WorldWideScience

Sample records for boron carbides

  1. Process for microwave sintering boron carbide

    Science.gov (United States)

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  2. Methods of producing continuous boron carbide fibers

    Science.gov (United States)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  3. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-09

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  4. Compression and Associated Properties of Boron Carbide

    Science.gov (United States)

    2008-12-01

    Klandadze, G.I., and Eristavi, A.M., 1999: IR- Active Phonons and Structure Elements of Isotope - Enriched Boron Carbide, J. Sol. State Chem. 154, 79- 86...COMPRESSION AND ASSOCIATED PROPERTIES OF BORON CARBIDE D. P. Dandekar*and J. A. Ciezak Army Research Laboratory, APG, MD 21005 M. Somayazulu...of the observed loss of shear strength in boron carbide under plane shock wave compression to amorphization in boron carbide under triaxial stress

  5. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  6. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  7. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  8. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  9. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  10. Compression and associated properties of boron carbide

    Science.gov (United States)

    Ciezak, Jennifer; Dandekar, Dattatraya

    2009-06-01

    The observed loss of shear strength of boron carbide around 22 GPa has been attributed to presence of amorphous material in the shock recovered, and statically indented and pressurized boron carbide. The present work presents a more direct association of the observed loss of shear strength in boron carbide under plane shock wave compression to amorphization in boron carbide under triaxial stress compression. This evidence is obtained from in-situ measurement of Raman, and infrared vibrational spectra of boron carbide confined in a Diamond Anvil Cell (DAC) under hydrostatic and non-hydrostatic pressures. X-ray-diffraction measurements do show a shift in the compression of boron carbide around 27 GPa. However, X-ray diffraction measurements indicate that the amorphization does not extend to micron scale, as there is no evidence of a loss of crystallinity in the recorded diffraction pattern of boron carbide to 47 GPa. Our work shows that shear plays a very dominant role in the stress-induced amorphization of boron carbide.

  11. Abrasive slurry composition for machining boron carbide

    Science.gov (United States)

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  12. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  13. Study on plasma sprayed boron carbide coating

    Science.gov (United States)

    Zeng, Yi; Lee, Soo W.; Ding, Chuanxian

    2002-03-01

    The microstructure, phase composition, and mechanical properties of boron carbide coatings formed by atmospheric plasma spraying (APS) are studied in the present work. The boron carbide coating with high microhardness and low porosity could be produced by APS. The decomposition of boron carbide powder during the plasma spray process would result in the formation of the BxC phase and an increase of the carbon phase, which is confirmed by transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction results.

  14. Breaking the icosahedra in boron carbide.

    Science.gov (United States)

    Xie, Kelvin Y; An, Qi; Sato, Takanori; Breen, Andrew J; Ringer, Simon P; Goddard, William A; Cairney, Julie M; Hemker, Kevin J

    2016-10-25

    Findings of laser-assisted atom probe tomography experiments on boron carbide elucidate an approach for characterizing the atomic structure and interatomic bonding of molecules associated with extraordinary structural stability. The discovery of crystallographic planes in these boron carbide datasets substantiates that crystallinity is maintained to the point of field evaporation, and characterization of individual ionization events gives unexpected evidence of the destruction of individual icosahedra. Statistical analyses of the ions created during the field evaporation process have been used to deduce relative atomic bond strengths and show that the icosahedra in boron carbide are not as stable as anticipated. Combined with quantum mechanics simulations, this result provides insight into the structural instability and amorphization of boron carbide. The temporal, spatial, and compositional information provided by atom probe tomography makes it a unique platform for elucidating the relative stability and interactions of primary building blocks in hierarchically crystalline materials.

  15. Boron Carbides As Thermo-electric Materials

    Science.gov (United States)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  16. Pulverization of boron element and proportions of boron carbide in boron

    International Nuclear Information System (INIS)

    Lang, F.M.; Finck, C.

    1956-01-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 μ. Grain sizes smaller than 1μ are required for applying thin layers of such boron. (author) [fr

  17. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  18. Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals

    Science.gov (United States)

    2013-05-01

    occurs in ballistic impact, and accompanies amorphization in diamond anvil cell (DAC) experiments (Yan et al., 2009). Fracture in boron carbide ...Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals by J. D. Clayton ARL-RP-440 May 2013...Ground, MD 21005-5069 ARL-RP-440 May 2013 Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals J. D. Clayton

  19. Thermal conductivity behavior of boron carbides

    Science.gov (United States)

    Wood, C.; Zoltan, A.; Emin, D.; Gray, P. E.

    1983-01-01

    Knowledge of the thermal conductivity of boron carbides is necessary to evaluate its potential for high temperature thermoelectric energy conversion applications. The thermal diffusivity of hot pressed boron carbide B/sub 1-x/C/sub x/ samples as a function of composition, temperature and temperature cycling was measured. These data in concert with density and specific heat data yield the thermal conductivities of these materials. The results in terms of a structural model to explain the electrical transport data and novel mechanisms for thermal conduction are discussed.

  20. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    Vast, N.

    1999-01-01

    The atomic structure and the lattice dynamics of α boron and of B 4 C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B 4 C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  1. Testing boron carbide under triaxial compression

    Science.gov (United States)

    Anderson, Charles; Chocron, Sidney; Dannemann, Kathryn A.; Nicholls, Arthur E.

    2012-03-01

    This article focuses on the pressure dependence and summarizes the characterization work conducted on intact and predamaged specimens of boron carbide under confinement in a pressure vessel and in a thick steel sleeve. The failure curves obtained are presented, and the data compared to experimental data from the literature.

  2. Kinetic analysis of boron carbide sintering

    International Nuclear Information System (INIS)

    Borchert, W.; Kerler, A.R.

    1975-01-01

    The kinetics of the sintering of boron carbide were investigated by shrinkage measurements with a high-temperature dilatometer under argon atmosphere in dependence on temperature, grain size, and pressure. The activation energies and the reaction mechanisms of the different stages of sintering were determined. (orig.) [de

  3. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  4. Reaction of boron carbide with molybdenum disilicide

    International Nuclear Information System (INIS)

    Novikov, A.V.; Melekhin, V.F.; Pegov, V.S.

    1989-01-01

    The investigation results of interaction in the B 4 C-MoSi 2 system during sintering in vacuum are presented. Sintering of boron carbide with molybdenum disilicide is shown to lead to the formation of MoB 2 , SiC, Mo 5 Si 3 compounds, the presence of carbon-containing covering plays an important role in sintering

  5. Perfomance analysis of boron carbide in LMFBR

    International Nuclear Information System (INIS)

    Pitner, A.L.; Birney, K.R.

    1975-01-01

    Reactivity control in the FFTF and LMFBR's will be maintained by control elements utilizing boron carbide pellets contained in stainless steel pins. Computer performance codes predict irradiation service conditions of absorber pellets and identify required experimental testing. Test results are incorporated in the codes to improve performance prediction capabilities

  6. Boron carbide nanowires: Synthesis and characterization

    Science.gov (United States)

    Guan, Zhe

    Bulk boron carbide has been widely used in ballistic armored vest and the property characterization has been heavily focused on mechanical properties. Even though boron carbides have also been projected as a promising class of high temperature thermoelectric materials for energy harvesting, the research has been limited in this field. Since the thermal conductivity of bulk boron carbide is still relatively high, there is a great opportunity to take advantage of the nano effect to further reduce it for better thermoelectric performance. This dissertation work aims to explore whether improved thermoelectric performance can be found in boron carbide nanowires compared with their bulk counterparts. This dissertation work consists of four main parts. (1) Synthesis of boron carbide nanowires. Boron carbide nanowires were synthesized by co-pyrolysis of diborane and methane at low temperatures (with 879 °C as the lowest) in a home-built low pressure chemical vapor deposition (LPCVD) system. The CVD-based method is energy efficient and cost effective. The as-synthesized nanowires were characterized by electron microscopy extensively. The transmission electron microscopy (TEM) results show the nanowires are single crystalline with planar defects. Depending on the geometrical relationship between the preferred growth direction of the nanowire and the orientation of the defects, the as-synthesized nanowires could be further divided into two categories: transverse fault (TF) nanowires grow normal to the defect plane, while axial fault (AF) ones grow within the defect plane. (2) Understanding the growth mechanism of as-synthesized boron carbide nanowires. The growth mechanism can be generally considered as the famous vapor-liquid-solid (VLS) mechanism. TF and AF nanowires were found to be guided by Ni-B catalysts of two phases. A TF nanowire is lead by a hexagonal phase catalyst, which was proved to be in a liquid state during reaction. While an AF nanowires is catalyzed by a

  7. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  8. Impact scenarios in boron carbide: A computational study

    OpenAIRE

    Bell, R. G.; Sugden, I. J.; Plant, D. F.

    2016-01-01

    The effect of radiative impacts on the structure of boron carbide has been studied by both classical and ab initio simulations. As a part of this study, a new forcefield was developed for use in studying boron carbide materials. Impact scenarios in boron carbide were simulated in order to investigate the exceptional resistance of this material, and other icosahedral boron solids, to high-energy impact events. It was observed that interstitial defects created by radiative impacts are likely to...

  9. Structure of Boron Carbide: Where's the Carbon?

    Science.gov (United States)

    Marx, David; Seidler, Gerald; Fister, Timothy; Nagle, Kenneth; Segre, Carlo

    2008-03-01

    Although the structure of the boron carbide series, B12-xCx with 0.06 x x-ray scattering (LERIX) spectrometer on the PNC-CAT beamline at the Advanced Photon Source at Argonne National Lab has enabled differentiation of the boron and carbon absorption edge data for the various crystallographic sites. The structure (R-3m) consists of twelve-atom icosahedra and three-atom chains. Boron carbide may have a maximum of three carbon atoms, which may be located on the two end of chain sites and in one of two inequivalent sites on the icosahedra. At least one carbon atom must be present in the structure for it to be stable. In this presentation, structural results from non-resonant x-ray scattering for seven samples, ranging from B4C to B10.1C will be presented.

  10. Behavior of disordered boron carbide under stress.

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W; Chhowalla, Manish

    2006-07-21

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6 GPa approximately = P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2-3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  11. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  12. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  13. A fundamental study of industrial boron carbide

    International Nuclear Information System (INIS)

    Zuppiroli, L.; Kormann, R.; Lesueur, D.

    1983-09-01

    Some of the physical properties of boron carbide, before and after irradiation are reviewed on the basis of several new experiments performed in our laboratory. The layered aspect of the grains of this ceramic, due to a microtwinning of the rhomboedral structure, is emphasized first. Then, the location of free carbon in samples of composition close to B 4 C is discussed in relation with new sputtering experiments. Coupled studies of the electric conductivities and the electron spin resonance lines have demonstrated the important role of free carbon in the electronic properties of boron carbide and revealed the existence of a homogeneous short range disorder, the origin of which is not very clear (amorphous concept). The elementary processes responsible of the swelling and microcracking of neutron irradiated boron carbide are rather well understood. The role of the point defects in these processes is reported. The displacement threshold energies and formation volumes are discussed in relation with electron irradiation experiments, and displacement rates are calculated in different irradiation situations including neutron irradiations [fr

  14. Boron-carbide-aluminum and boron-carbide-reactive metal cermets

    Science.gov (United States)

    Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.

    1986-01-01

    Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

  15. Unveiling polytype transformation assisted growth mechanism in boron carbide nanowires

    Science.gov (United States)

    Song, Ningning; Li, Xiaodong

    2018-01-01

    We demonstrate direct evidence that the lattice distortion, induced by boron carbide (BxCy) stoichiometry, assists the growth of boron carbide nanowires. The transformation between different polytypic boron carbide phases lowers the energy barrier for boron diffusion, promoting boron migration in the nanowire growth. An atomistic mass transport model has been established to explain such volume-diffusion-induced nanowire growth which cannot be explained by the conventional surface diffusion model alone. These findings significantly advance our understanding of nanowire growth processes and mass transport mechanisms and provide new guidelines for the design of nanowire-structured devices.

  16. Testing Boron Carbide and Silicon Carbide under Triaxial Compression

    Science.gov (United States)

    Anderson, Charles; Chocron, Sidney; Nicholls, Arthur

    2011-06-01

    Boron Carbide (B4C) and silicon carbide (SiC-N) are extensively used as armor materials. The strength of these ceramics depends mainly on surface defects, hydrostatic pressure and strain rate. This article focuses on the pressure dependence and summarizes the characterization work conducted on intact and predamaged specimens by using compression under confinement in a pressure vessel and in a thick steel sleeve. The techniques used for the characterization will be described briefly. The failure curves obtained for the two materials will be presented, although the data are limited for SiC. The data will also be compared to experimental data from Wilkins (1969), and Meyer and Faber (1997). Additionally, the results will be compared with plate-impact data.

  17. Chemical vapor deposited boron carbide

    International Nuclear Information System (INIS)

    Mackinnon, I.D.R.; Smith, K.L.

    1987-01-01

    Detailed analytical electron microscope (AEM) studies of yellow whiskers produced by chemical vapor deposition (CVD) show that two basic types of whiskers are produced at low temperatures (between 1200 0 C and 1400 0 C) and low boron to carbon gas ratios. Both whisker types show planar microstructures such as twin planes and stacking faults oriented parallel to, or at a rhombohedral angle to, the growth direction. For both whisker types, the presence of droplet-like terminations containing both Si and Ni indicate that the growth process during CVD is via a vapor-liquid-solid (VLS) mechanisms

  18. Production of boron carbide powder by carbothermal synthesis of ...

    Indian Academy of Sciences (India)

    TECS

    Production of boron carbide powder by carbothermal synthesis of gel material. A K KHANRA. Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721 302, India. MS received 21 August 2006; revised 29 January 2007. Abstract. Boron carbide (B4C) powder has been produced ...

  19. Processing of boron carbide-aluminum composites

    International Nuclear Information System (INIS)

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1989-01-01

    The processing problems associated with boron carbide and the limitations of its mechanical properties can be significantly reduced when a metal phase (e.g., aluminum) is added. Lower densification temperatures and higher fracture toughness will result. Based on fundamental capillarity thermodynamics, reaction thermodynamics, and densification kinetics, we have established reliable criteria for fabricating B 4 C-Al particulate composites. Because chemical reactions cannot be eliminated, it is necessary to process B 4 C-Al by rapidly heating to near 1200 degrees C (to ensure wetting) and subsequently heat-treating below 1200 degrees C (for microstructural development)

  20. Boron carbide nanowires with uniform CNx coatings

    Science.gov (United States)

    Zhang, H. Z.; Wang, R. M.; You, L. P.; Yu, J.; Chen, H.; Yu, D. P.; Chen, Y.

    2007-01-01

    Boron carbide nanowires with uniform carbon nitride coating layers were synthesized on a silicon substrate using a simple thermal process. The structure and morphology of the as-synthesized nanowires were characterized using x-ray diffraction, scanning and transmission electron microscopy and electron energy loss spectroscopy. A correlation between the surface smoothness of the nanowire sidewalls and their lateral sizes has been observed and it is a consequence of the anisotropic formation of the coating layers. A growth mechanism is also proposed for these growth phenomena.

  1. Boron carbide synthesis by carbothermic reduction of boron oxide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Paschoal, J.O.A.

    1988-01-01

    Boron carbide (B 4 C) is a ceramic material of technological applications due to its extreme hardness and high chemical as well as thermal stability. Some parameters of the process for obtaining B 4 C by carbothermic reduction of B 2 O 3 have been determined. The starting powders and the final products have been analysed by chemical, spectrographic and X-ray diffraction methods. The results show that the B 4 C obtained by the carbothermic reduction process is suitable for applications with a definite determination of the free carbon content. (author) [pt

  2. Computational Studies of Physical Properties of Boron Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lizhi Ouyang

    2011-09-30

    The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package.

  3. Hugoniot equation of state and dynamic strength of boron carbide

    Science.gov (United States)

    Grady, Dennis E.

    2015-04-01

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20-60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic

  4. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  5. Radial furnace shows promise for growing straight boron carbide whiskers

    Science.gov (United States)

    Feingold, E.

    1967-01-01

    Radial furnace, with a long graphite vaporization tube, maintains a uniform thermal gradient, favoring the growth of straight boron carbide whiskers. This concept seems to offer potential for both the quality and yield of whiskers.

  6. On surface Raman scattering and luminescence radiation in boron carbide.

    Science.gov (United States)

    Werheit, H; Filipov, V; Schwarz, U; Armbrüster, M; Leithe-Jasper, A; Tanaka, T; Shalamberidze, S O

    2010-02-03

    The discrepancy between Raman spectra of boron carbide obtained by Fourier transform Raman and conventional Raman spectrometry is systematically investigated. While at photon energies below the exciton energy (1.560 eV), Raman scattering of bulk phonons of boron carbide occurs, photon energies exceeding the fundamental absorption edge (2.09 eV) evoke additional patterns, which may essentially be attributed to luminescence or to the excitation of Raman-active processes in the surface region. The reason for this is the very high fundamental absorption in boron carbide inducing a very small penetration depth of the exciting laser radiation. Raman excitations essentially restricted to the boron carbide surface region yield spectra which considerably differ from bulk phonon ones, thus indicating structural modifications.

  7. Analysis of boron carbides' electronic structure

    Science.gov (United States)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  8. Production of boron carbide powder by carbothermal synthesis of ...

    Indian Academy of Sciences (India)

    TECS

    weight armour plates etc (Alizadeh et al 2004). It can also be used as a reinforcing material for ceramic matrix composites. It is an excellent neutron absorption material in nuclear industry due to its high neutron absorption co- efficient (Sinha et al 2002). Boron carbide can be prepared by reaction of elemental boron and ...

  9. Isotopic effects on the phonon modes in boron carbide.

    Science.gov (United States)

    Werheit, H; Kuhlmann, U; Rotter, H W; Shalamberidze, S O

    2010-10-06

    The effect of isotopes ((10)B-(11)B; (12)C-(13)C) on the infrared- and Raman-active phonons of boron carbide has been investigated. For B isotopes, the contributions of the virtual crystal approximation, polarization vector and isotopical disorder are separated. Boron and carbon isotope effects are largely opposite to one another and indicate the share of the particular atoms in the atomic assemblies vibrating in specific phonon modes. Some infrared-active phonons behave as expected for monatomic boron crystals.

  10. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  11. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    Crossley, D.; Wood, A.J.; McInnes, C.A.J.; Jones, I.G.

    1978-09-01

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 300 0 C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 1050 0 C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  12. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    Science.gov (United States)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  13. Ordering of carbon atoms in boron carbide structure

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, V. I., E-mail: i2212@yandex.ru; Kovalev, I. D.; Konovalikhin, S. V.; Vershinnikov, V. I. [Russian Academy of Sciences, Institute of Structural Macrokinetics and Materials Science (Russian Federation)

    2013-05-15

    Boron carbide crystals have been obtained in the entire compositional range according to the phase diagram by self-propagating high-temperature synthesis (SHS). Based on the results of X-ray diffraction investigations, the samples were characterized by the unit-cell metric and reflection half-width in the entire range of carbon concentrations. A significant spread in the boron carbide unit-cell parameters for the same carbon content is found in the data in the literature; this spread contradicts the structural concepts for covalent compounds. The SHS samples have not revealed any significant spread in the unit-cell parameters. Structural analysis suggests that the spread of parameters in the literary data is related to the unique process of ordering of carbon atoms in the boron carbide structure.

  14. Shock-induced localized amorphization in boron carbide.

    Science.gov (United States)

    Chen, Mingwei; McCauley, James W; Hemker, Kevin J

    2003-03-07

    High-resolution electron microscope observations of shock-loaded boron carbide have revealed the formation of nanoscale intragranular amorphous bands that occur parallel to specific crystallographic planes and contiguously with apparent cleaved fracture surfaces. This damage mechanism explains the measured, but not previously understood, decrease in the ballistic performance of boron carbide at high impact rates and pressures. The formation of these amorphous bands is also an example of how shock loading can result in the synthesis of novel structures and materials with substantially altered properties.

  15. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    Science.gov (United States)

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  16. Modeling solid-state boron carbide low energy neutron detectors

    International Nuclear Information System (INIS)

    Lundstedt, C.; Harken, A.; Day, E.; Robertson, B.W.; Adenwalla, S.

    2006-01-01

    Two independent techniques for modeling boron-based solid-state neutron detectors are presented-one using the GEANT4 Monte Carlo toolkit and the other one an analytical approach using a simplified physical model. Results of these techniques are compared for three different types of solid-state boron carbide detector. These results provide the basis for distinguishing between conversion layer and other solid-state detectors

  17. NEUTRON IRRADIATION EFFECTS ON SPARK PLASMA SINTERED BORON CARBIDE

    OpenAIRE

    Buyuk, Bulent; Cengiz, Meral; Tugrul, A. Beril

    2015-01-01

    In this study, spark plasma sintered boron carbide (B4C) was examined against neutrons. The specimens were irradiated by reactor neutrons (include both thermal and fast neutrons) up to fluence of 1.37x1021n m-2. Thermal and fast neutrons cause swelling by different interactions with boron (10B) atoms in the related materials. X-Ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images were investigated for initial and irradiated samples. In addition, lattice parameters and ...

  18. Disorder and defects are not intrinsic to boron carbide

    OpenAIRE

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichio...

  19. Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets

    Science.gov (United States)

    Halverson, Danny C.; Landingham, Richard L.

    1988-01-01

    A chemical pretreatment method is used to produce boron carbide-, boron-, and boride-reactive metal composites by an infiltration process. The boron carbide or other starting constituents, in powder form, are immersed in various alcohols, or other chemical agents, to change the surface chemistry of the starting constituents. The chemically treated starting constituents are consolidated into a porous ceramic precursor which is then infiltrated by molten aluminum or other metal by heating to wetting conditions. Chemical treatment of the starting constituents allows infiltration to full density. The infiltrated precursor is further heat treated to produce a tailorable microstructure. The process at low cost produces composites with improved characteristics, including increased toughness, strength.

  20. High-hardness ceramics based on boron carbide fullerite derivatives

    Science.gov (United States)

    Ovsyannikov, D. A.; Popov, M. Yu.; Perfilov, S. A.; Prokhorov, V. M.; Kulnitskiy, B. A.; Perezhogin, I. A.; Blank, V. D.

    2017-02-01

    A new type of ceramics based on the phases of fullerite derivatives and boron carbide B4C is obtained. The material is synthesized at a temperature of 1500 K and a relatively low pressure of 4 GPa; it has a high hardness of 45 GPa and fracture toughness of 15 MPa m1/2.

  1. Standard specification for nuclear-Grade boron carbide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This specification applies to boron carbide pellets for use as a control material in nuclear reactors. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  2. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...

  3. An Exploration of Neutron Detection in Semiconducting Boron Carbide

    Science.gov (United States)

    Hong, Nina

    The 3He supply problem in the U.S. has necessitated the search for alternatives for neutron detection. The neutron detection efficiency is a function of density, atomic composition, neutron absorption cross section, and thickness of the neutron capture material. The isotope 10B is one of only a handful of isotopes with a high neutron absorption cross section---3840 barns for thermal neutrons. So a boron carbide semiconductor represents a viable alternative to 3He. This dissertation provides an evaluation of the performance of semiconducting boron carbide neutron detectors grown by plasma enhance chemical vapor deposition (PECVD) in order to determine the advantages and drawbacks of these devices for neutron detection. Improved handling of the PECVD system has resulted in an extremely stable plasma, enabling deposition of thick films of semiconducting boron carbide. A variety of material and semiconducting characterization tools have been used to investigate the structure and electronic properties of boron carbide thin films, including X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, infrared/Raman spectroscopy, current-voltage measurements and capacitance-voltage measurements. Elemental concentrations in the boron carbide films have been obtained from Rutherford backscattering and elastic recoil detection analysis. Solid state neutron detection devices have been fabricated in the form of heterostructured p-n diodes, p-type boron carbide/n-type Si. Operating conditions, including applied bias voltage, and time constants, have been optimized for maximum detection efficiency and correlated to the semiconducting properties investigated in separate electronic measurements. Accurate measurements of the neutron detection efficiency and the response of the detector to a wide range of neutron wavelengths have been performed at a well calibrated, tightly collimated, "white" cold neutron beam source using time-of-flight neutron detection technique

  4. Disorder and defects are not intrinsic to boron carbide.

    Science.gov (United States)

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-18

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials.

  5. Atomic-Level Understanding of "Asymmetric Twins" in Boron Carbide.

    Science.gov (United States)

    Xie, Kelvin Y; An, Qi; Toksoy, M Fatih; McCauley, James W; Haber, Richard A; Goddard, William A; Hemker, Kevin J

    2015-10-23

    Recent observations of planar defects in boron carbide have been shown to deviate from perfect mirror symmetry and are referred to as "asymmetric twins." Here, we demonstrate that these asymmetric twins are really phase boundaries that form in stoichiometric B(4)C (i.e., B(12)C(3)) but not in B(13)C(2). TEM observations and ab initio simulations have been coupled to show that these planar defects result from an interplay of stoichiometry, atomic positioning, icosahedral twinning, and structural hierarchy. The composition of icosahedra in B(4)C is B(11)C and translation of the carbon atom from a polar to equatorial site leads to a shift in bonding and a slight distortion of the lattice. No such distortion is observed in boron-rich B(13)C(2) because the icosahedra do not contain carbon. Implications for tailoring boron carbide with stoichiometry and extrapolations to other hierarchical crystalline materials are discussed.

  6. Pairwise cobalt doping of boron carbides with cobaltocene

    Science.gov (United States)

    Ignatov, A. Yu.; Losovyj, Ya. B.; Carlson, L.; LaGraffe, D.; Brand, J. I.; Dowben, P. A.

    2007-10-01

    We have performed Co K-edge x-ray absorption fine structure and x-ray absorption near edge structure measurements of Co-doped plasma enhanced chemical vapor phase deposition (PECVD) grown "C2B10Hx" semiconducting boron carbides, using cobaltocene. Cobalt does not dope PECVD grown boron carbides as a random fragment of the cobaltocene source gas. The Co atoms are fivefold boron coordinated (R=2.10±0.02Å) and are chemically bonded to the icosahedral cages of B10CHx or B9C2Hy. Pairwise Co doping occurs, with the cobalt atoms favoring sites some 5.28±0.02Å apart.

  7. INFLUENCE OF FINE-DISPERSED BORON CARBIDE ON THE STRUCTURE AND CHARACTERISTICS OF IRON-BORON ALLOY

    Directory of Open Access Journals (Sweden)

    N. F. Nevar

    2010-01-01

    Full Text Available The influence of boron carbide as fine-dispersed material input into the melt on structure morphology, founding, technological and exploitation characterisstics of cast iron-boron material is shown.

  8. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst.

  9. Chemical and mechanical analysis of boron-rich boron carbide processed via spark plasma sintering

    Science.gov (United States)

    Munhollon, Tyler Lee

    Boron carbide is a material of choice for many industrial and specialty applications due to the exceptional properties it exhibits such as high hardness, chemical inertness, low specific gravity, high neutron cross section and more. The combination of high hardness and low specific gravity makes it especially attractive for high pressure/high strain rate applications. However, boron carbide exhibits anomalous behavior when high pressures are applied. Impact pressures over the Hugoniot elastic limit result in catastrophic failure of the material. This failure has been linked to amorphization in cleavage planes and loss of shear strength. Atomistic modeling has suggested boron-rich boron carbide (B13C2) may be a better performing material than the commonly used B4C due to the elimination of amorphization and an increase in shear strength. Therefore, a clear experimental understanding of the factors that lead to the degradation of mechanical properties as well as the effects of chemistry changes in boron carbide is needed. For this reason, the goal of this thesis was to produce high purity boron carbide with varying stoichiometries for chemical and mechanical property characterization. Utilizing rapid carbothermal reduction and pressure assisted sintering, dense boron carbides with varying stoichiometries were produced. Microstructural characteristics such as impurity inclusions, porosity and grain size were controlled. The chemistry and common static mechanical properties that are of importance to superhard materials including elastic moduli, hardness and fracture toughness of the resulting boron-rich boron carbides were characterized. A series of six boron carbide samples were processed with varying amounts of amorphous boron (up to 45 wt. % amorphous boron). Samples with greater than 40 wt.% boron additions were shown to exhibit abnormal sintering behavior, making it difficult to characterize these samples. Near theoretical densities were achieved in samples with

  10. Predicted boron-carbide compounds: a first-principles study.

    Science.gov (United States)

    Wang, De Yu; Yan, Qian; Wang, Bing; Wang, Yuan Xu; Yang, Jueming; Yang, Gui

    2014-06-14

    By using developed particle swarm optimization algorithm on crystal structural prediction, we have explored the possible crystal structures of B-C system. Their structures, stability, elastic properties, electronic structure, and chemical bonding have been investigated by first-principles calculations with density functional theory. The results show that all the predicted structures are mechanically and dynamically stable. An analysis of calculated enthalpy with pressure indicates that increasing of boron content will increase the stability of boron carbides under low pressure. Moreover, the boron carbides with rich carbon content become more stable under high pressure. The negative formation energy of predicted B5C indicates its high stability. The density of states of B5C show that it is p-type semiconducting. The calculated theoretical Vickers hardnesses of B-C exceed 40 GPa except B4C, BC, and BC4, indicating they are potential superhard materials. An analysis of Debye temperature and electronic localization function provides further understanding chemical and physical properties of boron carbide.

  11. Superconductivity in heavily boron-doped silicon carbide

    OpenAIRE

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    The discoveries of superconductivity in heavily boron-doped diamond (C:B) in 2004 and silicon (Si:B) in 2006 renew the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily-boron doped silicon carbide (SiC:B). The sample used for that study consists of cubic and hexagonal SiC ph...

  12. Multipurpose boron carbide-aluminum composite and its manufacture via the control of the microstructure

    International Nuclear Information System (INIS)

    Pyzik, A.J.; Aksay, I.A.

    1987-01-01

    A method of making a boron carbidealuminum composite is described comprising: heating a particulate boron carbide in the presence of free carbon to 1800 0 -2250 0 C wherein the resulting boron carbide exhibits a substantially reduced reaction rate with aluminum; and reacting the boron carbide with aluminum, wherein a boron carbide-aluminum composite is formed having a microstructure including principally boron carbide and aluminum metal homogeneously distributed throughout the composite. A method is described of making a boron carbide-aluminum composite of selected ceramic and metal content and microstructure, having high fracture toughness, fracture strength and Young's modulus, and low density. It consists of: dispersing a particulate boron carbide of less than 10 micrometers particle size in water at a pH selected to maximize electrostatic repelling forces on boron carbide particle surfaces; consolidating the boron carbide into a porous compact; sintering the compact, whereby an open porous structure is retained; infilterating the compact with aluminum; and heat treating the compact, whereby a voidless composite is formed having microstructure phases

  13. Boron carbide (B4C) coating. Deposition and testing

    Science.gov (United States)

    Azizov, E.; Barsuk, V.; Begrambekov, L.; Buzhinsky, O.; Evsin, A.; Gordeev, A.; Grunin, A.; Klimov, N.; Kurnaev, V.; Mazul, I.; Otroshchenko, V.; Putric, A.; Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A.

    2015-08-01

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B4C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B4C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B4C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B4C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  14. Electrical transport and thermoelectric properties of boron carbide nanowires

    Science.gov (United States)

    Kirihara, Kazuhiro; Mukaida, Masakazu; Shimizu, Yoshiki

    2017-04-01

    The electrical transport and thermoelectric property of boron carbide nanowires synthesized by a carbothermal method are reported. It is demonstrated that the nanowires achieve a higher Seebeck coefficient and power factor than those of the bulk samples. The conduction mechanism of the nanowires at low temperatures below 300 K is different from that of the sintered-polycrystalline and single-crystal bulk samples. In a temperature range of 200-450 K, there is a crossover between electrical conduction by variable-range hopping and phonon-assisted hopping. The inhomogeneous carbon concentration and planar defects, such as twins and stacking faults, in the nanowires are thought to modify the bonding nature and electronic structure of the boron carbide crystal substantially, causing differences in the electrical conductivity and Seebeck coefficient. The effect of boundary scattering of phonon at nanostructured surface on the thermal conductivity reduction is discussed.

  15. Determination of soluble carbon in nuclear grade boron carbide

    International Nuclear Information System (INIS)

    Vega Bustillos, J.O.; Gomes, R.; Camaro, J.; Zorzetto, F.; Domingues, P.; Riella, H.

    1990-05-01

    The present work describes two different techniques (manometric and wet chemical) for the soluble carbon determination in nuclear grade boron carbide. The techniques are based on the reaction of the boron carbide with a sulfocromic mixture, generating CO 2 . The techniques differ on the mode they do the measurement of CO 2 produced. By wet chemical technique the CO 2 is absorved in a barium hydroxide solution and is determinated by titration. In the manometric technique the CO 2 gas is measured using a McLeod gauge. The gas produced by the latter technique is analysed by mass spectrometry. The details of the analytical technique and the data obtained are discussed. (author) [pt

  16. Sodium erosion of boron carbide from breached absorber pins

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Baker, D.E.

    1981-03-01

    The purpose of the irradiation experiment was to provide an engineering demonstration of the irradiation behavior of breached boron carbide absorber pins. By building defects into the cladding of prototypic absorber pins, and performing the irradiation under typical FFTF operating conditions, a qualitative assessment of the consequences of a breach was achieved. Additionally, a direct comparison of pin behavior with that of the ex-reactor test could be made

  17. Production of boron carbide powder by carbothermal synthesis of ...

    Indian Academy of Sciences (India)

    Boron carbide (B4C) powder has been produced by carbothermal reduction of boric acid–citric acid gel. Initially a gel of boric acid–citric acid is prepared in an oven at 100°C. This gel is pyrolyzed in a high temperature furnace over a temperature range of 1000–1800°C. The reaction initiation temperature range for B4C ...

  18. Electrical Characterization of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide

    Science.gov (United States)

    Peterson, George Glenn

    Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon substrates through the use of plasma enhanced chemical vapor deposition (PECVD). Many forms of structural and electrical measurements and analysis have been performed on the p-n heterojunction devices as a function of both He+ ion and neutron irradiation including: transmission electron microscopy (TEM), selected area electron diffraction (SAED), current versus voltage I(V), capacitance versus voltage C(V), conductance versus frequency G(f), and charge carrier lifetime (tau). In stark contrast to nearly all other electronic devices, the electrical performance of these p-n heterojunction diodes improved with irradiation. This is most likely the result of bond defect passivation and resolution of degraded icosahedral based carborane structures (icosahedral molecules missing a B, C, or H atom(s)).

  19. Nanotwins soften boron-rich boron carbide (B13C2)

    Science.gov (United States)

    An, Qi; Goddard, William A.

    2017-03-01

    Extensive studies of metals and alloys have observed that nanotwins lead to strengthening, but the role of nanotwins in ceramics is not well established. We compare here the shear strength and the deformation mechanism of nanotwinned boron-rich boron carbide (B13C2) with the perfect crystal under both pure shear and biaxial shear deformations. We find that the intrinsic shear strength of crystalline B13C2 is higher than that of crystalline boron carbide (B4C). But nanotwins in B13C2 lower the strength, making it softer than crystalline B4C. This reduction in strength of nanotwinned B13C2 arises from the interaction of the twin boundary with the C-B-C chains that connect the B12 icosahedra.

  20. Electronic Structure Studies of Amorphous Hydrogenated Boron Carbide

    Science.gov (United States)

    Sky Driver, M.; Sandstrom, Joseph; Boyko, Teak; Moewes, Alexander; Caruso, Anthony

    2010-03-01

    Boron carbide is a technologically relevant material with importance in voltaic transduction. However, the local physical, chemical and electronic structure of low temperature deposited thin films of amorphous boron carbide is far from understood, hindering its progress in application. X-ray absorption and emission spectroscopies (XAS/XES) were applied to thin films of B4C and B5C:Hx to study the near Fermi edge structure; the films were prepared by RF magnetron sputtering and plasma enhanced chemical vapor deposition (PECVD) and were thermally treated after deposition from 400 to 800 C. XES spectra indicate a physical structure transition from amorphous to nanocrystalline at 700 C, a much lower temperature than expected from traditional physical vapor deposition or flash annealing temperatures reported. These structural differences are of significant interest to transport measurements and will be discussed as a correlation. Further, x-ray and ultraviolet photoemission were also collected as a compliment to XES/XAS and will be discussed in the context of understanding the local intra vs. intermolecular electronic structure of these boron-rich molecular based solids.

  1. Auger electron spectroscopy studies of boron carbide

    International Nuclear Information System (INIS)

    Madden, H.H.; Nelson, G.C.; Wallace, W.O.

    1986-01-01

    Auger electron spectroscopy has been used to probe the electronic structure of ion bombardment (IB) cleaned surfaces of B 9 C and B 4 C samples. The shapes of the B-KVV and C-KVV Auger lines were found to be relatively insensitive to the bulk stoichiometry of the samples. This indicates that the local chemical environments surrounding B and C atoms, respectively, on the surfaces of the IB cleaned samples do not change appreciably in going from B 9 C to B 4 C. Fracturing the sample in situ is a way of producing a clean representative internal surface to compare with the IB surfaces. Microbeam techniques have been used to study a fracture surface of the B 9 C material with greater spatial resolution than in our studies of IB surfaces. The B 9 C fracture surface was not homogeneous and contained both C-rich and B-rich regions. The C-KVV line for the C-rich regions was graphitic in shape. Much of the C-rich regions was found by IB to be less than 100 nm in thickness. The C-KVV line from the B-rich regions was carbidic and did not differ appreciably in shape from those recorded for the IB cleaned surfaces

  2. Evidence for multiple polytypes of semiconducting boron carbide (C2B10) from electronic structure

    International Nuclear Information System (INIS)

    Lunca-Popa, Petru; Brand, J I; Balaz, Snjezana; Rosa, Luis G; Boag, N M; Bai Mengjun; Robertson, B W; Dowben, P A

    2005-01-01

    Boron carbides fabricated via plasma enhanced chemical vapour deposition from different isomeric source compounds with the same C 2 B 10 H 12 closo-icosahedral structure result in materials with very different direct (optical) band gaps. This provides compelling evidence for the existence of multiple polytypes of C 2 B 10 boron carbide and is consistent with electron diffraction results

  3. Depressurization amorphization of single-crystal boron carbide.

    Science.gov (United States)

    Yan, X Q; Tang, Z; Zhang, L; Guo, J J; Jin, C Q; Zhang, Y; Goto, T; McCauley, J W; Chen, M W

    2009-02-20

    We report depressurization amorphization of single-crystal boron carbide (B4C) investigated by in situ high-pressure Raman spectroscopy. It was found that localized amorphization of B4C takes place during unloading from high pressures, and nonhydrostatic stresses play a critical role in the high-pressure phase transition. First-principles molecular dynamics simulations reveal that the depressurization amorphization results from pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices.

  4. Ndt Characterization of Boron Carbide for Ballistic Applications

    Science.gov (United States)

    Liaptsis, D.; Cooper, I.; Ludford, N.; Gunner, A.; Williams, Mike; Willis, David

    2011-06-01

    Boron Carbide (B4C) is widely used to provide ballistic protection in challenging service environments. This work was carried out to develop non-destructive testing (NDT) for B4C characterization. Deliberate flaws were introduced within the B4C tiles during manufacturing. An experimental program was undertaken to determine the best method to detect defects in ceramic tiles and material characterization. Ultrasonic characterization of the material was found to be able to detect both density variation and defects within the material.

  5. Characterization of plastic and boron carbide additive manufactured neutron collimators

    Science.gov (United States)

    Stone, M. B.; Siddel, D. H.; Elliott, A. M.; Anderson, D.; Abernathy, D. L.

    2017-12-01

    Additive manufacturing techniques allow for the production of materials with complicated geometries with reduced costs and production time over traditional methods. We have applied this technique to the production of neutron collimators for use in thermal and cold neutron scattering instrumentation directly out of boron carbide. We discuss the design and generation of these collimators. We also provide measurements at neutron scattering beamlines which serve to characterize the performance of these collimators. Additive manufacturing of parts using neutron absorbing material may also find applications in radiography and neutron moderation.

  6. Neutron irradiation effects on spark plasma sintered boron carbide

    International Nuclear Information System (INIS)

    Buyuk, B.; Cengiz, M.; Tugrul, A.; Ozer, S.; Yucel, O.; Goller, G.; Sahin, F.C.; Lastovski, S.B.

    2015-01-01

    In this study, spark plasma sintered boron carbide (B 4 C) was examined against neutrons. The specimens were ir-radiated by reactor neutrons (include both thermal and fast neutrons) up to fluence of 1.37x10 21 n*m -2 . Thermal and fast neutrons cause swelling by different interactions with boron ( 10 B) atoms in the related materials. X-Ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images were investigated for initial and irradiated samples. In addition, lattice parameters and unit cell volumes were calculated for the samples. The swelling percentages were calculated to be within a range of 0.49-3.80 % (average 1.70 %) for the outer surface of the materials for applied neutron irradiation doses. (authors)

  7. Superconductivity in heavily boron-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  8. Superconductivity in heavily boron-doped silicon carbide.

    Science.gov (United States)

    Kriener, Markus; Muranaka, Takahiro; Kato, Junya; Ren, Zhi-An; Akimitsu, Jun; Maeno, Yoshiteru

    2008-12-01

    The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  9. Synthesis of Nanocrystalline Boron Carbide by Direct Microwave Carbothermal Reduction of Boric Acid

    Directory of Open Access Journals (Sweden)

    Rodolfo F. K. Gunnewiek

    2017-01-01

    Full Text Available The excellent physical and chemical properties of boron carbide make it suitable for many applications. However, its synthesis requires a large amount of energy and is time-consuming. Microwave carbothermal reduction is a fast technique for producing well crystallized equiaxial boron carbide nanoparticles of about 50 nm and very few amounts of elongated nanoparticles were also synthesized. They presented an average length of 82 nm and a high aspect ratio (5.5. The total reaction time was only 20 minutes, which disfavor the growing process, leading to the synthesis of nanoparticles. Microwave-assisted synthesis leaded to producing boron-rich boron carbide. Increasing the forward power increases the boron content and enhances the efficiency of the reaction, resulting in better crystallized boron carbide.

  10. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together ...

  11. Boron carbide as a target for the SPES project

    International Nuclear Information System (INIS)

    Corradetti, S.; Carturan, S.; Biasetto, L.; Andrighetto, A.; Colombo, P.

    2013-01-01

    Within the framework of the research on targets for the SPES project (Selective Production of Exotic Species), porous boron carbide (B 4 C) based materials were produced from the carbothermal reduction of boric acid and two different carbon sources, i.e. citric acid and phenolic resin. Samples composition and microstructural morphology were studied by means of X-ray diffraction spectrometry (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM–EDS). The amount of total porosity was obtained from the comparison between the theoretical density and the measured bulk density. To better characterize the material microstructure, nitrogen physisorption measurements were performed in order to obtain data about the type of generated porosity and the specific surface area of the samples. Analysis performed on the samples show that after the final thermal treatment they are composed of boron carbide and residual free carbon, whose quantity is related to the processes involved in the two synthesis. Remarkable differences in the overall weight loss have been noticed for the two different reactions, resulting in different densities and pore size distributions, but in both cases similar values of specific surface area (SSA) were obtained.

  12. Frequency mixing in boron carbide laser ablation plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; Nalda, R. de, E-mail: r.nalda@iqfr.csic.es; Castillejo, M.

    2015-05-01

    Graphical abstract: - Highlights: • Two-color frequency mixing has been studied in a laser ablation boron carbide plasma. • A space- and time-resolved study mapped the nonlinear optical species in the plasma. • The nonlinear process maximizes when charge recombination is expected to be completed. • Neutral atoms and small molecules are the main nonlinear species in this medium. • Evidence points to six-wave mixing as the most likely process. - Abstract: Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B{sub 4}C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  13. Compatibility of heat resistant alloys with boron carbide, (2)

    International Nuclear Information System (INIS)

    Baba, Shin-ichi; Nagamatuya, Takaaki; Aoyama, Isao; Ito, Hisanori; Muraoka, Susumu.

    1982-12-01

    In the present design of the control rod for the experimental Very High Temperature Gas-cooled Reactor, sintered pellets of boron carbide mixed with graphite are used as a neutron absorber, which are clad with the sheath material of Hastelloy XR. The sintered pellet contains 30 wt% of natural boron. Chemical reaction occurs between the neutron absorber and the sheath material when they contact mutually at elevated temperature. The term called compatibility is defined as the ability of those materials to be used together without undesirable reaction, in this report. The experimental results on the compatibility of both materials are presented and are discussed on three subjects as (1) the comparison between Hastelloy X and Hastelloy XR, (2) the long term exposure, (3) the effect of the reaction barrier. No difference was observed between Hastelloy X and Hastelloy XR within the conditions of the experiment at 850 0 C, 950 0 C and 1050 0 C for each 100 h concerning the first subject. On the second, the penetration depth of 74 um and 156 um were observed on Hastelloy X reacted with sintered pellets (boron carbide and graphite) at 750 0 C for 3000 h and 850 0 C for 2000 h, respectively. On the third subject, Hastelloy X surfaces were coated with zirconia or alumina powder by plasma spraying process and by calorizing process in order to prevent the above mentioned reaction. These specimens were tested under two conditions: the one was a simple heat test of 1000 0 C - 100 h and the other was five thermal cycles of 1000 0 C - 20 h. The test results showed that no reaction occurred in the both alloys themselves and some of the coated layers were stripped or cracked. (author)

  14. Embedding Ba Monolayers and Bilayers in Boron Carbide Nanowires.

    Science.gov (United States)

    Yu, Zhiyang; Luo, Jian; Shi, Baiou; Zhao, Jiong; Harmer, Martin P; Zhu, Jing

    2015-11-26

    Aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) was employed to study the distribution of barium atoms on the surfaces and in the interiors of boron carbide based nanowires. Barium based dopants, which were used to control the crystal growth, adsorbed to the surfaces of the boron-rich crystals in the form of nanometer-thick surficial films (a type of surface complexion). During the crystal growth, these dopant-based surface complexions became embedded inside the single crystalline segments of fivefold boron-rich nanowires collectively, where they were converted to more ordered monolayer and bilayer modified complexions. Another form of bilayer complexion stabilized at stacking faults has also been identified. Numerous previous works suggested that dopants/impurities tended to segregate at the stacking faults or twinned boundaries. In contrast, our study revealed the previously-unrecognized possibility of incorporating dopants and impurities inside an otherwise perfect crystal without the association to any twin boundary or stacking fault. Moreover, we revealed the amount of barium dopants incorporated was non-equilibrium and far beyond the bulk solubility, which might lead to unique properties.

  15. Effect of boron carbide on primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-04-01

    Full Text Available In the paper results of the influence of boron carbide (B4C as inoculant of abrasion-resisting chromium cast iron (about 2,8% carbon and 18% chromium on primary crystallization researches are presented. Boron carbide dispersion was introduced at the bottom of pouring ladle before tap of liquid cast iron. In this investigations were used three different quantities of inoculant in amounts 0,1%; 0,2% and 0,3% with relation to bath weight. It has been demonstrated that such small additions of boron carbide change primary crystallization parameters, particularly temperature characteristic of process, their time and kinetics.

  16. Priority compositions of boron carbide crystals obtained by self-propagating high-temperature synthesis

    Science.gov (United States)

    Ponomarev, V. I.; Konovalikhin, S. V.; Kovalev, I. D.; Vershinnikov, V. I.

    2015-09-01

    Splitting of reflections from boron carbide has been found for the first time by an X-ray diffraction study of polycrystalline mixture of boron carbide В15- х С х , (1.5 ≤ x ≤ 3) and its magnesium derivative C4B25Mg1.42. An analysis of reflection profiles shows that this splitting is due to the presence of boron carbide phases of different compositions in the sample, which are formed during crystal growth. The composition changes from В12.9С2.1 to В12.4С2.6.

  17. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Sørensen, P. G.; Björkdahl, O.

    2006-01-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using...

  18. Compatibility of heat resistant alloys with boron carbide, 5

    International Nuclear Information System (INIS)

    Baba, Shinichi; Kurasawa, Toshimasa; Endow, Taichi; Someya, Hiroyuki; Tanaka, Isao.

    1986-08-01

    This paper includes an experimental result of out-of-pile compatibility and capsule design for irradiation test in Japan Materials Testing Reactor (JMTR). The compatibility between sheath material and neutron absorber materials for control rod devices (CRD) was examined for potential use in a very high temperature reactor (VHTR) which is under development at JAERI. The purpose of the compatibility tests are preliminary evaluation of safety prior to irradiation tests. Preliminary compatibility evaluation was concerned with three items as follows : 1) Lithium effects on the penetrating reaction of Incoloy 800H alloy in contact with a mixture of boronated graphite and lithium hydroxide powders, 2) Short term tensile properties of Incoloy 800H and Hastelloy XR alloy reacted with boronated graphite and fracture mode analysis, 3) Reaction behavior of both alloys under transient power conditions of a VHTR. It was clear that the reaction rate constant of the Incoloy 800H alloy was accelerated by doping lithium hydroxide into the boron carbide and graphite powder. The mechanical properties of Incoloy 800H and Hastelloy XR alloy reacted with boronated graphite were decreased. Ultimate tensile strength and tensile ductilities at temperatures over 850 deg C were reduced, but there was no change in the proof (yield) stress. Both alloys exhibited a brittle intergranular fracture mode during transient power conditions of a VHTR and also exhibited severe penetration. Irradiation capsules for compatibility test were designed to simulate three irradiation conditions of VHTR: 1) steady state for VHTR, 2) Transient power condition, 3) Service limited life of CRD. Capsule irradiation experiments have been carried out satisfactorily and thus confirm the validity of the capsule design procedure. (author)

  19. Photoluminescence and Raman spectroscopy characterization of boron- and nitrogen-doped 6H silicon carbide

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Liu, Chuan

    2011-01-01

    Boron - and nitrogen-doped 6H silicon carbide epilayers grown on low off-axis 6H silicon carbide substrates have been characterized by photoluminescence and Raman spectroscopy. Combined with secondary ion mass spectrometry results, preferable doping type and optimized concentration could be propo......Boron - and nitrogen-doped 6H silicon carbide epilayers grown on low off-axis 6H silicon carbide substrates have been characterized by photoluminescence and Raman spectroscopy. Combined with secondary ion mass spectrometry results, preferable doping type and optimized concentration could...

  20. Novel boron channel-based structure of boron carbide at high pressures

    Science.gov (United States)

    Zhang, Xinxin; Zhao, Yu; Zhang, Miao; Liu, Hanyu; Yao, Yansun; Cheng, Taimin; Chen, Hui

    2017-11-01

    Boron carbide (B4C) is one of the hardest materials known to date. The extreme hardness of B4C arises from architecturally efficient B12 or B11C icosahedrons and strong inter-icosahedral B-C bonding. As an excellent material for use in ballistic armor, the mechanic limit of B4C and possible phase transitions under extreme stress conditions are of great interest. Here we systematically explored the post-icosahedral solid structures of B4C under high pressure, using an unbiased structure search method. A new structure composed of extended framework of B and zigzag chains of C is predicted to be stable above 96 GPa. The new structure was predicted to have a high Vickers hardness of 55 GPa and simultaneously to retain a metallic ground state. The exceptional mechanical properties found in this structure are attributed to strong sp 3 covalent network formed under extreme pressure conditions. The predicted structure represents a new type of superhard boron carbides that form under high pressure without the presence of boron icosahedrons, which encourages experimental exploration in this direction.

  1. Dynamical conductivity of boron carbide: heavily damped plasma vibrations.

    Science.gov (United States)

    Werheit, Helmut; Gerlach, Guido

    2014-10-22

    The FIR reflectivity spectra of boron carbide, measured down to ω~10 cm(-1) between 100 and 800 K, are essentially determined by heavily damped plasma vibrations. The spectra are fitted applying the classical Drude-Lorentz theory of free carriers. The fitting Parameter Π=ωp/ωτ yields the carrier densities, which are immediately correlated with the concentration of structural defects in the homogeneity range. This correlation is proved for band-type and hopping conductivity. The effective mass of free holes in the valence band is estimated at m*/me~2.5. The mean free path of the free holes has the order of the cell parameters.

  2. Microalloying Boron Carbide with Silicon to Achieve Dramatically Improved Ductility.

    Science.gov (United States)

    An, Qi; Goddard, William A

    2014-12-04

    Boron carbide (B4C) is a hard material whose value for extended engineering applications such as body armor; is limited by its brittleness under impact. To improve the ductility while retaining hardness, we used density functional theory to examine modifying B4C ductility through microalloying. We found that replacing the CBC chain in B4C with Si-Si, denoted as (B11Cp)-Si2, dramatically improves the ductility, allowing a continuous shear to a large strain of 0.802 (about twice of B4C failure strain) without brittle failure. Moreover, (B11C)-Si2 retains low density and high hardness. This ductility improvement arises because the Si-Si linkages enable the icosahedra accommodate additional shear by rotating instead of breaking bonds.

  3. Mode Grüneisen parameters of boron carbide

    Science.gov (United States)

    Werheit, Helmut; Manghnani, Murli H.; Kuhlmann, Udo; Hushur, Anwar; Shalamberidze, Sulkhan

    2017-10-01

    IR- and Raman-active phonons of boron carbide and the mode Grüneisen parameters γ related are studied concerning their dependence on chemical composition, temperatures between 30 and 800 K and pressures up to ∼70 GPa. Most bulk phonons yield γ between +1.5 and - 1.5: those related to icosahedra yield γ = 0.8(3). Surface phonons are distinguished by considerably higher γ. Negative γ of chain bending modes supports the assumption that the chain center buckles out under pressure. Some striking specific mode Grüneisen parameters are explained. Pressure-dependent bond lengths suggest the reversible high-pressure phase transition to be second order.

  4. Directional amorphization of boron carbide subjected to laser shock compression.

    Science.gov (United States)

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A; LaSalvia, Jerry C; Wehrenberg, Christopher E; Behler, Kristopher D; Meyers, Marc A

    2016-10-25

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4 C.

  5. Size-scaling of tensile failure stress in boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Kirkland, Timothy Philip [ORNL; Strong, Kevin T [ORNL; Jadaan, Osama M. [University of Wisconsin, Platteville; Thompson, G. A. [U.S. Army Dental and Trauma Research Detachment, Greak Lakes

    2010-01-01

    Weibull strength-size-scaling in a rotary-ground, hot-pressed boron carbide is described when strength test coupons sampled effective areas from the very small (~ 0.001 square millimeters) to the very large (~ 40,000 square millimeters). Equibiaxial flexure and Hertzian testing were used for the strength testing. Characteristic strengths for several different specimen geometries are analyzed as a function of effective area. Characteristic strength was found to substantially increase with decreased effective area, and exhibited a bilinear relationship. Machining damage limited strength as measured with equibiaxial flexure testing for effective areas greater than ~ 1 mm2 and microstructural-scale flaws limited strength for effective areas less than 0.1 mm2 for the Hertzian testing. The selections of a ceramic strength to account for ballistically-induced tile deflection and to account for expanding cavity modeling are considered in context with the measured strength-size-scaling.

  6. Frequency mixing in boron carbide laser ablation plasmas

    Science.gov (United States)

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; de Nalda, R.; Castillejo, M.

    2015-05-01

    Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B4C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  7. Directional amorphization of boron carbide subjected to laser shock compression

    Science.gov (United States)

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.

    2016-10-01

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45˜50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C.

  8. Synthesis of boron carbide nano particles using polyvinyl alcohol and boric acid

    Directory of Open Access Journals (Sweden)

    Amir Fathi

    2012-03-01

    Full Text Available In this study boron carbide nano particles were synthesized using polyvinyl alcohol and boric acid. First, initial samples with molar ratio of PVA : H3BO3 = 2.7:2.2 were prepared. Next, samples were pyrolyzed at 600, 700 and 800°C followed by heat treatment at 1400, 1500 and 1600°C. FTIR analysis was implemented before and after pyrolysis in order to study the reaction pathway. XRD technique was used to study the composition of produced specimens of boron carbide. Moreover, SEM and PSA analysis were also carried out to study the particle size and morphology of synthesized boron carbide. Finally, according to implemented tests and analyses, carbon-free boron carbide nano particles with an average size of 81 nm and mainly spherical morphology were successfully produced via this method.

  9. The effects of stoichiometry on the mechanical properties of icosahedral boron carbide under loading.

    Science.gov (United States)

    Taylor, DeCarlos E; McCauley, James W; Wright, T W

    2012-12-19

    The effects of stoichiometry on the atomic structure and the related mechanical properties of boron carbide (B(4)C) have been studied using density functional theory and quantum molecular dynamics simulations. Computational cells of boron carbide containing up to 960 atoms and spanning compositions ranging from 6.7% to 26.7% carbon were used to determine the effects of stoichiometry on the atomic structure, elastic properties, and stress-strain response as a function of hydrostatic, uniaxial, and shear loading paths. It was found that different stoichiometries, as well as variable atomic arrangements within a fixed stoichiometry, can have a significant impact on the yield stress of boron carbide when compressed uniaxially (by as much as 70% in some cases); the significantly reduced strength of boron carbide under shear loading is also demonstrated.

  10. Investigations on the conditions for obtaining high density boron carbide by sintering

    International Nuclear Information System (INIS)

    Kislyj, P.S.; Grabtschuk, B.L.

    1975-01-01

    The results of investigations on kinetics of condensation and mechanisms of mass transfer in the process of sintering of technical, chemically pure and synthesized boron carbide are generalized. Laws on boron carbide densification depending upon temperature, time of isothermic endurance, thermal speed, size of powder particles and variable composition in homogeneity are determined. From the results obtained on condensation kinetics and special experiments on studying the changes in properties after heating under different conditions, the role of dislocation and diffusion processes in mass transfer during boron carbide sintering is exposed. The properties of sintered boron carbide are 15-20% lower than the properties of high-pressed one, that is conditioned by intercrystallite distortion of the first one and transcrystallite of the second one

  11. Phase diagram of boron carbide with variable carbon composition

    Science.gov (United States)

    Yao, Sanxi; Gao, Qin; Widom, Michael

    2017-02-01

    Boron carbide exhibits intrinsic substitutional disorder over a broad composition range. The structure consists of 12-atom icosahedra placed at the vertices of a rhombohedral lattice, together with a 3-atom chain along the threefold axis. In the high-carbon limit, one or two carbon atoms can replace boron atoms on the icosahedra while the chains are primarily of type C-B-C. We fit an interatomic pair interaction model to density-functional-theory total energies to investigate the substitutional carbon disorder. Monte Carlo simulations with sampling improved by replica exchange and augmented by two-dimensional multiple histogram analysis predict three phases. The low-temperature, high-carbon-composition monoclinic C m structure disorders through a pair of phase transitions, first via an Ising-like transition to a monoclinic centrosymmetric state with space group C 2 /m , then via a first-order three-state Potts-like transition to the experimentally observed rhombohedral R 3 ¯m symmetry.

  12. Standard specification for nuclear-grade boron carbide powder

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This specification defines the chemical and physical requirements for boron carbide powder intended for a variety of nuclear applications. Because each application has a different need for impurity and boron requirements, three different chemical compositions of powder are specified. In using this specification, it is necessary to dictate which type of powder is intended to be used. In general, the intended applications for the various powder types are as follows: 1.1.1 Type 1—For use as particulate material in nuclear reactor core applications. 1.1.2 Type 2—Powder that will be further processed into a fabricated shape for use in a nuclear reactor core or used in non-core applications when the powder directly or indirectly may cause adverse effects on structural components, such as halide stress corrosion of stainless steel. 1.1.3 Type 3—Powder that will be used for non-core applications or special in-core applications. 1.2 The values stated in SI units are to be regarded as standard. No other ...

  13. Boron carbide-carbon composites and composites for cryogenic applications

    International Nuclear Information System (INIS)

    Sheinberg, H.

    1979-01-01

    Because of its neutronic properties, high hardness, and high melting temperature, boron carbide (B 4 C) is widely used at the Los Alamos Scientific Laboratory. However because of its hardness and mode of manufacture, it is expensive to machine finish to tight dimensional specifictions. For some neutronic applications, a density considerably below the theoretical 2.52 Mg/m 3 was acceptable, and this relaxation in density specification permitted addition of carbon as a second phase to reduce machining costs. We conducted an experimental program to prepare 50.8-mm-diam by 34.8-mm-thick cylinders of B 4 C and B 4 C-C composites with concentrations of carbon varying from 5.5 to 30 volume percent. Additionally we used three forms of carbon, natural flake graphite, synthetic graphite flour, and a fine furnace black as the source of the second phase. We determined the sound velocity, compressive strength, coefficient of thermal expansion, electrical resistivity, and microstructure as functions of composition. Additionally, an enriched boron ( 10 B)-carbon composite was studied as an alternate material

  14. Study and optimization of the carbothermic reduction process for obtaining boron carbide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de.

    1989-01-01

    Boron carbide - B sub(4)C - is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Moreover, its high neutron capture cross section makes it suitable for application as neutron absorber in nuclear technology. The process for obtaining carbothermally derived boron carbide has been studied in two steps: firstly, the parameters of the boric acid → boron oxide dehydration reaction have been defined; secondly, the optimization of the carbothermal reduction reaction using boron oxide has been undertaken looking for boron carbide having low level of free carbon. The starting materials as well as the main products have been studied by chemical and spectrographic analyses, X-ray diffractometry, granulometric classification and scanning electron microscopy. The optimization of the carbothermic reduction process allowed for the development and set up of a fabrication procedure yielding high quality B sub(4) C powders, starting from low cost and easily available (in the Brazilian market) raw materials. (author)

  15. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles.

    Science.gov (United States)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-02

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  16. Controlling the Morphology and Oxidation Resistance of Boron Carbide Synthesized Via Carbothermic Reduction Reaction

    Science.gov (United States)

    Ahmed, Yasser M. Z.; El-Sheikh, Said M.; Ewais, Emad M. M.; Abd-Allah, Asmaa A.; Sayed, Said A.

    2017-03-01

    Boron carbide powder was synthesized from boric acid and lactose mixtures via easy procedure. Boric acid and lactose solution mixtures were roasted in stainless steel pot at 280 °C for 24 h. Boron carbide was obtained by heating the roasted samples under flowing of industrial argon gas at 1500 °C for 3 h. The amount of borate ester compound in the roasted samples was highly influenced by the boron/carbon ratio in the starting mixtures and plays a versatile role in the produced boron carbide. The high-purity boron carbide powder was produced with a sample composed of lowest boron/carbon ratio of 1:1 without calcination step. Particle morphology was changed from nano-needles like structure of 8-10 nm size with highest carbon ratio mixture to spherical shape of >150 nm size with lowest one. The oxidation resistance performance of boron carbide is highly dependent on the morphology and grain size of the synthesized powder.

  17. Effect of boron on the microstructure and mechanical properties of carbidic austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Peng Yuncheng; Jin Huijin [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China); Liu Jinhai, E-mail: pyc_wanhj@163.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China); Li Guolu [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China)

    2011-11-25

    Highlights: {yields} Boron are applied to carbidic austempered ductile iron (CADI). {yields} Boron microalloying CADI is a new high hardenability of wear-resistant cast iron. {yields} Addition of boron to CADI significantly improves hardenability. {yields} Effect of boron on the CADI grinding ball were investigated. {yields} Optimum property is obtained when boron content at 0.03 wt%. - Abstract: Carbidic austempered ductile iron (CADI) castings provide a unique combination of high hardness and toughness coupled with superior wear resistance properties, but their hardenability restricts their range of applications. The purpose of this study was to investigate the influence of boron on the microstructure and mechanical properties of CADI. The experimental results indicate that the CADI comprises graphite nodules, which are dispersive boron-carbides that are distributed in the form of strips, and the matrix is a typical ausferritic matrix. Microscopic amounts of boron can improve the hardenability of CADI, but higher boron content reduces the hardenability and toughness of CADI. The results are discussed in the context of the influence of boron content on the microstructure and mechanical properties of grinding balls.

  18. Semiconducting boron carbide thin films: Structure, processing, and diode applications

    Science.gov (United States)

    Bao, Ruqiang

    The high energy density and long lifetime of betavoltaic devices make them very useful to provide the power for applications ranging from implantable cardiac pacemakers to deep space satellites and remote sensors. However, when made with conventional semiconductors, betavoltaic devices tend to suffer rapid degradation as a result of radiation damage. It has been suggested that the degradation problem could potentially be alleviated by replacing conventional semiconductors with a radiation hard semiconducting material like icosahedral boron carbide. The goal of my dissertation was to better understand the fundamental properties and structure of boron carbide thin films and to explore the processes to fabricate boron carbide based devices for voltaic applications. A pulsed laser deposition system and a radio frequency (RF) magnetron sputtering deposition system were designed and built to achieve the goals. After comparing the experimental results obtained using these two techniques, it was concluded that RF magnetron sputtering deposition technique is a good method to make B4C boron carbide thin films to fabricate repeatable and reproducible voltaic devices. The B4C thin films deposited by RF magnetron sputtering require in situ dry pre-cleaning to make ohmic contacts for B4C thin films to fabricate the devices. By adding another RF sputtering to pre-clean the substrate and thin films, a process to fabricate B4C / n-Si heterojunctions has been established. In addition, a low energy electron accelerator (LEEA) was built to mimic beta particles emitted from Pm147 and used to characterize the betavoltaic performance of betavoltaic devices as a function of beta energy and beta flux as well as do accelerated lifetime testing for betavoltaic devices. The energy range of LEEA is 20 - 250 keV with the current from several nA to 50 muA. High efficiency Si solar cells were used to demonstrate the powerful capabilities of LEEA, i.e., the characterization of betavoltaic

  19. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Quintas, Ignacio; Oujja, Mohamed; Sanz, Mikel; Benitez-Cañete, Antonio [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Chater, Richard J. [Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cañamares, Maria Vega [Instituto de Estructura de la Materia, CSIC, Serrano 119, 28006 Madrid (Spain); Marco, José F. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Castillejo, Marta, E-mail: marta.castllejo@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2015-02-15

    Highlights: • Micrometric rods obtained by ns pulsed laser deposition of boron carbide at 1064 and 266 nm. • At 1064 nm microrods display crystalline polyhedral shape with sharp edges and flat sides. • Microrods consist of a mixture of boron, boron oxide, boron carbide and aliphatic hydrocarbons. - Abstract: Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved.

  20. Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic

    Science.gov (United States)

    2014-08-01

    Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic by John D Clayton ARL-RP...Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic John D Clayton Weapons and Materials Research Directorate, ARL...and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  1. Influence of Carbon Content on the Crystallographic Structure of Boron Carbide Films

    OpenAIRE

    Conde, O.; Silvestre, A. J.; Oliveira, J. C.

    2002-01-01

    Boron carbide thin films were synthesised by laser-assisted chemical vapour deposition (LCVD), using a CO2 laser beam and boron trichloride and methane as precursors. Boron and carbon contents were measured by electron probe microanalysis (EPMA). Microstructural analysis was carried out by Raman microspectroscopy and glancing incidence X-ray diffraction (GIXRD) was used to study the crystallographic structure and to determine the lattice parameters of the polycrystalline films. The rhombohedr...

  2. Dynamic modulus and damping of boron, silicon carbide, and alumina fibers

    Science.gov (United States)

    Dicarlo, J. A.; Williams, W.

    1980-01-01

    The dynamic modulus and damping capacity for boron, silicon carbide, and silicon carbide-coated boron fibers were measured from -190 to 800 C. The single fiber vibration test also allowed measurement of transverse thermal conductivity for the silicon carbide fibers. Temperature-dependent damping capacity data for alumina fibers were calculated from axial damping results for alumina-aluminum composites. The dynamic fiber data indicate essentially elastic behavior for both the silicon carbide and alumina fibers. In contrast, the boron-based fibers are strongly anelastic, displaying frequency-dependent moduli and very high microstructural damping. The single fiber damping results were compared with composite damping data in order to investigate the practical and basic effects of employing the four fiber types as reinforcement for aluminum and titanium matrices.

  3. Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Björkdahl, O; Sørensen, P G; Hansen, T; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy.

  4. Lattice dynamics of {alpha} boron and of boron carbide; Proprietes vibrationnelles du bore {alpha} et du carbure de bore

    Energy Technology Data Exchange (ETDEWEB)

    Vast, N

    1999-07-01

    The atomic structure and the lattice dynamics of {alpha} boron and of B{sub 4}C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In {alpha} boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B{sub 4}C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  5. PROCESSING AND PROPERTIES OF BORON CARBIDE WITH HAFNIUM DIBORIDE ADDITION

    Directory of Open Access Journals (Sweden)

    K. Sairam

    2016-10-01

    Full Text Available This article presents the results of investigations on densification, mechanical and electrical properties of boron carbide (B₄C with the addition of HfB₂. High dense B₄C-HfB₂ (2.5-30 wt.% composites were prepared by hot pressing at a temperature of 2173 K with 40 MPa mechanical pressure. The B₄C-HfB₂ composite mixture exhibited a better sintering aptitude compared with monolithic B₄C. Hardness and elastic modulus of B₄C-HfB₂ composites were measured to be in the range 36-28GPa and 465-525GPa respectively. Indentation fracture toughness of B₄C increased with HfB₂ content and obtained a maximum of 7 MPa.m 1/2 at 30 wt.% HfB₂, which is ∼3 times higher than the monolithic B₄C. Crack deflection was identified to be the major toughening mechanism in the developed composite. B₄C-10wt.% HfB₂ composite exhibited a maximum electrical conductivity of 7144 Ω-1m-1 which is 26% higher than the conductivity of monolithic B₄C (5639 Ω-1m-1 at 1373 K.

  6. Enhanced Sintering of Boron Carbide-Silicon Composites by Silicon

    Science.gov (United States)

    Zeng, Xiaojun; Liu, Weiliang

    2016-11-01

    Boron carbide (B4C)-silicon (Si) composites have been prepared by aqueous tape casting, laminating, and spark plasma sintering (SPS). The influences of silicon (Si) content on the phases, microstructure, sintering properties, and mechanical properties of the obtained B4C-Si composites are studied. The results indicate that the addition of Si powder can act as a sintering aid and contribute to the sintering densification. The addition of Si powder can also act as a second phase and contribute to the toughening for composites. The relative density of B4C-Si composites samples with adding 10 wt.% Si powder prepared by SPS at 1600 °C and 50 MPa for 8 min is up to 98.3%. The bending strength, fracture toughness, and Vickers hardness of the sintered samples are 518.5 MPa, 5.87 MPa m1/2, and 38.9 GPa, respectively. The testing temperature-dependent high-temperature bending strength and fracture toughness can reach a maximum value at 1350 °C. The B4C-Si composites prepared at 1600, 1650, and 1700 °C have good high-temperature mechanical properties. This paper provides a facile low-temperature sintering route for B4C ceramics with improved properties.

  7. Amorphisation of boron carbide under slow heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, D., E-mail: Dominique.gosset@cea.fr [CEA Saclay, DEN, DANS, DMN, SRMA, LA2M, Université Paris-Saclay, 91191, Gif/Yvette (France); Miro, S. [CEA Saclay, DEN, DANS, DMN, SRMP, Laboratoire JANNUS, Université Paris-Saclay, 91191, Gif/Yvette (France); Doriot, S. [CEA Saclay, DEN, DANS, DMN, SRMA, LA2M, Université Paris-Saclay, 91191, Gif/Yvette (France); Moncoffre, N. [CNRS/IN2P3/IPNL, 69622, Villeurbanne (France)

    2016-08-01

    Boron carbide B{sub 4}C is widely used as a neutron absorber in nuclear plants. Most of the post-irradiation examinations have shown that the structure of the material remains crystalline, in spite of very high atomic displacement rates. Here, we have irradiated B{sub 4}C samples with 4 MeV Au ions with different fluences at room temperature. Transmission electron microscopy (TEM) and Raman spectroscopy have been performed. The Raman analyses show a high structural disorder at low fluence, around 10{sup −2} displacements per atoms (dpa). However, the TEM observations show that the material remains crystalline up to a few dpa. At high fluence, small amorphous areas a few nanometers large appear in the damaged zone but the long range order is preserved. Moreover, the size and density of the amorphous zones do not significantly grow when the damage increases. On the other hand, full amorphisation is observed in the implanted zone at a Au concentration of about 0.0005. It can be inferred from those results that short range and long range damages arise at highly different fluences, that heavy ions implantation has drastic effects on the structure stability and that in this material self-healing mechanisms are active in the damaged zone.

  8. Measurements and simulations of boron carbide as degrader material for proton therapy.

    Science.gov (United States)

    Gerbershagen, Alexander; Baumgarten, Christian; Kiselev, Daniela; van der Meer, Robert; Risters, Yannic; Schippers, Marco

    2016-07-21

    We report on test measurements using boron carbide (B4C) as degrader material in comparison with the conventional graphite, which is currently used in many proton therapy degraders. Boron carbide is a material of lower average atomic weight and higher density than graphite. Calculations predict that, compared to graphite, the use of boron carbide results in a lower emittance behind the degrader due to the shorter degrader length. Downstream of the acceptance defining collimation system we expect a higher beam transmission, especially at low beam energies. This is of great interest in proton therapy applications as it allows either a reduction of the beam intensity extracted from the cyclotron leading to lower activation or a reduction of the treatment time. This paper summarizes the results of simulations and experiments carried out at the PROSCAN facility at the Paul Scherrer Institute(1). The simulations predict an increase in the transmitted beam current after the collimation system of approx. 30.5% for beam degradation from 250 to 84 MeV for a boron carbide degrader compared to graphite. The experiment carried out with a boron carbide block reducing the energy to 84 MeV yielded a transmission improvement of 37% compared with the graphite degrader set to that energy.

  9. Measurements and simulations of boron carbide as degrader material for proton therapy

    Science.gov (United States)

    Gerbershagen, Alexander; Baumgarten, Christian; Kiselev, Daniela; van der Meer, Robert; Risters, Yannic; Schippers, Marco

    2016-07-01

    We report on test measurements using boron carbide (B4C) as degrader material in comparison with the conventional graphite, which is currently used in many proton therapy degraders. Boron carbide is a material of lower average atomic weight and higher density than graphite. Calculations predict that, compared to graphite, the use of boron carbide results in a lower emittance behind the degrader due to the shorter degrader length. Downstream of the acceptance defining collimation system we expect a higher beam transmission, especially at low beam energies. This is of great interest in proton therapy applications as it allows either a reduction of the beam intensity extracted from the cyclotron leading to lower activation or a reduction of the treatment time. This paper summarizes the results of simulations and experiments carried out at the PROSCAN facility at the Paul Scherrer Institute1. The simulations predict an increase in the transmitted beam current after the collimation system of approx. 30.5% for beam degradation from 250 to 84 MeV for a boron carbide degrader compared to graphite. The experiment carried out with a boron carbide block reducing the energy to 84 MeV yielded a transmission improvement of 37% compared with the graphite degrader set to that energy.

  10. The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach

    International Nuclear Information System (INIS)

    Sabirianov, Ildar F.; Brand, Jennifer I.; Fairchild, Robert W.

    2008-01-01

    Boron carbide diode detectors, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theoretical expectations. The performance of the all boron carbide neutron detector differs, as expected, from devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector). Diodes were fabricated from natural abundance boron (20% 10 B and 80% 11 B.) directly on the metal substrates and metal contacts applied to the films as grown. The total boron depth was on the order of 2 microns. This is clearly not a conversion-layer configuration. The diodes were exposed to thermal neutrons generated from a paraffin moderated plutonium-beryllium source in moderated and un-moderated, as well as shielded and unshielded experimental configurations, where the expected energy peaks at at 2.31 MeV and 2.8 MeV were clearly observed, albeit with some incomplete charge collection typical of thinner diode structures. The results are compared with other boron based thin film detectors and literature models. (authors)

  11. Boron carbide: hydrocode simulation of plate-impact experiments with an improved failure model

    Science.gov (United States)

    Dyachkov, Sergey; Parshikov, Anatoly; Zhakhovsky, Vasily

    2017-06-01

    Unique strength properties of boron carbide make it useful for numerous applications. However, shock compression accompanied by high strains rates involves material into the process of failure what significantly reduces its strength. In this research we compare simulation results for two sets of plate-impact experiments where samples were manufactured using different technology. Simulations are performed using our 3D SPH hydrocode and the improved Johnson-Holmquist failure model. Complex wave profiles obtained via VISAR are properly reproduced in our modeling. However, it was found that the failed boron carbide strength have a strong effect on the wave profiles and should be different for the each set of experiments. Moreover, heterogeneous distribution of failed boron carbide is shown to affect wave propagation to the rear surface of sample what results in spatial velocity profile variations obtained via line-VISAR system.

  12. Superconductivity in boron carbide? Clarification by low-temperature MIR/FIR spectra.

    Science.gov (United States)

    Werheit, H; Kuhlmann, U

    2011-11-02

    The electronic structure and phonon density of B(13)B(2) boron carbide calculated by Calandra et al (2004 Phys. Rev. B 69 224505) defines this compound as metallic, and the authors predict superconductivity with T(C)s up to 36.7 K. Their results are affected by the same deficiencies as former band structure calculations on boron carbides based on hypothetical crystal structures deviating significantly from the real ones. We present optical mid IR/far IR (MIR/FIR) spectra of boron carbide with compositions between B(4.3)C and B(10.37)C, evidencing semiconducting behaviour at least down to 30 K. There is no indication of superconductivity. The spectra yield new information on numerous localized gap states close to the valence band edge.

  13. Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites

    International Nuclear Information System (INIS)

    Vijaya Ramnath, B.; Elanchezhian, C.; Jaivignesh, M.; Rajesh, S.; Parswajinan, C.; Siddique Ahmed Ghias, A.

    2014-01-01

    Highlights: • Fabrication of MMC with aluminium alloy–alumina–boron carbide is done. • Different proportions of reinforcements are added. • The effects of varying proportions are studied. • Investigation on mechanical properties above composites is performed. • Failure morphology analysis is done using SEM. - Abstract: This paper deals with the fabrication and mechanical investigation of aluminium alloy, alumina (Al 2 O 3 ) and boron carbide metal matrix composites. Aluminium is the matrix metal having properties like light weight, high strength and ease of machinability. Alumina which has better wear resistance, high strength, hardness and boron carbide which has excellent hardness and fracture toughness are added as reinforcements. Here, the fabrication is done by stir casting which involves mixing the required quantities of additives into stirred molten aluminium. After solidification, the samples are prepared and tested to find the various mechanical properties like tensile, flexural, impact and hardness. The internal structure of the composite is observed using Scanning Electron Microscope (SEM)

  14. Raman spectroscopy study of metal-containing boron carbide-based ceramics

    Science.gov (United States)

    Radev, Dimitar D.; Mihailova, Boriana; Konstantinov, Ludmil

    2002-01-01

    Dense boron carbide-based materials, B 4C-Me xB y (Me = V, W), are obtained by pressureless sintering in the presence of metal carbides. The sintered B 4CVB 2 and B 4CW 2B 5 ceramics, with various contents of the metal borides, are investigated by powder X-ray diffraction and Raman spectroscopy. The results obtained show that the non-homogeneity of the ceramic samples increases with increasing the content of metal and, additionally, metal cations replace a part of boron atoms in icosahedra positions in the B 4C network, thus stiffening the B 4C lattice and improving the micro-hardness and the wear resistance of the boron carbide ceramics.

  15. Ultrafine-grained Aluminm and Boron Carbide Metal Matrix Composites

    Science.gov (United States)

    Vogt, Rustin

    Cryomilling is a processing technique used to generate homogenously distributed boron carbide (B4C) particulate reinforcement within an ultrafine-grained aluminum matrix. The motivation behind characterizing a composite consisting of cryomilled aluminum B4C metal matrix composite is to design and develop a high-strength, lightweight aluminum composite for structural and high strain rate applications. Cryomilled Al 5083 and B4C powders were synthesized into bulk composite by various thermomechanical processing methods to form plate and extruded geometries. The effects of processing method on microstructure and mechanical behavior for the final consolidated composite were investigated. Cryomilling for extended periods of time in liquid nitrogen has shown to increase strength and thermal stability. The effects associated with cryomilling with stearic acid additions (as a process-control agent) on the degassing behavior of Al powders is investigated and results show that the liberation of compounds associated with stearic acid were suppressed in cryomilled Al powders. The effect of thermal expansion mismatch strain on strengthening due to geometrically necessary dislocations resulting from quenching is investigated and found not to occur in bulk cryomilled Al 5083 and B 4C composites. Previous cryomilled Al 5083 and B4C composites have exhibited ultrahigh strength associated with considerable strain-to-failure (>14 pct.) at high strain rates (>103/s) during mechanical testing, but only limited strain-to-failure (˜0.75 pct.) at quasi-static strain rates (10-3/s). The increased strain to failure at high strain rates is attributed to micro-flaw developments, including kinking, extensive axial splitting, and grain growth were observed after high strain rate deformation, and the significance of these mechanisms is considered.

  16. A thermo dynamical model for the shape and size effect on melting of boron carbide nanoparticles.

    Science.gov (United States)

    Antoniammal, Paneerselvam; Arivuoli, Dakshanamoorthy

    2012-02-01

    The size and shape dependence of the melting temperature of Boron Carbide (B4C) nanoparticles has been investigated with a numerical thermo dynamical approach. The problem considered in this paper is the inward melting of nanoparticles with spherical and cylindrical geometry. The cylindrical Boron Carbide (B4C) nanoparticles, whose melting point has been reported to decrease with decreasing particle radius, become larger than spherical shaped nanoparticle. Comparative investigation of the size dependence of the melting temperature with respect to the two shapes is also been done. The melting temperature obtained in the present study is approximately a dealing function of radius, in a good agreement with prediction of thermo dynamical model.

  17. Neutron Detection using Amorphous Boron-Carbide Hetero-Junction Diodes

    Science.gov (United States)

    2012-03-22

    states. Special nuclear material as defined by Title I of the Atomic Energy Act of 1954 includes Pu, 233U, and uranium enriched in the isotopes 233U...NEUTRON DETECTION USING AMORPHOUS BORON -CARBIDE HETERO-JUNCTION DIODES THESIS Thomas P. McQuary, Major, USA AFIT/NUCL/ENP/12-M06 DEPARTMENT OF THE...is not subject to copyright protection in the United States. AFIT/NUCL/ENP/12-M06 NEUTRON DETECTION USING AMORPHOUS BORON -CARBIDE HETERO-JUNCTION

  18. Elastic properties of boron carbide films via surface acoustic waves measured by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Salas, E.; Jimenez-Villacorta, F.; Jimenez Rioboo, R.J.; Prieto, C. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Sanchez-Marcos, J. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Departamento de Quimica-Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Munoz-Martin, A.; Prieto, J.E.; Joco, V. [Centro de Microanalisis de Materiales, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2013-03-15

    Surface acoustic wave (SAW) velocity has been determined by high resolution Brillouin light scattering to study the mechano-elastic properties of boron carbide films prepared by radio frequency (RF) sputtering. The comparison of experimentally observed elastic behaviour with simulations made by considering film composition obtained from elastic recoil detection analysis-time of flight (ERDA-ToF) spectroscopy allows establishing that elastic properties are determined by that of crystalline boron carbide with a lessening of the SAW velocity values due to surface oxidation. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Method of accurate thickness measurement of boron carbide coating on copper foil

    Science.gov (United States)

    Lacy, Jeffrey L.; Regmi, Murari

    2017-11-07

    A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.

  20. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    Science.gov (United States)

    Lopez-Quintas, Ignacio; Oujja, Mohamed; Sanz, Mikel; Benitez-Cañete, Antonio; Chater, Richard J.; Cañamares, Maria Vega; Marco, José F.; Castillejo, Marta

    2015-02-01

    Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved.

  1. Atomic structure and vibrational properties of icosahedral B$_4$C boron carbide

    OpenAIRE

    Lazzari, R.; Vast, N.; Besson, J. M.; Baroni, S.; Corso, A. Dal

    1999-01-01

    The atomic structure of icosahedral B$_4$C boron carbide is determined by comparing existing infra-red absorption and Raman diffusion measurements with the predictions of accurate {\\it ab initio} lattice-dynamical calculations performed for different structural models. This allows us to unambiguously determine the location of the carbon atom within the boron icosahedron, a task presently beyond X-ray and neutron diffraction ability. By examining the inter- and intra-icosahedral contributions ...

  2. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    Science.gov (United States)

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  3. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Daniels, B.K.; Brown, D.W.; Kimock, F.M.

    1997-01-01

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  4. The mean grain size determination of boron carbide (B4C)-aluminium (Al) and boron carbide (B4C)-nickel (Ni) composites by ultrasonic velocity technique

    International Nuclear Information System (INIS)

    Unal, Ridvan; Sarpuen, Ismail H.; Yalim, H. Ali; Erol, Ayhan; Ozdemir, Tuba; Tuncel, Sabri

    2006-01-01

    In this study, the mean grain size of ceramic-metal composites, made from boron carbide (B 4 C)-aluminium (Al)-nickel (Ni) powders, has been determined with ultrasonic velocity technique by using a 2 MHz transducer. An ultrasonic velocity-grain size master graph was plotted using a 4 MHz ultrasonic transducer. The results were compared to the mean grain size obtained from SEM (Scanning Electron Microscopy) images

  5. Cobalt Doping of Semiconducting Boron Carbide Using Cobaltocene

    National Research Council Canada - National Science Library

    Carlson, Lonnie

    2007-01-01

    .... This temperature dependent surface photovoltage effect is not compelling evidence for the majority carrier type but does suggest an increase in the carrier concentration in semiconducting boron...

  6. An experimental investigation of wire electrical discharge machining of hot-pressed boron carbide

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2015-12-01

    Full Text Available The present work discusses the experimental study on wire-cut electric discharge machining of hot-pressed boron carbide. The effects of machining parameters, such as pulse on time (TON, peak current (IP, flushing pressure (FP and spark voltage on material removal rate (MRR and surface roughness (Ra of the material, have been evaluated. These parameters are found to have an effect on the surface integrity of boron carbide machined samples. Wear rate of brass wire increases with rise in input energy in machining of hot-pressed boron carbide. The surfaces of machined samples were examined using scanning electron microscopy (SEM. The influence of machining parameters on mechanism of MRR and Ra was described. It was demonstrated that higher TON and peak current deteriorate the surface finish of boron carbide samples and result in the formation of large craters, debris and micro cracks. The generation of spherical particles was noticed and it was attributed to surface tension of molten material. Macro-ridges were also observed on the surface due to protrusion of molten material at higher discharge energy levels.

  7. Aluminum-titanium hydride-boron carbide composite provides lightweight neutron shield material

    Science.gov (United States)

    Poindexter, A. M.

    1967-01-01

    Inexpensive lightweight neutron shield material has high strength and ductility and withstands high internal heat generation rates without excessive thermal stress. This composite material combines structural and thermal properties of aluminum, neutron moderating properties of titanium hydride, and neutron absorbing characteristics of boron carbide.

  8. Standard specification for nuclear-grade aluminum oxide-boron carbide composite pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This specification applies to pellets composed of mixtures of aluminum oxide and boron carbide that may be ultimately used in a reactor core, for example, in neutron absorber rods. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  9. Stability and kinetics of helium interstitials in boron carbide from first principles

    Science.gov (United States)

    Schneider, Anton; Roma, Guido; Crocombette, Jean-Paul; Motte, Vianney; Gosset, Dominique

    2017-12-01

    When boron carbide is used in nuclear reactors as a neutron absorber, helium concentrations on the order of a few atomic percent can be attained. It is thus of primary importance to know the distribution and kinetics of helium atoms in boron carbide. In spite of a variety is of experimental works devoted to the characterization of the microstructure and He bubbles in boron carbide irradiated in reactor, there is a serious lack of knowledge concerning the basic mechanisms governing helium kinetics. This study is devoted to the stability and mobility of helium interstitial atoms in carbon rich boron carbide. The lowest energy He insertion sites were screened through density functional theory and the most probable migration paths and energy barriers were investigated using the nudged elastic bands (NEB) approach. The results suggest that in a wide range of temperatures He interstitials undergo 2D diffusion confined between two 〈111 〉 planes. The onset of 3D diffusion is expected, according to our calculations, with an activation energy close to 2 eV. Our result is in qualitative agreement with the observation of flat bubbles with 〈111 〉 orientation, although a quantitative comparison with He diffusion data is hindered by discrepancies and microstructure issues in available experimental results.

  10. Evidence of amorphisation of B{sub 4}C boron carbide under slow, heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, D., E-mail: dominique.gosset@cea.fr [CEA, DEN, DMN-SRMA-LA2M, F-91191 Gif/Yvette (France); Miro, S. [CEA, DEN, DMN-SRMP-JANNUS, F-91191 Gif/Yvette (France); Doriot, S. [CEA, DEN, DMN-SRMA-LA2M, F-91191 Gif/Yvette (France); Victor, G. [CNRS-IN2P3-IPNL, F-69622 Villeurbanne (France); Motte, V. [CEA, DEN, DMN-SRMA-LA2M, F-91191 Gif/Yvette (France)

    2015-12-15

    Boron carbide is widely used either as armor-plate or neutron absorber. In both cases, a good structural stability is required. However, a few studies have shown amorphisation may occur in severe conditions. Hard impacts lead to the formation of amorphous bands. Some irradiations in electronic regime with H or He ions have also shown amorphisation of the material. Most authors however consider the structure is not drastically affected by irradiations in the ballistic regime. Here, we have irradiated at room temperature dense boron carbide pellets with Au 4 MeV ions, for which most of the damage is in the ballistic regime. This study is part of a program devoted to the behavior of boron carbide under irradiation. Raman observations have been performed after the irradiations together with transmission electron microscopy (TEM). Raman observations show a strong structural damage at moderate fluences (10{sup 14}/cm{sup 2}, about 0.1 dpa), in agreement with previous studies. On the other hand, TEM shows the structure remains crystalline up to 10{sup 15}/cm{sup 2} then partially amorphises. The amorphisation is heterogeneous, with the formation of nanometric amorphous zones with increasing density. It then appears short range and long range disorder occurs at quite different damage levels. Further experiments are in progress aiming at studying the structural stability of boron carbide and isostructural materials (α-B, B{sub 6}Si,…).

  11. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Unknown

    the use of sintering aids. In the meantime, Prochazka. (1975) reported that with addition of boron and carbon to submicron size β-SiC, sintering of silicon carbide to near theoretical density was achieved. He proposed that during the firing of pure submicron powders of covalently bonded solids, densification is prevented by a ...

  12. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lumin [Univ. of Michigan, Ann Arbor, MI (United States). Department of Nuclear Engineering and Radiological Science; Wierschke, Jonathan Brett [Univ. of Michigan, Ann Arbor, MI (United States). Department of Nuclear Engineering and Radiological Science

    2015-04-08

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H3BO3). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  13. Equations of state and melting curve of boron carbide in the high-pressure range of shock compression

    Science.gov (United States)

    Molodets, A. M.; Golyshev, A. A.; Shakhrai, D. V.

    2017-03-01

    We have constructed the equations of state for crystalline boron carbide B11C (C-B-C) and its melt under high dynamic and static pressures. A kink on the shock adiabat for boron carbide has been revealed in the pressure range near 100 GPa, and the melting curve with negative curvature in the pressure range 0-120 GPa has been calculated. The results have been used for interpreting the kinks on the shock adiabat for boron carbide in the pressure range of 0-400 GPa.

  14. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Science.gov (United States)

    Airapetov, A. A.; Begrambekov, L. B.; Buzhinskiy, O. I.; Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A.

    2015-12-01

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400-1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  15. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Energy Technology Data Exchange (ETDEWEB)

    Airapetov, A. A.; Begrambekov, L. B., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Buzhinskiy, O. I. [State Research Center Troitsk Institute for Innovation and Fusion Research (TRINITI) (Russian Federation); Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  16. Annealing of deep boron centers in silicon carbide

    CERN Document Server

    Ballandovich, V S

    2002-01-01

    Effect of thermal annealing on the high temperature luminescence efficiency (HTL) in 6H-SiC samples grown in different conditions and doped with boron impurity was investigated. Some of the crystals were irradiated by reactor neutrons or fast electrons. The HTL efficiency was shown to depend on the abundance of deep boron centers discovered by capacitive spectroscopy as D-centers. High temperature treatment of samples results in decomposition of D-centers which is identified as B sub S sub i -V sub C complexes. The deep boron centers are shown to be stable at temperature as low as 1500 deg C. Conservation of these centers in SiC crystals at higher temperatures (up to 2600 deg C) is caused by presence of clusters which are the sources of nonequilibrium carbon vacancies

  17. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Sørensen, P G; Björkdahl, O; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-03-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using transmission electron microscopy, photon correlation spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, gel electrophoresis and chemical assays and reveal profound changes in surface chemistry and structural characteristics. In vitro thermal neutron irradiation of B16 melanoma cells incubated with sub-100 nm nanoparticles (381.5 microg/g (10)B) induces complete cell death. The nanoparticles alone induce no toxicity.

  18. Preparation and uses of amorphous boron carbide coated substrates

    Science.gov (United States)

    Riley, Robert E.; Newkirk, Lawrence R.; Valencia, Flavio A.

    1981-09-01

    Cloth is coated at a temperature below about 1000.degree. C. with amorphous boron-carbon deposits in a process which provides a substantially uniform coating on all the filaments making up each yarn fiber bundle of the cloth. The coated cloths can be used in the as-deposited condition for example as wear surfaces where high hardness values are needed; or multiple layers of coated cloths can be hot-pressed to form billets useful for example in fusion reactor wall armor. Also provided is a method of controlling the atom ratio of B:C of boron-carbon deposits onto any of a variety of substrates, including cloths.

  19. Thermal-shock Resistance of a Ceramic Comprising 60 Percent Boron Carbide and 40 Percent Titanium Diboride

    Science.gov (United States)

    Yeomans, C M; Hoffman, C A

    1953-01-01

    Thermal-shock resistance of a ceramic comprising 60 percent boron carbide and 40 percent titanium diboride was investigated. The material has thermal shock resistance comparable to that of NBS body 4811C and that of zirconia, but is inferior to beryllia, alumina, and titanium-carbide ceramals. It is not considered suitable for turbine blades.

  20. Experimental determination of boron and carbon thermodynamic activities in the carbide phase of the boron-carbon system

    International Nuclear Information System (INIS)

    Froment, A.K.

    1990-01-01

    - The boron-carbon phase diagram presents a single phase area ranging from 9 to 20 atomic percent of carbon. The measurement of carbon activity, in this range of composition, has been measured according to the following methods: - quantitative analysis of the methane-hydrogen mixture in equilibrium with the carbide, - high temperature mass spectrometry measurements. The first method turned out to be a failure; however, the apparatus used enabled the elaboration of a B 4 C composition pure phase from a two-phase (B 4 C + graphite) industrial product. The results obtained with the other two methods are consistent and lead to a law expressing the increase of the carbon activity in relation with the amount of this element; the high temperature mass spectrometry method has also made it possible to measure the boron activity which decreases when the carbon activity increases, but with a variation of amplitude much lower, according to the theoretical calculations. These results are a first step towards the knowledge of the boron carbide thermodynamical data for compositions different from B 4 C [fr

  1. Boron carbide (B{sub 4}C) coating. Deposition and testing

    Energy Technology Data Exchange (ETDEWEB)

    Azizov, E.; Barsuk, V. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Begrambekov, L., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Buzhinsky, O. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Evsin, A.; Gordeev, A.; Grunin, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Klimov, N. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Kurnaev, V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Mazul, I. [Federal State Unitary Interprise Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA Efremov), St-Peterburg (Russian Federation); Otroshchenko, V.; Putric, A. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-08-15

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B{sub 4}C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B{sub 4}C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B{sub 4}C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B{sub 4}C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  2. Influence of high power density plasma irradiation on the boron carbide coating on tungsten

    Science.gov (United States)

    Begrambekov, L. B.; Grunin, A. V.; Puntakov, N. A.; Sadovskiy, Ya A.; Utkov, N. S.

    2017-05-01

    The paper considers an influence of T-10 tokamak plasma disruption on boron carbide (B4C) coating on tungsten. The power density of coating irradiation reached 100 MW/m2. The relief and composition of the boron carbide coating sample areas heated up to different temperature due to influence of disruption is determined. Conclusion is made that B4C does not change integrity, when heated to temperatures of up to 2000 K. Local melting was observed in areas heated up to 2500 K. In the range of 2500-3600 K most of the coating was melted and collected into droplets. Composition rate is reduced to B:C = 1:1. In all temperature ranges the coating remained continuous and provided protection of tungsten from direct plasma irradiation.

  3. Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism.

    Science.gov (United States)

    Ji, Wei; Rehman, Sahibzada Shakir; Wang, Weimin; Wang, Hao; Wang, Yucheng; Zhang, Jinyong; Zhang, Fan; Fu, Zhengyi

    2015-10-27

    A new ceramic sintering approach employing plastic deformation as the dominant mechanism is proposed, at low temperature close to the onset point of grain growth and under high pressure. Based on this route, fully dense boron carbide without grain growth can be prepared at 1,675-1,700 °C and under pressure of (≥) 80 MPa in 5 minutes. The dense boron carbide shows excellent mechanical properties, including Vickers hardness of 37.8 GPa, flexural strength of 445.3 MPa and fracture toughness of 4.7 MPa•m(0.5). Such a process should also facilitate the cost-effective preparation of other advanced ceramics for practical applications.

  4. Structure and characteristics of chromium steel coatings alloyed with boron carbide

    Science.gov (United States)

    Eremin, E. N.; Losev, A. S.; Borodikhin, S. A.; Matalasova, A. E.; Ponomarev, I. A.; Ivlev, K. E.

    2018-01-01

    This study explores the problems arising from the increase of wear resistance on the coatings of details of a wide range of applications, obtained by surfacing the Fe - Cr system with flux-cored wires. It has shown that insignificant wear resistance of such steel under conditions of metal friction against another metal is due to their relatively low hardness and the absence of strengthening phases. It also shows the effect of boron carbide on the structure and the characteristics of chromium steel obtained by the surfacing process. It was established that the use of high-chromium flux-cored wires alloyed with boron carbide aids the production of a deposited metal of a composite type, with a dispersed hardening based on chromium carboboride. The deposited metal with such structure has a high wear resistance and the hardness of 55 … 58 HRC and can be used for surfacing cladding the hardening, corrosion-resistant coatings.

  5. Plasma-sprayed boron carbide coatings for first-wall protection

    Science.gov (United States)

    van der Laan, J. G.; Schnedecker, G.; van Osch, E. V.; Duwe, R.; Linke, J.

    1994-08-01

    Plasma-sprayed boron carbide coatings have been manufactured by different suppliers onto substrates of type 316L stainless steel. The coating thickness ranges from 0.3 to 2.0 mm. The larger thicknesses could only be achieved by application of an adaptive or gradient bond-layer between substrate and the boron carbide top coating. Measurements of the thermal diffusivity of coating materials are reported. Several high heat flux facilities have been used to study the thermal shock and erosion behaviour of the coated samples. A supporting numerical analysis of the thermal behaviour of the coating under normal and off-normal heat loads is presented, focussing on the differences between electron beam and laser beam tests due to volumetric energy deposition. Some aspects of the applicability of plasma sprayed B 4C coatings for first-wall protection in a next step device are discussed.

  6. Characteristics of deposited boron doping diamond on tungsten carbide insert by MPECVD

    Science.gov (United States)

    Kim, Jong Seok; Park, Yeong Min; Kim, Jeong Wan; Tulugan, Kelimu; Kim, Tae Gyu

    2015-03-01

    Diamond-coated cutting tools are used primarily for machining non-ferrous materials such as aluminum-silicon alloys, copper alloys, fiber-reinforced polymers, green ceramics and graphite. Because the tool life of cemented carbide cutting tool is greatly improved by diamond coating, and typically more than 10 times of the tool life is obtained. However, research of boron-doped diamond (BDD) coating tool has not been fully researched yet. In this study, we have succeeded to make boron-doped microcrystalline and nanocrystalline diamond-coated Co-cemented tungsten carbide (WC-Co) inserts. Microcrystalline BDD thin film is deposited on WC-Co insert by using microwave plasma enhanced chemical vapor deposition (MPECVD) method. Scanning electron microscope (SEM) and Raman spectroscopy are used to characterize the as-deposited diamond films.1,2

  7. Rare earth metal boron carbide MBC compounds containing monodimensional branched zigzag chains of non-metal atoms: Theoretical aspects

    International Nuclear Information System (INIS)

    Wiitkar, F.; Kahlal, S.; Halet, J.F.; Saillard, J.Y.

    1995-01-01

    The authors apply extended Hueckel calculations to solving the electronic structure of rare earth metal boron carbides. These compounds contain boron-carbon zigzag chains the structure of which is dictated by the ionic nature of the interaction between the chains and the rare earth metal. The authors report a relationship between formal charge of the BC units and structural orientation of the chains

  8. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Unknown

    2.2 Sintering additives. Boron carbide from M/s Starck A, West Germany having a purity of 99⋅5% was used as sintering aid along with carbon. Phenolic resin from M/s Allied Resin & Che- micals Ltd, India, was used as a source for carbon. Phe- nolic resin pyrolizes at high temperature with a carbon yield of 47% (Carbon ...

  9. Structure of boron carbide after applying shear deformations under a pressure to 55 GPa

    Science.gov (United States)

    Annenkov, M. R.; Kulnitskiy, B. A.; Perezhogin, I. A.; Ovsyannikov, D. A.; Popov, M. Yu.; Blank, V. D.

    2017-05-01

    Transmission electron microscopy has been used to study the structural features of boron carbide treated in a high-pressure shear chamber with diamond anvils in the pressure range 25-55 GPa. Such a treatment has been shown to lead to the predominant crack formation along planes {10 11 } and {10 12} and also the formation of polytypes in the {10 11} planes and strain bands in the {10 12} planes.

  10. Thermal expansion measurements on boron carbide and europium sesquioxide by laser interferometry

    International Nuclear Information System (INIS)

    Preston, S.D.

    1980-01-01

    A laser interferometer technique for measuring the absolute linear thermal expansion of small annular specimens is described. Results are presented for unirradiated boron carbide (B 4 C) and europia (Eu 2 O 3 ) up to 1000 0 C. Both compounds are neutron-absorbing materials of potential use in fast-reactor control rods and data on their thermophysical properties, in particular linear thermal expansion, are essential to the control rod designers. (author)

  11. Synthesis of low carbon boron carbide powder using a minimal time processing route: Thermal plasma

    OpenAIRE

    Avinna Mishra

    2015-01-01

    Boron carbide powder was synthesized by thermal plasma reduction of boric acid in presence of graphite with a very minimal processing time. Subsequently, the as-synthesized products were leached to minimize the impurities content. Based on the results of X-ray diffraction and Raman spectroscopy, the effect of leaching on phase purity and crystallinity was studied. X-ray photoelectron spectroscopy was performed to identify the chemical composition which highlighted the absence of the BO bondi...

  12. Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively

    OpenAIRE

    Tao Yang; Liqin Zhang; Xinmei Hou; Junhong Chen; Kuo-Chih Chou

    2016-01-01

    Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS...

  13. Synergistic methods for the production of high-strength and low-cost boron carbide

    Science.gov (United States)

    Wiley, Charles Schenck

    2011-12-01

    Boron carbide (B4C) is a non-oxide ceramic in the same class of nonmetallic hard materials as silicon carbide and diamond. The high hardness, high elastic modulus and low density of B4C make it a nearly ideal material for personnel and vehicular armor. B4C plates formed via hot-pressing are currently issued to U.S. soldiers and have exhibited excellent performance; however, hot-pressed articles contain inherent processing defects and are limited to simple geometries such as low-curvature plates. Recent advances in the pressureless sintering of B4C have produced theoretically-dense and complex-shape articles that also exhibit superior ballistic performance. However, the cost of this material is currently high due to the powder shape, size, and size distribution that are required, which limits the economic feasibility of producing such a product. Additionally, the low fracture toughness of pure boron carbide may have resulted in historically lower transition velocities (the projectile velocity range at which armor begins to fail) than competing silicon carbide ceramics in high-velocity long-rod tungsten penetrator tests. Lower fracture toughness also limits multi-hit protection capability. Consequently, these requirements motivated research into methods for improving the densification and fracture toughness of inexpensive boron carbide composites that could result in the development of a superior armor material that would also be cost-competitive with other high-performance ceramics. The primary objective of this research was to study the effect of titanium and carbon additives on the sintering and mechanical properties of inexpensive B4C powders. The boron carbide powder examined in this study was a sub-micron (0.6 mum median particle size) boron carbide powder produced by H.C. Starck GmbH via a jet milling process. A carbon source in the form of phenolic resin, and titanium additives in the form of 32 nm and 0.9 mum TiO2 powders were selected. Parametric studies of

  14. Determination of nitrogen in boron carbide by instrumental photon activation analysis.

    Science.gov (United States)

    Merchel, Silke; Berger, Achim

    2007-05-01

    Boron carbide is widely used as industrial material, because of its extreme hardness, and as a neutron absorber. As part of a round-robin exercise leading to certification of a new reference material (ERM-ED102) which was demanded by the industry we analysed nitrogen in boron carbide by inert gas fusion analysis (GFA) and instrumental photon activation analysis (IPAA) using the 14N(gamma,n)13N nuclear reaction. The latter approach is the only non-destructive method among all the methods applied. By using photons with energy below the threshold of the 12C(gamma,n)11C reaction, we hindered activation of matrix and other impurities. A recently installed beam with a very low lateral activating flux gradient enabled us to homogeneously activate sample masses of approximately 1 g. Taking extra precautions, i.e. self-absorption correction and deconvolution of the complex decay curves, we calculated a nitrogen concentration of 2260+/-100 microg g-1, which is in good agreement with our GFA value of 2303+/-64 microg g-1. The values are the second and third highest of a rather atypical (non-S-shape) distribution of data of 14 round-robin participants. It is of utmost importance for the certification process that our IPAA value is the only one not produced by inert gas fusion analysis and, therefore, the only one which is not affected by a possible incomplete release of nitrogen from high-melting boron carbide.

  15. Tribological behaviour of mechanically synthesized titanium-boron carbide nanostructured coating.

    Science.gov (United States)

    Aliofkhazraei, M; Rouhaghdam, A Sabour

    2012-08-01

    In this paper, titanium-boron carbide (Ti/B4C) nanocomposite coatings with different B4C nanoparticles contents were fabricated by surface mechanical attrition treatment (SMAT) method by using B4C nanoparticles with average nanoparticle size of 40 nm. The characteristics of the nanopowder and coatings were evaluated by microhardness test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Friction and wear performances of nanocomposite coatings and pure titanium substrate were comparatively investigated, with the effect of the boron carbide content on the friction and wear behaviours to be emphasized. The results show the microhardness, friction and wear behaviours of nanocomposite coatings are closely related with boron carbide nanoparticle content. Nanocomposite coating with low B4C content shows somewhat (slight) increased microhardness and wear resistance than pure titanium substrate, while nanocomposite coating with high B4C content has much better (sharp increase) wear resistance than pure titanium substrate. The effect of B4C nanoparticles on microhardness and wear resistance was discussed.

  16. Boron carbide-coated carbon material, manufacturing method therefor and plasma facing material

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Kikuchi, Yoshihiro; Hyakki, Yasuo.

    1997-01-01

    The present invention concerns a plasma facing material suitable to a thermonuclear device. The material comprises a carbon material formed by converting the surface of a carbon fiber-reinforced carbon material comprising a carbon matrix and carbon fibers to a boron carbide, the material has a surface comprising vertically or substantially vertically oriented carbon fibers, and the thickness of the surface converted to boron carbide is reduced in the carbon fiber portion than in the carbon matrix portion. Alternatively, a carbon fiber-reinforced carbon material containing carbon fibers having a higher graphitizing degree than the carbon matrix is converted to boron carbide on the surface where the carbon fibers are oriented vertically or substantially vertically. The carbon fiber-reinforced material is used as a base material, and a resin material impregnated into a shaped carbon fiber product is carbonized or thermally decomposed carbon is filled as a matrix. The material of the present invention has high heat conduction and excellent in heat resistance thereby being suitable to a plasma facing material for a thermonuclear device. Electric specific resistivity of the entire coating layer can be lowered, occurrence of arc discharge is prevented and melting can be prevented. (N.H.)

  17. Improved p–n heterojunction device performance induced by irradiation in amorphous boron carbide films

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, George [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0857 (United States); Su, Qing [Nebraska Center for Energy Sciences Research, University of Nebraska-Lincoln, Lincoln, NE 68583-0857 (United States); Wang, Yongqiang [Materials Science and Technology Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Dowben, Peter A. [Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0298 (United States); Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588-0299 (United States); Nastasi, Michael, E-mail: mnastasi2@unl.edu [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0857 (United States); Nebraska Center for Energy Sciences Research, University of Nebraska-Lincoln, Lincoln, NE 68583-0857 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0298 (United States)

    2015-12-15

    Highlights: • Amorphous boron carbide films were grown on n-type silicon creating a heterojunction. • We irradiated the devices with 200 keV alpha particles to varying levels of damage. • We measured the current versus voltage at each level of damage for the device. • The electrical properties improved with moderate amounts of irradiation. • Device failure is due to the fragility of the Si, not the boron carbide film. - Abstract: Amorphous hydrogenated boron carbide films (a-B{sub 10}C{sub 2+x}:H{sub y}) on Si p–n heterojunctions were fabricated utilizing plasma enhanced chemical vapor deposition (PECVD). These devices were found to be robust when irradiated with 200 keV He{sup +} ions. For low doses of irradiation, contrary to most other electrical devices, the electrical performance improved. On the heterojunction I(V) curve, reverse bias leakage current decreased by 3 orders of magnitude, series resistance across the device decreased by 64%, and saturation current due to generation of electron–hole pairs in the depletion region also decreased by an order of magnitude. It is believed that the improvements in the electrical properties of the devices are due to an initial passivation of defects in the a-B{sub 10}C{sub 2+x}:H{sub y} film resulting from electronic energy deposition, breaking bonds and allowing them to reform in a lower energy state, or resolving distorted icosahedron anion states.

  18. Structural modifications induced by ion irradiation and temperature in boron carbide B{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Victor, G., E-mail: g.victor@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pipon, Y.; Bérerd, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); CEA-DEN, Saclay, 91191 Gif-sur-Yvette (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Djourelov, N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee blvd, BG-1784 Sofia (Bulgaria); ELI-NP, IFIN-HH, 30 Reactorului Str, MG-6 Bucharest-Magurele (Romania); Miro, S. [CEA-DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Baillet, J. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pradeilles, N.; Rapaud, O.; Maître, A. [SPCTS, UMR CNRS 7315, Centre Européen de la céramique, University of Limoges (France); Gosset, D. [CEA, Saclay, DMN-SRMA-LA2M, 91191 Gif-sur-Yvette (France)

    2015-12-15

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B{sub 4}C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B{sub 4}C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (S{sub e} ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B{sub 4}C structure under irradiation.

  19. Methyldichloroborane evidenced as an intermediate in the chemical vapour deposition synthesis of boron carbide.

    Science.gov (United States)

    Reinisch, G; Patel, S; Chollon, G; Leyssale, J-M; Alotta, D; Bertrand, N; Vignoles, G L

    2011-09-01

    The most recent ceramic-matrix composites (CMC) considered for long-life applications as thermostructural parts in aerospace propulsion contain, among others, boron-rich phases like boron carbide. This compound is prepared by thermal Chemical Vapour Infiltration (CVI), starting from precursors like boron halides and hydrocarbons. We present a study aiming at a precise knowledge of the gas-phase composition in a hot-zone LPCVD reactor fed with BCl3, CH4 and H2, which combines experimental and theoretical approaches. This work has brought strong evidences of the presence of Methydichloroborane (MDB, BCl2CH3) in the process. It is demonstrated that this intermediate, the presence of which had never been formally proved before, appears for processing temperatures slightly lower than the deposition temperature of boron carbide. The study features quantum chemical computations, which provide several pieces of information like thermochemical and kinetic data, as well as vibration and rotation frequencies, reaction kinetics computations, and experimental gas-phase characterization of several species by FTIR, for several processing parameter sets. The main results are presented, and the place of MDB in the reaction scheme is discussed.

  20. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide powder and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Total Carbon by Combustion and Gravimetry 7-17 Total Boron by Titrimetry 18-28 Isotopic Composition by Mass Spectrometry 29-38 Chloride and Fluoride Separation by Pyrohydrolysis 39-45 Chloride by Constant-Current Coulometry 46-54 Fluoride by Ion-Selective Electrode 55-63 Water by Constant-Voltage Coulometry 64-72 Impurities by Spectrochemical Analysis 73-81 Soluble Boron by Titrimetry 82-95 Soluble Carbon by a Manometric Measurement 96-105 Metallic Impurities by a Direct Reader Spectrometric Method 106-114

  1. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation

    International Nuclear Information System (INIS)

    Mrotchek, I.

    2007-01-01

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and ∼5.10 17 ions/cm 2 fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co 3 W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load

  2. Thermal Treatment Dependence of the Electronic Structure of Thin Film Amorphous Boron Carbides

    Science.gov (United States)

    Driver, M. S.; Sandstrom, J.; Boyko, T.; Moewes, A.; Pokhodnya, K. I.; Li, W.; Oyler, N. A.; Caruso, A. N.

    2011-03-01

    Boron-rich semiconducting solids are important materials for next generation direct conversion solid state neutron detectors. However, rigorous understanding of the fundamental properties of these solids is drastically lacking and required before optimization of the neutron detectors may occur. To partially resolve this inadequacy, we have studied and compared the electronic and local physical structure relationship of thins films of amorphous hydrogenated boron carbide (a-B5 C:Hx) deposited by PECVD and quasicrystalline technical boron carbide (B4 C:Cy) deposited by RF MS. In an attempt to understand the near Fermi edge structure in slightly modified local environments, x-ray absorption and emission spectroscopies (XAS/XES), ultraviolet photoemission, x-ray photoemission, and solid state NMR were collected at 300 K on films thermally treated from 300 to 1100 K. The electronic structure studies reveal a unique alteration of π * and σ * states and overall chemical reduction for the 600 K and above annealed films. The solid state NMR, in comparison with reference samples, reveals a slow ordering progression; this allows us to describe the relationship between intra- and inter-icosahedral carbon on the overall electronic structure.

  3. Observation of 'hidden' planar defects in boron carbide nanowires and identification of their orientations.

    Science.gov (United States)

    Guan, Zhe; Cao, Baobao; Yang, Yang; Jiang, Youfei; Li, Deyu; Xu, Terry T

    2014-01-15

    The physical properties of nanostructures strongly depend on their structures, and planar defects in particular could significantly affect the behavior of the nanowires. In this work, planar defects (twins or stacking faults) in boron carbide nanowires are extensively studied by transmission electron microscopy (TEM). Results show that these defects can easily be invisible, i.e., no presence of characteristic defect features like modulated contrast in high-resolution TEM images and streaks in diffraction patterns. The simplified reason of this invisibility is that the viewing direction during TEM examination is not parallel to the (001)-type planar defects. Due to the unique rhombohedral structure of boron carbide, planar defects are only distinctive when the viewing direction is along the axial or short diagonal directions ([100], [010], or 1¯10) within the (001) plane (in-zone condition). However, in most cases, these three characteristic directions are not parallel to the viewing direction when boron carbide nanowires are randomly dispersed on TEM grids. To identify fault orientations (transverse faults or axial faults) of those nanowires whose planar defects are not revealed by TEM, a new approach is developed based on the geometrical analysis between the projected preferred growth direction of a nanowire and specific diffraction spots from diffraction patterns recorded along the axial or short diagonal directions out of the (001) plane (off-zone condition). The approach greatly alleviates tedious TEM examination of the nanowire and helps to establish the reliable structure-property relations. Our study calls attention to researchers to be extremely careful when studying nanowires with potential planar defects by TEM. Understanding the true nature of planar defects is essential in tuning the properties of these nanostructures through manipulating their structures.

  4. Observation of ‘hidden’ planar defects in boron carbide nanowires and identification of their orientations

    Science.gov (United States)

    2014-01-01

    The physical properties of nanostructures strongly depend on their structures, and planar defects in particular could significantly affect the behavior of the nanowires. In this work, planar defects (twins or stacking faults) in boron carbide nanowires are extensively studied by transmission electron microscopy (TEM). Results show that these defects can easily be invisible, i.e., no presence of characteristic defect features like modulated contrast in high-resolution TEM images and streaks in diffraction patterns. The simplified reason of this invisibility is that the viewing direction during TEM examination is not parallel to the (001)-type planar defects. Due to the unique rhombohedral structure of boron carbide, planar defects are only distinctive when the viewing direction is along the axial or short diagonal directions ([100], [010], or 1¯10) within the (001) plane (in-zone condition). However, in most cases, these three characteristic directions are not parallel to the viewing direction when boron carbide nanowires are randomly dispersed on TEM grids. To identify fault orientations (transverse faults or axial faults) of those nanowires whose planar defects are not revealed by TEM, a new approach is developed based on the geometrical analysis between the projected preferred growth direction of a nanowire and specific diffraction spots from diffraction patterns recorded along the axial or short diagonal directions out of the (001) plane (off-zone condition). The approach greatly alleviates tedious TEM examination of the nanowire and helps to establish the reliable structure–property relations. Our study calls attention to researchers to be extremely careful when studying nanowires with potential planar defects by TEM. Understanding the true nature of planar defects is essential in tuning the properties of these nanostructures through manipulating their structures. PMID:24423258

  5. Boron carbide coatings for enhanced performance of radio-frequency antennas in magnetic fusion energy devices. Final report [SBIR[STTR] Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Klepper, C Christopher

    2002-02-25

    This DOE STTR program has produced a new technology for efficient deposition of dense boron carbide films. Such films can be used as protective coatings; they are resistant to most acids and compatible with high temperatures (over 2000{deg}C). This new technology is based on a vacuum arc discharge using boron carbide cathode as the solid feed material. This avoids the use of boron-based feedstock gases, most of which are toxic or explosive. It is superior to plasma-arc spraying, which makes low-density (porous) films and potentially more economical than magnetron sputtering, due to the low sputtering rate for boron carbide.

  6. Synthesis of low carbon boron carbide powder using a minimal time processing route: Thermal plasma

    Directory of Open Access Journals (Sweden)

    Avinna Mishra

    2015-12-01

    Full Text Available Boron carbide powder was synthesized by thermal plasma reduction of boric acid in presence of graphite with a very minimal processing time. Subsequently, the as-synthesized products were leached to minimize the impurities content. Based on the results of X-ray diffraction and Raman spectroscopy, the effect of leaching on phase purity and crystallinity was studied. X-ray photoelectron spectroscopy was performed to identify the chemical composition which highlighted the absence of the BO bonding in the deconvoluted B 1s core-level spectrum. Finally, the temperature dependent thermal conductivity behavior of the leached materials was analyzed and presented.

  7. Analysis of a boron-carbide-drum-controlled critical reactor experiment

    Science.gov (United States)

    Mayo, W. T.

    1972-01-01

    In order to validate methods and cross sections used in the neutronic design of compact fast-spectrum reactors for generating electric power in space, an analysis of a boron-carbide-drum-controlled critical reactor was made. For this reactor the transport analysis gave generally satisfactory results. The calculated multiplication factor for the most detailed calculation was only 0.7-percent Delta k too high. Calculated reactivity worth of the control drums was $11.61 compared to measurements of $11.58 by the inverse kinetics methods and $11.98 by the inverse counting method. Calculated radial and axial power distributions were in good agreement with experiment.

  8. Atomistic explanation of shear-induced amorphous band formation in boron carbide.

    Science.gov (United States)

    An, Qi; Goddard, William A; Cheng, Tao

    2014-08-29

    Boron carbide (B4C) is very hard, but its applications are hindered by stress-induced amorphous band formation. To explain this behavior, we used density function theory (Perdew-Burke-Ernzerhof flavor) to examine the response to shear along 11 plausible slip systems. We found that the (0111)/ slip system has the lowest shear strength (consistent with previous experimental studies) and that this slip leads to a unique plastic deformation before failure in which a boron-carbon bond between neighboring icosahedral clusters breaks to form a carbon lone pair (Lewis base) on the C within the icosahedron. Further shear then leads this Lewis base C to form a new bond with the Lewis acidic B in the middle of a CBC chain. This then initiates destruction of this icosahedron. The result is the amorphous structure observed experimentally. We suggest how this insight could be used to strengthen B4C.

  9. Modeling and simulation of boron-doped nanocrystalline silicon carbide thin film by a field theory.

    Science.gov (United States)

    Xiong, Liming; Chen, Youping; Lee, James D

    2009-02-01

    This paper presents the application of a multiscale field theory in modeling and simulation of boron-doped nanocrystalline silicon carbide (B-SiC). The multiscale field theory was briefly introduced. Based on the field theory, numerical simulations show that intergranular glassy amorphous films (IGFs) and nano-sized pores exist in triple junctions of the grains for nanocrystalline B-SiC. Residual tensile stress in the SiC grains and compressive stress on the grain boundaries (GBs) were observed. Under tensile loading, it has been found that mechanical response of 5 wt% boron-SiC exhibits five characteristic regimes. Deformation mechanism at atomic scale has been revealed. Tensile strength and Young's modulus of nanocrystalline SiC were accurately reproduced.

  10. Transport properties of boron-doped single-walled silicon carbide nanotubes

    International Nuclear Information System (INIS)

    Yang, Y.T.; Ding, R.X.; Song, J.X.

    2011-01-01

    The doped boron (B) atom in silicon carbide nanotube (SiCNT) can substitute carbon or silicon atom, forming two different structures. The transport properties of both B-doped SiCNT structures are investigated by the method combined non-equilibrium Green's function with density functional theory (DFT). As the bias ranging from 0.8 to 1.0 V, the negative differential resistance (NDR) effect occurs, which is derived from the great difficulty for electrons tunneling from one electrode to another with the increasing of localization of molecular orbital. The high similar transport properties of both B-doped SiCNT indicate that boron is a suitable impurity for fabricating nano-scale SiCNT electronic devices.

  11. Microscopic origin of the composition-dependent change of the thermal conductivity in boron carbides

    International Nuclear Information System (INIS)

    Emin, D.; Howard, I.A.; Green, T.A.; Beckel, C.L.

    1987-01-01

    Large grain polycrystalline boron carbides have a high-temperature thermal conductivity which changes from being characteristic of a crystal to being glass-like as the carbon content is reduced from its maximal value. We relate this phenomenon, to compositional changes within the three-atom intericosahedral chains. With a reduction of the carbon concentration from its maximal concentration (20%), a carbon atom within some of the three-atoms (CBC) intericosahedral chains is replaced by a boron atom, thereby producing CBB chains. We estimate that the CBB chains are significantly softer than the CBC chains. Thus, with this reduction of carbon content the intericosahedral chains are inhomogeneously softened. This suppresses the coherent transport of heat through the chains. The remaining thermal transport occurs incoherently through vibrationally inequivalent structural units, i.e. ''phonon hopping.''

  12. Silicon doped boron carbide nanorod growth via a solid-liquid-solid process

    Science.gov (United States)

    Han, Wei-Qiang

    2006-03-01

    Here we report the synthesis of silicon doped boron carbide (Si-doped B4C) nanorods via a solid reaction using activated carbon, boron, and silicon powder as reactants. These nanorods have been studied by high-resolution transmission electron microscopy, scanning electron microscopy, electron energy loss spectroscopy, and energy-dispersive x-ray spectrometry. The diameter of Si-doped B4C nanorods ranges from 15to70nm. The length of Si-doped B4C nanorods is up to 30μm. NixCoyBz nanoparticles are used as catalysts for the growth of Si-doped B4C nanorods. A solid-liquid-solid growth mechanism is proposed.

  13. Phase Contrast Imaging of Damage Initiation During Ballistic Impact of Boron Carbide

    Science.gov (United States)

    Schuster, Brian; Tonge, Andrew; Ramos, Kyle; Rigg, Paulo; Iverson, Adam; Schuman, Adam; Lorenzo, Nicholas

    2017-06-01

    For several decades, flash X-ray imaging has been used to perform time-resolved investigations of the response of ceramics under ballistic impact. Traditional absorption based contrast offers little insight into the early initiation of inelastic deformation mechanisms and instead typically only shows the gross deformation and fracture behavior. In the present work, we employed phase contrast imaging (PCI) at the Dynamic Compression Sector (DCS) at the Advanced Photon Source, Argonne National Laboratory, to investigate crack initiation and propagation following the impact of copper penetrators into boron carbide targets. These experiments employed a single-stage propellant gun to launch small-scale (0.6 mm diameter by 3 mm long) pure copper impactors at velocities ranging from 0.9 to 1.9 km/s into commercially available boron carbide targets that were 8 mm on a side. At the lowest striking velocities the penetrator undergoes dwell or interface defeat and the target response is consistent with the cone crack formation at the impact site. At higher striking velocities there is a distinct transition to massive fragmentation leading to the onset of penetration.

  14. Shear-Induced Brittle Failure along Grain Boundaries in Boron Carbide.

    Science.gov (United States)

    Yang, Xiaokun; Coleman, Shawn P; Lasalvia, Jerry C; Goddard, William A; An, Qi

    2018-02-07

    The role that grain boundaries (GBs) can play on mechanical properties has been studied extensively for metals and alloys. However, for covalent solids such as boron carbide (B 4 C), the role of GB on the inelastic response to applied stresses is not well established. We consider here the unusual ceramic, boron carbide (B 4 C), which is very hard and lightweight but exhibits brittle impact behavior. We used quantum mechanics (QM) simulations to examine the mechanical response in atomistic structures that model GBs in B 4 C under pure shear and also with biaxial shear deformation that mimics indentation stress conditions. We carried out these studies for two simple GB models including also the effect of adding Fe atoms (possible sintering aid and/or impurity) to the GB. We found that the critical shear stresses of these GB models are much lower than that for crystalline and twinned B 4 C. The two GB models lead to different interfacial energies. The higher interfacial energy at the GB only slightly decreases the critical shear stress but dramatically increases the critical failure strain. Doping the GB with Fe decreases the critical shear stress of at the boundary by 14% under pure shear deformation. In all GBs studied here, failure arises from deconstructing the icosahedra within the GB region under shear deformation. We find that Fe dopant interacts with icosahedra at the GB to facilitate this deconstruction of icosahedra. These results provide significant insight into designing polycrystalline B 4 C with improved strength and ductility.

  15. Computational Design of Epoxy/ Boron Carbide Nanocomposites for Radiation Shielding Applications

    Science.gov (United States)

    Bejagam, Karteek; Galehdari, Nasim; Espinosa, Ingrid; Deshmukh, Sanket A.; Kelkar, Ajit D.

    An individual working in industries that include nuclear power plants, healthcare industry, and aerospace are knowingly or unknowingly exposed to radiations of different energies. Exposure to high-energy radiations such as α/ β particle emissions or gamma ray electromagnetic radiations enhances the health risks that can lead to carcinogenesis, cardiac problems, cataracts, and other acute radiation syndromes. The best possible solution to protect one from the exposure to radiations is shielding. In the present study, we have developed a new algorithm to generate a range of different structures of Diglycidyl Ether of Bisphenol F (EPON 862) and curing agent Diethylene Toluene Diamine (DETDA) resins with varying degrees of crosslinking. 3, 5, and 10 weight percent boron carbide was employed as filling materials to study its influence on the thermal and mechanical properties of composite. We further conduct the reactive molecular dynamics (RMD) simulations to investigate the effect of radiation exposure on the structural, physical, and mechanical properties of these Epoxy/Boron Carbide nanocomposites. Where possible the simulation results were compared with the experimental data.

  16. Dynamic Failure and Fragmentation of a Hot-Pressed Boron Carbide

    Science.gov (United States)

    Sano, Tomoko; Vargas-Gonzalez, Lionel; LaSalvia, Jerry; Hogan, James David

    2017-12-01

    This study investigates the failure and fragmentation of a hot-pressed boron carbide during high rate impact experiments. Four impact experiments are performed using a composite-backed target configuration at similar velocities, where two of the impact experiments resulted in complete target penetration and two resulted in partial penetration. This paper seeks to evaluate and understand the dynamic behavior of the ceramic that led to either the complete or partial penetration cases, focusing on: (1) surface and internal failure features of fragments using optical, scanning electron, and transmission electron microscopy, and (2) fragment size analysis using state-of-the-art particle-sizing technology that informs about the consequences of failure. Detailed characterization of the mechanical properties and the microstructure is also performed. Results indicate that transgranular fracture was the primary mode of failure in this boron carbide material, and no stress-induced amorphization features were observed. Analysis of the fragment sizes for the partial and completely penetrated experiments revealed a possible correlation between larger fragment sizes and impact performance. The results will add insight into designing improved advanced ceramics for impact protection applications.

  17. Evolution of thermo-physical properties and annealing of fast neutron irradiated boron carbide

    Science.gov (United States)

    Gosset, Dominique; Kryger, Bernard; Bonal, Jean-Pierre; Verdeau, Caroline; Froment, Karine

    2018-03-01

    Boron carbide is widely used as a neutron absorber in most nuclear reactors, in particular in fast neutron ones. The irradiation leads to a large helium production (up to 1022/cm3) together with a strong decrease of the thermal conductivity. In this paper, we have performed thermal diffusivity measurements and X-ray diffraction analyses on boron carbide samples coming from control rods of the French Phenix LMFBR reactor. The burnups range from 1021 to 8.1021/cm3. We first confirm the strong decrease of the thermal conductivity at the low burnup, together with high microstructural modifications: swelling, large micro-strains, high defects density, and disordered-like material conductivity. We observe the microstructural parameters are highly anisotropic, with high micro-strains and flattened coherent diffracting domains along the (00l) direction of the hexagonal structure. Performing heat treatments up to high temperature (2200 °C) allows us to observe the material thermal conductivity and microstructure restoration. It then appears the thermal conductivity healing is correlated to the micro-strain relaxation. We then assume the defects responsible for most of the damage are the helium bubbles and the associated stress fields.

  18. Ignition relevant ablator response of boron carbide and high-density carbon driven by multiple shocks

    Science.gov (United States)

    Prisbrey, Shon T.; Baker, Kevin; Celliers, Peter; Dittrich, Tom; Moore, Alastair; Wu, Kuang Jen; Kervin, Peggy; Hurricane, Omar

    2013-10-01

    The attainment of self-propagating fusion burn in an inertial confinement target at the National Ignition Facility will require the use of an ablator with high rocket-efficiency and ablation pressure. The current ablation material, a glow-discharge polymer (GDP), does not couple as efficiently as simulations indicated to the multiple-shock inducing radiation drive environment created by laser power profile. In an effort to evaluate the performance of other possible ablators that could be suitable for achieving self-propagating fusion burn we have inferred the ablation performance of two possible ablators, boron carbide and high-density carbon, by measuring the shock speed of induced shocks while subjecting the ablators to a multiple-shock inducing radiation drive environment similar to a generic three-shock ignition drive. We present the platform used, velocity measurements used to infer the ablation response, and matching simulations to show the relative performance of boron carbide and high-density carbon with a general comparison to current performance of the currently used glow-discharge polymer ablator. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL-ABS-640519.

  19. The role of free carbon in the transport and magnetic properties of boron carbide

    International Nuclear Information System (INIS)

    Bandyopadhyay, A.K.; Beuneu, F.; Zuppiroli, L.; Beauvy, M.

    1984-01-01

    Boron carbide is a ceramic which has a wide field of application because of its mechanical and nuclear properties. This material is difficult to characterise due to the presence of different levels of disorder and inhomogeneities which are found in the usual available samples. The transport and magnetic properties of several samples of boron carbide have been measured from liquid helium to room temperature as a function of temperature and composition. We have attempted to attribute the different features of these properties to the different levels of disorder. The role of free carbon, in form of thin layers of graphite within the disordered semi-conducting matrix, was investigated in particular details, because it was either ignored or neglected by others. Free carbon is found to dominate the D.C. transport when its concentration is larger than 5%; while the principal features of the electron spin resonance (E.S.R.) line show a dominance of free carbon when the concentration is larger than 3.5%. Below these concentrations conductivities as well as spin relaxation rates do not depend very much on free carbon; neither these have been found to be correlated in a simple way to the stoichiometry. (author)

  20. Density functional theory (DFT) studies of hydrogen rich solids and boron carbide under extreme conditions

    Science.gov (United States)

    Shamp, Andrew James

    Since the first prediction that compressed hydrogen would metallize in 1935 and the further prediction that the metallic allotrope would be a superconductor at high temperatures, metallic hydrogen has been termed the "holy grail" of high-pressure science. A tremendous amount of theoretical and experimental research has been carried out, with the ultimate goal of metallizing hydrogen via the application of external pressure. It has been previously proposed that doping hydrogen with another element can lower the pressure at which metallization occurs. A number of experimental and theoretical studies have investigated doping hydrogen by either a group XIII or XIV element. Experiments in diamond anvil cells have illustrated that it is indeed possible to synthesize hydrogen-rich phases under conditions of extreme pressures, and SiH4 (H2)2, GeH4(H2) n, and Xe(H2)n have been shown to behave as true compounds. The focus herein is on the theoretical exploration of hydrogen-rich phases with novel stoichiometries, which contain a dopant element up to pressures of 350 GPa. In particular, the alkali-metal and alkaline Earth metal polyhydrides (MHn where n > 1) have been considered. Within this thesis the XtalOpt evolutionary algorithm was employed in order to complete this work, and predict the most stable structures of cesium and beryllium polyhydrides under pressure. In addition, we explore the possibility of mixing excess hydrogen with an electronegative element, iodine and phosphorus. The phases found are examined via detailed first principles calculations. In addition, because of its outstanding hardness, thermodynamic stability, low density, electronic properties, thermal stability, and high melting point boron carbide has many uses: i.e. as a refractory material, in abrasive powders and ballistics, as a neutron radiation absorbent, and in electronic applications. However, little is known about the behavior of boron carbide when under the external stress of pressure. The

  1. Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapor

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Mengjiao; Zhou, Tong; He, Jing; Chen, Lifu, E-mail: lfchen@xmu.edu.cn

    2016-09-30

    High quality boron nitride (BN) coatings have been grown on silicon carbide (SiC) fibers by carbothermal nitridation and at atmospheric pressure. SiC fibers were first treated in chlorine gas to form CDC (carbide-derived carbon) film on the fiber surface. The CDC-coated SiC fibers were then reacted with trimethylborate vapor and ammonia vapor at high temperature, forming BN coatings by carbothermal reduction. The FT-IR, XPS, XRD, SEM, TEM and AES were used to investigate the formation of the obtained coatings. It has been found that the obtained coatings are composed of phase mixture of h-BN and amorphous carbon, very uniform in thickness, have smooth surface and adhere well with the SiC fiber substrates. The BN-coated SiC fibers retain ∼80% strength of the as-received SiC fibers and show an obvious interfacial debonding and fiber pullout in the SiC{sub f}/SiOC composites. This method may be useful for the large scale production of high quality BN coating on silicon carbide fiber.

  2. Improved green-light-emitting pyrotechnic formulations based on tris(2,2,2-trinitroethyl)borate and boron carbide.

    Science.gov (United States)

    Klapötke, Thomas M; Krumm, Burkhard; Rusan, Magdalena; Sabatini, Jesse J

    2014-08-28

    Green-light-emitting pyrotechnic compositions based on tris(2,2,2-trinitroethyl)borate (TNEB) and boron carbide have been investigated. The best performing formulations were found to be insensitive to various ignition stimuli, and exhibited very high spectral purities and luminosities compared to previously reported green-light-emitting formulations.

  3. High-pressure phase transition makes B4.3C boron carbide a wide-gap semiconductor.

    Science.gov (United States)

    Hushur, Anwar; Manghnani, Murli H; Werheit, Helmut; Dera, Przemyslaw; Williams, Quentin

    2016-02-03

    Single-crystal B4.3C boron carbide is investigated through the pressure-dependence and inter-relation of atomic distances, optical properties and Raman-active phonons up to ~70 GPa. The anomalous pressure evolution of the gap width to higher energies is striking. This is obtained from observations of transparency, which most rapidly increases around 55 GPa. Full visible optical transparency is approached at pressures of  >60 GPa indicating that the band gap reaches ~3.5 eV; at high pressure, boron carbide is a wide-gap semiconductor. The reason is that the high concentration of structural defects controlling the electronic properties of boron carbide at ambient conditions initially decreases and finally vanishes at high pressures. The structural parameters and Raman-active phonons indicate a pressure-dependent phase transition in single-crystal (nat)B4.3C boron carbide near 40 GPa, likely related to structural changes in the C-B-C chains, while the basic icosahedral structure appears to be less affected.

  4. Boron carbide-based coatings on graphite for plasma facing components

    International Nuclear Information System (INIS)

    Valentine, P.G.; Trester, P.W.; Winter, J.; Linke, J.; Duwe, R.; Wallura, E.; Philipps, V.

    1994-01-01

    In the effort to evaluate boron-rich coatings as plasma facing surfaces in fusion devices, a new process for applying boron carbide (B 4 C) coatings to graphite was developed. The process entails eutectic melting of the carbon (C) substrate surface with a precursor layer of B 4 C particles. Adherent coatings were achieved which consisted of two layers: a surface layer and a graded penetration zone in the outer portion of the substrate. The surface-layer microstructure was multiphase and ranged from reaction-sintered structures of sintered B 4 C particles in an eutectic-formed matrix to that of hypereutectic carbon particles in a B 4 C-C eutectic matrix. Because of high surface energy, the coating generally developed a nonuniform thickness. Quantitative evaluations of the coating were performed with limiters in the TEXTOR fusion device and with coupons in electron beam tests. Test results revealed the following: good adherence of the coating even after remelting; and, during remelting, diagnostics detected a corresponding interaction of boron with the plasma

  5. Lightweight graphene nanoplatelet/boron carbide composite with high EMI shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Yongqiang Tan

    2016-03-01

    Full Text Available Lightweight graphene nanoplatelet (GNP/boron carbide (B4C composites were prepared and the effect of GNPs loading on the electromagnetic interference (EMI shielding effectiveness (SE has been evaluated in the X-band frequency range. Results have shown that the EMI SE of GNP/B4C composite increases with increasing the GNPs loading. An EMI SE as high as 37 ∼ 39 dB has been achieved in composite with 5 vol% GNPs. The high EMI SE is mainly attributed to the high electrical conductivity, high dielectric loss as well as multiple reflections by aligned GNPs inside the composite. The GNP/B4C composite is demonstrated to be promising candidate of high-temperature microwave EMI shielding material.

  6. Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum

    Science.gov (United States)

    Jackson, Colleen; Smith, Graham T.; Inwood, David W.; Leach, Andrew S.; Whalley, Penny S.; Callisti, Mauro; Polcar, Tomas; Russell, Andrea E.; Levecque, Pieter; Kramer, Denis

    2017-06-01

    Catalysing the reduction of oxygen in acidic media is a standing challenge. Although activity of platinum, the most active metal, can be substantially improved by alloying, alloy stability remains a concern. Here we report that platinum nanoparticles supported on graphite-rich boron carbide show a 50-100% increase in activity in acidic media and improved cycle stability compared to commercial carbon supported platinum nanoparticles. Transmission electron microscopy and x-ray absorption fine structure analysis confirm similar platinum nanoparticle shapes, sizes, lattice parameters, and cluster packing on both supports, while x-ray photoelectron and absorption spectroscopy demonstrate a change in electronic structure. This shows that purely electronic metal-support interactions can significantly improve oxygen reduction activity without inducing shape, alloying or strain effects and without compromising stability. Optimizing the electronic interaction between the catalyst and support is, therefore, a promising approach for advanced electrocatalysts where optimizing the catalytic nanoparticles themselves is constrained by other concerns.

  7. Enhanced mechanical properties of nanocrystalline boron carbide by nanoporosity and interface phases.

    Science.gov (United States)

    Madhav Reddy, K; Guo, J J; Shinoda, Y; Fujita, T; Hirata, A; Singh, J P; McCauley, J W; Chen, M W

    2012-01-01

    Ceramics typically have very high hardness, but low toughness and plasticity. Besides intrinsic brittleness associated with rigid covalent or ionic bonds, porosity and interface phases are the foremost characteristics that lead to their failure at low stress levels in a brittle manner. Here we show that, in contrast to the conventional wisdom that these features are adverse factors in mechanical properties of ceramics, the compression strength, plasticity and toughness of nanocrystalline boron carbide can be noticeably improved by introducing nanoporosity and weak amorphous carbon at grain boundaries. Transmission electron microscopy reveals that the unusual nanosize effect arises from the deformation-induced elimination of nanoporosity mediated by grain boundary sliding with the assistance of the soft grain boundary phases. This study has important implications in developing high-performance ceramics with ultrahigh strength and enhanced plasticity and toughness.

  8. Structural stability of boron carbide under pressure proven by spectroscopic studies up to 73 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Chuvashova, Irina [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth (Germany); Bayerisches Geoinstitut, University of Bayreuth (Germany); Gasharova, Biliana; Mathis, Yves-Laurent [IBPT, Karlsruhe Institute of Technology, Karlsruhe (Germany); Dubrovinsky, Leonid [Bayerisches Geoinstitut, University of Bayreuth (Germany); Dubrovinskaia, Natalia [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth (Germany)

    2017-11-17

    Being a material of choice for lightweight armor applications, boron carbide has been intensively studied. Its behavior under pressure was investigated using both theoretical and experimental methods, such as powder X-ray diffraction and vibrational spectroscopy. As there is a discrepancy in experimental observations, in the presented work we studied vibrational properties of commercially available, ''nearly stoichiometric'' B{sub 4}C using IR and Raman spectroscopy up to 73 GPa. No phase transitions were found in the entire pressure range. Our results are at odds with the recent report of a phase transition in B{sub 4.3}C at about 40 GPa. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Pressure dependence of the refractive index of diamond, cubic silicon carbide and cubic boron nitride

    Science.gov (United States)

    Balzaretti, N. M.; da Jornada, J. A. H.

    1996-09-01

    The pressure dependence of the refractive index of diamond, cubic boron nitride and cubic silicon carbide, was measured up to 9 GPa by an interferometric method using the diamond anvil cell. A least-square fit yields the following values for ( {1}/{n}) ( {dn }/{dP }): - 3.6 × 10 -4GPa -1 for diamond, -3.2 × 10 -4GPa -1 for c-BN and, for 3CSiC, -8.3 × 10 -4GPa -1. These results were used to investigate, for the first time under pressure, general empirical relationships between refractive index and energy gap found in the literature. The volume dependence of the electronic polarizability, α, of these compounds was determined through the Lorentz-Lorenz approach. The obtained linear behavior of α for the three cases was correlated to previous results for the pressure dependence of the transverse effective charge, e T∗.

  10. New insights into the enigma of boron carbide inverse molecular behavior

    Science.gov (United States)

    Dera, Przemyslaw; Manghnani, Murli H.; Hushur, Anwar; Hu, Yi; Tkachev, Sergey

    2014-07-01

    Equation of state and compression mechanism of nearly stoichiometric boron carbide B4C were investigated using diamond anvil cell single crystal synchrotron X-ray diffraction technique up to a maximum quasi-hydrostatic pressure of 74.0(1) GPa in neon pressure transmitting medium at ambient temperature. No signatures of structural phase transitions were observed on compression. Crystal structure refinements indicate that the icosahedral units are less compressible (13% volume reduction at 60 GPa) than the unit cell volume (18% volume reduction at 60 GPa), contrary to expectations based on the inverse molecular behavior hypothesis, but consistent with spectroscopic evidence and first principles calculations. The high-pressure crystallographic refinements reveal that the nature of the chemical bonds (two, versus three centered character) has marginal effect on the bond compressibility and the compression of the crystal is mainly governed by the force transfer between the rigid icosahedral structural units.

  11. Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum.

    Science.gov (United States)

    Jackson, Colleen; Smith, Graham T; Inwood, David W; Leach, Andrew S; Whalley, Penny S; Callisti, Mauro; Polcar, Tomas; Russell, Andrea E; Levecque, Pieter; Kramer, Denis

    2017-06-22

    Catalysing the reduction of oxygen in acidic media is a standing challenge. Although activity of platinum, the most active metal, can be substantially improved by alloying, alloy stability remains a concern. Here we report that platinum nanoparticles supported on graphite-rich boron carbide show a 50-100% increase in activity in acidic media and improved cycle stability compared to commercial carbon supported platinum nanoparticles. Transmission electron microscopy and x-ray absorption fine structure analysis confirm similar platinum nanoparticle shapes, sizes, lattice parameters, and cluster packing on both supports, while x-ray photoelectron and absorption spectroscopy demonstrate a change in electronic structure. This shows that purely electronic metal-support interactions can significantly improve oxygen reduction activity without inducing shape, alloying or strain effects and without compromising stability. Optimizing the electronic interaction between the catalyst and support is, therefore, a promising approach for advanced electrocatalysts where optimizing the catalytic nanoparticles themselves is constrained by other concerns.

  12. Prediction of superstrong τ-boron carbide phase from quantum mechanics

    Science.gov (United States)

    An, Qi

    2017-03-01

    Searching for ultrahard materials is of great interest in scientific research and for industrial applications. Boron carbide (B4C ) is one of the hardest known materials, but its Vickers hardness (30 GPa) is much less than diamond (115 GPa) and cubic boron nitride (48 GPa). A new B4C phase with twinlike character, denoted as τ -B4C , is characterized using density functional theory. This τ -B4C is based on the Cmcm orthorhombic space group and is slightly less stable than the known rhombohedral B4C (R -B4C ) by 3.87 meV /B4C . Resulting shear deformation along the least stress slip system shows that τ -B4C has an ideal shear strength of 45.1 GPa, which is 15.6% higher than R -B4C , suggesting that τ -B4C is much stronger than R -B4C . However, under biaxial shear deformation to mimic indentation stress conditions, the critical shear stress for τ -B4C is 28.8 GPa, which is similar to that of R -B4C (28.5 GPa), indicating that the intrinsic hardness is similar for these two phases. The failure mechanism of the τ -B4C is the deconstruction of the icosahedra arising from the B-C bond breaking within the icosahedron. It may be worth exploring how to synthesize τ -B4C experimentally because of its high strength.

  13. Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively.

    Science.gov (United States)

    Yang, Tao; Zhang, Liqin; Hou, Xinmei; Chen, Junhong; Chou, Kuo-Chih

    2016-04-25

    Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) were used to characterize SiC and boron-doped SiC NWs. As for the electrochemical behavior of both SiC NWs electrode, the cyclic voltammetric results show that both SiC electrodes exhibit wide potential window and excellent electrocatalytic activity toward nitrite oxidation. Differential pulse voltammetry (DPV) determination reveals that there exists a good linear relationship between the oxidation peak current and the concentration in the range of 50-15000 μmoL L(-1) (cubic SiC NWs) and 5-8000 μmoL L(-1) (B-doped cubic SiC NWs) with the detection limitation of 5 and 0.5 μmoL L(-1) respectively. Compared with previously reported results, both as-prepared nitrite sensors exhibit wider linear response range with comparable high sensitivity, high stability and reproducibility.

  14. Design of boron carbide-shielded irradiation channel of the outer irradiation channel of the Ghana Research Reactor-1 using MCNP.

    Science.gov (United States)

    Abrefah, R G; Sogbadji, R B M; Ampomah-Amoako, E; Birikorang, S A; Odoi, H C; Nyarko, B J B

    2011-01-01

    The MCNP model for the Ghana Research Reactor-1 was redesigned to incorporate a boron carbide-shielded irradiation channel in one of the outer irradiation channels. Extensive investigations were made before arriving at the final design of only one boron carbide covered outer irradiation channel; as all the other designs that were considered did not give desirable results of neutronic performance. The concept of redesigning a new MCNP model, which has a boron carbide-shielded channel is to equip the Ghana Research Reactor-1 with the means of performing efficient epithermal neutron activation analysis. After the simulation, a comparison of the results from the original MCNP model for the Ghana Research Reactor-1 and the new redesigned model of the boron carbide shielded channel was made. The final effective criticality of the original MCNP model for the GHARR-1 was recorded as 1.00402 while that of the new boron carbide designed model was recorded as 1.00282. Also, a final prompt neutron lifetime of 1.5245 × 10(-4)s was recorded for the new boron carbide designed model while a value of 1.5571 × 10(-7)s was recorded for the original MCNP design of the GHARR-1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Growth and Physical Structure of Amorphous Boron Carbide Deposited by Magnetron Sputtering on a Silicon Substrate with a Titanium Interlayer

    Directory of Open Access Journals (Sweden)

    Roberto Caniello

    2013-01-01

    Full Text Available Multilayer amorphous boron carbide coatings were produced by radiofrequency magnetron sputtering on silicon substrates. To improve the adhesion, titanium interlayers with different thickness were interposed between the substrate and the coating. Above three hundreds nanometer, the enhanced roughness of the titanium led to the growth of an amorphous boron carbide with a dense and continuing columnar structure, and no delamination effect was observed. Correspondingly, the adhesion of the coating became three time stronger than in the case of a bare silicon substrate. Physical structure and microstructural proprieties of the coatings were investigated by means of a scan electron microscopy, atomic force microscopy and X-ray diffraction. The adhesion of the films was measured by a scratch tester.

  16. Investigation of thickness dependent composition of boron carbide thin films by resonant soft x-ray reflectivity

    OpenAIRE

    Rao, P. N.; Gupta, R. K.; Saravanan, K.; Bose, A.; Joshi, S. C.; Ganguli, T.; Rai, S. K.

    2017-01-01

    Boron carbide thin films of different thicknesses deposited by ion beam sputtering were studied. The deposited films were characterized by grazing incidence hard x-ray reflectivity (GIXR), resonant soft x-ray reflectivity (RSXR), x-ray photo electron spectroscopy (XPS), resonant Rutherford backscattering spectrometry (RRBS), and time of flight secondary ion mass spectrometry (TOF-SIMS). An in-depth profile of the chemical elements constitute the films is reconstructed based on analysis of ref...

  17. Boron carbide, B13-xC2-y (x = 0.12, y = 0.01)

    Science.gov (United States)

    Sologub, Oksana; Michiue, Yuichi; Mori, Takao

    2012-01-01

    Boron carbide phases exist over a widely varying compos­itional range B12+xC3-x (0.06 x Boron icosa­hedra are inter­connected by C atoms via their BEq atoms, forming layers parallel to (001), while the B12 units of the adjacent layers are linked through inter­icosa­hedral BP—BP bonds. The unique B atom (BC) connects the two C atoms of adjacent layers, forming a C—B—C chain along [001]. Depending on the carbon concentration, the carbon and BP sites exhibit mixed B/C occupancies to varying degrees; besides, the BC site shows partial occupancy. The decrease in carbon content was reported to be realized via an increasing number of chainless unit cells. On the basis of X-ray single-crystal refinement, we have concluded that the unit cell of the given boron-rich crystal contains following structural units: [B12] and [B11C] icosa­hedra (about 96 and 4%, respectively) and C—B—C chains (87%). Besides, there is a fraction of unit cells (13%) with the B atom located against the triangular face of a neighboring icosa­hedron formed by BEq (B2) thus rendering the formula B0.87(B0.98C0.02)12(B0.13C0.87)2 for the current boron carbide crystal. PMID:22904703

  18. Boron carbide, B(13-x)C(2-y) (x = 0.12, y = 0.01).

    Science.gov (United States)

    Sologub, Oksana; Michiue, Yuichi; Mori, Takao

    2012-08-01

    Boron carbide phases exist over a widely varying compos-itional range B(12+x)C(3-x) (0.06 x Boron icosa-hedra are inter-connected by C atoms via their B(Eq) atoms, forming layers parallel to (001), while the B(12) units of the adjacent layers are linked through inter-icosa-hedral B(P)-B(P) bonds. The unique B atom (B(C)) connects the two C atoms of adjacent layers, forming a C-B-C chain along [001]. Depending on the carbon concentration, the carbon and B(P) sites exhibit mixed B/C occupancies to varying degrees; besides, the B(C) site shows partial occupancy. The decrease in carbon content was reported to be realized via an increasing number of chainless unit cells. On the basis of X-ray single-crystal refinement, we have concluded that the unit cell of the given boron-rich crystal contains following structural units: [B(12)] and [B(11)C] icosa-hedra (about 96 and 4%, respectively) and C-B-C chains (87%). Besides, there is a fraction of unit cells (13%) with the B atom located against the triangular face of a neighboring icosa-hedron formed by B(Eq) (B2) thus rendering the formula B(0.87)(B(0.98)C(0.02))(12)(B(0.13)C(0.87))(2) for the current boron carbide crystal.

  19. Surface impurity removal from DIII-D graphite tiles by boron carbide grit blasting

    International Nuclear Information System (INIS)

    Lee, R.L.; Hollerbach, M.A.; Holtrop, K.L.; Kellman, A.G.; Taylor, P.L.; West, W.P.

    1993-11-01

    During the latter half of 1992, the DIII-D tokamak at General Atomics (GA) underwent several modifications of its interior. One of the major tasks involved the removal of accumulated metallic impurities from the surface of the graphite tiles used to line the plasma facing surfaces inside of the tokamak. Approximately 1500 graphite tiles and 100 boron nitride tiles from the tokamak were cleaned to remove the metallic impurities. The cleaning process consisted of several steps: the removed graphite tiles were permanently marked, surface blasted using boron carbide (B 4 C) grit media (approximately 37 μm. diam.), ultrasonically cleaned in ethanol to remove loose dust, and outgassed at 1000 degrees C. Tests were done using, graphite samples and different grit blaster settings to determine the optimum propellant and abrasive media pressures to remove a graphite layer approximately 40-50 μm deep and yet produce a reasonably smooth finish. EDX measurements revealed that the blasting technique reduced the surface Ni, Cr, and Fe impurity levels to those of virgin graphite. In addition to the surface impurity removal, tritium monitoring was performed throughout the cleaning process. A bubbler system was set up to monitor the tritium level in the exhaust gas from the grit blaster unit. Surface wipes were also performed on over 10% of the tiles. Typical surface tritium concentrations of the tiles were reduced from about 500 dpm/100 cm 2 to less than 80 dpm/100 cm 2 following the cleaning. This tile conditioning, and the installation of additional graphite tiles to cover a high fraction of the metallic plasma facing surfaces, has substantially reduced metallic impurities in the plasma discharges which has allowed rapid recovery from a seven-month machine opening and regimes of enhanced plasma energy confinement to be more readily obtained. Safety issues concerning blaster operator exposure to carcinogenic metals and radioactive tritium will also be addressed

  20. THE EFFECT OF TEMPERATURE AND MAGNESIUM SIZE ON LOW TEMPERATURE MAGNESIOTHERMIC SYNTHESIS OF NANO STRUCTURES BORON CARBIDE BY MESOPOROUS CARBON (CMK-1

    Directory of Open Access Journals (Sweden)

    P. Amin

    2016-09-01

    Full Text Available In this study, Boron carbide was synthesized using Mesoporous Carbon CMK-1, Boron oxide, and magnesiothermic reduction process. The Effects of temperature and magnesium grain size on the formation of boron carbide were studied using nano composite precurser containg mesoporous carbon. Samples were leached in 2M Hydrochloric acid to separate Mg, MgO and magnesium-borat phases. SEM, XRD and Xray map analysis were caried out on the leached samples to characterize the  boron carbide. results showed that the reaction efficiency developed in samples with weight ratio of B2O3:C:Mg = 11:1.5:12, by increasing the temperature from 550 to 650 °C and magnesium powder size from 0.3 m to 3 m.

  1. Optical constants of magnetron-sputtered boron carbide thin films from photoabsorption data in the range 30 to 770 eV.

    Science.gov (United States)

    Soufli, Regina; Aquila, Andrew L; Salmassi, Farhad; Fernández-Perea, Mónica; Gullikson, Eric M

    2008-09-01

    This work discusses the experimental determination of the optical constants (refractive index) of DC-magnetron-sputtered boron carbide films in the 30-770 eV photon energy range. Transmittance measurements of three boron carbide films with thicknesses of 54.2, 79.0, and 112.5 nm were performed for this purpose. These are believed to be the first published experimental data for the refractive index of boron carbide films in the photon energy range above 160 eV and for the near-edge x-ray absorption fine structure regions around the boron K (188 eV), carbon K (284.2 eV), and oxygen K (543.1 eV) absorption edges. The density, composition, surface chemistry, and morphology of the films were also investigated using Rutherford backscattering, x-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and extreme ultraviolet reflectance measurements.

  2. Improvements of Thermal, Mechanical, and Water-Resistance Properties of Polybenzoxazine/Boron Carbide Nanocomposites

    Science.gov (United States)

    Ramdani, Noureddine; Derradji, Mehdi; Wang, Jun; Mokhnache, El-Oualid; Liu, Wen-Bin

    2016-09-01

    Novel kinds of nanocomposites based on bisphenol A-aniline based polybenzoxazine matrix P(BA-a) and 0 wt.%-20 wt.% boron carbide (B4C) nanoparticles were produced and their properties were evaluated in terms of the nano-B4C content. The thermal conductivity of the P(BA-a) matrix was improved approximately three times from 0.18 W/m K to 0.86 W/m K at 20 wt.% nano-B4C loading, while its coefficient of thermal expansion (CTE) was deceased by 47% with the same nanofiller content. The microhardness properties were significantly improved by adding the B4C nanoparticles. At 20 wt.% of nano-B4C content, dynamic mechanical analysis (DMA) revealed a marked increase in the storage modulus and the glass transition temperature ( T g) of the nanocomposites, reaching 3.9 GPa and 204°C, respectively. Hot water uptake tests showed that the water-resistance of the polybenzoxazine matrix was increased by filling with nano-B4C nano-filler. The morphological analysis reflected that the improvements obtained in the mechanical and thermal properties are related to the uniform dispersion of the nano-B4C particles and their strong adhesion to the P(BA-a) matrix.

  3. Neutron shielding behavior of thermoplastic natural rubber/boron carbide composites

    Science.gov (United States)

    Mat Zali, Nurazila; Yazid, Hafizal; Megat Ahmad, Megat Harun Al Rashid

    2018-01-01

    Many shielding materials have been designed against the harm of different types of radiation to the human body. Today, polymer-based lightweight composites have been chosen by the radiation protection industry. In the present study, thermoplastic natural rubber (TPNR) composites with different weight percent of boron carbide (B4C) fillers (0% to 30%) were fabricated as neutron shielding through melt blending method. Neutron attenuation properties of TPNR/B4C composites have been investigated. The macroscopic cross section (Σ), half value layer (HVL) and mean free path length (λ) of the composites have been calculated and the transmission curves have been plotted. The obtained results show that Σ, HVL and λ greatly depend on the B4C content. Addition of B4C fillers into TPNR matrix were found to enhance the macroscopic cross section values thus decrease the mean free path length (λ) and half value layer (HVL) of the composites. The transmission curves exhibited that the neutron transmission of the composites decreased with increasing shielding thickness. These results showed that TPNR/B4C composites have high potential for neutron shielding applications.

  4. Characterizing the Effect of Laser Power on Laser Metal Deposited Titanium Alloy and Boron Carbide

    Science.gov (United States)

    Akinlabi, E. T.; Erinosho, M. F.

    2017-11-01

    Titanium alloy has gained acceptance in the aerospace, marine, chemical, and other related industries due to its excellent combination of mechanical and corrosion properties. In order to augment its properties, a hard ceramic, boron carbide has been laser cladded with it at varying laser powers between 0.8 and 2.4 kW. This paper presents the effect of laser power on the laser deposited Ti6Al4V-B4C composites through the evolving microstructures and microhardness. The microstructures of the composites exhibit the formation of α-Ti phase and β-Ti phase and were elongated towards the heat affected zone. These phases were terminated at the fusion zone and globular microstructures were found growing epitaxially just immediately after the fusion zone. Good bondings were formed in all the deposited composites. Sample A1 deposited at a laser power of 0.8 kW and scanning speed of 1 m/min exhibits the highest hardness of HV 432 ± 27, while sample A4 deposited at a laser power of 2.0 kW and scanning speed of 1 m/min displays the lowest hardness of HV 360 ± 18. From the hardness results obtained, ceramic B4C has improved the mechanical properties of the primary alloy.

  5. Phase transitions of boron carbide: Pair interaction model of high carbon limit

    Science.gov (United States)

    Yao, Sanxi; Huhn, W. P.; Widom, M.

    2015-09-01

    Boron Carbide exhibits a broad composition range, implying a degree of intrinsic substitutional disorder. While the observed phase has rhombohedral symmetry (space group R 3 bar m), the enthalpy minimizing structure has lower, monoclinic, symmetry (space group Cm). The crystallographic primitive cell consists of a 12-atom icosahedron placed at the vertex of a rhombohedral lattice, together with a 3-atom chain along the 3-fold axis. In the limit of high carbon content, approaching 20% carbon, the icosahedra are usually of type B11 Cp, where the p indicates the carbon resides on a polar site, while the chains are of type C-B-C. We establish an atomic interaction model for this composition limit, fit to density functional theory total energies, that allows us to investigate the substitutional disorder using Monte Carlo simulations augmented by multiple histogram analysis. We find that the low temperature monoclinic Cm structure disorders through a pair of phase transitions, first via a 3-state Potts-like transition to space group R3m, then via an Ising-like transition to the experimentally observed R 3 bar m symmetry. The R3m and Cm phases are electrically polarized, while the high temperature R 3 bar m phase is nonpolar.

  6. The improvement of wave-absorbing ability of silicon carbide fibers by depositing boron nitride coating

    Science.gov (United States)

    Ye, Fang; Zhang, Litong; Yin, Xiaowei; Liu, Yongsheng; Cheng, Laifei

    2013-04-01

    This work investigated electromagnetic wave (EMW) absorption and mechanical properties of silicon carbide (SiC) fibers with and without boron nitride (BN) coating by chemical vapor infiltration (CVI). The dielectric property and EM shielding effectiveness of SiC fiber bundles before and after being coated by BN were measured by wave guide method. The EM reflection coefficient of SiC fiber laminates with and without BN coating was determined by model calculation and NRL-arc method, respectively. Tensile properties of SiC fiber bundles with and without BN coating were tested at room temperature. Results show that SiC fibers with BN coating had a great improvement of EMW absorbing property because the composites achieved the impedance matching. BN with the low permittivity and dielectric loss contributed to the enhancive introduction and reduced reflection of EMW. The tensile strength and Weibull modulus of SiC fiber bundles coated by BN increased owing to the decrease of defects in SiC fibers and the protection of coating during loading.

  7. Direct deposition of cubic boron nitride films on tungsten carbide-cobalt.

    Science.gov (United States)

    Teii, Kungen; Matsumoto, Seiichiro

    2012-10-24

    Thick cubic boron nitride (cBN) films in micrometer-scale are deposited on tungsten carbide-cobalt (WC-Co) substrates without adhesion interlayers by inductively coupled plasma-enhanced chemical vapor deposition (ICP-CVD) using the chemistry of fluorine. The residual film stress is reduced because of very low ion-impact energies (a few eV to ∼25 eV) controlled by the plasma sheath potential. Two types of substrate pretreatment are used successively; the removal of surface Co binder using an acid solution suppresses the catalytic effect of Co and triggers cBN formation, and the surface roughening using mechanical scratching and hydrogen plasma etching increases both the in-depth cBN fraction and deposition rate. The substrate surface condition is evaluated by the wettability of the probe liquids with different polarities and quantified by the apparent surface free energy calculated from the contact angle. The surface roughening enhances the compatibility in energy between the cBN and substrate, which are bridged by the interfacial sp(2)-bonded hexagonal BN buffer layer, and then, the cBN overlayer is nucleated and evolved easier.

  8. Non-catalytic facile synthesis of superhard phase of boron carbide (B13C2) nanoflakes and nanoparticles.

    Science.gov (United States)

    Xie, Sky Shumao; Su, Liap Tat; Guo, Jun; Vasylkiv, Oleg; Borodianska, Hanna; Xi, Zhu; Krishnan, Gireesh M; Su, Haibin; Tokl, Alfred I Y

    2012-01-01

    Boron Carbide is one the hardest and lightest material that is also relatively easier to synthesis as compared to other superhard ceramics like cubic boron nitride and diamond. However, the brittle nature of monolithic advanced ceramics material hinders its use in various engineering applications. Thus, strategies that can toughen the material are of fundamental and technological importance. One approach is to use nanostructure materials as building blocks, and organize them into a complex hierarchical structure, which could potentially enhance its mechanical properties to exceed that of the monolithic form. In this paper, we demonstrated a simple approach to synthesize one- and two-dimension nanostructure boron carbide by simply changing the mixing ratio of the initial compound to influence the saturation condition of the process at a relatively low temperature of 1500 degrees C with no catalyst involved in the growing process. Characterization of the resulting nano-structures shows B13C2, which is a superhard phase of boron carbide as its hardness is almost twice as hard as the commonly known B4C. Using ab-initio density functional theory study on the elastic properties of both B12C3 and B13C2, the high hardness of B13C2 is consistent to our calculation results, where bulk modulus of B13C2 is higher than that of B4C. High resolution transmission electron microscopy of the nanoflakes also reveals high density of twinning defects which could potentially inhibit the crack propagation, leading to toughening of the materials.

  9. Investigation of wear and tool life of coated carbide and cubic boron nitride cutting tools in high speed milling

    Directory of Open Access Journals (Sweden)

    Pawel Twardowski

    2015-06-01

    Full Text Available The objective of the investigation was analysis of the wear of milling cutters made of sintered carbide and of boron nitride. The article presents the life period of the cutting edges and describes industrial conditions of the applicability of tools made of the materials under investigation. Tests have been performed on modern toroidal and ball-end mill cutters. The study has been performed within a production facility in the technology of high speed machining of 55NiCrMoV6 and X153CrMoV12 hardened steel. The analysed cutting speed is a parameter which significantly influences the intensity of heat generated in the cutting zone. Due to the wear characteristics, two areas of applicability of the analysed tools have been distinguished. For vc  ≤ 300 m/min, sintered carbide edges are recommended; for vc  > 500 m/min, boron nitride edges. For 300 ≤ vc  ≤ 500 m/min, a transition area has been observed. It has been proved that the application of sintered carbide edges is not economically justified above certain cutting speed.

  10. Hydrothermal development and characterization of the wear-resistant boron carbide from Pandanus: a natural carbon precursor

    Science.gov (United States)

    Saritha Devi, H. V.; Swapna, M. S.; Ambadas, G.; Sankararaman, S.

    2018-04-01

    Boron carbide (B4C) is a prominent semiconducting material that finds applications in the field of science and technology. The excellent physical, thermal and electronic properties make it suitable as ceramic armor, wear-resistant, lens polisher and neutron absorber in the nuclear industry. The existing methods of synthesis of boron carbide involve the use of toxic chemicals that adversely affect the environment. In the present work, we report for the first time the use of the hydrothermal method, for converting the cellulose from Pandanus leaves as the carbon precursor for the synthesis of B4C. The carbon precursor is changed into porous functionalized carbon by treating with sodium borohydride (NaBH4), followed by treating with boric acid to obtain B4C. The samples are characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared, Raman, photoluminescent and Ultraviolet-Visible absorption spectroscopy. The formation of B4C from natural carbon source— Pandanus presents an eco-friendly, economic and non-toxic approach for the synthesis of refractory carbides.

  11. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ULTRAFINE WC/Co CEMENTED CARBIDES WITH CUBIC BORON NITRIDE AND Cr₃C₂ ADDITIONS

    Directory of Open Access Journals (Sweden)

    Genrong Zhang

    2016-03-01

    Full Text Available This study investigates the microstructure and mechanical properties of ultrafine tungsten carbide and cobalt (WC/Co cemented carbides with cubic boron nitride (CBN and chromium carbide (Cr₃C₂ fabricated by a hot pressing sintering process. This study uses samples with 8 wt% Co content and 7.5 vol% CBN content, and with different Cr₃C₂ content ranging from 0 to 0.30 wt%. Based on the experimental results, Cr₃C₂ content has a significant influence on inhibiting abnormal grain growth and decreasing grain size in cemented carbides. Near-full densification is possible when CBN-WC/Co with 0.25 wt% Cr₃C₂ is sintered at 1350°C and 20 MPa; the resulting material possesses optimal mechanical properties and density, with an acceptable Vickers hardness of 19.20 GPa, fracture toughness of 8.47 MPa.m1/2 and flexural strength of 564 MPa.u̇ Å k⃗

  12. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Sathiskumar, R., E-mail: sathiscit2011@gmail.com [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Murugan, N., E-mail: murugan@cit.edu.in [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering, V V College of Engineering, Tisaiyanvilai, 627 657 Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph@karunya.edu [Centre for Research in Metallurgy (CRM), School of Mechanical Sciences, Karunya University, Coimbatore, 641 114 Tamil Nadu (India)

    2013-10-15

    Friction stir processing has evolved as a novel solid state technique to fabricate surface composites. The objective of this work is to apply the friction stir processing technique to fabricate boron carbide particulate reinforced copper surface composites and investigate the effect of B{sub 4}C particles and its volume fraction on microstructure and sliding wear behavior of the same. A groove was prepared on 6 mm thick copper plates and packed with B{sub 4}C particles. The dimensions of the groove was varied to result in five different volume fractions of B{sub 4}C particles (0, 6, 12, 18 and 24 vol.%). A single pass friction stir processing was done using a tool rotational speed of 1000 rpm, travel speed of 40 mm/min and an axial force of 10 kN. Metallurgical characterization of the Cu/B{sub 4}C surface composites was carried out using optical microscope and scanning electron microscope. The sliding wear behavior was evaluated using a pin-on-disk apparatus. Results indicated that the B{sub 4}C particles significantly influenced the area, dispersion, grain size, microhardness and sliding wear behavior of the Cu/B{sub 4}C surface composites. When the volume fraction of B{sub 4}C was increased, the wear mode changed from microcutting to abrasive wear and wear debris was found to be finer. Highlights: • Fabrication of Cu/B{sub 4}C surface composite by friction stir processing • Analyzing the effect of B{sub 4}C particles on the properties of Cu/B4C surface composite • Increased volume fraction of B{sub 4}C particles reduced the area of surface composite. • Increased volume fraction of B{sub 4}C particles enhanced the microhardness and wear rate. • B{sub 4}C particles altered the wear mode from microcutting to abrasive.

  13. Atomic structure of icosahedral B4C boron carbide from a first principles analysis of NMR spectra.

    Science.gov (United States)

    Mauri, F; Vast, N; Pickard, C J

    2001-08-20

    Density functional theory is demonstrated to reproduce the 13C and 11B NMR chemical shifts of icosahedral boron carbides with sufficient accuracy to extract previously unresolved structural information from experimental NMR spectra. B4C can be viewed as an arrangement of 3-atom linear chains and 12-atom icosahedra. According to our results, all the chains have a CBC structure. Most of the icosahedra have a B11C structure with the C atom placed in a polar site, and a few percent have a B (12) structure or a B10C2 structure with the two C atoms placed in two antipodal polar sites.

  14. Effect of sintering temperature and boron carbide content on the wear behavior of hot pressed diamond cutting segments

    OpenAIRE

    Islak S.; Çelik H.

    2015-01-01

    The aim of this study was to investigate the effect of sintering temperature and boron carbide content on wear behavior of diamond cutting segments. For this purpose, the segments contained 2, 5 and 10 wt.% B4C were prepared by hot pressing process carried out under a pressure of 35 MPa, at 600, 650 and 700 °C for 3 minutes. The transverse rupture strength (TRS) of the segments was assessed using a three-point bending test. Ankara andesite stone was cut to ...

  15. Boron carbide, B13-xC2-y (x = 0.12, y = 0.01

    Directory of Open Access Journals (Sweden)

    Oksana Sologub

    2012-08-01

    Full Text Available Boron carbide phases exist over a widely varying compositional range B12+xC3-x (0.06 < x < 1.7. One idealized structure corresponds to the B13C2 composition (space group R-3m and contains one icosahedral B12 unit and one linear C—B—C chain. The B12 units are composed of crystallographically distinct B atoms BP (polar, B1 and BEq (equatorial, B2. Boron icosahedra are interconnected by C atoms via their BEq atoms, forming layers parallel to (001, while the B12 units of the adjacent layers are linked through intericosahedral BP—BP bonds. The unique B atom (BC connects the two C atoms of adjacent layers, forming a C—B—C chain along [001]. Depending on the carbon concentration, the carbon and BP sites exhibit mixed B/C occupancies to varying degrees; besides, the BC site shows partial occupancy. The decrease in carbon content was reported to be realized via an increasing number of chainless unit cells. On the basis of X-ray single-crystal refinement, we have concluded that the unit cell of the given boron-rich crystal contains following structural units: [B12] and [B11C] icosahedra (about 96 and 4%, respectively and C—B—C chains (87%. Besides, there is a fraction of unit cells (13% with the B atom located against the triangular face of a neighboring icosahedron formed by BEq (B2 thus rendering the formula B0.87(B0.98C0.0212(B0.13C0.872 for the current boron carbide crystal.

  16. Growth of boron doped hydrogenated nanocrystalline cubic silicon carbide (3C-SiC) films by Hot Wire-CVD

    Energy Technology Data Exchange (ETDEWEB)

    Pawbake, Amit [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Mayabadi, Azam; Waykar, Ravindra; Kulkarni, Rupali; Jadhavar, Ashok [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Waman, Vaishali [Modern College of Arts, Science and Commerce, Shivajinagar, Pune 411 005 (India); Parmar, Jayesh [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Bhattacharyya, Somnath [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Ma, Yuan‐Ron [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Devan, Rupesh; Pathan, Habib [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Jadkar, Sandesh, E-mail: sandesh@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-04-15

    Highlights: • Boron doped nc-3C-SiC films prepared by HW-CVD using SiH{sub 4}/CH{sub 4}/B{sub 2}H{sub 6}. • 3C-Si-C films have preferred orientation in (1 1 1) direction. • Introduction of boron into SiC matrix retard the crystallanity in the film structure. • Film large number of SiC nanocrystallites embedded in the a-Si matrix. • Band gap values, E{sub Tauc} and E{sub 04} (E{sub 04} > E{sub Tauc}) decreases with increase in B{sub 2}H{sub 6} flow rate. - Abstract: Boron doped nanocrystalline cubic silicon carbide (3C-SiC) films have been prepared by HW-CVD using silane (SiH{sub 4})/methane (CH{sub 4})/diborane (B{sub 2}H{sub 6}) gas mixture. The influence of boron doping on structural, optical, morphological and electrical properties have been investigated. The formation of 3C-SiC films have been confirmed by low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy and high resolution-transmission electron microscopy (HR-TEM) analysis whereas effective boron doping in nc-3C-SiC have been confirmed by conductivity, charge carrier activation energy, and Hall measurements. Raman spectroscopy and HR-TEM analysis revealed that introduction of boron into the SiC matrix retards the crystallanity in the film structure. The field emission scanning electron microscopy (FE-SEM) and non contact atomic force microscopy (NC-AFM) results signify that 3C-SiC film contain well resolved, large number of silicon carbide (SiC) nanocrystallites embedded in the a-Si matrix having rms surface roughness ∼1.64 nm. Hydrogen content in doped films are found smaller than that of un-doped films. Optical band gap values, E{sub Tauc} and E{sub 04} decreases with increase in B{sub 2}H{sub 6} flow rate.

  17. Influence of Boron Carbide Reinforcement on Mechanical Properties of Aluminum Base Composite Prepared by Stir and Squeeze Casting

    Directory of Open Access Journals (Sweden)

    Zahraa Fadhil

    2017-08-01

    Full Text Available Aluminum metal matrix composites reinforced by ceramic particles have a wide acceptance in engineering applications due to their mechanical and physical properties. The present work aims at investigating the effect of B4C particles ons ome mechanical and physical properties of Al –base matrix. All samples were prepared by two-step stir casting method with squeezing the melt during its solidification. Aluminum metal matrix samples of 2wt%Mg with (0,2,4,and 6wt% ofB4C particles were prepared. The effect of such additions of these particles on hardness, tensile properties were investigated, also the microstructures were analyzed using optical microscopic and (SEM-EDS analysis. The results showed a maximum increase of (53% in Brinel's hardness by adding 6% of boron carbide, while the yield stress, tensile strength and the modulus of elasticity were increased by 11%, 51% , and 51% respectively due to add 4% of boron carbide. The SEM-EDS analyses confirm the presence of B4C particles within the Al-base matrix. The microscopic tests indicated the homogenous dispersion of the addition of 4wt% B4C.

  18. Effect of sintering temperature and boron carbide content on the wear behavior of hot pressed diamond cutting segments

    Directory of Open Access Journals (Sweden)

    Islak S.

    2015-01-01

    Full Text Available The aim of this study was to investigate the effect of sintering temperature and boron carbide content on wear behavior of diamond cutting segments. For this purpose, the segments contained 2, 5 and 10 wt.% B4C were prepared by hot pressing process carried out under a pressure of 35 MPa, at 600, 650 and 700 °C for 3 minutes. The transverse rupture strength (TRS of the segments was assessed using a three-point bending test. Ankara andesite stone was cut to examine the wear behavior of segments with boron carbide. Microstructure, surfaces of wear and fracture of segments were determined by scanning electron microscopy (SEM-EDS, and X-ray diffraction (XRD analysis. As a result, the wear rate decreased significantly in the 0-5 wt.% B4C contents, while it increased in the 5-10 wt.% B4C contents. With increase in sintering temperature, the wear rate decreased due to the hard matrix.

  19. Fabrication and tribological response of aluminium 6061 hybrid composite reinforced with bamboo char and boron carbide micro-fillers

    Science.gov (United States)

    Chethan, K. N.; Pai, Anand; Keni, Laxmikant G.; Singhal, Ashish; Sinha, Shubham

    2018-02-01

    Metal matrix composites (MMCs) have a wide scope of industrial applications and triumph over conventional materials due to their light weight, higher specific strength, good wear resistance and lower coefficient of thermal expansion. The present study aims at establishing the feasibility of using Bamboo charcoal particulate and boron carbide as reinforcements in Al-6061 alloy matrix and to investigate their effect on the wear of composites taking into consideration the interfacial adhesion of the reinforcements in the alloy. Al-6061 alloy was chosen as a base metallic alloy matrix. Sun-dried bamboo canes were used for charcoal preparation with the aid of a muffle furnace. The carbon content in the charcoal samples was determined by EDS (energy dispersive spectroscopy). In present study, stir casting technique was used to prepare the samples with 1%, 2%, and 3% weight of bamboo charcoal and boron carbide with Al-6061. The fabricated composites were homogenised at 570°C for 6 hours and cooled at room temperature. Wear studies were carried out on the specimens with different speed and loads. It was found that wear rate and coefficient of friction decreased with increase in the reinforcement content.

  20. Characterization and evaluation of boron carbide for plate-impact conditions

    International Nuclear Information System (INIS)

    Holmquist, T. J.; Johnson, G. R.

    2006-01-01

    This article addresses the response of boron carbide (B 4 C) to high-velocity impact. The authors previously characterized this material in 1999, using the Johnson-Holmquist [AIP Conf. Proc. 309, 981 (1994)] (JH-2) model. Since then, there have been additional experimental data presented in the literature that better describe the hydrostatic pressure (including a phase change). In addition, a series of plate-impact experiments (one-dimensional, uniaxial strain) that used configurations that produced either a shock, a shock release, or a shock reshock was performed. These experiments provide material behavior regarding the damage, failed strength, and hydrostat for which previously there has been little or no data. Constitutive model constants were obtained for the Johnson-Holmquist-Beissel [J. Appl. Phys. 94, 1639 (2003)] model using some of these plate-impact experiments. Computations of all the experiments were performed and analyzed to better understand the material response. The analysis provided the following findings: (1) The material fails and loses strength when the Hugoniot elastic limit (HEL) is exceeded. (2) The material has significant strength after failure and gradually increases as the pressure increases. (3) The shear modulus does not degrade when the material fails (as has been postulated), but rather increases. (4) When the material is reloaded from an initial shocked (failed) state, the loading appears to be elastic, indicating the material is not on the yield surface after failure. To provide more insight into the behavior of B 4 C, the strength versus pressure response was compared to that of silicon carbide (SiC). The strength of SiC increases as the pressure increases beyond the HEL, probably due to pressure hardening or strain hardening. It appears that B 4 C does not experience any hardening effects and fails at the HEL. Although the HEL for B 4 C is higher than that of SiC, the hardening ability of SiC produces a similar maximum strength

  1. The bulk and interfacial electronic and chemical structure of amorphous hydrogenated boron carbide

    Science.gov (United States)

    Driver, Marcus Sky

    The chemical and electronic structure, as related to the surface, interface and bulk of amorphous hydrogenated boron carbide (a-BxC:H y), is of interest in neutron detection and microelectronics. This dissertation investigates the chemical and electronic structure of semiconducting thin-film a-BxC:Hy grown by plasma enhanced chemical vapor deposition (PECVD) of ortho-carborane (1,2-C2B10H12). Experimental methods used include: x-ray and ultraviolet photoelectron spectroscopies (XPS/UPS) and x-ray absorption/emission spectroscopies (XAS/XES). These methods were used to investigate the chemical species, bonding and hybridizations, and band gaps of a-BxC:Hy prepared or treated under varying conditions. Additionally, a detailed examination of the formation of Schottky barriers was implemented. Throughout this dissertation the chemical structure was studied. One study was to understand various growth conditions. The effects of the PECVD growth parameters were evaluated by comparing changes in atomic percentages (at.%'s) between thin-films from various substrate temperatures. Additionally, detailed studies of the photoelectron core level under two different growth conditions were undertaken to evaluate the effects of pre-/post- argon ion etching (Ar+) for the following: the chemical structural change for both an as grown (AG) and in-situ thermal treatment (500°C), and post Ar+ etch of samples thermally treated ranging from as grown to 850°C. The as grown and in-situ treated samples were used in conjunction to determine the formation of the Schottky barrier. The electronic structure was determined by the changes within the valence band of the thermally treated samples and formation of Schottky barrier. Thermally treated samples (as grown to 850°C) were further evaluated with respect to their occupied and unoccupied electronic states. The atomic percentage gave a stoichiometry range for a-B xC:Hy (given as x=1.5 to 3.0 with y= decreases with thermal treatment and Oz: z

  2. Friction stir surfacing of cast A356 aluminium–silicon alloy with boron carbide and molybdenum disulphide powders

    Directory of Open Access Journals (Sweden)

    R. Srinivasu

    2015-06-01

    Full Text Available Good castability and high strength properties of Al–Si alloys are useful in defence applications like torpedoes, manufacture of Missile bodies, and parts of automobile such as engine cylinders and pistons. Poor wear resistance of the alloys is major limitation for their use. Friction stir processing (FSP is a recognized surfacing technique as it overcomes the problems of fusion route surface modification methods. Keeping in view of the requirement of improving wear resistance of cast aluminium–silicon alloy, friction stir processing was attempted for surface modification with boron carbide (B4C and molybdenum disulfide (MoS2 powders. Metallography, micro compositional analysis, hardness and pin-on-disc wear testing were used for characterizing the surface composite coating. Microscopic study revealed breaking of coarse silicon needles and uniformly distributed carbides in the A356 alloy matrix after FSP. Improvement and uniformity in hardness was obtained in surface composite layer. Higher wear resistance was achieved in friction stir processed coating with carbide powders. Addition of solid lubricant MoS2 powder was found to improve wear resistance of the base metal significantly.

  3. Deterioration of yttria-stabilized zirconia by boron carbide alone or mixed with metallic or oxidized Fe, Cr, Zr mixtures

    Science.gov (United States)

    De Bremaecker, A.; Ayrault, L.; Clément, B.

    2014-08-01

    In the frame of severe accident conditions (PHEBUS FPT3 test), different experiments were carried out on the interactions of 20% yttria-stabilized zirconia (YSZ) and 20% ceria-stab zirconia with boron carbide or its oxidation products (B2O3): either tests under steam between 1230° and 1700 °C with B4C alone or B4C mixed with metals, either tests under Ar with boron oxide present in a mixture of iron and chromium oxides. In all cases an interaction was observed with formation of intergranular yttrium borate. At 1700 °C boron oxide is able to “pump out” the Y stabiliser from the YSZ grains but also some trace elements (Ca and Al) and to form a eutectic containing YBO3 and yttrium calcium oxy-borate (YCOB). At the same time a substantial swelling (“bloating”) of the zirconia happens, qualitatively similar to the foaming of irradiated fuel in contact with a Zr-melt. In all samples the lowering of the Y (or Ce)-content in the YSZ grains is so sharp that in the interaction layers zirconia is no longer stabilized. This is important when YSZ is envisaged as simulant of UO2 or as inert matrix for Am-transmutation.

  4. A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies.

    Science.gov (United States)

    Esrafili, Mehdi D; Behzadi, Hadi

    2013-06-01

    A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.

  5. Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic

    Directory of Open Access Journals (Sweden)

    John D. Clayton

    2014-07-01

    Full Text Available A nonlinear continuum phase field theory is developed to describe amorphization of crystalline elastic solids under shear and/or pressure loading. An order parameter describes the local degree of crystallinity. Elastic coefficients can depend on the order parameter, inelastic volume change may accompany the transition from crystal to amorphous phase, and transitional regions parallel to bands of amorphous material are penalized by interfacial surface energy. Analytical and simple numerical solutions are obtained for an idealized isotropic version of the general theory, for an element of material subjected to compressive and/or shear loading. Solutions compare favorably with experimental evidence and atomic simulations of amorphization in boron carbide, demonstrating the tendency for structural collapse and strength loss with increasing shear deformation and superposed pressure.

  6. High temperature synthesis of ceramic composition by directed reaction of molten titanium or zirconium with boron carbide

    International Nuclear Information System (INIS)

    Johnson, W.B.

    1990-01-01

    Alternative methods of producing ceramics and ceramic composites include sintering, hot pressing and more recently hot isostatic pressing (HIP) and self-propagating high temperature synthesis (SHS). Though each of these techniques has its advantages, each suffers from several restrictions as well. Sintering may require long times at high temperatures and for most materials requires sintering aids to get full density. These additives can, and generally do, change (often degrade) the properties of the ceramic. Hot pressing and hot isostatic pressing are convenient methods to quickly prepare samples of some materials to full density, but generally are expensive and may damage some types of reinforcements during densification. This paper focuses on the preparation and processing of composites prepared by the directed reaction of molten titanium or zirconium with boron carbide. Advantages and disadvantages of this approach when compared to traditional methods are discussed, with reference to specific examples. Examples of microstructure are properties of these materials are reported

  7. Atomistic Origin of Brittle Failure of Boron Carbide from Large-Scale Reactive Dynamics Simulations: Suggestions toward Improved Ductility.

    Science.gov (United States)

    An, Qi; Goddard, William A

    2015-09-04

    Ceramics are strong, but their low fracture toughness prevents extended engineering applications. In particular, boron carbide (B(4)C), the third hardest material in nature, has not been incorporated into many commercial applications because it exhibits anomalous failure when subjected to hypervelocity impact. To determine the atomistic origin of this brittle failure, we performed large-scale (∼200,000  atoms/cell) reactive-molecular-dynamics simulations of shear deformations of B(4)C, using the quantum-mechanics-derived reactive force field simulation. We examined the (0001)/⟨101̅0⟩ slip system related to deformation twinning and the (011̅1̅)/⟨1̅101⟩ slip system related to amorphous band formation. We find that brittle failure in B(4)C arises from formation of higher density amorphous bands due to fracture of the icosahedra, a unique feature of these boron based materials. This leads to negative pressure and cavitation resulting in crack opening. Thus, to design ductile materials based on B(4)C we propose alloying aimed at promoting shear relaxation through intericosahedral slip that avoids icosahedral fracture.

  8. The local physical structure of amorphous hydrogenated boron carbide: insights from magic angle spinning solid-state NMR spectroscopy.

    Science.gov (United States)

    Paquette, Michelle M; Li, Wenjing; Sky Driver, M; Karki, Sudarshan; Caruso, A N; Oyler, Nathan A

    2011-11-02

    Magic angle spinning solid-state nuclear magnetic resonance spectroscopy techniques are applied to the elucidation of the local physical structure of an intermediate product in the plasma-enhanced chemical vapour deposition of thin-film amorphous hydrogenated boron carbide (B(x)C:H(y)) from an orthocarborane precursor. Experimental chemical shifts are compared with theoretical shift predictions from ab initio calculations of model molecular compounds to assign atomic chemical environments, while Lee-Goldburg cross-polarization and heteronuclear recoupling experiments are used to confirm atomic connectivities. A model for the B(x)C:H(y) intermediate is proposed wherein the solid is dominated by predominantly hydrogenated carborane icosahedra that are lightly cross-linked via nonhydrogenated intraicosahedral B atoms, either directly through B-B bonds or through extraicosahedral hydrocarbon chains. While there is no clear evidence for extraicosahedral B aside from boron oxides, ∼40% of the C is found to exist as extraicosahedral hydrocarbon species that are intimately bound within the icosahedral network rather than in segregated phases.

  9. Site-specific electron-induced cross-linking of ortho-carborane to form semiconducting boron carbide

    Science.gov (United States)

    Pasquale, Frank L.; Kelber, Jeffry A.

    2012-01-01

    Semiconducting boron carbide (B10C2Hx) films have been formed by bombardment of condensed ortho-carborane (closo-1,2-dicarbadodecaborane) multilayers on polycrystalline copper substrates by 200 eV electrons under ultra-high vacuum conditions. The film formation process was characterized by X-ray and ultraviolet photoelectron spectroscopies. Electron bombardment results in the cross-linking of the icosahedral units. The cross-linking is accompanied by a shift in the B(1s) binding energy indicating site-specific cross-linking between two boron sites on adjacent carborane icosahedra. An additional shift in valence band binding energies attributed to the surface photovoltage effect is indicative of the formation of a p-type semiconductor. This is the first report of B10C2Hx formation by electron bombardment of condensed films, and the data indicate that this method is a viable route towards formation of ultra-thin films of tailored composition and cross-linkages for emerging nanoelectronics and sensor applications.

  10. Deposition of Multicomponent Chromium Carbide Coatings Using a Non-Conventional Source of Chromium and Silicon with Micro-Additions of Boron

    OpenAIRE

    González Ruíz,Jesús Eduardo; Rodríguez Cristo,Alejandro; Paz Ramos,Adrian; Quintana Puchol,Rafael

    2017-01-01

    The chromium carbide coatings are widely used in the mechanical industry due to its corrosion resistance and mechanical properties. In this work, we evaluated a new source of chromium and silicon with micro-additions of boron on the deposition of multi-component coatings of chromium carbides in W108 steel. The coatings were obtained by the pack cementation method, using a simultaneous deposition at 1000 oC for 4h. The coatings were analyzed by X-ray diffraction, X-ray energy dispersive spectr...

  11. Valence band offset and Schottky barrier at amorphous boron and boron carbide interfaces with silicon and copper

    Science.gov (United States)

    King, Sean W.; French, Marc; Xu, Guanghai; French, Benjamin; Jaehnig, Milt; Bielefeld, Jeff; Brockman, Justin; Kuhn, Markus

    2013-11-01

    In order to understand the fundamental charge transport in a-B:H and a-BX:H (X = C, N, P) compound heterostructure devices, X-ray photoelectron spectroscopy has been utilized to determine the valence band offset and Schottky barrier present at amorphous boron compound interfaces formed with (1 0 0) Si and polished poly-crystalline Cu substrates. For interfaces formed by plasma enhanced chemical vapor deposition of a-B4-5C:H on (1 0 0) Si, relatively small valence band offsets of 0.2 ± 0.2 eV were determined. For a-B:H/Cu interfaces, a more significant Schottky barrier of 0.8 ± 0.16 eV was measured. These results are in contrast to those observed for a-BN:H and BP where more significant band discontinuities (>1-2 eV) were observed for interfaces with Si and Cu.

  12. Deposition of multicomponent chromium carbide coatings using a non-conventional source of chromium and silicon with micro-additions of boron

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Ruiz, Jesus Eduardo, E-mail: jesus.gonzalez@biomat.uh.cu [Biomaterials Center, University of Havana (Cuba); Rodriguez Cristo, Alejandro [Mechanical Plants Company, Road of the Sub-Plan, Farm La Cana, Santa Clara, Villa Clara (Cuba); Ramos, Adrian Paz [Department of Chemistry, Universite de Montreal, Quebec (Canada); Quintana Puchol, Rafael [Welding Research Center, Central University Marta Abreu of Las Villas, Villa Clara (Cuba)

    2017-01-15

    The chromium carbide coatings are widely used in the mechanical industry due to its corrosion resistance and mechanical properties. In this work, we evaluated a new source of chromium and silicon with micro-additions of boron on the deposition of multi-component coatings of chromium carbides in W108 steel. The coatings were obtained by the pack cementation method, using a simultaneous deposition at 1000 deg for 4 hours. The coatings were analyzed by X-ray diffraction, X-ray energy dispersive spectroscopy, optical microscopy, microhardness test method and pin-on-disc wear test. It was found that the coatings formed on W108 steel were mainly constituted by (Cr,Fe){sub 23}C{sub 6} , (Cr,Fe){sub 7} C{sub 3} , Cr{sub 5-x}Si{sub 3-x} C{sub x+z}, Cr{sub 3} B{sub 0,44}C{sub 1,4} and (or) Cr{sub 7} BC{sub 4} . The carbide layers showed thicknesses between 14 and 15 μm and maximum values of microhardness between 15.8 and 18.8 GPa. Also, the micro-additions of boron to the mixtures showed statistically significant influence on the thickness, microhardness and abrasive wear resistance of the carbide coatings. (author)

  13. Alkynyl substituted carboranes as precursors to boron carbide thin films, fibers and composites

    International Nuclear Information System (INIS)

    Johnson, S.E.; Yang, X.; Hawthorne, M.F.; Mackenzie, J.D.; Thorne, K.J.; Zheng, H.

    1992-01-01

    In this paper the use of alkynyl substituted derivatives of o-carborane as precursors to boron containing ceramics is described. These compounds undergo a thermally or photochemically induced polymerization to afford cross linked polyakynyl-o-carborane derivatives. The increase in molecular weight should allow for increased Tg's and the retention of modelled polymer preforms. In this report, these modification reactions are described. In addition, the retention of molded polymer preforms were analyzed after UV exposure and inert atmosphere pyrolysis

  14. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    International Nuclear Information System (INIS)

    Serra, R.; Oliveira, V.; Oliveira, J.C.; Kubart, T.; Vilar, R.; Cavaleiro, A.

    2015-01-01

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm 2 . Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different

  15. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Serra, R., E-mail: ricardo.serra@dem.uc.pt [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Oliveira, V. [ICEMS-Instituto de Ciência e Engenharia de Materiais e Superfícies, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Oliveira, J.C. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Kubart, T. [The Ångström Laboratory, Solid State Electronics, P.O. Box 534, SE-751 21 Uppsala (Sweden); Vilar, R. [Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Instituto Superior Técnico, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal)

    2015-03-15

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm{sup 2}. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under

  16. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation; Oberflaechenmodifikation des Hartmetalls Wolframkarbid-Kobalt durch Bor-Ionenimplantation

    Energy Technology Data Exchange (ETDEWEB)

    Mrotchek, I.

    2007-09-07

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and {approx}5.10{sup 17} ions/cm{sup 2} fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co{sub 3}W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load.

  17. Photoluminescence and Raman Spectroscopy Characterization of Boron- and Nitrogen-Doped 6H Silicon Carbide

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Liu, Chuan

    2012-01-01

    Nitrogen-boron doped 6H-SiC epilayers grown on low off-axis 6H-SiC substrates have been characterized by photoluminescence and Raman spectroscopy. The photoluminescence results show that a doping larger than 1018 cm-3 is favorable to observe the luminescence and addition of nitrogen is resulting...... in an increased luminescence. A dopant concentration difference larger than 4x1018 cm-3 is proposed to achieve intense photoluminescence. Raman spectroscopy further confirmed the doping type and concentrations for the samples. The results indicate that N-B doped SiC is being a good wavelength converter in white...

  18. Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite

    Directory of Open Access Journals (Sweden)

    I. Aatthisugan

    2017-03-01

    Full Text Available In this experimental study, magnesium (AZ91D based boron carbide (B4C and graphite (Gr particle reinforced hybrid composite materials were manufactured by stir casting. The tribological and mechanical properties of these composite materials were investigated. The results of the tests revealed that the graphite reinforced hybrid composites exhibited a lower wear loss compared to the unreinforced AZ91D alloy and AZ91D–B4C composites. It was found that with an increase in the B4C content, the wear resistance increased monotonically with hardness and ultimate tensile strength decreased. This study revealed that the addition of both a hard reinforcement (e.g., B4C and soft reinforcement (e.g., graphite significantly improves the wear resistance of magnesium composites. These entire results designate that the hybrid magnesium composites can be considered as an excellent material where high strength, ultimate tensile strength and wear-resistant components are of major importance, primarily in the aerospace and automotive engineering sectors.

  19. Microstructural and mechanical characterization of hybrid aluminum matrix composite containing boron carbide and Al-Cu-Fe quasicrystals

    Science.gov (United States)

    Khan, Mahmood; Zulfaqar, Muhammad; Ali, Fahad; Subhani, Tayyab

    2017-07-01

    Hybrid aluminum matrix composites containing particles of boron carbide and quasicrystals were manufactured to explore the combined effect of reinforcements on microstructural evolution and mechanical performance of the composites. The particles were incorporated at a loading of 6 wt% each making a total of 12 wt% reinforcement in pure aluminum. For comparison, two composites containing individually reinforced 12 wt% particles were also prepared along with a reference specimen of pure aluminum. Ball milling technique was employed to mix the composite constituents. The green bodies of composite powders were prepared by uniaxial pressing at room temperature followed by consolidation by pressureless sintering under inert atmosphere. The microstructural characterization was performed using scanning electron microscopy while phase identification was carried out by X-ray diffraction. The mechanical characterization was performed by Vickers hardness and compression tests. Hybrid composites showed increased compressive properties while the composites containing solely quasicrystals demonstrated improved hardness. The increase in mechanical performance was related to the microstructural evolution due to the presence and uniform dispersion of binary particles.

  20. Unique Boron Carbide Nanoparticle Nanobio Interface: Effects on Protein-RNA Interactions and 3-D Spheroid Metastatic Phenotype.

    Science.gov (United States)

    Delong, Robert K; Hurst, Miranda N; Aryal, Santosh; Inchun, Nantipoor K

    2016-05-01

    The effect of boron carbide (B4C) nanoparticles (NP) on protein-RNA complexes and metastatic phenotype of 3-D tumor spheroids was investigated. Characterization was performed by transmission electron microscopy (TEM), zeta potential (ZP), 2-dimensional fluorescence difference spectroscopy (2-D FDS), gel electrophoresis, MTT, haemolysis and 3-D tumor spheroid assays. TEM showed NP were homogenous (≤50 nm) and spherical in shape. Zeta potential (ζ) of NP (-43.3) shifted upon protein:RNA interaction (+26.9). Protein:RNA complex interaction with NP was confirmed by 2-D FDS, demonstrating excitation/emission blue shift and lowered fluorescence intensity, and electrophoretic mobility shift assay (EMSA), where presence of B4C ablated visualization of the complex. B4C NP cytotoxicity was less than zinc oxide by MTT assay, protected haemolysis and effected 3-D tumor spheroid metastatic phenotype. Nanobio interface of B4C nanoparticles is unique and its anticancer potential may be mediated by altering protein and RNA interactions. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Effect of self-bias on the elemental composition and neutron absorption of boron carbide films deposited by RF plasma enhanced CVD

    Energy Technology Data Exchange (ETDEWEB)

    Bute, A., E-mail: butearundhati@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jagannath, E-mail: ssai@barc.gov.in [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kar, R., E-mail: rajibkar@barc.gov.in [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Chopade, S.S., E-mail: supriyagindalkar@rediffmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Desai, S.S., E-mail: ssdesai@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Deo, M.N., E-mail: mndeo@barc.gov.in [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Rao, Pritty, E-mail: praocccm@rediffmail.com [The National Centre for Compositional Characterization of Materials, Hyderabad (India); Chand, N., E-mail: naresh@barc.gov.in [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kumar, S., E-mail: sanjivcccm@rediffmail.com [The National Centre for Compositional Characterization of Materials, Hyderabad (India); Singh, K., E-mail: singhkw@barc.gov.in [Fusion Reactor Material Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Patil, D.S., E-mail: dspatil@iitb.ac.in [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Sinha, S., E-mail: ssinha@barc.gov.in [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-10-01

    Boron carbide films are increasingly being investigated for their application in new generation neutron detectors. It is implemented as conversion layer for neutrons and emerging as a potential alternative to {sup 3}He based detectors. This work reports synthesis of boron carbide (B{sub x}C) films from ortho-carborane (o-C{sub 2}B{sub 10}H{sub 12}) by radio frequency (RF) plasma enhanced chemical vapour deposition (PECVD) technique. Dependence of chemical composition, stoichiometry and total macroscopic cross section (Σ{sub t}) has been studied as a function of self-bias on the substrate, varied in the range −75 V to −175 V. Films were characterized by 3D optical profilometry, X-ray photoelectron spectroscopy (XPS), proton elastic backscattering spectrometry (p-EBS), Fourier transform infra-red spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM). Characterization results show noticeable change in the bulk as well as surface chemical composition, surface morphology and film stoichiometry with self-bias. Neutron transmission measurements exhibit increase in Σ{sub t} from 170.47 cm{sup −1} for −75 V film to 273.38 cm{sup −1} for −175 V film with self-bias. - Highlights: • Boron carbide films were deposited by RF PECVD, varying substrate RF self-bias. • B/C ratio increased with decreasing RF self-bias leading to boron rich B{sub x}C films. • Total macroscopic cross section for neutrons Σ{sub t} is found to increase with self-bias. • Higher bias caused rise in oxygen impurity in films and decrease in film stability.

  2. Synthesis, characterization and thermoelectric properties of metal borides, boron carbides and carbaborides; Synthese, Charakterisierung und thermoelektrische Eigenschaften ausgewaehlter Metallboride, Borcarbide und Carbaboride

    Energy Technology Data Exchange (ETDEWEB)

    Guersoy, Murat

    2015-07-06

    This work reports on the solid state synthesis and structural and thermoelectrical characterization of hexaborides (CaB{sub 6}, SrB{sub 6}, BaB{sub 6}, EuB{sub 6}), diboride dicarbides (CeB{sub 2}C{sub 2}, LaB{sub 2}C{sub 2}), a carbaboride (NaB{sub 5}C) and composites of boron carbide. The characterization was performed by X-ray diffraction methods and Rietveld refinements based on structure models from literature. Most of the compounds were densified by spark plasma sintering at 100 MPa. As high-temperature thermoelectric properties the Seebeck coefficients, electrical conductivities, thermal diffusivities and heat capacities were measured between room temperature and 1073 K. ZT values as high as 0.5 at 1273 K were obtained for n-type conducting EuB{sub 6}. High-temperature X-ray diffraction also confirmed its thermal stability. The solid solutions Ca{sub x}Sr{sub 1-x}B{sub 6}, Ca{sub x}Ba{sub 1-x}B{sub 6} and Sr{sub x}Ba{sub 1-x}B{sub 6} (x = 0, 0.25, 0.5, 0.75, 1) are also n-type but did not show better ZT values for the ternary compounds compared to the binaries, but for CaB{sub 6} the values of the figure of merit (ca. 0.3 at 1073 K) were significantly increased (ca. 50 %) compared to earlier investigations which is attributed to the densification process. Sodium carbaboride, NaB{sub 5}C, was found to be the first p-type thermoelectric material that crystallizes with the hexaboride-structure type. Seebeck coefficients of ca. 80 μV . K{sup -1} were obtained. Cerium diboride dicarbide, CeB{sub 2}C{sub 2}, and lanthanum diboride dicarbide, LaB{sub 2}C{sub 2}, are metallic. Both compounds were used as model compounds to develop compacting strategies for such layered borides. Densities obtained at 50 MPa were determined to be higher than 90 %. A new synthesis route using single source precursors that contain boron and carbon was developed to open the access to new metal-doped boron carbides. It was possible to obtain boron carbide, but metal-doping could not be

  3. Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making

    Science.gov (United States)

    McCallum, R.W.; Branagan, D.J.

    1996-01-23

    A method of making a permanent magnet is disclosed wherein (1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and (2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties. 33 figs.

  4. Hardness depth profile of lattice strained cemented carbide modified by high-energy boron ion implantation

    Science.gov (United States)

    Yoshida, Y.; Matsumura, A.; Higeta, K.; Inoue, T.; Shimizu, S.; Motonami, Y.; Sato, M.; Sadahiro, T.; Fujii, K.

    1991-07-01

    The hardness depth profiles of cemented carbides which were implanted with high-energy B + ions have been estimated using a dynamic microhardness tester. The B + implantations into (16% Co)-cemented WC alloys were carried out under conditions where the implantation energies were 1-3 MeV and the fluences 1 × 10 17-1 × 10 18ions/cm 2. The profiles show that the implanted layer becomes harder as fluences are chosen at higher values and there is a peak at a certain depth which depends on the implantation energy. In X-ray diffraction (XRD) studies of the implanted surface the broadened refraction peaks of only WC and Co are detected and the increments of lattice strain and of residual stress in the near-surface region are observed. It is supposed that the hardening effect should be induced by an increase in residual stress produced by lattice strain. The hardness depth profile in successive implantation of ions with different energies agrees with the compounded profile of each one of the implantations. It is concluded that the hardness depth profile can be controlled under adequate conditions of implantation.

  5. The reaction of H 2O, O 2 and energetic O 2+ on boron carbide

    Science.gov (United States)

    Ogiwara, N.; Jimbou, R.; Saidoh, M.; Michizono, S.; Saito, Y.; Mori, K.; Morita, K.

    1994-09-01

    Reaction of polycrystalline B 4C with energetic O 2+ was investigated mainly using Rutherford backscattering spectroscopy (RBS). For 5 keV O 2+ irradiation, all of the irradiated oxygen was retained up to the fluence of 2 × 10 17 O/cm 2 in a temperature range from RT to 600°C. The areal density of saturated retention was ˜ 3 × 10 17 O/cm 2. The release of the implanted oxygen begins above 600°C and almost all the oxygen desorbs at ˜ 1000°C. The depth profile of oxygen retained at RT had a big maximum around 8 nm, while the depth profile at 600°C had a broad peak near 8 nm. In contrast to the above results by RBS, retained oxygen was hardly measured by Auger electron spectroscopy and X-ray photoelectron spectroscopy with Ar + sputtering. This implies that there are at least two types of trapped states: one is the physically trapped state of a gaseous form (CO or O 2) and the other is a chemically bound state (BO bond). It was also found that boron oxide is formed even at RT using simultaneous electron/He + irradiation during H 2O exposure, while the oxygen molecule scarcely reacts with the B 4C surface under the simultaneous irradiation of electron/He +.

  6. Ab initio calculations of mechanical, thermodynamic and electronic structure properties of mullite, iota-alumina and boron carbide

    Science.gov (United States)

    Aryal, Sita Ram

    The alumino-silicate solid solution series (Al 4+2xSi2-2 xO10-x) is an important class of ceramics. Except for the end member (x=0), Al2 SiO5 the crystal structures of the other phases, called mullite, have partially occupied sites. Stoichiometric supercell models for the four mullite phases 3Al2O 3 · 2SiO2 · 2Al 2O3 · SiO2, 4 Al2O3· SiO 2, 9Al2O3 · SiO2, and iota-Al2 O3 (iota-alumina) are constructed starting from experimentally reported crystal structures. A large number of models were built for each phase and relaxed using the Vienna ab initio simulation package (VASP) program. The model with the lowest total energy for a given x was chosen as the representative structure for that phase. Electronic structure and mechanical properties of mullite phases were studied via first-principles calculations. Of the various phases of transition alumina, iota-Al 2O3 is the least well known. In addition structural details have not, until now, been available. It is the end member of the aluminosilicate solid solution series with x=1. Based on a high alumina content mullite phase, a structural model for iota- Al2O3 is constructed. The simulated x-ray diffraction (XRD) pattern of this model agrees well with a measured XRD pattern. The iota-Al2 O3 is a highly disordered ultra-low-density phase of alumina with a theoretical density of 2854kg/m3. Using this theoretically constructed model, elastic, thermodynamic, electronic, and spectroscopic properties of iota-Al2 O3 have been calculated and compared it with those of alpha- Al2O3 and gamma- Al2O3. Boron carbide (B4C) undergoes an amorphization under high velocity impacts. The mechanism of amorphization is not clear. Ab initio methods are used to carry out large-scale uniaxial compression simulations on two polytypes of stoichiometric boron carbide (B4C), B 11C-CBC, and B12- CCC where B11C or B12 is the 12-atom icosahedron and CBC or CCC is the three-atom chain. The simulations were performed on large supercells of 180 atoms

  7. Equation of state, adiabatic sound speed, and Grüneisen coefficient of boron carbide along the principal Hugoniot to 700 GPa

    Science.gov (United States)

    Fratanduono, D. E.; Celliers, P. M.; Braun, D. G.; Sterne, P. A.; Hamel, S.; Shamp, A.; Zurek, E.; Wu, K. J.; Lazicki, A. E.; Millot, M.; Collins, G. W.

    2016-11-01

    A equation of state (EOS) experimental technique that enables the study of thermodynamic derivatives into the TPa regime is described and applied to boron carbide (B4C ). Data presented here are principal Hugoniot sound speed measurements reported using a laser-driven shock platform, providing a means to explore the high-pressure off-Hugoniot response of opaque materials. The extended B4C Hugoniot suggests the presence of a high-pressure phase, as recently predicted by molecular dynamics simulations, adding to the complexity of the existing phase diagram.

  8. Photo-induced site-specific nitridation of plasma-deposited B 10C 2H x films: A new pathway toward post-deposition doping of semiconducting boron carbides

    Science.gov (United States)

    Behera, Swayambhu; Wilks, Justin; Dowben, Peter A.; Driver, M. Sky; Caruso, A. N.; Kelber, Jeffry A.

    2010-10-01

    We show that dopant impurities can be introduced in a controlled, site-specific manner into pre-deposited semiconducting boron carbide films. B―N bond formation has been characterized by X-ray photoelectron spectroscopy for semiconducting B 10C 2H x films exposed to vacuum ultraviolet photons in the presence of NH 3. Core level photoemission data indicate that B―NH 2 bonds are formed at B sites bonded to other boron atoms (B―B), and not at boron atoms adjacent to carbon atoms (B―C) or at carbon atom sites. Nitridation obeys diffusion-limited kinetics. These results indicate that dopant species can be introduced in a controlled, site-specific manner into pre-deposited boron carbide films, as opposed to currently required dopant incorporation during the deposition process.

  9. Optical properties of boron carbide near the boron K edge evaluated by soft-x-ray reflectometry from a Ru/B(4)C multilayer.

    Science.gov (United States)

    Ksenzov, Dmitriy; Panzner, Tobias; Schlemper, Christoph; Morawe, Christian; Pietsch, Ullrich

    2009-12-10

    Soft-x-ray Bragg reflection from two Ru/B(4)C multilayers with 10 and 63 periods was used for independent determination of both real and imaginary parts of the refractive index n = 1 - delta + ibeta close to the boron K edge (approximately 188 eV). Prior to soft x-ray measurements, the structural parameters of the multilayers were determined by x-ray reflectometry using hard x rays. For the 63-period sample, the optical properties based on the predictions made for elemental boron major deviations were found close to the K edge of boron for the 10-period sample explained by chemical bonding of boron to B(4)C and various boron oxides.

  10. Study of the processes of changing the crystal structure of boron carbide after the destruction of a nuclear reactor as a result of earthquake

    International Nuclear Information System (INIS)

    Mammadov, Kh.; Mirzayev, M.; Garibov, R.; Allahverdiyev, G.

    2017-01-01

    The territories of the Trans Caucasian Republics are characterized by high seismic activity. Therefore, the occurrence of cases of anthropogenic catastrophe including in the territories of nuclear reactors is not ruled out in case of natural disasters. Studies to create detectors based on B 4 C for recording ''cold'', ''hot'' and ''fast'' neutrons in order to increase the safety of nuclear reactors have been carried out in recent years. The B 4 C crystal structure is highly stable at relatively large intervals of temperature and pressure. The study of the thermo physical properties of samples of boron carbide irradiated with ionizing beams is interesting from the point of view to study of the stability of the structure and the stability of this compound. The thermal properties of B 4 C irradiated with ionizing γ radiation from a 60''Co source were investigated using the differential scanning calorimetric (DSC) methods. Upon irradiation with ionizing γ rays, a discrete change in the energy of the atoms occurs at the sites of the crystal lattice, the formation of active centers (radicals, ions, electrons), defects in the crystal lattice, the evaporation of crystalline hydrates, which are present in small amounts in bulk and crystalline compounds. The melting point of B 2 O 3 is 723 K, for boron 2348 K, for B 4 C 2623 K. The melting enthalpy for B 2 O 3 is 24.6 kJ/mol. With increasing temperature, the heat capacity and entropy of the non irradiated and irradiated B 4 C samples are increased. The nature of the change in the enthalpy and the Gibbs potential with increasing temperature depends on the presence of oxygen upon irradiation and during thermogravimetric analysis in the temperature range 298-1300 K. Changes in the values of thermodynamic functions occur due to the formation (under the influence of ionizing radiation) of excited atoms, active centers, defects in the crystal structure of

  11. Cubic silicon carbide and boron nitride as possible primary pressure calibrants for high pressure and temperature scale

    Science.gov (United States)

    Zhuravlev, K. K.; Goncharov, A. F.; Tkachev, S. N.; Prakapenka, V.

    2010-12-01

    K. K. Zhuravlev, A. F. Goncharov Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington DC, 20015 V. Prakapenka, S. N. Tkachev CARS, the University of Chicago, Bldg. 434A, Argonne National Laboratory, 9700 S. Cass. Ave., Argonne, IL 60439 Abstract Since its introduction, ruby-based pressure scale (Mao et al., 1986) has been the most commonly used by the high-pressure scientific community. However, it has limited use at elevated temperatures, due to the weakening and broadening of the ruby fluorescence line. The recent developments in the field of high temperature, high pressure physics and geophysics require some alternative pressure scale, which will be capable of measuring pressures at temperatures up to 3000 K. Cubic boron nitride (cBN) was recently (Goncharov et al., 2005) proposed as the possible pressure calibrant. It has been suggested that the simultaneous use of x-ray diffraction to measure density and Brillouin spectroscopy to obtain elastic properties of the crystal can be used to construct the pressure scale independent of any other pressure standards, i.e. cBN can be a primary pressure calibrant. However, the acoustic velocities of cBN are very close to those of diamond and, therefore, are hard to resolve in experiment at high pressures in diamond-anvil cell. Another possible primary pressure calibrant is cubic silicon carbide (SiC-3C). Its density and elastic parameters are quite different from the diamond ones and it is stable over the broad range of temperatures and pressures (up to 1 Mbar). SiC-3C is transparent and allows the use of Brillouin spectroscopy. Additionally, SiC-3C has two strong Raman lines, which can be used for the optical in situ pressure measurements. We report our experimental data on both cBN and SiC-3C and show that they, indeed, can be used in constructing reliable and accurate high-pressure, high-temperature scale. We performed single crystal x-ray diffraction and Brillouin

  12. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Boron by Titrimetry 7 to 13 Separation of Boron for Mass Spectrometry 14 to 19 Isotopic Composition by Mass Spectrometry 20 to 23 Separation of Halides by Pyrohydrolysis 24 to 27 Fluoride by Ion-Selective Electrode 28 to 30 Chloride, Bromide, and Iodide by Amperometric Microtitrimetry 31 to 33 Trace Elements by Emission Spectroscopy 34 to 46 1.3 The values stated in SI units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (F...

  13. The influence of hydrogen on the chemical, mechanical, optical/electronic, and electrical transport properties of amorphous hydrogenated boron carbide

    International Nuclear Information System (INIS)

    Nordell, Bradley J.; Karki, Sudarshan; Nguyen, Thuong D.; Rulis, Paul; Caruso, A. N.; Paquette, Michelle M.; Purohit, Sudhaunshu S.; Li, Han; King, Sean W.; Dutta, Dhanadeep; Gidley, David; Lanford, William A.

    2015-01-01

    Because of its high electrical resistivity, low dielectric constant (κ), high thermal neutron capture cross section, and robust chemical, thermal, and mechanical properties, amorphous hydrogenated boron carbide (a-B x C:H y ) has garnered interest as a material for low-κ dielectric and solid-state neutron detection applications. Herein, we investigate the relationships between chemical structure (atomic concentration B, C, H, and O), physical/mechanical properties (density, porosity, hardness, and Young's modulus), electronic structure [band gap, Urbach energy (E U ), and Tauc parameter (B 1/2 )], optical/dielectric properties (frequency-dependent dielectric constant), and electrical transport properties (resistivity and leakage current) through the analysis of a large series of a-B x C:H y thin films grown by plasma-enhanced chemical vapor deposition from ortho-carborane. The resulting films exhibit a wide range of properties including H concentration from 10% to 45%, density from 0.9 to 2.3 g/cm 3 , Young's modulus from 10 to 340 GPa, band gap from 1.7 to 3.8 eV, Urbach energy from 0.1 to 0.7 eV, dielectric constant from 3.1 to 7.6, and electrical resistivity from 10 10 to 10 15 Ω cm. Hydrogen concentration is found to correlate directly with thin-film density, and both are used to map and explain the other material properties. Hardness and Young's modulus exhibit a direct power law relationship with density above ∼1.3 g/cm 3 (or below ∼35% H), below which they plateau, providing evidence for a rigidity percolation threshold. An increase in band gap and decrease in dielectric constant with increasing H concentration are explained by a decrease in network connectivity as well as mass/electron density. An increase in disorder, as measured by the parameters E U and B 1/2 , with increasing H concentration is explained by the release of strain in the network and associated decrease in structural disorder. All of these correlations in a

  14. Boron carbides formed by coevaporation of B and C atoms: Vapor reactivity, BxC1-x composition, and bonding structure

    Science.gov (United States)

    Caretti, I.; Gago, R.; Albella, J. M.; Jiménez, I.

    2008-05-01

    Boron carbides (BxC1-x) in thin film form have been synthesized in a high vacuum by coevaporation of B and C atoms from independent sources, allowing a study of the whole composition range from pure B films to pure C films. The relationship between the impinging B/C atomic fluxes and the film composition has been studied, providing information on the chemical reactivity between the B and C vapors. The composition was determined with x-ray emission energy dispersion spectroscopy and x-ray absorption near edge spectroscopy (XANES). Finally, the bonding structure of the films has been determined by XANES, showing a change from structures based on B12 -icosahedral units for the B-rich samples to hexagonal-like structures for the C-rich samples. The study shows that the structural transition takes place for xtilde 0.5 .

  15. Delivery of Cisplatin Anti-Cancer Drug from Carbon, Boron Nitride, and Silicon Carbide Nanotubes Forced by Ag-Nanowire: A Comprehensive Molecular Dynamics Study.

    Science.gov (United States)

    Mehrjouei, Esmat; Akbarzadeh, Hamed; Shamkhali, Amir Nasser; Abbaspour, Mohsen; Salemi, Sirous; Abdi, Pooya

    2017-07-03

    In this work, liberation of cisplatin molecules from interior of a nanotube due to entrance of an Ag-nanowire inside it was simulated by classical molecular dynamics method. The aim of this simulation was investigation on the effects of diameter, chirality, and composition of the nanotube, as well as the influence of temperature on this process. For this purpose, single walled carbon, boron nitride, and silicon carbide nanotube were considered. In order for a more concise comparison of the results, a new parameter namely efficiency of drug release, was introduced. The results demonstrated that the efficiency of drug release is sensitive to its adsorption on outer surface of the nanotube. Moreover, this efficiency is also sensitive to the nanotube composition and its diameter. For the effect of nanotube composition, the results indicated that silicon carbide nanotube has the least efficiency for drug release, due to its strong drug-nanotube. Also, the most important acting forces on drug delivery are van der Waals interactions. Finally, the kinetic of drug release is fast and is not related to the structural parameters of the nanotube and temperature, significantly.

  16. Preparation and Cutting Performance of Boron-Doped Diamond Coating on Cemented Carbide Cutting Tools with High Cobalt Content

    OpenAIRE

    Zhaozhi Liu; Feng Xu; Junhua Xu; Xiaolong Tang; Ying Liu; Dunwen Zuo

    2015-01-01

    Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cu...

  17. Submicron-sized boron carbide particles encapsulated in turbostratic graphite prepared by laser fragmentation in liquid medium.

    Science.gov (United States)

    Ishikawa, Yoshie; Sasaki, Takeshi; Koshizaki, Naoto

    2010-08-01

    Submicron-sized B4C spherical particles were obtained by laser fragmentation of large B4C particles dispersed in ethyl acetate. The irradiated surface of large B4C raw particles was heated and melted by laser energy absorption. B4C droplets were then cooled down, and finally B4C spherical particles were obtained. Moreover, each B4C particle obtained was encapsulated in a graphitic layer that is useful for medical functionalization of particles. Thus, obtained B4C particles encapsulated in graphitic layer may have potential uses in boron neutron capture therapy.

  18. Monte carlo simulation of innovative neutron and photon shielding material composing of high density concrete, waste rubber, lead and boron carbide

    Science.gov (United States)

    Aim-O, P.; Wongsawaeng, D.; Phruksarojanakun, P.; Tancharakorn, S.

    2017-06-01

    High-density concrete exhibits high strength and can perform an important role of gamma ray attenuation. In order to upgrade this material’s radiation-shielding performance, hydrogen-rich material can be incorporated. Waste rubber from vehicles has high hydrogen content which is the prominent characteristic to attenuate neutron. The objective of this work was to evaluate the radiation-shielding properties of this composite material against neutron and photon radiations. Monte Carlo transport simulation was conducted to simulate radiation through the composite material. Am-241/Be was utilized for neutron source and Co-60 for photon source. Parameters of the study included volume percentages of waste rubber, lead and boron carbide and thickness of the shielding material. These designs were also fabricated and the radiation shielding properties were experimentally evaluated. The best neutron and gamma ray shielding material was determined to be high-density concrete mixed with 5 vol% crumb rubber and 5 vol% lead powder. This shielding material increased the neutron attenuation by 64% and photon attenuation by 68% compared to ordinary concrete. Also, increasing the waste rubber content to greater than 5% resulted in a decrease in the radiation attenuation. This innovative composite radiation shielding material not only benefits nuclear science and engineering applications, but also helps solve the environmental issue of waste rubber.

  19. Tungsten-coated nano-boron carbide as a non-noble metal bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions in alkaline media.

    Science.gov (United States)

    Zhang, Yan; Wang, Yanhui; Han, Chan; Jia, Shaopei; Zhou, Shuyu; Zang, Jianbing

    2017-12-14

    Herein, tungsten-coated nano-boron carbide (W-WB 4 -WC x /B 4 C) particles were prepared by heating a mixture of B 4 C and W powder using a spark plasma coating (SPC) method. During the discharge treatment process, metal W in the mixture is activated and reacts with B 4 C to form WC x , WB 4 , and graphite nanoribbons. The oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) performance of W-WB 4 -WC x /B 4 C is tested in an alkaline solution, and the results show that the W-WB 4 -WC x /B 4 C composite electrocatalyst exhibits a low overpotential of 0.36 V at 10 mA cm -2 for the OER, a small overpotential of -0.19 V (j = 10 mA cm -2 ) for the HER, as well as good stability. The significantly enhanced electrocatalytic performance of the W-WB 4 -WC x /B 4 C composites is attributed to their unique structure, in which WC x and WB 4 not only improve the catalytic activity for the OER and HER, but also effectively anchor the W coating on the substrate.

  20. Microstructure and pitting corrosion of armor grade AA7075 aluminum alloy friction stir weld nugget zone – Effect of post weld heat treatment and addition of boron carbide

    Directory of Open Access Journals (Sweden)

    P. Vijaya Kumar

    2015-06-01

    Full Text Available Friction stir welding (FSW of high strength aluminum alloys has been emerged as an alternative joining technique to avoid the problems during fusion welding. In recent times FSW is being used for armor grade AA7075 aluminum alloy in defense, aerospace and marine applications where it has to serve in non uniform loading and corrosive environments. Even though friction stir welds of AA7075 alloy possess better mechanical properties but suffer from poor corrosion resistance. The present work involves use of retrogression and reaging (RRA post weld heat treatment to improve the corrosion resistance of welded joints of aluminum alloys. An attempt also has been made to change the chemical composition of the weld nugget by adding B4C nano particles with the aid of the FSW on a specially prepared base metal plate in butt position. The effects of peak aged condition (T6, RRA and addition of B4C nano particles on microstructure, hardness and pitting corrosion of nugget zone of the friction stir welds of AA7075 alloy have been studied. Even though RRA improved the pitting corrosion resistance, its hardness was slightly lost. Significant improvement in pitting corrosion resistance was achieved with addition of boron carbide powder and post weld heat treatment of RRA.

  1. Influencing factors and kinetics analysis on the leaching of iron from boron carbide waste-scrap with ultrasound-assisted method.

    Science.gov (United States)

    Li, Xin; Xing, Pengfei; Du, Xinghong; Gao, Shuaibo; Chen, Chen

    2017-09-01

    In this paper, the ultrasound-assisted leaching of iron from boron carbide waste-scrap was investigated and the optimization of different influencing factors had also been performed. The factors investigated were acid concentration, liquid-solid ratio, leaching temperature, ultrasonic power and frequency. The leaching of iron with conventional method at various temperatures was also performed. The results show the maximum iron leaching ratios are 87.4%, 94.5% for 80min-leaching with conventional method and 50min-leaching with ultrasound assistance, respectively. The leaching of waste-scrap with conventional method fits the chemical reaction-controlled model. The leaching with ultrasound assistance fits chemical reaction-controlled model, diffusion-controlled model for the first stage and second stage, respectively. The assistance of ultrasound can greatly improve the iron leaching ratio, accelerate the leaching rate, shorten leaching time and lower the residual iron, comparing with conventional method. The advantages of ultrasound-assisted leaching were also confirmed by the SEM-EDS analysis and elemental analysis of the raw material and leached solid samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Tribological and thermal stability study of nanoporous amorphous boron carbide films prepared by pulsed plasma chemical vapor deposition

    Science.gov (United States)

    Liza, Shahira; Ohtake, Naoto; Akasaka, Hiroki; Munoz-Guijosa, Juan M.

    2015-06-01

    In this work, the thermal stability and the oxidation and tribological behavior of nanoporous a-BC:H films are studied and compared with those in conventional diamond-like carbon (DLC) films. a-BC:H films were deposited by pulsed plasma chemical vapor deposition using B(CH3)3 gas as the boron source. A DLC interlayer was used to prevent the a-BC:H film delamination produced by oxidation. Thermal stability of a-BC:H films, with no delamination signs after annealing at 500 °C for 1 h, is better than that of the DLC films, which completely disappeared under the same conditions. Tribological test results indicate that the a-BC:H films, even with lower nanoindentation hardness than the DLC films, show an excellent boundary oil lubricated behavior, with lower friction coefficient and reduce the wear rate of counter materials than those on the DLC film. The good materials properties such as low modulus of elasticity and the formation of micropores from the original nanopores during boundary regimes explain this better performance. Results show that porous a-BC:H films may be an alternative for segmented DLC films in applications where severe tribological conditions and complex shapes exist, so surface patterning is unfeasible.

  3. Tribological and thermal stability study of nanoporous amorphous boron carbide films prepared by pulsed plasma chemical vapor deposition.

    Science.gov (United States)

    Liza, Shahira; Ohtake, Naoto; Akasaka, Hiroki; Munoz-Guijosa, Juan M

    2015-06-01

    In this work, the thermal stability and the oxidation and tribological behavior of nanoporous a -BC:H films are studied and compared with those in conventional diamond-like carbon (DLC) films. a -BC:H films were deposited by pulsed plasma chemical vapor deposition using B(CH 3 ) 3 gas as the boron source. A DLC interlayer was used to prevent the a -BC:H film delamination produced by oxidation. Thermal stability of a -BC:H films, with no delamination signs after annealing at 500 °C for 1 h, is better than that of the DLC films, which completely disappeared under the same conditions. Tribological test results indicate that the a -BC:H films, even with lower nanoindentation hardness than the DLC films, show an excellent boundary oil lubricated behavior, with lower friction coefficient and reduce the wear rate of counter materials than those on the DLC film. The good materials properties such as low modulus of elasticity and the formation of micropores from the original nanopores during boundary regimes explain this better performance. Results show that porous a -BC:H films may be an alternative for segmented DLC films in applications where severe tribological conditions and complex shapes exist, so surface patterning is unfeasible.

  4. Study of boron carbide evolution under neutron irradiation; Contribution a l'etude de l'evolution du carbure de bore sous irradiation neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Simeone, D. [CEA/Saclay, Dept. de Mecanique et de Technologie (DMT), 91 - Gif-sur-Yvette (France)]|[Universite Blaise Pascal, Clermont-Ferrand II, (CNRS), 63 - Aubiere (France)

    1999-07-01

    Owing to its high neutron efficiency, boron carbide (B{sub 4}C) is used as a neutron absorber in control rods of nuclear plants. Its behaviour under irradiation has been extensively studied for many years. It now seems clear that brittleness of the material induced by the {sup 10}B(n,{alpha}){sup 7}Li capture reaction is due to penny shaped helium bubbles associated to a high strain field around them. However, no model explains the behaviour of the material under neutron irradiation. In order to build such a model, this work uses different techniques: nuclear microprobe X-ray diffraction profile analysis and Raman and Nuclear Magnetic Resonance Spectroscopy to present an evolution model of B{sub 4}C under neutron irradiation. The use of nuclear reactions produced by a nuclear microprobe such as the {sup 7}Li(p,p'{gamma}){sup 7}Li reaction, allows to measure lithium profile in B{sub 4}C pellets irradiated either in Pressurised Water Reactors or in Fast Breeder Reactors. Examining such profiles enables us to describe the migration of lithium atoms out of B{sub 4}C materials under neutron irradiation. The analysis of X-ray diffraction profiles of irradiated B{sub 4}C samples allows us to quantify the concentrations of helium bubbles as well as the strain fields around such bubbles.Furthermore Raman spectroscopy studies of different B{sub 4}C samples lead us to propose that under neutron irradiation. the CBC linear chain disappears. Such a vanishing of this CBC chain. validated by NMR analysis, may explain the penny shaped of helium bubbles inside irradiated B{sub 4}C. (author)

  5. MICROSTRUCTURE, THERMO-PHYSICAL, MECHANICAL AND WEAR PROPERTIES OF IN-SITU FORMED BORON CARBIDE - ZIRCONIUM DIBORIDE COMPOSITE

    Directory of Open Access Journals (Sweden)

    T. S. R. Ch. Murthy

    2017-12-01

    Full Text Available Microstructure, thermos-physical, mechanical and wear properties of in-situ formed B₄C- ZrB₂ composite were investigated. Coefficient of thermal expansion, thermal diffusivity and electrical resistivity of the composite were measured at different temperatures up to 1000 °C in inert atmosphere. Flexural strength was measured up to 900 °C in air. Friction and wear properties have been studied at different loads under reciprocative sliding, using a counter body (ball of cemented tungsten carbide (WC-Co at ambient conditions. X-ray diffraction (XRD and electron probe microanalysis (EPMA confirmed the formation of ZrB₂ as the reaction product in the composite. Electrical resistivity was measured as 3.02 x 10-4Ω.m at 1000°C. Thermal conductivity measured at temperatures between 25°C and 1000 °C was in the range of 8 to 10 W/m-K. Flexural strength of the composite decreased with increase in temperature and reached a value of 92 MPa at 900°C. The average value of coefficient of friction (COF was measured as 0.15 at 20 N load and 10 Hz frequency. Increase of load from 5 N to 20 N resulted in decrease in COF from 0.24 to 0.15 at 10 Hz frequency. Specific wear rate data observed was of the order of 10-6 mm³/N-m. Both abrasive and tribo-chemical reaction wear mechanisms were observed on the worn surface of flat and counter body materials. At higher loads (≥10 N a tribo-chemical reaction wear mechanism was dominant.

  6. Method of producing high density silicon carbide product

    International Nuclear Information System (INIS)

    1981-01-01

    A method of sintering silicon carbide powders containing boron or boron - containing compounds as densification aids to produce a high-density silicon carbide ceramic material is described. It has been found that higher densification can be obtained by sintering the powders in an atmosphere containing boron. Boron may be introduced in the form of a gas, e.g. boron trichloride, mixed with the inert gas used, i.e. nitrogen, argon or helium, or boron compounds, e.g. boron carbide, may be applied to the interior of the sintering chamber as solutions or slurries. Alternatively a boron compound, per se, in the sintering chamber, or furnace components containing a significant amount of boron may be used. (U.K.)

  7. Optical-optical double resonance, laser induced fluorescence, and revision of the signs of the spin-spin constants of the boron carbide (BC) free radical.

    Science.gov (United States)

    Sunahori, Fumie X; Nagarajan, Ramya; Clouthier, Dennis J

    2015-12-14

    The cold boron carbide free radical (BC X (4)Σ(-)) has been produced in a pulsed discharge free jet expansion using a precursor mixture of trimethylborane in high pressure argon. High resolution laser induced fluorescence spectra have been obtained for the B (4)Σ(-)-X (4)Σ(-) and E (4)Π-X (4)Σ(-) band systems of both (11)BC and (10)BC. An optical-optical double resonance (OODR) scheme was implemented to study the finer details of both band systems. This involved pumping a single rotational level of the B state with one laser and then recording the various allowed transitions from the intermediate B state to the final E state with a second laser by monitoring the subsequent E-X ultraviolet fluorescence. In this fashion, we were able to prove unambiguously that, contrary to previous studies, the spin-spin constant λ is negative in the ground state and positive in the B (4)Σ(-) excited state. It has been shown that λ″ < 0 is in fact expected based on a semiempirical second order perturbation theory calculation of the magnitude of the spin-spin constant. The OODR spectra have also been used to validate our assignments of the complex and badly overlapped E (4)Π-X (4)Σ(-) 0-0 and 1-0 bands of (11)BC. The E-X 0-0 band of (10)BC was found to be severely perturbed. The ground state main electron configuration is …3σ(2)4σ(2)5σ(1)1π(2)2π(0) and the derived bond lengths show that there is a 0.03 Å contraction in the B state, due to the promotion of an electron from the 4σ antibonding orbital to the 5σ bonding orbital. In contrast, the bond length elongates by 0.15 Å in the E state, a result of promoting an electron from the 5σ bonding orbital to the 2π antibonding orbitals.

  8. Ternary rare earth metal boride carbides containing two-dimensional boron carbon network: The crystal and electronic structure of R2B4C (R=Tb, Dy, Ho, Er)

    Science.gov (United States)

    Babizhetskyy, Volodymyr; Zheng, Chong; Mattausch, Hansjürgen; Simon, Arndt

    2007-12-01

    The ternary rare earth boride carbides R2B4C (R=Tb, Dy, Ho, Er) have been synthesized by reacting the elements at temperatures between 1800 and 2000K. The crystal structure of Dy2B4C has been determined from single-crystal X-ray diffraction data. It crystallizes in a new structure type in the orthorhombic space group Immm (a=3.2772(6) Å, b=6.567(2) Å, c=7.542(1) Å, Z=2, R1=0.035 (wR2=0.10) for 224 reflections with Io>2σ(Io)). Boron atoms form infinite chains of fused B6 rings in [100] joined with carbon atoms into planar, two-dimensional networks which alternate with planar sheets of rare earth metal atoms. The electronic structure of Dy2B4C was also analyzed using the tight-binding extended Hückel method.

  9. Modifications of multi-wall carbon nanotubes with B-containing vapor and their effects on the properties of boron carbide matrix nanocomposites.

    Science.gov (United States)

    Herth, S; Miranda, D; Doremus, R H; Siegel, R W

    2008-06-01

    Multi-wall carbon nanotubes were modified by heating them together with elemental boron powder. B4C crystals grew on the surfaces of the nanotubes, and electron diffraction patterns showed an orientation dependence of the surface B4C and the underlying carbon in the nanotubes. There was no reaction of the nanotubes with solid B2O3 alone. Composites of the modified nanotubes in a B4C matrix showed a small increase of density over sintered B4C.

  10. Metal carbides

    International Nuclear Information System (INIS)

    Wells, A.F.

    1988-01-01

    From the viewpoint of general crystal chemistry principles and on the base of modern data the structural chemistry of metal carbides is presented. The classification deviding metal carbides into 4 groups depending on chemical and physical properties is presented. The features of the crystal structure of carbides of alkali alkaline earth, transition, 4 f- and 5f-elements and their effect on physical and chemical properties are considered

  11. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Fitzsimmons, M.; Pynn, R.

    1997-01-01

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  12. CaB(2)C(2): Reinvestigation of a Semiconducting Boride Carbide with a Layered Structure and an Interesting Boron/Carbon Ordering Scheme.

    Science.gov (United States)

    Albert, Barbara; Schmitt, Konny

    1999-12-27

    Calcium diboride dicarbide, CaB(2)C(2), was synthesized as a crystalline powder and investigated by electron energy loss spectroscopy, X-ray powder diffractometry, conductivity measurements, and LMTO band structure calculations. A new structure model was derived, and the crystal structure was refined by Rietveld methods in the tetragonal space group I4/mcm (No. 140, a = 537.33(1) pm and c = 741.55(2) pm, Z = 4). The boron and carbon atoms are well ordered within layers consisting of four- and eight-membered rings. A convincing coloring scheme is proven by the detection of a superstructure reflection. An earlier assignment of the compound into the LaB(2)C(2) structure family (space group P&fourmacr;2c or P4(2)/mmc, respectively) has been shown to be incorrect. LMTO band structure calculations suggest semiconducting behavior for CaB(2)C(2), which has been confirmed by conductivity measurements.

  13. Stereology of carbide phase in modified hypereutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2010-04-01

    Full Text Available In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and rare-earth (RE. The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  14. Influence of Vanadium and Boron Additions on the Microstructure, Fracture Toughness, and Abrasion Resistance of Martensite-Carbide Composite Cast Steel

    Directory of Open Access Journals (Sweden)

    Waleed Elghazaly

    2016-01-01

    Full Text Available High chromium cast steel alloys are being used extensively in many industrial services where dry or wet abrasion resistance is required. Such steel castings are demanded for cement, stoneware pipes, and earth moving industries. In this research, five steel heats were prepared in 100 kg and one-ton medium frequency induction furnaces and then sand cast in both Y-block and final impact arm spare parts, respectively. Vanadium (0.5–2.5% and boron (120–150 ppm were added to the 18Cr-1.9C-0.5Mo steel heats to examine their effects on the steel microstructure, mechanical properties especially impact, fracture toughness and abrasion resistance. Changes in the phase transformation after heat treatment were examined using inverted, SEM-EDX microscopy; however, the abrasion resistance was measured in dry basis using the real tonnage of crushed and milled stoneware clay to less than 0.1 mm size distribution.

  15. Behaviour of a VVER-1000 fuel element with boron carbide/steel absorber tested under severe fuel damage conditions in the CORA facility (Results of experiment CORA-W2)

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Schanz, G.; Schumacher, G.; Sepold, L.

    1994-10-01

    The 'Severe Fuel Damage' (SFD) experiments of the Kernforschungszentrum Karlsruhe (KfK), Federal Republic of Germany, were carried out in the out-of-pile facility 'CORA' as part of the international Severe Fuel Damage (SFD) research. The experimental program was set up to provide information on the failure mechanisms of Light Water Reactor (LWR) fuel elements in a temperature range from 1200 C to 2000 C and in few cases up to 2400 C. Between 1987 and 1992 a total of 17 CORA experiments with two different bundle configurations, i.e. PWR (Pressurized Water Reactor) and BWR (Boiling Water Reactor) bundles were performed. These assemblies represented 'Western-type' fuel elements with the pertinent materials for fuel, cladding, grid spacer, and absorber rod. At the end of the experimental program two VVER-1000 specific tests were run in the CORA facility with identical objectives but with genuine VVER-type materials. The experiments, designated CORA-W1 and CORA-W2 were conducted on February 18, 1993 and April 21, 1993, respectively. Test bundle CORA-W1 was without absorber material whereas CORA-W2 contained one absorber rod (boron carbide/steel). As in the earlier CORA tests the test bundles were subjected to temperature transients of a slow heatup rate in a steam environment. The transient phases of the tests were initiated with a temperature ramp rate of 1 K/s. With these conditions a so-called small-break LOCA was simulated. The temperature escalation due to the exothermal zircon/niobium-steam reaction started at about 1200 C, leading the bundles to maximum temperatures of approximately 1900 C. The thermal response of bundle CORA-W2 is comparable to that of CORA-W1. In test CORA-W2, however, the temperature front moved faster from the top to the bottom compared to test CORA-W1 [de

  16. First Principles Atomistic Model for Carbon-Doped Boron Suboxide

    Science.gov (United States)

    2014-09-01

    Sutherland DG, Van Buuren T, Carlisle JA, Terminello LJ, Himpsel FJ. Photoemission and x - ray -absorption study of boron carbide and its surface thermal...along the C-C chain. If the interstitial dopant is either B or C, a local boron carbide (B4C)-like structure with either a C-B-C or C-C-C chain is...strength, high oxidation resistance (򒱰 °C), and chemical inertness.1–8 However, unlike other high-performance ceramics, boron carbide (B4C) and

  17. New examples of ternary rare-earth metal boride carbides containing finite boron carbon chains: The crystal and electronic structure of RE15B6C20 (RE=Pr, Nd)

    Science.gov (United States)

    Babizhetskyy, Volodymyr; Mattausch, Hansjürgen; Simon, Arndt; Hiebl, Kurt; Ben Yahia, Mouna; Gautier, Régis; Halet, Jean-François

    2008-08-01

    The ternary rare-earth metal boride carbides RE15B6C20 (RE=Pr, Nd) were synthesized by co-melting the elements. They exist above 1270 K. Their crystal structures were determined from single-crystal X-ray diffraction data. Both crystallize in the space group P1¯, Z=1, a=8.3431(8) Å, b=9.2492(9) Å, c=8.3581(8) Å, α=84.72(1)°, β=89.68(1)°, γ =84.23(1)° (R1=0.041 (wR2=0.10) for 3291 reflections with Io>2σ(Io)) for Pr15B6C20, and a=8.284(1) Å, b=9.228(1) Å, c=8.309(1) Å, α=84.74(1)°, β=89.68(1)°, γ=84.17(2)° (R1=0.033 (wR2=0.049) for 2970 reflections with Io>2σ(Io)) for Nd15B6C20. Their structure consists of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with unprecedented B2C4 finite chains, disordered C3 entities and isolated carbon atoms, respectively. Structural and theoretical analyses suggest the ionic formulation (RE3+)15([B2C4]6-)3([C3]4-)2(C4-)2·11ē. Accordingly, density functional theory calculations indicate that the compounds are metallic. Both structural arguments as well as energy calculations on different boron vs. carbon distributions in the B2C4 chains support the presence of a CBCCBC unit. Pr15B6C18 exhibits antiferromagnetic order at TN=7.9 K, followed by a meta-magnetic transition above a critical external field B>0.03 T. On the other hand, Nd15B6C18 is a ferromagnet below TC≈40 K.

  18. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    Science.gov (United States)

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  19. Microstructure and hydrogen dynamics in hydrogenated amorphous silicon carbides

    Science.gov (United States)

    Shinar, J.; Shinar, R.; Williamson, D. L.; Mitra, S.; Kavak, H.; Dalal, V. L.

    1999-12-01

    Small angle x-ray scattering (SAXS) and deuterium secondary-ion-mass spectrometry (DSIMS) studies of the microstructure and hydrogen dynamics in undoped rf-sputter-deposited (RFS) and undoped and boron-doped electron-cyclotron-resonance-deposited (ECR) hydrogenated amorphous silicon carbides (a-Si1-xCx:H) are described. In the RFS carbides with xcarbides with xBoron doping of the ECR carbides also reduced the bulklike Si-bonded H content, suggesting that it induces nanovoids, consistent with the observed suppression of long-range motion of most of the H and D atoms. However, a small fraction of the H atoms appeared to undergo fast diffusion, reminiscent of the fast diffusion in B-doped a-Si:H.

  20. Boron reclamation

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-07-01

    A process to recover high purity 10 B enriched crystalline boron powder from a polymeric matrix was developed on a laboratory basis and ultimately scaled up to production capacity. The process is based on controlled pyrolysis of boron-filled scrap followed by an acid leach and dry sieving operation to return the powder to the required purity and particle size specifications. Typically, the recovery rate of the crystalline powder is in excess of 98.5 percent, and some of the remaining boron is recovered in the form of boric acid. The minimum purity requirement of the recovered product is 98.6 percent total boron

  1. Growth of diamond layers on diamond and cBN seeds using iron carbide under high pressure and high temperature

    CERN Document Server

    Li Xun; Hao Zhao Yin; LiuPeng; Li Musen; Zou Guang Tian; Cheng Shu Yu; Cheng Kai Jia

    2002-01-01

    Iron carbide without any graphite was studied under high pressure and high temperature (HPHT); diamond layers were obtained both on diamond and on cubic boron nitride seeds at 5.5 GPa and 1700-1750 K. The results showed that transition-metal carbide was the main intermediate in the course of the transformation from graphite to diamond under HPHT.

  2. Effect of Boron-Doped Diamond Interlayer on Cutting Performance of Diamond Coated Micro Drills for Graphite Machining

    OpenAIRE

    Lei, Xuelin; Wang, Liang; Shen, Bin; Sun, Fanghong; Zhang, Zhiming

    2013-01-01

    Thin boron doped diamond (BDD) film is deposited from trimethyl borate/acetone/hydrogen mixture on Co-cemented tungsten carbide (WC-Co) micro drills by using the hot filament chemical vapor deposition (HFCVD) technique. The boron peak on Raman spectrum confirms the boron incorporation in diamond film. This film is used as an interlayer for subsequent CVD of micro-crystalline diamond (MCD) film. The Rockwell indentation test shows that boron doping could effectively improve the adhesive streng...

  3. Diffusion Boronizing of H11 Hot Work Tool Steel

    Science.gov (United States)

    Jurči, Peter; Hudáková, Mária

    2011-10-01

    The H11 hot work tool steel was boronized at various processing parameters, austenitized, quenched, and tempered to a core hardness of 47-48 HRC. Microstructure, phase constitution, and microhardness of boronized layers were investigated. Effect of boronized region on the bulk properties was determined by the Charpy impact test. Structure of boronized regions is formed by the compound layers and diffusion inter-layer. The compound layers consisted of only (Fe,Cr)2B phase, but in the case of longer processing time, they contained also of the (Fe,Cr)B-phase. The inter-layer contained enhanced portion of carbides, formed due to carbon diffusion from the boride compounds toward the substrate. Microhardness of boronized layers exceeded considerably 2000 HV 0.1. However, boronizing led to a substantial lowering of the Charpy impact toughness of the material.

  4. Seebeck effect of some thin film carbides

    International Nuclear Information System (INIS)

    Beensh-Marchwicka, G.; Prociow, E.

    2002-01-01

    Several materials have been investigated for high-temperature thin film thermocouple applications. These include silicon carbide with boron (Si-C-B), ternary composition based on Si-C-Mn, fourfold composition based on Si-C-Zr-B and tantalum carbide (TaC). All materials were deposited on quartz or glass substrates using the pulse sputter deposition technique. Electrical conduction and thermoelectric power were measured for various compositions at 300-550 K. It has been found, that the efficiency of thermoelectric power of films containing Si-C base composition was varied from 0.0015-0.034 μW/cmK 2 . However for TaC the value about 0.093 μW/cmK 2 was obtained. (author)

  5. Effect of boron on intergranular hot cracking in Ni-Cr-Fe superalloys containing niobium

    Science.gov (United States)

    Thompson, R. G.

    1990-01-01

    Solidification mechanisms had a dominant influence on microfissuring behavior of the test group. Carbon modified the Laves formation significantly and showed that one approach to alloy design would be balancing carbide formers against Laves formers. Boron's strong effect on microfissuring can be traced to its potency as a Laves former. Boron's segregation to grain boundaries plays at best a secondary role in microfissuring.

  6. Crystal Chemistry and Magnetism of Ternary Actinoid Boron Carbides UB 1- xC 1+ x and U 1- xMxB 2C with M = Sc, Lu, and Th

    Science.gov (United States)

    Rogl, P.; Rupp, B.; Felner, I.; Fischer, P.

    1993-06-01

    Within the homogeneous range of uranium monocarbide UB 1- xC 1+ x, the crystal structures of stoichiometric UBC and of the carbon-rich solid solution UB 0.78C 1.22, have been refined from single-crystal X-ray counter data. From X-ray analysis crystal symmetry in both cases is consistent with the centro-symmetric space group Cmcm and there are no indications of superstructure formation. In contrast to the fully ordered atom arrangement revealed for stoichiometric UBC ( a = 0.35899(4), b = 1.19781(12), c = 0.33474(3) nm), random occupation by boron and carbon atoms is observed for the boron site in UB 0.78C 1.22 ( a = 0.35752(4), b = 1.18584(3), c = 0.33881(4) nm). For 279(278) reflections (|F 0| > 3σ) the obtained reliability factors R x = ∑|ΔF|/∑| F0| were R x = 0.069 for UBC and R x = 0.050 for UB 0.78C 1.22. Neutron powder diffraction experiments at 9 and 295 K unambiguously revealed full occupancy by the nonmetal atoms in UB 0.78C 1.22 and prove the statistical occupation of B and C atoms in the B-sites. For the orthorhombic symmetry Cmcm, refinement was not better than R1 = 0.044. A model calculation in monoclinic symmetry C12/ m1, however, resulted in a significant reduction of the residual value to R1 = 0.030, releasing spatial constraints on the boron atoms. Thus the boron-boron chain in Cmcm (B-B = 0.1874 nm) is dissolved into boron pairs (B-B = 0.1706 nm) which are loosely bound at a distance of 0.2043 nm. The formation of C-B-B-C groups corresponds to the structure types of ThBC and Th 3B 2C 3. The magnetic behavior has been investigated in the temperature range from 4.2 K to 1000 K for UB 1- xC 1+ x (UBC-type) and U 1- xMxB 2C (ThB 2C-type for the high temperature modification and 1-UB 2C-type for the low temperature modification) with U partially substituted by Th or Sc, Lu. From magnetic susceptibilities, the alloys UB 1- xC 1+ x reveal temperature independent paramagnetism with typical intermediate valence fluctuation behavior ( TSF ˜ 350 K

  7. The boron filter for the ROSAT X-ray telescope

    Science.gov (United States)

    Stephan, K.-H.; Schmitt, J. H. M. M.; Snowden, S. L.; Maier, H. J.; Frischke, D.

    1991-05-01

    We have developed multilayered films composed of boron carbide and carbon, which serve as spectral filters in the focal plane of the Wolter type I X-ray telescope on board the X-ray astronomy satellite ROSAT (Röntgensatellit). We describe the manufacturing process and qualification measurements of the filters and present the resulting performance data. Finally the pulse height spectrum of the active star AR Lac observed by ROSAT with and without boron filter will be shown.

  8. White light emission from engineered silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan

    Silicon carbide (SiC) is a wide indirect bandgap semiconductor. The light emission efficiency is low in nature. But this material has very unique physical properties like good thermal conductivity, high break down field etc in addition to its abundance. Therefore it is interesting to engineer its...... light emission property so that to take fully potential applications of this material. In this talk, two methods, i.e. doping SiC heavily by donor-acceptor pairs and making SiC porous are introduced to make light emission from SiC. By co-doping SiC with nitrogen and boron heavily, strong yellow emission...

  9. Selected Silicon Carbide Reports from Rutgers Materials Center of Excellence Annual Reports, 2010-2011

    Science.gov (United States)

    2015-03-01

    unit at the maximum temperature of 1,950 °C. To achieve maximum density of the samples, about 1% of boron carbide (B4C) and excess C as graphite (B/C...has been detected in the samples. Increased concentrations of free C were observed near the metallurgical-grade edge, similar to the X - ray ... Carbide Reports from Rutgers Materials Center of Excellence Annual Reports, 2010–2011 edited by JW McCauley (Emeritus) Cooperative Agreement

  10. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    Science.gov (United States)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  11. Crystalline boron nitride aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-12-12

    This disclosure provides methods and materials related to boron nitride aerogels. For example, one aspect relates to a method for making an aerogel comprising boron nitride, comprising: (a) providing boron oxide and an aerogel comprising carbon; (b) heating the boron oxide to melt the boron oxide and heating the aerogel; (c) mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide; and (d) converting at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride. Another aspect relates to a method for making an aerogel comprising boron nitride, comprising heating boron oxide and an aerogel comprising carbon under flow of a nitrogen-containing gas, wherein boron oxide vapor and the nitrogen-containing gas convert at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride.

  12. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  13. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  14. Pulmonary response, in vivo, to silicon carbide whiskers.

    Science.gov (United States)

    Vaughan, G L; Trently, S A; Wilson, R B

    1993-11-01

    Fischer rats were exposed to silicon carbide whiskers (SiCW), boron carbide whiskers (BCW), silicon carbide platelets (SiCP), or crocidolite asbestos separately administered by intratracheal instillation. SiCW proved to be the most toxic material within the test group. Dramatic increases in alveolar macrophage populations within 1 week of exposure to SiCW persisted for at least 28 days, evidence of the chronic inflammation observed in necropsies during the first months of the study. The most common finding in histological preparations of tissues taken from animals 18 months after exposure to SiCW was a high incidence (frequency > 0.85) of multiple pulmonary granulomas which occasionally occluded airways. Lesions associated with crocidolite were similar to those found with SiCW. Equivalent treatment with BCW and SiCP produced no significant histological changes within 18 months of exposure.

  15. B sub 4 C solid target boronization of the MST reversed-field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, D.J.; Cekic, M.; Fiksel, G.; Hokin, S.A.; Kendrick, R.D.; Prager, S.C.; Stoneking, M.R.

    1992-10-01

    A solid rod of hot-pressed boron carbide is being used as the source of boron during boronization of MST. The most striking result of this procedure is the reduction in oxygen contamination of the plasma (O III radiation, characteristic of oxygen at the edge, falls by about a factor of 3 after boronization.). The radiated power fraction drops to about half its initial value. Particle reflux from the wall is also lowered, making density control simpler. The rod (12.7 mm diameter) is inserted into the edge plasma of normal high-power RFP discharges. B{sub 4}C is ablated from the surface of the rod and deposited in a thin film (a-B/C:H) on the walls and limiters. The energy flux carried by superthermal'' (not runaway'') electrons at the edge of MST appears to enhance the efficient, non-destructive ablation of the boron carbide rod.

  16. B{sub 4}C solid target boronization of the MST reversed-field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, D.J.; Cekic, M.; Fiksel, G.; Hokin, S.A.; Kendrick, R.D.; Prager, S.C.; Stoneking, M.R.

    1992-10-01

    A solid rod of hot-pressed boron carbide is being used as the source of boron during boronization of MST. The most striking result of this procedure is the reduction in oxygen contamination of the plasma (O III radiation, characteristic of oxygen at the edge, falls by about a factor of 3 after boronization.). The radiated power fraction drops to about half its initial value. Particle reflux from the wall is also lowered, making density control simpler. The rod (12.7 mm diameter) is inserted into the edge plasma of normal high-power RFP discharges. B{sub 4}C is ablated from the surface of the rod and deposited in a thin film (a-B/C:H) on the walls and limiters. The energy flux carried by ``superthermal`` (not ``runaway``) electrons at the edge of MST appears to enhance the efficient, non-destructive ablation of the boron carbide rod.

  17. The possibility of the boronizing process on the pressed samples of iron powder

    Directory of Open Access Journals (Sweden)

    Požega Emina D.

    2009-01-01

    Full Text Available The paper presents results of the experimental investigation of the boronizing process on nonsintering iron powder samples (NC100.24, Höganäs, Sweden. Experiments are planned within the limits of applicability of simultaneous sintering at chemical-thermal treatment process (boronizing. The simlex plan of 15 experimental points was used for the experiment, while a polynomial function of fourth degree was employed in the modeling of a mixture composition based on the volume changes, porosity and the depth layer changes. Boronizing was carried out in mixture with born carbide by addition of ammonium bifluoride, ammonium chloride and boron potassium fluoride as activators, by proportion definited plan.

  18. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure

    OpenAIRE

    Ji, Cheng; Levitas, Valery I.; Zhu, Hongyang; Chaudhuri, Jharna; Marathe, Archis; Ma, Yanzhang

    2012-01-01

    Disordered structures of boron nitride (BN), graphite, boron carbide (BC), and boron carbon nitride (BCN) systems are considered important precursor materials for synthesis of superhard phases in these systems. However, phase transformation of such materials can be achieved only at extreme pressure–temperature conditions, which is irrelevant to industrial applications. Here, the phase transition from disordered nanocrystalline hexagonal (h)BN to superhard wurtzitic (w)BN was found at room tem...

  19. Abrasive wear behavior of heat-treated ABC-silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  20. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    Science.gov (United States)

    Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.

    2015-10-01

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  1. Natural precursor based hydrothermal synthesis of sodium carbide for reactor applications

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Sebastian, Riya; Ambadas, G.; Sankararaman, S.

    2017-12-01

    Carbides are a class of materials with high mechanical strength and refractory nature which finds a wide range of applications in industries and nuclear reactors. The existing synthesis methods of all types of carbides have problems in terms of use of toxic chemical precursors, high-cost, etc. Sodium carbide (Na2C2) which is an alkali metal carbide is the least explored one and also that there is no report of low-cost and low-temperature synthesis of sodium carbide using the eco-friendly, easily available natural precursors. In the present work, we report a simple low-cost, non-toxic hydrothermal synthesis of refractory sodium carbide using the natural precursor—Pandanus. The formation of sodium carbide along with boron carbide is evidenced by the structural and morphological characterizations. The sample thus synthesized is subjected to field emission scanning electron microscopy (FESEM), x-ray powder diffraction (XRD), ultraviolet (UV)—visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, and photoluminescent (PL) spectroscopic techniques.

  2. Boron nitride composites

    Science.gov (United States)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  3. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  4. Microstructure evolution of SiC sintered bodies activated by boron and carbon

    International Nuclear Information System (INIS)

    Gubernat, A.; Stobierski, L.

    2003-01-01

    Investigation on the role of sintering aids on densification of silicon carbide indicate that boron and carbon modify mass transport mechanisms. It leads to changes of microstructure of polycrystalline silicon carbide. In the present work the influence of varying proportions of sintering aids on the material microstructure was studied. The microstructural changes were related to the changes of the selected properties of the resulting materials. (author)

  5. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux

    International Nuclear Information System (INIS)

    Lang, F.M.; Magnier, P.; Finck, C.

    1956-01-01

    Preparation of boron thin film deposits of around 1 mg per cm 2 on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  6. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    Science.gov (United States)

    Liu, Tao; Luo, Ruiying; Yoon, Seong-Ho; Mochida, Isao

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g -1 and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by "molecular bridging" between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper.

  7. Electrocatalysis on tungsten carbide

    International Nuclear Information System (INIS)

    Fleischmann, R.

    1975-01-01

    General concepts of electrocatalysis, the importance of the equilibrium rest potential and its standardization on polished WC-electrodes, the influence of oxygen in the catalysts upon the oxidation of hydrogen, and the attained results of the hydrogen oxidation on tungsten carbide are treated. (HK) [de

  8. Composite boron nitride neutron detectors

    Science.gov (United States)

    Roth, M.; Mojaev, E.; Khakhan, O.; Fleider, A.; Dul`kin, E.; Schieber, M.

    2014-09-01

    Single phase polycrystalline hexagonal boron nitride (BN) or mixed with boron carbide (BxC) embedded in an insulating polymeric matrix acting as a binder and forming a composite material as well as pure submicron size polycrystalline BN has been tested as a thermal neutron converter in a multilayer thermal neutron detector design. Metal sheet electrodes were covered with 20-50 μm thick layers of composite materials and assembled in a multi-layer sandwich configuration. High voltage was applied to the metal electrodes to create an interspacing electric field. The spacing volume could be filled with air, nitrogen or argon. Thermal neutrons were captured in converter layers due to the presence of the 10B isotope. The resulting nuclear reaction produced α-particles and 7Li ions which ionized the gas in the spacing volume. Electron-ion pairs were collected by the field to create an electrical signal proportional to the intensity of the neutron source. The detection efficiency of the multilayer neutron detectors is found to increase with the number of active converter layers. Pixel structures of such neutron detectors necessary for imaging applications and incorporation of internal moderator materials for field measurements of fast neutron flux intensities are discussed as well.

  9. Improved silicon carbide for advanced heat engines

    Science.gov (United States)

    Whalen, T. J.; Winterbottom, W. L.

    1986-01-01

    Work performed to develop silicon carbide materials of high strength and to form components of complex shape and high reliability is described. A beta-SiC powder and binder system was adapted to the injection molding process and procedures and process parameters developed capable of providing a sintered silicon carbide material with improved properties. The initial effort has been to characterize the baseline precursor materials (beta silicon carbide powder and boron and carbon sintering aids), develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures have been carried out in order to distinguish process routes for improving material properties. A total of 276 MOR bars of the baseline material have been molded, and 122 bars have been fully processed to a sinter density of approximately 95 percent. The material has a mean MOR room temperature strength of 43.31 ksi (299 MPa), a Weibull characteristic strength of 45.8 ksi (315 MPa), and a Weibull modulus of 8.0. Mean values of the MOR strengths at 1000, 1200, and 14000 C are 41.4, 43.2, and 47.2 ksi, respectively. Strength controlling flaws in this material were found to consist of regions of high porosity and were attributed to agglomerates originating in the initial mixing procedures. The mean stress rupture lift at 1400 C of five samples tested at 172 MPa (25 ksi) stress was 62 hours and at 207 MPa (30 ksi) stress was 14 hours. New fluid mixing techniques have been developed which significantly reduce flaw size and improve the strength of the material. Initial MOR tests indicate the strength of the fluid-mixed material exceeds the baseline property by more than 33 percent.

  10. Methods of forming boron nitride

    Science.gov (United States)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  11. Silicon carbide layer structure recovery after ion implantation

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Demakov, K.D.; Kal'nin, A.A.; Nojbert, F.; Potapov, E.N.; Tairov, Yu.M.

    1984-01-01

    The process of recovery of polytype structure of SiC surface layers in the course of thermal annealing (TA) and laser annealing (LA) upon boron and aluminium implantation is studied. The 6H polytype silicon carbide C face (0001) has been exposed to ion radiation. The ion energies ranged from 80 to 100 keV, doses varied from 5x10 14 to 5x10 16 cm -2 . TA was performed in the 800-2000 K temperature range. It is shown that the recovery of the structure of silicon carbide layers after ion implantation takes place in several stages. Considerable effect on the structure of the annealed layers is exerted by the implantation dose and the type of implanted impurity. The recovery of polytype structure is possible only under the effect of laser pulses with duration not less than the time for the ordering of the polytype in question

  12. Effect of boron nitride coating on fiber-matrix interactions

    International Nuclear Information System (INIS)

    Singh, R.N.; Brun, M.K.

    1987-01-01

    Coatings can modify fiber-matrix reactions and consequently interfacial bond strengths. Commercially available mullite, silicon carbide, and carbon fibers were coated with boron nitride via low pressure chemical vapor deposition and incorporated into a mullite matrix by hot-pressing. The influence of fiber-matrix interactions for uncoated fibers on fracture morphologies was studied. These observations are related to the measured values of interfacial shear strengths

  13. A metallic superhard boron carbide: first-principles calculations.

    Science.gov (United States)

    Ma, Mengdong; Yang, Bingchao; Li, Zihe; Hu, Meng; Wang, Qianqian; Cui, Lin; Yu, Dongli; He, Julong

    2015-04-21

    A monoclinic BC3 phase (denoted M-BC3) has been predicted using first principles calculations. The M-BC3 structure is formed by alternately stacking sequences of metallic BC-layers and insulating C atom layers, thus, the structure exhibits two-dimensional conductivity. Its stability has been confirmed by our calculations of the total energy, elastic constants, and phonon frequencies. The pressure of phase transition from graphite-like BC3 to M-BC3 is calculated to be 9.3 GPa, and the theoretical Vickers hardness of M-BC3 is 43.8 GPa, this value indicates that the compound is a potentially superhard material. By comparing Raman spectral calculations of M-BC3 and previously proposed structures with the experimental data, we speculate that the experimentally synthesized BC3 crystal may simultaneously contain M-BC3 and Pmma-b phases.

  14. New approach to the synthesis of nanocrystalline boron carbide.

    Science.gov (United States)

    Herth, Simone; Joost, William J; Doremus, Robert H; Siegel, Richard W

    2006-04-01

    The use of nanoparticles in ceramic matrix composites provides lower sintering temperatures and higher densities at a given temperature than common coarse-grained materials. Nanocrystalline B4C was synthesized by an inexpensive carbothermal reduction method using carbon black and B2O3 as precursor. Full conversion was achieved at 1623 K for annealing times of 480 minutes or with a large excess of B2O3 and oxidation of the remaining carbon after 30 minutes of annealing. The average particle size of the synthesized B4C powder was 260 nm, which was reduced to 70 nm after separation of the small particle fraction from the larger particles by sedimentation. A mixture of the as-prepared powder and commercial coarse-grained B4C yielded an increase of the density of low temperature hot pressed samples by 25% in comparison to pure commercial B4C. Possible chemical reactions and mechanisms in the synthesis of B4C were examined with the Gibbs free energies of reactions. The most likely reaction was the reduction of B2O3 vapor at the surfaces of the carbon particles after its vapor transport from the liquid B2O3. An observed reduction of B4C yield above 1623 K was probably caused by loss of B2O3 vapor from the reaction mixture.

  15. Characterization of a Boron Carbide Heterojunction Neutron Detector

    Science.gov (United States)

    2011-03-24

    with the high density of gap states split off from the valence band - on the order of 0.1 to 1 per elementary cell (~3×1021 elementary cells cm-3...obtained. Using this value, and the silicon values in Table 7, the Fermi level is given by / / ln ,D A n p i NkT q n         (2) where

  16. High temperature heat capacities and electrical conductivities of boron carbides

    International Nuclear Information System (INIS)

    Matsui, Tsuneo; Arita, Yuri; Naito, Keiji; Imai, Hisashi

    1991-01-01

    The heat capacities and the electrical conductivities of B x C(x=3, 4, 5) were measured by means of direct heating pulse calorimetry in the temperature range from 300 to 1500 K. The heat capacities of B x C increased with increasing x value. This increase in the heat capacity is probably related to the change of the lattice vibration mode originated from the reduction of the stiffness of the intericosahedral chain accompanied with a change from C-B-C to C-B-B chains. A linear relationship between the logarithm of σT (σ is the electrical conductivity and T is the absolute temperature) of B x C and the reciprocal temperature was observed, indicating the presence of small polaron hopping as the predominant conduction mechanism. The electrical conductivity of B x C also increased with increasing x value (from 4 to 5) due to an increase of the polaron hopping of holes between carbon atoms at geometrically nonequivalent sites, since these nonequivalent sites of carbon atoms were considered to increase in either B 11 C icosahedra or in icosahedral chains with increasing x. The electrical conductivity of B 3 C was higher than that of B 4 C, which is probably due to the precipitation of high-conducting carbon. The thermal conductivity and the thermodynamic quantities of B 4 C were also determined precisely from the heat capacity value. (orig.)

  17. Laser treatment of boron carbide surfaces: Metallurgical and morphological examinations

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsilbas@kfupm.edu.sa; Karatas, C.

    2014-08-01

    Highlights: • Dense layer with fine grains is formed at surface. • Irregular shaped grains and dendrites are formed below dense layer. • Assisting gas forms nitride species (BN and BC{sub 2}N) at surface. • Fracture toughness of treated surface reduces because of high hardness. • Residual stress is compressive and the maximum residual stress is about 0.9 GPa. - Abstract: Laser treatment of B{sub 4}C tile surfaces is carried out under high pressure nitrogen assisting gas environment. Morphological and metallurgical changes in the laser treated layer are examined by incorporating scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction. Microhardness and fracture toughness of the laser treated surface are determined from the indentation data. Residual stress formed at the treated surface is obtained by using X-ray diffraction technique. It is found that laser treated surface is free from large scale asperities including cracks and voids; however, some locally scattered shallow cavities with 1.5–2 μm widths are formed at the surface because of high temperature processing. Dense layer, consisting of fine grains, and formation of nitride species (BN and BC{sub 2}N) enhance microhardness and lower fracture toughness at the surface. Residual stress formed in the treated layer is compressive and the maximum residual stress is in the order of −0.9 GPa.

  18. Directional amorphization of boron carbide subjected to laser shock compression

    OpenAIRE

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.

    2016-01-01

    When crystalline solids are stressed quasi-statically, dislocation slip, twinning, and phase transformations are the predominant mechanisms to dissipate the imparted elastic energy. Under shock, high hydrostatic and shear stresses promptly build up at the shock front, favoring fast energy dissipation mechanisms. Amorphization, which may only involve localized atomic arrangements, is therefore an additional potential candidate. Shock-induced amorphization has now been reported in various mater...

  19. Sintering of beryllium oxide with 3-4 per cent elemental boron

    International Nuclear Information System (INIS)

    Pointud, R.; Rispal, Ch.; Le Garec, M.

    1958-01-01

    In order to manufacture a baffle absorbing neutrons of various energies, there was developed or mixture of a slower and an absorber. It is made by hot pressing impure beryllium containing boron carbide. The dense briquette has 100 x 100 x 50 mm and is machined on all her faces. She is of 2,85 density and about 3 to 4 per cent porosity, according to 5 per cent of boron. Difference of boron amount is lower than ten per cent between any two points of the briquette. (author) [fr

  20. Boron nitride converted carbon fiber

    Science.gov (United States)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  1. RESEARCH OF INFLUENCE OF ALLOYING BY BORON ON PROPERTIES THE IRON-CARBON ALLOYS

    Directory of Open Access Journals (Sweden)

    K. V. Kobyakov

    2014-01-01

    Full Text Available It is shown that for improvement of physical-mechanical properties of the cast products which have hard usage, the boron carbide, which can be used at carrying out process of thermo-chemical treatment of cast products of iron-carbon alloy, is of great interest.

  2. Development of Cutting Tool Through Superplastic Boronizing of Duplex Stainless Steel

    Science.gov (United States)

    Jauhari, Iswadi; Harun, Sunita; Jamlus, Siti Aida; Sabri, Mohd Faizul Mohd

    2017-03-01

    In this study, a cutting tool is developed from duplex stainless steel (DSS) using the superplastic boronizing technique. The feasibility of the development process is studied, and the cutting performances of the cutting tool are evaluated and compared with commercially available carbide and high-speed steel (HSS) tools. The superplastically boronized (SPB) cutting tool yielded a dense boronized layer of 50.5 µm with a surface hardness of 3956 HV. A coefficient of friction value of 0.62 is obtained, which is lower than 1.02 and 0.8 of the carbide and HSS tools. When tested on an aluminum 6061 surface under dry condition, the SPB cutting tool is also able to produce turning finishing below 0.4 µm, beyond the travel distance of 3000 m, which is comparable to the carbide tool, but produces much better results than HSS tool. Through superplastic boronizing of DSS, it is possible to produce a high-quality metal-based cutting tool that is comparable to the conventional carbide tool.

  3. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...

  4. Silicon carbide sewing thread

    Science.gov (United States)

    Sawko, Paul M. (Inventor)

    1995-01-01

    Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems provide lightweight thermal insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.

  5. Standard specification for boron-Based neutron absorbing material systems for use in nuclear spent fuel storage racks

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This specification defines criteria for boron-based neutron absorbing material systems used in racks in a pool environment for storage of nuclear light water reactor (LWR) spent-fuel assemblies or disassembled components to maintain sub-criticality in the storage rack system. 1.2 Boron-based neutron absorbing material systems normally consist of metallic boron or a chemical compound containing boron (for example, boron carbide, B4C) supported by a matrix of aluminum, steel, or other materials. 1.3 In a boron-based absorber, neutron absorption occurs primarily by the boron-10 isotope that is present in natural boron to the extent of 18.3 ± 0.2 % by weight (depending upon the geological origin of the boron). Boron, enriched in boron-10 could also be used. 1.4 The materials systems described herein shall be functional – that is always be capable to maintain a B10 areal density such that subcriticality Keff <0.95 or Keff <0.98 or Keff < 1.0 depending on the design specification for the service...

  6. Effect of molybdenum, vanadium, boron on mechanical properties of high chromium white cast iron in as-cast condition

    Science.gov (United States)

    Nurjaman, F.; Sumardi, S.; Shofi, A.; Aryati, M.; Suharno, B.

    2016-02-01

    In this experiment, the effect of the addition carbide forming elements on high chromium white cast iron, such as molybdenum, vanadium and boron on its mechanical properties and microstructure was investigated. The high chromium white cast iron was produced by casting process and formed in 50 mm size of grinding balls with several compositions. Characterization of these grinding balls was conducted by using some testing methods, such as: chemical and microstructure analysis, hardness, and impact test. From the results, the addition of molybdenum, vanadium, and boron on high chromium white cast iron provided a significant improvement on its hardness, but reduced its toughness. Molybdenum induced fully austenitic matrix and Mo2C formation among eutectic M7C3 carbide. Vanadium was dissolved in the matrix and carbide. While boron was played a role to form fine eutectic carbide. Grinding balls with 1.89 C-13.1 Cr-1.32 Mo-1.36 V-0.00051 B in as-cast condition had the highest hardness, which was caused by finer structure of eutectic carbide, needle like structure (upper bainite) matrix, and martensite on its carbide boundary.

  7. Structure and photoluminescence of boron and nitrogen co-doped carbon nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Gao, B. [College of Computer Science, Chongqing University, Chongqing 400044 (China); Chongqing Municipal Education Examinations Authority, Chongqing 401147 (China); Zhong, X.X., E-mail: xxzhong@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Shao, R.W.; Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2016-07-15

    Graphical abstract: Boron- and nitrogen- doped carbon nanorods. - Highlights: • The co-doping of nitrogen and boron in carbon nanorods. • The doping mechanism of nitrogen and boron in carbon nanorods by plasma. • Photoluminescence properties of nitrogen- and boron-doped carbon nanorods. - Abstract: Boron and nitrogen doped carbon nanorods (BNCNRs) were synthesized by plasma-enhanced hot filament chemical vapor deposition, where methane, nitrogen and hydrogen were used as the reaction gases and boron carbide was the boron source. The results of scanning electron microscopy, micro-Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy indicate that boron and nitrogen can be used as co-dopants in amorphous carbon nanorods. Combined with the characterization results, the doping mechanism was studied. The mechanism is used to explain the formation of different carbon materials by different methods. The photoluminescence (PL) properties of BNCNRs were studied. The PL results show that the BNCNRs generate strong green PL bands and weak blue PL bands, and the PL intensity lowered due to the doping of boron. The outcomes advance our knowledge on the synthesis and optical properties of carbon-based nanomaterials and contribute to the development of optoelectronic nanodevices based on nano-carbon mateirals.

  8. The conflicting roles of boron on the radiation response of precipitate-forming austenitic alloys

    International Nuclear Information System (INIS)

    Okita, T.; Sekimura, N.; Garner, F.

    2007-01-01

    Full text of publication follows: Boron is often a deliberately added solute to improve the radiation resistance of austenitic structural alloys, with boron exerting its greatest influence on carbide precipitation. However, boron also a source of helium via transmutation and therefore tends to accelerate the onset of void nucleation. These conflicting contributions of boron with respect to radiation resistance are not easily separated, but are sometimes utilized to mimic fusion-relevant gas generation rates when testing in surrogate fission spectra. In an earlier study the authors demonstrated that in simple model ternary alloys that boron additions tended to homogenize swelling somewhat via increased helium generation but not to exert any significant influence on the total swelling. In these easily swelling alloys void nucleation was not significantly influenced by additional helium or by boron's chemical effect, with boron remaining primarily in solution. In the current study, Fe-15Cr-16Ni-0.25 Ti-0.05C alloys with four levels of natural boron addition (0, 100, 500, 2500 appm) were irradiated side-by-side at ∼400 deg. C in the Fast Flux Test Facility under active temperature control in the Materials Open Test Assembly. Although three sets of irradiation conditions were explored, the boron variation was the only variable operating in each data set. The bulk swelling was measured using an immersion density technique and electron microscopy was employed to determine the details of void, dislocation and precipitate microstructure. It was found that by 100 appm B the strongest and most immediate effect of boron was to reduce swelling at all irradiation conditions explored, but the boron-induced increases in overall helium content were rather small over the 0-100 appm B range. This indicates that boron's primary effect was chemical in nature, expressed via its effect on precipitation. As the boron level was progressively increased, however, there was a reversal in

  9. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  10. Single-Crystal Tungsten Carbide in High-Temperature In-Situ Additive Manufacturing Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kolopus, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boatner, Lynn A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-18

    Nanoindenters are commonly used for measuring the mechanical properties of a wide variety of materials with both industrial and scientific applications. Typically, these instruments employ an indenter made of a material of suitable hardness bonded to an appropriate shaft or holder to create an indentation on the material being tested. While a variety of materials may be employed for the indenter, diamond and boron carbide are by far the most common materials used due to their hardness and other desirable properties. However, as the increasing complexity of new materials demands a broader range of testing capabilities, conventional indenter materials exhibit significant performance limitations. Among these are the inability of diamond indenters to perform in-situ measurements at temperatures above 600oC in air due to oxidation of the diamond material and subsequent degradation of the indenters mechanical properties. Similarly, boron carbide also fails at high temperature due to fracture. [1] Transition metal carbides possess a combination of hardness and mechanical properties at high temperatures that offer an attractive alternative to conventional indenter materials. Here we describe the technical aspects for the growth of single-crystal tungsten carbide (WC) for use as a high-temperature indenter material, and we examine a possible approach to brazing these crystals to a suitable mount for grinding and attachment to the indenter instrument. The use of a by-product of the recovery process is also suggested as possibly having commercial value.

  11. Raman effect in icosahedral boron-rich solids

    Directory of Open Access Journals (Sweden)

    Helmut Werheit, Volodymyr Filipov, Udo Kuhlmann, Ulrich Schwarz, Marc Armbrüster, Andreas Leithe-Jasper, Takaho Tanaka, Iwami Higashi, Torsten Lundström, Vladimir N Gurin and Maria M Korsukova

    2010-01-01

    Full Text Available We present Raman spectra of numerous icosahedral boron-rich solids having the structure of α-rhombohedral, β-rhombohedral, α-tetragonal, β-tetragonal, YB66, orthorhombic or amorphous boron. The spectra were newly measured and, in some cases, compared with reported data and discussed. We emphasize the importance of a high signal-to-noise ratio in the Raman spectra for detecting weak effects evoked by the modification of compounds, accommodation of interstitial atoms and other structural defects. Vibrations of the icosahedra, occurring in all the spectra, are interpreted using the description of modes in α-rhombohedral boron by Beckel et al. The Raman spectrum of boron carbide is largely clarified. Relative intra- and inter-icosahedral bonding forces are estimated for the different structural groups and for vanadium-doped β-rhombohedral boron. The validity of Badger's rule is demonstrated for the force constants of inter-icosahedral B–B bonds, whereas the agreement is less satisfactory for the intra-icosahedral B–B bonds.

  12. XPS, SIMS and FTIR-ATR characterization of boronized graphite from the thermonuclear plasma device RFX-mod

    International Nuclear Information System (INIS)

    Ghezzi, F.; Laguardia, L.; Caniello, R.; Canton, A.; Dal Bello, S.; Rais, B.; Anderle, M.

    2015-01-01

    Highlights: • XPS, ATR and SIMS characterization of samples from the first wall of RFX-mod device. • Amorphous hydrogenated boron carbide plus other carbon type bonds. • Results suggest to increase the number of electrode used for boronization. - Abstract: In this paper the characterization of a thin (tens of nanometers) boron layer on fine grain polycrystalline graphite substrate is presented. The boron film is used as conditioning technique for the full graphite wall of the Reversed Field eXperiment–modified (RFX-mod) experiment, a device for the magnetic confinement of plasmas of thermonuclear interest. Aim of the present analysis is to enlighten the chemical structure of the film, the trapping mechanism that makes it a getter for oxygen and hydrogen and the reason of its loss of effectiveness after exposure to about 100 s of hydrogen plasma. X-ray Photoelectron Spectroscopy (XPS), Secondary Ions Mass Spectrometry (SIMS) and Fourier Transform Infra Red spectroscopy in combination with the Attenuated Total Reflectance (FTIR-ATR) were used to obtain the structure and the chemical composition of graphitic samples as coated or coated and subsequently exposed to hydrogen plasma after boron deposition. The boron layers on the only coated samples were found to be amorphous hydrogenated boron carbide plus a variety of bonds like B-B, B-H, B-O, B-OH, C-C, C-H, C-O, C-OH. Both the thickness and the homogeneity of the layers were found to depend on the distance of the sample from the anode during the deposition. The samples contained oxygen along the layer thickness, at level of 5%, bound to boron. The gettering action of the boron is therefore already active during the deposition itself. The exposure to plasma caused erosion of the boron film and higher content of H and O bound to boron throughout the whole thickness. The interaction of the B layer with plasma is therefore a bulk phenomenon.

  13. Sliding wear of cemented carbides

    International Nuclear Information System (INIS)

    Engqvist, H.; Ederyd, S.; Uhrenius, B.; Hogmark, S.

    2001-01-01

    Cemented carbides are known to be very hard and wear resistant and are therefor often used in applications involving surface damage and wear. The wear rate of cemented carbides is often measured in abrasion. In such tests it has been shown that the wear rate is inversely dependent on the material hardness. The sliding wear is even more of a surface phenomenon than a abrasion, making it difficult to predict friction and wear from bulk properties. This paper concentrates on the sliding wear of cemented carbides and elucidates some wear mechanisms. It is especially shown that a fragmenting wear mechanism of WC is very important for the description of wear of cemented carbides. (author)

  14. Hot isostatic pressing of silicon nitride with boron nitride, boron carbide, and carbon additions

    Science.gov (United States)

    Mieskowski, Diane M.; Sanders, William A.

    1989-01-01

    Si3N4 test bars containing additions of BN, B4C, and C, were hot isostatically pressed in Ta cladding at 1900 and 2050 C to 98.9 percent to 99.5 percent theoretical density. Room-temperature strength data on specimens containing 2 wt pct BN and 0.5 wt pct C were comparable to data obtained for Si3N4 sintered with Y2O3, Y2O3 and Al2O3, or ZrO2. The 1370 C strengths were less than those obtained for additions of Y2O3 or ZrO2 but greater than those obtained from a combination of Y2O3 and Al2O3. SEM fractography indicated that, as with other types of Si3N4, room-temperature strength was controlled by processing flaws. The decrease in strength at 1370 C was typical of Si3N4 having an amorphous grain-boundary phase. The primary advantage of nonoxide additions appears to be in facilitating specimen removal from the Ta cladding.

  15. Natural cotton as precursor for the refractory boron carbide—a hydrothermal synthesis and characterization

    Science.gov (United States)

    Saritha Devi, H. V.; Swapna, M. S.; Raj, Vimal; Ambadas, G.; Sankararaman, S.

    2018-01-01

    Boron carbide (B4C) is an excellent covalent carbide that finds applications in industries and nuclear power plants. The present synthesis methods of boron carbide are expensive and involve the use of toxic chemicals that adversely affect environment. In the present work, we report for the first time the use of the hydrothermal method for converting the cellulose from cotton as the carbon precursor for B4C. The carbon precursor is converted into functionalized porous carbonaceous material by hydrothermal treatment followed by sodium borohydride. It is further treated with boric acid to make it a B4C precursor. The precursor is characterized by UV-visible diffuse reflectance, Raman, Fourier transform infrared, photoluminescent and energy dispersive spectroscopy. The morphology and structure analysis is carried out using field emission scanning electron microscopy and x-ray diffraction techniques. The results of structural and optical characterization of the sample synthesized are compared with the commercial B4C. The thermal stability of the sample is studied by thermogravimetric analysis. The sample annealed at 700 °C is found to be B4C devoid of amorphous carbon with a yield of 44.7%. The analysis reveals the formation of boron carbide from the sample.

  16. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux; Depots electrophoretiques de bore sur plaques de duralumin destines a des mesures de flux de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Lang, F.M.; Magnier, P.; Finck, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    Preparation of boron thin film deposits of around 1 mg per cm{sup 2} on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  17. Investigation of abrasive properties of boron alloys with titanium, zirconium, hafnium

    International Nuclear Information System (INIS)

    Arbuzov, M.P.; Adamovskij, A.A.; Lyashchenko, A.B.

    1979-01-01

    Results of investigating microhardness, abrasive ability and wear resistance of boron alloys with titanium, zirconium and hafnium are presented. The alloy wear resistance has been investigated during the continuous microcutting of technical titanium. The data on the abrasive properties, grain strength and microhardness of the alloys considered are presented. It is established that titanium, zirconium, hafnium alloys with a high boron content surpass electric corundum and silicon carbide as to their abrasive properties. The productivity of grinding disks when treating BTI titanium alloy with the ZrB 12 abrasive material is on the level of diamond ones, the roughness of the ground surface decreases

  18. Ionizing and Non-ionizing Radiation Effects in Thin Layer Hexagonal Boron Nitride

    Science.gov (United States)

    2015-03-01

    ray energy, x is the thickness of the h-BN or Si region, Gammaφ is the gamma flux of the cobalt 60 source, and t is the irradiation time... Boron Nitride Thin Films Grown by Atomic Layer Deposition," Thin Solid Films, no. 571, pp. 51-55, 2014. [8] H. X . Chen, X . G. Zhao, Z. J. Ma, Y. Li...Gehrke and U. Vetter, "Modeling the diode characteristics of boron nitride/silicon carbide heterojunctions," Applied Physics Letters, vol. 97, 2010

  19. Preparation method of tungsten carbide

    International Nuclear Information System (INIS)

    Jenkins, T.R.

    1976-01-01

    A method is described for the preparation of tungsten carbide in powder form from tungsten oxide powder in which the tungsten oxide is heated to 800-1,050 0 C, preferably to 850 0 C, and is reduced by the addition of carbon monoxide. The partial pressure of the CO 2 then formed must be kept below a necessary equilibrium value for the formation of the carbide. The waste gas (with max. 20 Vol% CO 2 ) is hardly reduced and is recycled in the circuit. (UWI) [de

  20. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides

    Science.gov (United States)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-01

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed.

  1. Boronated liposome development and evaluation

    International Nuclear Information System (INIS)

    Hawthorne, M.F.

    1995-01-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues

  2. Laser surface alloying of commercially pure titanium with boron and carbon

    Science.gov (United States)

    Makuch, N.; Kulka, M.; Dziarski, P.; Przestacki, D.

    2014-06-01

    Laser surface alloying with boron and carbon was applied to produce the composite layers, reinforced by the hard ceramic phases (titanium borides and titanium carbides), on commercially pure titanium. The external cylindrical surface of substrate material was coated by paste containing boron, boron and graphite, or graphite. Then, the laser re-melting was carried out with using the continuous-wave CO2 laser. This enabled the formation of laser-borided, laser-borocarburized, and laser-carburized layers. The microstructure or the re-melted zone consisted of the hard ceramic phases (TiB+TiB2, TiB+TiB2+TiC, or TiC) located in the eutectic mixture of Tiα'-phase with borides, borides and carbides, or carbides, respectively. All the composite layers were characterized by the sufficient cohesion. The significant increase in microhardness and in wear resistance of all the laser-alloyed layers was observed in comparison with commercially pure titanium. The percentage of hard ceramic phases in more plastic eutectic mixture influenced the measured microhardness values. The dominant wear mechanism (abrasive or adhesive) depended on the method of laser alloying, and the type of test used. The wear tests for longer duration, without the change in the counter specimen, created the favourable conditions for adhesive wear, while during the shorter tests the abrasive wear dominated, as a rule.

  3. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    mental phase contrast images and the diffraction pattern. Figure 3. (a) Bright field image of electrodeposited boron spec- imen showing a crystallite of size ∼10 × 5 nm; (b) phase contrast image of electrodeposited boron specimen showing a resolved la- ttice and (c) power spectrum of electrodeposited boron specimen.

  4. Enrichment of boron 10

    International Nuclear Information System (INIS)

    Coutinho, C.M.M.; Rodrigues Filho, J.S.R.; Umeda, K.; Echternacht, M.V.

    1990-01-01

    A isotopic separation pilot plant with five ion exchange columns interconnected in series were designed and built in the IEN. The columns are charged with a strong anionic resin in its alkaline form. The boric acid solution is introduced in the separation columns until it reaches a absorbing zone length which is sufficient to obtain the desired boron-10 isotopic concentration. The boric acid absorbing zone movement is provided by the injection of a diluted hydrochloric acid solution, which replace the boric acid throughout the columns. The absorbing zone equilibrium length is proportional to its total length. The enriched boron-10 and the depleted boron are located in the final boundary and in the initial position of the absorbing zones, respectively. (author)

  5. In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.

    1999-06-06

    Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We present results from an investigation of boron uptake in vivo by the synovium.

  6. The Effect of Boron and Zirconium on Microstructure and Stress-Rupture Life of Nickel-based Superalloy ATI 718Plus

    Directory of Open Access Journals (Sweden)

    Seyed Ali Hosseini

    2015-12-01

    Full Text Available The effects of boron and zirconium on the microstructure, hardness and stressrupture life of the nickel-based superalloy ATI 718Plus were investigated in this study. Four alloys with different percentages of boron (0.005-0.01 wt.% and zirconium (0-0.1 wt% were cast through a vacuum induction melting furnace and then were rolled. The microstructural studies indicated an increased percentage of δ phase, carbide precipitates and twins in the presence of zirconium. The percentage of carbide (boron carbide precipitates was increased and the solidification range of the alloy was decreased in the presence of boron in the composition. Furthermore, the results obtained from the hardness and stress-rupture tests showed the significant role of both elements in increasing hardness and improved rupture life of the alloy. The maximum rupture life was observed in the alloy which contained the highest percentages of boron and zirconium in its composition. This can be attributed mainly to the increased percentage of δ phase on grain boundaries and their enhanced high-temperature strength.

  7. Bright prospects for boron

    NARCIS (Netherlands)

    Nanver, L.; Wassink, J.

    2012-01-01

    Professor Lis Nanver at Dimes has laid the foundation for a range of new photodetectors by creating a thin coating of boron on a silicon substrate. The sensors are used in ASML’s latest lithography machines and FEI’s most sensitive electron microscopes.

  8. New high boron content polyborane precursors to advanced ceramic materials: New syntheses, new applications

    Science.gov (United States)

    Guron, Marta

    There is a need for new synthetic routes to high boron content materials for applications as polymeric precursors to ceramics, as well as in neutron shielding and potential medical applications. To this end, new ruthenium-catalyzed olefin metathesis routes have been devised to form new complex polyboranes and polymeric species. Metathesis of di-alkenyl substituted o-carboranes allowed the synthesis of ring-closed products fused to the carborane cage, many of which are new compounds and one that offers a superior synthetic method to one previously published. Acyclic diene metathesis of di-alkenyl substituted m-carboranes resulted in the formation of new main-chain carborane-containing polymers of modest molecular weights. Due to their extremely low char yields, and in order to explore other metathesis routes, ring opening metathesis polymerization (ROMP) was used to generate the first examples of poly(norbornenyl- o-carboranes). Monomer synthesis was achieved via a two-step process, incorporating Ti-catalyzed hydroboration to make 6-(5-norbornenyl)-decaborane, followed by alkyne insertion in ionic liquid media to achieve 1,2-R2 -3-norbornenyl o-carborane species. The monomers were then polymerized using ROMP to afford several examples of poly(norbornenyl- o-carboranes) with relatively high molecular weights. One such polymer, [1-Ph, 3-(=CH2-C5H7-CH2=)-1,2-C 2B10H10]n, had a char yield very close to the theoretical char yield of 44%. Upon random copolymerization with poly(6-(5-norbornenyl) decaborane), char yields significantly increased to 80%, but this number was well above the theoretical value implicating the formation of a boron-carbide/carbon ceramic. Finally, applications of polyboranes were explored via polymer blends toward the synthesis of ceramic composites and the use of polymer precursors as reagents for potential ultra high temperature ceramic applications. Upon pyrolysis, polymer blends of poly(6-(5-norbornenyl)-decaborane) and poly

  9. Methods for separating boron from borated paraffin wax and its determination by ion chromatography

    International Nuclear Information System (INIS)

    Jeyakumar, S.

    2015-01-01

    Boron compounds are found to be useful in shielding against high-energy neutrons. In radiotherapy treatments, in order to protect occupational workers and patients from the undesirable neutron and gamma doses, paraffin wax containing B 4 C/boric acid is used. Low-level borate wastes generated from the nuclear power plants have been immobilized with paraffin wax using a concentrate waste drying system (CWDS). Borated paraffin waxes are prepared by mixing calculated amounts of either boric acid or boron carbide with the molten wax. This necessitates the determination of boron at different locations in order to check the homogeneous distribution of B over the borated wax. The determination of boron in nuclear materials is inevitable due to its high neutron absorption cross section. For the determination of boron in borated waxes, not many methods have been reported. A method based on the pyrohydrolysis extraction of boron and its quantification with ion chromatography was proposed for paraffin waxes borated with H 3 BO 3 and B 4 C. The B 4 C optimum pyrohydrolysis conditions were identified. Wax samples were mixed with U 3 O 8 , which prevents the sample from flare up, and also accelerates the extraction of boron. Pyrohydrolysis was carried out with moist O 2 at 950℃ for 60 and 90 min for wax with H 3 BO 3 and wax with B 4 C, respectively. Two simple methods of separation based on alkali extraction and melting wax in alkali were also developed exclusively for wax with H 3 BO 3 . In all the separations, the recovery of B was above 98%. During IC separation, B was separated as boron-mannitol anion complex. Linear calibration was obtained between 0.1 and 50 ppm of B, and LOD was calculated as 5 ppb (S/N=3). The reproducibility was better than 5% (RSD)

  10. Structures, stability, mechanical and electronic properties of α-boron and α*-boron

    OpenAIRE

    Chaoyu He; J. X. Zhong

    2013-01-01

    The structures, stability, mechanical and electronic properties of α-boron and a promising metastable boron phase (α*-boron) have been studied by first-principles calculations. α-boron and α*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of “3S-6D-3S” and “2S-6D-4S”, respectively. The total energy calculations show that α*-boron is less stable than α-boron but more favorable than the well-known β-boron and γ-boron at zero pressure. Both α-boron and...

  11. Low temperature study of nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.

    2005-05-01

    By low temperature neutron diffraction method was studied structure in nonstoichiometric titanium carbide from room temperature up to 12K. It is found of low temperature phase in titanium carbide- TiC 0.71 . It is established region and borders of this phase. It is determined change of unit cell parameter. (author)

  12. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    Unknown

    tions ranging from kiln furniture to membrane material. Keywords. Microwave sintering; biaxial flexure; silicon carbide. 1. Introduction. Silicon carbide (SiC) ceramics is a very well known candidate material for a structural application. However, due to (i) poor densification due to highly directional bonding, (ii) susceptibility of ...

  13. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...

  14. Microstructural optimization of solid-state sintered silicon carbide

    Science.gov (United States)

    Vargas-Gonzalez, Lionel R.

    Silicon carbide armor, manufactured through solid-state sintering, liquid-phase sintering, and hot-pressing, is being used by the United States Armed Forces for personal and vehicle protection. There is a lack of consensus, however, on which process results in the best-performing ballistic armor. Previous studies have shown that hot-pressed ceramics processed with secondary oxide and/or rare earth oxides, which exhibit high fracture toughness, perform well in handling and under ballistic impact. This high toughness is due to the intergranular nature of the fracture, creating a tortuous path for cracks and facilitating crack deflection and bridging. However, it has also been shown that higher-hardness sintered SiC materials might perform similarly or better to hot-pressed armor, in spite of the large fracture toughness deficit, if the microstructure (density, grain size, purity) of these materials are improved. In this work, the development of theoretically-dense, clean grain boundary, high hardness solid-state sintered silicon carbide (SiC) armor was pursued. Boron carbide and graphite (added as phenolic resin to ensure the carbon is finely dispersed throughout the microstructure) were used as the sintering aids. SiC batches between 0.25--4.00 wt.% carbon were mixed and spray dried. Cylindrical pellets were pressed at 13.7 MPa, cold-isostatically pressed (CIP) at 344 MPa, sintered under varying sintering soaking temperatures and heating rates, and varying post hot-isostatic pressing (HIP) parameters. Carbon additive amounts between 2.0--2.5 wt.% (based on the resin source), a 0.36 wt.% B4C addition, and a 2050°C sintering soak yielded parts with high sintering densities (˜95.5--96.5%) and a fine, equiaxed microstructure (d50 = 2.525 mum). A slow ramp rate (10°C/min) prevented any occurrence of abnormal grain growth. Post-HIPing at 1900°C removed the remaining closed porosity to yield a theoretically-dense part (3.175 g/cm3, according to rule of mixtures). These

  15. Formation of carbide derived carbon coatings on silicon carbide

    Science.gov (United States)

    Cambaz, Zarife Goknur

    Control over the structure of materials on nanoscale can open numerous opportunities for the development of materials with controlled properties. Carbon, which is one of the most promising materials for nanotechnology, can be produced by many different methods. One of the most versatile, in terms of a variety of structures demonstrated (graphite, porous amorphous carbon, nanotubes, graphene and diamond), is selective etching of SiC and other carbides. Since the Si atoms are extracted layer by layer, atomic level control of the carbon structures can potentially be achieved without changing the size and shape of the sample. Carbon produced by this method is called Carbide-Derived Carbon (CDC). In this work, CDC formation was studied on single crystalline 3C-SiC whiskers and 6H-SIC wafers by chlorination and vacuum decomposition at high temperatures with the goals to better understand the mechanism of carbide-to-carbon transformation and determine conditions for synthesis of desired carbon structures. The reaction kinetics, morphology and shape conservation were investigated at nanoscale. The transformation mechanism of the SIC surface to carbon was discussed in detail accounting to the effects of processing parameters (temperature, and composition of the environment), and material parameters (surface conditions, surface chemistry, crystal face, etc.). The characterization of the carbon structures was performed by using scanning electron microscopy (SEM), Raman spectroscopy and transmission electron microscopy (TEM). We compared chlorination of SiC whiskers with wet etching and showed that chlorination revealed the dislocations, while wet etching resulted in pagoda-like 3-D nanostructures upon selective etching of stacking faults (SFs). The difference in etching mechanisms was discussed. We determined the processing conditions for controlled synthesis of carbon structures like graphene, graphite and carbon nanotubes (CNTs) on the surface of alpha-SiC wafers by

  16. Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys

    Directory of Open Access Journals (Sweden)

    Masafumi Matsushita

    2011-07-01

    Full Text Available Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride.

  17. Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples.

    Science.gov (United States)

    Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K

    2014-11-18

    We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology.

  18. Doping of silicon carbide by ion implantation; Dopage du carbure de silicium par implantation ionique

    Energy Technology Data Exchange (ETDEWEB)

    Gimbert, J

    1999-03-04

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  19. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies ...

  20. The impact of carbon on single crystal nickel-base superalloys: Carbide behavior and alloy performance

    Science.gov (United States)

    Wasson, Andrew Jay

    Advanced single crystal nickel-base superalloys are prone to the formation of casting grain defects, which hinders their practical implementation in large gas turbine components. Additions of carbon (C) have recently been identified as a means of reducing grain defects, but the full impact of C on single crystal superalloy behavior is not entirely understood. A study was conducted to determine the effects of C and other minor elemental additions on the behavior of CMSX-4, a commercially relevant 2nd generation single crystal superalloy. Baseline CMSX-4 and three alloy modifications (CMSX-4 + 0.05 wt. % C, CMSX-4 + 0.05 wt. % C and 68 ppm boron (B), and CMSX-4 + 0.05 wt. % C and 23 ppm nitrogen (N)) were heat treated before being tested in high temperature creep and high cycle fatigue (HCF). Select samples were subjected to long term thermal exposure (1000 °C/1000 hrs) to assess microstructural stability. The C modifications resulted in significant differences in microstructure and alloy performance as compared to the baseline. These variations were generally attributed to the behavior of carbide phases in the alloy modifications. The C modification and the C+B modification, which both exhibited script carbide networks, were 25% more effective than the C+N modification (small blocky carbides) and 10% more effective than the baseline at preventing grain defects in cast bars. All C-modified alloys exhibited reduced as-cast gamma/gamma' eutectic and increased casting porosity as compared to baseline CMSX-4. The higher levels of porosity (volume fractions 0.002 - 0.005 greater than the baseline) were attributed to carbides blocking molten fluid flow during the final stages of solidification. Although the minor additions resulted in reduced solidus temperature by up to 16 °C, all alloys were successfully heat treated without incipient melting by modifying commercial heat treatment schedules. In the B-containing alloy, heat treatment resulted in the transformation of

  1. Silicon Carbide/Boron Nitride Dual In-Line Coating of Silicon Carbide Fiber Tows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will demonstrate monolayer and dual layer coating of SiC fiber by leveraging Laser Chemical Vapor Deposition techniques developed by Free...

  2. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  3. Boron Activated Neutron Thermometer

    Energy Technology Data Exchange (ETDEWEB)

    Lapsley, A. C. [Argonne National Lab. (ANL), Argonne, IL (United States). Instrument Research & Development

    1952-01-09

    The Brown Instrument Division of Minneapolis-Honeywell Regulator Co. have been making pilot models of boron coated neutron sensitive thermopiles, which show considerable promise of being effective indicators of slow neutron flux. Their loss in sensitivity in a year of operation in the maximum flux of CP-6 calculates to be less than 6 per cent. When used as rooftop indicators, the ratio of the signal of the two units would change by about 2 per cent in a year's time.

  4. Boron atom reactions

    International Nuclear Information System (INIS)

    Estes, R.; Tabacco, M.B.; Digiuseppe, T.G.; Davidovits, P.

    1982-01-01

    The reaction rates of atomic boron with various epoxides have been measured in a flow tube apparatus. The bimolecular rate constants, in units of cm 3 molecule -1 s -1 , are: 1,2-epoxypropane (8.6 x 10 -11 ), 1,2-epoxybutane (8.8 x 10 -11 ), 1,2,3,4-diepoxybutane (5.5 x 10 -11 ), 1-chloro-2,3-epoxypropane (5.7 x 10 -11 ), and 1,2-epoxy-3,3,3-trichloropropane (1.5 x 10 -11 ). (orig.)

  5. Effect of laser pulsed radiation on the properties of implanted layers of silicon carbide

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Voron'ko, O.N.; Nojbert, F.; Potapov, E.N.

    1984-01-01

    Results are presented of investigation into pulsed laser radiation effects on the layers of GH polytype silicon carbide converted to amorphous state by implantation of boron and aluminium ions. The implantation doses were selected to be 5x10 16 for boron and 5x10 15 cm -2 for aluminium, with the ion energies being 60 and 80 keV, respectively. The samples annealed under nanosecond regime are stated to posseys neither photoluminescence (PL) nor cathodoluminescence (CL). At the same time the layers annealed in millisecond regime have a weak PL at 100 K and CL at 300 K. The PL and CL are observed in samples, laser-annealed at radiation energy density above 150-160 J/cm 2 in case of boron ion implantation and 100-120 J/cm 2 in case of aluminium ion implantation. Increasing the radiation energy density under the nanosecond regime of laser annealing results in the surface evaporation due to superheating of amorphous layers. Increasing the energy density above 220-240 J/cm 2 results in destruction of the samples

  6. Silicon Carbide Gate Driver, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs efficient, low mass, low volume power electronics for a wide variety of applications and missions. Silicon carbide (SiC) switches provide fast, low loss...

  7. Carbiding of the electrodes of electrovacuum devices

    Science.gov (United States)

    Pryalukhin, E. D.; Rikov, A. A.; Kostrin, D. K.; Lisenkov, A. A.

    2018-02-01

    Modification of the surface properties of the materials of electrodes or deposition of protective coatings on them are the most effective ways to increase the service life and reliability of electrovacuum devices. Very often for these tasks operations of the carbiding of details are used. In this work results of direct carbiding of W and Mo, carried out in a mixture of the hydrogen stream and the carbon-containing gas on a technological installation of a flow type, are discussed.

  8. Stable carbides in transition metal alloys

    International Nuclear Information System (INIS)

    Piotrkowski, R.

    1991-01-01

    In the present work different techniques were employed for the identification of stable carbides in two sets of transition metal alloys of wide technological application: a set of three high alloy M2 type steels in which W and/or Mo were total or partially replaced by Nb, and a Zr-2.5 Nb alloy. The M2 steel is a high speed steel worldwide used and the Zr-2.5 Nb alloy is the base material for the pressure tubes in the CANDU type nuclear reactors. The stability of carbide was studied in the frame of Goldschmidt's theory of interstitial alloys. The identification of stable carbides in steels was performed by determining their metallic composition with an energy analyzer attached to the scanning electron microscope (SEM). By these means typical carbides of the M2 steel, MC and M 6 C, were found. Moreover, the spatial and size distribution of carbide particles were determined after different heat treatments, and both microstructure and microhardness were correlated with the appearance of the secondary hardening phenomenon. In the Zr-Nb alloy a study of the α and β phases present after different heat treatments was performed with optical and SEM metallographic techniques, with the guide of Abriata and Bolcich phase diagram. The α-β interphase boundaries were characterized as short circuits for diffusion with radiotracer techniques and applying Fisher-Bondy-Martin model. The precipitation of carbides was promoted by heat treatments that produced first the C diffusion into the samples at high temperatures (β phase), and then the precipitation of carbide particles at lower temperature (α phase or (α+β)) two phase field. The precipitated carbides were identified as (Zr, Nb)C 1-x with SEM, electron microprobe and X-ray diffraction techniques. (Author) [es

  9. Boron isotopes and groundwater pollution

    International Nuclear Information System (INIS)

    Vengosh, A.

    1999-01-01

    Boron can be used as a tracer in ground water because of its high solubility in aqueous solutions, natural abundance in all waters, and the lack of effects by evaporation, volatilisation, oxidation-reduction reactions. Since the boron concentrations in pristine ground waters are generally low and contaminant sources are usually enriched in boron, the δ 11 B of groundwater is highly sensitive to the impact of contamination. The large isotopic variations of the potential sources can be used to trace the origin of the contamination and to reconstruct mixing and flow paths

  10. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    Science.gov (United States)

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents.

  11. Nothing Boring About Boron

    Science.gov (United States)

    Pizzorno, Lara

    2015-01-01

    The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and as recent research suggests, possibly for the evolution of life on Earth. As the current article shows, boron has been proven to be an important trace mineral because it (1) is essential for the growth and maintenance of bone; (2) greatly improves wound healing; (3) beneficially impacts the body’s use of estrogen, testosterone, and vitamin D; (4) boosts magnesium absorption; (5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α); (6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase; (7) protects against pesticide-induced oxidative stress and heavy-metal toxicity; (8) improves the brains electrical activity, cognitive performance, and short-term memory for elders; (9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD+); (10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin’s lymphoma; and (11) may help ameliorate the adverse effects of traditional chemotherapeutic agents. In none of the numerous studies conducted to date, however, do boron’s beneficial effects appear at intakes > 3 mg/d. No estimated average requirements (EARs) or dietary reference intakes (DRIs) have been set for boron—only an upper intake level (UL) of 20 mg/d for individuals aged ≥ 18 y. The absence of studies showing harm in conjunction with the substantial number of articles showing benefits support the consideration of boron supplementation of 3 mg/d for any individual who is consuming a diet lacking in fruits and vegetables or who is at risk for or has osteopenia; osteoporosis

  12. Plasma spraying of zirconium carbide – hafnium carbide – tungsten cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.

    2009-01-01

    Roč. 9, č. 1 (2009), s. 49-64 ISSN 1335-8987 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * hafnium carbide * tungsten * water stabilized plasma Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  13. Properties of boron-carbon-nitrogen ternary thin films synthesized by pulsed laser deposition

    Science.gov (United States)

    Ren, ZhongMin; Lu, Yongfeng; Mai, ZhiHong; Cheong, B. A.; Chow, S. K.; Wang, Jian P.; Chong, Tow Chong

    1999-07-01

    Boron-Carbon-Nitride BxCyNz thin films were deposited by excimer laser ablation of boron carbide under nitrogen ion-beam bombardment. Thin films were deposited in the intersection of the ablated B-C plasma and nitrogen ion beam on the silicon substrates. The laser pulse energy was selected in the range of 30-100 mJ with pulse duration of 23 ns. The electronic and compositional properties of the deposited thin films were analyzed by x-ray photoelectron spectroscope, Raman and IR spectroscope, scanning tunneling microscopy and ellipsometry measurements. The influence of the ion beam bombardment on the optical, electrical and electronic properties of the deposited thin films was studied.

  14. High temperature evaporation of titanium, zirconium and hafnium carbides

    International Nuclear Information System (INIS)

    Gusev, A.I.; Rempel', A.A.

    1991-01-01

    Evaporation of cubic nonstoichiometric carbides of titanium, zirconium and hafnium in a comparatively low-temperature interval (1800-2700) with detailed crystallochemical sample certification is studied. Titanium carbide is characterized by the maximum evaporation rate: at T>2300 K it loses 3% of sample mass during an hour and at T>2400 K titanium carbide evaporation becomes extremely rapid. Zirconium and hafnium carbide evaporation rates are several times lower than titanium carbide evaporation rates at similar temperatures. Partial pressures of metals and carbon over the carbides studied are calculated on the base of evaporation rates

  15. Nano boron nitride flatland.

    Science.gov (United States)

    Pakdel, Amir; Bando, Yoshio; Golberg, Dmitri

    2014-02-07

    Recent years have witnessed many breakthroughs in research on two-dimensional (2D) nanomaterials, among which is hexagonal boron nitride (h-BN), a layered material with a regular network of BN hexagons. This review provides an insight into the marvellous nano BN flatland, beginning with a concise introduction to BN and its low-dimensional nanostructures, followed by an overview of the past and current state of research on 2D BN nanostructures. A comprehensive review of the structural characteristics and synthetic routes of BN monolayers, multilayers, nanomeshes, nanowaves, nanoflakes, nanosheets and nanoribbons is presented. In addition, electronic, optical, thermal, mechanical, magnetic, piezoelectric, catalytic, ecological, biological and wetting properties, applications and research perspectives for these novel 2D nanomaterials are discussed.

  16. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  17. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  18. Some problems connected with boron determination by atomic absorption spectroscopy and the sensitivity improvement

    Directory of Open Access Journals (Sweden)

    JELENA J. SAVOVIC

    2001-08-01

    Full Text Available Two atomizers were compared: an N2O–C2H2 flame and a stabilized U-shaped DC arc with aerosol supply. Both the high plasma temperature and the reducing atmosphere obtained by acetylene addition to the argon stream substantially increase the sensitivity of boron determination by atomic absorption spectroscopy (AAS when the arc atomizer is used. The results were compared with those for silicon as a control element. The experimental characteristic concentrations for both elements were compared with the computed values. The experimentally obtained characteristic concentration for boron when using the arc atomizer was in better agreement with the calculated value. It was estimated that the influence of stable monoxide formation on the sensitivity for both elements was about the same, but reduction of analyte and formation of non-volatile carbide particles was more important for boron, which is the main reason for the low sensitivity of boron determination using a flame atomizer. The use of an arc atomizer suppresses this interference and significantly improves the sensitivity of the determination.

  19. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  20. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Catledge, Shane A., E-mail: catledge@uab.edu

    2016-02-28

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W{sub 2}CoB{sub 2}. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W{sub 2}CoB{sub 2} with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  1. Silicon carbide as platform for energy applications

    DEFF Research Database (Denmark)

    Syväjärvi, Mikael; Jokubavicius, Valdas; Sun, Jianwu

    and solar cells, and further pursue concepts in materials for thermoelectrics, biofuel cells and supercapacitor research proposals. In fact, there are a number of energy applications which can be based on the SiC materials.- Fluorescent SiC for white LED in general lighting - Cubic SiC for a highly...... efficient solar cell- Cubic SiC for water splitting to generate hydrogen.Further on, we have the following concepts that could be explored- Thermoelectric SiC for electricity generation from heat- Biofuels cells based on carbon electrodes on SiC- Supercapacitors based on sintered SiC and carbon materials......Silicon carbide is emerging as a novel material for a range of energy and environmental technologies. Previously, silicon carbide was considered as a material mainly for transistor applications. We have initiated the use of silicon carbide material towards optoelectronics in general lighting...

  2. Fabrication of uranium carbide/beryllium carbide/graphite experimental-fuel-element specimens

    International Nuclear Information System (INIS)

    Muenzer, W.A.

    1978-01-01

    A method has been developed for fabricating uranium carbide/beryllium carbide/graphite fuel-element specimens for reactor-core-meltdown studies. The method involves milling and blending the raw materials and densifying the resulting blend by conventional graphite-die hot-pressing techniques. It can be used to fabricate specimens with good physical integrity and material dispersion, with densities of greater than 90% of the theoretical density, and with a uranium carbide particle size of less than 10 μm

  3. Nanopipe formation as a result of boron impurity segregation in gallium nitride grown by halogen-free vapor phase epitaxy

    Science.gov (United States)

    Kimura, Taishi; Aoki, Yuko; Horibuchi, Kayo; Nakamura, Daisuke

    2016-12-01

    The work reported herein demonstrated that nanopipes can be formed via a surfactant effect, in which boron impurities preferentially migrate to semipolar and nonpolar facets. Approximately 3 μm-thick GaN layers were grown using halogen-free vapor phase epitaxy. All layers grown in pyrolytic boron nitride (pBN) crucibles were found to contain a high density of nanopipes in the range of 1010 to 1011 cm-2. The structural properties of these nanopipes were analyzed by X-ray rocking curve measurements, transmission electron microscopy, and three-dimensional atom probe (3DAP) tomography. The resulting 3DAP maps showed nanopipe-sized regions of boron segregation, and these nanopipes were not associated with the presence of dislocations. A mechanism for nanopipe formation was developed based on the role of boron as a surfactant and considering energy minima. A drastic reduction in the nanopipe density was achieved upon replacing the pBN crucibles with tantalum carbide-coated carbon crucibles. Consequently, we have confirmed that nanopipes can be formed solely due to surface energy changes induced by boron impurity surface segregation. For this reason, these results also indicate that nanopipes should be formed by other surfactant impurities such as Mg and Si.

  4. Silicon carbide microsystems for harsh environments

    CERN Document Server

    Wijesundara, Muthu B J

    2011-01-01

    Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods

  5. Morphology study of refractory carbide powders

    International Nuclear Information System (INIS)

    Vavrda, J.; Blazhikova, Ya.

    1982-01-01

    Refractory carbides were investigated using JSM-U3 electron microscope of Joelco company at 27 KV accelerating voltage. Some photographs of each powder were taken with different enlargements to characterise the sample upon the whole. It was shown that morphological and especially topographic study of powders enables to learn their past history (way of fabrication and treatment). The presence of steps of compact particle fractures and cracks is accompanied by occurence of fine dispersion of carbides subjected to machining after facrication. On the contrary, the character of crystallographic surfaces and features of surface growth testify to the way of crystallization

  6. Future boronated molecules for neutron capture therapy

    International Nuclear Information System (INIS)

    Soloway, A.H.; Alam, F.; Barth, R.F.

    1986-01-01

    The ability of several boron compounds to localize in tumor cells is examined. A number of first and second generation compounds which were not synthesized specifically for localization are described. Among these are the boron hydrides and boranes. A third generation of boron compounds are designed for selective localization. These fall into two groups: relatively small organic compounds and boronated antibodies, both of which are discussed here

  7. Lattice vibrations in α-boron

    International Nuclear Information System (INIS)

    Richter, W.

    1976-01-01

    α-rhombohedral boron is the simplest boron modification, with only 12 atoms per unit cell. The boron atoms are arranged in B 12 icosahedra, which are centered at the lattice points of a primitive rhombohedral lattice. The icosahedra are slightly deformed, as the five-fold symmetry of the ideal icosahedron is incompatible with any crystal structure. The lattice dynamics of α-boron are discussed in terms of the model developed by Weber and Thorpe. (Auth.)

  8. Synthesis of oligomeric boron-containing phospolyols

    International Nuclear Information System (INIS)

    Bondarenko, S.N.; Khokhlova, T.V.; Orlova, S.A.; Tuzhikov, O.I.

    2006-01-01

    Structure is investigated and reactivity of oligomeric boron-containing phospolyols is studied. Oligomeric boron-containing compound interacts with ethylene glycol, diethylene glycol, glycerol, 1,4-butandiol with formation of linear boron-containing phospolyols. Reactions proceed in noncatalytic conditions with stoichiometric quantities of reagents at 170-200 Deg C in inert gas media. Boron-containing phospolyols are viscous uncolored liquids, their physicochemical characteristics are represented [ru

  9. Structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron

    OpenAIRE

    He, Chaoyu; Zhong, Jianxin

    2013-01-01

    The structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron have been studied by first-principles calculations. Both a-boron and a*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of "3S-6D-3S" and "2S-6D-4S", respectively. The total energy calculations show that a*-boron is less stable than a-boron but more favorable than beta-boron and Gamma-boron at zero pressure. Both a-boron and a*-boron are confirm...

  10. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    Directory of Open Access Journals (Sweden)

    Chen Xiang

    2013-05-01

    Full Text Available In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (M represents Fe, Cr, Mn or Mo which is much like that of carbide in high chromium white cast iron. Pure ausferrite structure that consists of bainitic ferrite and retained austenite can be obtained in the matrix by austempering treatment to the cast steel. No carbides precipitate in the ausferrite structure and the morphology of borides remains almost unchanged after austempering treatments. Secondary boride particles precipitate during the course of austenitizing. The hardness and tensile strength of the austempered cast steel decrease with the increase of the austempering temperature, from 250 篊 to 400 篊. The impact toughness is 4-11 J昪m-2 at room temperature and the impact fracture fractogragh indicates that the fracture is caused by the brittle fracture of the borides.

  11. Progress in silicon carbide semiconductor technology

    Science.gov (United States)

    Powell, J. A.; Neudeck, P. G.; Matus, L. G.; Petit, J. B.

    1992-01-01

    Silicon carbide semiconductor technology has been advancing rapidly over the last several years. Advances have been made in boule growth, thin film growth, and device fabrication. This paper wi11 review reasons for the renewed interest in SiC, and will review recent developments in both crystal growth and device fabrication.

  12. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  13. Low temperature CVD deposition of silicon carbide

    International Nuclear Information System (INIS)

    Dariel, M.; Yeheskel, J.; Agam, S.; Edelstein, D.; Lebovits, O.; Ron, Y.

    1991-04-01

    The coating of graphite on silicon carbide from the gaseous phase in a hot-well, open flow reactor at 1150degC is described. This study constitutes the first part of an investigation of the process for the coating of nuclear fuel by chemical vapor deposition (CVD)

  14. Method of preparing a porous silicon carbide

    NARCIS (Netherlands)

    Moene, R.; Tazelaar, F.W.; Makkee, M.; Moulijn, J.A.

    1994-01-01

    Abstract of NL 9300816 (A) Described is a method of preparing a porous silicon carbide suitable for use as a catalyst or as a catalyst support. Porous carbon is provided with a catalyst which is suitable for catalysing gasification of carbon with hydrogen, and with a catalyst suitable for catalysing

  15. Growth and structure of carbide nanorods

    International Nuclear Information System (INIS)

    Lieber, C.M.; Wong, E.W.; Dai, H.; Maynor, B.W.; Burns, L.D.

    1996-01-01

    Recent research on the growth and structure of carbide nanorods is reviewed. Carbide nanorods have been prepared by reacting carbon nanotubes with volatile transition metal and main group oxides and halides. Using this approach it has been possible to obtain solid carbide nanorods of TiC, SiC, NbC, Fe 3 C, and BC x having diameters between 2 and 30 nm and lengths up to 20 microm. Structural studies of single crystal TiC nanorods obtained through reactions of TiO with carbon nanotubes show that the nanorods grow along both [110] and [111] directions, and that the rods can exhibit either smooth or saw-tooth morphologies. Crystalline SiC nanorods have been produced from reactions of carbon nanotubes with SiO and Si-iodine reactants. The preferred growth direction of these nanorods is [111], although at low reaction temperatures rods with [100] growth axes are also observed. The growth mechanisms leading to these novel nanomaterials have also been addressed. Temperature dependent growth studies of TiC nanorods produced using a Ti-iodine reactant have provided definitive proof for a template or topotactic growth mechanism, and furthermore, have yielded new TiC nanotube materials. Investigations of the growth of SiC nanorods show that in some cases a catalytic mechanism may also be operable. Future research directions and applications of these new carbide nanorod materials are discussed

  16. Boron steel. I Part. Preparation

    International Nuclear Information System (INIS)

    Jaraiz Franco, E.; Esteban Hernandez, J. A.

    1960-01-01

    With the advent of the first nuclear reactors arise the need for control rods and shielding duties for some types of radiations. One of the materials used for this purpose has been the high boron steel. This paper describes the melting and casting procedures employed for the production, at laboratory scale, of steels with Boron content ranging from 1 to 4 per cent, as well as the metallographic and X-Ray techniques used for the identification of the present phases. The electrolytic technique employed for the isolation of the Fe 2 B phase and its subsequent X-Ray identification has proved to be satisfactory. (Author) 11 refs

  17. Chemical separation of boron isotopes

    International Nuclear Information System (INIS)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF 3 gas and the liquid molecular addition compounds of BF 3 . Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF 3 solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references

  18. Chemical separation of boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF/sub 3/ gas and the liquid molecular addition compounds of BF/sub 3/. Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF/sub 3/ solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references.

  19. Boron cycling in subduction zones

    OpenAIRE

    Palmer, Martin R.

    2017-01-01

    Subduction zones are geologically dramatic features, with much of the drama being driven by the movement of water. The “light and lively” nature of boron, coupled with its wide variations in isotopic composition shown by the different geo-players in this drama, make it an ideal tracer for the role and movement of water during subduction. The utility of boron ranges from monitoring how the fluids that are expelled from the accretionary prism influence seawater chemistry, to the subduction of c...

  20. Low temperature carbide precipitation in a nickel base superalloy

    Science.gov (United States)

    Garosshen, T. J.; McCarthy, G. P.

    1985-07-01

    A M23C6 carbide phase has been observed to precipitate at relatively low temperatures (732 to 760 °C) in a nickel base superalloy.* Transmission Electron Microscopy shows the low temperature carbide to reside at the grain boundaries in a continuous morphology. The continuous carbide has a typical width of 25 to 40 nm with aspect ratios on the order of 30:1. The structure of the carbide is face-centered cubic with a lattice parameter (α0) of approximately 1.063 nm, which is typical of the M23C6 carbides that form at higher temperatures. STEM analysis indicates the carbide to have a typical M23C6 chemistry, enriched in chromium with lesser amounts of molybdenum, cobalt, and nickel. The formation of the continuous carbide occurs readily around 760 °C; however, at temperatures 55 °C lower the precipitation kinetics are significantly reduced. The extent of the low temperature carbide reaction is observed to be dependent upon the duration of the low temperature exposure and the degree of prior M23C6 stabilization at an intermediate temperature. Alloy modifications, involving hafnium additions and lower carbon levels, were studied with the aim of reducing the extent of this carbide reaction. Despite these chemistry modifications, the low temperature carbide was still observed to form to an appreciable extent. The presence of the continuous carbide is also observed to reduce the stress-rupture life of the alloy.

  1. Boron Nitride Nanoribbons from Exfoliation of Boron Nitride Nanotubes

    Science.gov (United States)

    Hung, Ching-Cheh; Hurst, Janet; Santiago, Diana

    2017-01-01

    Two types of boron nitride nanotubes (BNNTs) were exfoliated into boron nitride nanoribbons (BNNR), which were identified using transmission electron microscopy: (1) commercial BNNTs with thin tube walls and small diameters. Tube unzipping was indicated by a large decrease of the sample's surface area and volume for pores less than 2 nm in diameter. (2) BNNTs with large diameters and thick walls synthesized at NASA Glenn Research Center. Here, tube unraveling was indicated by a large increase in external surface area and pore volume. For both, the exfoliation process was similar to the previous reported method to exfoliate commercial hexagonal boron nitride (hBN): Mixtures of BNNT, FeCl3, and NaF (or KF) were sequentially treated in 250 to 350 C nitrogen for intercalation, 500 to 750 C air for exfoliation, and finally HCl for purification. Property changes of the nanosized boron nitride throughout this process were also similar to the previously observed changes of commercial hBN during the exfoliation process: Both crystal structure (x-ray diffraction data) and chemical properties (Fourier-transform infrared spectroscopy data) of the original reactant changed after intercalation and exfoliation, but most (not all) of these changes revert back to those of the reactant once the final, purified products are obtained.

  2. Synthesis of boron nitride from boron containing poly (vinyl alcohol ...

    Indian Academy of Sciences (India)

    A ceramic precursor, prepared by condensation reaction from poly(vinyl alcohol) (PVA) and boric acid (H3BO3) in 1:1, 2:1 and 4:1 molar ratios, was synthesized as low temperature synthesis route for boron nitride ceramic. Samples were pyrolyzed at 850°C in nitrogen atmosphere followed by characterization using Fourier ...

  3. Boron analysis and boron imaging in biological materials for Boron Neutron Capture Therapy (BNCT).

    Science.gov (United States)

    Wittig, Andrea; Michel, Jean; Moss, Raymond L; Stecher-Rasmussen, Finn; Arlinghaus, Heinrich F; Bendel, Peter; Mauri, Pier Luigi; Altieri, Saverio; Hilger, Ralf; Salvadori, Piero A; Menichetti, Luca; Zamenhof, Robert; Sauerwein, Wolfgang A G

    2008-10-01

    Boron Neutron Capture Therapy (BNCT) is based on the ability of the stable isotope 10B to capture neutrons, which leads to a nuclear reaction producing an alpha- and a 7Li-particle, both having a high biological effectiveness and a very short range in tissue, being limited to approximately one cell diameter. This opens the possibility for a highly selective cancer therapy. BNCT strongly depends on the selective uptake of 10B in tumor cells and on its distribution inside the cells. The chemical properties of boron and the need to discriminate different isotopes make the investigation of the concentration and distribution of 10B a challenging task. The most advanced techniques to measure and image boron are described, both invasive and non-invasive. The most promising approach for further investigation will be the complementary use of the different techniques to obtain the information that is mandatory for the future of this innovative treatment modality.

  4. Boron-enhanced diffusion of boron from ultralow-energy boron implantation

    International Nuclear Information System (INIS)

    Agarwal, A.; Eaglesham, D.J.; Gossmann, H.J.; Pelaz, L.; Herner, S.B.; Jacobson, D.C.

    1998-01-01

    The authors have investigated the diffusion enhancement mechanism of BED (boron enhanced diffusion), wherein the boron diffusivity is enhanced three to four times over the equilibrium diffusivity at 1,050 C in the proximity of a silicon layer containing a high boron concentration. It is shown that BED is associated with the formation of a fine-grain polycrystalline silicon boride phase within an initially amorphous Si layer having a high B concentration. For 0.5 keV B + , the threshold implantation dose which leads to BED lies between 3 x 10 14 and of 1 x 10 15 /cm -2 . Formation of the shallowest possible junctions by 0.5 keV B + requires that the implant dose be kept lower than this threshold

  5. Analytical boron diffusivity model in silicon for thermal diffusion from boron silicate glass film

    Science.gov (United States)

    Kurachi, Ikuo; Yoshioka, Kentaro

    2015-09-01

    An analytical boron diffusivity model in silicon for thermal diffusion from a boron silicate glass (BSG) film has been proposed in terms of enhanced diffusion due to boron-silicon interstitial pair formation. The silicon interstitial generation is considered to be a result of the silicon kick-out mechanism by the diffused boron at the surface. The additional silicon interstitial generation in the bulk silicon is considered to be the dissociation of the diffused pairs. The former one causes the surface boron concentration dependent diffusion. The latter one causes the local boron concentration dependent diffusion. The calculated boron profiles based on the diffusivity model are confirmed to agree with the actual diffusion profiles measured by secondary ion mass spectroscopy (SIMS) for a wide range of the BSG boron concentration. This analytical diffusivity model is a helpful tool for p+ boron diffusion process optimization of n-type solar cell manufacturing.

  6. Boron removal from wastewater using adsorbents.

    Science.gov (United States)

    Kluczka, J; Trojanowska, J; Zolotajkin, M; Ciba, J; Turek, M; Dydo, P

    2007-01-01

    In the present study, boron adsorption on activated alumina and activated carbon impregnated with calcium chloride, tartaric acid and mannitol was investigated. The adsorbate in question was the wastewater from the chemical landfill in Tarnowskie Gory of 25-70 mg l(-1) boron content. The removal of boron from the above-described wastewater was examined in the static (batch) and dynamic (column) experiments. The static experiments were carried out to assess boron adsorption isotherms, based on which the most efficient adsorbent as well as the rough resin load was determined. On the basis of the dynamic experiment results, the boron adsorptive capacities of the examined resins were deduced. It was concluded that the use of the impregnants increased the ability of activated carbon to adsorb boron. Granulated activated carbon WG-12 impregnated with mannitol was found to be the most promising for the boron removal from wastewater of the Chemical Wastewater Plant in Tarnowskie Gory.

  7. Sensing Characteristics of a Graphene-like Boron Carbide Monolayer towards Selected Toxic Gases.

    Science.gov (United States)

    Mahabal, Manasi S; Deshpande, Mrinalini D; Hussain, Tanveer; Ahuja, Rajeev

    2015-11-16

    By using first-principles calculations based on density functional theory, we study the adsorption efficiency of a BC3 sheet for various gases, such as CO, CO2, NO, NO2, and NH3. The optimal adsorption position and orientation of these gas molecules on the BC3 surface is determined and the adsorption energies are calculated. Among the gas molecules, CO2 is predicted to be weakly adsorbed on the graphene-like BC3 sheet, whereas the NH3 gas molecule shows a strong interaction with the BC3 sheet. The charge transfer between the molecules and the sheet is discussed in terms of Bader charge analysis and density of states. The calculated work function of BC3 in the presence of CO, CO2, and NO is greater than that of a bare BC3 sheet. The decrease in the work function of BC3 sheets in the presence of NO2 and NH3 further explains the affinity of the sheet towards the gas molecules. The energy gap of the BC3 sheets is sensitive to the adsorption of the gas molecules, which implies possible future applications in gas sensors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ab initio study on the anisotropy of mechanical behavior and deformation mechanism for boron carbide

    Science.gov (United States)

    Li, Jun; Xu, Shuang; Zhang, Jin-Yong; Liu, Li-Sheng; Liu, Qi-Wen; She, Wu-Chang; Fu, Zheng-Yi

    2017-04-01

    Not Available Project supported by the Science Fund from the Ministry of Science and Technology of China (Grant No. 2015DFR50650), the National Natural Science Foundation of China (Grant Nos. 51521001, 51502220, and 11402183), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. WUT: 2016-ZY-066 and WUT: 2015IA014).

  9. SIMS imaging analyses of in-reactor irradiated boron carbide control rod samples

    Science.gov (United States)

    Gebhardt, O.; Gavillet, D.

    2000-06-01

    The relative radial burnup of the isotope 10B in an absorber rod has been determined by cross-sectional imaging analysis using a shielded secondary ion mass-spectrometer (SIMS). Two-dimensional secondary ion images of the specimen cross-section were recorded. The count rates of the burnable isotope 10B were normalised with the count rates of the non-burnable isotope 11B. The relative radial burnup of the isotope 10B was calculated and graphically plotted in the form of 2D-images and vector diagrams.

  10. Advanced Boron Carbide-Based Visual Obscurants for Military Smoke Grenades

    Science.gov (United States)

    2014-07-13

    account for the “discrimination capability of the human eye” [A2]. A figure of merit more closely related to the Beer - Lambert law may be obtained by... Lambert law (equation 1) relates T to the aerosol concentra- tion (c), the path length the light travels through (L), and the extinction coefficient (α...particle size and the amount of calcium stearate may be used to control grenade burning times over a wide range (24-100 s demonstrated in the end-burning

  11. Ethylene glycol assisted low-temperature synthesis of boron carbide powder from borate citrate precursors

    Directory of Open Access Journals (Sweden)

    Rafi-ud-din

    2014-09-01

    Full Text Available B4C powders were synthesized by carbothermal reduction of ethylene glycol (EG added borate citrate precursors, and effects of EG additions (0–50 mol% based on citric acid on the morphologies and yields of synthesized B4C powders were investigated. The conditions most suitable for the preparation of precursor were optimized and optimum temperature for precursor formation was 650 °C. EG additions facilitated low-temperature synthesis of B4C at 1350 °C, which was around 100–300 °C lower temperature compared to that without EG additions. The lowering of synthesis temperature was ascribed to the enlargement of interfacial area caused by superior homogeneity and dispersibility of precursors enabling the diffusion of reacting species facile. The 20% EG addition was optimal with free residual carbon lowered to 4%. For smaller EG additions, the polyhedral and rod-like particles of synthesized product co-existed. With higher EG additions, the morphology of synthesized product was transformed into needle and blade-like structure.

  12. Densification of boron carbide at relatively low temperatures by hot pressing and hot isostatic pressing

    International Nuclear Information System (INIS)

    Telle, R.

    1988-01-01

    The poor sinterability of B 4 C limits its widespread application because both high temperatures and high pressures are required for a complete densification. Moreover, B 4 C suffers from a low strength and fracture toughness, possesses, however, a high potential because of its extreme hardness. Reaction hot pressing of B 4 C-WC-TiC-Si-Co mixtures resulting in B 4 C-TiB 2 -W 2 B 5 composites of high density exhibit remarkable mechanical properties. The influence of hot isostatic pressing (HIP) on the microstructure and the mechanical properties is investigated in cooperation with participants of the COST 503 activities and related to the strengthening and toughening mechanisms. Difficulties during densification by HIP arise from the evaporation of adsorbed volatiles as well as from the strong swelling of the powder compact due to the sintering reaction. Several HIP cycle designs were tested in order to prevent the bloating of the capsule and to control internal stresses due to the misfit of the thermal expansion of the entire phases. In comparison to single phase B 4 C ceramics, bending strength was improved to 1030 MPa, K Ic to 5.2 MPa/m, while hardness was comparable with HV1=38 GPa. Wear test were performed and related to the toughening mechanisms. (orig.) With 56 refs., 9 tabs., 64 figs

  13. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  14. Chemical-vapor-infiltrated silicon nitride, boron nitride, and silicon carbide matrix composites

    International Nuclear Information System (INIS)

    Ventri, R.D.; Galasso, F.S.

    1990-01-01

    This paper reports composites of carbon/chemical-vapor-deposited (CVD) Si 3 N 4 , carbon/CVD BN, mullite/CVD SiC, and SiC yarn/CVD SiC prepared to determine if there were inherent toughness in these systems. The matrices were deposited at high enough temperatures to ensure that they were crystalline, which should make them more stable at high temperatures. The fiber-matrix bonding in the C/Si 3 N 4 composite appeared to be too strong; the layers of BN in the matrix of the C/BN were too weakly bonded; and the mullite/SiC composite was not as tough as the SiC/SiC composites. Only the SiC yarn/CVD SiC composite exhibited both strength and toughness

  15. Versatile Boron Carbide-Based Visual Obscurant Compositions for Smoke Munitions

    Science.gov (United States)

    2015-04-17

    customized canister hardware and for spirited discussion. Noah Lieb, William S. Eck , Mark S. Johnson, Jesse J. Sabatini, Jay C. Poret, and Christopher...18, 2014; pp 170−191; Available via Defense Technical Information Center (DTIC), accession number ADA603697. (18) Adams, V. H.; Eck , W. S. Toxicology

  16. Improved Thermal Performance of Diamond-Copper Composites with Boron Carbide Coating

    Science.gov (United States)

    Hu, Haibo; Kong, Jian

    2013-11-01

    B4C-coated diamond (diamond@B4C) particles are used to improve the interfacial bonding and thermal properties of diamond/Cu composites. Scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy were applied to characterize the formed B4C coating on diamond particles. It is found that the B4C coating strongly improves the interfacial bonding between the Cu matrix and diamond particles. The resulting diamond@B4C/Cu composites show high thermal conductivity of 665 W/mK and low coefficient of thermal expansion of 7.5 × 10-6/K at 60% diamond volume fraction, which are significantly superior to those of the composites with uncoated diamond particles. The experimental thermal conductivity is also theoretically analyzed to account for the thermal resistance at the diamond@B4C-Cu interface boundary.

  17. The Effects of Stoichiometry on the Mechanical Properties of Icosahedral Boron Carbide Under Loading

    Science.gov (United States)

    2012-11-19

    B11Ce(CBC) B4C 20.00 B11Cp(CBC) B4C 20.00 B12(CCB) B6.5C 13.33 B12(CBC) B6.5C 13.33 B11Ce( BCB ) B6.5C 13.33 B11Cp( BCB ) B6.5C 13.33 B11Ce(BBC) B6.5C...13.33 B11Cp(BBC) B6.5C 13.33 B12(BBC) B14C 6.66 B12( BCB ) B14C 6.66 optimization step, the energy, forces, and stress tensor were evaluated using the...5.20(5.21) 5.20(5.21) 5.20(5.21) 65.83(65.83) 65.83(65.83) 65.83(65.83) 112.10(112.76) B11Ce( BCB ) B6.5C 13.33 B11Cp( BCB ) B6.5C 13.33 B11Ce(BBC) B6.5C

  18. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  19. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    electrolysis was crystalline in nature, X-ray diffraction pat-. ∗. Author for correspondence (sas@igcar.gov.in) .... Elemental boron was synthesized by the electrolysis of molten potassium fluroborate dissolved in a ... A high-throughput Renishaw micro-Raman spectrome- ter (model Invia) was employed to record Raman ...

  20. Preparation process of boron nitride

    International Nuclear Information System (INIS)

    Mignani, G.; Ardaud, P.

    1990-01-01

    High purity boron nitride, without Si and a low carbon content, is prepared by pyrolysis, under an ammoniac atmosphere, of the reaction product between a B-trihalogenoborazole and a primary amine RNH 2 when R is a hydrocarbon radical eventually substituted containing from 1 to 6 carbon atoms inclusively [fr

  1. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction ...

  2. Method of separating boron isotopes

    Science.gov (United States)

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  3. Prevention of uncontrolled boron dilution

    International Nuclear Information System (INIS)

    Sere, J. L.

    1997-01-01

    The paper presents a synthesis of the global analysis of uncontrolled boron dilution risk performed by (European Consortium Mochovce (EUCOM) in the frame of Safety Measures RC 01 and AA 11. Recommendation for additional improvements (mainly I and C interlocks or inhibition) are presented. (author)

  4. Boron-11 MRI and MRS of intact animals infused with a boron neutron capture agent

    International Nuclear Information System (INIS)

    Kabalka, G.W.; Davis, M.; Bendel, P.

    1988-01-01

    Boron neutron capture therapy (BNCT) depends on the delivery of boron-containing drugs to a targeted lesion. Currently, the verification and quantification of in vivo boron content is a difficult problem. Boron-11 spectroscopy was utilized to confirm the presence of a dimeric sulfhydryl dodecaborane BNCT agent contained in an intact animal. Spectroscopy experiments revealed that the decay time of transverse magnetization of the boron-11 spins was less than 1 ms which precluded the use of a 2DFT imaging protocol. A back-projection protocol was developed and utilized to generate the first boron-11 image of a BNCT agent in the liver of an intact Fisher 344 rat

  5. Formation of transition metal boride and carbide perovskites related to superconducting MgCNi 3

    Science.gov (United States)

    Schaak, R. E.; Avdeev, M.; Lee, W.-L.; Lawes, G.; Zandbergen, H. W.; Jorgensen, J. D.; Ong, N. P.; Ramirez, A. P.; Cava, R. J.

    2004-04-01

    A general study of the formation of intermetallic perovskite borides and carbides in the ternary systems AXM3 ( A=Mg, Ca, Sc, Y, Lu, Zr, Nb; X=B, C; M=Ni, Ru, Rh, Pd, Pt) is reported. MgB xPd 3, MgB xPt 3, CaB xPd 3, MgC xRh 3, LuC xRh 3, and ZrC xRh 3 represent new intermetallic perovskites that form at a composition that is nominally stoichiometric ( x=1). ScB xPd 3, YB xPd 3, and NbB xRh 3 are new single-phase perovskites that form only at a substoichiometric ( xboron content of AB xPd 3 ( A=Mg, Ca, Sc, Y) was studied using lattice parameter data from X-ray diffraction measurements. For A=Ca and Mg, the unit cell volume increases with increasing boron content for 0.25⩽ x⩽1.0, while boron uptake is limited to 0⩽ x⩽0.5 for A=Sc and Y. Neutron diffraction studies indicate that CaB xPd 3 is not actually stoichiometric at a nominal composition of x=1. Rather, saturation of the boron content occurs at CaB 0.76Pd 3. Evidence for superconductivity was found in samples of CaB xPd 3 ( x⩾1) and NbB xRh 3, but bulk analysis suggests that superconductivity may be attributed to minority phases.

  6. Effects of boron-water on cattle

    Energy Technology Data Exchange (ETDEWEB)

    Green, G.H.; Weeth, H.J.

    1975-01-01

    To determine the effects of subtoxic concentrations of boron in drinking water, 12 Hereford heifers were used in a 3 x 3 latin-square experiment with four squares. Treatments were tap-water (0.8 ppm boron), 150 ppm boron-water, and 300 ppm boron-water. Periods were 30 days each. Total urine was collected during the last week of each period, and renal clearance observations (based on creatinine) were made on the last day of each period. While water consumption and total urine weight were not affected by the boron treatments, hay consumption decreased, and weight loss was noted. Plasma boron concentrations were 0.53 +/- 0.151 ppm, 11.2 +/- 0.91 ppm, and 18.9 +/- 0.60 ppm while the heifers were drinking tap-water, 150 ppm boron-water, and 300 ppm boron-water respectively. Urinary boron excretion rates were tap water, 64 +/- 5.6 mg/day; 150 ppm, 2841 +/- 181.2 mg/day; 300 ppm, 4932 +/- 173.3 mg/day. Although glomerular filtration and osmolal clearance were unaffected by the boron-waters, a relative diuresis was indicated by the free water clearance effects. The percent of filtered boron which was reabsorbed decreased with increased exogenous boron, as well as both plasma and urinary phosphate. These data indicate that 300 ppm boron is not acutely toxic to heifers when consumed via the drinking water. The safe tolerance concentration, however, must lie below 150 ppm because this concentration was responsible for some deleterious effects.

  7. Method and apparatus for coating thin foil with a boron coating

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Jeffrey L.

    2018-01-16

    An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to a thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.

  8. Time-Dependent Stress Rupture Strength Degradation of Hi-Nicalon Fiber-Reinforced Silicon Carbide Composites at Intermediate Temperatures

    Science.gov (United States)

    Sullivan, Roy M.

    2016-01-01

    The stress rupture strength of silicon carbide fiber-reinforced silicon carbide composites with a boron nitride fiber coating decreases with time within the intermediate temperature range of 700 to 950 degree Celsius. Various theories have been proposed to explain the cause of the time-dependent stress rupture strength. The objective of this paper is to investigate the relative significance of the various theories for the time-dependent strength of silicon carbide fiber-reinforced silicon carbide composites. This is achieved through the development of a numerically based progressive failure analysis routine and through the application of the routine to simulate the composite stress rupture tests. The progressive failure routine is a time-marching routine with an iterative loop between a probability of fiber survival equation and a force equilibrium equation within each time step. Failure of the composite is assumed to initiate near a matrix crack and the progression of fiber failures occurs by global load sharing. The probability of survival equation is derived from consideration of the strength of ceramic fibers with randomly occurring and slow growing flaws as well as the mechanical interaction between the fibers and matrix near a matrix crack. The force equilibrium equation follows from the global load sharing presumption. The results of progressive failure analyses of the composite tests suggest that the relationship between time and stress-rupture strength is attributed almost entirely to the slow flaw growth within the fibers. Although other mechanisms may be present, they appear to have only a minor influence on the observed time-dependent behavior.

  9. Glass-Like Thermal and Elastic Properties of Boron - Solids.

    Science.gov (United States)

    Medwick, Paul Anthony

    1995-01-01

    An understanding of the mechanical and thermal properties of the icosahedral borides is critical to their successful use in high temperature thermoelectric power converters, soft x-ray monochromators, nuclear reactor control rods, and armor. It is also of fundamental interest because the physical properties of these boron-rich solids are not well-understood. I present measurements of the thermal conductivity, specific heat, internal friction, and speed of sound for two classes of crystalline icosahedral borides: boron carbide (B_{1-x}C_ x) and the rare earth boride MB_ {68-delta} (M = Y, Gd). The high temperature (T~300 K) thermal conductivity of MB_{68-delta } and carbon deficient (xx}C _ x is similar to amorphous solids. The low temperature (Tx}C_ x and MB_{68-delta} show the elastic signature of a glass thereby providing the first experimental evidence for two-level systems (TLS) in these crystalline borides. The data show that the TLS relax via phonons and via other channels. The combined elastic and thermal data definitively establish, for the first time, that the vibrational properties of crystalline B_{1-x}C_ x and MB_{68-delta} are intrinsically glass-like. As a means of comparison, I have measured the internal friction and speed of sound of a-rm B and a-rm B_9C at low temperatures (Tx}C_ x and MB _{68-delta}, thereby indicating the presence of TLS in the material. Using these data, I present the first theoretical calculation for the low temperature thermal conductivity of a-rm B and find excellent agreement with data for the crystalline icosahedral borides. The inherent glass-like nature of their vibrational excitations is thereby established.

  10. Neutron irradiation damage in transition metal carbides

    International Nuclear Information System (INIS)

    Matsui, Hisayuki; Nesaki, Kouji; Kiritani, Michio

    1991-01-01

    Effects of neutron irradiation on the physical properties of light transition metal carbides, TiC x , VC x and NbC x , were examined, emphasizing the characterization of irradiation induced defects in the nonstoichiometric composition. TiC x irradiated with 14 MeV (fusion) neutrons showed higher damage rates with increasing C/Ti (x) ratio. A brief discussion is made on 'cascade damage' in TiC x irradiated with fusion neutrons. Two other carbides (VC x and NbC x ) were irradiated with fission reactor neutrons. The irradiation effects on VC x were not so simple, because of the complex irradiation behavior of 'ordered' phases. For instance, complete disordering was revealed in an ordered phase, 'V 8 C 7 ', after an irradiation dose of 10 25 n/m 2 . (orig.)

  11. Radiation stability of proton irradiated zirconium carbide

    International Nuclear Information System (INIS)

    Yang, Yong; Dickerson, Clayton A.; Allen, Todd R.

    2009-01-01

    The use of zirconium carbide (ZrC) is being considered for the deep burn (DB)-TRISO fuel as a replacement for the silicon carbide coating. The radiation stability of ZrC was studied using 2.6 MeV protons, across the irradiation temperature range from 600 to 900degC and to doses up to 1.75 dpa. The microstructural characterization shows that the irradiated microstructure is comprised of a high density of nanometer-sized dislocation loops, while no irradiation induced amorphization or voids are observed. The lattice expansion induced by point defects is found to increase as the dose increases for the samples irradiated at 600 and 800degC, while for the 900degC irradiation, a slight lattice contraction is observed. The radiation hardening is also quantified using a micro indentation technique for the temperature and doses studies. (author)

  12. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the sma...... by time-resolved photoluminescence. The ultrashort lifetime in the order of ~70ps indicates porous SiC is very promising for the application in the ultrafast visible light communications.......Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...

  13. Ultrasonic ranking of toughness of tungsten carbide

    Science.gov (United States)

    Vary, A.; Hull, D. R.

    1983-01-01

    The feasibility of using ultrasonic attenuation measurements to rank tungsten carbide alloys according to their fracture toughness was demonstrated. Six samples of cobalt-cemented tungsten carbide (WC-Co) were examined. These varied in cobalt content from approximately 2 to 16 weight percent. The toughness generally increased with increasing cobalt content. Toughness was first determined by the Palmqvist and short rod fracture toughness tests. Subsequently, ultrasonic attenuation measurements were correlated with both these mechanical test methods. It is shown that there is a strong increase in ultrasonic attenuation corresponding to increased toughness of the WC-Co alloys. A correlation between attenuation and toughness exists for a wide range of ultrasonic frequencies. However, the best correlation for the WC-Co alloys occurs when the attenuation coefficient measured in the vicinity of 100 megahertz is compared with toughness as determined by the Palmqvist technique.

  14. HCl removal using cycled carbide slag from calcium looping cycles

    International Nuclear Information System (INIS)

    Xie, Xin; Li, Yingjie; Wang, Wenjing; Shi, Lei

    2014-01-01

    Highlights: • Cycled carbide slag from calcium looping cycles is used to remove HCl. • The optimum temperature for HCl removal of cycled carbide slag is 700 °C. • The presence of CO 2 restrains HCl removal of cycled carbide slag. • CO 2 capture conditions have important effects on HCl removal of cycled carbide slag. • HCl removal capacity of carbide slag drops with cycle number rising from 1 to 50. - Abstract: The carbide slag is an industrial waste from chlor-alkali plants, which can be used to capture CO 2 in the calcium looping cycles, i.e. carbonation/calcination cycles. In this work, the cycled carbide slag from the calcium looping cycles for CO 2 capture was proposed to remove HCl in the flue gas from the biomass-fired and RDFs-fired boilers. The effects of chlorination temperature, HCl concentration, particle size, presence of CO 2 , presence of O 2 , cycle number and CO 2 capture conditions in calcium looping cycles on the HCl removal behavior of the carbide slag experienced carbonation/calcination cycles were investigated in a triple fixed-bed reactor. The chlorination product of the cycled carbide slag from the calcium looping after absorbing HCl is not CaCl 2 but CaClOH. The optimum temperature for HCl removal of the cycled carbide slag from the carbonation/calcination cycles is 700 °C. The chlorination conversion of the cycled carbide slag increases with increasing the HCl concentration. The cycled carbide slag with larger particle size exhibits a lower chlorination conversion. The presence of CO 2 decreases the chlorination conversions of the cycled carbide slag and the presence of O 2 has a trifling impact. The chlorination conversion of the carbide slag experienced 1 carbonation/calcination cycle is higher than that of the uncycled calcined sorbent. As the number of carbonation/calcination cycles increases from 1 to 50, the chlorination conversion of carbide slag drops gradually. The high calcination temperature and high CO 2

  15. The coloring problem in the solid-state metal boride carbide ScB{sub 2}C{sub 2}. A theoretical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lassoued, Souheila [Universite de Rennes, Ecole Nationale Superieure de Chimie, UMR 6226 CNRS (France). Inst. des Sciences Chimiques; Universite Kasdi Merbah-Ouargla (Algeria). Faculte des Mathematiques et des Sciences de la Matiere; Boucher, Benoit [Universite de Rennes, Ecole Nationale Superieure de Chimie, UMR 6226 CNRS (France). Inst. des Sciences Chimiques; Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany); Boutarfaia, Ahmed [Universite Kasdi Merbah-Ouargla (Algeria). Faculte des Mathematiques et des Sciences de la Matiere; Gautier, Regis; Halet, Jean-Francois [Universite de Rennes, Ecole Nationale Superieure de Chimie, UMR 6226 CNRS (France). Inst. des Sciences Chimiques

    2016-08-01

    The electronic properties of the layered ternary metal boride carbide ScB{sub 2}C{sub 2}, the structure of which consists of B/C layers made of fused five- and seven-membered rings alternating with scandium sheets, are analyzed. In particular, the respective positions of the B and C atoms (the so-called coloring problem) are tackled using density functional theory, quantum theory of atoms in molecules, and electron localizability indicator calculations. Results reveal that (i) the most stable coloring minimizes the number of B-B and C-C contacts and maximizes the number of boron atoms in the heptagons, (ii) the compound is metallic in character, and (iii) rather important covalent bonding occurs between the metallic sheets and the boron-carbon network.

  16. Low blow Charpy impact of silicon carbides

    Science.gov (United States)

    Abe, H.; Chandan, H. C.; Bradt, R. C.

    1978-01-01

    The room-temperature impact resistance of several commercial silicon carbides was examined using an instrumented pendulum-type machine and Charpy-type specimens. Energy balance compliance methods and fracture toughness approaches, both applicable to other ceramics, were used for analysis. The results illustrate the importance of separating the machine and the specimen energy contributions and confirm the equivalence of KIc and KId. The material's impact energy was simply the specimen's stored elastic strain energy at fracture.

  17. Re-sintered boron-rich polycrystalline cubic boron nitride and method for making same

    Energy Technology Data Exchange (ETDEWEB)

    Lavens, T.R.; Corrigan, F.R.; Shott, R.L.; Bovenkerk, H.P.

    1987-06-16

    A method is described for making re-sintered polycrystalline cubic boron nitride (CBN) which comprises: (a) placing sintered substantially catalyst-free boron-rich polycrystalline cubic boron nitride particles in a high pressure/high temperature apparatus, the particles being substantially free of sintering inhibiting impurities; (b) subjecting the boron-rich cubic boron nitride particles to a pressure and a temperature adequate to re-sinter the particles, the temperature being below the CBN reconversion temperature; (c) maintaining the temperature and pressure for a time sufficient to re-sinter the boron-rich cubic boron nitride particles in the apparatus, and (d) recovering the re-sintered polycrystalline cubic boron nitride from the apparatus.

  18. Electronic specific heat of transition metal carbides

    International Nuclear Information System (INIS)

    Conte, R.

    1964-07-01

    The experimental results that make it possible to define the band structure of transition metal carbides having an NaCI structure are still very few. We have measured the electronic specific heat of some of these carbides of varying electronic concentration (TiC, either stoichiometric or non-stoichiometric, TaC and mixed (Ti, Ta) - C). We give the main characteristics (metallography, resistivity, X-rays) of our samples and we describe the low temperature specific heat apparatus which has been built. In one of these we use helium as the exchange gas. The other is set up with a mechanical contact. The two use a germanium probe for thermometer. The measurement of the temperature using this probe is described, as well as the various measurement devices. The results are presented in the form of a rigid band model and show that the density of the states at the Fermi level has a minimum in the neighbourhood of the group IV carbides. (author) [fr

  19. Compressive creep of hot pressed silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C.R.M., E-mail: cosmeroberto@gmail.com [Universidade de Brasilia (UnB), Campus Darcy Ribeiro, Brasilia CEP 70736-020, DF (Brazil); Nono, M.C.A. [Instituto de Nacional de Pesquisas Espaciais (INPE-LAS) (Brazil); Reis, D.A.P.; Hwang, M.K. [Instituto de Aeronautica e Espaco (IAE) (Brazil)

    2010-07-15

    Silicon carbide has a good match of chemical, mechanical and thermal properties and therefore is considered an excellent structural ceramic for high temperature applications. The aim of the present work is compressive creep evaluation of liquid phase sintered silicon carbide with aluminum and rare earth oxide as sintering aids. Rare earth oxides are possible additives considering their highly refractory remnant grain-boundary phase and lower synthesis costs compared to high purity rare earth. Samples were prepared with silicon carbide powder (90 wt%) and aluminum oxide (5 wt%) plus rare earth oxide (5 wt%) additions. Powders were mixed, milled and hot pressed at 1800 deg. C in argon atmosphere. Compressive creep tests were carried out under stress from 150 to 300 MPa and temperatures from 1300 to 1400 deg. C. At lower creep test temperatures, the obtained stress exponent values were correlated to mechanisms based on diffusion. At intermediate temperatures, grain-boundary sliding becomes operative, accommodated by diffusion. At higher temperatures cavities are discernible. Oxidation reactions and ionic diffusion result on surface oxidized layer, grain-boundary amorphous and intergranular crystalline Al{sub 6}Si{sub 2}O{sub 13}, {delta}-Y{sub 2}Si{sub 2}O{sub 7} and YAG phases. In this case cavitation and amorphous phases redistribution enhance grain-boundary sliding, not accommodated by diffusion. Coalescence occurs at triple point and multigrain-junctions, with subsequent strain rate acceleration and cavitational creep.

  20. Effect of Boron-Doped Diamond Interlayer on Cutting Performance of Diamond Coated Micro Drills for Graphite Machining.

    Science.gov (United States)

    Lei, Xuelin; Wang, Liang; Shen, Bin; Sun, Fanghong; Zhang, Zhiming

    2013-07-25

    Thin boron doped diamond (BDD) film is deposited from trimethyl borate/acetone/hydrogen mixture on Co-cemented tungsten carbide (WC-Co) micro drills by using the hot filament chemical vapor deposition (HFCVD) technique. The boron peak on Raman spectrum confirms the boron incorporation in diamond film. This film is used as an interlayer for subsequent CVD of micro-crystalline diamond (MCD) film. The Rockwell indentation test shows that boron doping could effectively improve the adhesive strength on substrate of as deposited thin diamond films. Dry drilling of graphite is chosen to check the multilayer (BDD + MCD) film performance. For the sake of comparison, machining tests are also carried out under identical conditions using BDD and MCD coated micro drills with no interlayer. The wear mechanism of the tools has been identified and correlated with the criterion used to evaluate the tool life. The results show that the multilayer (BDD + MCD) coated micro drill exhibits the longest tool life. Therefore, thin BDD interlayer is proved to be a new viable alternative and a suitable option for adherent diamond coatings on micro cutting tools.

  1. Resonant soft x-ray reflectivity of Me/B(4)C multilayers near the boron K edge.

    Science.gov (United States)

    Ksenzov, Dmitriy; Schlemper, Christoph; Pietsch, Ullrich

    2010-09-01

    Energy dependence of the optical constants of boron carbide in the short period Ru/B(4)C and Mo/B(4)C multilayers (MLs) are evaluated from complete reflectivity scans across the boron K edge using the energy-resolved photon-in-photon-out method. Differences between the refractive indices of the B(4)Cmaterial inside and close to the surface are obtained from the peak profile of the first order ML Bragg peak and the reflection profile near the critical angle of total external reflection close to the surface. Where a Mo/B(4)C ML with narrow barrier layers appears as a homogeneous ML at all energies, a Ru/B(4)C ML exhibits another chemical nature of boron at the surface compared to the bulk. From evaluation of the critical angle of total external reflection in the energy range between 184 and 186eV, we found an enriched concentration of metallic boron inside the Ru-rich layer at the surface, which is not visible in other energy ranges.

  2. Effect of Boron-Doped Diamond Interlayer on Cutting Performance of Diamond Coated Micro Drills for Graphite Machining

    Directory of Open Access Journals (Sweden)

    Zhiming Zhang

    2013-07-01

    Full Text Available Thin boron doped diamond (BDD film is deposited from trimethyl borate/acetone/hydrogen mixture on Co-cemented tungsten carbide (WC-Co micro drills by using the hot filament chemical vapor deposition (HFCVD technique. The boron peak on Raman spectrum confirms the boron incorporation in diamond film. This film is used as an interlayer for subsequent CVD of micro-crystalline diamond (MCD film. The Rockwell indentation test shows that boron doping could effectively improve the adhesive strength on substrate of as deposited thin diamond films. Dry drilling of graphite is chosen to check the multilayer (BDD + MCD film performance. For the sake of comparison, machining tests are also carried out under identical conditions using BDD and MCD coated micro drills with no interlayer. The wear mechanism of the tools has been identified and correlated with the criterion used to evaluate the tool life. The results show that the multilayer (BDD + MCD coated micro drill exhibits the longest tool life. Therefore, thin BDD interlayer is proved to be a new viable alternative and a suitable option for adherent diamond coatings on micro cutting tools.

  3. The Abrasion Resistance and Adhesion of Hfcvd Boron and Silicon-Doped Diamond Films on WC-Co Drawing Dies

    Science.gov (United States)

    Wang, Liang; Liu, Jinfei; Tang, Tang; Sun, Fanghong; Xie, Nan

    Diamond films have been deposited on the interior hole surface of cobalt-cemented tungsten carbide (WC-Co) drawing dies from acetone, trimethyl borate (C3H9BO3), tetraethoxysilane (C8H20O4Si, TEOS) and hydrogen mixture by hot-filament chemical vapor deposition (HFCVD) method. The structures and quality of as-deposited diamond films are characterized with field-emission scanning electron microscopy (FESEM) and Raman spectroscopy. The abrasion ratio and the adhesive strength of as-deposited diamond films are evaluated by copper wire drawing tests and ultrasonic lapping tests, respectively. The results suggest that diamond films with small grain size and high growth rate can be obtained due to the mutual effects of boron and silicon impurities in the gas phases. The results of ultrasonic lapping tests show that diamond films doped with boron and/or silicon can bear the severe erosion of the large diamond powder. Diamond films peeling off within the reduction zone of the drawing dies cannot be observed after testing of 2h. The abrasion ratio of boron and silicon-added diamond films is five times that of diamond films without any addition. Adding boron and/or silicon in the diamond films is proved to be an efficient way to obtain high-adhesive-strength and high-abrasion-resistance diamond-coated drawing dies.

  4. Effect of Boron-Doped Diamond Interlayer on Cutting Performance of Diamond Coated Micro Drills for Graphite Machining

    Science.gov (United States)

    Lei, Xuelin; Wang, Liang; Shen, Bin; Sun, Fanghong; Zhang, Zhiming

    2013-01-01

    Thin boron doped diamond (BDD) film is deposited from trimethyl borate/acetone/hydrogen mixture on Co-cemented tungsten carbide (WC-Co) micro drills by using the hot filament chemical vapor deposition (HFCVD) technique. The boron peak on Raman spectrum confirms the boron incorporation in diamond film. This film is used as an interlayer for subsequent CVD of micro-crystalline diamond (MCD) film. The Rockwell indentation test shows that boron doping could effectively improve the adhesive strength on substrate of as deposited thin diamond films. Dry drilling of graphite is chosen to check the multilayer (BDD + MCD) film performance. For the sake of comparison, machining tests are also carried out under identical conditions using BDD and MCD coated micro drills with no interlayer. The wear mechanism of the tools has been identified and correlated with the criterion used to evaluate the tool life. The results show that the multilayer (BDD + MCD) coated micro drill exhibits the longest tool life. Therefore, thin BDD interlayer is proved to be a new viable alternative and a suitable option for adherent diamond coatings on micro cutting tools. PMID:28811426

  5. Microhardness and grain size of disordered nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Zueva, L.V.; Gusev, A.I.

    1999-01-01

    Effect of the disordered nonstoichiometric titanium carbide on its microhardness and grain size is studied. It is established that decrease in defectiveness of carbon sublattice of disordered carbide is accompanied by microhardness growth and decrease in grain size. Possible causes of the TiC y microhardness anomalous behaviour in the area 0.8 ≤ y ≤ 0.9 connected with plastic deformation mechanism conditioned by peculiarities of the electron-energetic spectrum of nonstoichiometric carbide are discussed [ru

  6. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  7. Silicon Carbide Corrugated Mirrors for Space Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  8. Boron clusters in luminescent materials.

    Science.gov (United States)

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed.

  9. Boron-10 ABUNCL Active Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-07-09

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from testing of the active mode of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) at Los Alamos National Laboratory using sources and fuel pins.

  10. Boron removal from geothermal waters by electrocoagulation.

    Science.gov (United States)

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar; Yilmaz, M Tolga; Paluluoğlu, Cihan

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm(2), but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  11. Removal of boron (B) from waste liquors.

    Science.gov (United States)

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  12. The boron geochemistry of siliceous sponges

    Science.gov (United States)

    de Leon, A.; Wille, M.; Eggins, S. M.; Ellwood, M. J.

    2009-12-01

    The boron content and isotopic composition (δ11B) of marine carbonate organisms can be linked to the pH of the seawater in which they have grown, making carbonates a useful tool for palaeo-seawater pH reconstruction. A study by Furst (1981) documented unusually high boron concentrations in siliceous sponge spicules, in range from hundreds to a thousand ppm. This observation and the potential for preferential incorporation of the tetrahedral borate species into biogenic silica raises the question as to whether the boron chemistry of biogenic silica might also be influenced by seawater pH. We have measured the boron concentration and isotopic composition of siliceous sponges from the Southern Ocean region, with a view to (1) confirming the observations of Furst (1981), (2) assessing the factors that control boron incorporation and isotopic compositions of sponge silica, and (3) investigating the potentially significant role of siliceous sponges in the marine boron cycle. The measured boron concentrations in a diverse range of both demosponge and hexactinellid sponges confirm the high boron concentrations previously reported. The boron isotope compositions of these sponges vary from around +2‰ to +25‰ and greatly exceed the range in marine carbonates. This isotopic variation is inconsistent with seawater pH control but is correlated with ambient seawater silicon concentration, in a manner that suggests a link to silicon uptake kinetics and demand by sponges.

  13. Mineral resource of the month: boron

    Science.gov (United States)

    Crangle, Robert D.

    2012-01-01

    The article offers information on the mineral, boron. Boron compounds, particularly borates, have more commercial applications than its elemental relative which is a metalloid. Making up the 90% of the borates that are used worldwide are colemanite, kernite, tincal, and ulexite. The main borate deposits are located in the Mojave Desert of the U.S., the Tethyan belt in southern Asia, and the Andean belt of South America. Underground and surface mining are being used in gathering boron compounds. INSETS: Fun facts;Boron production and consumption.

  14. Characterization of Nanometric-Sized Carbides Formed During Tempering of Carbide-Steel Cermets

    Directory of Open Access Journals (Sweden)

    Matus K.

    2016-06-01

    Full Text Available The aim of this article of this paper is to present issues related to characterization of nanometric-sized carbides, nitrides and/or carbonitrides formed during tempering of carbide-steel cermets. Closer examination of those materials is important because of hardness growth of carbide-steel cermet after tempering. The results obtained during research show that the upswing of hardness is significantly higher than for high-speed steels. Another interesting fact is the displacement of secondary hardness effect observed for this material to a higher tempering temperature range. Determined influence of the atmosphere in the sintering process on precipitations formed during tempering of carbide-steel cermets. So far examination of carbidesteel cermet produced by powder injection moulding was carried out mainly in the scanning electron microscope. A proper description of nanosized particles is both important and difficult as achievements of nanoscience and nanotechnology confirm the significant influence of nanocrystalline particles on material properties even if its mass fraction is undetectable by standard methods. The following research studies have been carried out using transmission electron microscopy, mainly selected area electron diffraction and energy dispersive spectroscopy. The obtained results and computer simulations comparison were made.

  15. Dilatometric study on sintering mechanism of the WC-10wt%Co cemented carbide doped with tantalum carbide and niobium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, J.B. [Universidade Federal Rural de Pernambuco (UFRPE), PE (Brazil); Gomes, U.U.; Karimi, M.M. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2016-07-01

    Full text: Nanocrystalline WC-10wt.%Co powders were prepared by high energy milling and were liquid phase sintered. The powders were milled at 20 hours and characterized by X-ray diffraction, and Scanning electron microscopy. The particle size distribution and mean diameter analysis were characterized by Granulometro Cilas model 920 L and 1180. After sintering the WC-10wt.%Co cemented carbides doped with tantalum carbide and niobium carbide exhibited ultra fine grain sizes. dilatometer study on sintering mechanism detected phase transformations and degassing. (author)

  16. Development of tungsten carbide-cobalt coatings

    Science.gov (United States)

    Fitzsimmons, Mark

    1999-09-01

    The discovery of WC, and the development of cemented carbides (WC-Co and WC-TiC-Co) have spawned advancements in higher speed machining of steel. The development of chemically vapor deposited (CVD) coatings has allowed even greater speeds to be realized. The production of titanium components, well known for their high specific strength, low density, corrosion resistance, and elevated temperature properties, would greatly benefit from a similar development allowing high speed machining processes. Currently, no known tool material exists that can effectively machine titanium at high speeds due to insufficient high temperature strength and/or chemical resistance. To address this problem an investigation into the development of a composite tool material combining toughness, high temperature strength and chemical resistance was pursued. Cemented carbide (WC-Co) is currently the most chemically resistant and commercially used tool material for machining Ti. The concept of applying a WC-Co coating on a high temperature deformation resistant substrate material was investigated. Two approaches, namely (i) laminated and (ii) co-deposited coatings, were chosen to chemically vapor deposit WC-Co. Thermodynamic and kinetic calculations were performed to aid in the development of CVD processes for deposition of WC and Co. The systems investigated were WF6-CH4-H2 and WCl6-CH4-H 2 for WC deposition and CoCl2-H2 for Co deposition. In the case of laminated structures the goal was to deposit nanometer scale alternating layers of WC and Co. However, development of a laminated structure led to the discovery that porosity always occurred in the Co layers at the WC/Co interface. Mass balance calculations, SEM, EDS, XRD, and metallographic analyses aided in determining that the porosity was due to the Kirkendall effect. It was observed that the diffusion of Co was enhanced by higher concentrations of soluble C in the Co layers. Effective diffusion barriers, such as TiC, were found to help

  17. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    use as sub-base and base material. The addition of both cement and calcium carbide waste to Ikpayongo laterite improves its consistency indices, as the plasticity index reduced from. 14% to 5% when treated with a combination of 10 % cement plus 10 % calcium carbide waste. Variation of liquid limit, plastic limit and ...

  18. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents a preliminary study on obtaining and characterization of phenolic resin-based com- posites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ...

  19. Stochastic Distribution of Wear of Carbide Tools during Machining ...

    African Journals Online (AJOL)

    The increasing awareness of wear of carbide tools during machining operation has created doubts about the ability of this tool material to withstand stress and strain induced by the machining process. Manufacturers are beginning to question their dependence on carbide tools, seeing that they no longer meet their expected ...

  20. Production of nano structured silicon carbide by high energy ball ...

    African Journals Online (AJOL)

    In this paper, an attempt has been made to modify the micro sized Silicon carbide powder into nano structured Silicon carbide powder using High Energy Ball Mill. Ball milling was carried out for the total duration of 50 hours. The sample was taken out after every 5 hours of milling and it was characterized for its crystallite ...

  1. Process for the preparation of fine grain metal carbide powders

    International Nuclear Information System (INIS)

    Gortsema, F.P.

    1976-01-01

    Fine grain metal carbide powders are conveniently prepared from the corresponding metal oxide by heating in an atmosphere of methane in hydrogen. Sintered articles having a density approaching the theoretical density of the metal carbide itself can be fabricated from the powders by cold pressing, hot pressing or other techniques. 8 claims, no drawings

  2. properties of cement paste and concrete containing calcium carbide

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... curves are shown in Figure 1. The grain size curve indicates that the sand used was classified as zone 2 based on British Standard classification [20] grading limits for fine aggregates and was well graded. 3.2 Cement and Calcium Carbide Waste. The oxide composition of calcium carbide waste (CCW).

  3. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    the stabilization of soil will ensure economy in road construction, while providing an effective way of disposing calcium carbide waste. KEYWORDS: Cement, Calcium carbide waste, Stabilization, Ikpayongo laterite, Pavement material. INTRODUCTION. Road building in the developing nations has been a major challenge to ...

  4. Preparation and analysis of uranium carbides

    International Nuclear Information System (INIS)

    Sun Jichang; Song Dianwu; Yang Youqing; Guo Yibai; Cao Yenan

    1988-03-01

    The preparation process of uranium carbides is investigated by using the carbothermic reduction method of uranium dioxide in vacuum. The carbonisation reaction in the mixture of uranium dioxide with graphite begins to take place at the temperature of 1100 deg C. The temperature is measured by a W-Re thermocouple. Then the quantity of carbon, density, porosities and microstructure of the sintered pellets are examined. At the same time, in order to measure the content of uranium monocarbide, those sintered pellets are also indentified by means of X-ray diffraction

  5. Hot flow behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; El-Wahabi, M.; Cabrera, J.M.

    2008-01-01

    This research work studies the effect of boron contents on the hot flow behavior of boron microalloyed steels. For this purpose, uniaxial hot-compression tests were carried out in a low carbon steel microalloyed with four different amounts of boron over a wide range of temperatures (950, 1000, 1050 and 1100 deg. C) and constant true strain rates (10 -3 , 10 -2 and 10 -1 s -1 ). Experimental results revealed that both peak stress and peak strain tend to decrease as boron content increases, which indicates that boron additions have a solid solution softening effect. Likewise, the flow curves show a delaying effect on the kinetics of dynamic recrystallization (DRX) when increasing boron content. Deformed microstructures show a finer austenitic grain size in the steel with higher boron content (grain refinement effect). Results are discussed in terms of boron segregation towards austenitic grain boundaries during plastic deformation, which increases the movement of dislocations, enhances the grain boundary cohesion and modificates the grain boundary structure

  6. Ultratough single crystal boron-doped diamond

    Science.gov (United States)

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  7. Spectral tailoring for boron Neutron capture therapy

    NARCIS (Netherlands)

    Nievaart, V.A.

    2007-01-01

    In several places in the world, such as Petten and Delft in the Netherlands, investigations are in progress in the fight against certain types of cancer with Boron Neutron Capture Therapy. The basic idea is very simple: boron is loaded only into the cancer cells, using a special drug, after which

  8. Possible toxicity of boron on sugar cane

    Energy Technology Data Exchange (ETDEWEB)

    Bravo C., M.

    Analyses of necrotic and green leaf tissues from sugar cane grown in the Tambo Valley (Arequipa, Peru) have shown that the boron concentration in necrotic tissue (average 657.7 ppm) is several times higher than that in the green tissue (average 55.7 ppm). This suggests that the necrosis may be due to boron toxicity.

  9. Supported molybdenum carbide for higher alcohol synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Christensen, Jakob Munkholt; Chiarello, Gian Luca

    2013-01-01

    carbide, while the selectivity to methanol follows the opposite trend. The effect of Mo2C loading on the alcohol selectivity at a fixed K/Mo molar ratio of 0.14 could be related to the amount of K2CO3 actually on the active Mo2C phase and the size, structure and composition of the supported carbide......Molybdenum carbide supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for methanol and higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over...... supported molybdenum carbide are significantly higher compared to the bulk carbide. The CO conversion reaches a maximum, when about 20wt% Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active carbon and reaches a maximum over bulk molybdenum...

  10. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    Mohapatra, K.K.; Bose, Arun

    2014-01-01

    10 B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10 B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH) 4 - ) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10 B and 11 B

  11. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H.J.; Nesper, R. [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  12. Continuum modeling of boron nitride nanotubes

    International Nuclear Information System (INIS)

    Song, J; Wu, J; Hwang, K C; Huang, Y

    2008-01-01

    Boron nitride nanotubes display unique properties and have many potential applications. A finite-deformation shell theory is developed for boron nitride nanotubes directly from the interatomic potential to account for the effect of bending and curvature. Its constitutive relation accounts for the nonlinear, multi-body atomistic interactions, and therefore can model the important effect of tube chirality and radius. The theory is then used to determine whether a single-wall boron nitride nanotube can be modeled as a linear elastic isotropic shell. Instabilities of boron nitride nanotubes under different loadings (e.g., tension, compression, and torsion) are also studied. It is shown that the tension instability of boron nitride nanotubes is material instability, while the compression and torsion instabilities are structural instabilities.

  13. Analysis of boron nitride by flame spectrometry methods

    International Nuclear Information System (INIS)

    Telegin, G.F.; Chapysheva, G.Ya.; Shilkina, N.N.

    1989-01-01

    A rapid method has been developed for determination of free and total boron contents as well as trace impurities in boron nitride by using autoclave sample decomposition followed by atomic emission and atomic absorption determination. The relative standard deviation is not greater than 0.03 in the determination of free boron 0.012 in the determination of total boron content

  14. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  15. Boron Enrichment in Martian Clay

    Science.gov (United States)

    Nagashima, Kazuhide; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  16. Positron annihilation in boron nitride

    Directory of Open Access Journals (Sweden)

    N.Amrane

    2006-01-01

    Full Text Available Electron and positron charge densities are calculated as a function of position in the unit cell for boron nitride. Wave functions are derived from pseudopotential band structure calculations and the independent particle approximation (IPM, respectively, for electrons and positrons. It is observed that the positron density is maximum in the open interstices and is excluded not only from ion cores but also to a considerable degree from valence bonds. Electron-positron momentum densities are calculated for (001,110 planes. The results are used in order to analyse the positron effects in BN.

  17. Development of silicon carbide composites for fusion

    International Nuclear Information System (INIS)

    Snead, L.L.

    1993-01-01

    The use of silicon carbide composites for structural materials is of growing interest in the fusion community. However, radiation effects in these materials are virtually unexplored, and the general state of ceramic matrix composites for nonnuclear applications is still in its infancy. Research into the radiation response of the most popular silicon carbide composite, namely, the chemically vapor-deposited (CVD) SiC-carbon-Nicalon fiber system is discussed. Three areas of interest are the stability of the fiber and matrix materials, the stability of the fiber-matrix interface, and the true activation of these open-quotes reduced activityclose quotes materials. Two methods are presented that quantitatively measure the effect of radiation on fiber and matrix elastic modulus as well as the fiber-matrix interfacial strength. The results of these studies show that the factor limiting the radiation performance of the CVD SiC-carbon-Nicalon system is degradation of the Nicalon fiber, which leads to a weakened carbon interface. The activity of these composites is significantly higher than expected and is dominated by impurity isotopes. 52 refs., 12 figs., 3 tabs

  18. High temperature intermetallic binders for HVOF carbides

    International Nuclear Information System (INIS)

    Shaw, K.G.; Gruninger, M.F.; Jarosinski, W.J.

    1994-01-01

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr 3 C 2 -NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr 3 C 2 cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr 3 C 2 -NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders

  19. Formation of ohmic contacts to p-type diamond using carbide forming metals

    Science.gov (United States)

    Nakanishi, Jiro; Otsuki, A.; Oku, T.; Ishiwata, O.; Murakami, Masanori

    1994-08-01

    The measurement of the specific contact resistance, rho(sub C), and microstructural analysis at the metal/diamond interface were carried out for diamond with various acceptor concentrations, N(sub A), in order to understand the carrier transport mechanism at the metal/diamond interface. The rho(sub C) measurements were carried out for polycrystalline boron-doped semiconducting diamonds which were prepared by the microwave plasma chemical vapor deposition. The acceptor concentrations, estimated by the boron concentrations measured by secondary ion mass spectroscopy, ranged from 3 x 10(exp 18) to 3 x 10(exp 20)/cu cm. Ti and Mo films, which form carbides with diamond, were deposited on the diamonds using the electron-beam evaporation technique. The rho(sub C) values were measured by the cricular transmission line method before and after annealing at temperatures in the range of 400-600 C. The dependence of the rho(sub C) values on the acceptor concentrations suggested that the dominant transport mechanism was the field-emission for the diamond with N(sub A) around 10(exp 20)/cu cm and the thermionic-field-emission for the diamond with N(sub A) from 3 x 10(exp 18)/cu cm to 4 x 10(exp 19)/cu cm. The rho(sub C) values of the Ti contacts were observed to decrease upon annealing, whereas those of the Mo contacts decreased gradually with increasing annealing temperature. However, the rho(sub C) values of both the Ti and Mo contacts reached at the same value of approximately 1 x 10(exp -6) Ohm sq cm after annealing at 600 C for the diamonds with N(sub A) higher than 10(exp 20)/cu cm. Note that the rho(sub C) values of the Mo contact were extremely stable at high temperatures: the rho(sub C) values did not deteriorate after annealing at 600 C for more than 3 h. The thermally stable molybdenum carbide (alpha-Mo2C) and amorphous layers were observed at the Mo/diamond interface after annealing at 600 C by cross-sectional transmission electron microscopy and x-ray diffraction.

  20. Boron nutrition and yield of alfalfa cultivar crioula in relation to boron supply

    Directory of Open Access Journals (Sweden)

    Santos Anacleto Ranulfo dos

    2004-01-01

    Full Text Available Alfalfa cultivar Crioula (Medicago sativa cv. Crioula is grown in South Brazil and only a few studies on the plants' boron requirement are available. A greenhouse experiment was carried out with alfalfa to measure boron acquisition, production and distribution in the plant; data on critical level and production potentials were recorded. Plants were grown in ground quartz added with 1 L of solution, with the following boron rates: 0, 0.0625, 0.125, 0.25, 0.50, 1.00, and 2.00 mg L-1. Plants were harvested at 46 days of growth. Forage dry mass was increased by boron supply and dry matter accumulation was considerably low in control. Boron concentration in the leaves was higher than in the stems or roots. Boron utilization from the external solution reached 90% at 0.0625 mg L-1 and sharply decreased with further increasing boron rates. Boron concentration and content in the leaves and in plant tops were at maximum when applied boron was between 1.5 and 1.6 mg L-1. Critical levels of boron in plant were 61 mg kg-1 in the leaves and 39 mg kg-1 in plant tops for this cultivar of alfalfa.