon substrate. Their room-temperature near-infrared electroluminescence (EL was measured. In the EL spectra of the heavily boron doped diode, a luminescence peak at ~1.6 m (0.78 eV was observed besides the band-to-band line (~1.1eV under the condition of high current injection, while in that of the lightly boron doped diode only the band-to-band line was observed. The intensity of peak at 0.78 eV increases exponentially with current injection with no observable saturation at room temperature. Furthermore, no dislocations were found in the cross-sectional transmission electron microscopy image, and no dislocation-related luminescence was observed in the low-temperature photoluminescence spectra. We deduce the 0.78 eV emission originates from the irradiative recombination in the strain region of diodes caused by the diffusion of large number of boron atoms into silicon crystal lattice.

  6. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  7. Studies on the oxygen precipitation in highly boron doped silicon; Untersuchungen zur Sauerstoffausscheidung in hoch bordotiertem Silicium

    Energy Technology Data Exchange (ETDEWEB)

    Zschorsch, Markus

    2007-12-14

    The aim of this thesis was the getting of new knowledge on the elucidation of the oxygen precipitation in highly doped silicon. In the study of the early phases of the oxygen precipitation boron-oxygen complexes and their kinetics could be indirectly detected. These arise already during the cooling of the crystal and can be destroyed by subsequent temperature processes. The formation of the here as BO assumed species during the cooling after the silicon crystal fabrication could be numerically reproduced. Furthermore the study of early precipitation phases by means of neutron small angle scattering a maximum of the oxygen precipitation at {rho}=9 m{omega}cm. It could be shown that the decreasing of this at increasing boron concentration can be most probably reduced to boron precipitations. Furthermore it could be shown that after a tempering time of 24 hours at 700 C in silicon with {rho}=9 m{omega}cm platelet-shaped precipitates form. By the study of the precipitate growth could be shown that also in this phase the oxygen precipitation in silicon is strongest with a specific resistance of {rho}=9 m{omega}cm. By means of FTIR spectroscopy a new absorption band at a wave number of 1038 cm{sup -1} was found, which could be assigned to a boron species. By different experiments it is considered as probable that at this species it deals with BI respectively B{sub 2}I complexes.

  8. Role of aluminum in silver paste contact to boron-doped silicon emitters

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2017-01-01

    Full Text Available The addition of aluminum to silver metallization pastes has been found to lower the contact resistivity of a silver metallization on boron-doped silicon emitters for n-type Si solar cells. However, the addition of Al also induces more surface recombination and increases the Ag pattern′s line resistivity, both of which ultimately limit the cell efficiency. There is a need to develop a fundamental understanding of the role that Al plays in reducing the contact resistivity and to explore alternative additives. A fritless silver paste is used to allow direct analysis of the impact of Al on the Ag-Si interfacial microstructure and isolate the influence of Al on the electrical contact from the complicated Ag-Si interfacial glass layer. Electrical analysis shows that in a simplified system, Al decreases the contact resistivity by about three orders of magnitude. Detailed microstructural studies show that in the presence of Al, microscale metallic spikes of Al-Ag alloy and nanoscale metallic spikes of Ag-Si alloy penetrate the surface of the boron-doped Si emitters. These results demonstrate the role of Al in reducing the contact resistivity through the formation of micro- and nano-scale metallic spikes, allowing the direct contact to the emitters.

  9. Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon

    International Nuclear Information System (INIS)

    Ma, Fa-Jun; Duttagupta, Shubham; Shetty, Kishan Devappa; Meng, Lei; Hoex, Bram; Peters, Ian Marius; Samudra, Ganesh S.

    2014-01-01

    Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boron diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed

  10. Boron deactivation in heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level understanding

    International Nuclear Information System (INIS)

    Gao, Chao; Dong, Peng; Yi, Jun; Ma, Xiangyang; Yang, Deren; Lu, Yunhao

    2014-01-01

    The changes in hole concentration of heavily boron (B)-doped Czochralski silicon subjected to high temperature rapid thermal anneal (RTA) and following conventional furnace anneal (CFA) have been investigated. It is found that decrease in hole concentration, namely, B deactivation, is observed starting from 1050 °C and increases with RTA temperature. The following CFA at 300–500 °C leads to further B deactivation, while that at 600–800 °C results in B reactivation. It is supposed that the interaction between B atoms and silicon interstitials (I) thus forming BI pairs leads to the B deactivation during the high temperature RTA, and, moreover, the formation of extended B 2 I complexes results in further B deactivation in the following CFA at 300–500 °C. On the contrary, the dissociation of BI pairs during the following CFA at 600–800 °C enables the B reactivation. Importantly, the first-principles calculation results can soundly account for the above-mentioned supposition

  11. Boron deactivation in heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level understanding

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chao; Dong, Peng; Yi, Jun; Ma, Xiangyang, E-mail: luyh@zju.edu.cn, E-mail: mxyoung@zju.edu.cn; Yang, Deren [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Lu, Yunhao, E-mail: luyh@zju.edu.cn, E-mail: mxyoung@zju.edu.cn [International Center for New-Structured Materials and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2014-01-20

    The changes in hole concentration of heavily boron (B)-doped Czochralski silicon subjected to high temperature rapid thermal anneal (RTA) and following conventional furnace anneal (CFA) have been investigated. It is found that decrease in hole concentration, namely, B deactivation, is observed starting from 1050 °C and increases with RTA temperature. The following CFA at 300–500 °C leads to further B deactivation, while that at 600–800 °C results in B reactivation. It is supposed that the interaction between B atoms and silicon interstitials (I) thus forming BI pairs leads to the B deactivation during the high temperature RTA, and, moreover, the formation of extended B{sub 2}I complexes results in further B deactivation in the following CFA at 300–500 °C. On the contrary, the dissociation of BI pairs during the following CFA at 600–800 °C enables the B reactivation. Importantly, the first-principles calculation results can soundly account for the above-mentioned supposition.

  12. Wet chemical treatment of boron doped emitters on n-type (1 0 0) c-Si prior to amorphous silicon passivation

    Energy Technology Data Exchange (ETDEWEB)

    Meddeb, H., E-mail: hosny.meddeb@gmail.com [KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Research and Technology Center of Energy, Photovoltaic Department, Borj-Cedria Science and Technology Park, BP 95, 2050 (Tunisia); University of Carthage, Faculty of Sciences of Bizerta (Tunisia); Bearda, T.; Recaman Payo, M.; Abdelwahab, I. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Abdulraheem, Y. [Electrical Engineering Department, College of Engineering & Petroleum, Kuwait University, P.O. Box 5969, 13060 Safat (Kuwait); Ezzaouia, H. [Research and Technology Center of Energy, Photovoltaic Department, Borj-Cedria Science and Technology Park, BP 95, 2050 (Tunisia); Gordon, I.; Szlufcik, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Poortmans, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Department of Electrical Engineering (ESAT), K.U. Leuven, 3001 Leuven (Belgium); Faculty of Sciences, University of Hasselt, Martelarenlaan 42, 3500 Hasselt (Belgium)

    2015-02-15

    Highlights: • The influence of the cleaning process using different HF-based cleaning on the amorphous silicon passivation of homojunction boron doped emitters is analyzed. • The effect of boron doping level on surface characteristics after wet chemical cleaning: For heavily doped surfaces, the reduction in contact angle was less pronounced, which proves that such surfaces are more resistant to oxide formation and remain hydrophobic for a longer time. In the case of low HF concentration, XPS measurements show higher oxygen concentrations for samples with higher doping level, probably due to the incomplete removal of the native oxide. • Higher effective lifetime is achieved at lower doping for all considered different chemical pre-treatments. • A post-deposition annealing improves the passivation level yielding emitter saturation currents determined by Auger recombination in the order of 70 fA/cm{sup 2} and below. • The dominance of Auger recombination over other type of B-induced defects on lifetime quality in the case of our p+ emitter. - Abstract: The influence of the cleaning process on the amorphous silicon passivation of homojunction emitters is investigated. A significant variation in the passivation quality following different cleaning sequences is not observed, even though differences in cleaning performance are evident. These results point out the effectiveness of our cleaning treatment and provide a hydrogen termination for intrinsic amorphous silicon passivation. A post-deposition treatment improves the passivation level yielding emitter saturation currents determined by Auger recombination in the order of 70 fA/cm{sup 2} and below.

  13. Effect of Thermal Annealing on Light-Induced Minority Carrier Lifetime Enhancement in Boron-Doped Czochralski Silicon

    International Nuclear Information System (INIS)

    Wang Hong-Zhe; Zheng Song-Sheng; Chen Chao

    2015-01-01

    The effect of thermal annealing on the light-induced effective minority carrier lifetime enhancement (LIE) phenomenon is investigated on the p-type Czochralski silicon (Cz-Si) wafer passivated by a phosphorus-doped silicon nitride (P-doped SiN_x) thin film. The experimental results show that low temperature annealing (below 300°C) can not only increase the effective minority carrier lifetime of P-doped SiN_x passivated boron-doped Cz-Si, but also improve the LIE phenomenon. The optimum annealing temperature is 180°C, and its corresponding effective minority carrier lifetime can be increased from initial 7.5 μs to maximum 57.7 μs by light soaking within 15 min after annealing. The analysis results of high-frequency dark capacitance-voltage characteristics reveal that the mechanism of the increase of effective minority carrier lifetime after low temperature annealing is due to the sharp enhancement of field effect passivation induced by the negative fixed charge density, while the mechanism of the LIE phenomenon after low temperature annealing is attributed to the enhancement of both field effect passivation and chemical passivation. (paper)

  14. Growing of synthetic diamond boron-doped films for analytical applications

    International Nuclear Information System (INIS)

    Barros, Rita de Cassia Mendes de; Suarez-Iha, Maria Encarnacion Vazquez; Corat, Evaldo Jose; Iha, Koshun

    1999-01-01

    Chemical vapor deposition (CVD) technology affords the possibility of producing synthetic diamond film electrodes, with several advantageous properties due the unique characteristics of diamond. In this work, we present the study of boron-doped diamond films growth on molybdenum and silicon substrates, using boron trioxide as dopant in a filament assisted CVD reactor. The objective was to obtain semiconductor diamond for use as electrode. The samples were characterized by scanning electron microscopy and Raman spectroscopy to confirm morphology and doping levels. We have assembled electrodes with the various samples, Pt, Mo, Si and diamond, by utilizing brass and left as base materials. The electrodes were tested in neutralization potentiometric titrations for future use in electroanalysis. Boron-doped electrodes have very good performance compared with Pt, widely used in analytical chemistry. (author)

  15. Electrical property studies of neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Fleming, P.H.; Westbrook, R.D.; Wood, R.F.; Young, R.T.

    1978-01-01

    Results of studies of electrical properties of neutron-transmutation-doped (NTD) silicon are presented. Annealing requirements to remove lattice damage were obtained. The electrical role of clustered oxygen and defect-oxygen complex was investigated. An NTD epitaxial layer on a heavily doped n- or p- type substrate can be produced. There is no evident interaction between lithium introduced by diffusion and phosphorous 31 introduced by irradiation. There may be some type of pairing reaction between lithium 7 introduced by boron 10 fission and any remaining boron

  16. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    Science.gov (United States)

    Kramer, Nicolaas Johannes

    atmospheric pressures necessitates high plasma densities to reach temperatures required for crystallization of nanoparticles. Using experimentally determined plasma properties from the literature, the model estimates the nanoparticle temperature that is achieved during synthesis at atmospheric pressures. It was found that temperatures well above those required for crystallization can be achieved. Now that the synthesis of nanocrystals is understood, the second half of this thesis will focus on doping of the nanocrystals. The doping of semiconductor nanocrystals, which is vital for the optimization of nanocrystal-based devices, remains a challenge. Gas phase plasma approaches have been very successful in incorporating dopant atoms into nanocrystals by simply adding a dopant precursor during synthesis. However, little is known about the electronic activation of these dopants. This was investigated with field-effect transistor measurements using doped silicon nanocrystal films. It was found that, analogous to bulk silicon, boron and phosphorous electronically dope silicon nanocrystals. However, the dopant activation efficiency remains low as a result of self-purification of the dopants to the nanocrystal surface. Next the plasmonic properties of heavily doped silicon nanocrystals was explored. While the synthesis method was identical, the plasmonic behavior of phosphorus-doped and boron-doped nanocrystals was found the be significantly different. Phosphorus-doped nanocrystals exhibit a plasmon resonance immediately after synthesis, while boron-doped nanocrystals require a post-synthesis annealing or oxidation treatment. This is a result of the difference in dopant location. Phosphorus is more likely to be incorporated into the core of the nanocrystal, while the majority of boron is placed on the surface of the nanocrystal. The oxidized boron-doped particles exhibit stable plasmonic properties, and therefore this allows for the production of air-stable silicon-based plasmonic

  17. Comparison of silicon pin diode detector fabrication processes using ion implantation and thermal doping

    International Nuclear Information System (INIS)

    Zhou, C.Z.; Warburton, W.K.

    1996-01-01

    Two processes for the fabrication of silicon p-i-n diode radiation detectors are described and compared. Both processes are compatible with conventional integrated-circuit fabrication techniques and yield very low leakage currents. Devices made from the process using boron thermal doping have about a factor of 2 lower leakage current than those using boron ion implantation. However, the boron thermal doping process requires additional process steps to remove boron skins. (orig.)

  18. Growth and characterization of heavily doped silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scala, R.; Porrini, M. [MEMC Electronic Materials SpA, via Nazionale 59, 39012 Merano (Italy); Borionetti, G. [MEMC Electronic Materials SpA, viale Gherzi 31, Novara (Italy)

    2011-08-15

    Silicon crystals grown with the Czochralski method are still the most common material used for the production of electronic devices. In recent years, a growing need of large diameter crystals with increasingly higher doping levels is observed, especially to support the expanding market of discrete devices and its trend towards lower and lower resistivity levels for the silicon substrate. The growth of such heavily doped, large-diameter crystals poses several new challenges to the crystal grower, and the presence of a high dopant concentration in the crystal affects significantly its main properties, requiring also the development of dedicated characterization techniques. This paper illustrates the recent advances in the growth and characterization of silicon crystals heavily doped with antimony, arsenic, phosphorus and boron. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together ...

  20. Front and back side SIMS analysis of boron-doped delta-layer in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Pinault-Thaury, M.-A., E-mail: marie-amandine.pinault-thaury@uvsq.fr [Groupe d’Etude de la Matière Condensée, CNRS, University of Paris Saclay, University of Versailles St Quentin, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France); Jomard, F. [Groupe d’Etude de la Matière Condensée, CNRS, University of Paris Saclay, University of Versailles St Quentin, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France); Mer-Calfati, C.; Tranchant, N.; Pomorski, M.; Bergonzo, P.; Arnault, J.-C. [CEA, LIST, Diamond Sensors Laboratory, 91191 Gif-sur-Yvette (France)

    2017-07-15

    Highlights: • Front and back side SIMS analysis of delta-layer boron-doped is a first for diamond. • Combination of front and back side depth profiling improves delta-layer analyses. • Sharp interfaces are evidenced on both sides of the delta-layer boron-doped diamond. • The growth of delta-layer boron doped diamond is now well controlled. - Abstract: Nowadays the availability of very thin diamond layers in the range of nanometers as well as the possibility to characterize such delta-layer structures are required for the field of photonics and spintronics, but also for the development of next generation high power devices involving boron doping. The fabrication of diamond structures with abrupt interfaces such as superlattices and quantum wells has been recently improved. A very accurate characterization is then essential even though the analysis of such structures is arduous and challenging. SIMS analyses are commonly used to obtain depth profiles of dopants. However, below 10 nm in thickness, SIMS induced ion mixing effects which are no longer negligible. Then the raw SIMS profile might differ from the real dopant profile. In this study, we have analyzed a diamond structure containing a thin boron epilayer, especially synthesized to achieve SIMS analysis on both sides and to overcome the effects of ion mixing. We evidence the ion mixing induced by primary ions. Such a structure is a delta diamond layer, comparable to classical boron-doped delta-layer in silicon. Our results show that the growth of boron-doped delta-layer in diamond is now well controlled in terms of thickness and interfaces.

  1. Segregation and Clustering Effects on Complex Boron Redistribution in Strongly Doped Polycrystalline-Silicon Layers

    International Nuclear Information System (INIS)

    Abadli, S.; Mansour, F.

    2011-01-01

    This work deals with the investigation of the complex phenomenon of boron (B) transient enhanced diffusion (TED) in strongly implanted silicon (Si) layers. It concerns the instantaneous influences of the strong B concentrations, the Si layers crystallization, the clustering and the B trapping/segregation during thermal post-implantation annealing. We have used Si thin layers obtained from disilane (Si2H6) by low pressure chemical vapor deposition (LPCVD) and then B implanted with a dose of 4 x 1015 atoms/cm2 at an energy of 15 keV. To avoid long redistributions, thermal annealing was carried out at relatively low-temperatures (700, 750 and 800 'deg'C) for various short-times ranging between 1 and 30 minutes. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of Si-LPCVD layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the TED process in strongly doped Si-LPCVD layers. It was found that boron TED is strongly affected by the simultaneous complex kinetics of clustering, crystallization, trapping and segregation during annealing. The fast formation of small Si-B clusters enhances the B diffusivity whereas the evolution of the clusters and segregation reduce this enhancement. (author)

  2. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    International Nuclear Information System (INIS)

    Schrof, Julian; Müller, Ralph; Benick, Jan; Hermle, Martin; Reedy, Robert C.

    2015-01-01

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr 3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr 3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr 3

  3. Implantation of boron in silicon

    International Nuclear Information System (INIS)

    Hofker, W.K.

    1975-01-01

    The distribution versus depth of boron implanted in silicon and the corresponding electrical activity obtained after annealing are studied. The boron distributions are measured by secondary-ion mass spectrometry. Boron distributions implanted at energies in the range from 30 keV to 800 keV in amorphous and polycrystalline silicon are analysed. Moments of these distributions are determined by a curve-fitting programme and compared with moments calculated by Winterbon. Boron distributions obtained by implantations along a dense crystallographic direction in monocrystalline silicon are found to have penetrating tails. After investigation of some possible mechanisms of tail formation it is concluded that the tails are due to channelling. It was found that the behaviour of boron during annealing is determined by the properties of three boron fractions consisting of precipitated boron, interstitial boron and substitutional boron. The electrical activity of the boron versus depth is found to be consistent with the three boron fractions. A peculiar redistribution of boron is found which is induced by the implantation of a high dose of heavy ions and subsequent annealing. Different mechanisms which may cause the observed effects, such as thermal diffusion which is influenced by lattice strain and damage, are discussed. (Auth.)

  4. Effect of Si/Fe ratio on the boron and phosphorus doping efficiency of β-FeSi2 by magnetron sputtering

    International Nuclear Information System (INIS)

    Xu Jiaxiong; Yao Ruohe

    2011-01-01

    Boron-doped or phosphorus-doped β-FeSi 2 thin films have been prepared on silicon substrate by magnetron sputtering. Effects of Si/Fe ratio on the boron and phosphorus doping efficiencies have been studied from the resistivities of doped β-FeSi 2 thin films and current-voltage characteristics of doped β-FeSi 2 /Si heterojunctions. The experimental results reveal that the carrier concentration and doping efficiency of boron or phosphorus dopants at the Fe-rich side are higher than that at the Si-rich side. The effect of Si/Fe ratio can be deduced from the comparison of the formation energies under two extreme conditions. At the Fe-rich limit condition, the formation energy of boron or phosphorous doping is lower than that at the Si-rich condition. Therefore, the activation of impurities is more effective at the Fe-rich side. These results demonstrate that the boron-doped and phosphorous-doped β-FeSi 2 thin films should be kept at the Fe-rich side to avoid the unexpected doping sites and low doping efficiency.

  5. Scaling theory put into practice: First-principles modeling of transport in doped silicon nanowires

    DEFF Research Database (Denmark)

    Markussen, Troels; Rurali, R.; Jauho, Antti-Pekka

    2007-01-01

    We combine the ideas of scaling theory and universal conductance fluctuations with density-functional theory to analyze the conductance properties of doped silicon nanowires. Specifically, we study the crossover from ballistic to diffusive transport in boron or phosphorus doped Si nanowires...

  6. Study of boron distribution in silicon structure by side long section technique

    International Nuclear Information System (INIS)

    Kadirova, M.; Zhumaev, N.; Simakhin, Yu.F.; Usmanova, M.M.

    1997-01-01

    To study deep boron diffusion in the complex silicon structures, consisting of interchange boron doping layers of mono- and polycrystalline silicon, separated by oxide films a technique of side long section by using Solid State Nuclear Track Detector (SSNTD) has been elaborated. The boron distribution technique is based on the detection of alpha-particles from the 10 B(n,α) 7 Li reaction with cellulose nitrate film. The etched α-track registering cellulose nitrite film show the structure image magnified 1/sinφ fold. Boron concentration defined by density of the etched pits appearing on the film surface. An optical microscope analysis of the sample track-mapping image is realised by examination with closely spaced (Δl < Δx/sinφ) and largely spaced (Δl ≥ Δx/sinφ) movements. For analysis of both experimental data the computer application programs have been developed. An universal algorithm for determination of the boron profiles has been created to take into account influence of a deeper layers on a total measurement of track density when Δl < Δx/sinφ. (author)

  7. Structure prediction of boron-doped graphene by machine learning

    Science.gov (United States)

    M. Dieb, Thaer; Hou, Zhufeng; Tsuda, Koji

    2018-06-01

    Heteroatom doping has endowed graphene with manifold aspects of material properties and boosted its applications. The atomic structure determination of doped graphene is vital to understand its material properties. Motivated by the recently synthesized boron-doped graphene with relatively high concentration, here we employ machine learning methods to search the most stable structures of doped boron atoms in graphene, in conjunction with the atomistic simulations. From the determined stable structures, we find that in the free-standing pristine graphene, the doped boron atoms energetically prefer to substitute for the carbon atoms at different sublattice sites and that the para configuration of boron-boron pair is dominant in the cases of high boron concentrations. The boron doping can increase the work function of graphene by 0.7 eV for a boron content higher than 3.1%.

  8. Raman spectroscopy of boron-doped single-layer graphene.

    Science.gov (United States)

    Kim, Yoong Ahm; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Endo, Morinobu; Fujimori, Toshihiko; Kaneko, Katsumi; Terrones, Mauricio; Behrends, Jan; Eckmann, Axel; Casiraghi, Cinzia; Novoselov, Kostya S; Saito, Riichiro; Dresselhaus, Mildred S

    2012-07-24

    The introduction of foreign atoms, such as nitrogen, into the hexagonal network of an sp(2)-hybridized carbon atom monolayer has been demonstrated and constitutes an effective tool for tailoring the intrinsic properties of graphene. Here, we report that boron atoms can be efficiently substituted for carbon in graphene. Single-layer graphene substitutionally doped with boron was prepared by the mechanical exfoliation of boron-doped graphite. X-ray photoelectron spectroscopy demonstrated that the amount of substitutional boron in graphite was ~0.22 atom %. Raman spectroscopy demonstrated that the boron atoms were spaced 4.76 nm apart in single-layer graphene. The 7-fold higher intensity of the D-band when compared to the G-band was explained by the elastically scattered photoexcited electrons by boron atoms before emitting a phonon. The frequency of the G-band in single-layer substitutionally boron-doped graphene was unchanged, which could be explained by the p-type boron doping (stiffening) counteracting the tensile strain effect of the larger carbon-boron bond length (softening). Boron-doped graphene appears to be a useful tool for engineering the physical and chemical properties of graphene.

  9. Hydrogen-boron complexes in heavily boron-doped silicon treated with high concentration of hydrogen atoms

    International Nuclear Information System (INIS)

    Fukata, N.; Fukuda, S.; Sato, S.; Ishioka, K.; Kitajima, M.; Hishita, S.; Murakami, K.

    2006-01-01

    The formation of hydrogen (H)-related complexes was investigated in boron (B)-doped Si treated with high concentration of H. The isotope shifts of H-related Raman peaks by replacement of H to deuterium and 1 B to 11 B clearly showed the formation of the B-H complexes in which H directly bonds to B in Si. The results of the resistivity measurements suggested that the B acceptors are passivated via the formation of the B-H complexes, as well as the well-known passivation center in B-doped Si, namely, H-B passivation center

  10. Particle track etch method for analysis of boron in silicon using 10B(n,α)7Li reaction

    International Nuclear Information System (INIS)

    Chakarvarti, S.K.; Nagpaul, K.K.

    1980-01-01

    Boron bulk doped p-type (111) silicon thin wafers of different resistivities (1 to 100 ohm-cm +- 20%) have been analysed for boron using cellulose nitrate-Daicel and red dyed LR-115 type II films as detectors of alpha particles from 10 B(n,α) 7 Li reaction. The two detectors measure the same value of boron (approximately 0.1 ppm) in 1 ohm-cm silicon samples and agree closely with the four-point probe electrical resistivity measurement results whereas large discrepancies are observed in case of samples with resistivity > 1 ohm-cm (B concentration 1 ohm-cm. (author)

  11. Identification of photoluminescence P line in indium doped silicon as In{sub Si}-Si{sub i} defect

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Kevin, E-mail: klauer@cismst.de; Möller, Christian [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany); Schulze, Dirk [TU Ilmenau, Institut für Physik, Weimarer Str. 32, 98693 Ilmenau (Germany); Ahrens, Carsten [Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg (Germany)

    2015-01-15

    Indium and carbon co-implanted silicon was investigated by low-temperature photoluminescence spectroscopy. A photoluminescence peak in indium doped silicon (P line) was found to depend on the position of a silicon interstitial rich region, the existence of a SiN{sub x}:H/SiO{sub x} stack and on characteristic illumination and annealing steps. These results led to the conclusion that silicon interstitials are involved in the defect and that hydrogen impacts the defect responsible for the P line. By applying an unique illumination and annealing cycle we were able to link the P line defect with a defect responsible for degradation of charge carrier lifetime in indium as well as boron doped silicon. We deduced a defect model consisting of one acceptor and one silicon interstitial atom denoted by A{sub Si}-Si{sub i}, which is able to explain the experimental data of the P line as well as the light-induced degradation in indium and boron doped silicon. Using this model we identified the defect responsible for the P line as In{sub Si}-Si{sub i} in neutral charge state and C{sub 2v} configuration.

  12. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  13. Near-infrared free carrier absorption in heavily doped silicon

    International Nuclear Information System (INIS)

    Baker-Finch, Simeon C.; McIntosh, Keith R.; Yan, Di; Fong, Kean Chern; Kho, Teng C.

    2014-01-01

    Free carrier absorption in heavily doped silicon can have a significant impact on devices operating in the infrared. In the near infrared, the free carrier absorption process can compete with band to band absorption processes, thereby reducing the number of available photons to optoelectronic devices such as solar cells. In this work, we fabricate 18 heavily doped regions by phosphorus and boron diffusion into planar polished silicon wafers; the simple sample structure facilitates accurate and precise measurement of the free carrier absorptance. We measure and model reflectance and transmittance dispersion to arrive at a parameterisation for the free carrier absorption coefficient that applies in the wavelength range between 1000 and 1500 nm, and the range of dopant densities between ∼10 18 and 3 × 10 20  cm −3 . Our measurements indicate that previously published parameterisations underestimate the free carrier absorptance in phosphorus diffusions. On the other hand, published parameterisations are generally consistent with our measurements and model for boron diffusions. Our new model is the first to be assigned uncertainty and is well-suited to routine device analysis

  14. Electronic structures and thermochemical properties of the small silicon-doped boron clusters B(n)Si (n=1-7) and their anions.

    Science.gov (United States)

    Tai, Truong Ba; Kadłubański, Paweł; Roszak, Szczepan; Majumdar, Devashis; Leszczynski, Jerzy; Nguyen, Minh Tho

    2011-11-18

    We perform a systematic investigation on small silicon-doped boron clusters B(n)Si (n=1-7) in both neutral and anionic states using density functional (DFT) and coupled-cluster (CCSD(T)) theories. The global minima of these B(n)Si(0/-) clusters are characterized together with their growth mechanisms. The planar structures are dominant for small B(n)Si clusters with n≤5. The B(6)Si molecule represents a geometrical transition with a quasi-planar geometry, and the first 3D global minimum is found for the B(7)Si cluster. The small neutral B(n)Si clusters can be formed by substituting the single boron atom of B(n+1) by silicon. The Si atom prefers the external position of the skeleton and tends to form bonds with its two neighboring B atoms. The larger B(7)Si cluster is constructed by doping Si-atoms on the symmetry axis of the B(n) host, which leads to the bonding of the silicon to the ring boron atoms through a number of hyper-coordination. Calculations of the thermochemical properties of B(n)Si(0/-) clusters, such as binding energies (BE), heats of formation at 0 K (ΔH(f)(0)) and 298 K (ΔH(f)([298])), adiabatic (ADE) and vertical (VDE) detachment energies, and dissociation energies (D(e)), are performed using the high accuracy G4 and complete basis-set extrapolation (CCSD(T)/CBS) approaches. The differences of heats of formation (at 0 K) between the G4 and CBS approaches for the B(n)Si clusters vary in the range of 0.0-4.6 kcal mol(-1). The largest difference between two approaches for ADE values is 0.15 eV. Our theoretical predictions also indicate that the species B(2)Si, B(4)Si, B(3)Si(-) and B(7)Si(-) are systems with enhanced stability, exhibiting each a double (σ and π) aromaticity. B(5)Si(-) and B(6)Si are doubly antiaromatic (σ and π) with lower stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  16. Application of neutron transmutation doping method to initially p-type silicon material.

    Science.gov (United States)

    Kim, Myong-Seop; Kang, Ki-Doo; Park, Sang-Jun

    2009-01-01

    The neutron transmutation doping (NTD) method was applied to the initially p-type silicon in order to extend the NTD applications at HANARO. The relationship between the irradiation neutron fluence and the final resistivity of the initially p-type silicon material was investigated. The proportional constant between the neutron fluence and the resistivity was determined to be 2.3473x10(19)nOmegacm(-1). The deviation of the final resistivity from the target for almost all the irradiation results of the initially p-type silicon ingots was at a range from -5% to 2%. In addition, the burn-up effect of the boron impurities, the residual (32)P activity and the effect of the compensation characteristics for the initially p-type silicon were studied. Conclusively, the practical methodology to perform the neutron transmutation doping of the initially p-type silicon ingot was established.

  17. The ternary system nickel-boron-silicon

    International Nuclear Information System (INIS)

    Lugscheider, E.; Reimann, H.; Knotek, O.

    1975-01-01

    The ternary system Nickel-Boron-Silicon was established at 850 0 C by means of X-ray diffraction, metallographic and micro-hardness examinations. The well known binary nickel borides and silicides resp. were confirmed. In the boron-silicon system two binary phases, SiBsub(4-x) with x approximately 0.7 and SiB 6 were found the latter in equilibrium with the β-rhombohedral boron. Confirming the two ternary silicon borides a greater homogeneity range was found for Ni 6 Si 2 B, the phase Nisub(4,6)Si 2 B published by Uraz and Rundqvist can better be described by the formula Nisub(4.29)Si 2 Bsub(1.43). In relation to further investigations we measured melting temperatures in ternary Ni-10 B-Si alloys by differential thermoanalysis. (author)

  18. Structure and photoluminescence of boron and nitrogen co-doped carbon nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Gao, B. [College of Computer Science, Chongqing University, Chongqing 400044 (China); Chongqing Municipal Education Examinations Authority, Chongqing 401147 (China); Zhong, X.X., E-mail: xxzhong@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Shao, R.W.; Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2016-07-15

    Graphical abstract: Boron- and nitrogen- doped carbon nanorods. - Highlights: • The co-doping of nitrogen and boron in carbon nanorods. • The doping mechanism of nitrogen and boron in carbon nanorods by plasma. • Photoluminescence properties of nitrogen- and boron-doped carbon nanorods. - Abstract: Boron and nitrogen doped carbon nanorods (BNCNRs) were synthesized by plasma-enhanced hot filament chemical vapor deposition, where methane, nitrogen and hydrogen were used as the reaction gases and boron carbide was the boron source. The results of scanning electron microscopy, micro-Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy indicate that boron and nitrogen can be used as co-dopants in amorphous carbon nanorods. Combined with the characterization results, the doping mechanism was studied. The mechanism is used to explain the formation of different carbon materials by different methods. The photoluminescence (PL) properties of BNCNRs were studied. The PL results show that the BNCNRs generate strong green PL bands and weak blue PL bands, and the PL intensity lowered due to the doping of boron. The outcomes advance our knowledge on the synthesis and optical properties of carbon-based nanomaterials and contribute to the development of optoelectronic nanodevices based on nano-carbon mateirals.

  19. Enhancement of the power factor in two-phase silicon-boron nanocrystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Narducci, Dario; Lorenzi, Bruno [Department of Materials Science, University of Milano Bicocca, Milan (Italy); Zianni, Xanthippe [Department of Aircraft Technologies, Technological Educational Institution of Sterea Ellada, Psachna (Greece); Department of Microelectronics, IAMPPNM, NCSR Demokritos, Athens (Greece); Neophytou, Neophytos [Institute for Microelectronics, TUV, Vienna (Austria); School of Engineering, University of Warwick, Coventry (United Kingdom); Frabboni, Stefano [Department of FIM, University of Modena and Reggio Emilia, Modena (Italy); CNR-Institute of Nanoscience-S3, Modena (Italy); Gazzadi, Gian Carlo [CNR-Institute of Nanoscience-S3, Modena (Italy); Roncaglia, Alberto; Suriano, Francesco [IMM-CNR, Bologna (Italy)

    2014-06-15

    In previous publications it was shown that the precipitation of silicon boride around grain boundaries may lead to an increase of the power factor in nanocrystalline silicon. Such an effect was further explained by computational analyses showing that the formation of an interphase at the grain boundaries along with high boron densities can actually lead to a concurrent increase of the electrical conductivity σ and of the Seebeck coefficient S. In this communication we report recent evidence of the key elements ruling such an unexpected effect. Nanocrystalline silicon films deposited onto a variety of substrates were doped to nominal boron densities in excess of 10{sup 20} cm{sup -3} and were annealed up to 1000 C to promote boride precipitation. Thermoelectric properties were measured and compared with their microstructure. A concurrent increase of σ and S with the carrier density was found only upon formation of an interphase. Its dependency on the film microstructure and on the deposition and processing conditions will be discussed. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Reduced-pressure chemical vapor deposition of boron-doped Si and Ge layers

    International Nuclear Information System (INIS)

    Bogumilowicz, Y.; Hartmann, J.M.

    2014-01-01

    We have studied the in-situ boron (B) doping of germanium (Ge) and silicon (Si) in Reduced Pressure-Chemical Vapor Deposition. Three growth temperatures have been investigated for the B-doping of Ge: 400, 600 and 750 °C at a constant growth pressure of 13300 Pa (i.e. 100 Torr). The B concentration in the Ge:B epilayer increases linearly with the diborane concentration in the gaseous phase. Single-crystalline Ge:B layers with B concentrations in-between 9 ∙ 10 17 and 1 ∙ 10 20 cm −3 were achieved. For the in-situ B doping of Si at 850 °C, two dichlorosilane mass flow ratios (MFR) have been assessed: F[SiH 2 Cl 2 ]/F[H 2 ] = 0.0025 and F[SiH 2 Cl 2 ]/F[H 2 ] = 0.0113 at a growth pressure of 2660 Pa (i.e. 20 Torr). Linear boron incorporation with the diborane concentration in the gas phase has been observed and doping levels in-between 3.5 ∙ 10 17 and 1 ∙ 10 20 cm −3 were achieved. We almost kept the same ratio of B versus Si atoms in the gas phase and in the Si epilayer. By contrast, roughly half of the B atoms present in the gas phase were incorporated in the Ge:B layers irrespective of the growth temperature. X-Ray Diffraction (XRD) allowed us to extract from the angular position of the Ge:B layer diffraction peak the substitutional B concentration. Values close to the B concentrations obtained by 4-probe resistivity measurements were obtained. Ge:B layers were smooth (< 1 m root mean square roughness associated with 20 × 20 μm 2 Atomic Force Microscopy images). Only for high F[B 2 H 6 ]/F[GeH 4 ] MFR (3.2 10 −3 ) did the Ge:B layers became rough; they were however still mono-crystalline (XRD). Above this MFR value, Ge:B layers became polycrystalline. - Highlights: • Boron doping of germanium and silicon in Reduced Pressure-Chemical Vapor Deposition • Linear boron incorporation in Ge:B and Si:B with the diborane flow • Single-crystal Ge:B layers with B concentrations in-between 9 ∙ 10 17 and 1 ∙ 10 20 cm −3 • Single-crystal Si

  1. Influence of hydrogen effusion from hydrogenated silicon nitride layers on the regeneration of boron-oxygen related defects in crystalline silicon

    International Nuclear Information System (INIS)

    Wilking, S.; Ebert, S.; Herguth, A.; Hahn, G.

    2013-01-01

    The degradation effect boron doped and oxygen-rich crystalline silicon materials suffer from under illumination can be neutralized in hydrogenated silicon by the application of a regeneration process consisting of a combination of slightly elevated temperature and carrier injection. In this paper, the influence of variations in short high temperature steps on the kinetics of the regeneration process is investigated. It is found that hotter and longer firing steps allowing an effective hydrogenation from a hydrogen-rich silicon nitride passivation layer result in an acceleration of the regeneration process. Additionally, a fast cool down from high temperature to around 550 °C seems to be crucial for a fast regeneration process. It is suggested that high cooling rates suppress hydrogen effusion from the silicon bulk in a temperature range where the hydrogenated passivation layer cannot release hydrogen in considerable amounts. Thus, the hydrogen content of the silicon bulk after the complete high temperature step can be increased resulting in a faster regeneration process. Hence, the data presented here back up the theory that the regeneration process might be a hydrogen passivation of boron-oxygen related defects

  2. Drawing the geometry of 3d transition metal-boron pairs in silicon from electron emission channeling experiments

    CERN Document Server

    Silva, Daniel; Wahl, Ulrich; Martins Correia, Joao; Augustyns, Valerie; De Lemos Lima, Tiago Abel; Granadeiro Costa, Angelo Rafael; David Bosne, Eric; Castro Ribeiro Da Silva, Manuel; Esteves De Araujo, Araujo Joao Pedro; Da Costa Pereira, Lino Miguel

    2016-01-01

    Although the formation of transition metal-boron pairs is currently well established in silicon processing, the geometry of these complexes is still not completely understood. We investigated the lattice location of the transition metals manganese, iron, cobalt and nickel in n- and p+-type silicon by means of electron emission channeling. For manganese, iron and cobalt, we observed an increase of sites near the ideal tetrahedral interstitial position by changing the doping from n- to p+-type Si. Such increase was not observed for Ni. We ascribe this increase to the formation of pairs with boron, driven by Coulomb interactions, since the majority of iron, manganese and cobalt is positively charged in p+-type silicon while Ni is neutral. We propose that breathing mode relaxation around the boron ion within the pair causes the observed displacement from the ideal tetrahedral interstitial site. We discuss the application of the emission channeling technique in this system and, in particular, how it provides insi...

  3. Morphological and electrochemical studies of spherical boron doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mendes de Barros, R.C. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Ferreira, N.G. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Azevedo, A.F. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Corat, E.J. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Sumodjo, P.T.A. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Serrano, S.H.P. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil)]. E-mail: shps@iq.usp.br

    2006-08-14

    Morphological and electrochemical characteristics of boron doped diamond electrode in new geometric shape are presented. The main purpose of this study is a comparison among voltammetric behavior of planar glassy carbon electrode (GCE), planar boron doped diamond electrode (PDDE) and spherical boron doped diamond electrode (SDDE), obtained from similar experimental parameters. SDDE was obtained by the growth of boron doped film on textured molybdenum tip. This electrode does not present microelectrode characteristics. However, its voltammetric peak current, determined at low scan rates, is largest associated to the smallest {delta}E {sub p} values for ferrocyanide system when compared with PDDE or GCE. In addition, the capacitance is about 200 times smaller than that for GCE. These results show that the analytical performance of boron doped diamond electrodes can be implemented just by the change of sensor geometry, from plane to spherical shape.

  4. Boron profiles in doped amorphous-silicon solar cells formed by plasma ion deposition

    International Nuclear Information System (INIS)

    Stoddart, C.T.H.; Hunt, C.P.; Coleman, J.H.

    1979-01-01

    Amorphous silicon p-n junction solar cells of large area (100 cm 2 ) and having a quantum efficiency approaching 100% in the blue region have been prepared by plasma ion-plating, the p layer being formed from diborane and silane gases in a cathode glow-discharge. Surface secondary ion mass spectrometry combined with ion beam etching was found to be a very sensitive method with high in-depth resolution for obtaining the initial boron-silicon profile of the solar cell p-n junction. (author)

  5. Scanning spreading resistance microscopy of shallow doping profiles in silicon

    International Nuclear Information System (INIS)

    Suchodolskis, A.; Hallen, A.; Gran, J.; Hansen, T.-E.; Karlsson, U.O.

    2006-01-01

    We demonstrate the application of scanning spreading resistance microscopy (SSRM) for characterization of shallow highly-conductive layers formed by boron implantation of lowly doped n-type silicon substrate followed by a post-implantation annealing. The electrically active dopant concentration versus depth was obtained from a cross-section of freshly cleaved samples where the Si-surface could be clearly distinguished by depositing a SiO 2 -layer before cleavage. To quantify free carrier concentration we calibrated our data against samples with implanted/annealed boron profiles established by secondary ion mass spectrometry (SIMS). A good fit of SSRM and SIMS data is possible for free carrier concentrations lower than 10 20 cm -3 , but for higher concentrations there is a discrepancy indicating an incomplete activation of the boron

  6. Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.

    Science.gov (United States)

    Heyer, Steffen; Janssen, Wiebke; Turner, Stuart; Lu, Ying-Gang; Yeap, Weng Siang; Verbeeck, Jo; Haenen, Ken; Krueger, Anke

    2014-06-24

    The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.

  7. Photoluminescence properties of boron doped InSe single crystals

    International Nuclear Information System (INIS)

    Ertap, H.; Bacıoğlu, A.; Karabulut, M.

    2015-01-01

    Undoped and boron doped InSe single crystals were grown by Bridgman–Stockbarger technique. The PL properties of undoped, 0.1% and 0.5% boron doped InSe single crystals have been investigated at different temperatures. PL measurements revealed four emission bands labeled as A, B, C and D in all the single crystals studied. These emission bands were associated with the radiative recombination of direct free excitons (n=1), impurity-band transitions, donor–acceptor recombinations and structural defect related band (impurity atoms, defects, defect complexes, impurity-vacancy complex etc.), respectively. The direct free exciton (A) bands of undoped, 0.1% and 0.5% boron doped InSe single crystals were observed at 1.337 eV, 1.335 eV and 1.330 eV in the PL spectra measured at 12 K, respectively. Energy positions and PL intensities of the emission bands varied with boron addition. The FWHM of direct free exciton band increases while the FWHM of the D emission band decreases with boron doping. Band gap energies of undoped and boron doped InSe single crystals were calculated from the PL measurements. It was found that the band gap energies of InSe single crystals decreased with increasing boron content. - Highlights: • PL spectra of InSe crystals have been studied as a function of temperature. • Four emission bands were observed in the PL spectra at low temperatures. • PL intensity and position of free exciton band vary with doping and temperature. • Temperature dependences of the bands observed in the PL spectra were analyzed

  8. Continuous growth of low-temperature Si epitaxial layer with heavy phosphorous and boron doping using photoepitaxy

    International Nuclear Information System (INIS)

    Yamazaki, T.; Minakata, H.; Ito, T.

    1990-01-01

    The authors grew p + -n + silicon epitaxial layers, heavily doped with phosphorus and boron, continuously at 650 degrees C using low-temperature photoepitaxy. Then N + photoepitaxial layer with a phosphorus concentration above 10 17 cm -3 grown on p - substrate shows high-density surface pits, and as a result, poor crystal quality. However, when this n + photoepitaxial layer is grown continuously on a heavily boron-doped p + photoepitaxial layer, these surface pits are drastically decreased, disappearing completely above a hole concentration of 10 19 cm -3 in the p + photoepitaxial layer. The phosphorus activation ratio and electron Hall mobility in the heavily phosphorus-doped n + photoexpitaxial layer were also greatly improved. The authors investigated the cause of the surface pitting using a scanning transmission electron microscope, secondary ion mass spectroscopy, and energy-dispersive x-ray spectroscopy. They characterized the precipitation of phosphorus atoms on the crystal surface at the initial stage of the heavily phosphorus-doped n + photoexpitaxial layer growth

  9. Growth of misfit dislocation-free p/p+ thick epitaxial silicon wafers on Ge-B-codoped substrates

    International Nuclear Information System (INIS)

    Jiang Huihua; Yang Deren; Ma Xiangyang; Tian Daxi; Li Liben; Que Duanlin

    2006-01-01

    The growth of p/p + silicon epitaxial silicon wafers (epi-wafers) without misfit dislocations has been successfully achieved by using heavily boron-doped Czochralski (CZ) silicon wafers codoped with desirable level of germanium as the substrates. The lattice compensation by codoping of germanium and boron into the silicon matrix to reduce the lattice mismatch between the substrate (heavily boron-doped) and epi-layer (lightly boron-doped) is the basic idea underlying in the present achievement. In principle, the codoping of germanium and boron in the CZ silicon can be tailored to achieve misfit dislocation-free epi-layer with required thickness. It is reasonably expected that the presented solution to elimination of misfit dislocations in the p/p + silicon wafers can be applied in the volume production

  10. Noncrucial role of the defects in the splitting for hydrogen implanted silicon with high boron concentration

    International Nuclear Information System (INIS)

    Popov, V.P.; Stas, V.F.; Antonova, I.V.

    1999-01-01

    The present work deals with the investigation of the electrical and structural properties of heavily boron-doped silicon irradiated by hydrogen. Blistering and splitting processes are enhanced with an increase in boron concentration in the crystal. The measured values of perpendicular strain are over 0.7% which corresponds to a gas overpressure of 0.5 GPa. Processes which lead to blistering and splitting is better described in the frame of a gas pressure model than a model of local stress caused by the defects

  11. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    Science.gov (United States)

    Liu, Tao; Luo, Ruiying; Yoon, Seong-Ho; Mochida, Isao

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g -1 and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by "molecular bridging" between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper.

  12. Amorphous silicon passivation for 23.3% laser processed back contact solar cells

    Science.gov (United States)

    Carstens, Kai; Dahlinger, Morris; Hoffmann, Erik; Zapf-Gottwick, Renate; Werner, Jürgen H.

    2017-08-01

    This paper presents amorphous silicon deposited at temperatures below 200 °C, leading to an excellent passivation layer for boron doped emitter and phosphorus doped back surface field areas in interdigitated back contact solar cells. A higher deposition temperature degrades the passivation of the boron emitter by an increased hydrogen effusion due to lower silicon hydrogen bond energy, proved by hydrogen effusion measurements. The high boron surface doping in crystalline silicon causes a band bending in the amorphous silicon. Under these conditions, at the interface, the intentionally undoped amorphous silicon becomes p-type conducting, with the consequence of an increased dangling bond defect density. For bulk amorphous silicon this effect is described by the defect pool model. We demonstrate, that the defect pool model is also applicable to the interface between amorphous and crystalline silicon. Our simulation shows the shift of the Fermi energy towards the valence band edge to be more pronounced for high temperature deposited amorphous silicon having a small bandgap. Application of optimized amorphous silicon as passivation layer for the boron doped emitter and phosphorus doped back surface field on the rear side of laser processed back contact solar cells, fabricated using four laser processing steps, yields an efficiency of 23.3%.

  13. Boron-doped nanodiamonds as possible agents for local hyperthermia

    Science.gov (United States)

    Vervald, A. M.; Burikov, S. A.; Vlasov, I. I.; Ekimov, E. A.; Shenderova, O. A.; Dolenko, T. A.

    2017-04-01

    In this work, the effective heating of surrounding water by heavily-boron-doped nanodiamonds (NDs) under laser irradiation of visible wavelength was found. Using Raman scattering spectroscopy of aqueous suspensions of boron-doped NDs, it was found that this abnormally high heating results in the weakening of hydrogen bonds much more so (2-5 times stronger) than for undoped NDs. The property of boron-doped NDs to heat a solvent under the influence of laser radiation (1-5 W cm-2) opens broad prospects for their use to create nanoagents for medical oncology and local hyperthermia.

  14. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Luo, Ruiying [School of Science, Beihang University, Beijing 100083 (China); Yoon, Seong-Ho; Mochida, Isao [Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2010-03-15

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g{sup -1} and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by ''molecular bridging'' between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper. (author)

  15. Depth resolved investigations of boron implanted silicon

    Science.gov (United States)

    Sztucki, M.; Metzger, T. H.; Milita, S.; Berberich, F.; Schell, N.; Rouvière, J. L.; Patel, J.

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6×10 15 ions/cm -2 at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {1 1 1} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  16. NMR investigation of boron impurities in refined metallurgical grade silicon

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, Hans-Joachim; Loeser, Wolfgang; Schmitz, Steffen; Sakaliyska, Miroslava [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Institute for Solid State Physics, Technische Universitaet Dresden (Germany); Eisert, Stefan; Reichenbach, Birk; Mueller, Tim [Adensis GmbH, Dresden (Germany); Acker, Joerg; Rietig, Anja; Ducke, Jana [Department of Chemistry, Faculty for Natural Sciences, Brandenburg Technical University Cottbus-Senftenberg, Senftenberg (Germany)

    2015-09-15

    The nuclear magnetic resonance (NMR) method was applied for tracking boron impurities in the refining process of metallurgical grade (MG) silicon. From the NMR signal of the {sup 11}B isotope at an operating temperature 4.2 K, the boron concentration can be estimated down to the order of 1-10 wppm B. After melting and resolidification of MG-Si alloyed with Ca and Ti, a major fraction of B impurities remains in the Si solid solution as inferred from the characteristic NMR frequency. The alloying element Ti does not form substantial fractions of TiB{sub 2}. Acid leaching of crushed powders of MG-Si alloyed with Ca and Ti can diminish the initial impurity content of B suggesting its accumulation in the grain boundary phases. NMR signals of TiB{sub 2} at 4.2 K and room temperature (RT), and of poly-Si with different B doping at 4.2 K. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Mg-doping experiment and electrical transport measurement of boron nanobelts

    International Nuclear Information System (INIS)

    Kirihara, K.; Hyodo, H.; Fujihisa, H.; Wang, Z.; Kawaguchi, K.; Shimizu, Y.; Sasaki, T.; Koshizaki, N.; Soga, K.; Kimura, K.

    2006-01-01

    We measured electrical conductance of single crystalline boron nanobelts having α-tetragonal crystalline structure. The doping experiment of Mg was carried out by vapor diffusion method. The pure boron nanobelt is a p-type semiconductor and its electrical conductivity was estimated to be on the order of 10 -3 (Ω cm) -1 at room temperature. The carrier mobility of pure boron nanobelt was measured to be on the order of 10 -3 (cm 2 Vs -1 ) at room temperature and has an activation energy of ∼0.19 eV. The Mg-doped boron nanobelts have the same α-tetragonal crystalline structure as the pristine nanobelts. After Mg vapor diffusion, the nanobelts were still semiconductor, while the electrical conductance increased by a factor of 100-500. Transition to metal or superconductor by doping was not observed. - Graphical abstract: SEM micrographs of boron nanobelt after Ni/Au electrode fabrication by electron beam lithography. Display Omitted

  18. Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies

    Science.gov (United States)

    Boukhvalov, D. W.; Zhidkov, I. S.; Kukharenko, A. I.; Slesarev, A. I.; Zatsepin, A. F.; Cholakh, S. O.; Kurmaev, E. Z.

    2018-05-01

    Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.

  19. Density functional theory prediction for diffusion of lithium on boron-doped graphene surface

    International Nuclear Information System (INIS)

    Gao Shuanghong; Ren Zhaoyu; Wan Lijuan; Zheng Jiming; Guo Ping; Zhou Yixuan

    2011-01-01

    The density functional theory (DFT) investigation shows that graphene has changed from semimetal to semiconductor with the increasing number of doped boron atoms. Lithium and boron atoms acted as charge contributors and recipients, which attracted to each other. Further investigations show that, the potential barrier for lithium diffusion on boron-doped graphene is higher than that of intrinsic graphene. The potential barrier is up to 0.22 eV when six boron atoms doped (B 6 C 26 ), which is the lowest potential barrier in all the doped graphene. The potential barrier is dramatically affected by the surface structure of graphene.

  20. Enhanced oxidation resistance of carbon fiber reinforced lithium aluminosilicate composites by boron doping

    International Nuclear Information System (INIS)

    Xia, Long; Jin, Feng; Zhang, Tao; Hu, Xueting; Wu, Songsong; Wen, Guangwu

    2015-01-01

    Highlights: • C f /LAS composites exhibit enhanced oxidation resistance by boron doping. • Boron doping is beneficial to the improvement of graphitization degree of carbon fibers. • Graphitization of carbon fibers together with the decrease of viscosity of LAS matrix is responsible to the enhancement of oxidation resistance of C f /LAS composites. - Abstract: Carbon fiber reinforced lithium aluminosilicate matrix composites (C f /LAS) modified with boron doping were fabricated and oxidized for 1 h in static air. Weight loss, residual strength and microstructure were analyzed. The results indicate that boron doping has a remarkable effect on improving the oxidation resistance for C f /LAS. The synergism of low viscosity of LAS matrix at high temperature and formation of graphite crystals on the surface of carbon fibers, is responsible for excellent oxidation resistance of the boron doped C f /LAS.

  1. RBS and XRD analysis of silicon doped titanium diboride films

    International Nuclear Information System (INIS)

    Mollica, S.; Sood, D.K.; Ghantasala, M.K.; Kothari, R.

    1999-01-01

    Titanium diboride is a newly developed material suitable for protective coatings. Its high temperature oxidation resistance at temperatures of 700 deg C and beyond is limited due to its poor oxidative behaviour. This paper presents a novel approach to improving the coatings' oxidative characteristics at temperatures of 700 deg C by doping with silicon. Titanium diboride films were deposited onto Si(100) wafer substrates using a DC magnetron sputtering system. Films were deposited in two different compositions, one at pure TiB 2 and the other with 20 % Si doping. These samples were vacuum annealed at 700 deg C at 1x10 -6 Torr to investigate the anaerobic behaviour of the material at elevated temperatures and to ensure that they were crystalline. Samples were then oxidised in air at 700 deg C to investigate their oxidation resistance. Annealing the films at 700 deg C in air results in the oxidation of the film as titanium and boron form TiO 2 and B 2 O 3 . Annealing is seen to produce only minor changes in the films. There is some silicon diffusion from the substrate at elevated temperatures, which is related to the porous nature of the deposited film and the high temperature heat treatments. However, silicon doped films showed relatively less oxidation characteristics after annealing in air compared with the pure TiB 2 samples

  2. Study on high-silicon boron-containing zeolite by thermogravimetric and IR-spectroscopy techniques

    International Nuclear Information System (INIS)

    Chukin, G.D.; Nefedov, B.K.; Surin, S.A.; Polinina, E.V.; Khusid, B.L.; Sidel'kovskaya, V.G.

    1985-01-01

    The structure identity of initial Na-forms of boron-containing and aluminosilicate high-silicon zeolites is established by thermogravimetric and IR-spectroscopy methods. The presence of boron in Na-forms of high-silicon zeolites is shown to lead to reduction of structure thermal stability. It is noted that thermal stability of the H-form of both high-silicon boron-containing and boron-free zeolites is practically equal and considerably higher than that of Na-forms

  3. Formation of shallow boron emitters in crystalline silicon using flash lamp annealing: Role of excess silicon interstitials

    Energy Technology Data Exchange (ETDEWEB)

    Riise, Heine Nygard, E-mail: h.n.riise@fys.uio.no; Azarov, Alexander; Svensson, Bengt G.; Monakhov, Edouard [Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo (Norway); Schumann, Thomas; Hübner, Renè; Skorupa, Wolfgang [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, P. O. Box 510119, 01314 Dresden (Germany)

    2015-07-13

    Shallow, Boron (B)-doped p{sup +} emitters have been realized using spin-on deposition and Flash Lamp Annealing (FLA) to diffuse B into monocrystalline float zone Silicon (Si). The emitters extend between 50 and 140 nm in depth below the surface, have peak concentrations between 9 × 10{sup 19 }cm{sup –3} and 3 × 10{sup 20 }cm{sup –3}, and exhibit sheet resistances between 70 and 3000 Ω/□. An exceptionally large increase in B diffusion occurs for FLA energy densities exceeding ∼93 J/cm{sup 2} irrespective of 10 or 20 ms pulse duration. The effect is attributed to enhanced diffusion of B caused by Si interstitial injection following a thermally activated reaction between the spin-on diffusant film and the silicon wafer.

  4. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H J; Nesper, R [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  5. Grain-boundary contamination and ductility loss in boron-doped Ni3Al

    International Nuclear Information System (INIS)

    Takeyama, M.; Liu, C.T.

    1989-01-01

    The effect of heat treatment on ductility loss in a boron-doped Ni 3 Al was studied by tensile tests of specimens exposed to contaminated environments. Specimens heat treated at 1323 K exhibit only 3.3 pct ductility at 1033 K, whereas a previous study reported a tensile ductility of about 24 pct for specimens heat treated in a high vacuum system. Aluminum oxide and silicon-contaminated regions were observed at and near external surfaces of annealed specimens. The reactions occurring during heat treatment are interpreted in terms of thermodynamics. An Auger electron spectroscopy study revealed oxygen penetration along grain boundaries during annealing. Although the surface oxide layer and silicon contamination both contribute to some reductions in ductility, the major cause for embrittlement comes from oxygen penetration along grain boundaries

  6. The atomic and electronic structure of nitrogen- and boron-doped phosphorene.

    Science.gov (United States)

    Boukhvalov, Danil W

    2015-10-28

    First principles modeling of nitrogen- and boron-doped phosphorene demonstrates the tendency toward the formation of highly ordered structures. Nitrogen doping leads to the formation of -N-P-P-P-N- lines. Further transformation into -P-N-P-N- lines across the chains of phosphorene occurs with increasing band gap and increasing nitrogen concentration, which coincides with the decreasing chemical activity of N-doped phosphorene. In contrast to the case of nitrogen, boron atoms prefer to form -B-B- pairs with the further formation of -P-P-B-B-P-P- patterns along the phosphorene chains. The low concentration of boron dopants converts the phosphorene from a semiconductor into a semimetal with the simultaneous enhancement of its chemical activity. Co-doping of phosphorene by both boron and nitrogen starts from the formation of -B-N- pairs, which provides flat bands and further transformation of these pairs into hexagonal BN lines and ribbons across the phosphorene chains.

  7. First principle investigations on Boron doped Fe2VAl Heusler alloy

    International Nuclear Information System (INIS)

    Venkatesh, Ch.; Srivastava, S.K.; Rao, V.V.

    2014-01-01

    The role of atomic size of sp-element is investigated through theoretical calculations and basic experiments to understand the physical properties of Boron doped Fe 2 VAl alloy. The results of ab-initio calculations on ordered L2 1 structure of Fe 2 VAl 1-x B x (x=0, 0.5, 1) alloys have been compared to understand the role of sp-element size on the hybridization among their respective valance states. Interestingly, semi-metallic and paramagnetic like ground states were found in the Boron doped alloys in similar to Fe 2 VAl, eliminating the role of size of the doppent sp-atom. These calculations result in hybridization where the covalent distribution of valance states among the atoms is responsible to produce a finite pseudo-gap at the Fermi level. The observed features could be explained on the basis of covalent theory of magnetism in which an amount of spectral weight transfer occurs in the DOS spectrum among the same spin orbitals, leading to symmetric distribution of bonding and anti-bonding states. However, the obtained experimental findings on Boron doped alloys are in contrast with these calculations, indicating that experimentally the alloy formation into an ideal L2 1 lattice does not happen while doping with Boron. Further, the micro structural analysis shows Boron segregation across the grain boundaries that may form magnetic inhomogeneities in the lattice of Boron doped Fe 2 VAl alloys which preferably cause these experimental anomalies

  8. Dependence of reaction pressure on deposition and properties of boron-doped freestanding diamond films

    International Nuclear Information System (INIS)

    Li Liuan; Li Hongdong; Lue Xianyi; Cheng Shaoheng; Wang Qiliang; Ren Shiyuan; Liu Junwei; Zou Guangtian

    2010-01-01

    In this paper, we investigate the reaction pressure-dependent growth and properties of boron-doped freestanding diamond films, synthesized by hot filament chemical vapor deposition (HFCVD) at different boron-doping levels. With the decrease in pressure, the growth feature of the films varies from mixed [1 1 1] and [1 1 0] to dominated [1 1 1] texture. The low reaction pressure, as well as high boron-doping level, results in the increase (decrease) of carrier concentration (resistivity). The high concentration of atomic hydrogen in the ambient and preferable [1 1 1] growth, due to the low reaction pressure, is available for the enhancement of boron doping. The estimated residual stress increases with increase in the introducing boron level.

  9. Electron Paramagnetic Resonance and X-ray Diffraction of Boron- and Phosphorus-Doped Nanodiamonds

    Science.gov (United States)

    Binh, Nguyen Thi Thanh; Dolmatov, V. Yu.; Lapchuk, N. M.; Shymanski, V. I.

    2017-11-01

    Powders of boron- and phosphorus-doped detonation nanodiamonds and sintered pellets of non-doped nanodiamond powders were studied using electron paramagnetic resonance and x-ray diffraction. Doping of detonation nanodiamond crystals with boron and phosphorus was demonstrated to be possible. These methods could be used to diagnose diamond nanocrystals doped during shock-wave synthesis.

  10. Properties of p-type amorphous silicon carbide window layers prepared using boron trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    Gandia, J J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Gutierrez, M T [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Carabe, J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain)

    1993-03-01

    One set (A) of undoped and three sets (B, C and D) of doped hydrogenated amorphous silicon carbide samples have been made in the framework of a research plan for obtaining high quality p-type window layers by radiofrequency glow discharge of silane-based gas mixtures. The samples of sets A and B were made using different RF-power-density to mass-flow ratios for various methane percentages in the gas mixture. The best carbon incorporation in the amorphous silicon lattice was obtained at the highest RF-power density. The properties of sets C and D, prepared using different RF-power densities and silane and methane proportions have been analysed as functions of the concentration of boron trifluoride with respect to silane. In both cases, the optical gap E[sub G], after a slight initial decrease, remains at a value of approximately 2.1 eV without quenching in the doping ranges covered. The best conductivity obtained is 2x10[sup -7] ([Omega] cm)[sup -1]. IR spectra allow to associate these features with the structural quality of the films. (orig.)

  11. Boron-doped MnO{sub 2}/carbon fiber composite electrode for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hong Zhong, E-mail: hzchi@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhu, Hongjie [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Gao, Linhui [Center of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2015-10-05

    Highlights: • Interstitial ion in MnO{sub 2} lattice. • Porous film composed by interlocking worm-like nanostructure. • Boron-doped birnessite-type MnO{sub 2}/carbon fiber composite electrode. • Enhanced capacitive properties through nonmetal element doping. - Abstract: The boron-doped MnO{sub 2}/carbon fiber composite electrode has been prepared via in situ redox reaction between potassium permanganate and carbon fibers in the presence of boric acid. The addition of boron as dopant results in the increase of growth-rate of MnO{sub 2} crystal and the formation of worm-like nanostructure. Based on the analysis of binding energy, element boron incorporates into the MnO{sub 2} lattice through interstitial mode. The doped electrode with porous framework is beneficial to pseudocapacitive reaction and surface charge storage, leading to higher specific capacitance and superior rate capability. After experienced 1000 cycles, the boron-doped MnO{sub 2} still retain a higher specific capacitance by about 80% of its initial value. The fall in capacitance is blamed to be the combination of the formation of soluble Mn{sup 2+} and the absence of active site on the outer surface.

  12. Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser

    Directory of Open Access Journals (Sweden)

    A. Picciotto

    2014-08-01

    Full Text Available We show that a spatially well-defined layer of boron dopants in a hydrogen-enriched silicon target allows the production of a high yield of alpha particles of around 10^{9} per steradian using a nanosecond, low-contrast laser pulse with a nominal intensity of approximately 3×10^{16}  W cm^{−2}. This result can be ascribed to the nature of the long laser-pulse interaction with the target and with the expanding plasma, as well as to the optimal target geometry and composition. The possibility of an impact on future applications such as nuclear fusion without production of neutron-induced radioactivity and compact ion accelerators is anticipated.

  13. Effect of electron injection on defect reactions in irradiated silicon containing boron, carbon, and oxygen

    Science.gov (United States)

    Makarenko, L. F.; Lastovskii, S. B.; Yakushevich, H. S.; Moll, M.; Pintilie, I.

    2018-04-01

    Comparative studies employing Deep Level Transient Spectroscopy and C-V measurements have been performed on recombination-enhanced reactions between defects of interstitial type in boron doped silicon diodes irradiated with alpha-particles. It has been shown that self-interstitial related defects which are immobile even at room temperatures can be activated by very low forward currents at liquid nitrogen temperatures. Their activation is accompanied by the appearance of interstitial carbon atoms. It has been found that at rather high forward current densities which enhance BiOi complex disappearance, a retardation of Ci annealing takes place. Contrary to conventional thermal annealing of the interstitial boron-interstitial oxygen complex, the use of forward current injection helps to recover an essential part of charge carriers removed due to irradiation.

  14. Electronic structures and three-dimensional effects of boron-doped carbon nanotubes

    International Nuclear Information System (INIS)

    Koretsune, Takashi; Saito, Susumu

    2008-01-01

    We study boron-doped carbon nanotubes by first-principles methods based on the density functional theory. To discuss the possibility of superconductivity, we calculate the electronic band structure and the density of states (DOS) of boron-doped (10,0) nanotubes by changing the boron density. It is found that the Fermi level density of states D(ε F ) increases upon lowering the boron density. This can be understood in terms of the rigid band picture where the one-dimensional van Hove singularity lies at the edge of the valence band in the DOS of the pristine nanotube. The effect of three-dimensionality is also considered by performing the calculations for bundled (10,0) nanotubes and boron-doped double-walled carbon nanotubes (10,0)/(19,0). From the calculation of the bundled nanotubes, it is found that interwall dispersion is sufficiently large to broaden the peaks of the van Hove singularity in the DOS. Thus, to achieve the high D(ε F ) using the bundle of nanotubes with single chirality, we should take into account the distance from each nanotube. In the case of double-walled carbon nanotubes, we find that the holes introduced to the inner tube by boron doping spread also on the outer tube, while the band structure of each tube remains almost unchanged.

  15. Photovoltaic investigation of minority carrier lifetime in the heavily-doped emitter layer of silicon junction solar cell

    Science.gov (United States)

    Ho, C.-T.

    1982-01-01

    The results of experiments on the recombination lifetime in a phosphorus diffused N(+) layer of a silicon solar cell are reported. The cells studied comprised three groups of Czochralski grown crystals: boron doped to one ohm-cm, boron doped to 6 ohm-cm, and aluminum doped to one ohm-cm, all with a shunt resistance exceeding 500 kilo-ohms. The characteristic bulk diffusion length of a cell sample was determined from the short circuit current response to light at a wavelength of one micron. The recombination rates were obtained by measurement of the open circuit voltage as a function of the photogeneration rate. The recombination rate was found to be dependent on the photoinjection level, and is positive-field controlled at low photoinjection, positive-field influence Auger recombination at a medium photoinjection level, and negative-field controlled Auger recombination at a high photoinjection level.

  16. Transmutation doping of silicon solar cells

    Science.gov (United States)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  17. Electrochemical characterization of doped diamond-coated carbon fibers at different boron concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, E.C. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil)]. E-mail: erica@las.inpe.br; Diniz, A.V. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Trava-Airoldi, V.J. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Ferreira, N.G. [CTA-Divisao de Materiais, Sao Jose dos Campos, SP 12228-904 (Brazil)

    2005-08-01

    Doped diamond films have been deposited on carbon fibers (felt) obtained from polyacrylonitrile at different levels of boron doping. For a successful coating of the fibers, an ultrasonic pretreatment in a bath of diamond powder dissolved in hexane was required. Films were grown on both sample sides, simultaneously, by hot filament-assisted chemical vapour deposition technique at 750 deg. C from a 0.5% H{sub 2}/CH{sub 4} mixture at a total pressure of 6.5 x 10{sup 3} Pa. Boron was obtained from H{sub 2} forced to pass through a bubbler containing B{sub 2}O{sub 3} dissolved in methanol. The doping level studied corresponds to films with acceptor concentrations in the range of 6.5 x 10{sup 18} to 1.5 x 10{sup 21} cm{sup -} {sup 3}, obtained from Mott-Schottky plots. Scanning electron microscopy analyses evidenced fibers totally covered with high quality polycrystalline boron-doped diamond film, also confirmed by Raman spectroscopy spectra. Diamond electrodes grown on carbon fibers demonstrated similar electrochemical behavior obtained from films on Si substrate, for ferri/ferrocyanide redox couple as a function of boron content. The boron content influences electrochemical surface area. A lower boron concentration provides a higher growth rate that results in a higher surface area.

  18. Eliminating Light-Induced Degradation in Commercial p-Type Czochralski Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Brett Hallam

    2017-12-01

    Full Text Available This paper discusses developments in the mitigation of light-induced degradation caused by boron-oxygen defects in boron-doped Czochralski grown silicon. Particular attention is paid to the fabrication of industrial silicon solar cells with treatments for sensitive materials using illuminated annealing. It highlights the importance and desirability of using hydrogen-containing dielectric layers and a subsequent firing process to inject hydrogen throughout the bulk of the silicon solar cell and subsequent illuminated annealing processes for the formation of the boron-oxygen defects and simultaneously manipulate the charge states of hydrogen to enable defect passivation. For the photovoltaic industry with a current capacity of approximately 100 GW peak, the mitigation of boron-oxygen related light-induced degradation is a necessity to use cost-effective B-doped silicon while benefitting from the high-efficiency potential of new solar cell concepts.

  19. Spectrophotometric determination of trace and ultratrace levels of boron in silicon and chlorosilane samples

    International Nuclear Information System (INIS)

    Chen, J.S.; Lin, H.M.; Yang, M.H.

    1991-01-01

    Spectrophotometric methods for the determination of boron in the low μg/g and ng/g range in high-purity silicon and dichloro- and trichlorosilanes were investigated in detail. The procedures established involve dissolution of silicon samples and the hydrolyzed products of chlorosilane samples in hydrofluoric acid-containing reagents followed by evaporation of the silicon matrix as H 2 SiF 6 . The boron retained in the treated sample solution was then determined by a spectrophotometric method using carminic acid as a chromatic reagent. Special effort has been paid to the control of the analytical blank and reproducible determination of boron. The results indicate that addition of mannitol and proper control of the evaporation process are effective in preventing volatilization of boron during the evaporation of silicon matrix and can thus attain high recovery of boron and reproducible analysis. Through meticulous control of the analytical blank and experimental conditions, the limit of detection for boron determination with the established method can be as low as ng/g levels. Application of the methods to the determination of boron in various stages of purification of silicon and trichlorosilane as well as in borophosphosilicate film was conducted. (orig.)

  20. Model for the boron-doping dependence of the critical temperature of superconducting boron-doped diamond

    Czech Academy of Sciences Publication Activity Database

    Šopík, Břetislav

    2009-01-01

    Roč. 11, č. 10 (2009), 103026/1-103026/10 ISSN 1367-2630 R&D Projects: GA AV ČR IAA100100712 Grant - others:GAČR(CZ) GA202/07/0597 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * boron-doped diamond Subject RIV: BE - Theoretical Physics Impact factor: 3.312, year: 2009

  1. Boron-Doped Diamond (BDD) Coatings Protect Underlying Silicon in Aqueous Acidic Media–Application to the Hydrogen Evolution Reaction

    International Nuclear Information System (INIS)

    Halima, A.F.; Rana, U.A.; MacFarlane, D.R.

    2014-01-01

    Abstract: Silicon has potential application as a functional semiconductor electrode in proposed solar water splitting cells. It is abundant and has excellent photovoltaic attributes, however it is extremely susceptible to corrosion, even in the dark, resulting in the formation of an electrochemically passive oxide upon interaction with aqueous media. This work investigates the potential for conductive, inert and transparent boron doped diamond (BDD) coatings to protect p-type Silicon (p-Si). The stability and electrochemical performance of p-Si and p-Si|BDD were investigated using voltammetric techniques in 1 M H 2 SO 4 , before and after long-term exposure to the acidic medium (up to 280 hours) under no applied potential bias. Unprotected Si degraded very rapidly whilst BDD was shown to protect the underlying Si, as evident from I-V curves that indicated no increased resistance across the Si-diamond interface. Furthermore, BDD supported facile proton reduction at significantly lower onset potential for the hydrogen evolution reaction (up to -500 mV vs. SCE) compared with bare Si cathode (-850 mV vs. SCE). The activity of the BDD electrode/electrolyte interface was further improved by coating with platinum catalyst particles, to produce a p-Si|BDD|Pt strucure, which reduced the HER onset to nearly zero overpotential. Tafel analysis indicated that desirable electrochemical activity and stability were achieved for p-Si|BDD|Pt, making this a promising electrode for application in water splitting cells

  2. Magnetostriction of the polycrystalline Fe80Al20 alloy doped with boron

    International Nuclear Information System (INIS)

    Bormio-Nunes, Cristina; Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus; Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael

    2012-01-01

    Highlights: ► Fe 80 Al 20 polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. ► B stabilizes α-FeAl phase and a coexistence of α-FeAl + Fe 3 Al improves magnetostriction. ► Presence of Fe 2 B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe 80 Al 20 polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic α-FeAl and/or Fe 3 Al and Fe 2 B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of α-FeAl and a correspondent decrease of the Fe 3 Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe 2 B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe 80 Al 20 alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the α-FeAl and Fe 3 Al phases could be reached.

  3. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  4. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, Philipp

    2009-05-15

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n{sub c} for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers ({approx} 500 cm{sup -1}) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g{sub c}. The granularity also influences significantly the superconducting properties by introducing the superconducting gap {delta} in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the

  5. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    International Nuclear Information System (INIS)

    Achatz, Philipp

    2009-01-01

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n c for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers (∼ 500 cm -1 ) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g c . The granularity also influences significantly the superconducting properties by introducing the superconducting gap Δ in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the first time in aluminum-doped

  6. Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Ahmed A. [Center for Nanotechnology, Zewail City of Science and Technology, Giza 12588 (Egypt); Department of Nuclear and Radiation Engineering, Faculty of Engineering, Alexandria University, Alexandria (Egypt); Fadlallah, Mohamed M. [Center for Fundamental Physics, Zewail City of Science and Technology, Giza 12588 (Egypt); Department of Physics, Faculty of Science, Benha University, Benha (Egypt); Badawi, Ashraf [Center for Nanotechnology, Zewail City of Science and Technology, Giza 12588 (Egypt); Maarouf, Ahmed A., E-mail: ahmed.maarouf@egnc.gov.eg [Center for Fundamental Physics, Zewail City of Science and Technology, Giza 12588 (Egypt); Egypt Nanotechnology Center & Department of Physics, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2016-07-30

    Highlights: • Doping boron nitride sheets with aluminum or gallium atoms significantly enhances their molecular adsorption properties. • Adsorption of glucose or glucosamine on Al- and Ga-doped boron nitride sheets changes the band gap. • Doping concentration changes the bad gap, but has a minor effect on the adsorption energy. - Abstract: Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets (h-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on h-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-doped boron nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  7. Synthesis and characterization of p-type boron-doped IIb diamond large single crystals

    International Nuclear Information System (INIS)

    Li Shang-Sheng; Li Xiao-Lei; Su Tai-Chao; Jia Xiao-Peng; Ma Hong-An; Huang Guo-Feng; Li Yong

    2011-01-01

    High-quality p-type boron-doped IIb diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K. The morphologies and surface textures of the synthetic diamond crystals with different boron additive quantities are characterized by using an optical microscope and a scanning electron microscope respectively. The impurities of nitrogen and boron in diamonds are detected by micro Fourier transform infrared technique. The electrical properties including resistivities, Hall coefficients, Hall mobilities and carrier densities of the synthesized samples are measured by a four-point probe and the Hall effect method. The results show that large p-type boron-doped diamond single crystals with few nitrogen impurities have been synthesized. With the increase of quantity of additive boron, some high-index crystal faces such as {113} gradually disappear, and some stripes and triangle pits occur on the crystal surface. This work is helpful for the further research and application of boron-doped semiconductor diamond. (cross-disciplinary physics and related areas of science and technology)

  8. Plasma-induced high efficient synthesis of boron doped reduced graphene oxide for supercapacitors

    DEFF Research Database (Denmark)

    Li, Shaobo; Wang, Zhaofeng; Jiang, Hanmei

    2016-01-01

    In this work, we presented a novel route to synthesize boron doped reduced graphene oxide (rGO) by using the dielectric barrier discharge (DBD) plasma technology under ambient conditions. The doping of boron (1.4 at%) led to a significant improvement in the capacitance of rGO and supercapacitors ...

  9. Physically sound parameterization of incomplete ionization in aluminum-doped silicon

    Directory of Open Access Journals (Sweden)

    Heiko Steinkemper

    2016-12-01

    Full Text Available Incomplete ionization is an important issue when modeling silicon devices featuring aluminum-doped p+ (Al-p+ regions. Aluminum has a rather deep state in the band gap compared to boron or phosphorus, causing strong incomplete ionization. In this paper, we considerably improve our recent parameterization [Steinkemper et al., J. Appl. Phys. 117, 074504 (2015]. On the one hand, we found a fundamental criterion to further reduce the number of free parameters in our fitting procedure. And on the other hand, we address a mistake in the original publication of the incomplete ionization formalism in Altermatt et al., J. Appl. Phys. 100, 113715 (2006.

  10. Solid-state diffusion as an efficient doping method for silicon nanowires and nanowire field effect transistors

    International Nuclear Information System (INIS)

    Moselund, K E; Ghoneim, H; Schmid, H; Bjoerk, M T; Loertscher, E; Karg, S; Signorello, G; Webb, D; Tschudy, M; Beyeler, R; Riel, H

    2010-01-01

    In this work we investigate doping by solid-state diffusion from a doped oxide layer, obtained by plasma-enhanced chemical vapor deposition (PECVD), as a means for selectively doping silicon nanowires (NWs). We demonstrate both n-type (phosphorous) and p-type (boron) doping up to concentrations of 10 20 cm -3 , and find that this doping mechanism is more efficient for NWs as opposed to planar substrates. We observe no diameter dependence in the range of 25 to 80 nm, which signifies that the NWs are uniformly doped. The drive-in temperature (800-950 deg. C) can be used to adjust the actual doping concentration in the range 2 x 10 18 to 10 20 cm -3 . Furthermore, we have fabricated NMOS and PMOS devices to show the versatility of this approach and the possibility of achieving segmented doping of NWs. The devices show high I on /I off ratios of around 10 7 and, especially for the PMOS, good saturation behavior and low hysteresis.

  11. Low-temperature micro-photoluminescence spectroscopy on laser-doped silicon with different surface conditions

    Science.gov (United States)

    Han, Young-Joon; Franklin, Evan; Fell, Andreas; Ernst, Marco; Nguyen, Hieu T.; Macdonald, Daniel

    2016-04-01

    Low-temperature micro-photoluminescence spectroscopy (μ-PLS) is applied to investigate shallow layers of laser-processed silicon for solar cell applications. Micron-scale measurement (with spatial resolution down to 1 μm) enables investigation of the fundamental impact of laser processing on the electronic properties of silicon as a function of position within the laser-processed region, and in particular at specific positions such as at the boundary/edge of processed and unprocessed regions. Low-temperature μ-PLS enables qualitative analysis of laser-processed regions by identifying PLS signals corresponding to both laser-induced doping and laser-induced damage. We show that the position of particular luminescence peaks can be attributed to band-gap narrowing corresponding to different levels of subsurface laser doping, which is achieved via multiple 248 nm nanosecond excimer laser pulses with fluences in the range 1.5-4 J/cm2 and using commercially available boron-rich spin-on-dopant precursor films. We demonstrate that characteristic defect PL spectra can be observed subsequent to laser doping, providing evidence of laser-induced crystal damage. The impact of laser parameters such as fluence and number of repeat pulses on laser-induced damage is also analyzed by observing the relative level of defect PL spectra and absolute luminescence intensity. Luminescence owing to laser-induced damage is observed to be considerably larger at the boundaries of laser-doped regions than at the centers, highlighting the significant role of the edges of laser-doped region on laser doping quality. Furthermore, by comparing the damage signal observed after laser processing of two different substrate surface conditions (chemically-mechanically polished and tetramethylammonium hydroxide etched), we show that wafer preparation can be an important factor impacting the quality of laser-processed silicon and solar cells.

  12. Growth of a delta-doped silicon layer by molecular beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency

    Science.gov (United States)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu

    1992-01-01

    Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.

  13. Boron-doped manganese dioxide for supercapacitors.

    Science.gov (United States)

    Chi, Hong Zhong; Li, Yuwei; Xin, Yingxu; Qin, Haiying

    2014-11-11

    The addition of boron as a dopant during the reaction between carbon fiber and permanganate led to significant enhancement of the growth-rate and formation of the porous framework. The doped MnO2 was superior to the pristine sample as electrode materials for supercapacitors in terms of the specific capacitance and rate capability.

  14. Density functional theory investigation of oxygen interaction with boron-doped graphite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [State Key Lab of New Ceramic and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-12-30

    Highlights: • Density-functional approach is applied to study the interaction of oxygen with boron-doped graphite. • Adsorption and diffusion of oxygen atoms on boron doped graphite surfaces are studied. • Recombination of oxygen is investigated by ER and LH mechanisms. • Low boron concentration facilitates O{sub 2} formation while high boron loading inhibits the recombination. • The presence of B−B bonds due to boron accumulation makes it impossible for oxygen recombination. - Abstract: Boron inserted as impurity by substitution of carbon atoms in graphite is known to change (improve or deteriorate) oxidation resistance of nuclear graphite, but the reason for both catalytic and inhibiting oxidation is still uncertain. As a first step, this work is more specially devoted to the adsorption and diffusion of oxygen atoms on the surface and related to the problem of oxygen retention on the pure and boron-containing graphite surfaces. Adsorption energies and energy barriers associated to the diffusion for molecular oxygen recombination are calculated in the density functional theory framework. The existence of boron modifies the electronic structure of the surface, which results in an increase of the adsorption energy for O. However, low boron loading makes it easier for the recombination into molecular oxygen. For high boron concentration, it induces a better O retention capability in graphite because the presence of B-B bonds decreases recombination of the adsorbed oxygen atoms. A possible explanation for both catalytic and inhibiting effects of boron in graphite is proposed.

  15. Characterization of boron doped nanocrystalline diamonds

    International Nuclear Information System (INIS)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V

    2008-01-01

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/μm range

  16. Doping of silicon carbide by ion implantation; Dopage du carbure de silicium par implantation ionique

    Energy Technology Data Exchange (ETDEWEB)

    Gimbert, J

    1999-03-04

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  17. Synthesis, Characterization, and Evaluation of Boron-Doped Iron Oxides for the Photocatalytic Degradation of Atrazine under Visible Light

    Directory of Open Access Journals (Sweden)

    Shan Hu

    2012-01-01

    Full Text Available Photocatalytic degradation of atrazine by boron-doped iron oxides under visible light irradiation was investigated. In this work, boron-doped goethite and hematite were successfully prepared by sol-gel method with trimethylborate as boron precursor. The powders were characterized by XRD, UV-vis diffuse reflectance spectra, and porosimetry analysis. The results showed that boron doping could influence the crystal structure, enlarge the BET surface area, improve light absorption ability, and narrow their band-gap energy. The photocatalytic activity of B-doped iron oxides was evaluated in the degradation of atrazine under the visible light irradiation, and B-doped iron oxides showed higher atrazine degradation rate than that of pristine iron oxides. Particularly, B-doped goethite exhibited better photocatalytic activity than B-doped hematite.

  18. Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers

    International Nuclear Information System (INIS)

    Gontad, F.; Conde, J.C.; Filonovich, S.; Cerqueira, M.F.; Alpuim, P.; Chiussi, S.

    2013-01-01

    We report on the excimer laser annealing (ELA) induced temperature gradients, allowing controlled crystallization and dehydrogenation of boron-doped a-Si:H/nc-Si:H multilayers. Depth of the dehydrogenation and crystallization process has been studied numerically and experimentally, showing that temperatures below the monohydride decomposition can be used and that significant changes of the doping profile can be avoided. Calculation of temperature profiles has been achieved through numerical modeling of the heat conduction differential equation. Increase in the amount of nano-crystals, but not in their size, has been demonstrated by Raman spectroscopy. Effective dehydrogenation and shape of the boron profile have been studied by time of flight secondary ion mass spectroscopy. The relatively low temperature threshold for dehydrogenation, below the monohydride decomposition temperature, has been attributed to both, the large hydrogen content of the original films and the partial crystallization during the ELA process. The results of this study show that UV-laser irradiation is an effective tool to improve crystallinity and dopant activation in p + -nc-Si:H films without damaging the substrate. - Highlights: • An efficient dehydrogenation is possible through excimer laser annealing. • 140 mJ/cm 2 is enough for dehydrogenation without significant changes in doping profile. • Fluences up to 300 mJ/cm 2 promote partial crystallization of the amorphous structures

  19. Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Gontad, F., E-mail: fran_gontad@yahoo.es [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain); Conde, J.C. [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain); Filonovich, S.; Cerqueira, M.F.; Alpuim, P. [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Chiussi, S. [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain)

    2013-06-01

    We report on the excimer laser annealing (ELA) induced temperature gradients, allowing controlled crystallization and dehydrogenation of boron-doped a-Si:H/nc-Si:H multilayers. Depth of the dehydrogenation and crystallization process has been studied numerically and experimentally, showing that temperatures below the monohydride decomposition can be used and that significant changes of the doping profile can be avoided. Calculation of temperature profiles has been achieved through numerical modeling of the heat conduction differential equation. Increase in the amount of nano-crystals, but not in their size, has been demonstrated by Raman spectroscopy. Effective dehydrogenation and shape of the boron profile have been studied by time of flight secondary ion mass spectroscopy. The relatively low temperature threshold for dehydrogenation, below the monohydride decomposition temperature, has been attributed to both, the large hydrogen content of the original films and the partial crystallization during the ELA process. The results of this study show that UV-laser irradiation is an effective tool to improve crystallinity and dopant activation in p{sup +}-nc-Si:H films without damaging the substrate. - Highlights: • An efficient dehydrogenation is possible through excimer laser annealing. • 140 mJ/cm{sup 2} is enough for dehydrogenation without significant changes in doping profile. • Fluences up to 300 mJ/cm{sup 2} promote partial crystallization of the amorphous structures.

  20. Molecular dynamics study on the thermal conductivity and thermal rectification in graphene with geometric variations of doped boron

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Qi, E-mail: alfred_02030210@163.com; Wei, Yuan

    2014-03-15

    Thermal conductivity and thermal rectification of graphene with geometric variations have been investigated by using classical non-equilibrium molecular dynamics simulation, and analyzed theoretically the cause of the changes of thermal conductivity and thermal rectification. Two different structural models, triangular single-boron-doped graphene (SBDG) and parallel various-boron-doped graphene (VBDG), were considered. The results indicated that the thermal conductivities of two different models are about 54–63% lower than pristine graphene. And it was also found that the structure of parallel various-boron-doped graphene is inhibited more strongly on the heat transfer than that of triangular single-boron-doped graphene. The reduction in the thermal conductivities of two different models gradually decreases as the temperature rises. The thermal conductivities of triangular boron-doped graphene have a large difference in both directions, and the thermal rectification of this structure shows the downward trend with increasing temperature. However, the thermal conductivities of parallel various-boron-doped graphene are similar in both directions, and the thermal rectification effect is not obvious in this structure. The phenomenon of thermal rectification exits in SBDG. It implies that the SBDG might be a potential promising structure for thermal rectifier by controlling the boron-doped model.

  1. Molecular dynamics study on the thermal conductivity and thermal rectification in graphene with geometric variations of doped boron

    International Nuclear Information System (INIS)

    Liang, Qi; Wei, Yuan

    2014-01-01

    Thermal conductivity and thermal rectification of graphene with geometric variations have been investigated by using classical non-equilibrium molecular dynamics simulation, and analyzed theoretically the cause of the changes of thermal conductivity and thermal rectification. Two different structural models, triangular single-boron-doped graphene (SBDG) and parallel various-boron-doped graphene (VBDG), were considered. The results indicated that the thermal conductivities of two different models are about 54–63% lower than pristine graphene. And it was also found that the structure of parallel various-boron-doped graphene is inhibited more strongly on the heat transfer than that of triangular single-boron-doped graphene. The reduction in the thermal conductivities of two different models gradually decreases as the temperature rises. The thermal conductivities of triangular boron-doped graphene have a large difference in both directions, and the thermal rectification of this structure shows the downward trend with increasing temperature. However, the thermal conductivities of parallel various-boron-doped graphene are similar in both directions, and the thermal rectification effect is not obvious in this structure. The phenomenon of thermal rectification exits in SBDG. It implies that the SBDG might be a potential promising structure for thermal rectifier by controlling the boron-doped model

  2. Surface structuring of boron doped CVD diamond by micro electrical discharge machining

    Science.gov (United States)

    Schubert, A.; Berger, T.; Martin, A.; Hackert-Oschätzchen, M.; Treffkorn, N.; Kühn, R.

    2018-05-01

    Boron doped diamond materials, which are generated by Chemical Vapor Deposition (CVD), offer a great potential for the application on highly stressed tools, e. g. in cutting or forming processes. As a result of the CVD process rough surfaces arise, which require a finishing treatment in particular for the application in forming tools. Cutting techniques such as milling and grinding are hardly applicable for the finish machining because of the high strength of diamond. Due to its process principle of ablating material by melting and evaporating, Electrical Discharge Machining (EDM) is independent of hardness, brittleness or toughness of the workpiece material. EDM is a suitable technology for machining and structuring CVD diamond, since boron doped CVD diamond is electrically conductive. In this study the ablation characteristics of boron doped CVD diamond by micro electrical discharge machining are investigated. Experiments were carried out to investigate the influence of different process parameters on the machining result. The impact of tool-polarity, voltage and discharge energy on the resulting erosion geometry and the tool wear was analyzed. A variation in path overlapping during the erosion of planar areas leads to different microstructures. The results show that micro EDM is a suitable technology for finishing of boron doped CVD diamond.

  3. Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors.

    Science.gov (United States)

    Li, Shaobo; Wang, Zhaofeng; Jiang, Hanmei; Zhang, Limei; Ren, Jingzheng; Zheng, Mingtao; Dong, Lichun; Sun, Luyi

    2016-09-21

    In this work, we presented a novel route to synthesize boron doped reduced graphene oxide (rGO) by using the dielectric barrier discharge (DBD) plasma technology under ambient conditions. The doping of boron (1.4 at%) led to a significant improvement in the capacitance of rGO and supercapacitors based on the as-synthesized B-rGO exhibited an outstanding specific capacitance.

  4. The fraction of substitutional boron in silicon during ion implantation and thermal annealing

    International Nuclear Information System (INIS)

    Caturla, M.J.; Johnson, M.D.; Diaz de la Rubia, T.

    1998-01-01

    We present results from a kinetic Monte Carlo simulation of boron transient enhanced diffusion (TED) in silicon. Our approach avoids the use of phenomenological fits to experimental data by using a complete and self-consistent set of values for defect and dopant energetics derived mostly from ab initio calculations. The results predict that, during annealing of 40 keV B-implanted Si at 800 degree C, there exists a time window during which all the implanted boron atoms are substitutional. At earlier or later times, the interactions between free silicon self-interstitials and boron atoms drive the growth of boron clusters and result in an inactive boron fraction. The results show that the majority of boron TED takes place during the growth period of interstitial clusters and not during their dissolution. copyright 1998 American Institute of Physics

  5. Photocatalytic activity of TiO2 doped with boron and vanadium

    International Nuclear Information System (INIS)

    Bettinelli, M.; Dallacasa, V.; Falcomer, D.; Fornasiero, P.; Gombac, V.; Montini, T.; Romano, L.; Speghini, A.

    2007-01-01

    Boron (B)- and vanadium (V)-doped TiO 2 photocatalysts were synthesized using modified sol-gel reaction processes and characterized by X-ray diffraction (XRD), Raman spectroscopy and N 2 physisorption (BET). The photocatalytic activities were evaluated by monitoring the degradation of methylene blue (MB). The results showed that the materials possess high surface area. The addition of B favored the transformation of anatase to rutile, while in the presence of V, anatase was the only phase detected. The MB degradation on V-doped TiO 2 was significantly affected by the preparation method. In fact while the presence of V in the bulk did not influence strongly the photoreactivity under visible irradiation, an increase of surface V doping lead to improved photodegradation of MB. The degradation of MB dye indicated that the photocatalytic activities of TiO 2 increased as the boron doping increased, with high conversion efficiency for 9 mol% B doping

  6. Axial channeling of boron ions into silicon

    International Nuclear Information System (INIS)

    La Ferla, A.; Galvagno, G.; Raineri, V.; Setola, R.; Rimini, E.; Carnera, A.; Gasparotto, A.

    1992-01-01

    Channeling boron implants were performed into (100) and (110) silicon substrates in the energy range 80-700 keV. The dose ranged between 3.5x10 11 and 1x10 15 atoms/cm 2 . The axial channeling concentration profiles of implanted B + were compared with that obtained for incidence along the random direction of the crystal and with that obtained by implantation in amorphous silicon. The electrical and chemical boron distributions were obtained by spreading resistance and secondary ion mass spectrometry measurements, respectively. The inelastic stopping power, S c , was extracted from the experimental maximum ranges for the [100] and [110] axis. The energy dependence of the electronic stopping power is given by S e = KE p with p [100] = 0.469±0.010 and p [110] = 0.554±0.004. Simulations obtained by the MARLOWE code, using the Oen-Robinson impact parameter dependent formula, for the electronic energy loss reproduce quite well the experimental depth profiles. (orig.)

  7. Effect of doping on electronic properties of double-walled carbon and boron nitride hetero-nanotubes

    International Nuclear Information System (INIS)

    Majidi, R.; Ghafoori Tabrizi, K.; Jalili, S.

    2009-01-01

    The effect of boron nitride (BN) doping on electronic properties of armchair double-walled carbon and hetero-nanotubes is studied using ab initio molecular dynamics method. The armchair double-walled hetero-nanotubes are predicted to be semiconductor and their electronic structures depend strongly on the electronic properties of the single-walled carbon nanotube. It is found that electronic structures of BN-doped double-walled hetero-nanotubes are intermediate between those of double-walled boron nitride nanotubes and double-walled carbon and boron nitride hetero-nanotubes. Increasing the amount of doping leads to a stronger intertube interaction and also increases the energy gap.

  8. Effect of doping on electronic properties of double-walled carbon and boron nitride hetero-nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, R. [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839-63113 (Iran, Islamic Republic of); Ghafoori Tabrizi, K., E-mail: K-TABRIZI@sbu.ac.i [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839-63113 (Iran, Islamic Republic of); Jalili, S. [Department of Chemistry, K.N. Toosi University of Technology, Tehran 16315-1618 (Iran, Islamic Republic of)

    2009-11-01

    The effect of boron nitride (BN) doping on electronic properties of armchair double-walled carbon and hetero-nanotubes is studied using ab initio molecular dynamics method. The armchair double-walled hetero-nanotubes are predicted to be semiconductor and their electronic structures depend strongly on the electronic properties of the single-walled carbon nanotube. It is found that electronic structures of BN-doped double-walled hetero-nanotubes are intermediate between those of double-walled boron nitride nanotubes and double-walled carbon and boron nitride hetero-nanotubes. Increasing the amount of doping leads to a stronger intertube interaction and also increases the energy gap.

  9. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [University of Missouri; Wexler, Carlos [University of Missouri; Hawthorne, M. Frederick [University of Missouri; Lee, Mark W. [University of Missouri; Jalistegi, Satish S. [University of Missouri

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  10. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Alver, Ü.; Tanrıverdi, A.

    2016-01-01

    Highlights: • Boron doped ZnO particles are fabricated and embedded into reduced graphene oxide (RGO) by hydrothermal method. • RGO/ZnO:B composites are used as electrodes for supercapacitors. • Presence of boron in RGO/ZnO composites caused increasing the stability and specific capacitance of electrodes. - Abstract: In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  11. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Alver, Ü., E-mail: ualver@ktu.edu.tr [Karadeniz Technical University, Dept. of Metallurgical and Materials Engineering, 61080 Trabzon (Turkey); Tanrıverdi, A. [Kahramanmaras Sutcu Imam University, Department of Physics, 46100 Kahramanmaraş (Turkey)

    2016-08-15

    Highlights: • Boron doped ZnO particles are fabricated and embedded into reduced graphene oxide (RGO) by hydrothermal method. • RGO/ZnO:B composites are used as electrodes for supercapacitors. • Presence of boron in RGO/ZnO composites caused increasing the stability and specific capacitance of electrodes. - Abstract: In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  12. Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide

    OpenAIRE

    K?nig, Dirk; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Smith, Sean

    2017-01-01

    All electronic, optoelectronic or photovoltaic applications of silicon depend on controlling majority charge carriers via doping with impurity atoms. Nanoscale silicon is omnipresent in fundamental research (quantum dots, nanowires) but also approached in future technology nodes of the microelectronics industry. In general, silicon nanovolumes, irrespective of their intended purpose, suffer from effects that impede conventional doping due to fundamental physical principles such as out-diffusi...

  13. Quantitative SIMS measurement of high concentration of boron in silicon (up to 20 at.%) using an isotopic comparative method

    International Nuclear Information System (INIS)

    Dubois, Christiane; Prudon, Gilles; Gautier, Brice; Dupuy, Jean-Claude

    2008-01-01

    Highly boron doped (up to 20 at.%) silicon samples have been analysed by SIMS with the aim of quantifying the boron concentration in a range where the dilute regime may not be valid any more. An original method is used based on the simultaneous analysis of two different isotopes, namely 10 B and 11 B, in order that the known concentration of the first isotope (initially present with a far lower, constant concentration) is the basis of the quantification of the concentration of the second, present with a very high dose. Argon and oxygen beams have been used and conclusions are drawn about the presence of matrix effects in the case of the analysis of highly doped samples. It appears that only the use of a 8 keV O 2 + beam leads to a significant matrix effect, whereas it is nearly absent in the case of an analysis under 8 keV Ar + beam. The proposed method may be applied to any element showing at least two isotopes in any binary alloys under any primary beam

  14. Shallow boron dopant on silicon An MD study

    International Nuclear Information System (INIS)

    Perez-Martin, A. Mari Carmen; Jimenez-Rodriguez, Jose J.; Jimenez-Saez, Jose Carlos

    2004-01-01

    Low energy boron bombardment of silicon has been simulated at room temperature by molecular dynamics (MD). Tersoff potential T3 was used in the simulation smoothly linked up with the universal potential. The boron-silicon (B-Si) interaction was simulated according to Tersoff potential for SiC but modified to account for the B-Si interaction. The algorithm can distinguish a B from a Si neighbour. Si-c, with (2 x 1) surface reconstruction, was bombarded with boron at 200 and 500 eV. These energies were initially chosen as good representative values of the low energy range. Reliable results require of a reasonable good statistic so that 1000-impact points were chosen uniformly distributed over a representative area of a 2 x 1 surface. The distribution of mean projected range for B is given. All kinds of point defect were looked for in a Si damaged target after bombardment. Energetically stable substitutional and interstitial configurations are presented and the relative appearances of the different types of interstitials, for both Si and B, are given. It is also determined the mean length of the distance to the first neighbours of defects

  15. Rare-earth doped boron nitride nanotubes: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Wellington Marcos; Sousa, Edesia Martins Barros de, E-mail: wellingtonmarcos@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-07-01

    Full text: Boron nitride is a heat and chemically resistant refractory compound of boron and nitrogen atoms with the chemical formula BN. This structure exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form (h-BN) corresponding to graphite is the most stable and soft among BN polymorph. However, boron nitride nanotubes (BNNTs) were first time synthesized in 1995 [1] and have a type of one-dimensional (1D) nanostructure. Recently the BNNTs have attracted significant interest for scientific and technological applications due to their Wide bandgap. The Wide-bandgap semiconductors doped with rare-earth are considered as a new type of luminescent material, combining special Wide bandgap semiconducting properties with the rare-earth luminescence feature. BNNTs have a stable wide bandgap of 5.5 eV and super thermal and chemical stabilities, which make BNNTs an ideal nanosized luminescent material [2]. In this study, we report a simple and efficient route for the synthesis of BNNTs doped with samarium and europium. High quality BNNTs doped was produced via CVD technique using NH{sub 3} and N{sub 2} gases as source. Boron amorphous, catalyst and oxides rare-earth powder were used as precursor. Detailed studies involving energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) were performed in order to characterize the BNNTs as grown. [1] Chopra, N. G.; Luyken, R. J. et al. Science, v. 269, p. 966-967, 1995. [2] Chen, H.; Chen, Y. et al. Adv. Matter. v. 19, p. 1845-1848, 2007. (author)

  16. Rare-earth doped boron nitride nanotubes: Synthesis and characterization

    International Nuclear Information System (INIS)

    Silva, Wellington Marcos; Sousa, Edesia Martins Barros de

    2016-01-01

    Full text: Boron nitride is a heat and chemically resistant refractory compound of boron and nitrogen atoms with the chemical formula BN. This structure exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form (h-BN) corresponding to graphite is the most stable and soft among BN polymorph. However, boron nitride nanotubes (BNNTs) were first time synthesized in 1995 [1] and have a type of one-dimensional (1D) nanostructure. Recently the BNNTs have attracted significant interest for scientific and technological applications due to their Wide bandgap. The Wide-bandgap semiconductors doped with rare-earth are considered as a new type of luminescent material, combining special Wide bandgap semiconducting properties with the rare-earth luminescence feature. BNNTs have a stable wide bandgap of 5.5 eV and super thermal and chemical stabilities, which make BNNTs an ideal nanosized luminescent material [2]. In this study, we report a simple and efficient route for the synthesis of BNNTs doped with samarium and europium. High quality BNNTs doped was produced via CVD technique using NH 3 and N 2 gases as source. Boron amorphous, catalyst and oxides rare-earth powder were used as precursor. Detailed studies involving energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) were performed in order to characterize the BNNTs as grown. [1] Chopra, N. G.; Luyken, R. J. et al. Science, v. 269, p. 966-967, 1995. [2] Chen, H.; Chen, Y. et al. Adv. Matter. v. 19, p. 1845-1848, 2007. (author)

  17. Battery, especially for portable devices, has an anode containing silicon

    NARCIS (Netherlands)

    Kan, S.Y.

    2002-01-01

    The anode (2) contains silicon. A battery with a silicon-containing anode is claimed. An Independent claim is also included for a method used to make the battery, comprising the doping of a silicon substrate (1) with charge capacity-increasing material (preferably boron, phosphorous or arsenic),

  18. Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction

    International Nuclear Information System (INIS)

    Zhao Peng; Zhang Ying; Wang Pei-Ji; Zhang Zhong; Liu De-Sheng

    2011-01-01

    Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbon-nanotube-based molecular junction. Obvious rectifying behavior is observed and it is strongly dependent on the doping site. The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer. Moreover, the rectifying performance can be further improved by adjusting the distance between the C 60 nanotube caps. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Effects of processing and dopant on radiation damage removal in silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Brandhorst, H. W., Jr.; Swartz, C. K.; Mehta, S.

    1982-01-01

    Gallium and boron doped silicon solar cells, processed by ion-implantation followed by either laser or furnace anneal were irradiated by 1 MeV electrons and their post-irradiation recovery by thermal annealing determined. During the post-irradiation anneal, gallium-doped cells prepared by both processes recovered more rapidly and exhibited none of the severe reverse annealing observed for similarly processed 2 ohm-cm boron doped cells. Ion-implanted furnace annealed 0.1 ohm-cm boron doped cells exhibited the lowest post-irradiation annealing temperatures (200 C) after irradiation to 5 x 10 to the 13th e(-)/sq cm. The drastically lowered recovery temperature is attributed to the reduced oxygen and carbon content of the 0.1 ohm-cm cells. Analysis based on defect properties and annealing kinetics indicates that further reduction in annealing temperature should be attainable with further reduction in the silicon's carbon and/or divacancy content after irradiation.

  20. The effect of carbon and boron on the accumulation of vacancy-oxygen complexes in silicon

    International Nuclear Information System (INIS)

    Akhmetov, V.D.; Bolotov, V.V.

    1980-01-01

    By means of IR-absorption measurements the dose dependencies of the concentrations of vacancy-oxygen complexes (VO), interstitial oxygen atoms (Osub(I)), substitutional carbon atoms (Csub(S)) and interstitial carbon-oxygen complexes (Csub(I)Osub(I)) in n- and p-type silicon irradiated with 1.1 MeV electrons have been investigated. The observed increase of the production rate of VO-complexes with the rise of carbon and boron atoms concentrations (these impurities act as sinks for silicon interstitial atoms) has been explained in terms of annihilation of the vacancies and interstitials on the oxygen atoms. The results obtained show that boron atoms are more effective sinks than carbon atoms for the interstitial silicon atoms. That seems to be connected not only with the higher probability of boron injection into interstitial position but also with the further capture of interstitial silicon atoms on the interstitial boron, i.e. with the interstitial cluster formation. (author)

  1. Magnetostriction of the polycrystalline Fe{sub 80}Al{sub 20} alloy doped with boron

    Energy Technology Data Exchange (ETDEWEB)

    Bormio-Nunes, Cristina, E-mail: cristina@demar.eel.usp.br [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael [Institut fuer Festkoerperphysik, TU Dresden, D-01062 Dresden (Germany)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer Fe{sub 80}Al{sub 20} polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. Black-Right-Pointing-Pointer B stabilizes {alpha}-FeAl phase and a coexistence of {alpha}-FeAl + Fe{sub 3}Al improves magnetostriction. Black-Right-Pointing-Pointer Presence of Fe{sub 2}B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe{sub 80}Al{sub 20} polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic {alpha}-FeAl and/or Fe{sub 3}Al and Fe{sub 2}B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of {alpha}-FeAl and a correspondent decrease of the Fe{sub 3}Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe{sub 2}B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe{sub 80}Al{sub 20} alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the {alpha}-FeAl and Fe{sub 3}Al phases could be reached.

  2. Hot wire and spark pyrolysis as simple new routes to silicon nanoparticle synthesis

    CSIR Research Space (South Africa)

    Scriba, MR

    2012-11-01

    Full Text Available doped silicon powders have a much higher conductivity than those doped with phosphorus. TEM and XPS analysis reveals that the difference in electrical resistivity between boron an phosphorus doped particles can be attributed to phosphorus dopants being...

  3. Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds.

    Science.gov (United States)

    Afandi, Abdulkareem; Howkins, Ashley; Boyd, Ian W; Jackman, Richard B

    2018-02-19

    The inclusion of boron within nanodiamonds to create semiconducting properties would create a new class of applications in the field of nanodiamond electronics. Theoretical studies have differed in their conclusions as to whether nm-scale NDs would support a stable substitutional boron state, or whether such a state would be unstable, with boron instead aggregating or attaching to edge structures. In the present study detonation-derived NDs with purposefully added boron during the detonation process have been studied with a wide range of experimental techniques. The DNDs are of ~4 nm in size, and have been studied with CL, PL, Raman and IR spectroscopies, AFM and HR-TEM and electrically measured with impedance spectroscopy; it is apparent that the B-DNDs studied here do indeed support substitutional boron species and hence will be acting as semiconducting diamond nanoparticles. Evidence for moderate doping levels in some particles (~10 17 B cm -3 ), is found alongside the observation that some particles are heavily doped (~10 20 B cm -3 ) and likely to be quasi-metallic in character. The current study has therefore shown that substitutional boron doping in nm NDs is in fact possible, opening-up the path to a whole host of new applications for this interesting class of nano-particles.

  4. Nuclear-physical techniques for determination of boron distribution in pure materials

    International Nuclear Information System (INIS)

    Kadirova, M.; Jumaev, N.; Simakhin, Yu.F.; Idrisov, Kh.; Usmanova, M.M.

    2001-01-01

    To study deep boron diffusion in the complex silicon structures, consisting of interchange boron doping layers of mono- and polycrystalline silicon, separated by oxide films a technique of sidelong section by using Solid State Nuclear Track Detector (SSNTD) has been elaborated. The boron distribution determination technique is based on the detection of alpha particles from the 10B(n, )7Li reaction with cellulose nitrate film. The etched track registering cellulose nitrate film show the structure image magnified 1/sin fold. Boron concentration defined by density of the etched pits appearing on the film surface. An optical microscope analysis of the sample track-mapping image is realized by examination with closely spaced ( l < x/sin ) and largely spaced ( l x/sin ) movements. All these elaborated techniques can be used to investigate other solid matrix

  5. Improving the electrochemical properties of nanosized LiFePO4-based electrode by boron doping

    International Nuclear Information System (INIS)

    Trócoli, Rafael; Franger, Sylvain; Cruz, Manuel; Morales, Julián; Santos-Peña, Jesús

    2014-01-01

    Highlights: • Thermal treatment of boron phosphate with LiFePO 4 provides electrode materials with high performance in lithium half-cells: 160 mAh·g -1 (90% of theoretical capacity) under C/5 rate • The products are composites containing boron-modified LiFePO 4 , FePO 4 and an amorphous phase with ionic diffusion properties • The boron treatment affects textural, conductive and lithium diffusivity of the electrode material leading to higher performance • A limited boron-doping of the phospholivine structure is observed - Abstract: Electrode materials with homogeneous distribution of boron were obtained by heating mixtures of nanosized carbon-coated lithium iron phosphate and BPO 4 in 3-9% weight at 700 °C. The materials can be described as nanocomposites containing i) LiFePO 4 , possibly doped with a low amount of boron, ii) FePO 4 and iii) an amorphous layer based on Li 4 P 2 O 7 -derived material that surrounds the phosphate particles. The thermal treatment with BPO 4 also triggered changes in the carbon coating graphitic order. Galvanostatic and voltammetric studies in lithium half-cells showed smaller polarisation, higher capacity and better cycle life for the boron-doped composites. For instance, one of the solids, called B 6 -LiFePO 4 , provided close to 150 and 140 mAhg -1 (87% and 81% of theoretical capacity, respectively) under C/2.5 and C regimes after several cycles. Improved specific surface area, carbon graphitization, conductivity and lithium ion diffusivity in the boron-doped phospholivine network account for this excellent rate performance. The properties of an amorphous layer surrounding the phosphate particles also account for such higher performance

  6. Tuning the electronic properties of armchair carbon nanoribbons by a selective boron doping

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Santos, P; Ricardo-Chavez, J L; Lopez-Sandoval, R [Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San Jose 2055, San Luis Potosi 78216 (Mexico); Reyes-Reyes, M [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi 78000 (Mexico); Rivera, J L, E-mail: sandov@ipicyt.edu.m [Facultad de Ingenieria Quimica, Universidad Michoacana de San Nicolas de Hidalgo, Santiago Tapia 403, Morelia, Michoacan, 58000 (Mexico)

    2010-12-22

    Armchair carbon nanoribbons (ACNRs) substitutionally doped with boron atoms are investigated in the framework of first-principles density functional theory. Different boron-boron arrangements and concentrations are considered in order to simulate possible aggregation patterns, their structural stability and electronic behavior are determined as a function of ribbon size. In agreement with previous studies, our results show that the dopant atoms have in general a preference for edge sites, but specific effects appear as a function of concentration that importantly modify the properties of the ribbons compared to the pristine case. Interesting tendencies are discovered as a function of dopant concentration that significantly affect the electronic properties of the ribbons. We have found that BC{sub 3} island formation and edge doping are the most important factors for the structural stabilization of the ribbons with high boron concentration (>7%) whereas for the cases of low boron concentrations (<5%) the structural stabilities are similar. For all the doped cases, we have found that the BC{sub 3} island patterns give rise to highly localized B states on top of the Fermi level, resulting in semiconducting behavior. On the other hand, when the average distance between the B atoms increases beyond island stoichiometry, the localization of their states is reduced and the ribbons may become metallic due to a band crossing caused by the lowering of the Fermi level resulting from the positive charge doping. Thus, tuning the dopant interaction would be an appropriate way to tailor the electronic properties of the ribbons in a convenient manner in view of potential technological applications.

  7. Doping efficiency analysis of highly phosphorous doped epitaxial/amorphous silicon emitters grown by PECVD for high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    El-Gohary, H.G.; Sivoththaman, S. [Waterloo Univ., ON (Canada). Dept. of Electrical and Computer Engineering

    2008-08-15

    The efficient doping of hydrogenated amorphous and crystalline silicon thin films is a key factor in the fabrication of silicon solar cells. The most popular method for developing those films is plasma enhanced chemical vapor deposition (PECVD) because it minimizes defect density and improves doping efficiency. This paper discussed the preparation of different structure phosphorous doped silicon emitters ranging from epitaxial to amorphous films at low temperature. Phosphine (PH{sub 3}) was employed as the doping gas source with the same gas concentration for both epitaxial and amorphous silicon emitters. The paper presented an analysis of dopant activation by applying a very short rapid thermal annealing process (RTP). A spreading resistance profile (SRP) and SIMS analysis were used to detect both the active dopant and the dopant concentrations, respectively. The paper also provided the results of a structural analysis for both bulk and cross-section at the interface using high-resolution transmission electron microscopy and Raman spectroscopy, for epitaxial and amorphous films. It was concluded that a unity doping efficiency could be achieved in epitaxial layers by applying an optimized temperature profile using short time processing rapid thermal processing technique. The high quality, one step epitaxial layers, led to both high conductive and high doping efficiency layers.

  8. The preparation method of solid boron solution in silicon carbide in the form of micro powder

    International Nuclear Information System (INIS)

    Pampuch, R.; Stobierski, L.; Lis, J.; Bialoskorski, J.; Ermer, E.

    1993-01-01

    The preparation method of solid boron solution in silicon carbide in the form of micro power has been worked out. The method consists in introducing mixture of boron, carbon and silicon and heating in the atmosphere of inert gas to the 1573 K

  9. Extrinsic doping in silicon revisited

    KAUST Repository

    Schwingenschlö gl, Udo; Chroneos, Alexander; Grimes, R. W.; Schuster, Cosima

    2010-01-01

    Both n-type and p-type doping of silicon is at odds with the charge transfer predicted by Pauling electronegativities and can only be reconciled if we no longer regarding dopant species as isolated atoms but rather consider them as clusters consisting of the dopant and its four nearest neighbor silicon atoms. The process that gives rise to n-type and p-type effects is the charge redistribution that occurs between the dopant and its neighbors, as we illustrate here using electronic structure calculations. This view point is able to explain why conventional substitutional n-type doping of carbon has been so difficult.

  10. Extrinsic doping in silicon revisited

    KAUST Repository

    Schwingenschlögl, Udo

    2010-06-17

    Both n-type and p-type doping of silicon is at odds with the charge transfer predicted by Pauling electronegativities and can only be reconciled if we no longer regarding dopant species as isolated atoms but rather consider them as clusters consisting of the dopant and its four nearest neighbor silicon atoms. The process that gives rise to n-type and p-type effects is the charge redistribution that occurs between the dopant and its neighbors, as we illustrate here using electronic structure calculations. This view point is able to explain why conventional substitutional n-type doping of carbon has been so difficult.

  11. Electron field emission from boron doped microcrystalline diamond

    International Nuclear Information System (INIS)

    Roos, M.; Baranauskas, V.; Fontana, M.; Ceragioli, H.J.; Peterlevitz, A.C.; Mallik, K.; Degasperi, F.T.

    2007-01-01

    Field emission properties of hot filament chemical vapor deposited boron doped polycrystalline diamond have been studied. Doping level (N B ) of different samples has been varied by the B/C concentration in the gas feed during the growth process and doping saturation has been observed for high B/C ratios. Threshold field (E th ) for electron emission as function of B/C concentration has been measured, and the influences of grain boundaries, doping level and surface morphology on field emission properties have been investigated. Carrier transport through conductive grains and local emission properties of surface sites have been figured out to be two independent limiting effects in respect of field emission. Emitter current densities of 500 nA cm -2 were obtained using electric fields less than 8 V/μm

  12. Porous boron doped diamonds as metal-free catalysts for the oxygen reduction reaction in alkaline solution

    Science.gov (United States)

    Suo, Ni; Huang, Hao; Wu, Aimin; Cao, Guozhong; Hou, Xiaoduo; Zhang, Guifeng

    2018-05-01

    Porous boron doped diamonds (BDDs) were obtained on foam nickel substrates with a porosity of 80%, 85%, 90% and 95% respectively by hot filament chemical vapor deposition (HFCVD) technology. Scanning electron microscopy (SEM) reveals that uniform and compact BDDs with a cauliflower-like morphology have covered the overall frame of the foam nickel substrates. Raman spectroscopy shows that the BDDs have a poor crystallinity due to heavily doping boron. X-ray photoelectron spectroscopy (XPS) analysis effectively demonstrates that boron atoms can be successfully incorporated into the crystal lattice of diamonds. Electrochemical measurements indicate that the oxygen reduction potential is unaffected by the specific surface area (SSA), and both the onset potential and the limiting diffusion current density are enhanced with increasing SSA. It is also found that the durability and methanol tolerance of the boron doped diamond catalysts are attenuated as the increasing of SSA. The SSA of the catalyst is directly proportional to the oxygen reduction activity and inversely to the durability and methanol resistance. These results provide a reference to the application of porous boron doped diamonds as potential cathodic catalysts for the oxygen reduction reaction in alkaline solution by adjusting the SSA.

  13. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    International Nuclear Information System (INIS)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S.

    2015-01-01

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g −1 at 100 mA g −1 after 30th cycles. At high current density value of 1 A g −1 , B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states

  14. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S., E-mail: ramp@iitm.ac.in

    2015-01-15

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup −1} at 100 mA g{sup −1} after 30th cycles. At high current density value of 1 A g{sup −1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.

  15. Boron-doped hydrogenated Al{sub 3} clusters: A material for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Muz, İskender, E-mail: iskender.muz@nevsehir.edu.tr [Faculty of Education, Department of Science Education, Nevsehir Haci Bektas Veli University, 50300, Nevsehir (Turkey); Atiş, Murat [Kayseri Vocational School, Electricity and Energy Department, Erciyes University, 38300, Kayseri (Turkey)

    2016-05-15

    The energetic and structural stabilities of Al{sub 3}BH{sub 2n} (n = 0–6) clusters are investigated using ab initio calculations. Structural isomers are found using the stochastic search method to search for minima structures, followed by B3LYP optimizations; single-point CCSD(T) calculations are performed to compute relative energies. Chemical bonding analysis is also performed using the adaptive natural density partitioning method to investigate the chemical bonding in the clusters and to elucidate their structural evolution. Our results and analyses indicate that the stability of the boron-doped hydrogenated Al{sub 3} clusters increases as more hydrogen molecules are adsorbed, whereas the H{sub 2} loss energy decreases. The results are in good agreement with available theoretical findings. - Highlights: • The boron-doped hydrogenated Al{sub 3} clusters are generated using stochastic search method. • The energetic and structural stabilities are investigated in detail. • The chemical bonding analysis is performed by using AdNDP analysis. • The doping by boron allows development of better aluminum-based metal hydrides.

  16. Doping of silicon by laser-induced diffusion

    International Nuclear Information System (INIS)

    Pretorius, R.; Allie, M.S.

    1986-01-01

    This report gives information on the doping of silicon by laser-induced diffusion, modelling and heat-flow calculation, doping from evaporated layers and silicon self-diffusion during pulsed laser irradiation. In order to tailor dopant profiles accurately a knowledge of the heat flow and the melt depths attained as a function of laser energy and material type is crucial. The heat flow calculations described can be used in conjuntion with most diffusion equations in order to predict the redistribution of the deposited dopant which occurs as a result of liquid phase diffusion during the melting period. Doping of Si was carried out by evaporating this films of Sb, In and Bi 10 to 300 A thick, onto the substrates. During pulsed laser irradiation the dopant film and underlying silicon substrate is melted and the dopant incorporated into the crystal lattice during recrystallization. Radioactive 31 Si(T1/2=2,62h) was used as a tracer to measure the self-diffusion of silicon in silicon during pulsed laser (pulsewidth = 30ns, wavelength = 694nm) irradiation

  17. Effect of radiation induced defects and incompatibility elastic stresses on the diffusion of ion implantated boron in silicon at the pulse annealing

    International Nuclear Information System (INIS)

    Stel'makh, V.F.; Suprun-Belevich, Yu.R.; Chelyadinskij, A.R.

    1987-01-01

    For determination of radiation defects effect on diffusion of the implanted boron in silicon at the pulse annealing, silicon crystals, implanted with boron, preliminary irradiated by silicon ions of different flows for checked defects implantation, were investigated. Silicon crystals additionally implanted by Ge + ions were investigated to research the effect of the incompatibility elastic stresses, emerging in implanted structures due to lattice periods noncoincidence in matrix and alloyed layers, on implanted boron diffusion. It is shown, that abnormally high values of boron diffusion coefficients in silicon at the pulse annealing are explained by silicon interstitial atom participation in redistribution of diffusing boron atoms by two diffusion channels - interstitial and vacation - and by incompatibility elastic stresses effect on diffusion

  18. Factors influencing voltammetric reduction of 5-nitroquinoline at boron-doped diamond electrodes

    Czech Academy of Sciences Publication Activity Database

    Vosáhlová, J.; Zavázalová, J.; Petrák, Václav; Schwarzová-Pecková, K.

    2016-01-01

    Roč. 147, č. 1 (2016), s. 21-29 ISSN 0026-9247 Institutional support: RVO:68378271 Keywords : voltammetry * boron-doped diamond electrode * boron concentration * reduction * electrochemistry Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.282, year: 2016

  19. Suppression of irradiation effects in gold-doped silicon detectors

    International Nuclear Information System (INIS)

    McPherson, M.; Sloan, T.; Jones, B.K.

    1997-01-01

    Two sets of silicon detectors were irradiated with 1 MeV neutrons to different fluences and then characterized. The first batch were ordinary p-i-n photodiodes fabricated from high-resistivity (400 Ω cm) silicon, while the second batch were gold-doped powder diodes fabricated from silicon material initially of low resistivity (20 Ω cm). The increase in reverse leakage current after irradiation was found to be more in the former case than in the latter. The fluence dependence of the capacitance was much more pronounced in the p-i-n diodes than in the gold-doped diodes. Furthermore, photo current generation by optical means was less in the gold doped devices. All these results suggest that gold doping in silicon somewhat suppresses the effects of neutron irradiation. (author)

  20. High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties.

    Science.gov (United States)

    Yeom, Da-Young; Jeon, Woojin; Tu, Nguyen Dien Kha; Yeo, So Young; Lee, Sang-Soo; Sung, Bong June; Chang, Hyejung; Lim, Jung Ah; Kim, Heesuk

    2015-05-05

    For the utilization of graphene in various energy storage and conversion applications, it must be synthesized in bulk with reliable and controllable electrical properties. Although nitrogen-doped graphene shows a high doping efficiency, its electrical properties can be easily affected by oxygen and water impurities from the environment. We here report that boron-doped graphene nanoplatelets with desirable electrical properties can be prepared by the simultaneous reduction and boron-doping of graphene oxide (GO) at a high annealing temperature. B-doped graphene nanoplatelets prepared at 1000 °C show a maximum boron concentration of 6.04 ± 1.44 at %, which is the highest value among B-doped graphenes prepared using various methods. With well-mixed GO and g-B2O3 as the dopant, highly uniform doping is achieved for potentially gram-scale production. In addition, as a proof-of-concept, highly B-doped graphene nanoplatelets were used as an electrode of an electrochemical double-layer capacitor (EDLC) and showed an excellent specific capacitance value of 448 F/g in an aqueous electrolyte without additional conductive additives. We believe that B-doped graphene nanoplatelets can also be used in other applications such as electrocatalyst and nano-electronics because of their reliable and controllable electrical properties regardless of the outer environment.

  1. High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties

    Science.gov (United States)

    Yeom, Da-Young; Jeon, Woojin; Tu, Nguyen Dien Kha; Yeo, So Young; Lee, Sang-Soo; Sung, Bong June; Chang, Hyejung; Lim, Jung Ah; Kim, Heesuk

    2015-05-01

    For the utilization of graphene in various energy storage and conversion applications, it must be synthesized in bulk with reliable and controllable electrical properties. Although nitrogen-doped graphene shows a high doping efficiency, its electrical properties can be easily affected by oxygen and water impurities from the environment. We here report that boron-doped graphene nanoplatelets with desirable electrical properties can be prepared by the simultaneous reduction and boron-doping of graphene oxide (GO) at a high annealing temperature. B-doped graphene nanoplatelets prepared at 1000 °C show a maximum boron concentration of 6.04 ± 1.44 at %, which is the highest value among B-doped graphenes prepared using various methods. With well-mixed GO and g-B2O3 as the dopant, highly uniform doping is achieved for potentially gram-scale production. In addition, as a proof-of-concept, highly B-doped graphene nanoplatelets were used as an electrode of an electrochemical double-layer capacitor (EDLC) and showed an excellent specific capacitance value of 448 F/g in an aqueous electrolyte without additional conductive additives. We believe that B-doped graphene nanoplatelets can also be used in other applications such as electrocatalyst and nano-electronics because of their reliable and controllable electrical properties regardless of the outer environment.

  2. Electric fields in nonhomogeneously doped silicon. Summary of simulations

    International Nuclear Information System (INIS)

    Kotov, I.V.; Humanic, T.J.; Nouais, D.; Randel, J.; Rashevsky, A.

    2006-01-01

    Variations of the doping concentration inside a silicon device result in electric field distortions. These distortions, 'parasitic' fields, have been observed in Silicon Drift Detectors [D. Nouais, et al., Nucl. Instr. and Meth. A 501 (2003) 119; E. Crescio, et al., Nucl. Instr. and Meth. A 539 (2005) 250]. Electric fields inside a silicon device can be calculated for a given doping profile. In this study, the ATLAS device simulator. [Silvaco International, 4701 Patrick Henry Drive, Bldg.2, Santa Clara, CA 95054, USA and s imulation/atlas.html>] was used to calculate the electric field inside an inhomogeneously doped device. Simulations were performed for 1D periodic doping profiles. Results show strong dependence of the parasitic field strength on the 'smoothness' of the doping profile

  3. Investigations on photoelectrochemical performance of boron doped ZnO nanorods synthesized by facile hydrothermal technique

    Science.gov (United States)

    Sharma, Akash; Chakraborty, Mohua; Thangavel, R.

    2018-05-01

    Undoped and 10% Boron (B)-doped Zinc Oxide nanorods (ZnO NRs) on Tin doped Indium Oxide (ITO) coated glass substrates were synthesized using facile sol-gel, spin coating and hydrothermal method. The impact of adding Boron on the structural, optical properties, surface morphology and photoelectrochemical (PEC) performances of the ZnO NRs have been investigated. The XRD pattern confirmed the formation of pure hexagonal phase with space group P63mc (186). The same can also be clearly observed form the FESEM images. The UV-Vis study shows the narrowing in band gap from 3.22 eV to 3.19 eV with incorporation of Boron in ZnO matrix. The B-doped ZnO NRs sample shows an enhanced photocurrent density of 1.31 mA/cm2 at 0.5 V (vs. Ag/AgCl), which is more than 171% enhancement compared to bare ZnO NRs (0.483 mA/cm2) in 0.1 M Na2SO4 aqueous solution. The results clearly indicates that the boron doped ZnO NRs can be used as an efficient photoelectrode material for photoelectrochemical cell.

  4. Influence of boron content on the morphological, spectral, and electroanalytical characteristics of anodically oxidized boron-doped diamond electrodes

    Czech Academy of Sciences Publication Activity Database

    Schwarzová-Pecková, K.; Vosáhlová, J.; Barek, J.; Šloufová, I.; Pavlova, Ewa; Petrák, Václav; Zavázalová, J.

    2017-01-01

    Roč. 243, 20 July (2017), s. 170-182 ISSN 0013-4686 R&D Projects: GA TA ČR(CZ) TE01020118 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : 2-aminobiphenyl * boron content * boron-doped diamond Subject RIV: CD - Macromolecular Chemistry; CG - Electrochemistry (FZU-D) OBOR OECD: Polymer science; Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) (FZU-D) Impact factor: 4.798, year: 2016

  5. Structural, electronic and magnetic properties of carbon doped boron nitride nanowire: Ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Jalilian, Jaafar, E-mail: JaafarJalilian@gmail.com [Young Researchers and Elite Club, Kermanshah Br anch, Islamic Azad University, P.O. Box: 6718997551, Kermanshah (Iran, Islamic Republic of); Kanjouri, Faramarz, E-mail: kanjouri@khu.ac.ir [Physics Department, Faculty of Science, Kharazmi University, University Square, P.O. Box: 3197937551, Karaj (Iran, Islamic Republic of)

    2016-11-15

    Using spin-polarized density functional theory calculations, we demonstrated that carbon doped boron nitride nanowire (C-doped BNNW) has diverse electronic and magnetic properties depending on position of carbon atoms and their percentages. Our results show that only when one carbon atom is situated on the edge of the nanowire, C-doped BNNW is transformed into half-metal. The calculated electronic structure of the C-doped BNNW suggests that doping carbon can induce localized edge states around the Fermi level, and the interaction among localized edge states leads to semiconductor to half-metal transition. Overall, the bond reconstruction causes of appearance of different electronic behavior such as semiconducting, half-metallicity, nonmagnetic metallic, and ferromagnetic metallic characters. The formation energy of the system shows that when a C atom is doped on surface boron site, system is more stable than the other positions of carbon impurity. Our calculations show that C-doped BNNW may offer unique opportunities for developing nanoscale spintronic materials.

  6. Deep level transient spectroscopy and minority carrier lifetime study on Ga-doped continuous Czochralski silicon

    Science.gov (United States)

    Yoon, Yohan; Yan, Yixin; Ostrom, Nels P.; Kim, Jinwoo; Rozgonyi, George

    2012-11-01

    Continuous-Czochralski (c-Cz) crystal growth has been suggested as a viable technique for the fabrication of photovoltaic Si wafers due to its low resistivity variation of any dopant, independent of segregation, compared to conventional Cz. In order to eliminate light induced degradation due to boron-oxygen traps in conventional p-type silicon wafers, gallium doped wafers have been grown by c-Cz method and investigated using four point probe, deep level transient spectroscopy (DLTS), and microwave-photoconductance decay. Iron-gallium related electrically active defects were identified using DLTS as the main lifetime killers responsible for reduced non-uniform lifetimes in radial and axial positions of the c-Cz silicon ingot. A direct correlation between minority carrier lifetime and the concentration of electrically active Fe-Ga pairs was established.

  7. Field assisted photoemission by silicon photocathodes

    International Nuclear Information System (INIS)

    Aboubacar, A.; Dupont, M.; El Manouni, A.; Querrou, M.; Says, L.P.

    1991-01-01

    Silicon photocathodes with arrays of tips have been prepared using microlithographic techniques. Current emission due to field effect has been measured in the case of heavy and weakly doped boron Silicon. An Argon continuous laser has been used to produce photocurrent. An instantaneous current (600 μA) with a moderate laser power (83 mW), has been produced on weakly doped photocathodes. This current corresponds to an average quantum yield (purely photoelectric) of about 1.7%, and a local current density in the range of a few 10 6 A m -2

  8. Microdefects in neutron-transmutationaly doped silicon

    International Nuclear Information System (INIS)

    Vysotskaya, V.V.; Gorin, S.N.; Gres'kov, I.M.; Sobolev, N.A.; Shek, E.I.

    1988-01-01

    Using the method of X-ray topography and high-voltage electron microscopy, the nature of microdefects and character of their changes in neutron-transmutationaly doped silicon depending on the sample prehistory and heat treatment (HT) conditions are refined. It is shown that the microstructure of neutron-transmutationaly doped dislocation-free silicon crystals depends on conditions of ingot growth and post-radiation annealing environment. Annealing in chlorine-containing atmosphere removes microdefects (MD), although in vacuum, argon or air growing MD are preserved and new MD are formed

  9. Microdefects in neutron-transmutationaly doped silicon

    Energy Technology Data Exchange (ETDEWEB)

    Vysotskaya, V V; Gorin, S N; Gres' kov, I M; Sobolev, N A; Shek, E I

    1988-03-01

    Using the method of X-ray topography and high-voltage electron microscopy, the nature of microdefects and character of their changes in neutron-transmutationaly doped silicon depending on the sample prehistory and heat treatment (HT) conditions are refined. It is shown that the microstructure of neutron-transmutationaly doped dislocation-free silicon crystals depends on conditions of ingot growth and post-radiation annealing environment. Annealing in chlorine-containing atmosphere removes microdefects (MD), although in vacuum, argon or air growing MD are preserved and new MD are formed.

  10. Black phosphorus induced photo-doping for high-performance organic-silicon heterojunction photovoltaics

    Institute of Scientific and Technical Information of China (English)

    Zhouhui Xia; Pengfei Li; Yuqiang Liu; Tao Song; Qiaoliang Bao; Shuit-Tong Lee; Baoquan Sun

    2017-01-01

    In conventional crystalline silicon (Si) homojunction solar cells,a strategy of doping by transporting phosphorus or boron impurities into Si is commonly used to build Ohmic contacts at rear electrodes.However,this technique involves an energy intensive,high temperature (~ 800 ℃) process and toxic doping materials.Black phosphorus (BP) is a two-dimensional,narrow bandgap semiconductor with high carrier mobility that exhibits broad light harvesting properties.Here,we place BP:zinc oxide (ZnO) composite films between Si and aluminum (Al) to improve their contact.Once the BP harvests photons with energies below 1.1 eV from the crystalline Si,the ZnO carrier concentration increases dramatically due to charge injection.This photo-induced doping results in a high carrier concentration in the ZnO film,mimicking the modulated doping technique used in semiconductor heterojunctions.We show that photo-induced carriers dramatically increase the conductivities of the BP-modified ZnO films,thus reducing the contact resistance between Si and Al.A photovoltaic power conversion efficiency of 15.2% is achieved in organic-Si heterojunction solar cells that use a ZnO:BP layer.These findings demonstrate an effective way of improving Si/metal contact via a simple,low temperature process.

  11. Impurity doping processes in silicon

    CERN Document Server

    Wang, FFY

    1981-01-01

    This book introduces to non-experts several important processes of impurity doping in silicon and goes on to discuss the methods of determination of the concentration of dopants in silicon. The conventional method used is the discussion process, but, since it has been sufficiently covered in many texts, this work describes the double-diffusion method.

  12. Boron-doped cadmium oxide composite structures and their electrochemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lokhande, B.J., E-mail: bjlokhande@yahoo.com [Lab of Smart Mtrls Supercapacitive and Energy Studies, School of Physical Sciences, Solapur University, Solapur 413255, Maharashtra (India); Ambare, R.C. [Lab of Smart Mtrls Supercapacitive and Energy Studies, School of Physical Sciences, Solapur University, Solapur 413255, Maharashtra (India); Mane, R.S. [School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606 (India); Bharadwaj, S.R. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2013-08-01

    Graphical abstract: Conducting nano-fibrous 3% boron doped cadmium oxide thin films were prepared by SILAR and its super capacitive properties were studied. - Highlights: • Samples are of nanofibrous nature. • All samples shows pseudocapacitive behavior. • 3% B doped CdO shows good specific capacitance. • 3% B doped CdO shows maximum 74.93% efficiency at 14 mA/cm{sup 2}. • 3% B doped CdO shows 0.8 Ω internal resistance. - Abstract: Boron-doped and undoped cadmium oxide composite nanostructures in thin film form were prepared onto stainless steel substrates by a successive ionic layer adsorption and reaction method using aqueous solutions of cadmium nitrate, boric acid and 1% H{sub 2}O{sub 2}. As-deposited films were annealed at 623 K for 1 h. The X-ray diffraction study shows crystalline behavior for both doped and undoped films with a porous topography and nano-wires type architecture, as observed in SEM image. Wettability test confirms the hydrophilic surface with 58° contact angle value. Estimated band gap energy is around 1.9 eV. Electrochemical behavior of the deposited films is attempted in 1 M KOH electrolyte using cyclic voltammetry (CV), electrochemical impedance spectroscopy and galvanostatic charge–discharge tests. Maximum values of the specific capacitance, specific energy and specific power obtained for 3% B doped CdO film at 2 mV/s scan rate are 20.05 F/g, 1.22 Wh/kg and 3.25 kW/kg, respectively.

  13. Structural and mechanical characterization of boron doped biphasic calcium phosphate produced by wet chemical method and subsequent thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, Onder, E-mail: albayrakonder@mersin.edu.tr

    2016-03-15

    In the current study, boron doped biphasic calcium phosphate bioceramics consisting of a mixture of boron doped hydroxyapatite (BHA) and beta tricalcium phosphate (β-TCP) of varying BHA/β-TCP ratios were obtained after sintering stage. The effects of varying boron contents and different sintering temperatures on the BHA/β-TCP ratios and on the sinterability of the final products were investigated. Particle sizes and morphologies of the obtained precipitates were determined using SEM. XRD and FTIR investigation were conducted to detect the boron formation in the structure of HA and quantitative analysis was performed to determine the BHA/β-TCP ratio before and after sintering stage. In order to determine the sinterability of the obtained powders, pellets were prepared and sintered; the rates of densification were calculated and obtained results were correlated by SEM images. Also Vickers microhardness values of the sintered samples were determined. The experimental results verified that boron doped hydroxyapatite powders were obtained after sintering stage and the structure consists of a mixture of BHA and β-TCP. As the boron content used in the precipitation stage increases, β-TCP content of the BHA/β-TCP ratio increases but sinterability, density and microhardness deteriorate. As the sintering temperature increases, β-TCP content, density and microhardness of the samples increase and sinterability improves. - Highlights: • This is the first paper about boron doped biphasic calcium phosphate bioceramics. • Boron doping affects the structural and mechanical properties. • BHA/β-TCP ratio can be adjustable with boron content and sintering temperature.

  14. Functionalization of silicon-doped single walled carbon nanotubes at the doping site: An ab initio study

    International Nuclear Information System (INIS)

    Song Chen; Xia Yueyuan; Zhao Mingwen; Liu Xiangdong; Li Feng; Huang Boda; Zhang Hongyu; Zhang Bingyun

    2006-01-01

    We performed ab initio calculations on the cytosine-functionalized silicon-doped single walled carbon nanotubes (SWNT). The results show that silicon substitutional doping to SWNT can dramatically change the atomic and electronic structures of the SWNT. And more importantly, it may provide an efficient pathway for further sidewall functionalization to synthesize more complicated SWNT based complex materials, for example, our previously proposed base-functionalized SWNTs, because the doping silicon atom can improve the reaction activity of the tube at the doping site due to its preference to form sp3 hybridization bonding

  15. N-Type delta Doping of High-Purity Silicon Imaging Arrays

    Science.gov (United States)

    Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh

    2005-01-01

    A process for n-type (electron-donor) delta doping has shown promise as a means of modifying back-illuminated image detectors made from n-doped high-purity silicon to enable them to detect high-energy photons (ultraviolet and x-rays) and low-energy charged particles (electrons and ions). This process is applicable to imaging detectors of several types, including charge-coupled devices, hybrid devices, and complementary metal oxide/semiconductor detector arrays. Delta doping is so named because its density-vs.-depth characteristic is reminiscent of the Dirac delta function (impulse function): the dopant is highly concentrated in a very thin layer. Preferably, the dopant is concentrated in one or at most two atomic layers in a crystal plane and, therefore, delta doping is also known as atomic-plane doping. The use of doping to enable detection of high-energy photons and low-energy particles was reported in several prior NASA Tech Briefs articles. As described in more detail in those articles, the main benefit afforded by delta doping of a back-illuminated silicon detector is to eliminate a "dead" layer at the back surface of the silicon wherein high-energy photons and low-energy particles are absorbed without detection. An additional benefit is that the delta-doped layer can serve as a back-side electrical contact. Delta doping of p-type silicon detectors is well established. The development of the present process addresses concerns specific to the delta doping of high-purity silicon detectors, which are typically n-type. The present process involves relatively low temperatures, is fully compatible with other processes used to fabricate the detectors, and does not entail interruption of those processes. Indeed, this process can be the last stage in the fabrication of an imaging detector that has, in all other respects, already been fully processed, including metallized. This process includes molecular-beam epitaxy (MBE) for deposition of three layers, including

  16. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    Science.gov (United States)

    Alver, Ü.; Tanrıverdi, A.

    2016-08-01

    In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  17. Laser-excited photoemission spectroscopy study of superconducting boron-doped diamond

    Directory of Open Access Journals (Sweden)

    K. Ishizaka, R. Eguchi, S. Tsuda, T. Kiss, T. Shimojima, T. Yokoya, S. Shin, T. Togashi, S. Watanabe, C.-T. Chen, C.Q. Zhang, Y. Takano, M. Nagao, I. Sakaguchi, T. Takenouchi and H. Kawarada

    2006-01-01

    Full Text Available We have investigated the low-energy electronic state of boron-doped diamond thin film by the laser-excited photoemission spectroscopy. A clear Fermi-edge is observed for samples doped above the semiconductor–metal boundary, together with the characteristic structures at 150×n meV possibly due to the strong electron–lattice coupling effect. In addition, for the superconducting sample, we observed a shift of the leading edge below Tc indicative of a superconducting gap opening. We discuss the electron–lattice coupling and the superconductivity in doped diamond.

  18. Electrical conductivity enhancement by boron-doping in diamond using first principle calculations

    Science.gov (United States)

    Ullah, Mahtab; Ahmed, Ejaz; Hussain, Fayyaz; Rana, Anwar Manzoor; Raza, Rizwan

    2015-04-01

    Boron doping in diamond plays a vital role in enhancing electrical conductivity of diamond by making it a semiconductor, a conductor or even a superconductor. To elucidate this fact, partial and total density of states has been determined as a function of B-content in diamond. Moreover, the orbital charge distributions, B-C bond lengths and their population have been studied for B-doping in pristine diamond thin films by applying density functional theory (DFT). These parameters have been found to be influenced by the addition of different percentages of boron atoms in diamond. The electronic density of states, B-C bond situations as well as variations in electrical conductivities of diamond films with different boron content and determination of some relationship between these parameters were the basic tasks of this study. Diamond with high boron concentration (∼5.88% B-atoms) showed maximum splitting of energy bands (caused by acceptor impurity states) at the Fermi level which resulted in the enhancement of electron/ion conductivities. Because B atoms either substitute carbon atoms and/or assemble at grain boundaries (interstitial sites) inducing impurity levels close to the top of the valence band. At very high B-concentration, impurity states combine to form an impurity band which accesses the top of the valence band yielding metal like conductivity. Moreover, bond length and charge distributions are found to decrease with increase in boron percentage in diamond. It is noted that charge distribution decreased from +1.89 to -1.90 eV whereas bond length reduced by 0.04 Å with increasing boron content in diamond films. These theoretical results support our earlier experimental findings on B-doped diamond polycrystalline films which depict that the addition of boron atoms to diamond films gives a sudden fall in resistivity even up to 105 Ω cm making it a good semiconductor for its applications in electrical devices.

  19. Thermal grafting of fluorinated molecular monolayers on doped amorphous silicon surfaces

    International Nuclear Information System (INIS)

    Sabbah, H.; Zebda, A.; Ababou-Girard, S.; Solal, F.; Godet, C.; Conde, J. P.; Chu, V.

    2009-01-01

    Thermally induced (160-300 deg. C) gas phase grafting of linear alkene molecules (perfluorodecene) was performed on hydrogenated amorphous silicon (a-Si:H) films, either nominally undoped or doped with different boron and phosphorus concentrations. Dense and smooth a-Si:H films were grown using plasma decomposition of silane. Quantitative analysis of in situ x-ray photoelectron spectroscopy indicates the grafting of a single layer of organic molecules. The hydrophobic properties of perfluorodecene-modified surfaces were studied as a function of surface coverage. Annealing experiments in ultrahigh vacuum show the covalent binding and the thermal stability of these immobilized layers up to 370 deg. C; this temperature corresponds to the Si-C bond cleavage temperature. In contrast with hydrogenated crystalline Si(111):H, no heavy wet chemistry surface preparation is required for thermal grafting of alkene molecules on a-Si:H films. A threshold grafting temperature is observed, with a strong dependence on the doping level which produces a large contrast in the molecular coverage for grafting performed at 230 deg. C

  20. Tuning the electronic properties of armchair carbon nanoribbons by a selective boron doping

    International Nuclear Information System (INIS)

    Navarro-Santos, P; Ricardo-Chavez, J L; Lopez-Sandoval, R; Reyes-Reyes, M; Rivera, J L

    2010-01-01

    Armchair carbon nanoribbons (ACNRs) substitutionally doped with boron atoms are investigated in the framework of first-principles density functional theory. Different boron-boron arrangements and concentrations are considered in order to simulate possible aggregation patterns, their structural stability and electronic behavior are determined as a function of ribbon size. In agreement with previous studies, our results show that the dopant atoms have in general a preference for edge sites, but specific effects appear as a function of concentration that importantly modify the properties of the ribbons compared to the pristine case. Interesting tendencies are discovered as a function of dopant concentration that significantly affect the electronic properties of the ribbons. We have found that BC 3 island formation and edge doping are the most important factors for the structural stabilization of the ribbons with high boron concentration (>7%) whereas for the cases of low boron concentrations ( 3 island patterns give rise to highly localized B states on top of the Fermi level, resulting in semiconducting behavior. On the other hand, when the average distance between the B atoms increases beyond island stoichiometry, the localization of their states is reduced and the ribbons may become metallic due to a band crossing caused by the lowering of the Fermi level resulting from the positive charge doping. Thus, tuning the dopant interaction would be an appropriate way to tailor the electronic properties of the ribbons in a convenient manner in view of potential technological applications.

  1. Passivation effects in B doped self-assembled Si nanocrystals

    International Nuclear Information System (INIS)

    Puthen Veettil, B.; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Zhang, Tian; Yang, Terry; Johnson, Craig; Conibeer, Gavin; Perez-Würfl, Ivan; McCamey, Dane

    2014-01-01

    Doping of semiconductor nanocrystals has enabled their widespread technological application in optoelectronics and micro/nano-electronics. In this work, boron-doped self-assembled silicon nanocrystal samples have been grown and characterised using Electron Spin Resonance and photoluminescence spectroscopy. The passivation effects of boron on the interface dangling bonds have been investigated. Addition of boron dopants is found to compensate the active dangling bonds at the interface, and this is confirmed by an increase in photoluminescence intensity. Further addition of dopants is found to reduce the photoluminescence intensity by decreasing the minority carrier lifetime as a result of the increased number of non-radiative processes

  2. Electrochemical treatment of wastewaters containing 4-chlororesorcinol using boron doped diamond anodes

    International Nuclear Information System (INIS)

    Nasr, B.; Abdelatif, G.

    2009-01-01

    The electrochemical oxidation of aqueous wastes polluted with 4-chlororesorcinol has been studied on boron-doped diamond electrodes on acidic medium. The voltammetric results showed that in the potential region where the supporting electrolyte is stable, reactions occur, resulting in the loss of activity due to electrode fouling. Galvanostatic electrolysis study showed that the oxidation of these wastes in single-compartment electrochemical flow cell with boron doped diamond anodes deal to the complete mineralization of the organics but is no indication of electrode fouling. Resorcinol, 1,2,4-trihydroxybenzene, benzoquinone, maleic, fumaric, and oxalic acids have been detected as soluble organics and chlorides (Cl - ) and hypochlorites (ClO - ) as mineral products during the electrolysis of 4-chlororesorcinol. The electrochemical oxidation of 4-chlororesorcinol consists of a sequence of steps: Release of Cl and/or hydroxylation of the aromatic ring; formation of quinonic compounds; oxidative opening of aromatic ring to form carboxylic acids; and oxidation of carboxylic acids to carbon dioxide. Both, direct oxidation at boron doped diamond surface and mediated oxidation by powerful oxidants electrogenerated from electrolyte oxidation at anode surface are involved in these stages. (author)

  3. A boron and gallium co-doped ZnO intermediate layer for ZnO/Si heterojunction diodes

    Science.gov (United States)

    Lu, Yuanxi; Huang, Jian; Li, Bing; Tang, Ke; Ma, Yuncheng; Cao, Meng; Wang, Lin; Wang, Linjun

    2018-01-01

    ZnO (Zinc oxide)/Si (Silicon) heterojunctions were prepared by depositing n-type ZnO films on p-type single crystal Si substrates using magnetron sputtering. A boron and gallium co-doped ZnO (BGZO) high conductivity intermediate layer was deposited between aurum (Au) electrodes and ZnO films. The influence of the BGZO layer on the properties of Au/ZnO contacts and the performance of ZnO/Si heterojunctions was investigated. The results show an improvement in contact resistance by introducing the BGZO layer. Compared with the ZnO/Si heterojunction, the BGZO/ZnO/Si heterojunction exhibits a larger forward current, a smaller turn-on voltage and higher ratio of ultraviolet (UV) photo current/dark current.

  4. Erbium doped stain etched porous silicon

    International Nuclear Information System (INIS)

    Gonzalez-Diaz, B.; Diaz-Herrera, B.; Guerrero-Lemus, R.; Mendez-Ramos, J.; Rodriguez, V.D.; Hernandez-Rodriguez, C.; Martinez-Duart, J.M.

    2008-01-01

    In this work a simple erbium doping process applied to stain etched porous silicon layers (PSLs) is proposed. This doping process has been developed for application in porous silicon solar cells, where conventional erbium doping processes are not affordable because of the high processing cost and technical difficulties. The PSLs were formed by immersion in a HF/HNO 3 solution to properly adjust the porosity and pore thickness to an optimal doping of the porous structure. After the formation of the porous structure, the PSLs were analyzed by means of nitrogen BET (Brunauer, Emmett and Teller) area measurements and scanning electron microscopy. Subsequently, the PSLs were immersed in a saturated erbium nitrate solution in order to cover the porous surface. Then, the samples were subjected to a thermal process to activate the Er 3+ ions. Different temperatures and annealing times were used in this process. The photoluminescence of the PSLs was evaluated before and after the doping processes and the composition was analyzed by Fourier transform IR spectroscopy

  5. Luminescence of porous silicon doped by erbium

    International Nuclear Information System (INIS)

    Bondarenko, V.P.; Vorozov, N.N.; Dolgij, L.N.; Dorofeev, A.M.; Kazyuchits, N.M.; Leshok, A.A.; Troyanova, G.N.

    1996-01-01

    The possibility of the 1.54 μm intensive luminescence in the silicon dense porous layers, doped by erbium, with various structures is shown. Low-porous materials of both porous type on the p-type silicon and porous silicon with wood-like structure on the n + type silicon may be used for formation of light-emitting structures

  6. Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes

    International Nuclear Information System (INIS)

    Mahe, E.; Devilliers, D.; Comninellis, Ch.

    2005-01-01

    This paper deals with the electrochemical reactivity of boron doped diamond (BDD) electrodes. A comparative study has been carried out to show the influence of the presence of graphitic micro-domains upon the surface of these films. Those graphitic domains are sometimes present on as-grown boron doped diamond electrodes. The effect of doping a pure Csp 3 diamond electrode is established by highly oriented pyrolytic graphite (HOPG) abrasion onto the diamond surface. In order to establish the effect of doping on a pure Csp 3 diamond electrode, the amount of graphitic domains was increased by means of HOPG crystals grafted onto the BDD surface. Indeed that method allows the enrichment of the Csp 2 contribution of the electrode. The presence of graphitic domains can be correlatively associated with the presence of kinetically active redox sites. The electrochemical reactivity of boron doped diamond electrodes shows a distribution of kinetic constants on the whole surface of the electrode corresponding to different active sites. In this paper, we have studied by cyclic voltammetry and electrochemical impedance spectroscopy the kinetics parameters of the ferri/ferrocyanide redox couple in KCl electrolyte. A method is proposed to diagnose the presence of graphitic domains on diamond electrodes, and an electrochemical 'pulse cleaning' procedure is proposed to remove them

  7. Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, M., E-mail: mmoreno@inaoep.mx [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Delgadillo, N. [Universidad Autónoma de Tlaxcala, Av. Universidad No. 1, Z. P. 90006 Tlaxcala (Mexico); Torres, A. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Ambrosio, R. [Technology and Engineering Institute, Ciudad Juarez University UACJ, Av. Del Charro 450N, Z. P. 32310 Chihuahua (Mexico); Rosales, P.; Kosarev, A.; Reyes-Betanzo, C.; Hidalga-Wade, J. de la; Zuniga, C.; Calleja, W. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico)

    2013-12-02

    In this work we have studied boron doping of hydrogenated amorphous germanium a-Ge:H and polymorphous germanium (pm-Ge:H) in low regimes, in order to compensate the material from n-type (due to oxygen contamination that commonly occurs during plasma deposition) to intrinsic, and in this manner improve the properties that are important for infrared (IR) detection, as activation energy (E{sub a}) and temperature coefficient of resistance (TCR). Electrical, structural and optical characterization was performed on the films produced. Measurements of the temperature dependence of conductivity, room temperature conductivity (σ{sub RT}), E{sub a} and current–voltage characteristics under IR radiation were performed in the compensated a-Ge:H and pm-Ge:H films. Our results demonstrate that, effectively, the values of E{sub a}, TCR and IR detection are improved on the a-Ge:H/pm-Ge:H films, using boron doping in low regimes, which results of interest for infrared detectors. - Highlights: • We reported boron doping compensation of amorphous and polymorphous germanium. • The films were deposited by plasma enhanced chemical vapor deposition. • The aim is to use the films as thermo-sensing elements in un-cooled microbolometers. • Those films have advantages over boron doped a-Si:H used in commercial detectors.

  8. Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications

    International Nuclear Information System (INIS)

    Moreno, M.; Delgadillo, N.; Torres, A.; Ambrosio, R.; Rosales, P.; Kosarev, A.; Reyes-Betanzo, C.; Hidalga-Wade, J. de la; Zuniga, C.; Calleja, W.

    2013-01-01

    In this work we have studied boron doping of hydrogenated amorphous germanium a-Ge:H and polymorphous germanium (pm-Ge:H) in low regimes, in order to compensate the material from n-type (due to oxygen contamination that commonly occurs during plasma deposition) to intrinsic, and in this manner improve the properties that are important for infrared (IR) detection, as activation energy (E a ) and temperature coefficient of resistance (TCR). Electrical, structural and optical characterization was performed on the films produced. Measurements of the temperature dependence of conductivity, room temperature conductivity (σ RT ), E a and current–voltage characteristics under IR radiation were performed in the compensated a-Ge:H and pm-Ge:H films. Our results demonstrate that, effectively, the values of E a , TCR and IR detection are improved on the a-Ge:H/pm-Ge:H films, using boron doping in low regimes, which results of interest for infrared detectors. - Highlights: • We reported boron doping compensation of amorphous and polymorphous germanium. • The films were deposited by plasma enhanced chemical vapor deposition. • The aim is to use the films as thermo-sensing elements in un-cooled microbolometers. • Those films have advantages over boron doped a-Si:H used in commercial detectors

  9. Electric fields in nonhomogeneously doped silicon. Summary of simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, I.V. [Ohio State University, Columbus, OH 43210 (United States)]. E-mail: kotov@mps.ohio-state.edu; Humanic, T.J. [Ohio State University, Columbus, OH 43210 (United States); Nouais, D. [INFN, Sezione di Torino, I-10125 Turin (Italy); Randel, J. [Ohio State University, Columbus, OH 43210 (United States); Rashevsky, A. [INFN, Sezione di Triste, I-34127 Trieste (Italy)

    2006-11-30

    Variations of the doping concentration inside a silicon device result in electric field distortions. These distortions, 'parasitic' fields, have been observed in Silicon Drift Detectors [D. Nouais, et al., Nucl. Instr. and Meth. A 501 (2003) 119; E. Crescio, et al., Nucl. Instr. and Meth. A 539 (2005) 250]. Electric fields inside a silicon device can be calculated for a given doping profile. In this study, the ATLAS device simulator. [Silvaco International, 4701 Patrick Henry Drive, Bldg.2, Santa Clara, CA 95054, USA and ] was used to calculate the electric field inside an inhomogeneously doped device. Simulations were performed for 1D periodic doping profiles. Results show strong dependence of the parasitic field strength on the 'smoothness' of the doping profile.

  10. Soft X-ray angle-resolved photoemission spectroscopy of heavily boron-doped superconducting diamond films

    Directory of Open Access Journals (Sweden)

    T. Yokoya, T. Nakamura, T. Matushita, T. Muro, H. Okazaki, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada and T. Oguchi

    2006-01-01

    Full Text Available We have performed soft X-ray angle-resolved photoemission spectroscopy (SXARPES of microwave plasma-assisted chemical vapor deposition diamond films with different B concentrations in order to study the origin of the metallic behavior of superconducting diamond. SXARPES results clearly show valence band dispersions with a bandwidth of ~23 eV and with a top of the valence band at gamma point in the Brillouin zone, which are consistent with the calculated valence band dispersions of pure diamond. Boron concentration-dependent band dispersions near the Fermi level (EF exhibit a systematic shift of EF, indicating depopulation of electrons due to hole doping. These SXARPES results indicate that diamond bands retain for heavy boron doping and holes in the diamond band are responsible for the metallic states leading to superconductivity at low temperature. A high-resolution photoemission spectroscopy spectrum near EF of a heavily boron-doped diamond superconductor is also presented.

  11. Depth profiling of boron implanted silicon by positron beam

    International Nuclear Information System (INIS)

    Oevuenc, S.

    2004-01-01

    Positron depth profiling analyses of low energy implants of silicon aim to observe tbe structure and density of the vacancies generating by implantation and the effect of annealing. This work present the results to several set of data starting S and W parameters. Boron implanted Silicon samples with different implantation energies,20,22,24,and 26 keV are analyzed by Slow positron beam (0-40 keV and 10 5 e + /s )(Variable Energy Positron) at the Positron Centre Delf-HOLLAND

  12. Thermal diffusion boron doping of single-crystal natural diamond

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Wu, Henry; Morgan, Dane [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Blanchard, James P. [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Zhou, Weidong [Department of Electrical Engineering, NanoFAB Center, University of Texas at Arlington, Arlington, Texas 76019 (United States); Gong, Shaoqin [Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-28

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  13. Thermal diffusion boron doping of single-crystal natural diamond

    International Nuclear Information System (INIS)

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang; Wu, Henry; Morgan, Dane; Blanchard, James P.; Zhou, Weidong; Gong, Shaoqin

    2016-01-01

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  14. Superlattice doped layers for amorphous silicon photovoltaic cells

    Science.gov (United States)

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  15. FTIR studies of swift silicon and oxygen ion irradiated porous silicon

    International Nuclear Information System (INIS)

    Bhave, Tejashree M.; Hullavarad, S.S.; Bhoraskar, S.V.; Hegde, S.G.; Kanjilal, D.

    1999-01-01

    Fourier Transform Infrared Spectroscopy has been used to study the bond restructuring in silicon and oxygen irradiated porous silicon. Boron doped p-type (1 1 1) porous silicon was irradiated with 10 MeV silicon and a 14 MeV oxygen ions at different doses ranging between 10 12 and 10 14 ions cm -2 . The yield of PL in porous silicon irradiated samples was observed to increase considerably while in oxygen irradiated samples it was seen to improve only by a small extent for lower doses whereas it decreased for higher doses. The results were interpreted in view of the relative intensities of the absorption peaks associated with O-Si-H and Si-H stretch bonds

  16. Phosphorous Doping of Nanostructured Crystalline Silicon

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Steckel, André

    Nano-textured silicon, known as black silicon (bSi), is attractive with excellent photon trapping properties. bSi can be produced using simple one-step fabrication reactive ion etching (RIE) technique. However, in order to use bSi in photovoltaics doping process should be developed. Due to high s...

  17. Boron-Doped Carbon Nano-/Microballs from Orthoboric Acid-Starch: Preparation, Characterization, and Lithium Ion Storage Properties

    Directory of Open Access Journals (Sweden)

    Xinhua Lu

    2018-01-01

    Full Text Available A boron-doped carbon nano-/microballs (BC was successfully obtained via a two-step procedure including hydrothermal reaction (180°C and carbonization (800°C with cheap starch and H3BO3 as the carbon and boron source. As a new kind of boron-doped carbon, BC contained 2.03 at% B-content and presented the morphology as almost perfect nano-/microballs with different sizes ranging from 500 nm to 5 μm. Besides that, due to the electron deficient boron, BC was explored as anode material and presented good lithium storage performance. At a current density of 0.2 C, the first reversible specific discharge capacity of BC electrode reached as high as 964.2 mAh g–1 and kept at 699 mAh g–1 till the 11th cycle. BC also exhibited good cycle ability with a specific capacity of 356 mAh g–1 after 79 cycles at a current density of 0.5 C. This work proved to be an effective approach for boron-doped carbon nanostructures which has potential usage for lithium storage material.

  18. Solidification phenomena in nickel base brazes containing boron and silicon

    International Nuclear Information System (INIS)

    Tung, S.K.; Lim, L.C.; Lai, M.O.

    1996-01-01

    Nickel base brazes containing boron and/or silicon as melting point depressants are used extensively in the repair and joining of aero-engine hot-section components. These melting point depressants form hard and brittle intermetallic compounds with nickel which are detrimental to the mechanical properties of brazed joints. The present investigation studied the microstructural evolution in nickel base brazes containing boron and/or silicon as melting point depressant(s) in simple systems using nickel as the base metal. The basic metallurgical reactions and formation of intermetallic compounds uncovered in these systems will be useful as a guide in predicting the evolution of microstructures in similar brazes in more complex systems involving base metals of nickel base superalloys. The four filler metal systems investigated in this study are: Ni-Cr-Si; Ni-Cr-B; Ni-Si-B and Ni-Cr-Fe-Si-B

  19. Diffusion modelling of low-energy ion-implanted BF{sub 2} in crystalline silicon: Study of fluorine vacancy effect on boron diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Marcon, J. [Laboratoire Electronique Microtechnologie et Instrumentation (LEMI), University of Rouen, 76821 Mont Saint Aignan (France)], E-mail: Jerome.Marcon@univ-rouen.fr; Merabet, A. [Laboratoire de Physique et Mecanique des Materiaux Metalliques, Departement d' O.M.P., Faculte des Sciences de l' Ingenieur, Universite de Setif, 19000 Setif (Algeria)

    2008-12-05

    We have investigated and modelled the diffusion of boron implanted into crystalline silicon in the form of boron difluoride BF{sub 2}{sup +}. We have used published data for BF{sub 2}{sup +} implanted with an energy of 2.2 keV in crystalline silicon. Fluorine effects are considered by using vacancy-fluorine pairs which are responsible for the suppression of boron diffusion in crystalline silicon. Following Uematsu's works, the simulations satisfactory reproduce the SIMS experimental profiles in the 800-1000 deg. C temperature range. The boron diffusion model in silicon of Uematsu has been improved taking into account the last experimental data.

  20. Oxidation-enhanced diffusion of boron in very low-energy N2+-implanted silicon

    Science.gov (United States)

    Skarlatos, D.; Tsamis, C.; Perego, M.; Fanciulli, M.

    2005-06-01

    In this article we study the interstitial injection during oxidation of very low-energy nitrogen-implanted silicon. Buried boron δ layers are used to monitor the interstitial supersaturation during the oxidation of nitrogen-implanted silicon. No difference in boron diffusivity enhancement was observed compared to dry oxidation of nonimplanted samples. This result is different from our experience from N2O oxynitridation study, during which a boron diffusivity enhancement of the order of 20% was observed, revealing the influence of interfacial nitrogen on interstitial kinetics. A possible explanation may be that implanted nitrogen acts as an excess interstitial sink in order to diffuse towards the surface via a non-Fickian mechanism. This work completes a wide study of oxidation of very low-energy nitrogen-implanted silicon related phenomena we performed within the last two years [D. Skarlatos, C. Tsamis, and D. Tsoukalas, J. Appl. Phys. 93, 1832 (2003); D. Skarlatos, E. Kapetanakis, P. Normand, C. Tsamis, M. Perego, S. Ferrari, M. Fanciulli, and D. Tsoukalas, J. Appl. Phys. 96, 300 (2004)].

  1. Metallization and superconductivity in a multizone doped semiconductor: boron-doped diamond

    International Nuclear Information System (INIS)

    Loktev, V.M.; Pogorelov, Yu.G.

    2005-01-01

    Within the framework of Anderson's s - d hybride model, metallization of a semiconductor at collectivization of impurity states is discussed. Taking in mind the description of boron-doped diamond CB x , the model is generalized for the case of the multiband initial spectrum and cluster acceptor states, due to the pairs of the nearest neighbor impurities ('impurity dumbbells'). The parameters of the calculated band of collective impurity states are compared to those observed in metallized and superconducting CB x

  2. Enhanced Manifold of States Achieved in Heterostructures of Iron Selenide and Boron-Doped Graphene

    Directory of Open Access Journals (Sweden)

    Valentina Cantatore

    2017-10-01

    Full Text Available Enhanced superconductivity is sought by employing heterostructures composed of boron-doped graphene and iron selenide. Build-up of a composite manifold of near-degenerate noninteracting states formed by coupling top-of-valence-band states of FeSe to bottom-of-conduction-band states of boron-doped graphene is demonstrated. Intra- and intersubsystem excitons are explored by means of density functional theory in order to articulate a normal state from which superconductivity may emerge. The results are discussed in the context of electron correlation in general and multi-band superconductivity in particular.

  3. Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mahe, E. [LI2C CNRS/UMR 7612, Laboratoire d' Electrochimie, Universite Pierre-et-Marie Curie - case courrier 51, 4, Place Jussieu, 75252 Paris Cedex 05 (France); Devilliers, D. [LI2C CNRS/UMR 7612, Laboratoire d' Electrochimie, Universite Pierre-et-Marie Curie - case courrier 51, 4, Place Jussieu, 75252 Paris Cedex 05 (France); Comninellis, Ch. [Unite de Genie Electrochimique, Institut de sciences des procedes chimiques et biologiques, Ecole Polytechnique Federale de Lausanne, 1015, Lausanne (Switzerland)

    2005-04-01

    This paper deals with the electrochemical reactivity of boron doped diamond (BDD) electrodes. A comparative study has been carried out to show the influence of the presence of graphitic micro-domains upon the surface of these films. Those graphitic domains are sometimes present on as-grown boron doped diamond electrodes. The effect of doping a pure Csp{sup 3} diamond electrode is established by highly oriented pyrolytic graphite (HOPG) abrasion onto the diamond surface. In order to establish the effect of doping on a pure Csp{sup 3} diamond electrode, the amount of graphitic domains was increased by means of HOPG crystals grafted onto the BDD surface. Indeed that method allows the enrichment of the Csp{sup 2} contribution of the electrode. The presence of graphitic domains can be correlatively associated with the presence of kinetically active redox sites. The electrochemical reactivity of boron doped diamond electrodes shows a distribution of kinetic constants on the whole surface of the electrode corresponding to different active sites. In this paper, we have studied by cyclic voltammetry and electrochemical impedance spectroscopy the kinetics parameters of the ferri/ferrocyanide redox couple in KCl electrolyte. A method is proposed to diagnose the presence of graphitic domains on diamond electrodes, and an electrochemical 'pulse cleaning' procedure is proposed to remove them.

  4. Theoretical study of ozone adsorption on the surface of Fe, Co and Ni doped boron nitride nanosheets

    Science.gov (United States)

    Farmanzadeh, Davood; Askari Ardehjani, Nastaran

    2018-06-01

    In this work, the adsorption of ozone molecule on Fe, Co and Ni doped boron nitride nanosheets (BNNSs) were investigated using density functional theory. The most stable adsorption configurations, charge transfer and adsorption energy of ozone molecule on pure and doped BNNSs are calculated. It is shown that ozone molecule has no remarkable interaction with pure boron nitride nanosheet, it tends to be chemisorbed on Fe, Co and Ni doped BNNSs with adsorption energy in the range of -249.4 to -686.1 kJ/mol. In all configurations, the adsorption of ozone molecule generates a semiconductor by reducing Eg in the pure and Fe, Co and Ni doped boron nitride nanosheet. It shows that the conductance of BNNSs change over the adsorption of ozone molecule. The obtained results in this study can be used in developing BN-based sheets for ozone molecule removal.

  5. The irradiation induced creep of graphite under accelerated damage produced by boron doping

    International Nuclear Information System (INIS)

    Brocklehurst, J.E.

    1975-01-01

    The presence of boron enhances fast neutron irradiation damage in graphite by providing nucleation sites for interstitial loop formation. Doping with 11 B casues an increase in the irradiation induced macroscopic dimensional changes, which have been shown to result from an acceleration in the differential crystal growth rate for a given carbon atom displacement rate. Models of irradiation induced creep in graphite have centred around those in which creep is induced by internal stresses due to the anisotopic crystal growth, and those in which creep is activated by atomic displacements. A creep test on boron doped graphite has been performed in an attempt to establish which of these mechanisms is the determining factor. An isotropic nuclear graphite was doped to a 11 B concentration of 0.27 wt.%. The irradiation induced volume shrinkage rate at 750 0 C increased by a factor of 3 over that of the virgin graphite, in agreement with predictions from the earlier work, but the total creep strains were comparable in both doped and virgin samples. This observation supports the view that irradiation induced creep is dependent only on the carbon atom displacement rate and not on the internal stress level determined by the differential crystal growth rate. The implications of this result on the irradiation behaviour of graphite containing significant concentrations of boron are briefly discussed. (author)

  6. The Immunosuppressive drug – Rapamycin – Electroanalytical Sensing Using Boron- Doped Diamond electrode

    International Nuclear Information System (INIS)

    Stanković, Dalibor M.; Kalcher, Kurt

    2015-01-01

    Graphical abstract: Display Omitted -- Abstract: This paper presents for the first time the study of electrochemical behavior of well known immunosuppressant drug – rapamycin (sirolimus) using boron-doped diamond electrode. Rapamycin provided single and oval-shaped oxidation peak at +1.1 V vs. Ag/AgCl electrode in Britton–Robinson buffer solution at pH 3 confirming highly irreversible behavior of analyte at boron-doped diamond electrode. A differential pulse voltammetry was used for quantification of tested drug under the optimum experimental conditions. The calibration curve was linear over the range from 0.5 to 19.5 μM (R 2 = 0.9976) with detection limit of 0.22 μM. Repeatability of ten successfully measurements of three different concentrations (5, 10 and 15 μM) was 2.5, 1.9 and 1,7 %, respectively. Influence of most common biomolecules presented in urine samples was evaluated. The suggested analytical methodology was successfully applied for determination of rapamycin in four urine samples with excellent recoveries. The developed approach could be beneficial in analysis of rapamycin in biological samples using boron-doped diamond electrode as up-to-date electrochemical sensor and could represent inexpensive analytical alternative to separation methods

  7. Kinetics of the permanent deactivation of the boron-oxygen complex in crystalline silicon as a function of illumination intensity

    Directory of Open Access Journals (Sweden)

    Verena Steckenreiter

    2017-03-01

    Full Text Available Based on contactless carrier lifetime measurements performed on p-type boron-doped Czochralski-grown silicon (Cz-Si wafers, we examine the rate constant Rde of the permanent deactivation process of the boron-oxygen-related defect center as a function of the illumination intensity I at 170°C. While at low illumination intensities, a linear increase of Rde on I is measured, at high illumination intensities, Rde seems to saturate. We are able to explain the saturation by assuming that Rde increases proportionally with the excess carrier concentration Δn and take the fact into account that at sufficiently high illumination intensities, the carrier lifetime decreases with increasing Δn and hence the slope of Δn(I decreases, leading to an apparent saturation. Importantly, on low-lifetime Cz-Si samples no saturation of the deactivation rate constant is observed for the same illumination intensities, proving that the deactivation is stimulated by the presence of excess electrons and not directly by the photons.

  8. The corrosion resistance of zinc coatings in the presence of boron-doped detonation nanodiamonds (DND)

    Science.gov (United States)

    Burkat, G. K.; Alexandrova, G. S.; Dolmatov, V. Yu; Osmanova, E. D.; Myllymäki, V.; Vehanen, A.

    2017-02-01

    The effect of detonation nanodiamonds, doped with boron (boron-DND) in detonation synthesis on the process of zinc electrochemical deposition from zincate electrolyte is investigated. It is shown that the scattering power (coating uniformity) increases 2-4 times (depending on the concentration of DND-boron electrolyte conductivity does not change, the corrosion resistance of Zn- DND -boron coating increases 2.6 times in 3% NaCl solution (corrosion currents) and 3 times in the climatic chamber.

  9. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 microm to 100 microm) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both α-SiC and β-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the α-SiC and β-SiC polytypes were similar

  10. Electrochemical mineralization pathway of quinoline by boron-doped diamond anodes.

    Science.gov (United States)

    Wang, Chunrong; Ma, Keke; Wu, Tingting; Ye, Min; Tan, Peng; Yan, Kecheng

    2016-04-01

    Boron-doped diamond anodes were selected for quinoline mineralization, and the resulting intermediates, phenylpropyl aldehyde, phenylpropionic acid, and nonanal were identified and followed during quinoline oxidation by gas chromatography-mass spectrometry and high-performance liquid chromatography. The evolutions of formic acid, acetic acid, oxalic acid, NO2(-), NO3(-), and NH4(+) were quantified. A new reaction pathway for quinoline mineralization by boron-doped diamond anodes has been proposed, where the pyridine ring in quinoline is cleaved by a hydroxyl radical giving phenylpropyl aldehyde and NH4(+). Phenylpropyl aldehyde is quickly oxidized into phenylpropionic acid, and the benzene ring is cleaved giving nonanal. This is further oxidized to formic acid, acetic acid, and oxalic acid. Finally, these organic intermediates are mineralized to CO2 and H2O. NH4(+) is also oxidized to NO2(-) and on to NO3(-). The results will help to gain basic reference for clearing intermediates and their toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility.

    Science.gov (United States)

    Liza, Shahira; Hieda, Junko; Akasaka, Hiroki; Ohtake, Naoto; Tsutsumi, Yusuke; Nagai, Akiko; Hanawa, Takao

    2017-01-01

    Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices.

  12. Enhanced field emission characteristics of boron doped diamond films grown by microwave plasma assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Koinkar, Pankaj M. [Center for International Cooperation in Engineering Education (CICEE), University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan); Patil, Sandip S. [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Kim, Tae-Gyu [Department of Nano System and Process Engineering, Pusan National University, 50 Cheonghak-ri, Samrangjin-eup, Miryang, Gyeongnam, Pusan 627-706 (Korea, Republic of); Yonekura, Daisuke [Department of Mechanical Engineering, University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan); More, Mahendra A., E-mail: mam@physics.unipune.ac.in [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Joag, Dilip S. [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Murakami, Ri-ichi, E-mail: murakami@me.tokushima-u.ac.jp [Department of Mechanical Engineering, University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan)

    2011-01-01

    Boron doped diamond films were synthesized on silicon substrates by microwave plasma chemical vapor deposition (MPCVD) technique. The effect of B{sub 2}O{sub 3} concentration varied from 1000 to 5000 ppm on the field emission characteristics was examined. The surface morphology and quality of films were characterized by scanning electron microscope (SEM) and Raman spectroscopy. The surface morphology obtained by SEM showed variation from facetted microcrystal covered with nanometric grains to cauliflower of nanocrystalline diamond (NCD) particles with increasing B{sub 2}O{sub 3} concentration. The Raman spectra confirm the formation of NCD films. The field emission properties of NCD films were observed to improve upon increasing boron concentration. The values of the onset field and threshold field are observed to be as low as 0.36 and 0.08 V/{mu}m, respectively. The field emission current stability investigated at the preset value of {approx}1 {mu}A is observed to be good, in each case. The enhanced field emission properties are attributed to the better electrical conductivity coupled with the nanometric features of the diamond films.

  13. Development of Doped Microcrystalline Silicon Oxide and its Application to Thin‑Film Silicon Solar Cells

    NARCIS (Netherlands)

    Lambertz, A.

    2015-01-01

    The aim of the present study is the development of doped microcrystalline silicon oxide (µc‑SiOx:H) alloys and its application in thin‑film silicon solar cells. The doped µc‑SiOx:H material was prepared from carbon dioxide (CO2), silane (SiH4), hydrogen (H2) gas mixtures using plasma enhanced

  14. a Study of Oxygen Precipitation in Heavily Doped Silicon.

    Science.gov (United States)

    Graupner, Robert Kurt

    Gettering of impurities with oxygen precipitates is widely used during the fabrication of semiconductors to improve the performance and yield of the devices. Since the effectiveness of the gettering process is largely dependent on the initial interstitial oxygen concentration, accurate measurements of this parameter are of considerable importance. Measurements of interstitial oxygen following thermal cycles are required for development of semiconductor fabrication processes and for research into the mechanisms of oxygen precipitate nucleation and growth. Efforts by industrial associations have led to the development of standard procedures for the measurement of interstitial oxygen in wafers. However practical oxygen measurements often do not satisfy the requirements of such standard procedures. An additional difficulty arises when the silicon wafer has a low resitivity (high dopant concentration). In such cases the infrared light used for the measurement is severely attenuated by the electrons of holes introduced by the dopant. Since such wafers are the substrates used for the production of widely used epitaxial wafers, this measurement problem is economically important. Alternative methods such as Secondary Ion Mass Spectroscopy or Gas Fusion Analysis have been developed to measure oxygen in these cases. However, neither of these methods is capable of distinguishing interstitial oxygen from precipitated oxygen as required for precipitation studies. In addition to the commercial interest in heavily doped silicon substrates, they are also of interest for research into the role of point defects in nucleation and precipitation processes. Despite considerable research effort, there is still disagreement concerning the type of point defect and its role in semiconductor processes. Studies of changes in the interstitial oxygen concentration of heavily doped and lightly doped silicon wafers could help clarify the role of point defects in oxygen nucleation and precipitation

  15. Doping in silicon nanocrystals: An ab initio study of the structural, electronic and optical properties

    International Nuclear Information System (INIS)

    Iori, Federico; Degoli, Elena; Luppi, Eleonora; Magri, Rita; Marri, Ivan; Cantele, G.; Ninno, D.; Trani, F.; Ossicini, Stefano

    2006-01-01

    There are experimental evidences that doping control at the nanoscale can significantly modify the optical properties with respect to the pure systems. This is the case of silicon nanocrystals (Si-nc), for which it has been shown that the photoluminescence (PL) peak can be tuned also below the bulk Si band gap by properly controlling the impurities, for example by boron (B) and phosphorus (P) codoping. In this work, we report on an ab initio study of impurity states in Si-nc. We consider B and P substitutional impurities for Si-nc with a diameter up to 2.2 nm. Formation energies (FEs), electronic, optical and structural properties have been determined as a function of the cluster dimension. For both B-doped and P-doped Si-nc the FE increases on decreasing the dimension, showing that the substitutional doping gets progressively more difficult for the smaller nanocrystals. Moreover, subsurface impurity positions result to be the most stable ones. The codoping reduces the FE strongly favoring this process with respect to the simple n-doping or p-doping. Such an effect can be attributed to charge compensation between the donor and the acceptor atoms. Moreover, smaller structural deformations, with respect to n-doped and p-doped cases, localized only around the impurity sites are observed. The band gap and the optical threshold are largely reduced with respect to the undoped Si-nc showing the possibility of an impurity-based engineering of the Si-nc PL properties

  16. Silicon fiber with p-n junction

    International Nuclear Information System (INIS)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B.

    2014-01-01

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900 μm and core diameters of 20–800 μm. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  17. Comparison on mechanical properties of heavily phosphorus- and arsenic-doped Czochralski silicon wafers

    Science.gov (United States)

    Yuan, Kang; Sun, Yuxin; Lu, Yunhao; Liang, Xingbo; Tian, Daxi; Ma, Xiangyang; Yang, Deren

    2018-04-01

    Heavily phosphorus (P)- and arsenic (As)-doped Czochralski silicon (CZ-Si) wafers generally act as the substrates for the epitaxial silicon wafers used to fabricate power and communication devices. The mechanical properties of such two kinds of n-type heavily doped CZ silicon wafers are vital to ensure the quality of epitaxial silicon wafers and the manufacturing yields of devices. In this work, the mechanical properties including the hardness, Young's modulus, indentation fracture toughness and the resistance to dislocation motion have been comparatively investigated for heavily P- and As-doped CZ-Si wafers. It is found that heavily P-doped CZ-Si possesses somewhat higher hardness, lower Young's modulus, larger indentation fracture toughness and stronger resistance to dislocation motion than heavily As-doped CZ-Si. The mechanisms underlying this finding have been tentatively elucidated by considering the differences in the doping effects of P and As in silicon.

  18. p-type doping by platinum diffusion in low phosphorus doped silicon

    Science.gov (United States)

    Ventura, L.; Pichaud, B.; Vervisch, W.; Lanois, F.

    2003-07-01

    In this work we show that the cooling rate following a platinum diffusion strongly influences the electrical conductivity in weakly phosphorus doped silicon. Diffusions were performed at the temperature of 910 °C in the range of 8 32 hours in 0.6, 30, and 60 Ωrm cm phosphorus doped silicon samples. Spreading resistance profile analyses clearly show an n-type to p-type conversion under the surface when samples are cooled slowly. On the other hand, a compensation of the phosphorus donors can only be observed when samples are quenched. One Pt related acceptor deep level at 0.43 eV from the valence band is assumed to be at the origin of the type conversion mechanism. Its concentration increases by lowering the applied cooling rate. A complex formation with fast species such as interstitial Pt atoms or intrinsic point defects is expected. In 0.6 Ωrm cm phosphorus doped silicon, no acceptor deep level in the lower band gap is detected by DLTS measurement. This removes the opportunity of a pairing between phosphorus and platinum and suggests the possibility of a Fermi level controlled complex formation.

  19. Erratum to: Influence of boron doping on mechanical and tribological ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Erratum to: Influence of boron doping on mechanical and tribological properties in multilayer CVD-diamond coating systems. SAJAD HUSSAIN DIN M A SHAH N A SHEIKH K A NAJAR K RAMASUBRAMANIAN S BALAJI M S RAMACHANDRA RAO. Volume 39 Issue 7 December 2016 pp 1763-1763 ...

  20. Negligible Electronic Interaction between Photoexcited Electron-Hole Pairs and Free Electrons in Phosphorus-Boron Co-Doped Silicon Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Limpens, Rens [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Neale, Nathan R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fujii, Minoru [Kobe University; Gregorkiewicz, Tom [University of Amsterdam

    2018-03-05

    Phosphorus (P) and boron (B) co-doped Si nanocrystals (NCs) have raised interest in the optoelectronic industry due to their electronic tunability, optimal carrier multiplication properties, and straightforward dispersibility in polar solvents. Yet a basic understanding of the interaction of photoexcited electron-hole (e-h) pairs with new physical features that are introduced by the co-doping process (free carriers, defect states, and surface chemistry) is missing. Here, we present the first study of the ultrafast carrier dynamics in SiO2-embedded P-B co-doped Si NC ensembles using induced absorption spectroscopy through a two-step approach. First, the induced absorption data show that the large fraction of the dopants residing on the NC surface slows down carrier relaxation dynamics within the first 20 ps relative to intrinsic (undoped) Si NCs, which we interpret as enhanced surface passivation. On longer time-scales (picosecond to nanosecond regime), we observe a speeding up of the carrier relaxation dynamics and ascribe it to doping-induced trap states. This argument is deduced from the second part of the study, where we investigate multiexciton interactions. From a stochastic modeling approach we show that localized carriers, which are introduced by the P or B dopants, have minor electronic interactions with the photoexcited e-h pairs. This is understood in light of the strong localization of the introduced carriers on their original P- or B-dopant atoms, due to the strong quantum confinement regime in these relatively small NCs (<6 nm).

  1. Phosphorus {delta}-doped silicon: mixed-atom pseudopotentials and dopant disorder effects

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Damien J; Marks, Nigel A [Nanochemistry Research Institute, Curtin University, PO Box U1987, Perth WA 6845 (Australia); Warschkow, Oliver; McKenzie, David R, E-mail: d.carter@curtin.edu.au [Centre for Quantum Computer Technology, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2011-02-11

    Within a full density functional theory framework we calculate the band structure and doping potential for phosphorus {delta}-doped silicon. We compare two different representations of the dopant plane; pseudo-atoms in which the nuclear charge is fractional between silicon and phosphorus, and explicit arrangements employing distinct silicon and phosphorus atoms. While the pseudo-atom approach offers several computational advantages, the explicit model calculations differ in a number of key points, including the valley splitting, the Fermi level and the width of the doping potential. These findings have implications for parameters used in device modelling.

  2. Phosphorus-doped Amorphous Silicon Nitride Films Applied to Crystalline Silicon Solar Cells

    NARCIS (Netherlands)

    Feinäugle, Matthias

    2008-01-01

    The Photovoltaics Group at the Universitat Politècnica de Catalunya is investigating silicon carbide (SiC) for the electronic passivation of the surface of crystalline silicon solar cells. The doping of SiC passivation layers with phosphorus resulted in a clear improvement of the minority carrier

  3. A new computationally-efficient two-dimensional model for boron implantation into single-crystal silicon

    International Nuclear Information System (INIS)

    Klein, K.M.; Park, C.; Yang, S.; Morris, S.; Do, V.; Tasch, F.

    1992-01-01

    We have developed a new computationally-efficient two-dimensional model for boron implantation into single-crystal silicon. This paper reports that this new model is based on the dual Pearson semi-empirical implant depth profile model and the UT-MARLOWE Monte Carlo boron ion implantation model. This new model can predict with very high computational efficiency two-dimensional as-implanted boron profiles as a function of energy, dose, tilt angle, rotation angle, masking edge orientation, and masking edge thickness

  4. Electrophysical properties of silicon doped by palladium-103 isotope

    International Nuclear Information System (INIS)

    Makhkamov, Sh.; Tursunov, N.A.; Sattiev, A.R.; Normurodov, A.B.

    2007-01-01

    The work is devoted to study of radiation physical processes taking place in Si under nuclear transmutation, Identification and determination of defects microstructure and homogeneities and their distribution, study of interactions of nuclear-transformed phosphorus isotopes with palladium atoms, and its effect on crystal properties. For examination monocrystalline silicon of n- and p-type conductivity with specific resistance from 1 to 40 Ω·cm, dislocation density ∼10 4 cm -2 and oxygen content ∼10 17 cm -3 has been applied. Doping of silicon plates by examined admixture has been carried out by thermal diffusion method within temperature range 1000-1250 deg. C for 0.5- 5 h. Irradiation of doped silicon was conducted by reactor neutron fluences 5·10 18 - 5·10 19 cm -2 with subsequent annealing at 1000 deg. C for 30 min. Efficiency of mixture centers formation in silicon, effect of concentration of formed mixture-defect centers on electro-physical, photoelectric and recombination parameters of doped silicon and revealing of type and state of generated defects have been controlled by electric, volume and X-ray fluorescent methods. On the base of spectroscopic researches it is shown, that in silicon forbidden zone after Pd diffusion in DLTS spectra peaks related with acceptor (E c -0.18 and E v +0.34 eV) levels, and peak responsible for level E v +0.32 eV of donor character caused by palladium impurity. It is shown, that irradiation of doped silicon samples by neutrons lead to nuclear transmutation of 102 Pd, 104 Pd in 103 Pd isotopes in the crystal volume with following electron capture in stable isotope 103m Rh

  5. Electron transfer at boron-doped diamond electrodes modified by graphitic micro-domains

    Energy Technology Data Exchange (ETDEWEB)

    Mahe, E.; Devilliers, D. [Pierre et Marie Curie Univ., Paris (France). Electrochemistry Lab.; Comninellis, C. [Lausanne Ecole Polytechnique, Lausanne (Switzerland). Groupe de Genie Electrochimique

    2006-07-01

    Boron-doped (BDD) electrodes have been used in electrolysis procedures for the last 10 years. The mechanical stability of the electrode, its large electrochemical window and its low capacitive current place this new electrode material as an alternative for replacing more costly or toxic materials such as mercury. However, the ferri/ferrocyanide system of boron-doped electrodes has shown contradictory results in the literature. This study proposed a cathodic pre-treatment which relied on the presence of residual graphitic domains formed during the preparation of the BDD film. An experiment was conducted in which the doping procedure was used to control the amount of graphitic phase on the electrode with highly oriented pyrolytic graphite (HOPG) grafted on the BDD surface. Surface characterization with Raman spectroscopy and Scanning Electron Microscopy (SEM) was then carried out using cyclic voltammetry and electrochemical impedance spectroscopy. The electroanalytical determination of the amount of graphitic micro-domains was described and a pulse procedure was proposed which obtained a reproducible surface state. 2 refs., 2 figs.

  6. Tunable Bandgap Opening in the Proposed Structure of Silicon Doped Graphene

    OpenAIRE

    Azadeh, Mohammad S. Sharif; Kokabi, Alireza; Hosseini, Mehdi; Fardmanesh, Mehdi

    2011-01-01

    A specific structure of doped graphene with substituted silicon impurity is introduced and ab. initio density-functional approach is applied for energy band structure calculation of proposed structure. Using the band structure calculation for different silicon sites in the host graphene, the effect of silicon concentration and unit cell geometry on the bandgap of the proposed structure is also investigated. Chemically silicon doped graphene results in an energy gap as large as 2eV according t...

  7. Neutron transmutation doping of polycrystalline silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Westbrook, R.D.; Wood, R.F.; Young, R.T.

    1976-04-01

    Chemical vapor deposition (CVD) of doped silane has been used by others to deposit a polycrytalline silicon film (polysil) on metal or graphite substrates, but dopant migration to grain boundaries during deposition apparently prohibits attaining a uniform or desired dopant concentration. In contrast, we have used neutron transmutation doping to introduce a uniform phosphorus dopant concentration in commercially available undoped CVD polysil at doping concentrations greater than or equal to 2 x 10 15 cm -3 . Radiation damage annealing to 800 0 C did not indicate dopant migration. Carrier mobility increased with doping concentration and the minority carrier lifetime (MCL) appears to be comparable to that of neutron transmutation doped (NTD) single crystal Si. Application of this technique to photovoltaic solar cell fabrication is discussed

  8. Stopping characteristics of boron and indium ions in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Veselov, D. S., E-mail: DSVeselov@mephi.ru; Voronov, Yu. A. [National Research Nuclear University MEPhI (Russian Federation)

    2016-12-15

    The mean range and its standard deviation are calculated for boron ions implanted into silicon with energies below 10 keV. Similar characteristics are calculated for indium ions with energies below 200 keV. The obtained results are presented in tabular and graphical forms. These results may help in the assessment of conditions of production of integrated circuits with nanometer-sized elements.

  9. Plasma immersion ion implantation of boron for ribbon silicon solar cells

    Directory of Open Access Journals (Sweden)

    Derbouz K.

    2013-09-01

    Full Text Available In this work, we report for the first time on the solar cell fabrication on n-type silicon RST (for Ribbon on Sacrificial Template using plasma immersion ion implantation. The experiments were also carried out on FZ silicon as a reference. Boron was implanted at energies from 10 to 15 kV and doses from 1015 to 1016 cm-2, then activated by a thermal annealing in a conventional furnace at 900 and 950 °C for 30 min. The n+ region acting as a back surface field was achieved by phosphorus spin-coating. The frontside boron emitter was passivated either by applying a 10 nm deposited SiOX plasma-enhanced chemical vapor deposition (PECVD or with a 10 nm grown thermal oxide. The anti-reflection coating layer formed a 60 nm thick SiNX layer. We show that energies less than 15 kV and doses around 5 × 1015 cm-2 are appropriate to achieve open circuit voltage higher than 590 mV and efficiency around 16.7% on FZ-Si. The photovoltaic performances on ribbon silicon are so far limited by the bulk quality of the material and by the quality of the junction through the presence of silicon carbide precipitates at the surface. Nevertheless, we demonstrate that plasma immersion ion implantation is very promising for solar cell fabrication on ultrathin silicon wafers such as ribbons.

  10. Substrate and p-layer effects on polymorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Abolmasov S.N.

    2014-07-01

    Full Text Available The influence of textured transparent conducting oxide (TCO substrate and p-layer on the performance of single-junction hydrogenated polymorphous silicon (pm-Si:H solar cells has been addressed. Comparative studies were performed using p-i-n devices with identical i/n-layers and back reflectors fabricated on textured Asahi U-type fluorine-doped SnO2, low-pressure chemical vapor deposited (LPCVD boron-doped ZnO and sputtered/etched aluminum-doped ZnO substrates. The p-layers were hydrogenated amorphous silicon carbon and microcrystalline silicon oxide. As expected, the type of TCO and p-layer both have a great influence on the initial conversion efficiency of the solar cells. However they have no effect on the defect density of the pm-Si:H absorber layer.

  11. The development of the market for neutron transmutation doped silicon

    International Nuclear Information System (INIS)

    Herzer, H.; Vieweg-Gutberlet, G.

    1984-01-01

    Neutron transmutation doped silicon was introduced to the electronic device market in the 1975-1976 time period. Today, neutron transmutation doping is definitely a mature technology applied mainly to semiconductor power devices. There is no doubt that the power device sector will remain the major consumer of NTD silicon in the near future. This paper examines the possible application of NTD silicon to other areas of the semiconductor market, and concludes that the need for NTD silicon will continue to grow and will expand into other applications. Consequently, unless new reactor capacities become available by the end of the decade, NTD silicon applications will probably be limited mainly to power and sensor devices

  12. Plasma Synthesized Doped Boron Nanopowder for MgB2 Superconductors

    International Nuclear Information System (INIS)

    Marzik, James V.

    2012-01-01

    Under this program, a process to synthesize nano-sized doped boron powder by a plasma synthesis process was developed and scaled up from 20 gram batches at program start to over 200 grams by program end. Over 75 batches of boron nanopowder were made by RF plasma synthesis. Particle sizes were typically in the 20-200 nm range. The powder was synthesized by the reductive pyrolysis of BCl 3 in hydrogen in an RF plasma. A wide range of process parameters were investigated including plasma power, torch geometry, gas flow rates, and process pressure. The powder-in-tube technique was used to make monofilament and multifilament superconducting wires. MgB 2 wire made with Specialty Materials plasma synthesized boron nanopowder exhibited superconducting properties that significantly exceeded the program goals. Superconducting critical currents, J c , in excess of 10 5 A cm -2 at magnetic fields of 8 tesla were reproducibly achieved. The upper critical magnetic field in wires fabricated with program boron powder were H c2 (0) = 37 tesla, demonstrating the potential of these materials for high field magnet applications. T c in carbon-doped MgB 2 powder showed a systematic decrease with increasing carbon precursor gas flows, indicating the plasma synthesis process can give precise control over dopant concentrations. Synthesis rates increased by a factor of 400% over the course of the program, demonstrating the scalability of the powder synthesis process. The plasma synthesis equipment at Specialty Materials has successfully and reproducibly made high quality boron nanopowder for MgB 2 superconductors. Research and development from this program enabled Specialty Materials to successfully scale up the powder synthesis process by a factor of ten and to double the size of its powder pilot plant. Thus far the program has been a technical success. It is anticipated that continued systematic development of plasma processing parameters, dopant chemistry and concentration, wire

  13. Communication: Towards catalytic nitric oxide reduction via oligomerization on boron doped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Cantatore, Valentina, E-mail: valcan@chalmers.se; Panas, Itai [Department of Chemistry and Chemical Engineering, Energy & Materials, Chalmers University of Technology, Gothenburg (Sweden)

    2016-04-21

    We use density functional theory to describe a novel way for metal free catalytic reduction of nitric oxide NO utilizing boron doped graphene. The present study is based on the observation that boron doped graphene and O—N=N—O{sup −} act as Lewis acid-base pair allowing the graphene surface to act as a catalyst. The process implies electron assisted N=N bond formation prior to N—O dissociation. Two N{sub 2} + O{sub 2} product channels, one of which favoring N{sub 2}O formation, are envisaged as outcome of the catalytic process. Besides, we show also that the N{sub 2} + O{sub 2} formation pathways are contrasted by a side reaction that brings to N{sub 3}O{sub 3}{sup −} formation and decomposition into N{sub 2}O + NO{sub 2}{sup −}.

  14. Shock compression parameters for a boron-loaded, silicone-rubber composite

    International Nuclear Information System (INIS)

    Gust, W.H.; Van Thiel, M.; Gathers, G.R.

    1975-01-01

    Hugoniot parameters under uniaxial-shock-wave-loading from 0.03 to 0.6 Mbar are presented for a composite with 70 wt percent boron loaded in a silicone-rubber matrix. The plot of shock velocity vs particle velocity was found to be nonlinear. Equations that describe fits of the data are presented. (U.S.)

  15. Novel semiconducting boron carbide/pyridine polymers for neutron detection at zero bias

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, Elena; Enders, A.; Dowben, P.A. [University of Nebraska-Lincoln, Department of Physics and Astronomy, Lincoln, NE (United States); James, Robinson; Chiluwal, Umesh; Gapfizi, Richard; Tae, Jae-Do; Driver, M. Sky; Kelber, Jeffry A. [University of North Texas, Department of Chemistry, Denton, TX (United States); Pasquale, Frank L. [University of North Texas, Department of Chemistry, Denton, TX (United States); Lam Research Corporation, PECVD Business Unit, Tualatin, OR (United States); Colon Santana, Juan A. [Center for Energy Sciences Research, Lincoln, NE (United States)

    2014-09-19

    Thin films containing aromatic pyridine moieties bonded to boron, in the partially dehydrogenated boron-rich icosahedra (B{sub 10}C{sub 2}H{sub X}), prove to be an effective material for neutron detection applications when deposited on n-doped (100) silicon substrates. The characteristic I-V curves for the heterojunction diodes exhibit strong rectification and largely unperturbed normalized reverse bias leakage currents with increasing pyridine content. The neutron capture generated pulses from these heterojunction diodes were obtained at zero bias voltage although without the signatures of complete electron-hole collection. These results suggest that modifications to boron carbide may result in better neutron voltaic materials. (orig.)

  16. Homojunction silicon solar cells doping by ion implantation

    Science.gov (United States)

    Milési, Frédéric; Coig, Marianne; Lerat, Jean-François; Desrues, Thibaut; Le Perchec, Jérôme; Lanterne, Adeline; Lachal, Laurent; Mazen, Frédéric

    2017-10-01

    Production costs and energy efficiency are the main priorities for the photovoltaic (PV) industry (COP21 conclusions). To lower costs and increase efficiency, we are proposing to reduce the number of processing steps involved in the manufacture of N-type Passivated Rear Totally Diffused (PERT) silicon solar cells. Replacing the conventional thermal diffusion doping steps by ion implantation followed by thermal annealing allows reducing the number of steps from 7 to 3 while maintaining similar efficiency. This alternative approach was investigated in the present work. Beamline and plasma immersion ion implantation (BLII and PIII) methods were used to insert n-(phosphorus) and p-type (boron) dopants into the Si substrate. With higher throughput and lower costs, PIII is a better candidate for the photovoltaic industry, compared to BL. However, the optimization of the plasma conditions is demanding and more complex than the beamline approach. Subsequent annealing was performed on selected samples to activate the dopants on both sides of the solar cell. Two annealing methods were investigated: soak and spike thermal annealing. Best performing solar cells, showing a PV efficiency of about 20%, was obtained using spike annealing with adapted ion implantation conditions.

  17. Segregation of boron implanted into silicon on angular configurations of silicon/silicon dioxide oxidation interface

    CERN Document Server

    Tarnavskij, G A; Obrekht, M S

    2001-01-01

    One studies segregation of boron implanted into silicon when a wave (interface) of oxidation moves within it. There are four types of angular configurations of SiO sub 2 /Si oxidation interface, that is: direct and reverse shoulders, trench type cavities and a square. By means of computer-aided simulation one obtained and analyzed complex patterns of B concentration distribution within Si, SiO sub 2 domains and at SiO sub 2 /Si interface for all types of angular configurations of the oxidation interface

  18. Boron-Doped Diamond Electrodes for the Electrochemical Oxidation and Cleavage of Peptides

    NARCIS (Netherlands)

    Roeser, Julien; Alting, Niels F. A.; Permentier, Hjalmar P.; Bruins, Andries P.; Bischoff, Rainer

    2013-01-01

    Electrochemical oxidation of peptides and proteins is traditionally performed on carbon-based electrodes. Adsorption caused by the affinity of hydrophobic and aromatic amino acids toward these surfaces leads to electrode fouling. We compared the performance of boron-doped diamond (BDD) and glassy

  19. Doping profile measurement on textured silicon surface

    Science.gov (United States)

    Essa, Zahi; Taleb, Nadjib; Sermage, Bernard; Broussillou, Cédric; Bazer-Bachi, Barbara; Quillec, Maurice

    2018-04-01

    In crystalline silicon solar cells, the front surface is textured in order to lower the reflection of the incident light and increase the efficiency of the cell. This texturing whose dimensions are a few micrometers wide and high, often makes it difficult to determine the doping profile measurement. We have measured by secondary ion mass spectrometry (SIMS) and electrochemical capacitance voltage profiling the doping profile of implanted phosphorus in alkaline textured and in polished monocrystalline silicon wafers. The paper shows that SIMS gives accurate results provided the primary ion impact angle is small enough. Moreover, the comparison between these two techniques gives an estimation of the concentration of electrically inactive phosphorus atoms.

  20. Neutralization study of boron and some metallic impurities (gold, titanium, manganese, chromium) by hydrogen implantation in monocrystal silicon

    International Nuclear Information System (INIS)

    Zundel, T.

    1987-02-01

    Boron doped silicon implanted with hydrogen at low energy in the temperature range 80-140 0 C shows a large decrease of the electrically active dopant concentration up to a depth which increases with the temperature, the implantation duration and the starting material resistivity. This effect is assigned to the formation of an electrically inactive BH complex. The hydrogen incorporation process shows a weakly temperature dependent enhanced diffusion step followed by a normal diffusion phase which may be described by a thermally activated diffusion coefficient. Heating at 80 0 C produces a complete dissociation of the BH complexes in the space charge region of reverse biased Schottky diodes. Consequently the released hydrogen drifts under the electric field and the neutralization becomes more pronounced in the bulk. Hydrogen neutralizes the gold, chromium, manganese related deep levels but has no effect on titanium related defect levels. Thermal annealing at 495 0 C of hydrogenated chromium or manganese doped samples produces four majority carriers levels which disappear at 700 0 C [fr

  1. Electron trap annealing in neutron transmutation doped silicon

    DEFF Research Database (Denmark)

    Guldberg, J.

    1977-01-01

    Silicon doped by neutron transmutation to 1.2×1014 phosphorus atoms/cm3 was investigated with deep level transient spectroscopy using evaporated Au/n-Si diodes. Seven bulk electron traps were identified which appear after 30 min N2 anneal at temperatures between 425 and 725 °C. Five of these anne......Silicon doped by neutron transmutation to 1.2×1014 phosphorus atoms/cm3 was investigated with deep level transient spectroscopy using evaporated Au/n-Si diodes. Seven bulk electron traps were identified which appear after 30 min N2 anneal at temperatures between 425 and 725 °C. Five...

  2. Influence of screening effect on hydrogen passivation of hole silicon

    International Nuclear Information System (INIS)

    Aleksandrov, O.V.

    2002-01-01

    The simulation of hole silicon passivation during hydrogen diffusion with account of hydrogen-acceptor pairs formation, internal electrical field and screening effect has been carried out. Screening by free carriers of hydrogen and acceptor ions results in shortening their interaction radii and slacking the concentration dependence of hydrogen diffusivity at high level of silicon doping. The consistency of simulated and experimental profiles of holes and hydrogen-acceptor pairs is reached in a broad band of doping levels from 4 x 10 14 to 1.2 x 10 20 cm -3 at the pair binding energy of 0.70-0.79 eV while the radius of the Coulomb interaction of hydrogen and boron ions is equal to 35 A under low doping and decrease with increasing doping level [ru

  3. Chalcogen doping of silicon via intense femtosecond-laser irradiation

    International Nuclear Information System (INIS)

    Sheehy, Michael A.; Tull, Brian R.; Friend, Cynthia M.; Mazur, Eric

    2007-01-01

    We have previously shown that doping silicon with sulfur via femtosecond-laser irradiation leads to near-unity absorption of radiation from ultraviolet wavelengths to below band gap short-wave infrared wavelengths. Here, we demonstrate that doping silicon with two other group VI elements (chalcogens), selenium and tellurium, also leads to near-unity broadband absorption. A powder of the chalcogen dopant is spread on the silicon substrate and irradiated with femtosecond-laser pulses. We examine and compare the resulting morphology, optical properties, and chemical composition for each chalcogen-doped substrate before and after thermal annealing. Thermal annealing reduces the absorption of below band gap radiation by an amount that correlates with the diffusivity of the chalcogen dopant used to make the sample. We propose a mechanism for the absorption of below band gap radiation based on defects in the lattice brought about by the femtosecond-laser irradiation and the presence of a supersaturated concentration of chalcogen dopant atoms. The selenium and tellurium doped samples show particular promise for use in infrared photodetectors as they retain most of their infrared absorptance even after thermal annealing-a necessary step in many semiconductor device manufacturing processes

  4. High-field EPR spectroscopy of thermal donors in silicon

    DEFF Research Database (Denmark)

    Dirksen, R.; Rasmussen, F.B.; Gregorkiewicz, T.

    1997-01-01

    Thermal donors generated in p-type boron-doped Czochralski-grown silicon by a 450 degrees C heat treatment have been studied by high-field magnetic resonance spectroscopy. In the experiments conducted at a microwave frequency of 140 GHz and in a magnetic field of approximately 5 T four individual...

  5. Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors

    Science.gov (United States)

    Zhou, Ying; Wang, Dao-Long; Wang, Chun-Lei; Jin, Xin-Xin; Qiu, Jie-Shan

    2014-08-01

    Oxidized asphaltene (OA), a thermosetting material with plenty of functional groups, is synthesized from asphaltene (A) using HNO3/H2SO4 as the oxidizing agent. Boron, nitrogen co-doped porous carbon (BNC—OA) is prepared by carbonization of the mixture of boric acid and OA at 1173 K in an argon atmosphere. X-ray photoelectron spectroscopy (XPS) characterization reveals that the BNC—OA has a nitrogen content of 3.26 at.% and a boron content of 1.31 at.%, while its oxidation-free counterpart (BNC—SA) has a nitrogen content of 1.61 at.% and a boron content of 3.02 at.%. The specific surface area and total pore volume of BNC—OA are 1103 m2·g-1 and 0.921 cm3·g-1, respectively. At a current density of 0.1 A·g-1, the specific capacitance of BNC-OA is 335 F·g-1 and the capacitance retention can still reach 83% at 1 A·g-1. The analysis shows that the superior electrochemical performance of the BNC—OA is attributed to the pseudocapacitance behavior of surface heteroatom functional groups and an abundant pore-structure. Boron, nitrogen co-doped porous carbon is a promising electrode material for supercapacitors.

  6. Roughness-based monitoring of transparency and conductivity in boron-doped ZnO thin films prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Gaikwad, Rajendra S.; Bhande, Sambhaji S.; Mane, Rajaram S.; Pawar, Bhagwat N.; Gaikwad, Sanjay L.; Han, Sung-Hwan; Joo, Oh-Shim

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► We report surface roughness dependent transparency and conductivity in ZnO films. ► The surface roughness with respected to boron doping concentrations is studied. ► Boron doped and pristine Zinc oxide thin films have showed ≥95% transmittance. ► Increased carrier concentration of 9.21 × 10 21 cm −3 revealed from Hall measurement. -- Abstract: Sprayed polycrystalline ZnO and boron-doped ZnO thin films composed of spherical grains of 25–32 nm in diameters are used in roughness measurement and further correlated with the transparency and the conductivity characteristics. The surface roughness is increased up to Zn 0.98 B 0.02 O and then declined at higher boron concentrations. The sprayed ZnO films revealed ≥95% transmittance in the visible wavelength range, 1.956 × 10 −4 Ω cm electrical resistivity, 46 cm 2 /V s Hall mobility and 9.21 × 10 21 cm −3 charge carrier concentration. The X-ray photoelectron spectroscopy study has confirmed 0.15 eV binding energy change for Zn 2p 3/2 when 2 at% boron content is mixed without altering electro-optical properties substantially. Finally, using soft modeling importance of these textured ZnO over non-textured films for enhancing the solar cells performance is explored.

  7. Electrochemical Properties of Boron-Doped Fullerene Derivatives for Lithium-Ion Battery Applications.

    Science.gov (United States)

    Sood, Parveen; Kim, Ki Chul; Jang, Seung Soon

    2018-03-19

    The high electron affinity of fullerene C 60 coupled with the rich chemistry of carbon makes it a promising material for cathode applications in lithium-ion batteries. Since boron has one electron less than carbon, the presence of boron on C 60 cages is expected to generate electron deficiency in C 60 , and thereby to enhance its electron affinity. By using density functional theory (DFT), we studied the redox potentials and electronic properties of C 60 and C 59 B. We have found that doping C 60 with one boron atom results in a substantial increase in redox potential from 2.462 V to 3.709 V, which was attributed to the formation of an open shell system. We also investigated the redox and electronic properties of C 59 B functionalized with various redox-active oxygen containing functional groups (OCFGs). For the combination of functionalization with OCFGs and boron doping, it is found that the enhancement of redox potential is reduced, which is mainly attributed to the open shell structure being changed to a closed-shell one. Nevertheless, the redox potentials are still higher than that of pristine C 60 . From the observation that the lowest unoccupied molecular orbital of closed-shell OCFG- functionalized C 59 B is correlated well with the redox potential, it was confirmed that the spin state is crucial to be considered to understand the relationship between electronic structure and redox properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electrochemical evaluation and determination of antiretroviral drug fosamprenavir using boron-doped diamond and glassy carbon electrodes.

    Science.gov (United States)

    Gumustas, Mehmet; Ozkan, Sibel A

    2010-05-01

    Fosamprenavir is a pro-drug of the antiretroviral protease inhibitor amprenavir and is oxidizable at solid electrodes. The anodic oxidation behavior of fosamprenavir was investigated using cyclic and linear sweep voltammetry at boron-doped diamond and glassy carbon electrodes. In cyclic voltammetry, depending on pH values, fosamprenavir showed one sharp irreversible oxidation peak or wave depending on the working electrode. The mechanism of the oxidation process was discussed. The voltammetric study of some model compounds allowed elucidation of the possible oxidation mechanism of fosamprenavir. The aim of this study was to determine fosamprenavir levels in pharmaceutical formulations and biological samples by means of electrochemical methods. Using the sharp oxidation response, two voltammetric methods were described for the determination of fosamprenavir by differential pulse and square-wave voltammetry at the boron-doped diamond and glassy carbon electrodes. These two voltammetric techniques are 0.1 M H(2)SO(4) and phosphate buffer at pH 2.0 which allow quantitation over a 4 x 10(-6) to 8 x 10(-5) M range using boron-doped diamond and a 1 x 10(-5) to 1 x 10(-4) M range using glassy carbon electrodes, respectively, in supporting electrolyte. All necessary validation parameters were investigated and calculated. These methods were successfully applied for the analysis of fosamprenavir pharmaceutical dosage forms, human serum and urine samples. The standard addition method was used in biological media using boron-doped diamond electrode. No electroactive interferences from the tablet excipients or endogenous substances from biological material were found. The results were statistically compared with those obtained through an established HPLC-UV technique; no significant differences were found between the voltammetric and HPLC methods.

  9. Textured surface boron-doped ZnO transparent conductive oxides on polyethylene terephthalate substrates for Si-based thin film solar cells

    International Nuclear Information System (INIS)

    Chen Xinliang; Lin Quan; Ni Jian; Zhang Dekun; Sun Jian; Zhao Ying; Geng Xinhua

    2011-01-01

    Textured surface boron-doped zinc oxide (ZnO:B) thin films were directly grown via low pressure metal organic chemical vapor deposition (LP-MOCVD) on polyethylene terephthalate (PET) flexible substrates at low temperatures and high-efficiency flexible polymer silicon (Si) based thin film solar cells were obtained. High purity diethylzinc and water vapors were used as source materials, and diborane was used as an n-type dopant gas. P-i-n silicon layers were fabricated at ∼ 398 K by plasma enhanced chemical vapor deposition. These textured surface ZnO:B thin films on PET substrates (PET/ZnO:B) exhibit rough pyramid-like morphology with high transparencies (T ∼ 80%) and excellent electrical properties (Rs ∼ 10 Ω at d ∼ 1500 nm). Finally, the PET/ZnO:B thin films were applied in flexible p-i-n type silicon thin film solar cells (device structure: PET/ZnO:B/p-i-n a-Si:H/Al) with a high conversion efficiency of 6.32% (short-circuit current density J SC = 10.62 mA/cm 2 , open-circuit voltage V OC = 0.93 V and fill factor = 64%).

  10. Thermal shock resistance of thick boron-doped diamond under extreme heat loads

    NARCIS (Netherlands)

    De Temmerman, G.; Dodson, J.; Linke, J.; Lisgo, S.; Pintsuk, G.; Porro, S.; Scarsbrook, G.

    2011-01-01

    Thick free-standing boron-doped diamonds were prepared by microwave plasma assisted chemical vapour deposition. Samples with a final thickness close to 5 mm and with lateral dimensions 25 x 25 mm were produced. The thermal shock resistance of the material was tested by exposure in the JUDITH

  11. Boron-doped nanocrystalline diamond electrodes for neural interfaces: in vivo biocompatibility evaluation

    Czech Academy of Sciences Publication Activity Database

    Alcaide, M.; Taylor, Andrew; Fjorback, M.; Zachar, V.; Pennisi, C.P.

    2016-01-01

    Roč. 10, Mar (2016), 1-9, č. článku 87. ISSN 1662-453X Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * neuroprosthetic interfaces * neural electrodes * boron-doped diamond * titanium nitride * foreign body reaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.566, year: 2016

  12. In-situ boron doping of chemical-bath deposited CdS thin films

    International Nuclear Information System (INIS)

    Khallaf, Hani; Park, S.; Schulte, Alfons; Chai, Guangyu; Lupan, Oleg; Chow, Lee; Heinrich, Helge

    2009-01-01

    In-situ boron doping of CdS using chemical-bath deposition (CBD) is reported. The effect of B doping on optical properties, as well as electrical properties, crystal structure, chemistry, and morphology of CdS films is studied. We present a successful approach towards B doping of CdS using CBD, where a resistivity as low as 1.7 x 10 -2 Ωcm and a carrier density as high as 1.91 x 10 19 cm -3 were achieved. The bandgap of B-doped films was found to slightly decrease as the[B]/[Cd] ratio in the solution increases. X-ray diffraction studies showed B 3+ ions likely enter the lattice substitutionally. A phase transition, due to annealing, as well as induced lattice defects, due to B doping, were detected by micro-Raman spectroscopy and transmission electron microscopy. The chemistry and morphology of films were unaffected by B doping. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. X-ray diffuse scattering study of the kinetics of stacking fault growth and annihilation in boron-implanted silicon

    Science.gov (United States)

    Luebbert, D.; Arthur, J.; Sztucki, M.; Metzger, T. H.; Griffin, P. B.; Patel, J. R.

    2002-10-01

    Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range of 925 to 1025 degC. From the growth kinetics we obtain an activation energy for interstitial migration in silicon: EI=1.98plus-or-minus0.06 eV. Fault intensity and size versus time results indicate that faults do not shrink and disappear, but rather are annihilated by a dislocation reaction mechanism.

  14. Investigation of optimized experimental parameters including laser wavelength for boron measurement in photovoltaic grade silicon using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Darwiche, S.; Benmansour, M.; Eliezer, N.; Morvan, D.

    2010-01-01

    The quantification of boron and other impurities in photovoltaic grade silicon was investigated using the LIBS technique with attention to the laser wavelength employed, temporal parameters, and the nature of the ambient gas. The laser wavelength was found to have a moderate effect on the performance of the process, while the type of purge gas and temporal parameters had a strong effect on the signal-to-background ratio (SBR) of the boron spectral emission, which was used to determine the boron concentration in silicon. The three parameters are not independent, meaning that for each different purge gas, different optimal temporal parameters are observed. Electron density was also calculated from Stark broadening of the 390.5 nm silicon emission line in order to better understand the different performances observed when using different gases and gating parameters. Calibration curves were made for boron measurement in silicon using certified standards with different purge gases while using the temporal parameters which had been optimized for that gas. By comparing the calibration curves, it was determined that argon is superior to helium or air for use as the analysis chamber purge gas with an UV laser.

  15. First-principles study of the effects of Silicon doping on the Schottky barrier of TiSi2/Si interfaces

    Science.gov (United States)

    Wang, Han; Silva, Eduardo; West, Damien; Sun, Yiyang; Restrepo, Oscar; Zhang, Shengbai; Kota, Murali

    As scaling of semiconductor devices is pursued in order to improve power efficiency, quantum effects due to the reduced dimensions on devices have become dominant factors in power, performance, and area scaling. In particular, source/drain contact resistance has become a limiting factor in the overall device power efficiency and performance. As a consequence, techniques such as heavy doping of source and drain have been explored to reduce the contact resistance, thereby shrinking the width of depletion region and lowering the Schottky barrier height. In this work, we study the relation between doping in Silicon and the Schottky barrier of a TiSi2/Si interface with first-principles calculation. Virtual Crystal Approximation (VCA) is used to calculate the average potential of the interface with varying doping concentration, while the I-V curve for the corresponding interface is calculated with a generalized one-dimensional transfer matrix method. The relation between substitutional and interstitial Boron and Phosphorus dopant near the interface, and their effect on tuning the Schottky barrier is studied. These studies provide insight to the type of doping and the effect of dopant segregation to optimize metal-semiconductor interface resistance.

  16. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Issaoui, R.; Achard, J.; Tallaire, A.; Silva, F.; Gicquel, A. [LSPM-CNRS (formerly LIMHP), Universite Paris 13, 99, Avenue Jean-Baptiste Clement, 93430 Villetaneuse (France); Bisaro, R.; Servet, B.; Garry, G. [Thales Research and Technology France, Campus de Polytechnique, 1 Avenue Augustin Fresnel, F-91767 Palaiseau Cedex (France); Barjon, J. [GEMaC-CNRS, Universite de Versailles Saint Quentin Batiment Fermat, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France)

    2012-03-19

    In this study, 4 x 4 mm{sup 2} freestanding boron-doped diamond single crystals with thickness up to 260 {mu}m have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 10{sup 18} to 10{sup 20} cm{sup -3} which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 {Omega} cm have been obtained.

  17. Synthesis of boron and nitrogen co-doped carbon nanofiber as efficient metal-free electrocatalyst for the VO"2"+/VO_2"+ Redox Reaction

    International Nuclear Information System (INIS)

    Shi, Lang; Liu, Suqin; He, Zhen; Yuan, Hao; Shen, Junxi

    2015-01-01

    Boron or nitrogen mono-doped carbon nanofiber (CNF), and boron, nitrogen co-doped CNF are intentionally prepared as positive electrodes in a vanadium redox flow battery (VRFB). The structures and electrochemical properties of the materials are investigated by Scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry and electrochemical impendence spectroscopy. The experimental results indicate that either B or N mono-doped CNF shown better electrochemical performance than untreated one. Interestingly, for the B and N co-doped CNF, the separated case exhibited an outstanding electrochemical activity better than either B or N mono-doped case, while the bonded case leading to a sharp drop in conductivity and shown poor electrochemical performances. These results demonstrated that not the total amount of incorporated B and N but how the B and N are incorporated into carbon nanostructures determines the catalytic activity toward VO"2"+/VO_2"+ reaction. Moreover, the individual mechanism of the nitrogen and boron containing functional groups act as active sites have been analyzed.

  18. Modelling structure and properties of amorphous silicon boron nitride ceramics

    Directory of Open Access Journals (Sweden)

    Johann Christian Schön

    2011-06-01

    Full Text Available Silicon boron nitride is the parent compound of a new class of high-temperature stable amorphous ceramics constituted of silicon, boron, nitrogen, and carbon, featuring a set of properties that is without precedent, and represents a prototypical random network based on chemical bonds of predominantly covalent character. In contrast to many other amorphous materials of technological interest, a-Si3B3N7 is not produced via glass formation, i.e. by quenching from a melt, the reason being that the binary components, BN and Si3N4, melt incongruently under standard conditions. Neither has it been possible to employ sintering of μm-size powders consisting of binary nitrides BN and Si3N4. Instead, one employs the so-called sol-gel route starting from single component precursors such as TADB ((SiCl3NH(BCl2. In order to determine the atomic structure of this material, it has proven necessary to simulate the actual synthesis route.Many of the exciting properties of these ceramics are closely connected to the details of their amorphous structure. To clarify this structure, it is necessary to employ not only experimental probes on many length scales (X-ray, neutron- and electron scattering; complex NMR experiments; IR- and Raman scattering, but also theoretical approaches. These address the actual synthesis route to a-Si3B3N7, the structural properties, the elastic and vibrational properties, aging and coarsening behaviour, thermal conductivity and the metastable phase diagram both for a-Si3B3N7 and possible silicon boron nitride phases with compositions different from Si3N4: BN = 1 : 3. Here, we present a short comprehensive overview over the insights gained using molecular dynamics and Monte Carlo simulations to explore the energy landscape of a-Si3B3N7, model the actual synthesis route and compute static and transport properties of a-Si3BN7.

  19. Boron-enhanced diffusion of boron from ultralow-energy boron implantation

    International Nuclear Information System (INIS)

    Agarwal, A.; Eaglesham, D.J.; Gossmann, H.J.; Pelaz, L.; Herner, S.B.; Jacobson, D.C.

    1998-01-01

    The authors have investigated the diffusion enhancement mechanism of BED (boron enhanced diffusion), wherein the boron diffusivity is enhanced three to four times over the equilibrium diffusivity at 1,050 C in the proximity of a silicon layer containing a high boron concentration. It is shown that BED is associated with the formation of a fine-grain polycrystalline silicon boride phase within an initially amorphous Si layer having a high B concentration. For 0.5 keV B + , the threshold implantation dose which leads to BED lies between 3 x 10 14 and of 1 x 10 15 /cm -2 . Formation of the shallowest possible junctions by 0.5 keV B + requires that the implant dose be kept lower than this threshold

  20. Electrochemical protein cleavage in a microfluidic cell with integrated boron doped diamond electrodes

    NARCIS (Netherlands)

    van den Brink, Floris Teunis Gerardus; Zhang, Tao; Ma, Liwei; Odijk, Mathieu; Olthuis, Wouter; Permentier, Hjalmar P.; Bischoff, Rainer P.H.; van den Berg, Albert

    2015-01-01

    We present a microfluidic electrochemical cell with integrated boron doped diamond (BDD) electrodes which is designed for high electrochemical conversion efficiencies. With our newest developments, we aim to exploit the benefits of BDD as a novel electrode material to conduct tyrosine- and

  1. Co-doping TiO{sub 2} with boron and/or yttrium elements: Effects on antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuzheng [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 (China); Wu, Yusheng, E-mail: henanwys@sina.com [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 (China); Yang, He; Xue, Xiangxin; Liu, Zhihua [Institute of Metallurgical Resources and Environmental Engineering, Northeastern University, Shenyang 110819 (China)

    2016-09-15

    Highlights: • B-Y/TiO{sub 2} nano materials firstly applied to the fields of antibacterial materials. • Systems analysis the existence state of boron and yttrium ion in TiO{sub 2}. • Doping B and Y greatly strengthened the antibacterial activity of TiO{sub 2}. - Abstract: Pure TiO{sub 2}, boron and/or yttrium doped TiO{sub 2} nano-materials were synthesized by a sol–gel method and characterized by XRD, SEM, XPS and PL. XRD analysis indicates that, in the pure TiO{sub 2} and B single doped TiO{sub 2} (B-TiO{sub 2}) nano-materials calcinated at 700 °C, the presence of TiO{sub 2} is a mixture of anatase and rutile; in the Y single doped (Y-TiO{sub 2}), B and Y co-doped TiO{sub 2} nano-materials (B/Y-TiO{sub 2}), the presence of TiO{sub 2} is anatase. SEM image shows the prepared materials have a common round morphology and hexagonal plate morphology caused by the agglomeration of particles. Boron atoms are partially embedded into the TiO{sub 2} interstitial structure or incorporated into the TiO{sub 2} lattice through occupying the position of the oxygen atoms. The results of antimicrobial experiment show that B/Y-TiO{sub 2} material has a remarkable antimicrobial activity. Compared with the visible light irradiation, antimicrobial activity of B/Y-TiO{sub 2} in dark is significant poor.

  2. Crystallization induced of amorphous silicon by nickel

    International Nuclear Information System (INIS)

    Schmidt, J.A; Rinaldi, P; Budini, N; Arce, R; Buitrago, R.H

    2008-01-01

    Polycrystalline silicon (pc-Si) deposited on glass substrates is a very promising material for the production of different electronic devices, like thin film transistors, active matrices or solar cells. The crystallization of the amorphous silicon to obtain pc-Si can be achieved with different processes, among which nickel-induced crystallization is because it requires low concentrations of the metal and low annealing temperatures. Nucleation and growth of crystalline silicon are measured by the formation of silicide NiSi 2 , which has a lattice constant very similar to that of Si, and acts as a seed upon which crystalline grains can develop. The size of the pc-Si final grain depends on many factors, such as the initial concentration of Ni, the annealing time and temperature, and the presence of other atoms in the Si structure. This work presents a study on the influence of these parameters on the silicon crystallization process induced by Ni. We deposited a series of hydrogenated amorphous silicon samples (a-Si:H) on glass substrates, using the plasma-enhanced chemical vapor deposition method (PE-CVD) with silane gas (SiH 4 ). The deposition temperature was 200 o C, and we prepared intrinsic samples (i), lightly doped with boron (p), heavily doped with boron (p + ) and heavily doped with phosphorous (n + ). Each sample was divided into eight portions, depositing different concentrations of Ni into each one using the cathodic sputtering method. The concentration of Ni was determined by atomic adsorption spectroscopy, and included from 1.5 1 0 15 to 1.5 1 0 16 at/cm 2 . Later the samples were submitted to different thermal treatments in a circulating nitrogen atmosphere. In order to avoid violent dehydrogenation of the a-Si:H that damages the samples, the annealing was carried out gradually. In a first stage the samples were heated at a velocity of 0.5 o C /min up to 400 o C, holding them for 24 hrs at this temperature in order to reach hydrogen effusion. Heating

  3. Influence of screening effect on hydrogen passivation of hole silicon

    CERN Document Server

    Aleksandrov, O V

    2002-01-01

    The simulation of hole silicon passivation during hydrogen diffusion with account of hydrogen-acceptor pairs formation, internal electrical field and screening effect has been carried out. Screening by free carriers of hydrogen and acceptor ions results in shortening their interaction radii and slacking the concentration dependence of hydrogen diffusivity at high level of silicon doping. The consistency of simulated and experimental profiles of holes and hydrogen-acceptor pairs is reached in a broad band of doping levels from 4 x 10 sup 1 sup 4 to 1.2 x 10 sup 2 sup 0 cm sup - sup 3 at the pair binding energy of 0.70-0.79 eV while the radius of the Coulomb interaction of hydrogen and boron ions is equal to 35 A under low doping and decrease with increasing doping level

  4. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures.

    Science.gov (United States)

    Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng

    2016-06-01

    Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Activation of boron and phosphorus atoms implanted in polycrystalline silicon films at low temperatures

    International Nuclear Information System (INIS)

    Andoh, Nobuyuki; Sameshima, Toshiyuki; Andoh, Yasunori

    2005-01-01

    Phosphorus atoms implanted in laser crystallized polycrystalline silicon films were activated by a heat treatment in air at 260 deg. C for 1, 3 and 24 h. Analysis of ultraviolet reflectivity of phosphorus-doped silicon films implanted by ion doping method at 4 keV revealed that the thickness of the top disordered layer formed by ion bombardment was 6 nm. It is reduced to 4 nm by a 3 h heat treatment at 260 deg. C by recrystallization of disordered region. The electrical conductance of silicon films implanted increased to 1.7x10 5 S/sq after 3 h heat treatment

  6. Heavy doping effects in high efficiency silicon solar cells

    Science.gov (United States)

    Lindholm, F. A.; Neugroschel, A.

    1986-01-01

    The temperature dependence of the emitter saturation current for bipolar devices was studied by varying the surface recombination velocity at the emitter surface. From this dependence, the value was derived for bandgap narrowing that is in better agreement with other determinations that were obtained from the temperature dependence measure on devices with ohmic contacts. Results of the first direct measurement of the minority-carrier transit time in a transparent heavily doped emitter layer were reported. The value was obtained by a high-frequency conductance method recently developed and used for doped Si. Experimental evidence is presented for significantly greater charge storage in highly excited silicon near room temperature than conventional theory would predict. These data are compared with various data for delta E sub G in heavily doped silicon.

  7. Preparation of Boron Nitride Nanoparticles with Oxygen Doping and a Study of Their Room-Temperature Ferromagnetism.

    Science.gov (United States)

    Lu, Qing; Zhao, Qi; Yang, Tianye; Zhai, Chengbo; Wang, Dongxue; Zhang, Mingzhe

    2018-04-18

    In this work, oxygen-doped boron nitride nanoparticles with room-temperature ferromagnetism have been synthesized by a new, facile, and efficient method. There are no metal magnetic impurities in the nanoparticles analyzed by X-ray photoelectron spectroscopy. The boron nitride nanoparticles exhibit a parabolic shape with increase in the reaction time. The saturation magnetization value reaches a maximum of 0.2975 emu g -1 at 300 K when the reaction time is 12 h, indicating that the Curie temperature ( T C ) is higher than 300 K. Combined with first-principles calculation, the coupling between B 2p orbital, N 2p orbital, and O 2p orbital in the conduction bands is the main origin of room-temperature ferromagnetism and also proves that the magnetic moment changes according the oxygen-doping content change. Compared with other room temperature ferromagnetic semiconductors, boron nitride nanoparticles have widely potential applications in spintronic devices because of high temperature oxidation resistance and excellent chemical stability.

  8. Wavelength dependence of the Brillouin spectral width of boron doped germanosilicate optical fibers.

    Science.gov (United States)

    Law, Pi-Cheng; Dragic, Peter D

    2010-08-30

    Boron co-doped germanosilicate fibers are investigated via the Brillouin light scattering technique using two wavelengths, 1534 nm and 1064 nm. Several fibers are investigated, including four drawn from the same preform but at different draw temperatures. The Stokes' shifts and the Brillouin spectral widths are found to increase with increasing fiber draw temperature. A frequency-squared law has adequately described the wavelength dependence of the Brillouin spectral width of conventional Ge-doped fibers. However, it is found that unlike conventional Ge-doped fibers these fibers do not follow the frequency-squared law. This is explained through a frequency-dependent dynamic viscosity that modifies this law.

  9. Multivariate data analysis of process control data from neutron transmutation doping of silicon

    DEFF Research Database (Denmark)

    Heydorn, K.; Hegaard, N.

    1994-01-01

    Final resistivities obtained by neutron transmutation doping (NTD) of silicon can be measured only after an annealing process has been carried out at the manufacturer's plant. The reactor centre carrying out the neutron doping process by irradiation under selected conditions must control the proc......Final resistivities obtained by neutron transmutation doping (NTD) of silicon can be measured only after an annealing process has been carried out at the manufacturer's plant. The reactor centre carrying out the neutron doping process by irradiation under selected conditions must control...

  10. Defect and dopant depth profiles in boron-implanted silicon studied with channeling and nuclear reaction analysis

    NARCIS (Netherlands)

    Vos, M.; Boerma, D.O.; Smulders, P.J.M.; Oosterhoff, S.

    1986-01-01

    Single crystals of silicon were implanted at RT with 1 MeV boron ions to a dose of 1 × 1015 ions/cm2. The depth profile of the boron was measured using the 2060-keV resonance of the 11B(α, n)14N nuclear reaction. The distribution of the lattice disorder as a function of depth was determined from

  11. Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials.

    Science.gov (United States)

    Maybeck, Vanessa; Edgington, Robert; Bongrain, Alexandre; Welch, Joseph O; Scorsone, Emanuel; Bergonzo, Philippe; Jackman, Richard B; Offenhäusser, Andreas

    2014-02-01

    The expansion of diamond-based electronics in the area of biological interfacing has not been as thoroughly explored as applications in electrochemical sensing. However, the biocompatibility of diamond, large safe electrochemical window, stability, and tunable electronic properties provide opportunities to develop new devices for interfacing with electrogenic cells. Here, the fabrication of microelectrode arrays (MEAs) with boron-doped nanocrystalline diamond (BNCD) electrodes and their interfacing with cardiomyocyte-like HL-1 cells to detect cardiac action potentials are presented. A nonreductive means of structuring doped and undoped diamond on the same substrate is shown. The resulting BNCD electrodes show high stability under mechanical stress generated by the cells. It is shown that by fabricating the entire surface of the MEA with NCD, in patterns of conductive doped, and isolating undoped regions, signal detection may be improved up to four-fold over BNCD electrodes passivated with traditional isolators. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. In situ boron doping during heteroepitaxial growth of diamond on Ir/YSZ/Si

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Andre F.; Fischer, Martin; Gsell, Stefan; Schreck, Matthias [Universitaet Augsburg, Institut fuer Physik, 86135 Augsburg (Germany)

    2012-09-15

    In situ boron doping of heteroepitaxial diamond films grown by microwave plasma chemical vapor deposition on Ir/YSZ/Si (001) is investigated. The study comprises the analysis of the gas phase by optical emission spectroscopy (OES) and measurements of B doped films by secondary ion mass spectroscopy (SIMS), cathodoluminescence (CL), and X-ray diffraction (XRD). The OE intensity of BH species scales linearly with the concentration of the boron precursor trimethylboron (TMB) in the feed gas. Addition of CO{sub 2} as an oxygen source causes a proportional reduction of the BH signal. At a ratio C:O = 1, a reduction factor of {proportional_to}50 is obtained. It is shown for two diamond samples that the boron incorporation drops nearly identical to the BH emission intensity. We conclude that the influence of oxygen on boron incorporation is a pure gas phase effect. In contrast, CN and BH emission indicate a negligible interaction between N{sub 2} and TMB added to the feed gas. At the same time, preliminary growth rate measurements show that the boron background pressure in the chamber after growth with TMB completely cancels the growth acceleration by nitrogen up to N{sub 2} concentrations of 100 ppm which points to the dominance of surface processes. Heteroepitaxial diamond films grown on Ir at 50 mbar between 720 and 900 C contain high intrinsic stress that varies from -2.2 GPa compressive at the lowest to slightly tensile at the highest deposition temperature. The observed behavior is similar to former work at 200 mbar in which effective climb of dislocations was suggested as responsible mechanism. Addition of boron rather enhances the stress formation than causing a relaxation. The B concentration in the heteroepitaxial films is deduced by SIMS, CL, and XRD and correlated with the TMB concentration in the gas phase. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Synthesis and characterization of silicon-doped polycrystalline GaN ...

    Indian Academy of Sciences (India)

    Silicon-doped polycrystalline GaN films were successfully deposited at temperatures ranging from 300 to 623 K on fused silica and silicon substrates by radio frequency (r.f.) magnetron sputtering at a system pressure of ~ 5 Pa. The films were characterized by optical as well as microstructural measurements. The optical ...

  14. The behavior of silicon and boron in the surface of corroded nuclear waste glasses: an EFTEM study

    International Nuclear Information System (INIS)

    Buck, E. C.; Smith, K. L.; Blackford, M. G.

    1999-01-01

    Using electron energy-loss filtered transmission electron microscopy (EFTEM), we have observed the formation of silicon-rich zones on the corroded surface of a West Valley (WV6) glass. This layer is approximately 100-200 nm thick and is directly underneath a precipitated smectite clay layer. Under conventional (C)TEM illumination, this layer is invisible; indeed, more commonly used analytical techniques, such as x-ray energy dispersive spectroscopy (EDS), have failed to describe fully the localized changes in the boron and silicon contents across this region. Similar silicon-rich and boron-depleted zones were not found on corroded Savannah River Laboratory (SRL) borosilicate glasses, including SRL-EA and SRL-51, although they possessed similar-looking clay layers. This study demonstrates a new tool for examining the corroded surfaces of materials

  15. Chemical hole doping into large-area transition metal dichalcogenide monolayers using boron-based oxidant

    KAUST Repository

    Matsuoka, Hirofumi; Kanahashi, Kaito; Tanaka, Naoki; Shoji, Yoshiaki; Li, Lain-Jong; Pu, Jiang; Ito, Hiroshi; Ohta, Hiromichi; Fukushima, Takanori; Takenobu, Taishi

    2018-01-01

    Hole carrier doping into single-crystalline transition metal dichalcogenide (TMDC) films can be achieved with various chemical reagents. However, large-area polycrystalline TMDC monolayers produced by a chemical vapor deposition (CVD) growth method have yet to be chemically doped. Here, we report that a salt of a two-coordinate boron cation, Mes2B+ (Mes: 2,4,6-trimethylphenyl group), with a chemically stable tetrakis(pentafluorophenyl)borate anion, [(C6F5)4B]−, can serve as an efficient hole-doping reagent for large-area CVD-grown tungsten diselenide (WSe2) films. Upon doping, the sheet resistance of large-area polycrystalline WSe2 monolayers decreased from 90 GΩ/sq to 3.2 kΩ/sq.

  16. Chemical hole doping into large-area transition metal dichalcogenide monolayers using boron-based oxidant

    KAUST Repository

    Matsuoka, Hirofumi

    2018-01-18

    Hole carrier doping into single-crystalline transition metal dichalcogenide (TMDC) films can be achieved with various chemical reagents. However, large-area polycrystalline TMDC monolayers produced by a chemical vapor deposition (CVD) growth method have yet to be chemically doped. Here, we report that a salt of a two-coordinate boron cation, Mes2B+ (Mes: 2,4,6-trimethylphenyl group), with a chemically stable tetrakis(pentafluorophenyl)borate anion, [(C6F5)4B]−, can serve as an efficient hole-doping reagent for large-area CVD-grown tungsten diselenide (WSe2) films. Upon doping, the sheet resistance of large-area polycrystalline WSe2 monolayers decreased from 90 GΩ/sq to 3.2 kΩ/sq.

  17. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    Science.gov (United States)

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  18. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Unknown

    tions, they concluded that either reaction sintering or liquid phase .... α-6H silicon carbide single crystal by three different laboratories ... silicon carbide particles by the overall reaction .... layer displacement is likely to occur in such a manner as.

  19. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  20. Insight into boron-doped diamond Raman spectra characteristic features

    Czech Academy of Sciences Publication Activity Database

    Mortet, Vincent; Vlčková Živcová, Zuzana; Taylor, Andrew; Frank, Otakar; Hubík, Pavel; Trémouilles, D.; Jomard, F.; Barjon, J.; Kavan, Ladislav

    2017-01-01

    Roč. 115, May (2017), s. 279-284 ISSN 0008-6223 R&D Projects: GA ČR GA13-31783S; GA MŠk 7AMB16FR004 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 ; RVO:61388955 Keywords : diamond * boron doping * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism; CG - Electrochemistry (UFCH-W) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) (UFCH-W) Impact factor: 6.337, year: 2016

  1. Ion-beam doping of amorphous silicon with germanium isovalent impurity

    International Nuclear Information System (INIS)

    Khokhlov, A.F.; Mashin, A.I.; Ershov, A.V.; Mashin, N.I.; Ignat'eva, E.A.

    1988-01-01

    Experimental data on ion-beam doping of amorphous silicon containing minor germanium additions by donor and acceptor impurity are presented. Doping of a-Si:Ge films as well as of a-Si layers was performed by implantation of 40 keV energy B + ions or 120 keV energy phosphorus by doses from 3.2x10 13 up to 1.3x10 17 cm -2 . Ion current density did not exceed 1 μA/cm 2 . Radiation defect annealing was performed at 400 deg C temperature during 30 min. Temperature dependences of conductivity in the region of 160-500 K were studied. It is shown that a-Si:Ge is like hydrogenized amorphous silicon in relation to doping

  2. Raman Microscopic Analysis of Internal Stress in Boron-Doped Diamond

    Directory of Open Access Journals (Sweden)

    Kevin E. Bennet

    2015-05-01

    Full Text Available Analysis of the induced stress on undoped and boron-doped diamond (BDD thin films by confocal Raman microscopy is performed in this study to investigate its correlation with sample chemical composition and the substrate used during fabrication. Knowledge of this nature is very important to the issue of long-term stability of BDD coated neurosurgical electrodes that will be used in fast-scan cyclic voltammetry, as potential occurrence of film delaminations and dislocations during their surgical implantation can have unwanted consequences for the reliability of BDD-based biosensing electrodes. To achieve a more uniform deposition of the films on cylindrically-shaped tungsten rods, substrate rotation was employed in a custom-built chemical vapor deposition reactor. In addition to visibly preferential boron incorporation into the diamond lattice and columnar growth, the results also reveal a direct correlation between regions of pure diamond and enhanced stress. Definite stress release throughout entire film thicknesses was found in the current Raman mapping images for higher amounts of boron addition. There is also a possible contribution to the high values of compressive stress from sp2 type carbon impurities, besides that of the expected lattice mismatch between film and substrate.

  3. Visible-light sensitization of boron-doped nanocrystalline diamond through non-covalent surface modification

    Czech Academy of Sciences Publication Activity Database

    Krýsová, Hana; Vlčková Živcová, Zuzana; Bartoň, Jan; Petrák, Václav; Nesladek, M.; Cígler, Petr; Kavan, Ladislav

    2015-01-01

    Roč. 17, č. 2 (2015), s. 1165-1172 ISSN 1463-9076 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 ; RVO:61388963 ; RVO:68378271 Keywords : nanocrystallines * visible-light sensitization * boron-doped diamond Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015

  4. Improvement in switching characteristics and long-term stability of Zn-O-N thin-film transistors by silicon doping

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsuji

    2017-06-01

    Full Text Available The effects of silicon doping on the properties of Zn-O-N (ZnON films and on the device characteristics of ZnON thin-film transistors (TFTs were investigated by co-sputtering silicon and zinc targets. Silicon doping was effective at decreasing the carrier concentration in ZnON films; therefore, the conductivity of the films can be controlled by the addition of a small amount of silicon. Doped silicon atoms also form bonds with nitrogen atoms, which suppresses nitrogen desorption from the films. Furthermore, Si-doped ZnON-TFTs are demonstrated to exhibit less negative threshold voltages, smaller subthreshold swings, and better long-term stability than non-doped ZnON-TFTs.

  5. Reassessment of the recombination parameters of chromium in n- and p-type crystalline silicon and chromium-boron pairs in p-type crystalline silicon

    International Nuclear Information System (INIS)

    Sun, Chang; Rougieux, Fiacre E.; Macdonald, Daniel

    2014-01-01

    Injection-dependent lifetime spectroscopy of both n- and p-type, Cr-doped silicon wafers with different doping levels is used to determine the defect parameters of Cr i and CrB pairs, by simultaneously fitting the measured lifetimes with the Shockley-Read-Hall model. A combined analysis of the two defects with the lifetime data measured on both n- and p-type samples enables a significant tightening of the uncertainty ranges of the parameters. The capture cross section ratios k = σ n /σ p of Cr i and CrB are determined as 3.2 (−0.6, +0) and 5.8 (−3.4, +0.6), respectively. Courtesy of a direct experimental comparison of the recombination activity of chromium in n- and p-type silicon, and as also suggested by modelling results, we conclude that chromium has a greater negative impact on carrier lifetimes in p-type silicon than n-type silicon with similar doping levels.

  6. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    OpenAIRE

    Yu, Yuan; Zhou, Yanli; Wu, Liangzhuan; Zhi, Jinfang

    2012-01-01

    Boron-doped diamond (BDD) thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC), carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitiv...

  7. Study of the defects related to oxygen in Czochralski silicon destined to photovoltaic solar cells - Influence of isovalent impurities

    International Nuclear Information System (INIS)

    Tanay, Florent

    2013-01-01

    This study aims at understanding the effects of two main defects related to oxygen, the boron-oxygen complexes (responsible for light-induced degradation of the carrier lifetime) and the thermal donors (among other things, responsible for variations of the conductivity), on the electric and photovoltaic properties of silicon. More precisely, the interactions of isovalent impurities, known for modifying the oxygen spatial distribution, with these defects were studied. Two experimental protocols were first developed to evaluate the light-induced degradation of the carrier lifetime in iron-rich silicon. Then, the introduction in silicon of germanium and tin in high quantity were shown not to significantly influence the conversion efficiency of the cells. However, contrary to recent studies from the literature, no reduction due to germanium co-doping or to tin co-doping of the light-induced degradation of the photovoltaic performances was observed. However carbon was shown to lead to a slowdown of the degradation due to boron-oxygen complexes. Moreover contrary to tin which has no influence on the thermal donor generation, germanium slows down their formation. An empirical expression has been proposed to take into account this effect for a large range of germanium concentrations. Eventually in highly doped and compensated silicon, the thermal donor generation is identical as in conventional silicon, which experimentally confirms that the thermal donor formation is limited by the electron density. (author) [fr

  8. X-ray analysis of temperature induced defect structures in boron implanted silicon

    Science.gov (United States)

    Sztucki, M.; Metzger, T. H.; Kegel, I.; Tilke, A.; Rouvière, J. L.; Lübbert, D.; Arthur, J.; Patel, J. R.

    2002-10-01

    We demonstrate the application of surface sensitive diffuse x-ray scattering under the condition of grazing incidence and exit angles to investigate growth and dissolution of near-surface defects after boron implantation in silicon(001) and annealing. Silicon wafers were implanted with a boron dose of 6×1015 ions/cm2 at 32 keV and went through different annealing treatments. From the diffuse intensity close to the (220) surface Bragg peak we reveal the nature and kinetic behavior of the implantation induced defects. Analyzing the q dependence of the diffuse scattering, we are able to distinguish between point defect clusters and extrinsic stacking faults on {111} planes. Characteristic for stacking faults are diffuse x-ray intensity streaks along directions, which allow for the determination of their growth and dissolution kinetics. For the annealing conditions of our crystals, we conclude that the kinetics of growth can be described by an Ostwald ripening model in which smaller faults shrink at the expense of the larger stacking faults. The growth is found to be limited by the self-diffusion of silicon interstitials. After longer rapid thermal annealing the stacking faults disappear almost completely without shrinking, most likely by transformation into perfect loops via a dislocation reaction. This model is confirmed by complementary cross-sectional transmission electron microscopy.

  9. Doping of silicon by carbon during laser ablation process

    Science.gov (United States)

    Raciukaitis, G.; Brikas, M.; Kazlauskiene, V.; Miskinis, J.

    2007-04-01

    Effect of laser ablation on properties of remaining material was investigated in silicon. It was established that laser cutting of wafers in air induced doping of silicon by carbon. The effect was found to be more distinct by the use of higher laser power or UV radiation. Carbon ions created bonds with silicon in the depth of silicon. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion was performed to clarify its depth profile in silicon. Photo-chemical reactions of such type changed the structure of material and could be a reason for the reduced quality of machining. A controlled atmosphere was applied to prevent carbonization of silicon during laser cutting.

  10. Doping of silicon by carbon during laser ablation process

    International Nuclear Information System (INIS)

    Raciukaitis, G; Brikas, M; Kazlauskiene, V; Miskinis, J

    2007-01-01

    Effect of laser ablation on properties of remaining material was investigated in silicon. It was established that laser cutting of wafers in air induced doping of silicon by carbon. The effect was found to be more distinct by the use of higher laser power or UV radiation. Carbon ions created bonds with silicon in the depth of silicon. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion was performed to clarify its depth profile in silicon. Photo-chemical reactions of such type changed the structure of material and could be a reason for the reduced quality of machining. A controlled atmosphere was applied to prevent carbonization of silicon during laser cutting

  11. On the origin of the changes in the opto-electrical properties of boron-doped zinc oxide films after plasma surface treatment for thin-film silicon solar cell applications

    Science.gov (United States)

    Le, Anh Huy Tuan; Kim, Youngkuk; Lee, Youn-Jung; Hussain, Shahzada Qamar; Nguyen, Cam Phu Thi; Lee, Jaehyung; Yi, Junsin

    2018-03-01

    The modification of the steep and sharp valleys on the surface of the boron-doped zinc oxide (BZO) front electrodes by plasma surface treatment is a critical process for avoiding a significant reduction in the electrical performance of thin-film silicon solar cells. In this work, we report the origin of the changes in the electrical and optical properties of the BZO films that occur after this process. On the basis of an analysis of the chemical states, we found an improvement of the carrier concentration along with the treatment time that was mainly due to an increase of the oxygen vacancy. This indicated a deficiency of the oxygen in the BZO films under argon-ion bombardment. The red-shift of the A1 longitudinal optical mode frequency in the Raman spectra that was attributed to the existence of vacancy point defects within the films also strengthened this argument. The significant reduction of the haze ratio as well as the appearance of interference peaks on the transmittance spectra as the treatment time was increased were mainly due to the smoothing of the film surface, which indicated a degradation of the light-scattering capability of the BZO films. We also observed a gain of the visible-region transmittance that was attributed to the decrease of the thickness of the BZO films after the plasma surface treatment, instead of the crystallinity improvement. On the basis of our findings, we have proposed a further design rule of the BZO front electrodes for thin-film silicon solar cell applications.

  12. Comparison of boron diffusion in silicon during shallow p{sup +}/n junction formation by non-melt excimer and green laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Aid, Siti Rahmah; Matsumoto, Satoru [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Fuse, Genshu [SEN Corporation, SBS Tower 9F, 4-10-1 Yoga, Setagaya-ku, Tokyo 158-0097 (Japan); Sakuragi, Susumu [Sumitomo Heavy Industries Ltd., 19 Natsushima-cho, Yokosuka, Kanagawa 237-8555 (Japan)

    2011-12-15

    The combination of Ge pre-amorphization implantation, low-energy boron implantation, and non-melt laser annealing is a promising method for forming ultrashallow p{sup +}/n junctions in silicon. In this study, shallow p{sup +}/n junctions were formed by non-melt annealing implanted samples using a green laser (visible laser). The dopant diffusion, activation, and recrystallization of an amorphous silicon layer were compared with those obtained in our previous study in which non-melt annealing was performed using a KrF excimer laser (UV laser). The experimental results reveal that only slight diffusion of boron in the tail region occurred in green-laser-annealed samples. In contrast, remarkable boron diffusion occurred in KrF-laser-annealed samples for very short annealing times. Recrystallization of the amorphous silicon layer was slower in green-laser-annealed samples than in KrF-laser-annealed samples. We consider the penetration depth and the pulse duration are important factors that may affect boron diffusion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds

    Science.gov (United States)

    Yin, H.; Ziemann, P.

    2014-06-01

    Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (102 cm2/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.

  14. Deep level transient spectroscopic investigation of phosphorus-doped silicon by self-assembled molecular monolayers.

    Science.gov (United States)

    Gao, Xuejiao; Guan, Bin; Mesli, Abdelmadjid; Chen, Kaixiang; Dan, Yaping

    2018-01-09

    It is known that self-assembled molecular monolayer doping technique has the advantages of forming ultra-shallow junctions and introducing minimal defects in semiconductors. In this paper, we report however the formation of carbon-related defects in the molecular monolayer-doped silicon as detected by deep-level transient spectroscopy and low-temperature Hall measurements. The molecular monolayer doping process is performed by modifying silicon substrate with phosphorus-containing molecules and annealing at high temperature. The subsequent rapid thermal annealing drives phosphorus dopants along with carbon contaminants into the silicon substrate, resulting in a dramatic decrease of sheet resistance for the intrinsic silicon substrate. Low-temperature Hall measurements and secondary ion mass spectrometry indicate that phosphorus is the only electrically active dopant after the molecular monolayer doping. However, during this process, at least 20% of the phosphorus dopants are electrically deactivated. The deep-level transient spectroscopy shows that carbon-related defects are responsible for such deactivation.

  15. Anodic oxidation of wastewater containing the Reactive Orange 16 Dye using heavily boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Migliorini, F.L.; Braga, N.A.; Alves, S.A.; Lanza, M.R.V.; Baldan, M.R.; Ferreira, N.G.

    2011-01-01

    Highlights: → Electrochemical advanced oxidation process was studied using BDD based anodes with different boron concentrations. → The difference between the non-active and active anodes for organics degradation. → The influence of morphologic and structural properties of BDD electrodes on the RO-16 dye degradation. - Abstract: Boron-doped diamond (BDD) films grown on the titanium substrate were used to study the electrochemical degradation of Reactive Orange (RO) 16 Dye. The films were produced by hot filament chemical vapor deposition (HFCVD) technique using two different boron concentrations. The growth parameters were controlled to obtain heavily doped diamond films. They were named as E1 and E2 electrodes, with acceptor concentrations of 4.0 and 8.0 x 10 21 atoms cm -3 , respectively. The boron levels were evaluated from Mott-Schottky plots also corroborated by Raman's spectra, which characterized the film quality as well as its physical property. Scanning Electron Microscopy showed well-defined microcrystalline grain morphologies with crystal orientation mixtures of (1 1 1) and (1 0 0). The electrode efficiencies were studied from the advanced oxidation process (AOP) to degrade electrochemically the Reactive Orange 16 azo-dye (RO16). The results were analyzed by UV/VIS spectroscopy, total organic carbon (TOC) and high-performance liquid chromatography (HPLC) techniques. From UV/VIS spectra the highest doped electrode (E2) showed the best efficiency for both, the aromaticity reduction and the azo group fracture. These tendencies were confirmed by the TOC and chromatographic measurements. Besides, the results showed a direct relationship among the BDD morphology, physical property, and its performance during the degradation process.

  16. Experimental results on performance improvement of doped carbon-base materials

    International Nuclear Information System (INIS)

    Xu Zengyu

    2002-01-01

    Carbon-base materials is one of candidate plasma facing materials and have been widely used in current tokamak facilities in the world. But some defect properties are presented on high yield of chemical sputtering , high yield of radiation enhancement sublimate (RES), cracking after heat flux and so on. It can be improved by doped some little other elements into the carbon-base materials, such as boron, silicon, titanium and so on. Experimental results indicate that it is feasible and successful to improve thermo-physics and chemical properties of carbon-base materials by multi-element doped. Doped 12 % silicon can strained RES and chemical sputtering yield do not changed. It is the same level of chemical sputtering yield for B 4 C from 3 % to 10 % , but their resistance thermal shock properties ability increases with B 4 C increases

  17. Electrochemical Incineration of Phenolic Compounds from the Hydrocarbon Industry Using Boron-Doped Diamond Electrodes

    Directory of Open Access Journals (Sweden)

    Alejandro Medel

    2012-01-01

    Full Text Available Electrochemical incineration using boron-doped diamond electrodes was applied to samples obtained from a refinery and compared to the photo-electro-Fenton process in order to selectively eliminate the phenol and phenolic compounds from a complex matrix. Due to the complex chemical composition of the sample, a pretreatment to the sample in order to isolate the phenolic compounds was applied. The effects of the pretreatment and of pH on the degradation of the phenolic compounds were evaluated. The results indicate that the use of a boron-doped diamond electrode in an electrochemical incineration process mineralizes 99.5% of the phenolic sample content. Working in acidic medium (pH = 1, and applying 2 A at 298 K under constant stirring for 2 hours, also results in the incineration of the reaction intermediates reflected by 97% removal of TOC. In contrast, the photo-electro-Fenton process results in 99.9% oxidation of phenolic compounds with only a 25.69% removal of TOC.

  18. Performance of conversion efficiency of a crystalline silicon solar cell with base doping density

    Directory of Open Access Journals (Sweden)

    Gokhan Sahin

    Full Text Available In this study, we investigate theoretically the electrical parameters of a crystalline silicon solar cell in steady state. Based on a one-dimensional modeling of the cell, the short circuit current density, the open circuit voltage, the shunt and series resistances and the conversion efficiency are calculated, taking into account the base doping density. Either the I-V characteristic, series resistance, shunt resistance and conversion efficiency are determined and studied versus base doping density. The effects applied of base doping density on these parameters have been studied. The aim of this work is to show how short circuit current density, open circuit voltage and parasitic resistances are related to the base doping density and to exhibit the role played by those parasitic resistances on the conversion efficiency of the crystalline silicon solar. Keywords: Crystalline silicon solar cell, Base doping density, Series resistance, Shunt resistance, Conversion efficiency

  19. The effects of trichloroethane HCl and ion-implantation on the oxidation rate of silicon

    International Nuclear Information System (INIS)

    Ahmed, W.; Ahmed, E.

    1994-01-01

    The thermal oxidation of silicon was studied using a large-scale industrial oxidation system. The characteristics of the oxides resulting from pure hydrogen/oxygen (Hsub(2)/Osub(2)), trichloroethane/oxygen (TCA/Osub(2) and hydrogen chloride/oxygen (HCI/Osub(2)) mixtures are compared. Both HCI and TCA addition to oxygen produced an enhanced oxidation rate. The oxidation rate for TCA/Osub(2) was approximately 30-40% higher than for HCI/Osub(2) mixtures. A molar ratio of TCA/Osub(2) of 1% gives an optimum process for very-large-scale industrial (VLSI) applications. However, 3% HCI/Osub(2) gives comparable results to 1% TCA. In addition, boron and phosphorus implantation are observed to increase the oxidation rate. Phosphorus doping of the silicon yields a higher rate than boron-doped wafers. This behaviour is explained in terms of surface damage and chemistry. It appears that the overall mechanisms governing all these processes are similar. (8 figures, 22 references) (Author)

  20. The infra-red photoresponse of erbium-doped silicon nanocrystals

    International Nuclear Information System (INIS)

    Kenyon, A.J.; Bhamber, S.S.; Pitt, C.W.

    2003-01-01

    We have exploited the interaction between erbium ions and silicon nanoclusters to probe the photoresponse of erbium-doped silicon nanocrystals in the spectral region around 1.5 μm. We have produced an MOS device in which the oxide layer has been implanted with both erbium and silicon and annealed to produce silicon nanocrystals. Upon illumination with a 1480 nm laser diode, interaction between the nanocrystals and the rare-earth ions results in a modification of the conductivity of the oxide that enables a current to flow when a voltage is applied across the oxide layer

  1. Doping of silicon with carbon during laser ablation process

    Science.gov (United States)

    Račiukaitis, G.; Brikas, M.; Kazlauskienė, V.; Miškinis, J.

    2006-12-01

    The effect of laser ablation on properties of remaining material in silicon was investigated. It was found that laser cutting of wafers in the air induced the doping of silicon with carbon. The effect was more distinct when using higher laser power or UV radiation. Carbon ions created bonds with silicon atoms in the depth of the material. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion to clarify its depth profile in silicon was performed. Photochemical reactions of such type changed the structure of material and could be the reason of the reduced machining quality. The controlled atmosphere was applied to prevent carbonization of silicon during laser cutting.

  2. Amorphous Si layers co-doped with B and Mn: Thin film growth and steering of magnetic properties

    International Nuclear Information System (INIS)

    Drera, G.; Mozzati, M.C.; Colombi, P.; Salvinelli, G.; Pagliara, S.; Visentin, D.; Sangaletti, L.

    2015-01-01

    Amorphous silicon thin films co-doped with manganese (5% at.) and boron (1.8% at.) have been prepared by RF sputtering on Al 2 O 3 substrates held at room temperature (RT). The films, with an average thickness of about 0.9 μm, were carefully characterized by micro-Raman and X-ray photoemission spectroscopies. A ferromagnetic (FM) behavior up to RT was observed. In order to discuss and possibly rule out extrinsic effects usually related to segregations of ferromagnetic impurities in the samples, magnetization measurements were carried out on the Al 2 O 3 substrates, as well as on Si:B and Si:Mn films grown with the same RF sputtering system. Only the Si:B:Mn films displayed a FM behavior up to RT. Since amorphous films doped with Mn alone did not display any signature of FM ordering, boron co-doping results to be crucial for the onset of the FM behavior. The conductivity of the samples is not affected by boron doping that, therefore, does not appear to significantly contribute to a possible carrier-mediated FM interaction between Mn ions by supplying extra charges to the system. On this basis, the capability of B to hinder the quenching of the Mn 3d magnetic moments has also to be regarded as a possible role of this co-dopant in the observed magnetization. - Highlights: • We successfully deposited amorphous silicon thin films co-doped with Mn and B. • Structural, electronic, and magnetic properties have been carefully characterized. • A ferromagnetic behavior up to room temperature was detected. • The extrinsic origin of magnetism is excluded. • Boron can play a relevant role to avoid quenching of magnetic moment in Mn ions

  3. Amorphous Si layers co-doped with B and Mn: Thin film growth and steering of magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Drera, G. [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy); Mozzati, M.C. [CNISM, Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100 Pavia (Italy); Colombi, P. [CSMT Gestione s.c.a.r.l, Via Branze 45, 25123 Brescia (Italy); Salvinelli, G.; Pagliara, S.; Visentin, D. [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy); Sangaletti, L., E-mail: sangalet@dmf.unicatt.it [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy)

    2015-09-01

    Amorphous silicon thin films co-doped with manganese (5% at.) and boron (1.8% at.) have been prepared by RF sputtering on Al{sub 2}O{sub 3} substrates held at room temperature (RT). The films, with an average thickness of about 0.9 μm, were carefully characterized by micro-Raman and X-ray photoemission spectroscopies. A ferromagnetic (FM) behavior up to RT was observed. In order to discuss and possibly rule out extrinsic effects usually related to segregations of ferromagnetic impurities in the samples, magnetization measurements were carried out on the Al{sub 2}O{sub 3} substrates, as well as on Si:B and Si:Mn films grown with the same RF sputtering system. Only the Si:B:Mn films displayed a FM behavior up to RT. Since amorphous films doped with Mn alone did not display any signature of FM ordering, boron co-doping results to be crucial for the onset of the FM behavior. The conductivity of the samples is not affected by boron doping that, therefore, does not appear to significantly contribute to a possible carrier-mediated FM interaction between Mn ions by supplying extra charges to the system. On this basis, the capability of B to hinder the quenching of the Mn 3d magnetic moments has also to be regarded as a possible role of this co-dopant in the observed magnetization. - Highlights: • We successfully deposited amorphous silicon thin films co-doped with Mn and B. • Structural, electronic, and magnetic properties have been carefully characterized. • A ferromagnetic behavior up to room temperature was detected. • The extrinsic origin of magnetism is excluded. • Boron can play a relevant role to avoid quenching of magnetic moment in Mn ions.

  4. High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Science.gov (United States)

    Feng, Jinpeng; Wang, Youlan

    2016-12-01

    An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO4@B0.4-C can reach 164.1 mAh g-1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g-1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g-1 and can be maintained at 124.5 mAh g-1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO4@B-C composite for high-performance lithium-ion batteries.

  5. Study of aluminum-doped silicon clusters

    International Nuclear Information System (INIS)

    Zhan Shichang; Li Baoxing; Yang Jiansong

    2007-01-01

    Using full-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method, we have investigated the effect of aluminum heteroatoms on the geometric structures and bond characteristics of Si n (n=5-10) clusters in detail. It is found that the geometric framework of the ground state structures for Si n (n=5-10) clusters change to some extent upon the substitution of Al atoms in some Si atoms. The effect of aluminum doping on the silicon clusters depends on the geometric structures of Si n (n=5-10) clusters. In particular, the calculations suggest that the aluminum doping would improve the bond strength of some Si-Si bonds in the mixed Si n - m Al m clusters

  6. Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications.

    Science.gov (United States)

    Luong, John H T; Male, Keith B; Glennon, Jeremy D

    2009-10-01

    In recent years, conductive diamond electrodes for electrochemical applications have been a major focus of research and development. The impetus behind such endeavors could be attributed to their wide potential window, low background current, chemical inertness, and mechanical durability. Several analytes can be oxidized by conducting diamond compared to other carbon-based materials before the breakdown of water in aqueous electrolytes. This is important for detecting and/or identifying species in solution since oxygen and hydrogen evolution do not interfere with the analysis. Thus, conductive diamond electrodes take electrochemical detection into new areas and extend their usefulness to analytes which are not feasible with conventional electrode materials. Different types of diamond electrodes, polycrystalline, microcrystalline, nanocrystalline and ultrananocrystalline, have been synthesized and characterized. Of particular interest is the synthesis of boron-doped diamond (BDD) films by chemical vapor deposition on various substrates. In the tetrahedral diamond lattice, each carbon atom is covalently bonded to its neighbors forming an extremely robust crystalline structure. Some carbon atoms in the lattice are substituted with boron to provide electrical conductivity. Modification strategies of doped diamond electrodes with metallic nanoparticles and/or electropolymerized films are of importance to impart novel characteristics or to improve the performance of diamond electrodes. Biofunctionalization of diamond films is also feasible to foster several useful bioanalytical applications. A plethora of opportunities for nanoscale analytical devices based on conducting diamond is anticipated in the very near future.

  7. Mobility and Device Applications of Heavily Doped Silicon and Strained SILICON(1-X) Germanium(x) Layers

    Science.gov (United States)

    Carns, Timothy Keith

    With the advent of Si molecular beam epitaxy (Si -MBE), a significant amount of research has occurred to seek alternative high conductivity Si-based materials such as rm Si_{1-x}Ge_ {x} and delta-doped Si. These materials have brought improvements in device speeds and current drives with the added advantage of monolithic integration into Si VLSI circuits. The bulk of research in Si-based materials has been devoted to the implementation of strained rm Si_{1-x}Ge_{x} as the base layer of a rm Si_ {1-x}Ge_{x}/Si heterojunction bipolar transistor (HBT). Because of the valence band offset, the rm Si_{1-x}Ge _{x} layer can be heavily doped, leading to lower base sheet resistances and hence, improved speed performances. The Ge content in the base can also be graded to increase the drift field in the base. However, very few hole mobility measurements have been done in these strained layers, leading to limitations in device modeling and in understanding the transport behavior in this important material. In addition to rm Si_{1 -x}Ge_{x}, much potential also exists in using delta-doping in Si for improved conductivities over those of bulk Si. However, as of yet, delta-doped Si has received little attention. Therefore, this dissertation is dedicated to the investigation of both of these Si-based materials (strained rm Si_{1-x}Ge_{x } and delta-doped Si and rm Si_{1-x}Ge_ {x}) for the purpose of obtaining higher conductivities than comparably doped bulk Si. This work is divided into three parts to accomplish this objective. The first part is contained in Chapter 3 and is comprised of a comprehensive characterization of the hole mobility in compressively strained rm Si_{1 -x}Ge_{x}. Few results have been obtained prior to this research which has led to many inaccuracies in device modeling. The second part of this dissertation in Chapters 4 and 5 is devoted to the study of the mobility behavior in both boron and antimony delta-doped Si and rm Si_ {1-x}Ge_{x}. The important

  8. Feasibility study on silicon doping using high temperature test engineering reactor

    International Nuclear Information System (INIS)

    Seki, Masaya; Takaki, Naoyuki; Goto, Minoru; Shimakawa, Satoshi

    2011-01-01

    The feasibility study on silicon doping using the High Temperature engineering Test Reactor (HTTR) is performed by numerical simulations. The HTTR is a High Temperature Gas-cooled Reactor (HTGR) situated at JAEA Oarai research and development center. It has a 30MW thermal power and the outlet coolant temperature is 950degC. The objective of this study is to evaluate the following issues, 1. The impact of loading Si-ingots into the core on the criticality, 2. The uniformity of the neutron capture reaction rate in Si-ingots, and 3. The production rate of silicon semiconductor. In this study, six Si-ingots are loaded into the irradiation area which is located in the peripheral region of the core. They are irradiated with rotation movement around the axial direction to obtain uniform neutron capture reaction rate in the radial direction. Additionally, the neutron filter, which is made of graphite containing boron, is used to obtain uniform neutron capture reaction rate in the axial direction. The evaluations were conducted by performing the HTTR whole core calculations with the Monte Carlo code MVP-2.0. In the calculations, several tally regions were defined on the Si-ingots to investigate the uniformity of the neutron capture reaction rate. As a result, loading the Si-ingots into the core causes negative reactivity by about 0.7%dk/k. Uniform neutron capture reaction rate of Si-ingot is obtained 98% in the radial and the axial direction. In case of the target of semiconductor resistivity is set to 50 Ωcm, the required irradiation time becomes 10 hours. The HTTR is able to produce silicon semiconductor of 540kg in one-time irradiation. This study was conducted as a joint research with JAEA, Nuclear Fuel Industries, LTD, Toyota Tsusho Corporation and Tokai University. (author)

  9. Thermodynamics of Boron Removal from Silicon Using CaO-MgO-Al2O3-SiO2 Slags

    Science.gov (United States)

    Jakobsson, Lars Klemet; Tangstad, Merete

    2018-04-01

    Slag refining is one of few metallurgical methods for removal of boron from silicon. It is important to know the thermodynamic properties of boron in slags to understand the refining process. The relation of the distribution coefficient of boron to the activity of silica, partial pressure of oxygen, and capacity of slags for boron oxide was investigated. The link between these parameters explains why the distribution coefficient of boron does not change much with changing slag composition. In addition, the thermodynamic properties of dilute boron oxide in CaO-MgO-Al2O3-SiO2 slags was determined. The ratio of the activity coefficient of boron oxide and silica was found to be the most important parameter for understanding changes in the distribution coefficient of boron for different slags. Finally, the relation between the activity coefficient of boron oxide and slag structure was investigated. It was found that the structure can explain how the distribution coefficient of boron changes depending on slag composition.

  10. Optical properties of erbium-doped porous silicon waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Najar, A. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B P. 80518, 22305 Lannion Cedex (France); Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Charrier, J. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B P. 80518, 22305 Lannion Cedex (France)]. E-mail: joel.charier@univ-rennes1.fr; Ajlani, H. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Lorrain, N. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B P. 80518, 22305 Lannion Cedex (France); Elhouichet, H. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Oueslati, M. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Haji, L. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B P. 80518, 22305 Lannion Cedex (France)

    2006-12-15

    Planar and buried channel porous silicon waveguides (WG) were prepared from p{sup +}-type silicon substrate by a two-step anodization process. Erbium ions were incorporated into pores of the porous silicon layers by an electrochemical method using ErCl{sub 3}-saturated solution. Erbium concentration of around 10{sup 20} at/cm{sup 3} was determined by energy-dispersive X-ray analysis performed on SEM cross-section. The luminescence properties of erbium ions in the IR range were determined and a luminescence time decay of 420 {mu}s was measured. Optical losses were studied on these WG. The increased losses after doping were discussed.

  11. Investigation of magnetism in aluminum-doped silicon carbide nanotubes

    Science.gov (United States)

    Behzad, Somayeh; Chegel, Raad

    2013-11-01

    The effect of aluminum doping on the structural, electronic and magnetic properties of (8,0) silicon carbide nanotube (SiCNT) is investigated using spin-polarized density functional theory. It is found from the calculation of the formation energies that aluminum substitution for silicon atom is preferred. Our results show that the magnetization depends on the substitutional site, aluminum substitution at silicon site does not introduce any spin-polarization, whereas the aluminum substitution for carbon atom yields a spin polarized, almost dispersionless π band within the original band gap.

  12. Highly transparent and conducting boron doped zinc oxide films for window of Dye Sensitized Solar Cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod, E-mail: vinod.phy@gmail.com [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Department of Physics, Gurukula Kangri University, Haridwar 249404 (India); Singh, R.G. [Department of Electronic Science, Maharaja Agrasen College University of Delhi, New Delhi 110096 (India); Singh, Fouran [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Purohit, L.P. [Department of Physics, Gurukula Kangri University, Haridwar 249404 (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Synthesis of Boron doped ZnO (ZnO:B) films. Black-Right-Pointing-Pointer Minimum of resistivity is observed to be 7.9 Multiplication-Sign 10{sup -4} {Omega} cm. Black-Right-Pointing-Pointer Maximum transmittance {approx}91% for 450 Degree-Sign C annealed films. Black-Right-Pointing-Pointer Applicable for window materials in Dye Sensitized Solar Cell. - Abstract: Highly transparent and conducting boron doped zinc oxide (ZnO:B) films grown by sol-gel method are reported. The annealing temperature is varied from 350 to 550 Degree-Sign C and doping concentration of boron is kept fixed for 0.6 at.% for all the films. At low temperature the stress in the films is compressive, which becomes tensile for the films annealed at higher temperature. A minimum resistivity of 7.9 Multiplication-Sign 10{sup -4} {Omega} cm and maximum transmittance of {approx}91% are observed for the film annealed at 450 Degree-Sign C. This could be attributed to minimum stress of films, which is further evident by the evolution of A{sub 1} and defect related Raman modes without any shifting in its position. Such kind of highly transparent and conducting ZnO:B thin film could be used as window material in Dye Sensitized Solar Cell (DSSC).

  13. Boron doped nanostructure ZnO films deposited by ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Karakaya, Seniye, E-mail: seniyek@ogu.edu.tr; Ozbas, Omer

    2015-02-15

    Highlights: • Nanostructure undoped and boron doped ZnO films were deposited by USP technique. • Influences of doping on the surface and optical properties of the ZnO films were investigated. • XRD spectra of the films exhibited a variation in crystalline quality depending on the B content. - Abstract: ZnO is an II–VI compound semiconductor with a wide direct band gap of 3.3 eV at room temperature. Doped with group III elements (B, Al or Ga), it becomes an attractive candidate to replace tin oxide (SnO{sub 2}) or indium tin oxide (ITO) as transparent conducting electrodes in solar cell devices and flat panel display due to competitive electrical and optical properties. In this work, ZnO and boron doped ZnO (ZnO:B) films have been deposited onto glass substrates at 350 ± 5 °C by a cost-efficient ultrasonic spray pyrolysis technique. The optical, structural, morphological and electrical properties of nanostructure undoped and ZnO:B films have been investigated. Electrical resistivity of films has been analyzed by four-probe technique. Optical properties and thicknesses of the films have been examined in the wavelength range 1200–1600 nm by using spectroscopic ellipsometry (SE) measurements. The optical constants (refractive index (n) and extinction coefficient (k)) and the thicknesses of the films have been fitted according to Cauchy model. The optical method has been used to determine the band gap value of the films. Transmission spectra have been taken by UV spectrophotometer. It is found that both ZnO and ZnO:B films have high average optical transmission (≥80%). X-ray diffraction (XRD) patterns indicate that the obtained ZnO has a hexagonal wurtzite type structure. The morphological properties of the films were studied by atomic force microscopy (AFM). The surface morphology of the nanostructure films is found to depend on the concentration of B. As a result, ZnO:B films are promising contender for their potential use as transparent window layer and

  14. Measurement of mobility profile in ion-implanted silicon layers using electroreflection spectroscopy

    International Nuclear Information System (INIS)

    Galiev, G.B.; Kapaev, V.V.; Mokerov, V.G.

    1986-01-01

    The possibility is shown of the application of the low field linearized electroreflection spectroscopy for the measurement of profiles of carriers mobilities μ(x) simultaneously with the concentration profiles N(x) in thin ion-implanted silicon layers. The μ(χ) value is determined from the calibration curve of the dependence of the phenomenological broadening parameter γ on the mobility for uniformly doped samples. The results are presented for the measurements of the profiles μ(x) for boron- and arsenic-implanted silicon

  15. Effect of silicon, tantalum, and tungsten doping and polarization on bioactivity of hydroxyapatite

    Science.gov (United States)

    Dhal, Jharana

    Hydroxyapatite (HAp) ceramics has important applications as bone graft because of the structural and compositional similarities with bone tissue. However, inferior osteogenic capacity to bone and poor mechanical properties have been identified to be major disadvantages of synthetic HAp compared to the living bone tissue. The objective of the current study is to evaluate the effect of doping with higher valent cations (Tungsten, tantalum, and silicon) and polarization or combination of both on change in property of doped HAp and subsequent impact its bioactivity. In vitro study with human osteoblast cells was used to investigate the influences of doping and polarization on bone cell-materials interactions. The bioactivity of doped HAp was compared with pure HAp. Effect of doping and polarization on the change in HAp was investigated by monitoring change in mineral phases, stored charge, and activation energy of HAp. Activation energy of depolarization was used to explain the possible mechanism of polarization in doped samples. Bioactivity of HAp increased when doped with tantalum and tungsten. Polarization further increased the bioactivity of tungsten- and tantalum-doped samples. Increase in bioactivity on polarized and doped samples was attributed to increase in surface energy and increase in surface wettability. Whereas, an increase in bioactivity on doped unpolarized surface was attributed to change in microstructure. Polarized charge calculated from TSDC indicates that polarized charge decreases on tantalum- and tungsten-doped HAp. The decrease in polarized charge was attributed to the presence of significant amount of different phases that may hinder the ionic motion in doped samples. However, for silicon-doped HAp, TSDC study showed no difference in the mechanism of polarization between doped and undoped samples. Increase in silicon doping decreased the grain size though mechanism is not affected by grain size. Total stored charge decreased with increase in

  16. Silicon doped InP as an alternative plasmonic material for mid-infrared

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Han, Li; Christensen, Dennis Valbjørn

    2016-01-01

    Silicon-doped InP is grown on top of semiinsulating iron-doped and sulfur-doped InP substrates by metalorganic vapor phase epitaxy (MOVPE), and the growth parameters are adjusted to obtain various free carrier concentrations from 1.05×1019 cm-3 up to 3.28×1019 cm-3. Midinfrared (IR) reflection...

  17. The Impact of Metallic Impurities on Minority Carrier Lifetime in High Purity N-type Silicon

    Science.gov (United States)

    Yoon, Yohan

    Boron-doped p-type silicon is the industry standard silicon solar cell substrate. However, it has serious limitations: iron boron (Fe-B) pairs and light induced degradation (LID). To suppress LID, the replacement of boron by gallium as a p-type dopant has been proposed. Although this eliminates B-O related defects, gallium-related pairing with iron, oxygen, and carbon can reduce lifetime in this material. In addition resistivity variations are more pronounced in gallium doped ingots, however Continuous-Czochralski (c-Cz) growth technologies are being developed to overcome this problem. In this work lifetime limiting factors and resistivity variations have been investigated in this material. The radial and axial variations of electrically active defects were observed using deep level transient spectroscopy (DLTS) these have been correlated to lifetime and resistivity variations. The DLTS measurements demonstrated that iron-related pairs are responsible for the lifetime variations. Specifically, Fe-Ga pairs were found to be important recombination sites and are more detrimental to lifetime than Fei. Typically n-type silicon has a higher minority carrier lifetime than p-type silicon with similar levels of contamination. That is because n-type silicon is more tolerant to metallic impurities, especially Fe. Also, it has no serious issues in relation to lifetime degradation, such as FeB pairs and light-induced degradation (LID). However, surface passivation of the p + region in p+n solar cells is much more problematic than the n+p case where silicon nitride provides very effective passivation of the cell. SiO2 is the most effective passivation for n type surfaces, but it does not work well on B-doped surfaces, resulting in inadequate performance. Al2O3 passivation layer suggested for B-doped emitters. With this surface passivation layer a 23.2 % conversion efficiency has been achieved. After this discovery n-type silicon is now being seriously considered for

  18. Carbon doping induced giant low bias negative differential resistance in boron nitride nanoribbon

    International Nuclear Information System (INIS)

    Liu, N.; Liu, J.B.; Gao, G.Y.; Yao, K.L.

    2014-01-01

    By applying nonequilibrium Green's function combined with density functional theory, we investigated the electronic transport properties of carbon-doped armchair boron nitride nanoribbons. Obvious negative differential resistance (NDR) behavior with giant peak-to-valley ratio up to the order of 10 4 –10 6 is found by tuning the doping position and concentration. Especially, with the reduction of doping concentration, NDR peak position can enter into mV bias range and even can be expected lower than mV bias. The negative differential resistance behavior is explained by the evolution of the transmission spectra and band structures with applied bias. - Highlights: • Negative differential resistance (NDR) behavior with giant peak-to-valley ratio is found. • Doping concentration changes the NDR peak position significantly. • NDR peak position can enter into mV bias range and even lower than mV bias. • The results are explained by the bias-dependent transmission spectra and band structures

  19. Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals.

    Science.gov (United States)

    Diroll, Benjamin T; Schramke, Katelyn S; Guo, Peijun; Kortshagen, Uwe R; Schaller, Richard D

    2017-10-11

    Dynamic optical control of infrared (IR) transparency and refractive index is achieved using boron-doped silicon nanocrystals excited with mid-IR optical pulses. Unlike previous silicon-based optical switches, large changes in transmittance are achieved without a fabricated structure by exploiting strong light coupling of the localized surface plasmon resonance (LSPR) produced from free holes of p-type silicon nanocrystals. The choice of optical excitation wavelength allows for selectivity between hole heating and carrier generation through intraband or interband photoexcitation, respectively. Mid-IR optical pumping heats the free holes of p-Si nanocrystals to effective temperatures greater than 3500 K. Increases of the hole effective mass at high effective hole temperatures lead to a subpicosecond change of the dielectric function, resulting in a redshift of the LSPR, modulating mid-IR transmission by as much as 27%, and increasing the index of refraction by more than 0.1 in the mid-IR. Low hole heat capacity dictates subpicosecond hole cooling, substantially faster than carrier recombination, and negligible heating of the Si lattice, permitting mid-IR optical switching at terahertz repetition frequencies. Further, the energetic distribution of holes at high effective temperatures partially reverses the Burstein-Moss effect, permitting the modulation of transmittance at telecommunications wavelengths. The results presented here show that doped silicon, particularly in micro- or nanostructures, is a promising dynamic metamaterial for ultrafast IR photonics.

  20. Controlling the Er content of porous silicon using the doping current intensity

    KAUST Repository

    Mula, Guido

    2014-07-04

    The results of an investigation on the Er doping of porous silicon are presented. Electrochemical impedance spectroscopy, optical reflectivity, and spatially resolved energy dispersive spectroscopy (EDS) coupled to scanning electron microscopy measurements were used to investigate on the transient during the first stages of constant current Er doping. Depending on the applied current intensity, the voltage transient displays two very different behaviors, signature of two different chemical processes. The measurements show that, for equal transferred charge and identical porous silicon (PSi) layers, the applied current intensity also influences the final Er content. An interpretative model is proposed in order to describe the two distinct chemical processes. The results can be useful for a better control over the doping process.

  1. High-rate and ultralong cycle-life LiFePO_4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Feng, Jinpeng; Wang, Youlan

    2016-01-01

    Highlights: • B-doped carbon decorated LiFePO_4 has been fabricated for the first time. • The LiFePO_4@B-CdisplaysimprovedbatteryperformancecomparedtoLiFePO_4@C. • The LiFePO_4@B-C is good candidate for high-performance lithium-ion batteries. - Abstract: An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO_4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO_4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO_4@B_0_._4-C can reach 164.1 mAh g"−"1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g"−"1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g"−"1 and can be maintained at 124.5 mAh g"−"1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO_4@B-C composite for high-performance lithium-ion batteries.

  2. Electrical properties of MOS structures on nitrogen-doped Czochralski-grown silicon: A positron annihilation study

    International Nuclear Information System (INIS)

    Slugen, V.; Harmatha, L.; Tapajna, M.; Ballo, P.; Pisecny, P.; Sik, J.; Koegel, G.; Krsjak, V.

    2006-01-01

    Measurements of interface trap density, effective generation lifetime (GL) and effective surface generation velocity have been performed using different methods on selected MOS structures prepared on nitrogen-doped Czochralski-grown (NCz) silicon. The application of the positron annihilation technique using a pulsed low energy positron system (PLEPS) focused on the detection of nitrogen-related defects in NCz silicon in the near surface region. In the case of p-type Cz silicon, all the results could be used for the testing of homogeneity. In n-type Cz silicon, positron annihilation was found insensitive to nitrogen doping

  3. Influence of boron concentration on growth characteristic and electro-catalytic performance of boron-doped diamond electrodes prepared by direct current plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Feng Yujie; Lv Jiangwei; Liu Junfeng; Gao Na; Peng Hongyan; Chen Yuqiang

    2011-01-01

    A series of boron-doped diamond (BDD) electrodes were prepared by direct current plasma chemical vapor deposition (DC-PCVD) with different compositions of CH 4 /H 2 /B(OCH 3 ) 3 gas mixture. A maximum growth rate of 0.65 mg cm -2 h -1 was obtained with CH 4 /H 2 /B(OCH 3 ) 3 radio of 4/190/10 and this growth condition was also a turning point for discharge plasma stability which arose from the addition of B(OCH 3 ) 3 that changed electron energy distribution and influenced the plasma reaction. The surface coating structure and electro-catalytic performance of the BDD electrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Hall test, and electrochemical measurement and electro-catalytic oxidation in phenol solution. It is suggested that the boron doping level and the thermal stress in the films are the main factors affecting the electro-catalytic characteristics of the electrodes. Low boron doping level with CH 4 /H 2 /B(OCH 3 ) 3 ratio of 4/199/1 decreased the films electrical conductivity and its electro-catalytic activity. When the carrier concentration in the films reached around 10 20 cm -3 with CH 4 /H 2 /B(OCH 3 ) 3 ratio over a range of 4/195/5-4/185/15, the thermal stress in the films was the key reason that influenced the electro-catalytic activity of the electrodes for its effect on diamond lattice expansion. Therefore, the BDD electrode with modest CH 4 /H 2 /B(OCH 3 ) 3 ratio of 4/190/10 possessed the best phenol removal efficiency.

  4. Microstructure and wear behaviour of silicon doped Cr-N nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bao Mingdong, E-mail: bmingd@yahoo.com.c [School of mechanical engineering, Ningbo University of Technology, Ningbo 315016 (China); Yu Lei; Xu Xuebo [School of mechanical engineering, Ningbo University of Technology, Ningbo 315016 (China); He Jiawen [State Key Lab. for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an, 710049 (China); Sun Hailin [Teer Coatings Ltd., Berry Hill Industrial Estate, Droitwich Worcestershire WR9 9AS (United Kingdom); Zhejiang Huijin-Teer Coatings Technolgy Co., Ltd., Lin' an 311305 (China); Teer, D.G. [Teer Coatings Ltd., Berry Hill Industrial Estate, Droitwich Worcestershire WR9 9AS (United Kingdom)

    2009-07-01

    Hard Cr-N and silicon doped Cr-Si-N nanocomposite coatings were deposited using closed unbalanced magnetron sputtering ion plating system. Coatings doped with various Si contents were synthesized by changing the power applied on Si targets. Composition of the films was analyzed using glow discharge optical emission spectrometry (GDOES). Microstructure and properties of the coatings were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and nano-indentation. The harnesses and the elastic modulus of Cr-Si-N coatings gradually increased with rising of silicon content and exhibited a maximum at silicon content of 4.1 at.% and 5.5 at.%. The maximum hardness and elastic modulus of the Cr-Si-N nanocomposite coatings were approximately 30 GPa and 352 GPa, respectively. Further increase in the silicon content resulted in a decrease in the hardness and the elastic modulus of the coatings. Results from XRD analyses of CrN coatings indicated that strongly preferred orientations of (111) were detected. The diffraction patterns of Cr-Si-N coatings showed a clear (220) with weak (200) and (311) preferred orientations, but the peak of CrN (111) was decreased with the increase of Si concentration. The XRD data of single-phase Si{sub 3}N{sub 4} was free of peak. The peaks of CrN (111) and (220) were shifted slightly and broadened with the increase of silicon content. SEM observations of the sections of Cr-Si-N coatings with different silicon concentrations showed a typical columnar structure. It was evident from TEM observation that nanocomposite Cr-Si-N coatings exhibited nano-scale grain size. Friction coefficient and specific wear rate (SWR) of silicon doped Cr-N coatings from pin-on-disk test were significantly lower in comparison to that of CrN coatings.

  5. Sharp boron spikes in silicon grown at reduced and atmospheric pressure by fast-gas-switching CVD

    NARCIS (Netherlands)

    Vink, A.T.; Roksnoer, P.J.; Maes, J.W.F.M.; Vriezema, C.J.; IJzendoorn, van L.J.; Zalm, P.C.

    1990-01-01

    Boron doping spikes in Si were grown by fast-gas-switching CVD at 800 and 850°C using Si2H6 and B2H6 in 0.03, 0.1 and 1 atm H2 as the carrier gas. The B2H6 doping gas was added for 2 s by two methods, namely during growth or as a flush while the Si2H6 flow was interrupted. High-resolution SIMS

  6. Influence of dopants, particularly carbon, on β-rhombohedral boron

    Science.gov (United States)

    Werheit, H.; Flachbart, K.; Pristáš, G.; Lotnyk, D.; Filipov, V.; Kuhlmann, U.; Shitsevalova, N.; Lundström, T.

    2017-09-01

    Due to the high affinity of carbon to boron, the preparation of carbon-free boron is problematic. Even high-purity (6 N) β-rhombohedral boron contains 30-60 ppm of C. Hence, carbon affects the boron physical properties published so far more or less significantly. We studied well-defined carbon-doped boron samples based on pure starting material carefully annealed with up to about 1% C, thus assuring homogeneity. We present and discuss their electrical conductivity, optical absorption, luminescence and phonon spectra. Earlier attempts of other authors to determine the conductivity of C-doped boron are revised. Our results allow estimating the effects of oxygen and iron doping on the electrical conductivity using results taken from literature. Discontinuities at low T impair the electronic properties.

  7. Electrochemical impedance spectroscopy of polycrystalline boron doped diamond layers with hydrogen and oxygen terminated surface

    Czech Academy of Sciences Publication Activity Database

    Vlčková Živcová, Zuzana; Petrák, Václav; Frank, Otakar; Kavan, Ladislav

    2015-01-01

    Roč. 55, MAY 2015 (2015), s. 70-76 ISSN 0925-9635 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 ; RVO:68378271 Keywords : Boron doped diamond * Electrochemical impedance spectroscopy * Aqueous electrolyte solution Subject RIV: CG - Electrochemistry Impact factor: 2.125, year: 2015

  8. Direct Electroplating on Highly Doped Patterned Silicon Wafers

    NARCIS (Netherlands)

    Vargas Llona, Laura Dolores; Jansen, Henricus V.; Elwenspoek, Michael Curt

    Nickel thin films have been electrodeposited directly on highly doped silicon wafers after removal of the native oxide layer. These substrates conduct sufficiently well to allow deposition using a periferical electrical contact on the wafer. Films 2 μm thick were deposited using a nickel sulfamate

  9. Influence of the formation- and passivation rate of boron-oxygen defects for mitigating carrier-induced degradation in silicon within a hydrogen-based model

    International Nuclear Information System (INIS)

    Hallam, Brett; Abbott, Malcolm; Nampalli, Nitin; Hamer, Phill; Wenham, Stuart

    2016-01-01

    A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead to a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation

  10. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Bo, E-mail: 357436235@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yu, Zhiming, E-mail: zhiming@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Wei, Qiuping, E-mail: qiupwei@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Long, HangYu, E-mail: 55686385@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Xie, Youneng, E-mail: 1187272844@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, Yijia, E-mail: 503630433@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-07-30

    Highlights: • High quality boron-doped diamond film electrodes were synthesized on Nb substrates. • Electrochemical oxidation on boron-doped diamond anode is an effective method for treating landfill leachate concentrates. • Optimal operating conditions for electrochemical oxidation of landfill leachate concentrates is determined. • 87.5% COD removal and 74.06% NH{sub 3}−N removal were achieved after 6 h treatment. - Abstract: In the present study, the high quality boron-doped diamond (BDD) electrodes with excellent electrochemical properties were deposited on niobium (Nb) substrates by hot filament chemical vapor deposition (HFCVD) method. The electrochemical oxidation of landfill leachate concentrates from disc tube reverse osmosis (DTRO) process over a BDD anode was investigated. The effects of varying operating parameters, such as current density, initial pH, flow velocity and cathode material on degradation efficiency were also evaluated following changes in chemical oxygen demand (COD) and ammonium nitrogen (NH{sub 3}−N). The instantaneous current efficiency (ICE) was used to appraise different operating conditions. As a result, the best conditions obtained were as follows, current density 50 mA cm{sup −2}, pH 5.16, flow velocity 6 L h{sup −1}. Under these conditions, 87.5% COD and 74.06% NH{sub 3}−N removal were achieved after 6 h treatment, with specific energy consumption of 223.2 kWh m{sup −3}. In short, these results indicated that the electrochemical oxidation with BDD/Nb anode is an effective method for the treatment of landfill leachate concentrates.

  11. Increased radiation resistance in lithium-counterdoped silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Mehta, S.

    1984-01-01

    Lithium-counterdoped n(+)p silicon solar cells are found to exhibit significantly increased radiation resistance to 1-MeV electron irradiation when compared to boron-doped n(+)p silicon solar cells. In addition to improved radiation resistance, considerable damage recovery by annealing is observed in the counterdoped cells at T less than or equal to 100 C. Deep level transient spectroscopy measurements are used to identify the defect whose removal results in the low-temperature aneal. It is suggested that the increased radiation resistance of the counterdoped cells is primarily due to interaction of the lithium with interstitial oxygen.

  12. Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications.

    Science.gov (United States)

    Ivandini, Tribidasari A; Einaga, Yasuaki

    2017-01-24

    Boron-doped diamond (BDD) electrodes are recognized as being superior to other electrode materials due to their outstanding chemical and dimensional stability, their exceptionally low background current, the extremely wide potential window for water electrolysis that they have, and their excellent biocompatibility. However, whereas these properties have been utilized in the rapid development of electroanalytical applications, very few studies have been done in relation to their applications in electrocatalysis or electrosynthesis. In this report, following on from reports of the electrosynthesis of various products through anodic and cathodic reactions using BDD electrodes, the potential use of these electrodes in electrosynthesis is discussed.

  13. On the influence of extrinsic point defects on irradiation-induced point-defect distributions in silicon

    International Nuclear Information System (INIS)

    Vanhellemont, J.; Romano-Rodriguez, A.

    1994-01-01

    A semi-quantitative model describing the influence of interfaces and stress fields on {113}-defect generation in silicon during 1-MeV electron irradiation, is further developed to take into account also the role of extrinsic point defects. It is shown that the observed distribution of {113}-defects in high-flux electron-irradiated silicon and its dependence on irradiation temperature and dopant concentration can be understood by taking into account not only the influence of the surfaces and interfaces as sinks for intrinsic point defects but also the thermal stability of the bulk sinks for intrinsic point defects. In heavily doped silicon the bulk sinks are related with pairing reactions of the dopant atoms with the generated intrinsic point defects or related with enhanced recombination of vacancies and self-interstitials at extrinsic point defects. The obtained theoretical results are correlated with published experimental data on boron-and phosphorus-doped silicon and are illustrated with observations obtained by irradiating cross-section transmission electron microscopy samples of wafer with highly doped surface layers. (orig.)

  14. Dielectric properties of DNA oligonucleotides on the surface of silicon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bagraev, N. T., E-mail: bagraev@mail.ioffe.ru [St. Petersburg Polytechnic University (Russian Federation); Chernev, A. L. [Russian Academy of Sciences, St. Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation); Klyachkin, L. E. [St. Petersburg Polytechnic University (Russian Federation); Malyarenko, A. M. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Emel’yanov, A. K.; Dubina, M. V. [Russian Academy of Sciences, St. Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation)

    2016-10-15

    Planar silicon nanostructures that are formed as a very narrow silicon quantum well confined by δ barriers heavily doped with boron are used to study the dielectric properties of DNA oligonucleotides deposited onto the surface of the nanostructures. The capacitance characteristics of the silicon nanostructures with oligonucleotides deposited onto their surface are determined by recording the local tunneling current–voltage characteristics by means of scanning tunneling microscopy. The results show the possibility of identifying the local dielectric properties of DNA oligonucleotide segments consisting of repeating G–C pairs. These properties apparently give grounds to correlate the segments with polymer molecules exhibiting the properties of multiferroics.

  15. Comparison of the influence of boron and aluminium doping on the material properties of electrochemically deposited ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Calnan, Sonya [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Riedel, Wiebke; Gledhill, Sophie [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Fachbereich Physik, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Stannowski, Bernd [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Lux-Steiner, Martha Ch. [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Fachbereich Physik, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Schlatmann, Rutger [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Fachbereich 1 Ingenieurwissenschaften I, University of Applied Science (HTW) Berlin, Wilhelminenhofstraße 75 A, 12459 Berlin (Germany)

    2015-11-02

    The effect of varying the boron and aluminium content of the starting electrolyte for extrinsically doped ZnO films grown on SnO{sub 2}:F substrates by electrochemical deposition was investigated. The ZnO:B film surface was characterized by grains with mainly hexagonal faces exposed while the exposed faces of the ZnO:Al grains were rectangular. Whereas a B{sup 3+}/Zn{sup 2+} ratio of up to 10 at.% in the electrolyte had no significant effect on the crystalline structure of the ZnO films, an Al{sup 3+}/Zn{sup 2+} ratio above 0.25 at.% increased the disorder in the crystalline structure. All the boron doped films exhibit a strong E{sub 2}-high Raman mode related to wurtzite ZnO structure but this peak was much weaker for ZnO:Al and diminished with increasing Al incorporation in the films. Exposing the films to ultra-violet light reduced their effective sheet resistance from values beyond measurement range to values between 40 and 5000 kΩ/sq for film thicknesses of 200–550 nm. Inspection of the optical spectra near the bandgap edge and the plasma edge in the mid infrared range, showed that the Al-doping resulted in a higher carrier concentration ~ 10{sup 20} cm{sup −3} than B-doping. X-ray electron spectroscopy showed that the dopant efficiency was limited by the absence of dopant atoms near the surface of all the ZnO:B films and of the lightly doped ZnO:Al and, by the formation of aluminium oxide at the surface of the more highly doped ZnO:Al films. - Highlights: • Crystalline ZnO grown by electrochemical deposition. • Comparison of influence of H{sub 3}BO{sub 3} and Al(NO{sub 3}){sub 3} as dopant sources. • Different ZnO crystalline orientation for Al and boron doping. • Film surface chemical composition suppressed electrical conductivity.

  16. High-rate and ultralong cycle-life LiFePO{sub 4} nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jinpeng, E-mail: goldminer@sina.com; Wang, Youlan

    2016-12-30

    Highlights: • B-doped carbon decorated LiFePO{sub 4} has been fabricated for the first time. • The LiFePO{sub 4}@B-CdisplaysimprovedbatteryperformancecomparedtoLiFePO{sub 4}@C. • The LiFePO{sub 4}@B-C is good candidate for high-performance lithium-ion batteries. - Abstract: An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO{sub 4}. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO{sub 4} is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO{sub 4}@B{sub 0.4}-C can reach 164.1 mAh g{sup −1} at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g{sup −1}). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g{sup −1} and can be maintained at 124.5 mAh g{sup −1} after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO{sub 4}@B-C composite for high-performance lithium-ion batteries.

  17. Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals

    International Nuclear Information System (INIS)

    Makarova, Maria; Sih, Vanessa; Vuckovic, Jelena; Warga, Joe; Li Rui; Dal Negro, Luca

    2008-01-01

    Photonic crystal nanocavities are fabricated in silicon membranes covered by thermally annealed silicon-rich nitride films with Erbium-doped silicon nanocrystals. Silicon nitride films were deposited by sputtering on top of silicon on insulator wafers. The nanocavities were carefully designed in order to enhance emission from the nanocrystal sensitized Erbium at the 1540 nm wavelength. Experimentally measured quality factors of ∼6000 were found to be consistent theoretical predictions. The Purcell factor of 1.4 was estimated from the observed 20-fold enhancement of Erbium luminescence

  18. Rod-like polyaniline supported on three-dimensional boron and nitrogen-co-doped graphene frameworks for high-performance supercapacitors

    Science.gov (United States)

    Liao, Kexuan; Gao, Jialu; Fan, Jinchen; Mo, Yao; Xu, Qunjie; Min, Yulin

    2017-12-01

    In this work, novel three-dimensional (3D) boron and nitrogen-co-doped three-dimensional (3D) graphene frameworks (BN-GFs) supporting rod-like polyaniline (PANI) are facilely prepared and used as electrodes for high-performance supercapacitors. The results demonstrated that BN-GFs with tuned electronic structure can not only provide a large surface area for rod-like PANI to anchor but also effectively facilitate the ion transfer and charge storage in the electrode. The PANI/BN-GF composite with wrinkled boron and nitrogen-co-doped graphene sheets interconnected by rod-like PANI exhibits excellent capacitive properties with a maximum specific capacitance of 596 F/g at a current density of 0.5 A/g. Notably, they also show excellent cycling stability with more than 81% capacitance retention after 5000 charge-discharge cycles.

  19. Boron-doped Diamond Electrodes: Electrochemical, Atomic Force Microscopy and Raman Study towards Corrosion-modifications at Nanoscale

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Vlčková Živcová, Zuzana; Petrák, Václav; Frank, Otakar; Janda, Pavel; Tarábková, Hana; Nesladek, M.; Mortet, Vincent

    2015-01-01

    Roč. 179, OCT 2015 (2015), s. 626-636 ISSN 0013-4686 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 ; RVO:68378271 Keywords : Raman spectroelectrochemistry * atomic force microscopy * boron doped diamond Subject RIV: CG - Electrochemistry Impact factor: 4.803, year: 2015

  20. Fabrication and characterization of n-type zinc oxide/p-type boron doped diamond heterojunction

    Czech Academy of Sciences Publication Activity Database

    Marton, M.; Mikolášek, M.; Bruncko, J.; Novotný, I.; Ižák, Tibor; Vojs, M.; Kozak, Halyna; Varga, Marián; Artemenko, Anna; Kromka, Alexander

    2015-01-01

    Roč. 66, č. 5 (2015), s. 277-281 ISSN 1335-3632 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) 7AMB14SK024 Institutional support: RVO:68378271 Keywords : boron doped diamond * zinc oxide * Raman spectroscopy * bipolar heterostructure * wide-bandgap Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.407, year: 2015

  1. A buffer-layer/a-SiO{sub x}:H(p) window-layer optimization for thin film amorphous silicon based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinjoo; Dao, Vinh Ai [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, Chonghoon [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Hyeongsik [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Minbum; Jung, Junhee [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Doyoung [School of Electricity and Electronics, Ulsan College West Campus, Ulsan 680-749 (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2013-11-01

    Amorphous silicon based (a-Si:H-based) solar cells with a buffer-layer/boron doped hydrogenated amorphous silicon oxide (a-SiO{sub x}:H(p)) window-layer were fabricated and investigated. In the first part, in order to reduce the Schottky barrier height at the fluorine doped tin oxide (FTO)/a-SiO{sub x}:H(p) window-layer heterointerface, we have used buffer-layer/a-SiO{sub x}:H(p) for the window-layer, in which boron doped hydrogenated amorphous silicon (a-Si:H(p)) or boron doped microcrystalline silicon (μc-Si:H(p)) is introduced as a buffer layer between the a-SiO{sub x}:H(p) and FTO of the a-Si:H-based solar cells. The a-Si:H-based solar cell using a μc-Si:H(p) buffer-layer shows the highest efficiency compared to the optimized bufferless, and a-Si:H(p) buffer-layer in the a-Si:H-based solar cells. This highest performance was attributed not only to the lower absorption of the μc-Si:H(p) buffer-layer but also to the lower Schottky barrier height at the FTO/window-layer interface. Then, we present the dependence of the built-in potential (V{sub bi}) and blue response of the devices on the inversion of activation energy (ξ) of the a-SiO{sub x}:H(p), in the μc-Si:H(p)/a-SiO{sub x}:H(p) window-layer. The enhancement of both V{sub bi} and blue response is observed, by increasing the value of ξ. The improvement of V{sub bi} and blue response can be ascribed to the enlargement of the optical gap of a-SiO{sub x}:H(p) films in the μc-Si:H(p)/a-SiO{sub x}:H(p) window-layer. Finally, the conversion efficiency was increased by 22.0%, by employing μc-Si:H(p) as a buffer-layer and raising the ξ of the a-SiO{sub x}:H(p), compared to the optimized bufferless case, with a 10 nm-thick a-SiO{sub x}:H(p) window-layer. - Highlights: • Low Schottky barrier height benefits fill factor, and open-circuit voltage (V{sub oc}). • High band gap is beneficial for short-circuit current density (J{sub sc}). • Boron doped microcrystalline silicon is a suitable buffer-layer for

  2. FTIR and electrical characterization of a-Si:H layers deposited by PECVD at different boron ratios

    Energy Technology Data Exchange (ETDEWEB)

    Orduna-Diaz, A., E-mail: abdu@susu.inaoep.mx [Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840 (Mexico); Trevino-Palacios, C.G. [Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840 (Mexico); Rojas-Lopez, M.; Delgado-Macuil, R.; Gayou, V.L. [Centro de Investigacion en Biotecnologia Aplicada (CIBA), IPN, Tlaxcala, Tlax. 72197 (Mexico); Torres-Jacome, A. [Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840 (Mexico)

    2010-10-25

    Hydrogenated amorphous silicon (a-Si:H) has found applications in flat panel displays, photovoltaic solar cell and recently has been employed in boron doped microbolometer array. We have performed electrical and structural characterizations of a-Si:H layers prepared by plasma enhanced chemical vapor deposition (PECVD) method at 540 K on glass substrates at different diborane (B{sub 2}H{sub 6}) flow ratios (500, 250, 150 and 50 sccm). Fourier transform infrared spectroscopy (FTIR) measurements obtained by specular reflectance sampling mode, show Si-Si, B-O, Si-H, and Si-O vibrational modes (611, 1300, 2100 and 1100 cm{sup -1} respectively) with different strengths which are associated to hydrogen and boron content. The current-voltage curves show that at 250 sccm flow of boron the material shows the lowest resistivity, but for the 150 sccm boron flow it is obtained the highest temperature coefficient of resistance (TCR).

  3. Relaxation of the Shallow Acceptor Center Magnetic Moment in a Highly Doped Silicon

    CERN Document Server

    Mamedov, T N; Herlach, D; Gorelkin, V N; Gritsaj, K I; Duginov, V N; Kormann, O; Major, J V; Stoikov, A V; Zimmermann, U

    2001-01-01

    Results on the temperature dependence of the residual polarization of negative muons in crystalline silicon with germanium, boron and phosphorus impurities are presented. The measurements were carried out in a magnetic field of 0.1 T transverse to the direction of the muon spin in the temperature range 4.2-300 K. It is found that in a silicon sample with a high concentration of germanium impurity (9\\cdot 10^{19} cm^{-3}), as in the samples of n- and p-type silicon with impurity concentrations up to \\sim 10^{17} cm^{-3}, the relaxation rate \

  4. Effect of Boron Doping on High-Resolution X-Ray Diffraction Metrology

    Science.gov (United States)

    Faheem, M.; Zhang, Y.; Dai, X.

    2018-03-01

    The effect of boron (B) doping on high-resolution X-ray diffraction (HXRD) metrology has been investigated. Twelve samples of Si1-xGex films were epitaxially grown on Si (100) substrates with different thicknesses, germanium (Ge) concentrations and with/without B dopants. Secondary ion mass spectroscopy (SIMS) and HXRD were employed for measurements of B doping, Ge concentration, strain, and thickness of the layers. The SIMS results show the absence of B in two samples while the rest of the samples have B doping in the range of 8.40 × 1018-8.7 × 1020 atoms/cm3 with Ge concentration of 13.3-55.2 at.%. The HXRD measurements indicate the layers thickness of 7.07-108.13 nm along with Ge concentration of 12.82-49.09 at.%. The difference in the Ge concentration measured by SIMS and HXRD was found to deend on B doping. For the undoped samples, the difference is 0.5 at.% and increases with B doping but with no linear proportionality. The difference in the Ge concentration was 7.11 at.% for the highly B-doped (8.7 × 1020 atoms/cm3) sample. The B doping influences the Si1-xGex structure, causing a change in the lattice parameter and producing tensile strains shifting Si1-xGex peaks towards Si (100) substrate peaks in the HXRD diffraction patterns. As a result, Vegard's law is no longer effective and makes a high impact on the HXRD measurement. The comparison between symmetric (004) and asymmetric (+113, +224) reciprocal space mappings (RSM) showed a slight difference in Ge concentration between the undoped and lower B-doped samples. However, there is a change of 0.21 at.% observed for the highly doped Si1-xGex samples. RSM's (+113) demonstrate the small SiGe peak broadening as B doping increases, which indicates a minor crystal distortion.

  5. Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films

    DEFF Research Database (Denmark)

    Meijs, Suzan; McDonald, Matthew; Sørensen, Søren

    2015-01-01

    The aim of this study was to investigate the feasibility of depositing a thin layer of boron-doped nanocrystalline diamond (B-NCD) on titanium nitride (TiN) coated electrodes and the effect this has on charge injection properties. The charge storage capacity increased by applying the B-NCD film...

  6. Porous silicon used as an oxide diffusion mask to produce a periodic micro doped n{sup ++}/n regions

    Energy Technology Data Exchange (ETDEWEB)

    Dimassi, Wissem; Jafel, Hayet; Lajnef, Mohamed; Ali Kanzari, M.; Bouaicha, Mongi; Bessais, Brahim; Ezzaouia, Hatem [Laboratoire de Photovoltaique, Centre de Recherche et des Technologies de l' Energie, PB: 95, Hammam Lif 2050 (Tunisia)

    2011-06-15

    The realization of screen-printed contacts on silicon solar cells requires highly doped regions under the fingers and lowly doped and thin ones between them. In this work, we present a low-cost approach to fabricate selective emitter (n{sup ++}/n doped silicon regions), using oxidized porous silicon (ox-PS) as a mask. Micro-periodic fingers were opened on the porous silicon layer using a micro groove machining process. Optimized phosphorous diffusion through the micro grooved ox-PS let us obtain n{sup ++} doped regions in opened zones and n doped large regions underneath the ox-PS layer. The dark I-V characteristics of the obtained device and Fourier transform infrared (FTIR) spectroscopy investigations of the PS layer show the possibility to use PS as a dielectric layer. The Light Beam Induced Current (LBIC) mapping of the realized device, confirm the presence of a micro periodic n{sup ++}/n type structure. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Tuning dissociation using isoelectronically doped graphene and hexagonal boron nitride: Water and other small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdani, Yasmine S. [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-04-21

    Novel uses for 2-dimensional materials like graphene and hexagonal boron nitride (h-BN) are being frequently discovered especially for membrane and catalysis applications. Still however, a great deal remains to be understood about the interaction of environmentally and industrially relevant molecules such as water with these materials. Taking inspiration from advances in hybridising graphene and h-BN, we explore using density functional theory, the dissociation of water, hydrogen, methane, and methanol on graphene, h-BN, and their isoelectronic doped counterparts: BN doped graphene and C doped h-BN. We find that doped surfaces are considerably more reactive than their pristine counterparts and by comparing the reactivity of several small molecules, we develop a general framework for dissociative adsorption. From this a particularly attractive consequence of isoelectronic doping emerges: substrates can be doped to enhance their reactivity specifically towards either polar or non-polar adsorbates. As such, these substrates are potentially viable candidates for selective catalysts and membranes, with the implication that a range of tuneable materials can be designed.

  8. A new computer-aided simulation model for polycrystalline silicon film resistors

    Science.gov (United States)

    Ching-Yuan Wu; Weng-Dah Ken

    1983-07-01

    A general transport theory for the I-V characteristics of a polycrystalline film resistor has been derived by including the effects of carrier degeneracy, majority-carrier thermionic-diffusion across the space charge regions produced by carrier trapping in the grain boundaries, and quantum mechanical tunneling through the grain boundaries. Based on the derived transport theory, a new conduction model for the electrical resistivity of polycrystalline film resitors has been developed by incorporating the effects of carrier trapping and dopant segregation in the grain boundaries. Moreover, an empirical formula for the coefficient of the dopant-segregation effects has been proposed, which enables us to predict the dependence of the electrical resistivity of phosphorus-and arsenic-doped polycrystalline silicon films on thermal annealing temperature. Phosphorus-doped polycrystalline silicon resistors have been fabricated by using ion-implantation with doses ranged from 1.6 × 10 11 to 5 × 10 15/cm 2. The dependence of the electrical resistivity on doping concentration and temperature have been measured and shown to be in good agreement with the results of computer simulations. In addition, computer simulations for boron-and arsenic-doped polycrystalline silicon resistors have also been performed and shown to be consistent with the experimental results published by previous authors.

  9. Participation of oxygen and carbon in formation of oxidation-induced stacking faults in monocrystalline silicon

    Directory of Open Access Journals (Sweden)

    Иван Федорович Червоный

    2015-11-01

    Full Text Available It is experimentally established, that density of oxidation-induced stacking faults (OISF in the boron doped monocrystalline silicon plates, that above, than it is more relation of oxygen atoms concentration to carbon atoms concentration in them.On research results of geometry of OISF rings in the different sections of single-crystal geometry of areas is reconstructed with their different closeness. At adjustment of the growing modes of single-crystals of silicon the increase of output of suitable product is observed

  10. Theoretical exploration of structural, electro-optical and magnetic properties of gallium-doped silicon carbide nanotubes

    Science.gov (United States)

    Behzad, Somayeh; Chegel, Raad; Moradian, Rostam; Shahrokhi, Masoud

    2014-09-01

    The effects of gallium doping on the structural, electro-optical and magnetic properties of (8,0) silicon carbide nanotube (SiCNT) are investigated by using spin-polarized density functional theory. It is found from the calculation of the formation energies that gallium substitution for silicon atom is preferred. Our results show that gallium substitution at either single carbon or silicon atom site in SiCNT could induce spontaneous magnetization. The optical studies based on dielectric function indicate that new transition peaks and a blue shift are observed after gallium doping.

  11. Preparation of calcium-doped boron nitride by pulsed laser deposition

    International Nuclear Information System (INIS)

    Anzai, Atsushi; Fuchigami, Masayo; Yamanaka, Shoji; Inumaru, Kei

    2012-01-01

    Highlights: ► Ca-doped boron nitride was prepared by pulsed laser deposition. ► The films do not have long range order structure in terms of XRD. ► But the films had short-range order structure of h-BN sheets. ► Ca-free films had the same optical band gap as crystalline bulk h-BN (5.8 eV.) ► Ca-doping brought about decreases of the optical band gap by ca. 0.4 eV. -- Abstract: Calcium-doped BN thin films Ca x BN y (x = 0.05–0.1, y = 0.7–0.9) were grown on α-Al 2 O 3 (0 0 1) substrates by pulsed laser deposition (PLD) using h-BN and Ca 3 N 2 disks as the targets under nitrogen radical irradiation. Infrared ATR spectra demonstrated the formation of short range ordered structure of BN hexagonal sheets, while X-ray diffraction gave no peak indicating the absence of long-range order structure in the films. It was notable that Ca-doped film had 5.45–5.55 eV of optical band gap, while the band gap of Ca-free films was 5.80–5.85 eV. This change in the band gap is ascribed to interaction of Ca with the BN sheets; first principle calculations on h-BN structure indicated that variation of inter-plane distance between the BN layers did not affect the band gap. This study highlights that PLD could prepare BN having short-range structure of h-BN sheets and being doped with electropositive cation which varies the optical band gap of the films.

  12. Tuning the optical response in carbon doped boron nitride nanodots

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-09-04

    Time dependent density functional theory and the hybrid B3LYP functional are used to investigate the structural and optical properties of pristine and carbon doped hexagonal boron nitride nanodots. In agreement with recent experiments, the embedded carbon atoms are found to favor nucleation. Our results demonstrate that carbon clusters of different shapes promote an early onset of absorption by generating in-gap states. The nanodots are interesting for opto-electronics due to their tunable optical response in a wide energy window. We identify cluster sizes and shapes with optimal conversion efficiency for solar radiation and a wide absorption range form infrared to ultraviolet. This journal is

  13. Isothermal annealing of silicon implanted with 50 keV 10B ions

    International Nuclear Information System (INIS)

    Weidner, B.; Zaschke, G.

    1974-01-01

    Isothermal annealing characteristics of silicon implanted with boron were measured and compared with calculated results. Implantation was performed with 50 keV 10 B ions in the dose range of 7.5 x 10 12 cm -2 to 2.0 x 10 15 cm -2 . Annealing temperatures ranged from 700 to 900 0 C. Maximum annealing time was 10 4 minutes. Annealing time strongly increases with increasing dose and decreasing temperature. Assuming that there is only one activation energy the isothermal annealing curves of constant dose and different temperatures were combined to a reduced annealing curve and the reduced isothermal annealing curve calculated. Starting from first order kinetics, considering the doping profile of boron in silicon and assuming a depth-dependent decay constant the experimentally determined annealing curves could be easily described over the total dose and time range

  14. Doping chloro boron subnaphthalocyanines and chloro boron subphthalocyanine in simple OLED architectures yields warm white incandescent-like emissions

    Science.gov (United States)

    Plint, Trevor G.; Lessard, Benoît H.; Bender, Timothy P.

    2018-01-01

    We have incorporated chloro boron subphthalocyanine (Cl-BsubPc) and chloro boron subnapthalocyanines (Cl-ClnBsubNcs) into organic light emitting diodes (OLEDs) that enabled an overall warm white emission with CIE coordinates close to that of a 60 W incandescent lightbulb. More specifically, we have shown that Cl-BsubPc and Cl-ClnBsubNcs can be used as dopant emitters in a simple host-dopant architecture, and we have compared the use of NPB and Alq3 as potential hosts for these materials. When doped into Alq3, Cl-BsubPc shows a strong orange emission, and Cl-ClnBsubNcs shows a moderately strong red emission. We have further demonstrated that Cl-BsubPc and Cl-ClnBsubNcs can be co-doped into the same layer giving combined orange and red emission peaks. A "cascade" energy transfer mechanism of sequential absorption and re-emission is proposed. Device performance characteristics such as luminance, current efficiency, photoluminescence efficiency, and external quantum efficiency are tabulated. Additionally, in view of ongoing research into white emitting OLEDs for indoor lighting purposes, the Colour Rendering Index (CRI), R9 values, and CIE co-ordinates for these devices are also discussed. We conclude from this study that the BsubNc chromophore has potential application as a red dopant in OLEDs including for indoor lighting. Additionally, given the scope for axial and peripheral derivatization of the BsubNc motif, we believe that this chromophore has many unexplored molecular design handles that will affect its ultimate performance and application in OLEDs and other opto-electronic devices.

  15. Radiation damage and defect behavior in proton irradiated lithium-counterdoped n+p silicon solar cells

    Science.gov (United States)

    Stupica, John; Goradia, Chandra; Swartz, Clifford K.; Weinberg, Irving

    1987-01-01

    Two lithium-counterdoped n+p silicon solar cells with different lithium concentrations were irradiated by 10-MeV protons. Cell performance was measured as a function of fluence, and it was found that the cell with the highest concentration of lithium had the highest radiation resistance. Deep level transient spectroscopy which showed two deep level defects that were lithium related. Relating the defect energy levels obtained from this study with those from earlier work using 1-MeV electron irradiation shows no correlation of the defect energy levels. There is one marked similarity: the absence of the boron-interstitial-oxygen-interstitial defect. This consistency strengthens the belief that lithium interacts with oxygen to prevent the formation of the boron interstitial-oxygen interstitial defect. The results indicate that, in general, addition of lithium in small amounts to the p-base of a boron doped silicon solar cell such that the base remains p-type, tends to increase the radiation resistance of the cell.

  16. Passivated emitters in silicon solar cells

    International Nuclear Information System (INIS)

    King, R.R.; Gruenbaum, P.E.; Sinton, R.A.; Swanson, R.M.

    1990-01-01

    In high-efficiency silicon solar cells with low metal contact coverage fractions and high bulk lifetimes, cell performance is often dominated by recombination in the oxide-passivated diffusions on the cell surface. Measurements of the emitter saturation current density, J o , of oxide-passivated, boron and phosphorus diffusions are presented, and from these measurements, the dependence of surface recombination velocity on dopant concentration was extracted. The lowest observed values of J o which are stable under UV light are given for both boron- and phosphorus-doped, oxide-passivated diffusions, for both textured and untextured surfaces. Contour plots which incorporate the above data have been applied to two types of backside-contact solar cells with large area (37.5 cm 2 ) and one-sun efficiencies up to 22.7%

  17. Current enhancement in crystalline silicon photovoltaic by low-cost nickel silicide back contact

    KAUST Repository

    Bahabry, R. R.; Gumus, A.; Kutbee, A. T.; Wehbe, N.; Ahmed, S. M.; Ghoneim, M. T.; Lee, K. -T.; Rogers, J. A.; Hussain, M. M.

    2016-01-01

    We report short circuit current (Jsc) enhancement in crystalline silicon (C-Si) photovoltaic (PV) using low-cost Ohmic contact engineering by integration of Nickel mono-silicide (NiSi) for back contact metallization as an alternative to the status quo of using expensive screen printed silver (Ag). We show 2.6 mA/cm2 enhancement in the short circuit current (Jsc) and 1.2 % increment in the efficiency by improving the current collection due to the low specific contact resistance of the NiSi on the heavily Boron (B) doped Silicon (Si) interface.

  18. Current enhancement in crystalline silicon photovoltaic by low-cost nickel silicide back contact

    KAUST Repository

    Bahabry, R. R.

    2016-11-30

    We report short circuit current (Jsc) enhancement in crystalline silicon (C-Si) photovoltaic (PV) using low-cost Ohmic contact engineering by integration of Nickel mono-silicide (NiSi) for back contact metallization as an alternative to the status quo of using expensive screen printed silver (Ag). We show 2.6 mA/cm2 enhancement in the short circuit current (Jsc) and 1.2 % increment in the efficiency by improving the current collection due to the low specific contact resistance of the NiSi on the heavily Boron (B) doped Silicon (Si) interface.

  19. Electrochemical doping of mesoporous silicon with Er: the effect of the current intensity

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Guido, E-mail: guido.mula@unica.it [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Pinna, Elisa [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Falqui, Andrea [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Ruffilli, Roberta [Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Palmas, Simonetta; Mascia, Michele [Dipartimento di Ingegneria Meccanica Chimica e dei Materiali, Università degli Studi di Cagliari, Piazza d’Armi, 09126 Cagliari (Italy)

    2014-08-30

    Graphical abstract: - Highlights: • A multidisciplinary approach on porous Si electrochemical Er doping is proposed. • The phenomena taking place at the large developed surface of porous silicon are studied. • Electrochemical, optical and structural characterizations are used. • The early stages of doping are studied by electrochemical impedance spectroscopy. • The dependence of the final amount of Er deposited on the current intensity and not only on the transferred charge is shown. - Abstract: There is an ongoing intense research for cost-effective Er-doped Si-based light-emitting devices at the 1.5 μm wavelength. The efficient electrochemical Er-doping of porous silicon for this purpose requires a good understanding of the phenomena involved, since those taking place at the pores inner surface control the doping process. However, almost no attention has been given, to date, to the relevant effects of the current intensity onto the doping results. In this work, the effect of the current intensity on the doping process is explored by means of electrochemical impedance spectroscopy, optical reflectivity and energy dispersive spectrometry via scanning electron microscopy. The combined analysis of all results strongly suggests that the formation of a gel-like Er ethanolate, unaffected by changes in the sample thickness, occurs from the very first stages of the doping process. Moreover, while for constant current doping processes we show that, under any given doping condition, the doping level is proportional to the transferred charge, we demonstrate that performing the doping process using different current intensities may lead to dramatically different results.

  20. Influence of the doping level on the porosity of silicon nanowires prepared by metal-assisted chemical etching

    International Nuclear Information System (INIS)

    Geyer, Nadine; Wollschläger, Nicole; Tonkikh, Alexander; Berger, Andreas; Werner, Peter; Fuhrmann, Bodo; Leipner, Hartmut S; Jungmann, Marco; Krause-Rehberg, Reinhard

    2015-01-01

    A systematic method to control the porosity of silicon nanowires is presented. This method is based on metal-assisted chemical etching (MACE) and takes advantage of an HF/H_2O_2 etching solution and a silver catalyst in the form of a thin patterned film deposited on a doped silicon wafer. It is found that the porosity of the etched nanowires can be controlled by the doping level of the wafer. For low doping concentrations, the wires are primarily crystalline and surrounded by only a very thin layer of porous silicon (pSi) layer, while for highly doped silicon, they are porous in their entire volume. We performed a series of controlled experiments to conclude that there exists a well-defined critical doping concentration separating the crystalline and porous regimes. Furthermore, transmission electron microscopy investigations showed that the pSi has also a crystalline morphology on a length scale smaller than the pore size, determined from positron annihilation lifetime spectroscopy to be mesoscopic. Based on the experimental evidence, we devise a theoretical model of the pSi formation during MACE and apply it for better control of the nanowire morphology. (paper)

  1. CMOS-compatible method for doping of buried vertical polysilicon structures by solid phase diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Turkulets, Yury [Micron Semiconductor Israel Ltd., Qiryat Gat 82109 (Israel); Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 8410501 (Israel); Silber, Amir; Ripp, Alexander; Sokolovsky, Mark [Micron Semiconductor Israel Ltd., Qiryat Gat 82109 (Israel); Shalish, Ilan, E-mail: shalish@bgu.ac.il [Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 8410501 (Israel)

    2016-03-28

    Polysilicon receives attention nowadays as a means to incorporate 3D-structured photonic devices into silicon processes. However, doping of buried layers of a typical 3D structure has been a challenge. We present a method for doping of buried polysilicon layers by solid phase diffusion. Using an underlying silicon oxide layer as a dopant source facilitates diffusion of dopants into the bottom side of the polysilicon layer. The polysilicon is grown on top of the oxide layer, after the latter has been doped by ion implantation. Post-growth heat treatment drives in the dopant from the oxide into the polysilicon. To model the process, we studied the diffusion of the two most common silicon dopants, boron (B) and phosphorus (P), using secondary ion mass spectroscopy profiles. Our results show that shallow concentration profiles can be achieved in a buried polysilicon layer using the proposed technique. We present a quantitative 3D model for the diffusion of B and P in polysilicon, which turns the proposed method into an engineerable technique.

  2. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhong-Shuai; Chen, Long; Sun, Yi; Muellen, Klaus [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Winter, Andreas; Turchanin, Andrey [Universitaet Bielefeld, Fakultaet fuer Physik, Physik Supramolekularer Systeme und Oberflaechen, Universitaetsstr. 25D, 33615 Bielefeld (Germany); Feng, Xinliang [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai (China)

    2012-09-25

    A simplified prototype device of high-performance all-solid-state supercapacitors (ASSSs) based on 3D nitrogen and boron co-doped monolithic graphene aerogels (BN-GAs) is demonstrated for the first time. The resulting ASSSs show high specific capacitance, good rate capability, and enhanced energy density or power density. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Neutron Transmutation Doping of Silicon at Research Reactors

    International Nuclear Information System (INIS)

    2012-05-01

    This publication details the processes and history of neutron transmutation doping of silicon, particularly its commercial pathway, followed by the requirements for a technologically modern and economically viable production scheme and the current trends in the global market for semiconductor products. It should serve as guidelines on the technical requirements, involved processes and required quality standards for the transmission of sound practices and advice for research reactor managers and operators planning commercial scale production of silicon. Furthermore, a detailed and specific database of most of the world's research reactor facilities in this domain is included, featuring their characteristics for irradiation capabilities, associated production capacities and processing.

  4. Photodegradation of aniline by goethite doped with boron under ultraviolet and visible light irradiation

    International Nuclear Information System (INIS)

    Liu, Guanglong; Liao, Shuijiao; Zhu, Duanwei; Liu, Linghua; Cheng, Dongsheng; Zhou, Huaidong

    2011-01-01

    Highlights: → Goethite modified by boron was prepared by sol-gel method in presence of boron acid at the low temperature. → B-goethite has slight red shift in the band gap transition beside their stronger light absorption compared with pristine goethite. → The results showed that semiconductor photocatalytic reaction mechanism should exist in the process of aniline degradation with goethite and B-goethite as photocatalyst. -- Abstract: In the present study, goethite and goethite doped with boron (B-goethite) were employed to detect the presence or absence of semiconductor photocatalytic reaction mechanism in the reaction systems. B-goethite was prepared by sol-gel method in presence of boron acid in order to improve its photocatalystic efficiency under the ultraviolet and visible light irradiation. The optical properties of goethite and B-goethite were characterized by ultraviolet and visible absorption spectra and the result indicated that B-goethite has slight red shift in the band gap transition beside their stronger light absorption compared with pristine goethite. Degradation of aniline was investigated in presence of goethite and B-goethite in aqueous solution. It was found that the B-goethite photocatalyst exhibited enhanced ultraviolet and visible light photocatalytic activity in degradation of aniline compared with the pristine goethite. The photocatalytic degradation mechanism of B-goethite was discussed.

  5. Thermoelectric Properties of High-Doped Silicon from Room Temperature to 900 K

    Science.gov (United States)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2013-07-01

    Silicon is investigated as a low-cost, Earth-abundant thermoelectric material for high-temperature applications up to 900 K. For the calculation of module design the Seebeck coefficient and the electrical as well as thermal properties of silicon in the high-temperature range are of great importance. In this study, we evaluate the thermoelectric properties of low-, medium-, and high-doped silicon from room temperature to 900 K. In so doing, the Seebeck coefficient, the electrical and thermal conductivities, as well as the resulting figure of merit ZT of silicon are determined.

  6. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells.

    Science.gov (United States)

    Zhang, S J; Lin, S S; Li, X Q; Liu, X Y; Wu, H A; Xu, W L; Wang, P; Wu, Z Q; Zhong, H K; Xu, Z J

    2016-01-07

    Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications.

  7. Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature

    Science.gov (United States)

    Shakhov, Fedor M.; Abyzov, Andrey M.; Takai, Kazuyuki

    2017-12-01

    Boron doped diamond (BDD) was synthesized under high pressure and high temperature (HPHT) of 7 GPa, 1230 °C in a short time of 10 s from a powder mixtures of detonation nanodiamond (DND), pentaerythritol C5H8(OH)4 and amorphous boron. SEM, TEM, XRD, XPS, FTIR and Raman spectroscopy indicated that BDD nano- and micro-crystals have formed by consolidation of DND particles (4 nm in size). XRD showed the enlargement of crystallites size to 6-80 nm and the increase in diamond lattice parameter by 0.02-0.07% without appearance of any microstrains. Raman spectroscopy was used to estimate the content of boron atoms embedded in the diamond lattice. It was found that the Raman diamond peak shifts significantly from 1332 cm-1 to 1290 cm-1 without appearance of any non-diamond carbon. The correlation between Raman peak position, its width, and boron content in diamond is proposed. Hydrogenated diamond carbon in significant amount was detected by IR spectroscopy and XPS. Due to the doping with boron content of about 0.1 at%, the electrical conductivity of the diamond achieved approximately 0.2 Ω-1 cm-1. Reaction mechanism of diamond growth (models of recrystallization and oriented attachment) is discussed, including the initial stages of pentaerythritol pyrolysis and thermal desorption of functional groups from the surface of DND particles with the generation of supercritical fluid of low-molecular substances (H2O, CH4, CO, CO2, etc.), as well as byproducts formation (B2O3, B4C).

  8. Specific features of doping with antimony during the ion-beam crystallization of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Pashchenko, A. S., E-mail: as.pashchenko@gmail.com; Chebotarev, S. N.; Lunin, L. S. [Russian Academy of Sciences, Southern Scientific Center (Russian Federation); Irkha, V. A. [Special Engineering and Technology Department “Inversiya” Ltd. (Russian Federation)

    2016-04-15

    A method of doping during the growth of thin films by ion-beam crystallization is proposed. By the example of Si and Sb, the possibility of controllably doping semiconductors during the ion-beam crystallization process is shown. A calibrated temperature dependence of the antimony vapor flow rate in the range from 150 to 400°C is obtained. It is established that, an increase in the evaporator temperature above 200°C brings about the accumulation of impurities in the layer growth direction. Silicon layers doped with antimony to a concentration of 10{sup 18} cm{sup –3} are grown. It is shown that, as the evaporator temperature is increased, the efficiency of the activation of antimony in silicon nonlinearly decreases from ~10{sup 0} to ~10{sup –3}.

  9. Impurity engineering for germanium-doped Czochralski silicon wafer used for ultra large scale integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiahe; Yang, Deren [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou (China)

    2009-07-01

    Internal gettering (IG) technology has been challenged by both the reduction of thermal budget during device fabrication and the enlargement of wafer diameter. Improving the properties of Czochralski (Cz) silicon wafers by intentional impurity doping, the so-called 'impurity engineering (IE)', is defined. Germanium has been found to be one of the important impurities for improving the internal gettering effect in Cz silicon wafer. In this paper, the investigations on IE involved with the conventional furnace anneal based denudation processing for germanium-doped Cz silicon wafer are reviewed. Meanwhile, the potential mechanisms of germanium effects for the IE of Cz silicon wafer are also interpreted based on the experimental facts. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Defects in boron ion implanted silicon

    International Nuclear Information System (INIS)

    Wu, W.K.

    1975-05-01

    The crystal defects formed after post-implantation annealing of B-ion-implanted Si irradiated at 100 keV to a moderate dose (2 x 10 14 /cm 2 ) were studied by transmission electron microscopy. Contrast analysis and annealing kinetics show at least two different kinds of linear rod-like defects along broken bracket 110 broken bracket directions. One kind either shrinks steadily remaining on broken bracket 110 broken bracket at high temperatures (greater than 850 0 C), or transforms into a perfect dislocation loop which rotates toward broken bracket 112 broken bracket perpendicular to its Burgers vector. The other kind shrinks steadily at moderate temperatures (approximately 800 0 C). The activation energy for shrinkage of the latter (3.5 +- 0.1 eV) is the same as that for B diffusion in Si, suggesting that this linear defect is a boron precipitate. There also exist a large number of perfect dislocation loops with Burgers vector a/2broken bracket 110 broken bracket. The depth distribution of all these defects was determined by stereomicroscopy. The B precipitates lying parallel to the foil surfaces are shown to be at a depth of about 3500 +- 600 A. The loops are also at the same depth, but with a broader spread, +-1100 A. Si samples containing B and samples containing no B (P-doped) were irradiated in the 650-kV electron microscope. Irradiation at 620 0 C resulted in the growth of very long linear defects in the B-doped samples but not in the others, suggesting that at 620 0 C Si interstitials produced by the electron beam replace substitutional B some of which precipitates in the form of long rods along broken bracket 110 broken bracket. (DLC)

  11. Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ficek, M.; Sobaszek, M.; Gnyba, M. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Ryl, J. [Department of Electrochemistry, Corrosion and Material Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk (Poland); Gołuński, Ł. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Smietana, M.; Jasiński, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw (Poland); Caban, P. [Institute of Electronic Materials Technology, 133 Wolczynska St., 01-919 Warsaw (Poland); Bogdanowicz, R., E-mail: rbogdan@eti.pg.gda.pl [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-11-30

    Highlights: • Growth of 60% of transmittance diamond films with resistivity as low as 48 Ω cm. • Two step seeding process of fused silica: plasma hydrogenation and wet seeding. • Nanodiamond seeding density of 2 × 10{sup 10} cm{sup −2} at fused silica substrates. • High refractive index (2.4 @550 nm) was achieved for BDD films deposited at 500 °C. - Abstract: This paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density. First, the substrates undergo the hydrogen plasma treatment then spin-coating seeding using a dispersion consisting of detonation nanodiamond in dimethyl sulfoxide with polyvinyl alcohol was applied. Such an approach results in seeding density of 2 × 10{sup 10} cm{sup −2}. The scanning electron microscopy images showed homogenous, continuous and polycrystalline surface morphology with minimal grain size of 200 nm for highly boron doped films. The sp{sup 3}/sp{sup 2} ratio was calculated using Raman spectra deconvolution method. A high refractive index (range of 2.0–2.4 @550 nm) was achieved for BDD films deposited at 500 °C. The values of extinction coefficient were below 0.1 at λ = 550 nm, indicating low absorption of the film. The fabricated BDD thin films displayed resistivity below 48 Ohm cm and transmittance over 60% in the visible wavelength range.

  12. Sequential Electrodeposition of Platinum-Ruthenium at Boron-Doped Diamond Electrodes for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Ileana González-González

    2011-01-01

    Full Text Available Sequential electrodeposition of Pt and Ru on boron-doped diamond (BDD films, in 0.5 M H2SO4 by cyclic voltammetry, has been prepared. The potential cycling, in the aqueous solutions of the respective metals, was between 0.00 and 1.00 V versus Ag/AgCl. The catalyst composites, Pt and PtRu, deposited on BDD film substrates, were tested for methanol oxidation. The modified diamond surfaces were also characterized by scanning electron microscopy-X-ray fluorescence-energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The scanning Auger electron spectroscopy mapping showed the ruthenium signal only in areas where platinum was electrodeposited. Ruthenium does not deposit on the oxidized diamond surface of the boron-doped diamond. Particles with 5–10% of ruthenium with respect to platinum exhibited better performance for methanol oxidation in terms of methanol oxidation peak current and chronoamperometric current stability. The electrogenerated •OH radicals on BDD may interact with Pt surface, participating in the methanol oxidation as shown in oxidation current and the shift in the peak position. The conductive diamond surface is a good candidate as the support for the platinum electrocatalyst, because it ensures catalytic activity, which compares with the used carbon, and higher stability under severe anodic and cathodic conditions.

  13. Rate equation modelling of erbium luminescence dynamics in erbium-doped silicon-rich-silicon-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Miraj, E-mail: m.shah@ee.ucl.ac.uk [Department of Electronic and Electrical Engineering, UCL, Torrington Place, London WC1E 7JE (United Kingdom); Wojdak, Maciej; Kenyon, Anthony J. [Department of Electronic and Electrical Engineering, UCL, Torrington Place, London WC1E 7JE (United Kingdom); Halsall, Matthew P.; Li, Hang; Crowe, Iain F. [Photon Science Institute and School of Electrical and Electronic Engineering, University of Manchester, Sackville St Building, Manchester M13 9PL (United Kingdom)

    2012-12-15

    Erbium doped silicon-rich silica offers broad band and very efficient excitation of erbium photoluminescence (PL) due to a sensitization effect attributed to silicon nanocrystals (Si-nc), which grow during thermal treatment. PL decay lifetime measurements of sensitised Er{sup 3+} ions are usually reported to be stretched or multi exponential, very different to those that are directly excited, which usually show a single exponential decay component. In this paper, we report on SiO{sub 2} thin films doped with Si-nc's and erbium. Time resolved PL measurements reveal two distinct 1.54 {mu}m Er decay components; a fast microsecond component, and a relatively long lifetime component (10 ms). We also study the structural properties of these samples through TEM measurements, and reveal the formation of Er clusters. We propose that these Er clusters are responsible for the fast {mu}s decay component, and we develop rate equation models that reproduce the experimental transient observations, and can explain some of the reported transient behaviour in previously published literature.

  14. Fabrication and Characterization of N-Type Zinc Oxide/P-Type Boron Doped Diamond Heterojunction

    Science.gov (United States)

    Marton, Marián; Mikolášek, Miroslav; Bruncko, Jaroslav; Novotný, Ivan; Ižák, Tibor; Vojs, Marian; Kozak, Halyna; Varga, Marián; Artemenko, Anna; Kromka, Alexander

    2015-09-01

    Diamond and ZnO are very promising wide-bandgap materials for electronic, photovoltaic and sensor applications because of their excellent electrical, optical, physical and electrochemical properties and biocompatibility. In this contribution we show that the combination of these two materials opens up the potential for fabrication of bipolar heterojunctions. Semiconducting boron doped diamond (BDD) thin films were grown on Si and UV grade silica glass substrates by HFCVD method with various boron concentration in the gas mixture. Doped zinc oxide (ZnO:Al, ZnO:Ge) thin layers were deposited by diode sputtering and pulsed lased deposition as the second semiconducting layer on the diamond films. The amount of dopants within the films was varied to obtain optimal semiconducting properties to form a bipolar p-n junction. Finally, different ZnO/BDD heterostructures were prepared and analyzed. Raman spectroscopy, SEM, Hall constant and I-V measurements were used to investigate the quality, structural and electrical properties of deposited heterostructures, respectively. I-V measurements of ZnO/BDD diodes show a rectifying ratio of 55 at ±4 V. We found that only very low dopant concentrations for both semiconducting materials enabled us to fabricate a functional p-n junction. Obtained results are promising for fabrication of optically transparent ZnO/BDD bipolar heterojunction.

  15. Boron-doped zinc oxide thin films for large-area solar cells grown by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Chen, X.L.; Xu, B.H.; Xue, J.M.; Zhao, Y.; Wei, C.C.; Sun, J.; Wang, Y.; Zhang, X.D.; Geng, X.H.

    2007-01-01

    Boron-doped zinc oxide (ZnO:B) films were grown by metal organic chemical vapor deposition using diethylzinc (DEZn), and H 2 O as reactant gases and diborane (B 2 H 6 ) as an n-type dopant gas. The structural, electrical and optical properties of ZnO films doped at different B 2 H 6 flow rates were investigated. X-ray diffraction spectra and scanning electron microscopy images indicate that boron-doping plays an important role on the microstructure of ZnO films, which induced textured morphology. With optimized conditions, low sheet resistance (∼ 30 Ω/□), high transparency (> 85% in the visible light and infrared range) and high mobility (17.8 cm 2 V -1 s -1 ) were obtained for 700-nm ZnO:B films deposited on 20 cm x 20 cm glass substrates at the temperature of 443 K. After long-term exposure in air, the ZnO:B films also showed a better electrical stability than the un-doped samples. With the application of ZnO:B/Al back contacts, the short circuit current density was effectively enhanced by about 3 mA/cm 2 for a small area a-Si:H cell and a high efficiency of 9.1% was obtained for a large-area (20 cm x 20 cm) a-Si solar module

  16. Screening metal nanoparticles using boron-doped diamond microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ivandini, Tribidasari A., E-mail: ivandini.tri@sci.ui.ac.id; Rangkuti, Prasmita K. [Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Einaga, Yasuaki [Department of Chemistry, Faculty of Science and Technology, Keio University (Japan); JST ACCEL, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan)

    2016-04-19

    Boron-doped diamond (BDD) microelectrodes were used to observe the correlation between electrocatalytic currents caused by individual Pt nanoparticle (Pt-np) collisions at the electrode. The BDD microelectrodes, ∼20 µm diameter and ∼2 µm particle size, were fabricated at the surface of tungsten wires. Pt-np with a size of 1 to 5 nm with agglomerations up to 20 nm was used for observation. The electrolytic currents were observed via catalytic reaction of 15 mM hydrazine in 50 mM phosphate buffer solution at Pt-np at 0.4 V when it collides with the surface of the microelectrodes. The low current noise and wider potential window in the measurements using BDD microelectrode produced a better results, which represents a better correlation to the TEM result of the Pt-np, compared to when gold microelectrodes was used.

  17. Screening metal nanoparticles using boron-doped diamond microelectrodes

    International Nuclear Information System (INIS)

    Ivandini, Tribidasari A.; Rangkuti, Prasmita K.; Einaga, Yasuaki

    2016-01-01

    Boron-doped diamond (BDD) microelectrodes were used to observe the correlation between electrocatalytic currents caused by individual Pt nanoparticle (Pt-np) collisions at the electrode. The BDD microelectrodes, ∼20 µm diameter and ∼2 µm particle size, were fabricated at the surface of tungsten wires. Pt-np with a size of 1 to 5 nm with agglomerations up to 20 nm was used for observation. The electrolytic currents were observed via catalytic reaction of 15 mM hydrazine in 50 mM phosphate buffer solution at Pt-np at 0.4 V when it collides with the surface of the microelectrodes. The low current noise and wider potential window in the measurements using BDD microelectrode produced a better results, which represents a better correlation to the TEM result of the Pt-np, compared to when gold microelectrodes was used.

  18. Impurity-defect complexes in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Yang, L.H.; Fong, C.Y.; Nichols, C.S.

    1991-01-01

    The two most outstanding features observed for dopants in hydrogenated amorphous silicon (a-Si:H)-a shift in the Fermi level accompanied by an increase in the defect density and an absence of degenerate doping have previously been postulated to stem from the formation of substitutional dopant-dangling bond complexes. Using first-principles self-consistent pseudopotential calculations in conjunction with a supercell model for the amorphous network and the ability of network relaxation from the first-principles results. The authors have studied the electronic and structural properties of substitutional fourfold-coordinated phosphorus and boron at the second neighbor position to a dangling bond defect. This paper demonstrates that such impurity-defect complexes can account for the general features observed experimentally in doped a-Si:H

  19. Precision calibration of the silicon doping level in gallium arsenide epitaxial layers

    Science.gov (United States)

    Mokhov, D. V.; Berezovskaya, T. N.; Kuzmenkov, A. G.; Maleev, N. A.; Timoshnev, S. N.; Ustinov, V. M.

    2017-10-01

    An approach to precision calibration of the silicon doping level in gallium arsenide epitaxial layers is discussed that is based on studying the dependence of the carrier density in the test GaAs layer on the silicon- source temperature using the Hall-effect and CV profiling techniques. The parameters are measured by standard or certified measuring techniques and approved measuring instruments. It is demonstrated that the use of CV profiling for controlling the carrier density in the test GaAs layer at the thorough optimization of the measuring procedure ensures the highest accuracy and reliability of doping level calibration in the epitaxial layers with a relative error of no larger than 2.5%.

  20. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells

    Science.gov (United States)

    Zhang, S. J.; Lin, S. S.; Li, X. Q.; Liu, X. Y.; Wu, H. A.; Xu, W. L.; Wang, P.; Wu, Z. Q.; Zhong, H. K.; Xu, Z. J.

    2015-12-01

    Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications.Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron

  1. Study of the passivation mechanisms of boron doped diamond using the Amplitude Modulated Step Scan Fourier Transform Photocurrent Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kociniewski, T.; Remeš, Zdeněk; Mer, C.; Nesládek, Miloš; Habka, N.; Barjon, J.; Jomard, F.; Chevallier, J.; Omnès, F.; Tromson, D.; Bergonzo, P.

    2009-01-01

    Roč. 18, 5-8 (2009), s. 827-830 ISSN 0925-9635 Institutional research plan: CEZ:AV0Z10100521 Keywords : AMFTPS * DBP * boron doped diamond * passivation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.822, year: 2009

  2. Neutron transmutation doping of silicon in the SAFARI-1 research reactor

    International Nuclear Information System (INIS)

    Louw, P.A.; Robertson, D.G.; Strydom, W.J.

    1994-01-01

    The SAFARI-1 research reactor has operated with an exemplary safety record since commissioning in 1965. As part of a commercialisation effort a silicon irradiation facility (SILIRAD) has been installed in the poolside region of SAFARI-1 for Neutron Transmutation Doping (NTD) of silicon. Commissioning of the facility took place in the last quarter of 1992 with a series of trial irradiations which were performed in close collaboration with Wacker Chemitronic of Germany. A methodology for the determination of irradiation times necessary to achieve the target resistivities was verified on the basis of the results from the trial irradiations. All production activities are controlled by quality assurance procedures. To date some hundred and twelve silicon ingots (103 mm diameter) have been successfully irradiated on a commercial contract basis. The observed axial and radial variations in the resistivity profile of the ingots are very small compared to the profiles associated with conventionally doped silicon and small tolerances on target resistivities are attained. In this paper an overview of the design and characterisation of SILIRAD is given and the methods applied that ensure a quality product are described. Results obtained from trial and production irradiations are presented and the envisaged future modifications to SILIRAD discussed

  3. Neutron transmutation doping of silicon in the safari-1 research reactor

    International Nuclear Information System (INIS)

    Louw, P.A.; Robertson, D.G.; Strydom, W.J.

    1994-01-01

    The SAFARI-1 research reactor has operated with an exemplary safety record since commissioning in 1965. As part of a commercialisation effort a silicon irradiation facility (SILIRAD) has been installed in the poolside region of SAFARI-1 for Neutron Transmutation Doping (NTD) of silicon. Commissioning of the facility took place in the last quarter of 1992 with a series of trial irradiations which were performed in close collaboration the Wacker Chemitronic of Germany. A methodology for the determination of irradiation times necessary to achieve the target resistivities was verified on the basis of the results from the trial irradiations. All production activities are controlled by quality assurance procedures. To date some hundred and twelve silicon ingots (103 mm diameter) have been successfully irradiated on a commercial contract basis. The observed axial and radial variations in the resistivity profile of the ingots are very small compared to the profiles associated with conventionally doped silicon and small tolerances on target resistivities are attained. In this paper an overview of the design and characterisation of SILIRAD is given and the methods applied that ensure a quality product are described. Results obtained from trial and production irradiations are presented and the envisaged future modifications to SILIRAD discussed. 10 refs., 2 tabs., 6 figs

  4. Characteristics of surface mount low barrier silicon Schottky diodes with boron contamination in the substrate–epitaxial layer interface

    International Nuclear Information System (INIS)

    Pal, Debdas; Hoag, David; Barter, Margaret

    2012-01-01

    Unusual negative resistance characteristics were observed in low barrier HMIC (Heterolithic Microwave Integrated Circuit) silicon Schottky diodes with HF (hydrofluoric acid)/IPA (isopropyl alcohol) vapor clean prior to epitaxial growth of silicon. SIMS (secondary ion mass spectroscopy) analysis and the results of the buried layer structure confirmed boron contamination in the substrate/epitaxial layer interface. Consequently the structure turned into a thyristor like p-n-p-n device. A dramatic reduction of boron contamination was found in the wafers with H 2 0/HCl/HF dry only clean prior to growth, which provided positive resistance characteristics. Consequently the mean differential resistance at 10 mA was reduced to about 8.1 Ω. The lower series resistance (5.6–5.9 Ω) and near 1 ideality factor (1.03–1.06) of the Schottky devices indicated the good quality of the epitaxial layer. (paper)

  5. Hot tensile behaviour in silicon-killed boron microalloyed steels

    Science.gov (United States)

    Chown, Lesley H.; Cornish, Lesley A.

    2017-10-01

    Low carbon steel for drawing and cold heading applications should have low strength, high ductility and low strain ageing rates. To achieve this, nitrogen must be removed from solid solution, which can be done by low additions of boron. A wire producer had been experiencing occasional problems with severe cracking on silicon-killed, boron steel billets during continuous casting, but the solution was not obvious. Samples from four billets, each from different casts, were removed for analysis and testing. The tested steel compositions were within the specification limits, with boron to nitrogen ratios of 0.40-1.19. Hot ductility testing was performed on a Gleeble 1500 using parameters approximating the capabilities of this particular billet caster. The steel specimens were subjected to in situ melting, then cooled at a rate of 2 C.s-1 to temperatures in the range 750-1250°C, where they were then pulled to failure at a strain rate of 8x10-4 s-1. In this work, it was found that both the boron to nitrogen ratio and the manganese to sulphur ratio influenced the hot ductility and hence the crack susceptibility. Excellent hot ductility was found for B:N ratios above 1.0, which confirmed that the B:N ratio should be above a stoichiometric value of 0.8 to remove all nitrogen from solid solution. TEM analysis showed that coarse BN precipitates nucleated on other precipitates, such as (Fe,Mn)S, which have relatively low melting points, and are detrimental to hot ductility. Low Mn:S ratios of 10 - 12 were shown to promote precipitation of FeS, so a Mn:S > 14 was recommended. A narrower billet surface temperature range for straightening was recommended to prevent transverse surface cracking. Additionally, analysis of industrial casting data showed that the scrap percentage due to transverse cracking increased significantly for Mn:S < 14. An exponential decay relationship between the manganese to sulphur ratio and the average scrap percentage due to transverse cracking was

  6. Sensitivity of energy-packed compounds based on superfine and nanoporous silicon to pulsed electrical treatments

    Energy Technology Data Exchange (ETDEWEB)

    Zegrya, G. G. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Savenkov, G. G. [Saint-Petersburg State Engineering Institute (Technical University) (Russian Federation); Morozov, V. A. [Saint-Petersburg State University (Russian Federation); Zegrya, A. G.; Ulin, N. V., E-mail: Ulin@mail.ioffe.ru; Ulin, V. P. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Lukin, A. A. [Saint-Petersburg State Engineering Institute (Technical University) (Russian Federation); Bragin, V. A.; Oskin, I. A. [AO Scientific Production Association Poisk (Russian Federation); Mikhailov, Yu. M. [Russian Academy of Sciences, Institute of Problems of Chemical Physics (Russian Federation)

    2017-04-15

    The sensitivity of an energy-packed compound based on nanoporous silicon and calcium perchlorate to a high-current electron beam is studied. The initiation of explosive transformations in a mixture of potassium picrate with a highly dispersed powder of boron-doped silicon by means of a high-voltage discharge is examined. It is shown that explosive transformation modes (combustion and explosion) appear in the energy-packed compound under study upon its treatment with an electron beam. A relationship is established between the explosive transformation modes and the density of the energy-packed compound and between the breakdown (initiation) voltage and the mass fraction of the silicon powder.

  7. Porous silicon formation by hole injection from a back side p+/n junction for electrical insulation applications

    International Nuclear Information System (INIS)

    Fèvre, A; Menard, S; Defforge, T; Gautier, G

    2016-01-01

    In this paper, we propose to study the formation of porous silicon (PS) in low doped (1 × 10 14 cm −3 ) n-type silicon through hole injection from a back side p + /n junction in the dark. This technique is investigated within the framework of electrical insulation. Three different types of junctions are investigated. The first one is an epitaxial n-type layer grown on p + doped silicon wafer. The two other junctions are carried out by boron diffusion leading to p + regions with junction depths of 20 and 115 μm. The resulting PS morphology is a double layer with a nucleation layer (NL) and macropores fully filled with mesoporous material. This result is unusual for low doped n-type silicon. Morphology variations are described depending on the junction formation process, the electrolyte composition, the anodization current density and duration. In order to validate the more interesting industrial potentialities of the p + /n injection technique, a comparison is achieved with back side illumination in terms of resulting morphology and experiments confirm comparable results. Electrical characterizations of the double layer, including NL and fully filled macropores, are then performed. To our knowledge, this is the first electrical investigation in low doped n type silicon with this morphology. Compared to the bulk silicon, the measured electrical resistivities are 6–7 orders of magnitude higher at 373 K. (paper)

  8. Preparation and reactivity of carboxylic acid-terminated boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Niedziolka-Joensson, Joanna; Boland, Susan; Leech, Donal; Boukherroub, Rabah; Szunerits, Sabine

    2010-01-01

    The paper reports on the formation of carboxy-terminated boron-doped diamond (BDD) electrodes. The carboxylic acid termination was prepared in a controlled way by reacting photochemically oxidized BDD with succinic anhydride. The resulting interface was readily employed for the linking of an amine-terminated ligand such as an osmium complex bearing an amine terminal group. The interfaces were characterized using X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Contact angle measurements were used to follow the changes in surface wetting properties due to surface functionalization. The chemical reactivity of the carboxyl-terminated BDD was investigated by covalent coupling of the acid groups to an amine-terminated osmium complex.

  9. Porous silicon photonic devices using pulsed anodic etching of lightly doped silicon

    International Nuclear Information System (INIS)

    Escorcia-Garcia, J; Sarracino MartInez, O; Agarwal, V; Gracia-Jimenez, J M

    2009-01-01

    The fabrication of porous silicon photonic structures using lightly doped, p-type, silicon wafers (resistivity: 14-22 Ω cm) by pulsed anodic etching is reported. The optical properties have been found to be strongly dependent on the duty cycle and frequency of the applied current. All the interfaces of the single layered samples were digitally analysed by calculating the mean interface roughness (R m ). The interface roughness was found to be maximum for the sample with direct current. The use of a duty cycle above 50%, in a certain range of frequencies, is found to reduce the interface roughness. The optical properties of some microcavities and rugate filters are investigated from the optimized parameters of the duty cycle and frequency, using the current densities of 10, 90 and 150 mA cm -2 .

  10. Dependence of boron cluster dissolution on the annealing ambient

    International Nuclear Information System (INIS)

    Radic, Ljubo; Lilak, Aaron D.; Law, Mark E.

    2002-01-01

    Boron is introduced into silicon via implantation to form p-type layers. This process creates damage in the crystal that upon annealing causes enhanced diffusion and clustering of the boron layer. Reactivation of the boron is not a well-understood process. In this letter we experimentally investigate the effect of the annealing ambient on boron reactivation kinetics. An oxidizing ambient which injects silicon interstitials is compared to an inert ambient. Contrary to published theory, an excess of interstitials does not accelerate the reactivation process

  11. Radiation damage and defect behavior in ion-implanted, lithium counterdoped silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Mehta, S.; Swartz, C. K.

    1984-01-01

    Boron doped silicon n+p solar cells were counterdoped with lithium by ion implantation and the resuitant n+p cells irradiated by 1 MeV electrons. The function of fluence and a Deep Level Transient Spectroscopy (DLTS) was studied to correlate defect behavior with cell performance. It was found that the lithium counterdoped cells exhibited significantly increased radiation resistance when compared to boron doped control cells. It is concluded that the annealing behavior is controlled by dissociation and recombination of defects. The DLTS studies show that counterdoping with lithium eliminates at least three deep level defects and results in three new defects. It is speculated that the increased radiation resistance of the counterdoped cells is due primarily to the interaction of lithium with oxygen, single vacanies and divacancies and that the lithium-oxygen interaction is the most effective in contributing to the increased radiation resistance.

  12. White light emission from engineered silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan

    Silicon carbide (SiC) is a wide indirect bandgap semiconductor. The light emission efficiency is low in nature. But this material has very unique physical properties like good thermal conductivity, high break down field etc in addition to its abundance. Therefore it is interesting to engineer its...... light emission property so that to take fully potential applications of this material. In this talk, two methods, i.e. doping SiC heavily by donor-acceptor pairs and making SiC porous are introduced to make light emission from SiC. By co-doping SiC with nitrogen and boron heavily, strong yellow emission...... is demonstrated. After optimizing the passivation conditions, strong blue-green emission from porous SiC is demonstrated as well. When combining the yellow emission from co-doped SiC and blue-green from porous SiC, a high color rendering index white light source is achieved....

  13. Boron-doped, carbon-coated SnO2/graphene nanosheets for enhanced lithium storage.

    Science.gov (United States)

    Liu, Yuxin; Liu, Ping; Wu, Dongqing; Huang, Yanshan; Tang, Yanping; Su, Yuezeng; Zhang, Fan; Feng, Xinliang

    2015-03-27

    Heteroatom doping is an effective method to adjust the electrochemical behavior of carbonaceous materials. In this work, boron-doped, carbon-coated SnO2 /graphene hybrids (BCTGs) were fabricated by hydrothermal carbonization of sucrose in the presence of SnO2/graphene nanosheets and phenylboronic acid or boric acid as dopant source and subsequent thermal treatment. Owing to their unique 2D core-shell architecture and B-doped carbon shells, BCTGs have enhanced conductivity and extra active sites for lithium storage. With phenylboronic acid as B source, the resulting hybrid shows outstanding electrochemical performance as the anode in lithium-ion batteries with a highly stable capacity of 1165 mA h g(-1) at 0.1 A g(-1) after 360 cycles and an excellent rate capability of 600 mA h g(-1) at 3.2 A g(-1), and thus outperforms most of the previously reported SnO2-based anode materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enhanced photocatalytic activity of titania with unique surface indium and boron species

    Science.gov (United States)

    Yu, Yanlong; Wang, Enjun; Yuan, Jixiang; Cao, Yaan

    2013-05-01

    Indium and boron co-doped TiO2 photocatalysts were prepared by a sol-gel method. The structure and properties of photocatalysts were characterized by XRD, BET, XPS, UV-vis DRS and PL techniques. It is found that boron is mainly doped into the lattice of TiO2 in interstitial mode, while indium is present as unique chemical species of O-In-Clx (x = 1 or 2) on the surface. Compared with pure TiO2, the narrowness of band gap of TiO2 doped with indium and boron is due to the mixed valence band formed by B2p of interstitial doped B ions hybridized with lattice O2p. And the surface state energy levels of O-In-Clx (x = 1 or 2) and B2O3 species were located at about 0.4 and 0.3 eV below the conduction band respectively, which could lead to significant absorption in the visible-light region and facilitated the effectually separation of photogenerated carriers. Therefore, indium and boron co-doped TiO2 showed the much higher photocatalytic activities than pure TiO2, boron doped TiO2 (TiO2-B) and indium doped TiO2 (TiO2-In) under visible and UV light irradiation.

  15. Batch fabrication of mesoporous boron-doped nickel oxide nanoflowers for electrochemical capacitors

    International Nuclear Information System (INIS)

    Yang, Jing-He; Yu, Qingtao; Li, Yamin; Mao, Liqun; Ma, Ding

    2014-01-01

    Highlights: • A new facile liquid-phase method has been employed for synthesis boron-doped NiO nanoflowers. • The specific surface area of NiO is as high as 200 m 2 g −1 . • NiO nanoflowers exhibit a high specific capacitance of ∼1309 F g −1 at a charge and discharge current density of 3 A g −1 . • NiO nanoflowers have excellent cycling ability and even after 2500 cycles there is no significant reduction in specific capacitance. - Abstract: Boron-doped nickel oxide (B-NiO) nanoflowers are prepared by simple thermal decomposition of nickel hydroxide. B-NiO is porous sphere with a diameter of about 400 nm. B-NiO nanoflowers are composed of approximately 30 nm nanoplates and the thickness of the nanosheets is approximately 3 nm. The specific surface area of the material is as high as 200 m 2 g −1 and the pore size distribution curves of B-NiO has three typical peaks in the range of mesoporous (5 nm, 13 nm and 18 nm). As an electrode for supercapacitors, the crystalline B-NiO nanoflowers have favorable characteristics, for instance, a specific capacitance of 1309 F g −1 at a current density of 3 A g −1 and no significant reduction in Coulombic efficiency after 2500 cycles at 37.5 A g −1 . This remarkable electrochemical performance will make B-NiO nanoflowers a promising electrode material for high performance supercapacitors

  16. Thermoelectric properties of β-boron and some boron compounds. Final report, August 1981-September 1984

    International Nuclear Information System (INIS)

    Slack, G.A.; Rosolowski, J.H.; Miller, M.L.; Huseby, I.C.

    1984-12-01

    The thermoelectric properties, that is the Seebeck coefficient, and electrical and thermal conductivity, of doped β-boron have been measured from 300 to 1600 K. Most of the useful doping elements are transition metals and occupy interstitial sites in the lattice. The highest figure of merit so far achieved at 1000 K is ZT = 0.11 for P-type, polycrystalline, hot-pressed β-boron doped with copper. Higher values may be achievable once a better P-type dopant is found. Some experiments on B 68 Y, α-B 12 Al, B 4 C, and B 6 Si are described. Transition metals appear to be effective dopants for B 68 Y and B 4 C

  17. Effect of reaction conditions on methyl red degradation mediated by boron and nitrogen doped TiO2

    International Nuclear Information System (INIS)

    Galenda, A.; Crociani, L.; Habra, N. El; Favaro, M.; Natile, M.M.; Rossetto, G.

    2014-01-01

    Highlights: • Boron and/or nitrogen-doped TiO 2 for photocatalytic wastewater treatment. • Methyl red degradation/mineralisation as a function of pH, acids and dopants. • Adsorption time influence on photocatalytic process. • Recovery of worn-out catalyst. - Abstract: Nowadays the employment of renewable and sustainable energy sources, and solar light as main option, becomes an urgent need. Photocatalytic processes received great attention in wastewater treatment due to their cheapness, environmental compatibility and optimal performances. Despite the general low selectivity of the photocatalysts, an accurate optimisation of the operational parameters needs to be carried out in order to maximise the process yield. Because of this reason, the present contribution aims to deepen either the knowledge in boron and/or nitrogen doped TiO 2 -based systems and their employment in methyl red removal from aqueous solutions. The samples were obtained by coprecipitation and characterised by XRD, SEM, BET specific surface area, UV–vis and XPS techniques. The catalytic activity was for the first time carefully evaluated with respect to methyl red photodegradation in different conditions as a function of working pH, counter-ions and pre-adsorption time. An ad-hoc study was performed on the importance of the pre-adsorption of the dye, suggesting that an extended adsorption is useless for the catalyst photoactivity, while a partial coverage is preferable. The photocatalytic tests demonstrate the positive influence of boron doping in photo-activated reactions and the great importance of the operational parameters with respect to the simple methyl red bleaching rather than the overall pollutant mineralisation. It is proved, indeed, that different working pH, acidifying means and substrate pre-adsorption time can enhance or limit the catalyst performances with respect to the complete pollutant degradation rather than its partial breakage

  18. A Monte Carlo simulation study of boron profiles as-implanted into LPCVD NiDoS polycrystalline thin films

    Science.gov (United States)

    Boukezzata, M.; Ait-Kaki, A.; Temple-Boyer, P.; Scheid, E.

    2003-03-01

    This work presents a Monte Carlo simulation study of boron profiles obtained from as-implanted ions into thin films nitrogen doped silicon (NiDoS) thin films. These films are performed by LPCVD technique from Si2H6 and NH3 gas sources, four values deliberately chosen, of the ratio NH3/Si2H6 to obtain samples, differently in situ nitrogen-doped. Taking into account the effect of the codoping case, and the structure specificity of these films, an accurate Monte Carlo model based on binary collisions in a multi-atomic target was performed. Nitrogen atoms present in the target is shown to affect the boron profiles and confirms clearly a reduction penetration effect which becomes more significant at high nitrogen concentrations. Whereas, the fine-grained polysilicon structure, and thus the presence of grains (G) and grain boundaries (GB), is known to enhance the opposite phenomenon by assuming an effective role played by GB's in the scattering calculation process of the incident ions. This role is represented by the change in direction of the incident ion after interaction with GB without corresponding loss in its energy. The results obtained show an enhancement of the stopping parameter when nitrogen concentration increases, while the GB interaction remains very important. This behavior is due to a great number of GB's interactions with boron atoms which gave low deflection angles. So that, the average positions described by the sequences of trajectories took place farther than what expected with channeling effect in crystal silicon materials.

  19. Mid-IR optical properties of silicon doped InP

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Han, Li; Norrman, Kion

    2017-01-01

    of growth conditions on the optical and electrical properties of silicon doped InP (InP:Si) in the wavelength range from 3 to 40 μm was studied. The carrier concentration of up to 3.9 × 1019 cm-3 is achieved by optimizing the growth conditions. The dielectric function, effective mass of electrons and plasma...

  20. Boron Doped Nanocrystalline Diamond Films for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    V. Petrák

    2011-01-01

    Full Text Available With the rise of antibiotic resistance of pathogenic bacteria there is an increased demand for monitoring the functionality of bacteria membranes, the disruption of which can be induced by peptide-lipid interactions. In this work we attempt to construct and disrupt supported lipid membranes (SLB on boron doped nanocrystalline diamond (B-NCD. Electrochemical Impedance Spectroscopy (EIS was used to study in situ changes related to lipid membrane formation and disruption by peptide-induced interactions. The observed impedance changes were minimal for oxidized B-NCD samples, but were still detectable in the low frequency part of the spectra. The sensitivity for the detection of membrane formation and disruption was significantly higher for hydrogenated B-NCD surfaces. Data modeling indicates large changes in the electrical charge when an electrical double layer is formed at the B-NCD/SLB interface, governed by ion absorption. By contrast, for oxidized B-NCD surfaces, these changes are negligible indicating little or no change in the surface band bending profile.

  1. Adsorption of HCN molecules on Ni, Pd and Pt-doped (7, 0) boron nitride nanotube: a DFT study

    Science.gov (United States)

    Habibi-Yangjeh, Aziz; Basharnavaz, Hadi

    2018-05-01

    We studied affinity of pure and Ni, Pd and Pt-doped (7, 0) boron nitride nanotubes (BNNTs) to toxic HCN molecules using density functional theory calculations. The results indicated that the pure (7, 0) BNNTs can weakly adsorb HCN molecules with adsorption energy of -0.2474 eV. Upon adsorption of HCN molecules on this nanotube, the band gap energy was decreased from 3.320 to 2.960 eV. The more negative adsorption energy between these transition metal-doped (7, 0) BNNTs and HCN molecules indicated that doping of (7, 0) BNNTs with Ni, Pd and Pt elements can significantly improve the affinity of BNNTs toward this gas. Additionally, it was found that the interaction energy between HCN molecules and Pt-doped BNNTs is more negative than those of the Ni and Pd-doped BNNTs. These observations suggested that the Pt-doped (7, 0) BNNTs are strongly sensitive to HCN molecules and therefore it may be used in gas sensor devices for detecting this toxic gas.

  2. Effect of doping on the modification of polycrystalline silicon by spontaneous reduction of diazonium salts

    Science.gov (United States)

    Girard, A.; Coulon, N.; Cardinaud, C.; Mohammed-Brahim, T.; Geneste, F.

    2014-09-01

    The chemical modification of doped polycrystalline silicon materials (N+, N++ and P++) and silicon (1 0 0) and (1 1 1) used as references is investigated by spontaneous reduction of diazonium salts. The effectiveness of the grafting process on all polySi surfaces is shown by AFM and XPS analyses. The effect of substrate doping on the efficiency of the electrografting process is compared by using the thicknesses of the deposited organic films. For a better accuracy, two methods are used to estimate the thicknesses: XPS and the coupling of a O2 plasma etching with AFM measurement. Structural characteristics of the poly-Si films were investigated by Scanning Electron Microscopy and X-ray diffraction to find a correlation between the structure of the material and its reactivity. Different parameters that could have an impact on the efficiency of the grafting procedure are discussed. The observed differences between differently doped silicon surfaces is rather limited, this is in agreement with the radical character of the reacting species.

  3. LiBSi2: a tetrahedral semiconductor framework from boron and silicon atoms bearing lithium atoms in the channels.

    Science.gov (United States)

    Zeilinger, Michael; van Wüllen, Leo; Benson, Daryn; Kranak, Verina F; Konar, Sumit; Fässler, Thomas F; Häussermann, Ulrich

    2013-06-03

    Silicon swallows up boron: The novel open tetrahedral framework structure (OTF) of the Zintl phase LiBSi2 was made by applying high pressure to a mixture of LiB and elemental silicon. The compound represents a new topology in the B-Si net (called tum), which hosts Li atoms in the channels (see picture). LiBSi2 is the first example where B and Si atoms form an ordered common framework structure with B engaged exclusively in heteronuclear B-Si contacts.

  4. Mapping boron in silicon solar cells using electron energy-loss spectroscopy

    DEFF Research Database (Denmark)

    in the energies of plasmon peaks in the low loss region [5]. We use these approaches to characterize both a thick n-p junction and the 10-nm-thick p-doped layer of a working solar cell. [1] U. Kroll, C. Bucher, S. Benagli, I. Schönbächler, J. Meier, A. Shah, J. Ballutaud, A. Howling, Ch. Hollenstein, A. Büchel, M......Amorphous silicon solar cells typically consist of stacked layers deposited on plastic or metallic substrates making sample preparation for transmission electron microscopy (TEM) difficult. The amorphous silicon layer - the active part of the solar cell - is sandwiched between 10-nm-thick n- and p...... resolution using TEM is highly challenging [3]. Recently, scanning TEM (STEM) combined with electron energy-loss spectroscopy (EELS) and spherical aberration-correction has allowed the direct detection of dopant concentration of 10^20cm-3 in 65-nm-wide silicon devices [4]. Here, we prepare TEM samples...

  5. Facile Synthesis of Boron-doped Graphene Nanosheets with Hierarchical Microstructure at Atmosphere Pressure for Metal-free Electrochemical Detection of Hydrogen Peroxide

    International Nuclear Information System (INIS)

    Yeh, Min-Hsin; Li, Yan-Sheng; Chen, Guan-Lin; Lin, Lu-Yin; Li, Ta-Jen; Chuang, Hui-Min; Hsieh, Cheng-Yu; Lo, Shen-Chuan; Chiang, Wei-Hung; Ho, Kuo-Chuan

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • B-doped graphene nanosheets (BGNs) were used as a catalyst for sensing H 2 O 2 . • BGNs were synthesized by an atmospheric-pressure carbothermal reaction. • BGNs with hierarchical microstructure provide more electron transport pathways. • B atoms act as the active sites by transferring charges to neighboring C atoms. • Electrocatalytic ability of BGNs was characterized by a rotating disk electrode. -- Abstract: Hydrogen peroxide (H 2 O 2 ) is an essential mediator for most of the oxidative biological reactions in enzyme-based biosensor systems, such as glucose oxidase, cholesterol oxidase, and alcohol oxidase. Synthesis of new catalysts to detect the concentration of H 2 O 2 more precisely is indispensable for enzyme-based electrochemical biosensors. In this study, boron-doped graphene nanosheets (BGNs) with 2.2 atomic percentage (at%) boron doping level and a hierarchical microstructure were synthesized by an atmospheric-pressure carbothermal reaction as a noble-metal free catalyst for sensing H 2 O 2 . The isolated boron atoms on the BGNs surface act as the electrocatalytic sites by transferring charges to neighbor carbon atoms, and the hierarchical microstructure provides multidimensional electron transport pathways for charge transfer and therefore enhances the electrocatalytic ability. BGNs possess a higher reduction current in the cyclic voltammetry (CV) measurement than that of pristine graphene nanosheets (GNs) over the detection range of 0.0 to 10.0 mM at −0.4 V (vs. Ag/AgCl). The BGNs modified electrochemical sensor shows a linear range from 1.0 to 20.0 mM of H 2 O 2 with a sensitivity of 266.7 ± 3.8 μA mM −1 cm −2 and limit of detection (LOD) of 3.8 μM at a signal-to-noise (S/N) ratio of 3. The beneficial hierarchical microstructure and the synergetic effects arising from doping boron in GNs accomplish the better performance of the BGNs modified electrochemical sensor

  6. Hydrogenation of gold-related levels in silicon by electrolytic doping

    International Nuclear Information System (INIS)

    Pearton, S.J.; Hansen, W.L.; Haller, E.E.; Kahn, J.M.

    1984-01-01

    The deep gold-related donor and acceptor levels in silicon have been neutralized to several μm depth by introducing atomic hydrogen using an electrolytic method. Using phosphoric or sulfuric acid as the electrolyte, it is possible to dope the crystalline silicon with hydrogen at elevated temperatures (200--280 0 C) allowing direct comparison with other means of introduction, such as hydrogen plasma exposure. We find the electrolytic method is not as efficient as plasma treatment for the same conditions, possibly due to oxide formation during the immersion in the acid

  7. Pure and carbon-doped boron phosphide (6,0) zigzag nanotube: A computational NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Arshadi, S., E-mail: sattar_arshadi@yahoo.com [Department of Chemistry, Payame Noor University, 19395-4697, I.R. of Iran (Iran, Islamic Republic of); Bekhradnia, A.R., E-mail: abekhradnia@gmail.com [Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of); Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg (Sweden); Alipour, F.; Abedini, S. [Department of Chemistry, Payame Noor University, 19395-4697, I.R. of Iran (Iran, Islamic Republic of)

    2015-11-15

    Calculations were performed for investigation of the properties of the electronic structure of Carbon- Doped Boron Phosphide Nanotube (CDBPNT). Pristine and three models of C-doped structures of (6,0) zigzag BPNT were studied at density functional theory (DFT) in combination with 6-311G* basis set using Gaussian package of program. The calculated parameters reveal that various {sup 11}B and {sup 31}P nuclei are divided into some layers with equivalent electrostatic properties. The electronic structure properties are highly influenced by replacement of {sup 11}B and {sup 31}P atoms by {sup 12}C atoms in pristine model. Furthermore, the HOMO−LUMO gap energy for suggested doped models (I), (II) and (III) were lower than pure BPNT pristine systems. The dipole moment values of models (II) and (III) were decreased to 1.788 and 1.789, respectively while the dipole moments of model (I) were enhanced to 4.373, in compare to pure pristine one (2.586). The magnitude of changes in Chemical Shielding (CS) tensor parameters revealed that the electron density at the site of {sup 31}P was higher than that at the site of {sup 11}B due to carbon doping.

  8. Tungsten silicide contacts to polycrystalline silicon and silicon-germanium alloys

    International Nuclear Information System (INIS)

    Srinivasan, G.; Bain, M.F.; Bhattacharyya, S.; Baine, P.; Armstrong, B.M.; Gamble, H.S.; McNeill, D.W.

    2004-01-01

    Silicon-germanium alloy layers will be employed in the source-drain engineering of future MOS transistors. The use of this technology offers advantages in reducing series resistance and decreasing junction depth resulting in reduction in punch-through and SCE problems. The contact resistance of metal or metal silicides to the raised source-drain material is a serious issue at sub-micron dimensions and must be minimised. In this work, tungsten silicide produced by chemical vapour deposition has been investigated as a contact metallization scheme to both boron and phosphorus doped polycrystalline Si 1- x Ge x , with 0 ≤x ≤ 0.3. Cross bridge Kelvin resistor (CKBR) structures were fabricated incorporating CVD WSi 2 and polycrystalline SiGe. Tungsten silicide contacts to control polysilicon CKBR structures have been shown to be of high quality with specific contact resistance ρ c values 3 x 10 -7 ohm cm 2 and 6 x 10 -7 ohm cm 2 obtained to boron and phosphorus implanted samples respectively. The SiGe CKBR structures show that the inclusion of Ge yields a reduction in ρ c for both dopant types. The boron doped SiGe exhibits a reduction in ρ c from 3 x 10 -7 to 5 x 10 -8 ohm cm 2 as Ge fraction is increased from 0 to 0.3. The reduction in ρ c has been shown to be due to (i) the lowering of the tungsten silicide Schottky barrier height to p-type SiGe resulting from the energy band gap reduction, and (ii) increased activation of the implanted boron with increased Ge fraction. The phosphorus implanted samples show less sensitivity of ρ c to Ge fraction with a lowest value in this work of 3 x 10 -7 ohm cm 2 for a Ge fraction of 0.3. The reduction in specific contact resistance to the phosphorus implanted samples has been shown to be due to increased dopant activation alone

  9. A DLTS study of hydrogen doped czochralski-grown silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, M. [Infineon Technologies Austria AG, 9500 Villach (Austria); Laven, J.G. [Infineon Technologies AG, 81726 Munich (Germany); Kirnstoetter, S. [Institute of Solid State Physics, Graz University of Technology, 8010 Graz (Austria); Schustereder, W. [Infineon Technologies Austria AG, 9500 Villach (Austria); Schulze, H.-J. [Infineon Technologies AG, 81726 Munich (Germany); Rommel, M. [Fraunhofer Institute of Integrated Systems and Devices IISB, 91058 Erlangen (Germany); Frey, L. [Fraunhofer Institute of Integrated Systems and Devices IISB, 91058 Erlangen (Germany); Chair of Electron Devices, FAU Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2015-12-15

    In this study we examine proton implanted and subsequently annealed commercially available CZ wafers with the DLTS method. Depth-resolved spreading resistance measurements are shown, indicating an additional peak in the induced doping profile, not seen in the impurity-lean FZ reference samples. The additional peak lies about 10–15 μm deeper than the main peak near the projected range of the protons. A DLTS characterization in the depth of the additional peak indicates that it is most likely not caused by classical hydrogen-related donors known also from FZ silicon but by an additional donor complex whose formation is assisted by the presence of silicon self-interstitials.

  10. APTES-Terminated ultrasmall and iron-doped silicon nanoparticles as X-Ray dose enhancer for radiation therapy.

    Science.gov (United States)

    Klein, Stefanie; Wegmann, Marc; Distel, Luitpold V R; Neuhuber, Winfried; Kryschi, Carola

    2018-04-15

    Silicon nanoparticles with sizes between were synthesized through wet-chemistry procedures using diverse phase transfer reagents. On the other hand, the preparation of iron-doped silicon nanoparticles was carried out using the precursor Na 4 Si 4 containing 5% Fe. Biocompatibility of all silicon nanoparticle samples was achieved by surface-stabilizing with (3-aminopropyl)triethoxysilane. These surface structures provided positive surface charges which facilitated electrostatic binding to the negatively charged biological membranes. The mode of interaction with membranes, being either incorporation or just attachment, was found to depend on the nanoparticle size. The smallest silicon nanoparticles (ca. 1.5 nm) were embedded in the mitochondrial membrane in MCF-7 cells. When interacting with X-rays these silicon nanoparticles were observed to enhance the superoxide formation upon depolarizing the mitochondrial membrane. X-ray irradiation of MCF-7 cells loaded with the larger silicon nanoparticles was shown to increase the intracellular singlet oxygen generation. The doping of the silicon nanoparticles with iron led to additional production of hydroxyl radicals via the Fenton reaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Effect of doping on the modification of polycrystalline silicon by spontaneous reduction of diazonium salts

    Energy Technology Data Exchange (ETDEWEB)

    Girard, A.; Coulon, N. [UMR-CNRS 6164, Institut d’Electronique et de Télécommunications de Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex (France); Cardinaud, C. [UMR-CNRS 6502, Institut des Matériaux Jean Rouxel, Université de Nantes, 2 rue de la Houssinière, BP32229, F-44322 Nantes cedex 3 (France); Mohammed-Brahim, T. [UMR-CNRS 6164, Institut d’Electronique et de Télécommunications de Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex (France); Geneste, F., E-mail: Florence.Geneste@univ-rennes1.fr [UMR-CNRS 6226, Institut des Sciences Chimiques de Rennes, Equipe MaCSE, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex (France)

    2014-09-30

    Highlights: • Spontaneous grafting of aryl diazonium salts on polycrystalline silicon surfaces. • Effect of the nature and level of doping on the efficiency of the functionalization. • The grafting process was more efficient on PolySi substrates than on monosilicon. • Influence of the crystal structure and grain boundaries on the modification procedure. • Role of the reducing power of the substrate on the grafting procedure. - Abstract: The chemical modification of doped polycrystalline silicon materials (N+, N++ and P++) and silicon (1 0 0) and (1 1 1) used as references is investigated by spontaneous reduction of diazonium salts. The effectiveness of the grafting process on all polySi surfaces is shown by AFM and XPS analyses. The effect of substrate doping on the efficiency of the electrografting process is compared by using the thicknesses of the deposited organic films. For a better accuracy, two methods are used to estimate the thicknesses: XPS and the coupling of a O{sub 2} plasma etching with AFM measurement. Structural characteristics of the poly-Si films were investigated by Scanning Electron Microscopy and X-ray diffraction to find a correlation between the structure of the material and its reactivity. Different parameters that could have an impact on the efficiency of the grafting procedure are discussed. The observed differences between differently doped silicon surfaces is rather limited, this is in agreement with the radical character of the reacting species.

  12. Effect of doping on the modification of polycrystalline silicon by spontaneous reduction of diazonium salts

    International Nuclear Information System (INIS)

    Girard, A.; Coulon, N.; Cardinaud, C.; Mohammed-Brahim, T.; Geneste, F.

    2014-01-01

    Highlights: • Spontaneous grafting of aryl diazonium salts on polycrystalline silicon surfaces. • Effect of the nature and level of doping on the efficiency of the functionalization. • The grafting process was more efficient on PolySi substrates than on monosilicon. • Influence of the crystal structure and grain boundaries on the modification procedure. • Role of the reducing power of the substrate on the grafting procedure. - Abstract: The chemical modification of doped polycrystalline silicon materials (N+, N++ and P++) and silicon (1 0 0) and (1 1 1) used as references is investigated by spontaneous reduction of diazonium salts. The effectiveness of the grafting process on all polySi surfaces is shown by AFM and XPS analyses. The effect of substrate doping on the efficiency of the electrografting process is compared by using the thicknesses of the deposited organic films. For a better accuracy, two methods are used to estimate the thicknesses: XPS and the coupling of a O 2 plasma etching with AFM measurement. Structural characteristics of the poly-Si films were investigated by Scanning Electron Microscopy and X-ray diffraction to find a correlation between the structure of the material and its reactivity. Different parameters that could have an impact on the efficiency of the grafting procedure are discussed. The observed differences between differently doped silicon surfaces is rather limited, this is in agreement with the radical character of the reacting species

  13. Polymeric Luminescent Compositions Doped with Beta-Diketonates Boron Difluoride as Material for Luminescent Solar Concentrator

    Science.gov (United States)

    Khrebtov, A. A.; Fedorenko, E. V.; Reutov, V. A.

    2017-11-01

    In this paper we investigated polymeric luminescent compositions based on polystyrene doped with beta diketonates boron difluoride. Transparent films with effective absorption in the ultraviolet and blue regions of the spectrum were obtained. Polymeric luminescent compositions based on the mixture of dyes allow expanding the absorption region and increase the radiation shift. A luminescent solar concentrator consisting of a glass plate coated with such film can be used for photovoltaic window application.

  14. Enhanced photocatalytic activity of titania with unique surface indium and boron species

    International Nuclear Information System (INIS)

    Yu, Yanlong; Wang, Enjun; Yuan, Jixiang; Cao, Yaan

    2013-01-01

    Indium and boron co-doped TiO 2 photocatalysts were prepared by a sol–gel method. The structure and properties of photocatalysts were characterized by XRD, BET, XPS, UV–vis DRS and PL techniques. It is found that boron is mainly doped into the lattice of TiO 2 in interstitial mode, while indium is present as unique chemical species of O–In–Cl x (x = 1 or 2) on the surface. Compared with pure TiO 2 , the narrowness of band gap of TiO 2 doped with indium and boron is due to the mixed valence band formed by B2p of interstitial doped B ions hybridized with lattice O2p. And the surface state energy levels of O–In–Cl x (x = 1 or 2) and B 2 O 3 species were located at about 0.4 and 0.3 eV below the conduction band respectively, which could lead to significant absorption in the visible-light region and facilitated the effectually separation of photogenerated carriers. Therefore, indium and boron co-doped TiO 2 showed the much higher photocatalytic activities than pure TiO 2 , boron doped TiO 2 (TiO 2 –B) and indium doped TiO 2 (TiO 2 –In) under visible and UV light irradiation.

  15. Radiation damage and defect behavior in proton irradiated lithium-counterdoped n/sup +/p silicon solar cells

    International Nuclear Information System (INIS)

    Stupica, J.; Goradia, C.; Swartz, C.K.; Weinberg, I.

    1987-01-01

    Two lithium-counterdoped n/sup +/p silicon solar cells with different lithium concentrations were irradiated by 10 MeV protons. Cell performance was measured as a function of fluence, and it was found that the cell with the highest concentration of lithium had the higher radiation resistance. Deep level defects were studied using deep level transient spectroscopy which yielded two defects that were lithium related. Relating the defect energy levels obtained from this study under 10 MeV protons, with an earlier work using 1 MeV electron irradiations shows no correlation of the defect energy levels. There is one marked comparison though. The absence of the boron interstitial-oxygen interstitial defect. This consistency strengthens the belief that lithium interacts with oxygen to prevent the formation of the boron interstitial-oxygen interstitial defect. The present results indicate that, in general, addition of lithium in small amounts to the p-base of a boron doped silicon solar cell such that the base remains p-type, tends to increase the radiation resistance of the cell

  16. Effect of the Channel Length on the Transport Characteristics of Transistors Based on Boron-Doped Graphene Ribbons

    Directory of Open Access Journals (Sweden)

    Paolo Marconcini

    2018-04-01

    Full Text Available Substitutional boron doping of devices based on graphene ribbons gives rise to a unipolar behavior, a mobility gap, and an increase of the I O N / I O F F ratio of the transistor. Here we study how this effect depends on the length of the doped channel. By means of self-consistent simulations based on a tight-binding description and a non-equilibrium Green’s function approach, we demonstrate a promising increase of the I O N / I O F F ratio with the length of the channel, as a consequence of the different transport regimes in the ON and OFF states. Therefore, the adoption of doped ribbons with longer aspect ratios could represent a significant step toward graphene-based transistors with an improved switching behavior.

  17. Detection of DNA nucleotides on pretreated boron doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Garbellini, Gustavo S.; Uliana, Carolina V.; Yamanaka, Hideko [UNESP, Araraquara, SP (Brazil). Inst. de Quimica

    2011-07-01

    The individual detection and equimolar mixture of DNA nucleotides guanosine monophosphate (GMP), adenosine monophosphate (AMP), thymidine (TMP) and cytidine (CMP) 5'-monophosphate using square wave voltammetry was performed on boron doped diamond (BDD) electrodes cathodically (Red-DDB) and anodically (Oxi-DDB) pretreated. The oxidation of individual DNA nucleotides was more sensitive on Oxi-BDD electrode. In a simultaneous detection of nucleotides, the responses of GMP, AMP, TMP and CMP were very adequate on both treated electrodes. Particularly, more sensitive and separate peaks for TMP and CMP on Oxi-BDD and Red-BDD electrodes, respectively, were observed after deconvolution procedure. The detection of nucleotides in aqueous solutions will certainly contribute for genotoxic evaluation of substances and hybridization reactions by immobilizing ss or ds-DNA on BDD surface. (author)

  18. Suppression of photo-leakage current in amorphous silicon thin-film transistors by n-doped nanocrystalline silicon

    International Nuclear Information System (INIS)

    Lin, Hung-Chien; Ho, King-Yuan; Hsu, Chih-Chieh; Yan, Jing-Yi; Ho, Jia-Chong

    2011-01-01

    The reduction of photo-leakage current of amorphous silicon thin-film transistors (a-Si TFTs) is investigated and is found to be successfully suppressed by the use of an n-doped nanocrystalline silicon layer (n+ nc-Si) as an ohmic contact layer. The shallow-level defects of n+ nc-Si can become trapping centres of photo-induced electrons as the a-Si TFT is operated under light illumination. A lower oxygen concentration during n+ nc-Si deposition can increase the creation of shallow-level defects and improve the contrast ratio of active matrix organic light-emitting diode panels.

  19. Optical study of Erbium-doped-porous silicon based planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Najar, A. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B.P. 80518, 22305 Lannion Cedex (France) and Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia)]. E-mail: najar.adel@laposte.net; Ajlani, H. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Charrier, J. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B.P. 80518, 22305 Lannion Cedex (France); Lorrain, N. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B.P. 80518, 22305 Lannion Cedex (France); Haesaert, S. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B.P. 80518, 22305 Lannion Cedex (France); Oueslati, M. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Haji, L. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B.P. 80518, 22305 Lannion Cedex (France)

    2007-06-15

    Planar waveguides were formed from porous silicon layers obtained on P{sup +} substrates. These waveguides were then doped by erbium using an electrochemical method. Erbium concentration in the range 2.2-2.5 at% was determined by energy dispersive X-ray (EDX) analysis performed on SEM cross sections. The refractive index of layers was studied before and after doping and thermal treatments. The photoluminescence of Er{sup 3+} ions in the IR range and the decay curve of the 1.53 {mu}m emission peak were studied as a function of the excitation power. The value of excited Er density was equal to 0.07%. Optical loss contributions were analyzed on these waveguides and the losses were equal to 1.1 dB/cm at 1.55 {mu}m after doping.

  20. Origin of spin-polarization in edge boron doped zigzag graphene nanoribbon: a potential spin filter.

    Science.gov (United States)

    Chakrabarty, Soubhik; Wasey, A H M Abdul; Thapa, Ranjit; Das, Gour Prasad

    2018-06-04

    To realize the graphene based spintronic device the prime challenge is to control the electronic structure of edges. In this work we find the origin of spin filtering property in edge boron doped zigzag graphene nanoribbon (ZGNRs) and provide a guide to prepare the graphene based next generation spin filter based device. Here we unveil the role of orbital (p-electron) to tune the electronic, magnetic and transport properties of the edge B doped ZGNRs. When all the edge carbon atoms at one of the edges of ZGNRs are replaced by B (100% edge B-doping), the system undergoes semiconductor to metal transition. The role of passivation of the edge with single/double atomic hydrogen on the electronic properties and its relation with the p electron is correlated in-depth. 50% edge B-doped ZGNRs (50% of the edge C atoms at one of the edges are replaced by B) also shows half-metallicity when the doped edge is left unpassivated. The half-metallic systems show 100% spin-filtering efficiency for a wide range of bias voltages. Zero bias transmission function of the other configurations shows asymmetric behavior for the up and down spin channels, thereby indicating their possible application potential in nano-spintronics. © 2018 IOP Publishing Ltd.

  1. An All-Solid-State pH Sensor Employing Fluorine-Terminated Polycrystalline Boron-Doped Diamond as a pH-Insensitive Solution-Gate Field-Effect Transistor.

    Science.gov (United States)

    Shintani, Yukihiro; Kobayashi, Mikinori; Kawarada, Hiroshi

    2017-05-05

    A fluorine-terminated polycrystalline boron-doped diamond surface is successfully employed as a pH-insensitive SGFET (solution-gate field-effect transistor) for an all-solid-state pH sensor. The fluorinated polycrystalline boron-doped diamond (BDD) channel possesses a pH-insensitivity of less than 3mV/pH compared with a pH-sensitive oxygenated channel. With differential FET (field-effect transistor) sensing, a sensitivity of 27 mv/pH was obtained in the pH range of 2-10; therefore, it demonstrated excellent performance for an all-solid-state pH sensor with a pH-sensitive oxygen-terminated polycrystalline BDD SGFET and a platinum quasi-reference electrode, respectively.

  2. Controlling physical and chemical bonding of polypyrrole to boron doped diamond by surface termination

    Czech Academy of Sciences Publication Activity Database

    Ukraintsev, Egor; Kromka, Alexander; Janssen, W.; Haenen, K.; Rezek, Bohuslav

    2013-01-01

    Roč. 8, č. 1 (2013), s. 17-26 ISSN 1452-3981 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/0996 Grant - others:EU FP7 Marie Curie ITN MATCON(XE) PITN-GA-2009-238201 Institutional support: RVO:68378271 Keywords : electrochemical growth * polypyrrole * boron doped diamond * scanning electron microscopy * Kelvin force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.956, year: 2013 http://www.electrochemsci.org/papers/vol8/80100017.pdf

  3. Indirect Voltammetric Sensing Platforms For Fluoride Detection on Boron-Doped Diamond Electrode Mediated via [FeF6]3− and [CeF6]2− Complexes Formation

    International Nuclear Information System (INIS)

    Culková, Eva; Tomčík, Peter; Švorc, Ľubomír; Cinková, Kristína; Chomisteková, Zuzana; Durdiak, Jaroslav; Rievaj, Miroslav; Bustin, Dušan

    2014-01-01

    Very simple and sensitive electroanalytical technique based on synergistic combination of reaction electrochemistry (specificity) and bare boron-doped diamond electrode (sensitivity) for the detection of fluorides in drinking water was developed as variant based on dynamic electrochemistry to ISE analysis. It is based on the formation of electroinactive fluoride complexes with Fe(III) and Ce(IV) ions decreasing such diffusion current of free metal on boron-doped diamond electrode. Due to low background signal of boron-doped diamond electrode reasonably low detection limits of the order of 10 −6 mol L −1 for linear sweep voltammetric method using formation of [FeF 6 ] 3− and 10 −7 mol L −1 in a square-wave variant of this technique have been achieved. This is approximately 1–2 orders lower than in the case of platinum comb-shaped interdigitated microelectrode array. Linear sweep voltammetric method based on [CeF 6 ] 2− complex formation has lower sensitivity and may be suitable for samples with higher content of fluoride and not to analysis of drinking water

  4. Effects of manganese doping on the structure evolution of small-sized boron clusters

    Science.gov (United States)

    Zhao, Lingquan; Qu, Xin; Wang, Yanchao; Lv, Jian; Zhang, Lijun; Hu, Ziyu; Gu, Guangrui; Ma, Yanming

    2017-07-01

    Atomic doping of clusters is known as an effective approach to stabilize or modify the structures and properties of resulting doped clusters. We herein report the effect of manganese (Mn) doping on the structure evolution of small-sized boron (B) clusters. The global minimum structures of both neutral and charged Mn doped B cluster \\text{MnB}nQ (n  =  10-20 and Q  =  0, ±1) have been proposed through extensive first-principles swarm-intelligence based structure searches. It is found that Mn doping has significantly modified the grow behaviors of B clusters, leading to two novel structural transitions from planar to tubular and then to cage-like B structures in both neutral and charged species. Half-sandwich-type structures are most favorable for small \\text{MnB}n-/0/+ (n  ⩽  13) clusters and gradually transform to Mn-centered double-ring tubular structures at \\text{MnB}16-/0/+ clusters with superior thermodynamic stabilities compared with their neighbors. Most strikingly, endohedral cages become the ground-state structures for larger \\text{MnB}n-/0/+ (n  ⩾  19) clusters, among which \\text{MnB}20+ adopts a highly symmetric structure with superior thermodynamic stability and a large HOMO-LUMO gap of 4.53 eV. The unique stability of the endohedral \\text{MnB}\\text{20}+ cage is attributed to the geometric fit and formation of 18-electron closed-shell configuration. The results significantly advance our understanding about the structure and bonding of B-based clusters and strongly suggest transition-metal doping as a viable route to synthesize intriguing B-based nanomaterials.

  5. Optical properties of phosphorescent nano-silicon electrochemically doped with terbium

    Energy Technology Data Exchange (ETDEWEB)

    Gelloz, Bernard [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Mentek, Romain; Koshida, Nobuyoshi [Tokyo University A and T, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan)

    2012-12-15

    Hybrid thin films consisting of oxidized nano-silicon doped with terbium have been fabricated. Nano-silicon was formed by electrochemical etching of silicon wafers. Terbium was incorporated into nano-silicon pores by electrochemical deposition. Different oxidizing thermal treatments were applied to the films. The samples treated by high-pressure water vapor annealing (HWA) exhibited strong blue emission with a phosphorescent component, as previously reported by our group. The low temperature (260 C) HWA also led to strong emission from Tb{sup 3+} ions, whereas typical high temperature (900 C) treatment generally used to activate Tb{sup 3+} ions in silicon-based materials led to less luminescent samples. Spectroscopic and dynamic analyses suggest that terbium was incorporated as a separate oxide phase in the pores of the porous nano-silicon. The PL of the terbium phase and nano-silicon phase exhibit different temperature and excitation power dependences suggesting little optical or electronic interaction between the two phases. The luminescence of terbium is better activated at low temperature (260 C) than at high temperature (900 C). The hybrid material may find some applications in photonics, for instance as a display material. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Effects of phosphorus doping on structural and optical properties of silicon nanocrystals in a SiO2 matrix

    International Nuclear Information System (INIS)

    Hao, X.J.; Cho, E.-C.; Scardera, G.; Bellet-Amalric, E.; Bellet, D.; Shen, Y.S.; Huang, S.; Huang, Y.D.; Conibeer, G.; Green, M.A.

    2009-01-01

    Promise of Si nanocrystals highly depends on tailoring their behaviour through doping. Phosphorus-doped silicon nanocrystals embedded in a silicon dioxide matrix have been realized by a co-sputtering process. The effects of phosphorus-doping on the properties of Si nanocrystals are investigated. Phosphorus diffuses from P-P and/or P-Si to P-O upon high temperature annealing. The dominant X-ray photoelectron spectroscopy P 2p signal attributable to Si-P and/or P-P (130 eV) at 1100 o C indicates that the phosphorus may exist inside Si nanocrystals. It is found that existence of phosphorus enhances phase separation of silicon rich oxide and thereby Si crystallization. In addition, phosphorus has a considerable effect on the optical absorption and photoluminescence properties as a function of annealing temperature.

  7. Method of enhanced lithiation of doped silicon carbide via high temperature annealing in an inert atmosphere

    Science.gov (United States)

    Hersam, Mark C.; Lipson, Albert L.; Bandyopadhyay, Sudeshna; Karmel, Hunter J; Bedzyk, Michael J

    2014-05-27

    A method for enhancing the lithium-ion capacity of a doped silicon carbide is disclosed. The method utilizes heat treating the silicon carbide in an inert atmosphere. Also disclosed are anodes for lithium-ion batteries prepared by the method.

  8. Enhanced photocatalytic activity of titania with unique surface indium and boron species

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yanlong; Wang, Enjun; Yuan, Jixiang [MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin 300457 (China); Cao, Yaan, E-mail: caoyaan@yahoo.com [MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin 300457 (China)

    2013-05-15

    Indium and boron co-doped TiO{sub 2} photocatalysts were prepared by a sol–gel method. The structure and properties of photocatalysts were characterized by XRD, BET, XPS, UV–vis DRS and PL techniques. It is found that boron is mainly doped into the lattice of TiO{sub 2} in interstitial mode, while indium is present as unique chemical species of O–In–Cl{sub x} (x = 1 or 2) on the surface. Compared with pure TiO{sub 2}, the narrowness of band gap of TiO{sub 2} doped with indium and boron is due to the mixed valence band formed by B2p of interstitial doped B ions hybridized with lattice O2p. And the surface state energy levels of O–In–Cl{sub x} (x = 1 or 2) and B{sub 2}O{sub 3} species were located at about 0.4 and 0.3 eV below the conduction band respectively, which could lead to significant absorption in the visible-light region and facilitated the effectually separation of photogenerated carriers. Therefore, indium and boron co-doped TiO{sub 2} showed the much higher photocatalytic activities than pure TiO{sub 2}, boron doped TiO{sub 2} (TiO{sub 2}–B) and indium doped TiO{sub 2} (TiO{sub 2}–In) under visible and UV light irradiation.

  9. Optically transparent boron-doped nanocrystalline diamond films for spectroelectrochemical measurements on different substrates

    International Nuclear Information System (INIS)

    Sobaszek, M.; Bogdanowicz, R.; Pluciński, J.; Siuzdak, K.; Skowroński, Ł.

    2016-01-01

    Fabrication process of optically transparent boron nanocrystalline diamond (B- NCD) electrode on silicon and quartz substrate was shown. The B-NCD films were deposited on the substrates using Microwave Plasma Assisted Chemical Vapor Deposition (MWPACVD) at glass substrate temperature of 475 °C. A homogenous, continuous and polycrystalline surface morphology with high sp 3 content in B-NCD films and film thickness depending from substrate in the range of 60-300 nm was obtained. The high refraction index and transparency in visible (VIS) wavelength range was achieved. Moreover, cyclic voltammograms (CV) were recorded to determine reaction reversibility at the B-NCD electrode. CV measurements in aqueous media consisting of 1 mM K 3 [Fe(CN) 6 ] in 0.5 M Na 2 SO 4 demonstrated relatively fast kinetics expressed by a redox peak splitting below 503 mV for B-NCD/silicon and 110 mv for B-NCD/quartz

  10. Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces

    International Nuclear Information System (INIS)

    Bashiri, Hadi; Azim Karami, Mohammad; Mohammadnejad, Shahramm

    2017-01-01

    By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact (IBC) silicon solar cell, a new passivation layer is investigated. The passivation layer performance is characterized by numerical simulations. Moreover, the dependence of the output parameters of the solar cell on the additional layer parameters (doping concentration and thickness) is studied. By optimizing the additional passivation layer in terms of doping concentration and thickness, the power conversion efficiency could be improved by a factor of 2.5%, open circuit voltage is increased by 30 mV and the fill factor of the solar cell by 7.4%. The performance enhancement is achieved due to the decrease of recombination rate, a decrease in solar cell resistivity and improvement of field effect passivation at heterojunction interface. The above-mentioned results are compared with reported results of the same conventional interdigitated back-contact silicon solar cell structure. Furthermore, the effect of a-Si:H/c-Si interface defect density on IBC silicon solar cell parameters with a new passivation layer is studied. The additional passivation layer also reduces the sensitivity of output parameter of solar cell to interface defect density. (paper)

  11. Kinetics and mechanism of the deep electrochemical oxidation of sodium diclofenac on a boron-doped diamond electrode

    Science.gov (United States)

    Vedenyapina, M. D.; Borisova, D. A.; Rosenwinkel, K.-H.; Weichgrebe, D.; Stopp, P.; Vedenyapin, A. A.

    2013-08-01

    The kinetics and mechanism of the deep oxidation of sodium diclofenac on a boron-doped diamond electrode are studied to develop a technique for purifying wastewater from pharmaceutical products. The products of sodium diclofenac electrolysis are analyzed using cyclic voltammetry and nuclear magnetic resonance techniques. It is shown that the toxicity of the drug and products of its electrolysis decreases upon its deep oxidation.

  12. Electronic and physico-chemical properties of nanometric boron delta-doped diamond structures

    International Nuclear Information System (INIS)

    Chicot, G.; Fiori, A.; Tran Thi, T. N.; Bousquet, J.; Delahaye, J.; Grenet, T.; Eon, D.; Omnès, F.; Bustarret, E.; Volpe, P. N.; Tranchant, N.; Mer-Calfati, C.; Arnault, J. C.; Gerbedoen, J. C.; Soltani, A.; De Jaeger, J. C.; Alegre, M. P.; Piñero, J. C.; Araújo, D.; Jomard, F.

    2014-01-01

    Heavily boron doped diamond epilayers with thicknesses ranging from 40 to less than 2 nm and buried between nominally undoped thicker layers have been grown in two different reactors. Two types of [100]-oriented single crystal diamond substrates were used after being characterized by X-ray white beam topography. The chemical composition and thickness of these so-called delta-doped structures have been studied by secondary ion mass spectrometry, transmission electron microscopy, and spectroscopic ellipsometry. Temperature-dependent Hall effect and four probe resistivity measurements have been performed on mesa-patterned Hall bars. The temperature dependence of the hole sheet carrier density and mobility has been investigated over a broad temperature range (6 K  2 /Vs, independently of the layer thickness and the substrate type. Comparison with previously published data and theoretical calculations showed that scattering by ionized impurities explained only partially this low common value. None of the delta-layers showed any sign of confinement-induced mobility enhancement, even for thicknesses lower than 2 nm

  13. A study of the boron profiles caused by BF2 implantation in crystalline silicon

    International Nuclear Information System (INIS)

    Jung, Won-Chae

    2005-01-01

    For integrated CMOS circuits, the one-, two-, and three-dimensional impurity distributions are very important for analyzing the devices. The one-dimensional boron profiles were measured by using secondary ion mass spectroscopy (SIMS), and simulation data were obtained by using the TSUPREM4 and the UT-Marlowe programs. The simulated data of UT-Marlowe in 1D agreed very well with the SIMS data. From the SIMS and the simulated 1D data, the four moments were calculated, these 1D data were used in the TSUPREM4 simulator to calculate of 2D profiles. For the TSUPREM4 simulations, several different models were used for the characterization of the 1D and the 2D boron profiles. A Taurus simulation tool was used to obtain the 3D boron profiles for the case of arbitrary tilting and rotation. The measured two-dimensional cross-sectional transmission electron microscope (XTEM) data obtained by using the chemical etching method matched very well with the results of the Gauss model. The vertical depths from the Gauss model and from the XTEM data were 125.8 nm and 125 nm, respectively. The channel lengths from the Gauss model and from the XTEM data were 205 nm and 233 nm, respectively. From the XTEM data and the Gauss model, the deviations of the vertical and the lateral doping distributions were 0.6 % and 12 %, respectively. The detection limit of boron measured by using the chemical-etching method was shown to be a concentration of about 1.0 X 10 16 cm -3 for a PMOS device.

  14. Reactivity of silicon and germanium doped CNTs toward aromatic sulfur compounds: A theoretical approach

    International Nuclear Information System (INIS)

    Galano, Annia; Francisco-Marquez, Misaela

    2008-01-01

    Adsorption processes of thiophene and benzothiophene on pristine carbon nanotubes (CNTs), and on CNTs doped with Si or Ge, have been modeled with Density Functional. This is the first study on the chemical reactivity of such doped tubes. The calculated data suggest that the presence of silicon or germanium atoms in CNTs increases their reactivity toward thiophene, and benzothiophene. The adsorption of these species on pristine CNTs seems very unlikely to occur, while the addition products involving doped CNTs were found to be very stable, with respect to the isolated reactants, in terms of Gibbs free energy. Several of these adsorption processes were found to be significantly exergonic (ΔG < 0) in non-polar liquid phase. The results reported in this work suggest that Si and Ge defects on CNTs increase their reactivity toward unsaturated species, and could make them useful in the removal processes of aromatic sulfur compounds from oil-hydrocarbons. However, according to our results, CNTs doped with Si atoms are expected to be more efficient as aromatic sulfur compounds scavengers than those doped with Ge. These results also suggest that the presence of silicon and germanium atoms in the CNTs structures enhances their reactivity toward nucleophilic molecules, compared to pristine carbon nanotubes

  15. The water decomposition reactions on boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Suffredini, Hugo B.; Machado, Sergio A.S; Avaca, Luis A.

    2004-01-01

    The electrochemical processes occurring at both edges of the wide electrochemical window of the boron doped diamond (BDD) electrode were studied by polarization curves experiments to evaluate the apparent energy of activation for the rate determining step in each reaction. It was found that the hydrogen evolution reaction occurs by a Volmer-Heyrovsky mechanism with the first step being the RDS. Moreover, the apparent energy of activation calculated from the Tafel plots presented a value as high as 150 kJ mol -1 , indicating the formation of the M-H intermediate that is characteristic for the Volmer step. On the other hand, the apparent energy of activation for the oxygen evolution reaction was found to be 106 kJ mol -1 suggesting that the RDS in this mechanism is the initial adsorption step. In this way, it was demonstrated that the interaction between water molecules and the electrode surface is strongly inhibited on BDD thus justifying the extended potential window observed for this material. (author)

  16. The water decomposition reactions on boron-doped diamond electrodes

    Directory of Open Access Journals (Sweden)

    Suffredini Hugo B

    2004-01-01

    Full Text Available The electrochemical processes occurring at both edges of the wide electrochemical window of the boron doped diamond (BDD electrode were studied by polarization curves experiments to evaluate the apparent energy of activation for the rate determining step in each reaction. It was found that the hydrogen evolution reaction occurs by a Volmer-Heyrovsky mechanism with the first step being the RDS. Moreover, the apparent energy of activation calculated from the Tafel plots presented a value as high as 150 kJ mol-1, indicating the formation of the M-H intermediate that is characteristic for the Volmer step. On the other hand, the apparent energy of activation for the oxygen evolution reaction was found to be 106 kJ mol-1 suggesting that the RDS in this mechanism is the initial adsorption step. In this way, it was demonstrated that the interaction between water molecules and the electrode surface is strongly inhibited on BDD thus justifying the extended potential window observed for this material.

  17. Leakage current of amorphous silicon p-i-n diodes made by ion shower doping

    International Nuclear Information System (INIS)

    Kim, Hee Joon; Cho, Gyuseong; Choi, Joonhoo; Jung, Kwan-Wook

    2002-01-01

    In this letter, we report the leakage current of amorphous silicon (a-Si:H) p-i-n photodiodes, of which the p layer is formed by ion shower doping. The ion shower doping technique has an advantage over plasma-enhanced chemical vapor deposition (PECVD) in the fabrication of a large-area amorphous silicon flat-panel detector. The leakage current of the ion shower diodes shows a better uniformity within a 30 cmx40 cm substrate than that of the PECVD diodes. However, it shows a higher leakage current of 2-3 pA/mm 2 at -5 V. This high current originates from the high injection current at the p-i junction

  18. Investigation of Hard Boron Rich Solids: Osmium Diboride and β-Rhombohedral Boron

    Science.gov (United States)

    Hebbache, M.; Živković, D.

    Recently, we succeeded in synthesizing three osmium borides, i.e., OsB1.1, Os2B3 and OsB2. Up to date, almost nothing is known about the physical properties of these materials. Microhardness measurements show that OsB2 is extremely hard. Ab initio calculations show that it is due to formation of covalent bonds between boron atoms. OsB2 is also a low compressibility material. It can be used for hard coatings. The β-rhombohedral polymorph of boron is the second hardest elemental crystal (H ≈ 33 GPa). It is also very light and a p-type semiconductor. In early 1970s, it has been shown that the doping of boron with 3d transition elements enhances its hardness by about 25%. We predict that, in general, heavily doped samples MBx, with x ≤ 31 or equivalently a dopant concentration larger than 3.2 at.%, should be ultrahard, i.e., H > 43 GPa. The relevant dopants M are Al, Cu, Sc, Mn, Mg and Li. In addition to these properties, boron-rich materials have a very low volatility, a high chemical inertness and high melting point. They are suitable for applications under extreme conditions and thermoelectric equipment.

  19. Influence of pretreatment temperature cycling on the radiating defect formation in silicon doped by samarium

    International Nuclear Information System (INIS)

    Abdurakhmanov, K.P.; Nazyrov, D.E.

    2006-01-01

    Full text: The raise of thermal and radiation stability as it is known, is one of actual problems of physics semiconductors. Recently it is established, that the rare-earth elements (REE) raise a stability of silicon to exterior action. In this connection the investigation of silicon doped REE by samarium and influence on its properties of heat treatments and radiation exposure is important. In sectional operation the outcomes of investigations of influence of samarium on thermal (600 degree C are reduced; 600 deg. + 900 deg. C; 900 deg. C; 900 deg. C + 600 deg. C; 1100 deg. C; 600 deg. C + 900 deg. C + 1100 deg. C; 900 deg. C + 600 deg. C + 1100 deg. C) thermal defect formation and radiation defect formation (exposure of γ-quanta 60 Co) both in beforehand wrought, and in thermally unfinished samples. After each cycle of heat treatments samples cool fast (throwing off in oil) or slowly (together with the furnace). Doping n-silicon REE by gadolinium and samarium was carried out during cultivation. The concentration of gadolinium and samarium in silicon, on sectional of a neutron-activation analysis was equaled 10 14 - 10 18 cm -3 . As control is model monocrystal silicon such as KEP-15/50. Para-meters of deep levels originating in control and doped REE samples, both past heat treatment or temperature cycling, and irradiated by the γ-quanta are defined by methods of a capacity spectroscopy: DLTS and IRC. The obtained outcomes have shown, that in irradiated with the γ-quanta 60 Co deep levels samples are formed with energies: E C -0,17 eV, E C -0,32 eV, EC-0,41 eV. Thus the parameters of deep levels vary depending on requirements of prestress heat treatment. For example heat treatment at 600 deg. C essentially increments a velocity of introduction of and centre (deep level of E C -0,17 eV), in comparison with a velocity of introduction of this level in samples with prestress heat treatment at 900 deg. C. In samples n-Si doped by samarium effectiveness of formation

  20. Highly ordered amorphous silicon-carbon alloys obtained by RF PECVD

    CERN Document Server

    Pereyra, I; Carreno, M N P; Prado, R J; Fantini, M C A

    2000-01-01

    We have shown that close to stoichiometry RF PECVD amorphous silicon carbon alloys deposited under silane starving plasma conditions exhibit a tendency towards c-Si C chemical order. Motivated by this trend, we further explore the effect of increasing RF power and H sub 2 dilution of the gaseous mixtures, aiming to obtain the amorphous counterpart of c-Si C by the RF-PECVD technique. Doping experiments were also performed on ordered material using phosphorus and nitrogen as donor impurities and boron and aluminum as acceptor ones. For nitrogen a doping efficiency close to device quality a-Si:H was obtained, the lower activation energy being 0,12 eV with room temperature dark conductivity of 2.10 sup - sup 3 (OMEGA.cm). Nitrogen doping efficiency was higher than phosphorous for all studied samples. For p-type doping, results indicate that, even though the attained conductivity values are not device levels, aluminum doping conducted to a promising shift in the Fermi level. Also, aluminum resulted a more efficie...

  1. Defect generation/passivation by low energy hydrogen implant for silicon solar cells

    International Nuclear Information System (INIS)

    Sopori, B.L.; Zhou, T.Q.; Rozgonyi, G.A.

    1990-01-01

    Low energy ion implant is shown to produce defects in silicon. These defects include surface damage, hydrogen agglomeration, formation of platelets with (111) habit plane and decoration of dislocations. Hydrogen also produces an inversion type of surface on boron doped silicon. These effects indicate that a preferred approach for passivation is to incorporate hydrogen from the back side of the cell. A backside H + implant technique is described. The results show that degree of passivation differs for various devices. A comparison of the defect structures of hydrogenated devices indicates that the structure and the distribution of defects in the bulk of the material plays a significant role in determining the degree of passivation

  2. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    Directory of Open Access Journals (Sweden)

    Chen Xiang

    2013-05-01

    Full Text Available In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (M represents Fe, Cr, Mn or Mo which is much like that of carbide in high chromium white cast iron. Pure ausferrite structure that consists of bainitic ferrite and retained austenite can be obtained in the matrix by austempering treatment to the cast steel. No carbides precipitate in the ausferrite structure and the morphology of borides remains almost unchanged after austempering treatments. Secondary boride particles precipitate during the course of austenitizing. The hardness and tensile strength of the austempered cast steel decrease with the increase of the austempering temperature, from 250 篊 to 400 篊. The impact toughness is 4-11 J昪m-2 at room temperature and the impact fracture fractogragh indicates that the fracture is caused by the brittle fracture of the borides.

  3. LiBSi{sub 2}: a tetrahedral semiconductor framework from boron and silicon atoms bearing lithium atoms in the channels

    Energy Technology Data Exchange (ETDEWEB)

    Zeilinger, Michael; Faessler, Thomas F. [Department of Chemistry, Technische Universitaet Muenchen, Garching (Germany); Wuellen, Leo van [Department of Physics, University of Augsburg (Germany); Benson, Daryn [Department of Physics, Arizona State University, Tempe, AZ (United States); Kranak, Verina F.; Konar, Sumit; Haeussermann, Ulrich [Department of Materials and Environmental Chemistry, Stockholm University (Sweden)

    2013-06-03

    Silicon swallows up boron. The novel open tetrahedral framework structure (OTF) of the Zintl phase LiBSi{sub 2} was made by applying high pressure to a mixture of LiB and elemental silicon. The compound represents a new topology in the B-Si net (called tum), which hosts Li atoms in the channels. LiBSi{sub 2} is the first example where B and Si atoms form an ordered common framework structure with B engaged exclusively in heteronuclear B-Si contacts. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Electrolyte influence on the Cu nanoparticles electrodeposition onto boron doped diamond electrode

    International Nuclear Information System (INIS)

    Matsushima, Jorge Tadao; Santos, Laura Camila Diniz; Couto, Andrea Boldarini; Baldan, Mauricio Ribeiro; Ferreira, Neidenei Gomes

    2012-01-01

    This paper presents the electrolyte influence on deposition and dissolution processes of Cu nanoparticles on boron doped diamond electrodes (DDB). Morphological, structural and electrochemical analysis showed BDD films with good reproducibility, quality and reversible in a specific redox system. Electrodeposition of Cu nanoparticles on DDB electrodes in three different solutions was influenced by pH and ionic strength of the electrolytic medium. Analyzing the process as function of the scan rate, it was verified a better efficiency in 0,5 mol L -1 Na 2 SO 4 solution. Under the influence of the pH and ionic strength, Cu nanoparticles on DDB may be obtained with different morphologies and it was important for defining the desired properties. (author)

  5. Lanthanide-Doped Ceria Nanoparticles as Backside Coaters to Improve Silicon Solar Cell Efficiency.

    Science.gov (United States)

    Hajjiah, Ali; Samir, Effat; Shehata, Nader; Salah, Mohamed

    2018-05-23

    This paper introduces lanthanide-doped ceria nanoparticles as silicon solar cell back-side coaters, showing their influence on the solar cell efficiency. Ceria nanoparticles can be synthesized to have formed oxygen vacancies (O-vacancies), which are associated with converting cerium ions from the Ce 4+ state ions to the Ce 3+ ones. These O-vacancies follow the rule of improving silicon solar cell conductivity through a hopping mechanism. Besides, under near-ultra violet (near-UV) excitation, the reduced trivalent cerium Ce 3+ ions are directly responsible for down converting the un-absorbed UV wavelengths to a resultant green photo-luminescence emission at ~520 nm, which is absorbed through the silicon solar cell’s active layer. Adding lanthanide elements such as Neodymium “Nd” as ceria nanoparticle dopants helps in forming extra oxygen vacancies (O-vacancies), followed by an increase in the number of Ce 4+ to Ce 3+ ion reductions, thus enhancing the conductivity and photoluminescence down conversion mechanisms. After introducing lanthanide-doped ceria nanoparticles on a silicon solar cell surface, a promising enhancement in the behavior of the solar cell current-voltage curve is observed, and the efficiency is improved by about 25% of its initial value due to the mutual impact of improving both electric conductivity and optical conversions.

  6. Study of boron detection limit using the in-air PIGE set-up at LAMFI-USP

    International Nuclear Information System (INIS)

    Moro, M. V.; Silva, T. F.; Trindade, G. F.; Added, N.; Tabacniks, M. H.

    2014-01-01

    The quantification of small amounts of boron in materials is of extreme importance in different areas of materials science. Boron is an important contaminant and also a silicon dopant in the semiconductor industry. Boron is also extensively used in nuclear power plants, either for neutron shielding or for safety control and boron is an essential nutrient for life, either vegetable or animal. The production of silicon solar cells, by refining metallurgical-grade silicon (MG-Si) requires the control and reduction of several silicon contaminants to very low concentration levels. Boron is one of the contaminants of solar-grade silicon (SG-Si) that must be controlled and quantified at sub-ppm levels. In the metallurgical purification, boron quantification is usually made by Inductive Coupled Plasma Mass Spectrometry, (ICP-MS) but the results need to be verified by an independent analytical method. In this work we present the results of the analysis of silicon samples by Particle Induced Gamma-Ray Emission (PIGE) aiming the quantification of low concentrations of boron. PIGE analysis was carried out using the in-air external beam line of the Laboratory for Materials Analysis with Ion Beams (LAMFI-USP) by the 10 B(p,αγ( 7 Be nuclear reaction, and measuring the 429 keV γ-ray. The in-air PIGE measurements at LAMFI have a quantification limit of the order of 10 16 at/cm 2

  7. Study of boron detection limit using the in-air PIGE set-up at LAMFI-USP

    Science.gov (United States)

    Moro, M. V.; Silva, T. F.; Trindade, G. F.; Added, N.; Tabacniks, M. H.

    2014-11-01

    The quantification of small amounts of boron in materials is of extreme importance in different areas of materials science. Boron is an important contaminant and also a silicon dopant in the semiconductor industry. Boron is also extensively used in nuclear power plants, either for neutron shielding or for safety control and boron is an essential nutrient for life, either vegetable or animal. The production of silicon solar cells, by refining metallurgical-grade silicon (MG-Si) requires the control and reduction of several silicon contaminants to very low concentration levels. Boron is one of the contaminants of solar-grade silicon (SG-Si) that must be controlled and quantified at sub-ppm levels. In the metallurgical purification, boron quantification is usually made by Inductive Coupled Plasma Mass Spectrometry, (ICP-MS) but the results need to be verified by an independent analytical method. In this work we present the results of the analysis of silicon samples by Particle Induced Gamma-Ray Emission (PIGE) aiming the quantification of low concentrations of boron. PIGE analysis was carried out using the in-air external beam line of the Laboratory for Materials Analysis with Ion Beans (LAMFI-USP) by the 10B ( p ,αγ(7Be nuclear reaction, and measuring the 429 keV γ-ray. The in-air PIGE measurements at LAMFI have a quantification limit of the order of 1016 at/cm2.

  8. The development and application of silicon neutron transmutation doping (NTD) technology in china

    International Nuclear Information System (INIS)

    Qiao Chenyang; Sun Zhiyong; Ke Guotu, Lu Cungang; Shen Feng; Chen Huiqiang

    2009-01-01

    The research and development history of silicon Neutron Transmutation Doping (NTD) technology and its applications at home and abroad are introduced in this paper. The advantages of NTD, compared with conventional technology of doping, are narrated. The principle of NTD as well as the implementation of the main procedures related to Si NTD is explained. The market demand tendency is prospected, and the advanced measures on NTD quality control are described. (authors)

  9. Room-temperature electroluminescence of Er-doped hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, Oleg; Bresler, Mikhail; Kuznetsov, Alexey; Kudoyarova, Vera; Pak, Petr; Terukov, Evgenii; Tsendin, Konstantin; Yassievich, Irina [A F Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Fuhs, Walther [Hahn-Meitner Institut, Abteilung Photovoltaik, Rudower Chaussee 5, D-12489 Berlin (Germany); Weiser, Gerhard [Phillips-Universitat Marburg, Fachbereich Physik, D-35032 Marburg (Germany)

    1998-05-11

    We have observed room-temperature erbium-ion electroluminescence in erbium-doped amorphous silicon. Electrical conduction through the structure is controlled by thermally activated ionization of deep D{sup -} defects in an electric field and the reverse process of capture of mobile electrons by D{sup 0} states. Defect-related Auger excitation (DRAE) is responsible for excitation of erbium ions located close to dangling-bond defects. Our experimental data are consistent with the mechanisms proposed

  10. Report on achievements in fiscal 1998. Development of silicon manufacturing process to rationalize energy usage (Development of mass production technology for solar-grade silicon); 1998 nendo energy shiyo gorika silicon seizo process kaihatsu seika hokokusho. Taiyo denchiyo silicon ryosanka seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In the proliferation stage of solar cells, a technology is required to manufacture low-cost SOG-Si that can handle small quantity production. Development is being made on a manufacturing technology using high purity metallic silicon (99.5%) as the raw material. Considering that the subject impurities are P, B and metallic impurities (Fe, Ti and Al), a manufacturing method consisting of the following processes is being developed: metallic silicon/phosphorus removal, solidification and rough refining/boron removal, solidification and fine refining. Discussions are being advanced on phosphorus removal by using a large electron beam fusion equipment, and at the same time, the discussions are supported by fabricating and installing a large equipment intended of removing boron and the metallic impurities. Boron is removed by oxidizing it with steam. Therefore, the basic mechanism of the equipment is to spray argon plasma added with steam onto the molten silicon surface. In boron removal, diffusion of boron onto the reaction interface in the primary reaction determines the rate. A boron removal rate for B/10 to 0.1 ppm of 45 kg/h as maximum was achieved. The derived silicon has met the requirement. (NEDO)

  11. Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping

    Czech Academy of Sciences Publication Activity Database

    Alcaide, M.; Papaioannou, S.; Taylor, Andrew; Fekete, Ladislav; Gurevich, L.; Zachar, V.; Pennisi, C.P.

    2016-01-01

    Roč. 27, č. 5 (2016), s. 90-1-12 ISSN 0957-4530 R&D Projects: GA MŠk LO1409 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 Keywords : protein adsorption * fibroblasts adhesion * nanocrystalline diamond * boron doping * topography Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.325, year: 2016

  12. Resistivity and thickness effects in dendritic web silicon solar cells

    Science.gov (United States)

    Meier, D. L.; Hwang, J. M.; Greggi, J.; Campbell, R. B.

    1987-01-01

    The decrease of minority carrier lifetime as resistivity decreases in dendritic-web silicon solar cells is addressed. This variation is shown to be consistent with the presence of defect levels in the bandgap which arise from extended defects in the web material. The extended defects are oxide precipitates (SiOx) and the dislocation cores they decorate. Sensitivity to this background distribution of defect levels increases with doping because the Fermi level moves closer to the majority carrier band edge. For high-resistivity dendritic-web silicon, which has a low concentration of these extended defects, cell efficiencies as high as 16.6 percent (4 sq cm, 40 ohm-cm boron-doped base, AM1.5 global, 100 mW/sq cm, 25 C JPL LAPSS1 measurement) and a corresponding electron lifetime of 38 microsec have been obtained. Thickness effects occur in bifacial cell designs and in designs which use light trapping. In some cases, the dislocation/precipitate defect can be passivated through the full thickness of web cells by hydrogen ion implantation.

  13. Neutron absorbing room temperature vulcanizable silicone rubber compositions

    International Nuclear Information System (INIS)

    Zoch, H.L.

    1979-01-01

    A neutron absorbing composition is described and consists of a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide. 20 claims

  14. Study of the effects of focused high-energy boron ion implantation in diamond

    Science.gov (United States)

    Ynsa, M. D.; Agulló-Rueda, F.; Gordillo, N.; Maira, A.; Moreno-Cerrada, D.; Ramos, M. A.

    2017-08-01

    Boron-doped diamond is a material with a great technological and industrial interest because of its exceptional chemical, physical and structural properties. At modest boron concentrations, insulating diamond becomes a p-type semiconductor and at higher concentrations a superconducting metal at low temperature. The most conventional preparation method used so far, has been the homogeneous incorporation of boron doping during the diamond synthesis carried out either with high-pressure sintering of crystals or by chemical vapour deposition (CVD) of films. With these methods, high boron concentration can be included without distorting significantly the diamond crystalline lattice. However, it is complicated to manufacture boron-doped microstructures. A promising alternative to produce such microstructures could be the implantation of focused high-energy boron ions, although boron fluences are limited by the damage produced in diamond. In this work, the effect of focused high-energy boron ion implantation in single crystals of diamond is studied under different irradiation fluences and conditions. Micro-Raman spectra of the sample were measured before and after annealing at 1000 °C as a function of irradiation fluence, for both superficial and buried boron implantation, to assess the changes in the diamond lattice by the creation of vacancies and defects and their degree of recovery after annealing.

  15. First-principles study on silicon atom doped monolayer graphene

    Science.gov (United States)

    Rafique, Muhammad; Shuai, Yong; Hussain, Nayyar

    2018-01-01

    This paper illustrates the structural, electronic and optical properties of individual silicon (Si) atom-doped single layer graphene using density functional theory method. Si atom forms tight bonding with graphene layer. The effect of doping has been investigated by varying the concentration of Si atoms from 3.125% to 9.37% (i.e. From one to three Si atoms in 4 × 4 pure graphene supercell containing 32 carbon atoms), respectively. Electronic structure, partial density of states (PDOS) and optical properties of pure and Si atom-doped graphene sheet were calculated using VASP (Vienna ab-initio Simulation Package). The calculated results for pure graphene sheet were then compared with Si atom doped graphene. It is revealed that upon Si doping in graphene, a finite band gap appears at the high symmetric K-point, thereby making graphene a direct band gap semiconductor. Moreover, the band gap value is directly proportional to the concentration of impurity Si atoms present in graphene lattice. Upon analyzing the optical properties of Si atom-doped graphene structures, it is found that, there is significant change in the refractive index of the graphene after Si atom substitution in graphene. In addition, the overall absorption spectrum of graphene is decreased after Si atom doping. Although a significant red shift in absorption is found to occur towards visible range of radiation when Si atom is substituted in its lattice. The reflectivity of graphene improves in low energy region after Si atom substitution in graphene. These results can be useful for tuning the electronic structure and to manipulate the optical properties of graphene layer in the visible region.

  16. Room-Temperature H2 Gas Sensing Characterization of Graphene-Doped Porous Silicon via a Facile Solution Dropping Method

    Directory of Open Access Journals (Sweden)

    Nu Si A. Eom

    2017-11-01

    Full Text Available In this study, a graphene-doped porous silicon (G-doped/p-Si substrate for low ppm H2 gas detection by an inexpensive synthesis route was proposed as a potential noble graphene-based gas sensor material, and to understand the sensing mechanism. The G-doped/p-Si gas sensor was synthesized by a simple capillary force-assisted solution dropping method on p-Si substrates, whose porosity was generated through an electrochemical etching process. G-doped/p-Si was fabricated with various graphene concentrations and exploited as a H2 sensor that was operated at room temperature. The sensing mechanism of the sensor with/without graphene decoration on p-Si was proposed to elucidate the synergetic gas sensing effect that is generated from the interface between the graphene and p-type silicon.

  17. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Yuan Yu

    2012-01-01

    Full Text Available Boron-doped diamond (BDD thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC, carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitivity, and fast response. Electrochemical reactions perform at the interface between electrolyte solutions and the electrodes surfaces, so the surface structures and properties of the BDD electrodes are important for electrochemical detection. In this paper, the recent advances of BDD electrodes with different surfaces including nanostructured surface and chemically modified surface, for the construction of various electrochemical biosensors, were described.

  18. Covalent modification of boron-doped diamond electrodes with an imidazolium-based ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Wang Mei [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); School of Materials Science and Engineering, Shandong University, 19723 Jingshi Road, Jinan, Shandong Province (China); Schneider, Amene [Austrian Centre of Competence for Tribology, Viktor Kaplan Strasse 2, 2700, Wiener Neustadt (Austria); Niedziolka-Joensson, Joanna; Marcon, Lionel [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Ghodbane, Slimane; Steinmueller-Nethl, Doris [Rho-BeSt Coating GmbH, Exlgasse 20a, 6020 Innsbruck (Austria); Li Musen [School of Materials Science and Engineering, Shandong University, 19723 Jingshi Road, Jinan, Shandong Province (China); Boukherroub, Rabah [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Szunerits, Sabine, E-mail: sabine.szunerits@iri.univ-lille1.f [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France)

    2010-02-01

    An ionic liquid (IL, 1-(methylcarboxylic acid)-3-octylimidazolium-bis (trifluoromethylsulfonyl)imide) was covalently coupled onto a boron-doped diamond (BDD) surface through an esterification reaction. The resulting surface was characterized by X-ray photoelectron spectroscopy, water contact angle and electrochemical measurements. Selective electron transfer towards positively and negatively charged redox species was recorded. While the presence of Fe(CN){sub 6}{sup 4-} could be detected on the IL-modified BDD interface, no surface-immobilized Ru(NH{sub 3}){sub 6}{sup 3+} was recorded. The IL-modified BDD electrode showed in addition changes in surface wettability when immersed into aqueous solution containing different anions.

  19. Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM-SECM

    Energy Technology Data Exchange (ETDEWEB)

    Avdic, A; Lugstein, A; Bertagnolli, E [Solid State Electronics Institute, Vienna University of Technology, Floragasse 7, 1040 Vienna (Austria); Wu, M; Gollas, B [Competence Centre for Electrochemical Surface Technology, Viktor Kaplan Strasse 2, 2700 Wiener Neustadt (Austria); Pobelov, I; Wandlowski, T [Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland); Leonhardt, K; Denuault, G, E-mail: alois.lugstein@tuwien.ac.at [School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2011-04-08

    We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes.

  20. Aerolization During Boron Nanoparticle Multi-Component Fuel Group Burning Studies

    Science.gov (United States)

    2014-02-03

    overall energy density of the multi-component fuel mixture. Boron nanoparticle- doped multi-component hydrocarbon fuels represent a potential high...addressed, Boron nanoparticle- doped multi-component hydrocarbon fuels represent a potential high-efficiency, tactical fuel that could increase thrust...and micron-sized aluminum particles. Combustion and Flame 158(2): 354-368. Gan, Y., Y. S. Lim, and L. Qiao. 2012. Combustion of nanofluid fuels

  1. Facile Synthesis of Boron-Doped rGO as Cathode Material for High Energy Li–O 2 Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Feng [Beijing Key Laboratory; amp, Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Collaborative Innovation Center; Xing, Yi [Beijing Key Laboratory; amp, Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Li, Li [Beijing Key Laboratory; amp, Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Collaborative Innovation Center; Qian, Ji [Beijing Key Laboratory; amp, Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Qu, Wenjie [Beijing Key Laboratory; amp, Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Wen, Jianguo [Electron Microscopy; Miller, Dean [Electron Microscopy; Ye, Yusheng [Beijing Key Laboratory; amp, Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Chen, Renjie [Beijing Key Laboratory; amp, Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Collaborative Innovation Center; Amine, Khalil [Chemical Science and Engineering Division, Argonne; Lu, Jun [Chemical Science and Engineering Division, Argonne

    2016-08-29

    To improve the electrochemical performance of the high energy Li–O2 batteries, it is important to design and construct a suitable and effective oxygen-breathing cathode. Herein, a three-dimensional (3D) porous boron-doped reduction graphite oxide (B-rGO) material with a hierarchical structure has been prepared by a facile freeze-drying method. In this design, boric acid as the boron source helps to form the 3D porous structure, owing to its cross-linking and pore-forming function. This architecture facilitates the rapid oxygen diffusion and electrolyte penetration in the electrode. Meanwhile, the boron–oxygen functional groups linking to the carbon surface or edge serve as additional reaction sites to activate the ORR process. It is vital that boron atoms have been doped into the carbon lattices to greatly activate the electrons in the carbon π system, which is beneficial for fast charge under large current densities. Density functional theory calculation demonstrates that B-rGO exhibits much stronger interactions with Li5O6 clusters, so that B-rGO more effectively activates Li–O bonds to decompose Li2O2 during charge than rGO does. With B-rGO as a catalytic substrate, the Li–O2 battery achieves a high discharge capacity and excellent rate capability. Moreover, catalysts could be added into the B-rGO substrate to further lower the overpotential and enhance the cycling performance in future.

  2. Modeling of interstitial diffusion of ion-implanted boron

    International Nuclear Information System (INIS)

    Velichko, O.I.; Knyazheva, N.V.

    2009-01-01

    A model of the interstitial diffusion of ion-implanted boron during rapid thermal annealing of silicon layers previously amorphized by implantation of germanium has been proposed. It is supposed that the boron interstitials are created continuously during annealing due to generation, dissolution, or rearrangement of the clusters of impurity atoms which are formed in the ion-implanted layers with impurity concentration above the solubility limit. The local elastic stresses arising due to the difference of boron atomic radius and atomic radius of silicon also contribute to the generation of boron interstitials. A simulation of boron redistribution during thermal annealing for 60 s at a temperature of 850 C has been carried out. The calculated profile agrees well with the experimental data. A number of the parameters of interstitial diffusion have been derived. In particular, the average migration length of nonequilibrium boron interstitials is equal to 12 nm. It was also obtained that approximately 1.94% of boron atoms were converted to the interstitial sites, participated in the fast interstitial migration, and then became immobile again transferring into a substitutional position or forming the electrically inactive complexes with crystal lattice defects. (authors)

  3. CE with a boron-doped diamond electrode for trace detection of endocrine disruptors in water samples.

    Science.gov (United States)

    Browne, Damien J; Zhou, Lin; Luong, John H T; Glennon, Jeremy D

    2013-07-01

    Off-line SPE and CE coupled with electrochemical detection have been used for the determination of bisphenol A (BPA), bisphenol F, 4-ethylphenol, and bisphenol A diglycidyl ether in bottled drinking water. The use of boron-doped diamond electrode as an electrochemical detector in amperometric mode that provides a favorable analytical performance for detecting these endocrine-disrupting compounds, such as lower noise levels, higher peak resolution with enhanced sensitivity, and improved resistance against electrode passivation. The oxidative electrochemical detection of the endocrine-disrupting compounds was accomplished by boron-doped diamond electrode poised at +1.4 V versus Ag/AgCl without electrode pretreatment. An off-line SPE procedure (Bond Elut® C18 SPE cartridge) was utilized to extract and preconcentrate the compounds prior to separation and detection. The minimum concentration detectable for all four compounds ranged from 0.01 to 0.06 μM, having S/N equal to three. After exposing the plastic bottle water container under sunlight for 7 days, the estimated concentration of BPA in the bottled drinking water was estimated to be 0.03 μM. This proposed approach has great potential for rapid and effective determination of BPA content present in water packaging of plastic bottles that have been exposed to sunlight for an extended period of time. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. On the changing electrochemical behaviour of boron-doped diamond surfaces with time after cathodic pre-treatments

    International Nuclear Information System (INIS)

    Salazar-Banda, Giancarlo R.; Andrade, Leonardo S.; Nascente, Pedro A.P.; Pizani, Paulo S.; Rocha-Filho, Romeu C.; Avaca, Luis A.

    2006-01-01

    The electrochemical response of the Fe(CN) 6 4-/3- redox couple on boron-doped diamond (BDD) electrodes immediately after a cathodic pre-treatment and as a function of time exposed to atmospheric conditions is reported here. After this pre-treatment the electrode exhibits a changing electrochemical behaviour, i.e., a loss of the reversibility for the Fe(CN) 6 4-/3- redox couple as a function of time. Raman spectra showed that neither important bulk structural differences nor significant changes in the sp 2 /sp 3 content are introduced into the BDD film by the cathodic pre-treatment indicating that H-terminated sites play an important role in the electrochemical response of the electrodes. Thus, the changing behaviour reflected by a progressive decrease of the electron transfer rate with time must be associated to a loss of superficial hydrogen due to oxidation by oxygen from the air, as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Moreover, it was also found that this changing electrochemical behaviour is inversely proportional to the doping level, suggesting that the boron content has a stabilizing effect on the H-terminated surface. These results point out the necessity of doing the cathodic pre-treatment just before the electrochemical experiments are carried out in order to ensure reliable and reproducible results

  5. Interaction of boron with graphite: A van der Waals density functional study

    International Nuclear Information System (INIS)

    Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2016-01-01

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  6. Interaction of boron with graphite: A van der Waals density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [Beijing Key Lab of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-08-30

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  7. Polymerisation occurrence in the anodic oxidation of phosphite on a boron-doped diamond electrode

    International Nuclear Information System (INIS)

    Petrucci, Elisabetta; Montanaro, Daniele; Merli, Carlo

    2008-01-01

    The electrogeneration of polymeric phosphorus compounds during the anodic oxidation of aqueous solutions of phosphites on a boron-doped diamond electrode has been studied. Although the main oxidation product is orthophosphate, the results indicate the simultaneous generation of short-chain and cyclic compounds containing two and three phosphorus atoms whose evolution has been followed by ion chromatography. The effect on the reaction yield of several operative parameters such as current density, pH, temperature and initial phosphite concentration has been investigated. Consistently with the data presented, a new process for the generation of polymeric phosphates is obtained

  8. Diamond anvil cells using boron-doped diamond electrodes covered with undoped diamond insulating layer

    Science.gov (United States)

    Matsumoto, Ryo; Yamashita, Aichi; Hara, Hiroshi; Irifune, Tetsuo; Adachi, Shintaro; Takeya, Hiroyuki; Takano, Yoshihiko

    2018-05-01

    Diamond anvil cells using boron-doped metallic diamond electrodes covered with undoped diamond insulating layers have been developed for electrical transport measurements under high pressure. These designed diamonds were grown on a bottom diamond anvil via a nanofabrication process combining microwave plasma-assisted chemical vapor deposition and electron beam lithography. The resistance measurements of a high-quality FeSe superconducting single crystal under high pressure were successfully demonstrated by just putting the sample and gasket on the bottom diamond anvil directly. The superconducting transition temperature of the FeSe single crystal was increased to up to 43 K by applying uniaxial-like pressure.

  9. Fabrication of porous boron-doped diamond on SiO.sub.2./sub. fiber templates

    Czech Academy of Sciences Publication Activity Database

    Petrák, Václav; Vlčková Živcová, Zuzana; Krýsová, Hana; Frank, Otakar; Zukal, Arnošt; Klimša, Ladislav; Kopeček, Jaromír; Taylor, Andrew; Kavan, Ladislav; Mortet, Vincent

    2017-01-01

    Roč. 114, Jan (2017), s. 457-464 ISSN 0008-6223 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088; GA ČR GA13-31783S Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568; AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 ; RVO:61388955 Keywords : boron-doped diamond * electrochemical properties Subject RIV: BM - Solid Matter Physics ; Magnetism; CG - Electrochemistry (UFCH-W) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) (UFCH-W) Impact factor: 6.337, year: 2016

  10. The doping concentration and physical properties measurement of silicon water using tera hertz wave

    International Nuclear Information System (INIS)

    Park, Sung Hyeon; Oh, Gyung Hwan; Kim, Hak Sung

    2017-01-01

    In this study, a tera hertz time domain spectroscopy (THz-TDS) imaging technique was used to measure doping concentration and physical properties (such as refractive index and permittivity) of the doped silicon (Si) wafers. The transmission and reflection modes with an incidence angle of 30° were employed to determine the physical properties of the doped Si wafers. The doping concentrations of the prepared Si wafers were varied from 10"1"4 to 10"1"8 in both N-type and P-type cases. Finally, the correlation between the doping concentration and the power of the THz wave was determined by measuring the powers of the transmitted and reflected THz waves of the doped Si wafers. Additionally, the doped thickness, the refractive index, and permittivity of each doped Si wafer were calculated using the THz time domain waveform. The results indicate that the THz-TDS imaging technique is potentially a promising technique to measure the doping concentration as well as other optical properties (such as the refractive index and permittivity) of the doped Si wafer

  11. The doping concentration and physical properties measurement of silicon water using tera hertz wave

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Hyeon; Oh, Gyung Hwan; Kim, Hak Sung [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul(Korea, Republic of)

    2017-02-15

    In this study, a tera hertz time domain spectroscopy (THz-TDS) imaging technique was used to measure doping concentration and physical properties (such as refractive index and permittivity) of the doped silicon (Si) wafers. The transmission and reflection modes with an incidence angle of 30° were employed to determine the physical properties of the doped Si wafers. The doping concentrations of the prepared Si wafers were varied from 10{sup 14} to 10{sup 18} in both N-type and P-type cases. Finally, the correlation between the doping concentration and the power of the THz wave was determined by measuring the powers of the transmitted and reflected THz waves of the doped Si wafers. Additionally, the doped thickness, the refractive index, and permittivity of each doped Si wafer were calculated using the THz time domain waveform. The results indicate that the THz-TDS imaging technique is potentially a promising technique to measure the doping concentration as well as other optical properties (such as the refractive index and permittivity) of the doped Si wafer.

  12. Study of boron detection limit using the in-air PIGE set-up at LAMFI-USP

    Energy Technology Data Exchange (ETDEWEB)

    Moro, M. V.; Silva, T. F.; Trindade, G. F.; Added, N.; Tabacniks, M. H. [Institute of Physics, University of São Paulo, SP (Brazil)

    2014-11-11

    The quantification of small amounts of boron in materials is of extreme importance in different areas of materials science. Boron is an important contaminant and also a silicon dopant in the semiconductor industry. Boron is also extensively used in nuclear power plants, either for neutron shielding or for safety control and boron is an essential nutrient for life, either vegetable or animal. The production of silicon solar cells, by refining metallurgical-grade silicon (MG-Si) requires the control and reduction of several silicon contaminants to very low concentration levels. Boron is one of the contaminants of solar-grade silicon (SG-Si) that must be controlled and quantified at sub-ppm levels. In the metallurgical purification, boron quantification is usually made by Inductive Coupled Plasma Mass Spectrometry, (ICP-MS) but the results need to be verified by an independent analytical method. In this work we present the results of the analysis of silicon samples by Particle Induced Gamma-Ray Emission (PIGE) aiming the quantification of low concentrations of boron. PIGE analysis was carried out using the in-air external beam line of the Laboratory for Materials Analysis with Ion Beams (LAMFI-USP) by the {sup 10}B(p,αγ({sup 7}Be nuclear reaction, and measuring the 429 keV γ-ray. The in-air PIGE measurements at LAMFI have a quantification limit of the order of 10{sup 16} at/cm{sup 2}.

  13. Fabrication and Doping Methods for Silicon Nano- and Micropillar Arrays for Solar-Cell Applications: A Review.

    Science.gov (United States)

    Elbersen, Rick; Vijselaar, Wouter; Tiggelaar, Roald M; Gardeniers, Han; Huskens, Jurriaan

    2015-11-18

    Silicon is one of the main components of commercial solar cells and is used in many other solar-light-harvesting devices. The overall efficiency of these devices can be increased by the use of structured surfaces that contain nanometer- to micrometer-sized pillars with radial p/n junctions. High densities of such structures greatly enhance the light-absorbing properties of the device, whereas the 3D p/n junction geometry shortens the diffusion length of minority carriers and diminishes recombination. Due to the vast silicon nano- and microfabrication toolbox that exists nowadays, many versatile methods for the preparation of such highly structured samples are available. Furthermore, the formation of p/n junctions on structured surfaces is possible by a variety of doping techniques, in large part transferred from microelectronic circuit technology. The right choice of doping method, to achieve good control of junction depth and doping level, can contribute to an improvement of the overall efficiency that can be obtained in devices for energy applications. A review of the state-of-the-art of the fabrication and doping of silicon micro and nanopillars is presented here, as well as of the analysis of the properties and geometry of thus-formed 3D-structured p/n junctions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Tailoring Thermal Radiative Properties with Doped-Silicon Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuomin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-08-28

    Aligned doped-silicon nanowire (D-SiNW) arrays form a hyperbolic metamaterial in the mid-infrared and have unique thermal radiative properties, such as broadband omnidirectional absorption, low-loss negative refraction, etc. A combined theoretical and experimental investigation will be performed to characterize D-SiNW arrays and other metamaterials for tailoring thermal radiative properties. Near-field thermal radiation between anisotropic materials with hyperbolic dispersions will also be predicted for potential application in energy harvesting. A new kind of anisotropic metamaterial with a hyperbolic dispersion in a broad infrared region has been proposed and demonstrated based on aligned doped-silicon nanowire (D-SiNW) arrays. D-SiNW-based metamaterials have unique thermal radiative properties, such as broadband omnidirectional absorption whose width and location can be tuned by varying the filling ratio and/or doping level. Furthermore, high figure of merit (FOM) can be achieved in a wide spectral region, suggesting that D-SiNW arrays may be used as a negative refraction material with much less loss than other structured materials, such as layered semiconductor materials. We have also shown that D-SiNWs and other nanostructures can significantly enhance near-field thermal radiation. The study of near-field radiative heat transfer between closely spaced objects and the electromagnetic wave interactions with micro/nanostructured materials has become an emerging multidisciplinary field due to its importance in advanced energy systems, manufacturing, local thermal management, and high spatial resolution thermal sensing and mapping. We have performed extensive study on the energy streamlines involving anisotropic metamaterials and the applicability of the effective medium theory for near-field thermal radiation. Graphene as a 2D material has attracted great attention in nanoelectronics, plasmonics, and energy harvesting. We have shown that graphene can be used to

  15. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Fitzsimmons, M.; Pynn, R.

    1997-01-01

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  16. Ion-implantation and analysis for doped silicon slot waveguides

    Directory of Open Access Journals (Sweden)

    McCallum J. C.

    2012-10-01

    Full Text Available We have utilised ion implantation to fabricate silicon nanocrystal sensitised erbium-doped slot waveguide structures in a Si/SiO2/Si layered configuration and photoluminescence (PL and Rutherford backscattering spectrometry (RBS to analyse these structures. Slot waveguide structures in which light is confined to a nanometre-scale low-index region between two high-index regions potentially offer significant advantages for realisation of electrically-pumped Si devices with optical gain and possibly quantum optical devices. We are currently investigating an alternative pathway in which high quality thermal oxides are grown on silicon and ion implantation is used to introduce the Er and Si-ncs into the SiO2 layer. This approach provides considerable control over the Er and Si-nc concentrations and depth profiles which is important for exploring the available parameter space and developing optimised structures. RBS is well-suited to compositional analysis of these layered structures. To improve the depth sensitivity we have used a 1 MeV α beam and results indicate that a layered silicon-Er:SiO2/silicon structure has been fabricated as desired. In this paper structural results will be compared to Er photoluminescence profiles for samples processed under a range of conditions.

  17. The influence of boron dopant on the electrochemical properties of graphene as an electrode material and a support for Pt catalysts

    International Nuclear Information System (INIS)

    Bo, Xiangjie; Li, Mian; Han, Ce; Guo, Liping

    2013-01-01

    Highlights: •More defective sites in graphene after the doping of boron atoms. •Fine dispersion of Pt nanoparticles supported on boron-doped graphene. •Low electron transfer resistance at boron-doped graphene. •High performance of boron-doped graphene as an electrode material or a support for Pt catalysts. -- Abstract: Boron-doped graphene (BGR) is prepared by thermal annealing of graphene oxide (GO) in the presence of boric acid. More defective sites are introduced into GR accompanied by the doping of boron. Low electron transfer resistance towards redox probe is observed at BGR. The BGR modified electrode can effectively distinguish the anodic peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The defective sites of BGR can also act as anchoring sites for the deposition of Pt nanoparticles. When used as a support for Pt electrocatalysts, Pt nanoparticles with an average diameter of 3.2 nm are deposited on BGR. The doping of boron into GR facilitates the dispersion of Pt nanoparticles and increases the utilization efficiency of Pt nanoparticles. The Pt/BGR exhibits significant catalytic activity towards the oxidation of methanol. The results demonstrate that BGR is a good support for Pt catalysts or an electrode material compared with the undoped GR

  18. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiangbin, E-mail: eexbzeng@mail.hust.edu.cn; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-04-30

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B{sub 2}H{sub 6} flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10{sup −3} Ω cm, mobility of 16.5–25.5 cm{sup 2}/Vs, and carrier concentration of 2.2–2.7 × 10{sup 20} cm{sup −3} were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n{sup +}-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm{sup 2} and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm{sup 2} and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  19. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    International Nuclear Information System (INIS)

    Zeng, Xiangbin; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-01-01

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B_2H_6 flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10"−"3 Ω cm, mobility of 16.5–25.5 cm"2/Vs, and carrier concentration of 2.2–2.7 × 10"2"0 cm"−"3 were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n"+-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm"2 and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm"2 and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  20. Boron doping induced thermal conductivity enhancement of water-based 3C-Si(B)C nanofluids.

    Science.gov (United States)

    Li, Bin; Jiang, Peng; Zhai, Famin; Chen, Junhong; Bei, Guo-Ping; Hou, Xinmei; Chou, Kuo-Chih

    2018-06-04

    In this paper, the fabrication and thermal conductivity of water-based nanofluids using boron (B) doped SiC as dispersions are reported. Doping B into β-SiC phase leads to the shrinkage of SiC lattice due to the substitution of Si atoms (radius: 0.134 nm) by smaller B atoms (radius: 0.095 nm). The presence of B in SiC phase also promotes crystallization and grain growth of obtained particles. The tailored crystal structure and morphology of B doped SiC nanoparticles are beneficial for the thermal conductivity improvement of the nanofluids by using them as dispersions. Serving B doped SiC nanoparticles as dispersions for nanofluids, a remarkable improvement of the stability was achieved in SiC-B6 nanofluid at pH 11 by means of the Zeta potential measurement. Dispersing B doped SiC nanoparticles in water based fluids, the thermal conductivity of the as prepared nanofluids containing only 0.3 vol. % SiC-B6 nanoparticles is remarkably raised up to 39.3 % at 30 °C compared to the base fluids and is further enhanced with the increased temperature. The main reasons for the improvement of thermal conductivity of SiC-B6 nanofluids are more stable dispersion and intensive charge ions vibration around the surface of nanoparticles as well as the enhanced thermal conductivity of the SiC-B dispersions. © 2018 IOP Publishing Ltd.

  1. Investigation of elements contamination and analysis of electrical effect of this contamination in silicon on the neutron transmutation doping in the RSG-GAS

    International Nuclear Information System (INIS)

    Sudjadi, U.

    1998-01-01

    The elements of the contamination on the Neutron Transmutation Doping Process (NTD) have investigated by Multi Channel Analyser (MCA). This Investigation is important to know the quality of silicon doping in NTD. We have found that Mn-45, Ga-72 and Au-198 are elements of contamination in silicon after NTD process. Analysis of electrical effect of this elements contamination on semiconductor silicon is described also in this paper

  2. Dispersion toughened silicon carbon ceramics

    Science.gov (United States)

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  3. Neutron transmutation doping technology of silicon and overview of trial irradiations at Cirus reactor

    International Nuclear Information System (INIS)

    Singh, Tej; Bhatnagar, Anil; Singh, Kanchhi; Raina, V.K.

    2007-12-01

    Neutron transmutation doped silicon (NTD-Si) has been used extensively in manufacturing of high power semiconductor devices. The quality of NTD-Si, both from view points of dopant concentration and homogeneity has been found superior to the quality of doped silicon produced by conventional methods. The technology of NTD-Si has been perfected to achieve more accurate resistivity and homogenous resistivity with complete elimination of hot spots. In addition, the greater spatial uniformity, as well as the precise control over the resistivity achievable by using the NTD process, has led to a substantial increase in the breakdown voltage capability of thyristors. The report describes the fundamentals of NTD-Si production and discusses various techniques used for control of dopant concentration and homogeneity. Various aspects like radiation damage, residual radio-activity, nuclear heating, surface contamination and annealing requirements of the silicon ingots after irradiation have also been discussed. Details of trail irradiation and characterization of NTD-Si samples have been provided. Future plans for production of NTD-Si in Cirus and Dhruva reactors have also been discussed. (author)

  4. Boron and nitrogen doping of graphene via thermal exfoliation of graphite oxide in a BF3 or NH3 atmosphere: contrasting properties

    Czech Academy of Sciences Publication Activity Database

    Poh, H. L.; Šimek, P.; Sofer, Z.; Tomandl, Ivo; Pumera, M.

    2013-01-01

    Roč. 1, č. 42 (2013), s. 13146-13153 ISSN 2050-7488 R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : Boron and nitrogen doping * Prompt gamma-ray activation analysis * Graphene lattices Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  5. High field magnetic behavior in Boron doped Fe{sub 2}VAl Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh, Ch., E-mail: venkyphysicsiitm@gmail.com [Department of Physics, Indian Institute of Technology, Kharagpur (India); DCMP & MS, Tata Institute of Fundamental Research, Mumbai (India); Vasundhara, M., E-mail: vasu.mutta@gmail.com [Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695019 (India); Srinivas, V. [Department of Physics, Indian Institute of Technology, Chennai (India); Rao, V.V. [Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur (India)

    2016-11-15

    We have investigated the magnetic behavior of Fe{sub 2}VAl{sub 1−x}B{sub x} (x=0, 0.03, 0.06 and 0.1) alloys under high temperature and high magnetic field conditions separately. Although, the low temperature DC magnetization data for the alloys above x>0 show clear magnetic transitions, the zero field cooled (ZFC) and field cooled (FC) curves indicate the presence of spin cluster like features. Further, critical exponent (γ) deduced from the initial susceptibility above the T{sub c}, does not agree with standard models derived for 3 dimensional long range magnetic systems. The deviation in γ values are consistent with the short range magnetic nature of these alloys. We further extend the analysis of magnetic behavior by carrying the magnetization measurements at high temperatures and high magnetic fields distinctly. We mainly emphasize the following observations; (i) The magnetic hysteresis loops show sharp upturns at lower fields even at 900 K for all the alloys. (ii) High temperature inverse susceptibility do not overlap until T=900 K, indicating the persistent short range magnetic correlations even at high temperatures. (iii) The Arrott's plot of magnetization data shows spontaneous moment (M{sub S}) for the x=0 alloy at higher magnetic fields which is absent at lower fields (<50 kOe), while the Boron doped samples show feeble M{sub S} at lower fields. The origin of this short range correlation is due to presence of dilute magnetic heterogeneous phases which are not detected from the X-ray diffraction method. - Highlights: • Short range magnetic character has been confirmed by the critical exponents analysis. • Magnetoresistace is about −14% with non-saturating tendency even at 150 kOe for Fe{sub 2}VAl alloy. • Boron doped Fe{sub 2}VAl alloys show a weak magnetism even at T=900 K.

  6. Molecular rectification modulated by alternating boron and nitrogen co-doping in a combined heterostructure of two zigzag-edged trigonal graphenes

    International Nuclear Information System (INIS)

    Wang, Li-hua; Sun, Yan; Zhang, Zi-zhen; Ding, Bing-jun; Guo, Yong

    2014-01-01

    The rectifying properties of a heterostructure combined with two trigonal graphenes are investigated by first-principles approach. The graphenes have left (left and right) vertical benzenes substituted with alternating nitrogen and boron atoms. The results indicate that co-doping atoms have distinct influences on the rectifying performance of such devices. When the left trigonal graphene is doped and two trigonal graphenes are bound through a BH pair, a reverse rectifying behavior can be observed. However, a forward rectifying behavior is observed when they are bound through an NH (NB) pair. The rectifying effect is more prominent for the NB pair.

  7. Electrically active, doped monocrystalline silicon nanoparticles produced by hot wire thermal catalytic pyrolysis

    CSIR Research Space (South Africa)

    Scriba, MR

    2011-05-01

    Full Text Available Doped silicon nanoparticles have successfully been produced by hot wire thermal catalytic pyrolysis at 40 mbar and a filament temperature of 1800 °C, using a mixture of silane and diborane or phosphine. All particles are monocrystalline with shapes...

  8. Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron

    Science.gov (United States)

    Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun

    2018-03-01

    Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.

  9. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.

    2015-06-18

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  10. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlö gl, Udo

    2015-01-01

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  11. Photocatalysis of methylene blue contaminated water using titania fiber doped with silicon

    International Nuclear Information System (INIS)

    Ugarteche, C.V.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2009-01-01

    In this work, titania fibers doped with silicon were synthesized by electro spinning methodology, using titanium propoxide, silicon tetra propoxide and a solution of polyvinylpyrrolidone as precursors. The non-tissue material obtained was characterized by X-ray diffraction to determine the phase and crystallite size, BET method to determine the surface and SEM to analyze the microstructure of the fibers. The photo catalytic activity of the fibers in comparison with the standard TiO 2 Degussa P25 was evaluated using a 20ppm methylene blue solution. The composition containing 30% of silicon kept the anatase phase stable until the heat treatment temperature of 800 deg C. In the other compositions there was a formation of the rutile phase, which is less photoactive. The compositions containing silicon were photo catalytic efficient and some of them were more active that the standard P25. (author)

  12. Electrochemistry and in situ Raman spectroelectrochemistry of low and high quality boron doped diamond layers in aqueous electrolyte solution

    Czech Academy of Sciences Publication Activity Database

    Vlčková Živcová, Zuzana; Frank, Otakar; Petrák, Václav; Tarábková, Hana; Vacík, Jiří; Nesládek, M.; Kavan, Ladislav

    2013-01-01

    Roč. 87, JAN 2013 (2013), s. 518-525 ISSN 0013-4686 R&D Projects: GA AV ČR IAA400400804; GA AV ČR KAN200100801 Grant - others:European Commission CORDIS(XE) FP7-ENERGY-2010-FET, projekt 256617 Institutional support: RVO:61389005 ; RVO:61388955 ; RVO:68378271 Keywords : boron doped diamond * electrochemistry * aqueous electrolyte solution Subject RIV: CG - Electrochemistry Impact factor: 4.086, year: 2013

  13. Effect of acid leaching conditions on impurity removal from silicon doped by magnesium

    Directory of Open Access Journals (Sweden)

    Stine Espelien

    2017-07-01

    Full Text Available The effect of magnesium addition into a commercial silicon and its leaching refining behavior is studied for producing solar grade silicon feedstock. Two different levels of Mg is added into a commercial silicon and the leaching of the produced alloys by 10% HCl solution at 60 ℃ for different durations is performed. It is shown that the microstructure of the alloy and in particular the distribution of eutectic phases is dependent on the amount of the added Mg. Moreover, the metallic impurities in silicon such as Fe, Al, Ca and Ti are mainly forming silicide particles with different compositions. These silicides are physically more detached from the primary silicon grains and their removal through chemical and physical separation in leaching is better for higher Mg additions. It is observed that the leaching is more effective for the purification of smaller silicon particles produced from each Mg-doped silicon alloy. It is shown that acid leaching by the applied method is effective to reach more than 70% of phosphorous removal. It is also shown that the purity of silicon is dependent on the total Mg removal and effectiveness of leaching on removing the Mg2Si phase.

  14. Quality Management for Neutron Transmutation Doping of Silicon Ingot in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ki-Doo; Kim, Ji-Uk; Yun, Hwa-Kyung; Lim, Chul-Hong; Kim, Young-Chil; Kim, Myong-Seop; Park, Sang-Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    By using this doping method, silicon semiconductors with extremely uniform dopant distributions can be produced, and this is the dominant advantage of NTD compared with a conventional chemical doping. Good uniformity of a dopant concentration is usually required for high power applications such as thyristor (SCR), IGBT, IGCT and GTO and for special sensors. Achieving an accurate neutron fluence corresponding to a target resistivity as well as a uniform irradiation is the prime target of a neutron irradiation for NTD. Generally, in order to reach an accurate neutron fluence, a real time neutron flux is monitored by a neutron detector such as a Self-powered Neutron Detector(SPND). And, after an irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of a neutron activation sample that has been irradiated with a silicon ingot, and thus the SPND can be properly calibrated. Excellent irradiation uniformity and a high accuracy for a target neutron dose have been achieved from the early works of NTD. However, to maintain this excellent quality, the neutron irradiation fluence should be continuously modified and controlled. So, in this work, an activity to maintain the irradiation quality is introduced.

  15. In-situ doped junctionless polysilicon nanowires field effect transistors for low-cost biosensors

    Directory of Open Access Journals (Sweden)

    Azeem Zulfiqar

    2017-04-01

    Full Text Available Silicon nanowire (SiNW field effect transistor based biosensors have already been proven to be a promising tool to detect biomolecules. However, the most commonly used fabrication techniques involve expensive Silicon-On-Insulator (SOI wafers, E-beam lithography and ion-implantation steps. In the work presented here, a top down approach to fabricate SiNW junctionless field effect biosensors using novel in-situ doped polysilicon is demonstrated. The p-type polysilicon is grown with an optimum boron concentration that gives a good metal-silicon electrical contact while maintaining the doping level at a low enough level to provide a good sensitivity for the biosensor. The silicon nanowires are patterned using standard photolithography and a wet etch method. The metal contacts are made from magnetron sputtered TiW and e-beam evaporation of gold. The passivation of electrodes has been done by sputtered Si3N4 which is patterned by a lift-off process. The characterization of the critical fabrication steps is done by Secondary Ion Mass Spectroscopy (SIMS and by statistical analysis of the measurements made on the width of the SiNWs. The electrical characterization of the SiNW in air is done by sweeping the back gate voltage while keeping the source drain potential to a constant value and surface characterization is done by applying liquid gate in phosphate buffered saline (PBS solution. The fabricated SiNWs sensors functionalized with (3-aminopropyltriethoxysilane (APTES have demonstrated good sensitivity in detecting different pH buffer solutions. Keywords: In-situ doped, Polysilicon nanowire, Field effect transistor, Biosensor

  16. Efficiency and stability of spectral sensitization of boron-doped-diamond electrodes through covalent anchoring of a donor–acceptor organic chromophore (P1)

    Czech Academy of Sciences Publication Activity Database

    Krýsová, Hana; Bartoň, Jan; Petrák, Václav; Jurok, R.; Kuchař, M.; Cígler, Petr; Kavan, Ladislav

    2016-01-01

    Roč. 18, č. 24 (2016), s. 16444-16450 ISSN 1463-9076 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 ; RVO:61388963 ; RVO:68378271 Keywords : dye-sensitized solar cells * boron-doped diamond * nanoscale Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.123, year: 2016

  17. Photo-induced current transient spectroscopy for high-resistivity neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Tokuda, Yutaka; Inoue, Yajiro; Usami, Akira

    1987-01-01

    Defects in high-resistivity neutron-transmutation-doped (NTD) silicon prior to annealing were studied by photo-induced current transient spectroscopy (PICTS). The thermal-neutron fluence was 9.5 x 10 17 cm -2 to give a resistivity of about 30 Ω after annealing, and the fast-neutron fluence was 9.5 x 10 16 cm -2 . Four traps with thermal emission activation energies of 0.15, 0.41. 0.47 and 0.50 eV were observed in NTD silicon. A trap with the thermal emission activation energy of 0.15 eV was considered to correspond to the divacancy. Although the clustered nature of the defects was observed, PICTS measurements suggest that the material state of high-resistivity NTD silicon is still crystalline and not amorphous. (author)

  18. Reduced annealing temperatures in silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.

    1981-01-01

    Cells irradiated to a fluence of 5x10,000,000,000,000/square cm showed short circuit current on annealing at 200 C, with complete annealing occurring at 275 C. Cells irradiated to 100,000,000,000,000/square cm showed a reduction in annealing temperature from the usual 500 to 300 C. Annealing kinetic studies yield an activation energy of (1.5 + or - 2) eV for the low fluence, low temperature anneal. Comparison with activation energies previously obtained indicate that the presently obtained activation energy is consistent with the presence of either the divacancy or the carbon interstitial carbon substitutional pair, a result which agrees with the conclusion based on defect behavior in boron-doped silicon.

  19. TEM investigation of aluminium containing precipitates in high aluminium doped silicon carbide

    International Nuclear Information System (INIS)

    Wong-Leung, J.; FitzGerald, J.D.

    2002-01-01

    Full text: Silicon carbide is a promising semiconductor material for applications in high temperature and high power devices. The successful growth of good quality epilayers in this material has enhanced its potential for device applications. As a novel semiconductor material, there is a need for studying its basic physical properties and the role of dopants in this material. In this study, silicon carbide epilayers were grown on 4H-SiC wafers of (0001) orientation with a miscut angle of 8 deg at a temperature of 1550 deg C. The epilayers contained regions of high aluminium doping well above the solubility of aluminium in silicon carbide. High temperature annealing of this material resulted in the precipitation of aluminium in the wafers. The samples were analysed by secondary ion mass spectrometry and transmission electron microscopy. Selected area diffraction studies show the presence of aluminium carbide and aluminium silicon carbide phases. Copyright (2002) Australian Society for Electron Microscopy Inc

  20. Effects of glucose doping on the MgB{sub 2} superconductors using cheap crystalline boron

    Energy Technology Data Exchange (ETDEWEB)

    Parakkandy, Jafar Meethale [Department of Physics and Astronomy, College of Science, PO Box 2455, King Saud University, Riyadh 11451,Saudi Arabia (Saudi Arabia); Shahabuddin, Mohammed, E-mail: mshahab@ksu.edu.sa [Department of Physics and Astronomy, College of Science, PO Box 2455, King Saud University, Riyadh 11451,Saudi Arabia (Saudi Arabia); Shah, M. Shahabuddin; Alzayed, Nasser S.; Qaid, Salem A.S.; Madhar, Niyaz Ahmad; Ramay, Shahid M. [Department of Physics and Astronomy, College of Science, PO Box 2455, King Saud University, Riyadh 11451,Saudi Arabia (Saudi Arabia); Shar, Muhammad Ali [Mechanical Engineering Department, College of Engineering, P.O. Box 800, King Saud University, Riyadh 11421 (Saudi Arabia)

    2015-12-15

    Highlights: • First report on glucose doped MgB{sub 2} superconductor by single step dry mixing approach. • Cheap crystalline boron used for the sample preparation. • Microstructure and superconducting properties of the superconductors are discussed. • Less degradation in low field critical current density observed. • MgB{sub 2} with 2 at. % glucose doped showed the highest J{sub c}, ≈ 2 × 10{sup 4}A/cm{sup 2} for 20 K at 3 T. - Abstract: We report the effect of glucose (C{sub 6}H{sub 12}O{sub 6}) doping on the structural and electromagnetic properties of MgB{sub 2} superconductor fabricated by dry mixing using planetary ball milling. Herein, as-prepared bulk polycrystalline Mg (B{sub 1–x}C{sub x}) {sub 2} samples with different doping levels (x = 0, 2, 4, and 6 at. %) were systematically studied by X-ray diffraction, magnetic and resistivity measurements, and microstructure analysis. When carbon doped, the reduction in critical transition temperature and shrinkage in a-lattice were obviously observed. This resulted in structural distortion of the MgB{sub 2} lattice, and thereby, enhanced an impurity scattering. In addition to these, upper critical field and high-field critical current densities were also enhanced. On the other hand, both pinning force and low-field critical current density are decreased. The high field enhancement and low field degradation are due to increase in impurity scattering and decrease in pinning force respectively.