WorldWideScience

Sample records for boron 8 target

  1. Meeting the challenge of homogenous boron targeting of heterogeneous tumors for effective boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Heber, Elisa M.; Trivillin, Veronica A.; Itoiz, Maria E.; Rebagliati, J. Raul; Batistoni, Daniel; Kreimann, Erica L.; Schwint, Amanda E.; Nigg, David W.; Gonzalez, Beatriz N.

    2006-01-01

    BNCT is a tumor cell targeted radiation therapy. Inadequately boron targeted tumor populations jeopardize tumor control. Meeting the to date unresolved challenge of homogeneous targeting of heterogeneous tumors with effective boron carriers would contribute to therapeutic efficacy. The aim of the present study was to evaluate the degree of variation in boron content delivered by boronophenylalanine (BPA), GB-10 (Na 2 10 B 10 H 10 ) and the combined administration of (BPA+GB-10) in different portions of tumor, precancerous tissue around tumor and normal pouch tissue in the hamster cheek pouch oral cancer model. Boron content was evaluated by ICP-AES. The degree of homogeneity in boron targeting was assessed in terms of the coefficient of variation ([S.D./Mean]x100) of boron values. Statistical analysis of the results was performed by one-way ANOVA and the least significant difference test. GB-10 and GB-10 plus BPA achieved respectively a statistically significant 1.8-fold and 3.3-fold increase in targeting homogeneity over BPA. The combined boron compound administration protocol contributes to homogeneous targeting of heterogeneous tumors and would increase therapeutic efficacy of BNCT by exposing all tumor populations to neutron capture reactions in boron. (author)

  2. Boron determination in U3O8

    International Nuclear Information System (INIS)

    Ogura, Nadia S.; Sarkis, Jorge E.S.; Rosa, Daniele S.; Ulrich, Joao C.

    2009-01-01

    There exist specifications of the concentration as far the limit of impurities in the used uranium compounds is concerned. Among those impurities the boron element is detached. that in the uranium compounds acts as neutron absorber in nuclear reactions. Therefore, the determination of this element in uranium compounds, it is fundamental for the quality and performance of the nuclear fuels. However, the determination of this element is many times prejudiced by the presence of the uranium. For solving this problem, it is performed a chemical separation of the uranium (matrix) out of the interest. The most used methods to accomplish that separation are the solvent extraction and the ion exchange. In this work, the boron concentration will be done through the ion exchange technique, using polypropylene columns and Dowex AG 50W - X8 100-200 mesh cation resin in chloricide medium 0.25 M. The boron concentration will be determined through high resolution inductive coupling plasma mass spectrometry (HRICP-MS)

  3. Real-time boronization in PBX-M using erosion of solid boronized targets

    International Nuclear Information System (INIS)

    Kugel, H.W.; Timberlake, J.; Bell, R.

    1994-01-01

    Thirty one real-time boronizations were applied to PBX-M using the plasma ablation of solid target probes. More than 17 g of boron was deposited in PBX-M using this technique. The probes were positioned at the edge plasma to optimize ablation and minimize spallation. Auger depth profile analysis of poloidal and toroidal deposition sample coupon arrays indicate that boron was transported by the plasma around the torus and deep into the divertors. During discharges with continuous real-time boronization, low-Z and high-Z impurities decreased rapidly as plasma surfaces were covered during the first 20--30 discharges. After boronization, a short-term improvement in plasma conditions persisted prior to significant boron erosion from plasma surfaces, and a longer term, but less significant, improvement persisted as boron farther from the edge continued gettering. Real-time solid target boronization has been found to be very effective for accelerating conditioning to new regimes and maintaining high performance plasma conditions

  4. Boron carbide as a target for the SPES project

    International Nuclear Information System (INIS)

    Corradetti, S.; Carturan, S.; Biasetto, L.; Andrighetto, A.; Colombo, P.

    2013-01-01

    Within the framework of the research on targets for the SPES project (Selective Production of Exotic Species), porous boron carbide (B 4 C) based materials were produced from the carbothermal reduction of boric acid and two different carbon sources, i.e. citric acid and phenolic resin. Samples composition and microstructural morphology were studied by means of X-ray diffraction spectrometry (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM–EDS). The amount of total porosity was obtained from the comparison between the theoretical density and the measured bulk density. To better characterize the material microstructure, nitrogen physisorption measurements were performed in order to obtain data about the type of generated porosity and the specific surface area of the samples. Analysis performed on the samples show that after the final thermal treatment they are composed of boron carbide and residual free carbon, whose quantity is related to the processes involved in the two synthesis. Remarkable differences in the overall weight loss have been noticed for the two different reactions, resulting in different densities and pore size distributions, but in both cases similar values of specific surface area (SSA) were obtained.

  5. Boron Stress Responsive MicroRNAs and Their Targets in Barley

    Science.gov (United States)

    Ozhuner, Esma; Eldem, Vahap; Ipek, Arif; Okay, Sezer; Sakcali, Serdal; Zhang, Baohong; Boke, Hatice; Unver, Turgay

    2013-01-01

    Boron stress is an environmental factor affecting plant development and production. Recently, microRNAs (miRNAs) have been found to be involved in several plant processes such as growth regulation and stress responses. In this study, miRNAs associated with boron stress were identified and characterized in barley. miRNA profiles were also comparatively analyzed between root and leave samples. A total of 31 known and 3 new miRNAs were identified in barley; 25 of them were found to respond to boron treatment. Several miRNAs were expressed in a tissue specific manner; for example, miR156d, miR171a, miR397, and miR444a were only detected in leaves. Additionally, a total of 934 barley transcripts were found to be specifically targeted and degraded by miRNAs. In silico analysis of miRNA target genes demonstrated that many miRNA targets are conserved transcription factors such as Squamosa promoter-binding protein, Auxin response factor (ARF), and the MYB transcription factor family. A majority of these targets were responsible for plant growth and response to environmental changes. We also propose that some of the miRNAs in barley such as miRNA408 might play critical roles against boron exposure. In conclusion, barley may use several pathways and cellular processes targeted by miRNAs to cope with boron stress. PMID:23555702

  6. Analysis of oxygen concentration in boron target and study of CPAA

    International Nuclear Information System (INIS)

    Liu Guangzhi; Tang Guoyou; Chen Jinxiang; Wu Jun; Zhang Guohui; Zhang Yong

    1999-09-01

    Using Charged Particle Activation Analysis (CPAA), the concentration of oxygen in a thin boron target was determined, and the method of analyzing the thin unknown sample in comparison with the thick standard was studied. 3 He particles were accelerated to 8.0 MeV energy by 4.5 MV Van de Graaff accelerator to irradiate the isotope 16 O in samples and the artificial radioisotope 18 F was created by the reaction 16 O( 3 He, p) 18 F. The β + radioactivity of 18 F was measured by the high resolution gamma-ray spectroscopy. By comparing the radioactivity of the sample and the standard, the concentration of isotope 16 O was determined

  7. Boron containing magnetic nanoparticles for neutron capture therapy--an innovative approach for specifically targeting tumors.

    Science.gov (United States)

    Tietze, Rainer; Unterweger, Harald; Dürr, Stephan; Lyer, Stefan; Canella, Lea; Kudejova, Petra; Wagner, Franz M; Petry, Winfried; Taccardi, Nicola; Alexiou, Christoph

    2015-12-01

    The selective delivery of (10)B into the tumor tissue remains to be further improved for successful and reliable Boron Neutron Capture Therapy applications. Magnetic Drug Targeting using intraarterially administered superparamagnetic nanoparticles and external magnetic fields already exhibited convincing results in terms of highly efficient and selective drug deposition. Using the same technique for the targeted (10)B delivery is a promising new approach. Here, systematic irradiation experiments of phantom cubes containing different concentrations of boron and nanoparticles as well as varying three-dimensional arrangements have been performed. Copyright © 2015. Published by Elsevier Ltd.

  8. Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser

    Directory of Open Access Journals (Sweden)

    A. Picciotto

    2014-08-01

    Full Text Available We show that a spatially well-defined layer of boron dopants in a hydrogen-enriched silicon target allows the production of a high yield of alpha particles of around 10^{9} per steradian using a nanosecond, low-contrast laser pulse with a nominal intensity of approximately 3×10^{16}  W cm^{−2}. This result can be ascribed to the nature of the long laser-pulse interaction with the target and with the expanding plasma, as well as to the optimal target geometry and composition. The possibility of an impact on future applications such as nuclear fusion without production of neutron-induced radioactivity and compact ion accelerators is anticipated.

  9. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications.

    NARCIS (Netherlands)

    Mandal, S.; Bakeine, G.J.; Krol, S.; Ferrari, C.; Clerici, A.M.; Zonta, C.; Cansolino, L.; Ballarini, F.; Bortolussi, S.; Stella, S.; Protti, N.; Bruschi, P.; Altieri, S.

    2011-01-01

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were

  10. Equilibrium charge state distributions for boron and carbon ions emerging from carbon and aluminum targets

    International Nuclear Information System (INIS)

    Schmitt, Chris; LaVerne, Jay A.; Robertson, Daniel; Bowers, Matthew; Lu Wenting; Collon, Philippe

    2010-01-01

    Equilibrium charge state distributions of boron and carbon ions through carbon and aluminum targets were measured with an energy range of 3-6 MeV. Comparisons of the data with relevant semi-empirical models for the equilibrium mean charge states and for the charge state distribution widths could provide valuable insight on the underlying mechanisms for a fast ion to lose or capture electrons. In-depth examinations of the experimental results in combination with semi-empirical models suggest that equilibrium charge state distributions are well represented by Gaussian distributions.

  11. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drug

    Directory of Open Access Journals (Sweden)

    Feng S

    2016-09-01

    Full Text Available Shini Feng,1 Huijie Zhang,1 Ting Yan,1 Dandi Huang,1 Chunyi Zhi,2 Hideki Nakanishi,1 Xiao-Dong Gao1 1Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China; 2Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China Abstract: With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS with receptor-mediated targeting. Folic acid (FA was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 µg/mL. Then, doxorubicin hydrochloride (DOX, a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy. Keywords: boron nitride nanospheres, folic acid, doxorubicin, targeted delivery, cancer therapy

  12. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration.

    Science.gov (United States)

    Jeong, Jae Young; Hong, Eun-Hye; Lee, Song Yi; Lee, Jae-Young; Song, Jae-Hyoung; Ko, Seung-Hak; Shim, Jae-Seong; Choe, Sunghwa; Kim, Dae-Duk; Ko, Hyun-Jeong; Cho, Hyun-Jong

    2017-04-15

    (3-Aminomethylphenyl)boronic acid (AMPB)-installed hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated for tumor-targeted delivery. The amine group of AMPB was conjugated to the carboxylic acid group of hyaluronic acid (HA) via amide bond formation, and synthesis was confirmed by spectroscopic methods. HACE-AMPB/MB NPs with a 239-nm mean diameter, narrow size distribution, negative zeta potential, and >90% drug encapsulation efficiency were fabricated. Exposed AMPB in the outer surface of HACE-AMPB NPs (in the aqueous environment) may react with sialic acid of cancer cells. The improved cellular accumulation efficiency, in vitro antitumor efficacy, and tumor penetration efficiency of HACE-AMPB/MB NPs, compared with HACE/MB NPs, in MDA-MB-231 cells (CD44 receptor-positive human breast adenocarcinoma cells) may be based on the CD44 receptor-mediated endocytosis and phenylboronic acid-sialic acid interaction. Enhanced in vivo tumor targetability, infiltration efficiency, and antitumor efficacies of HACE-AMPB NPs, compared with HACE NPs, were observed in a MDA-MB-231 tumor-xenografted mouse model. In addition to passive tumor targeting (based on an enhanced permeability and retention effect) and active tumor targeting (interaction between HA and CD44 receptor), the phenylboronic acid-sialic acid interaction can play important roles in augmented tumor targeting and penetration of HACE-AMPB NPs. STATEMENT OF SIGNIFICANCE: (3-Aminomethylphenyl)boronic acid (AMPB)-tethered hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated and their tumor targeting and penetration efficiencies were assessed in MDA-MB-231 (CD44 receptor-positive human adenocarcinoma) tumor models. MB, which exhibited antitumor efficacies via the inhibition of angiogenesis and hypoxia inducible factor (HIF)-1, was entrapped in HACE-AMPB NPs in this study. Phenylboronic acid located in the outer surface

  13. Targeted and non-targeted boron complex formation followed by electrospray Fourier transform ion cyclotron mass spectrometry: a novel approach for identifying boron esters with natural organic matter.

    Science.gov (United States)

    Gaspar, Andras; Lucio, Marianna; Harir, Mourad; Schmitt-Kopplin, Philippe

    2011-01-01

    The formation of boron esters was investigated in peat-soluble humified materials with a detailed molecular-level description of boron-organic interactions. Thousands of individually baseline separated signals were obtained from the analysis of natural organic matter of peat samples, using Fourier transform ion cyclotron resonance mass spectrometry. This technique offers unsurpassed isotope-specific mass resolution that can lead to precise molecular formula assignments by means of mathematical data analysis and visualisation techniques, such as mass defect (Kendrick) or elemental ratio (van Krevelen) plots. The analysis of potential boron binding structures within the sample of natural organic matter was described based on prior results. Herein, we describe an algorithm that can be used to effectively distinguish and filter complexes through data obtained from boron-enriched systems with highly intricate mass spectra, such as natural organic matter.

  14. Electronic structures of an (8, 0) boron nitride/carbon nanotube heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hongxia; Zhang Heming; Song Jiuxu [Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China); Zhang Zhiyong, E-mail: liuhongxia_xidian@126.co [Information Science and Technology Institution, Northwest University, Xi' an 710069 (China)

    2010-01-15

    The electronic structure of the heterojunction is the foundation of the study on its working mechanism. Models of the heterojunctions formed by an (8, 0) boron nitride nanotube and an (8, 0) carbon nanotube with C-B or C-N interface have been established. The structures of the above heterojunctions were optimized with first-principle calculations based on density functional theory. The rearrangements of the heterojunctions concentrate mainly on their interfaces. The highest occupied molecular orbital and the lowest unoccupied molecular orbital of the heterojunctions distribute in the carbon nanotube section. As the band offsets of the above heterojunctions are achieved with the average bond energy method, the band structure is plotted. (semiconductor materials)

  15. Boron containing magnetic nanoparticles for neutron capture therapy – an innovative approach for specifically targeting tumors

    International Nuclear Information System (INIS)

    Tietze, Rainer; Unterweger, Harald; Dürr, Stephan; Lyer, Stefan; Canella, Lea; Kudejova, Petra; Wagner, Franz M.; Petry, Winfried; Taccardi, Nicola; Alexiou, Christoph

    2015-01-01

    The selective delivery of 10 B into the tumor tissue remains to be further improved for successful and reliable Boron Neutron Capture Therapy applications. Magnetic Drug Targeting using intraarterially administered superparamagnetic nanoparticles and external magnetic fields already exhibited convincing results in terms of highly efficient and selective drug deposition. Using the same technique for the targeted 10 B delivery is a promising new approach. Here, systematic irradiation experiments of phantom cubes containing different concentrations of boron and nanoparticles as well as varying three-dimensional arrangements have been performed. - Highlights: • Magnetic Drug Targeting is a possible approach to substantially improve BNCT. • SPIONs did not influence the radiation dose deposition. • Superior dose deposition in gel phantoms reflecting Magnetic Drug Targeting set up.

  16. Towards laser spectroscopy of the proton-halo candidate boron-8

    Energy Technology Data Exchange (ETDEWEB)

    Maaß, Bernhard, E-mail: bmaass@ikp.tu-darmstadt.de [Technische Universität Darmstadt, Institut für Kernphysik (Germany); Müller, Peter [Argonne National Laboratory, Physics Division (United States); Nörtershäuser, Wilfried [Technische Universität Darmstadt, Institut für Kernphysik (Germany); Clark, Jason [Argonne National Laboratory, Physics Division (United States); Gorges, Christian; Kaufmann, Simon; König, Kristian; Krämer, Jörg [Technische Universität Darmstadt, Institut für Kernphysik (Germany); Levand, Anthony; Orford, Rodney [Argonne National Laboratory, Physics Division (United States); Sánchez, Rodolfo [GSI Helmholtzzentrum für Schwerionenforschung (Germany); Savard, Guy [Argonne National Laboratory, Physics Division (United States); Sommer, Felix [Technische Universität Darmstadt, Institut für Kernphysik (Germany)

    2017-11-15

    We propose to determine the nuclear charge radius of {sup 8}B by high-resolution laser spectroscopy. {sup 8}B (t {sub 1/2} = 770 ms) is perhaps the best candidate of a nucleus exhibiting an extended proton wave-function or “one-proton-halo” in a more descriptive picture. Laser spectroscopic measurements of the isotope shift will be used to probe the change in nuclear charge radius along the three boron isotopes {sup 8}B, {sup 10}B and {sup 11}B. The change in nuclear charge radius directly correlates with the extent of the proton wave function. In-flight production and preparation of sufficient yields of {sup 8}B ions at low energies is provided by the Argonne Tandem Linac Accelerator System (ATLAS) at Argonne National Laboratory (ANL) in Chicago, IL, USA. Subsequently, the ions will be guided through a charge exchange cell for neutralization and the fluorescence signal of the atoms which interact with the resonant laser light will be detected. The charge radius can then be extracted from the measured isotope shift by employing highly accurate atomic theory calculations of this five-electron system which are carried out presently.

  17. Towards laser spectroscopy of the proton-halo candidate boron-8

    Science.gov (United States)

    Maaß, Bernhard; Müller, Peter; Nörtershäuser, Wilfried; Clark, Jason; Gorges, Christian; Kaufmann, Simon; König, Kristian; Krämer, Jörg; Levand, Anthony; Orford, Rodney; Sánchez, Rodolfo; Savard, Guy; Sommer, Felix

    2017-11-01

    We propose to determine the nuclear charge radius of 8B by high-resolution laser spectroscopy. 8B (t 1/2 = 770 ms) is perhaps the best candidate of a nucleus exhibiting an extended proton wave-function or "one-proton-halo" in a more descriptive picture. Laser spectroscopic measurements of the isotope shift will be used to probe the change in nuclear charge radius along the three boron isotopes 8B, 10B and 11B. The change in nuclear charge radius directly correlates with the extent of the proton wave function. In-flight production and preparation of sufficient yields of 8B ions at low energies is provided by the Argonne Tandem Linac Accelerator System (ATLAS) at Argonne National Laboratory (ANL) in Chicago, IL, USA. Subsequently, the ions will be guided through a charge exchange cell for neutralization and the fluorescence signal of the atoms which interact with the resonant laser light will be detected. The charge radius can then be extracted from the measured isotope shift by employing highly accurate atomic theory calculations of this five-electron system which are carried out presently.

  18. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. B sub 4 C solid target boronization of the MST reversed-field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, D.J.; Cekic, M.; Fiksel, G.; Hokin, S.A.; Kendrick, R.D.; Prager, S.C.; Stoneking, M.R.

    1992-10-01

    A solid rod of hot-pressed boron carbide is being used as the source of boron during boronization of MST. The most striking result of this procedure is the reduction in oxygen contamination of the plasma (O III radiation, characteristic of oxygen at the edge, falls by about a factor of 3 after boronization.). The radiated power fraction drops to about half its initial value. Particle reflux from the wall is also lowered, making density control simpler. The rod (12.7 mm diameter) is inserted into the edge plasma of normal high-power RFP discharges. B{sub 4}C is ablated from the surface of the rod and deposited in a thin film (a-B/C:H) on the walls and limiters. The energy flux carried by superthermal'' (not runaway'') electrons at the edge of MST appears to enhance the efficient, non-destructive ablation of the boron carbide rod.

  20. B{sub 4}C solid target boronization of the MST reversed-field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, D.J.; Cekic, M.; Fiksel, G.; Hokin, S.A.; Kendrick, R.D.; Prager, S.C.; Stoneking, M.R.

    1992-10-01

    A solid rod of hot-pressed boron carbide is being used as the source of boron during boronization of MST. The most striking result of this procedure is the reduction in oxygen contamination of the plasma (O III radiation, characteristic of oxygen at the edge, falls by about a factor of 3 after boronization.). The radiated power fraction drops to about half its initial value. Particle reflux from the wall is also lowered, making density control simpler. The rod (12.7 mm diameter) is inserted into the edge plasma of normal high-power RFP discharges. B{sub 4}C is ablated from the surface of the rod and deposited in a thin film (a-B/C:H) on the walls and limiters. The energy flux carried by ``superthermal`` (not ``runaway``) electrons at the edge of MST appears to enhance the efficient, non-destructive ablation of the boron carbide rod.

  1. Neutron capture therapy of epidermal growth factor receptor (EGFR)vIII positive gliomas using boronated monoclonal antibody L8A4

    International Nuclear Information System (INIS)

    Yang, Weilian; Barth, Rolf F.; Wu, Gong

    2006-01-01

    The purpose of the present study was to evaluate the EGFRvIII specific monoclonal antibody, L8A4 as a boron delivery agent for NCT of the receptor (+) rat glioma, F98 npEGFRvIII . A heavily boronated polyamidoamine (PAMAM) dendrimer (BD) was linked to L8A4 by means of heterobifunctional reagents. Wild type (F98 WT ) receptor(-) or EGFRvIII human gene transfected receptor(+) F98 npEGFRvIII glioma cells were implanted into the brains of Fischer rats. Biodistribution studies were initiated 14 d later. Animals received 125 I-labeled BD-L8A4 by either convection enhanced delivery (CED) or intratumoral(i.t.) injection and were euthanized 6, 12, 24 or 48 h later. At 6 h following CED, equivalent amounts of the bioconjugate were detected in receptor(+) and (-) tumors, but by 24 h the amounts retained by receptor(+) gliomas were 60.1% following CED and 43.7% following i.t. injection, compared to 14.6% ID/g by receptor(-) tumors. Tumor boron concentrations were 32.7 and 44.5 μg/g, respectively, for BD-L8A4 alone or in combination with i.v. BPA. BNCT was carried out at the MITR-II Reactor 24 h after CED of BD-L8A4 (∼40 μg 10 B/∼750 μg protein) and 2.5 h after i.v. injection of BPA (500 mg/kg). Rats that received BD-L8A4 alone or in combination with BPA had mean survival times of 70.4 and 85d, respectively, with 20% and 10% long term survivors, respectively, compared to 40.1 d for i.v. BPA and 30.3 and 26.3 d for irradiated and untreated controls, respectively. These data convincingly demonstrate the therapeutic efficacy of molecular targeting of EGFRvIII and should provide a platform for the future development of combinations of high and low molecular weight delivery agents for BNCT of brain tumors. (author)

  2. Boron-proton nuclear-fusion enhancement induced in boron-doped silicon targets by low-contrast pulsed laser

    Czech Academy of Sciences Publication Activity Database

    Picciotto, A.; Margarone, Daniele; Velyhan, Andriy; Bellutti, P.; Krása, Josef; Szydlowsky, A.; Bertuccio, G.; Shi, Y.; Mangione, A.; Prokůpek, Jan; Malinowska, A.; Krouský, Eduard; Ullschmied, Jiří; Láska, Leoš; Kucharik, M.; Korn, Georg

    2014-01-01

    Roč. 4, č. 3 (2014), , "031030-1"-"031030-8" ISSN 2160-3308 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk(CZ) LD14089; GA MŠk LM2010014 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; AVČR(CZ) M100101210 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : thermonuclear fusion * fast ions * plasmas * energy * acceleration * hydrogen * detector Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BL - Plasma and Gas Discharge Physics (UFP-V) Impact factor: 9.043, year: 2014

  3. Ab initio studies of vacancies in (8,0) and (8,8) single-walled carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-09-01

    Full Text Available A systematic study of vacancies in single-walled carbon nanotubes and boron nitride nanotubes was carried out. First principles calculations within the framework of density functional theory using the CASTEP code are used to optimize fully...

  4. Highly-focused boron implantation in diamond and imaging using the nuclear reaction {sup 11}B(p, α){sup 8}Be

    Energy Technology Data Exchange (ETDEWEB)

    Ynsa, M.D., E-mail: m.ynsa@uam.es [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Física Aplicada, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Ramos, M.A. [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Física de la Materia Condensada and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Skukan, N. [Laboratory for Ion Beam Interactions, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb (Croatia); Torres-Costa, V. [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Física Aplicada, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Jakšić, M. [Laboratory for Ion Beam Interactions, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb (Croatia)

    2015-04-01

    Diamond is an especially attractive material because of its gemological value as well as its unique mechanical, chemical and physical properties. One of these properties is that boron-doped diamond is an electrically p-type semiconducting material at practically any boron concentration. This property makes it possible to use diamonds for multiple industrial and technological applications. Boron can be incorporated into pure diamond by different techniques including ion implantation. Although typical energies used to dope diamond by ion implantation are about 100 keV, implantations have also been performed with energies above MeV. In this work CMAM microbeam setup has been used to demonstrate capability to implant boron with high energies. An 8 MeV boron beam with a size of about 5 × 3 μm{sup 2} and a beam current higher than 500 pA has been employed while controlling the beam position and fluence at all irradiated areas. The subsequent mapping of the implanted boron in diamond has been obtained using the strong and broad nuclear reaction {sup 11}B(p, α){sup 8}Be at E{sub p} = 660 keV. This reaction has a high Q-value (8.59 MeV for α{sub 0} and 5.68 MeV for α{sub 1}) and thus is almost interference-free. The sensitivity of the technique is studied in this work.

  5. Study of a neutron producing target via the 7Li(p,n)7Be reaction near its energy threshold for BNCT (boron neutron capture therapy)

    International Nuclear Information System (INIS)

    Burlon, Alejandro; Kreiner, Andres J.; Debray, Mario E.; Stoliar, Pablo; Kesque, Jose M.; Naab, Fabian; Ozafran, Mabel J.; Schuff, Juan; Vazquez, Monica; Caraballo, Maria E.; Valda, Alejandro; Somacal, Hector; Davidson, Miguel; Davidson, Jorge

    2000-01-01

    In the framework of Accelerator Based BNCT (AB-BNCT) the 7 Li(p,n) 7 Be reaction near its energy threshold is one of the most promising. In this work a thick LiF target irradiated with a proton beam was studied as a neutron source. The 1.88-2.0 MeV proton beam was produced by the tandem accelerator TANDAR at CNEA's facilities in Buenos Aires. A water-filled phantom, containing a boron sample was irradiated with the resulting neutron beam. The boron neutron capture reaction produces a 0.478 MeV gamma ray in 94 % of the cases. The neutron yield was monitored by detecting this gamma ray using a germanium detector with an 'anti-Compton' shield. Moreover, the thermal neutron flux was evaluated at different depths inside the phantom using bare and Cd-covered gold foils. A maximum neutron thermal flux of 1.4 x 10 8 1/(cm 2 -s-mA) was obtained at 4.2 cm from the phantom surface. (author)

  6. Total boron assessment in soil samples from dry Mediterranean region using the thick target-particle induced gamma-ray emission technique

    Energy Technology Data Exchange (ETDEWEB)

    Nsouli, B. [IBA Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11, 8281 Beirut (Lebanon)]. E-mail: bnsouli@cnrs.edu.lb; Darwish, T. [National Center for Remote Sensing, National Council for Scientific Research, P.O. Box 11, 8281 Beirut (Lebanon); Zahraman, K. [IBA Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11, 8281 Beirut (Lebanon); Bejjani, A. [IBA Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11, 8281 Beirut (Lebanon); Roumie, M. [IBA Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11, 8281 Beirut (Lebanon); Thomas, J.P. [Institut de Physique Nucleaire de Lyon, Universite Claude Bernard Lyon 1, 43 Bd. 11 novembre 1918, 69622 Villeurbanne Cedex (France)

    2006-08-15

    Among other trace elements, boron assessment in soils is important for assessing land quality in accordance with international criteria for landuse planning. In this paper the total boron concentrations, for more than 100 soil samples from one of the most important agricultural region in Lebanon (i.e. Akkar plain in the North), have been measured by the TT-PIGE technique using a proton beam. The specific boron gamma ray at 429 keV produced via the {sup 10}B(p, {alpha}{gamma}){sup 7}Be nuclear reaction was used. Results are presented and discussed in relation to the lithological classes of the studied area. Furthermore, the method validation, for boron quantification in thick target soil samples using the TT-PIGE technique, employing external standards and using the so-called E {sub 1/2} analytical approach, is highlighted and discussed.

  7. Biological evaluation of boronated unnatural amino acids as new boron carriers

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G.W. [Departments of Radiology and Chemistry, University of Tennessee, Knoxville, TN (United States)], E-mail: kabalka@utk.edu; Yao, M.-L.; Marepally, S.R. [Departments of Radiology and Chemistry, University of Tennessee, Knoxville, TN (United States); Chandra, S. [Cornell SIMS Laboratory, Department of Earth and Atmospheric Sciences, Snee Hall, Cornell University, Ithaca, NY (United States)

    2009-07-15

    There is a pressing need for new and more efficient boron delivery agents to tumor cells for use in boron neutron capture therapy (BNCT). A class of boronated unnatural cyclic amino acids has demonstrated a remarkable selectivity toward tumors in animal and cell culture models, far superior to currently used agents in clinical BNCT. One of these amino acids, 1-amino-3-boronocyclopentanecarboxylic acid (ABCPC), has shown a tumor to blood ratio of 8 and a tumor to normal brain ratio of nearly 21 in a melanoma bearing mouse model. This work represents further biological characterization of this compound for tumor targeting in an EMT6 murine mammary carcinoma mouse model and a T98G human glioblastoma cell line. Female BALB/c mice bearing EMT6 tumors were injected with the fructose complex form of racemic mixtures of cis and trans isomers of ABCPC in identical concentrations. Boron concentrations were measured in the tumor, blood, brain, skin, and liver tissues at 1, 3, and 5 h post-injection. These observations revealed a remarkable difference in racemic mixtures of cis and trans isomers in tumor targeting by boron. This implies that further separation of the L and D forms of this compound may enhance tumor targeting to an even higher degree than that provided by the racemic mixtures. Since the uptake measurements were made in homogenized tumor and normal tissues, little is known about the subcellular location of the boron arising from the various isomeric forms of the amino acid. To study subcellular delivery of boron from ABCPC in T98G human glioblastoma cells, we employed secondary ion mass spectrometry (SIMS) based technique of ion microscopy, which is capable of quantitatively imaging isotopic (elemental) gradients in cells and tissues at 500 nm spatial resolution. The T98G cells were exposed to the nutrient medium containing 100 ppm boron equivalent of a mixture of both L and D isomers of ABCPC in the form of a fructose complex for 1 h. Following this treatment

  8. Biological Evaluation of Boronated Unnatural Amino Acids as New Boron Carriers

    Science.gov (United States)

    Kabalka, G.W.; Yao, M.-L.; Marepally, S.R.; Chandra, S.

    2010-01-01

    There is a pressing need for new and more efficient boron delivery agents to tumor cells for use in boron neutron capture therapy (BNCT). A class of boronated unnatural cyclic amino acids has demonstrated a remarkable selectivity toward tumors in animal and cell culture models, far superior to currently used agents in clinical BNCT. One of these amino acids, 1-amino-3-boronocyclopentanecarboxylic acid (ABCPC), has shown a tumor to blood ratio of 8 and a tumor to normal brain ratio of nearly 21 in a melanoma bearing mouse model. This work represents further biological characterization of this compound for tumor targeting in an EMT6 murine mammary carcinoma mouse model and a T98G human glioblastoma cell line. Female BALB/c mice bearing EMT6 tumors were injected with the fructose complex form of racemic mixtures of cis- and trans isomers of ABCPC in identical concentrations. Boron concentrations were measured in the tumor, blood, brain, skin, and liver tissues at 1, 3, and 5 hr post injection. These observations revealed a remarkable difference in racemic mixtures of cis and trans isomers in tumor targeting by boron. This implies that further separation of the L and D forms of this compound may enhance tumor targeting to an even higher degree than that provided by the racemic mixtures. Since the uptake measurements were made in homogenized tumor and normal tissues, little is known about the subcellular location of the boron arising from the various isomeric forms of the amino acid. To study subcellular delivery of boron from ABCPC in T98G human glioblastoma cells, we employed secondary ion mass spectrometry (SIMS) based technique of ion microscopy, which is capable of quantitatively imaging isotopic (elemental) gradients in cells and tissues at 500 nm spatial resolution. The T98G cells were exposed to the nutrient medium containing 100 ppm boron equivalent of a mixture of both L and D isomers of ABCPC in the form of a fructose complex for 1 hr. Following this

  9. Targets downstream of Cdk8 in Dictyostelium development

    Directory of Open Access Journals (Sweden)

    Skelton Jason

    2011-01-01

    Full Text Available Abstract Background Cdk8 is a component of the mediator complex which facilitates transcription by RNA polymerase II and has been shown to play an important role in development of Dictyostelium discoideum. This eukaryote feeds as single cells but starvation triggers the formation of a multicellular organism in response to extracellular pulses of cAMP and the eventual generation of spores. Strains in which the gene encoding Cdk8 have been disrupted fail to form multicellular aggregates unless supplied with exogenous pulses of cAMP and later in development, cdk8- cells show a defect in spore production. Results Microarray analysis revealed that the cdk8- strain previously described (cdk8-HL contained genome duplications. Regeneration of the strain in a background lacking detectable gene duplication generated strains (cdk8-2 with identical defects in growth and early development, but a milder defect in spore generation, suggesting that the severity of this defect depends on the genetic background. The failure of cdk8- cells to aggregate unless rescued by exogenous pulses of cAMP is consistent with a failure to express the catalytic subunit of protein kinase A. However, overexpression of the gene encoding this protein was not sufficient to rescue the defect, suggesting that this is not the only important target for Cdk8 at this stage of development. Proteomic analysis revealed two potential targets for Cdk8 regulation, one regulated post-transcriptionally (4-hydroxyphenylpyruvate dioxygenase (HPD and one transcriptionally (short chain dehydrogenase/reductase (SDR1. Conclusions This analysis has confirmed the importance of Cdk8 at multiple stages of Dictyostelium development, although the severity of the defect in spore production depends on the genetic background. Potential targets of Cdk8-mediated gene regulation have been identified in Dictyostelium which will allow the mechanism of Cdk8 action and its role in development to be determined.

  10. Scalar Currents In 0(+) Going To 0(+) Beta Decay And The Boron-8 Neutrino Spectrum

    CERN Document Server

    Ortiz, C E

    2000-01-01

    Two experiments to understand the standard electro-weak model are presented. In one experiment scalar contributions to the weak interaction were searched for by determining with accuracy the e − ν correlation coefficient in a 0+ → 0+ decay. The correlation coefficient for the 0+ → 0+ β-decay of 32Ar was measured to be a = 0.9989 ± 0.0052 ± 0.0036, for vanishing Fierz interference. This was used to put unprecedented limits on scalar contributions to the weak interaction. In the second experiment the β-delayed α spectrum from 8B was measured. The experiment was designed to overcome systematic uncertainties that plagued previous measurements. This spectrum differs significantly from previous measurements. The measured α spectrum was used to deduce the ν spectrum. This will be used as a benchmark by experiments trying to detect distortions of the solar-ν spectrum in the search for physics beyond the standard model.

  11. Intracellular targeting of mercaptoundecahydrododecaborate (BSH) to malignant glioma by transferrin-PEG liposomes for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Doi, Atsushi; Miyatake, Shin-ichi; Iida, Kyouko

    2006-01-01

    Malignant glioma is one of the most difficult tumor to control with usual therapies. In our institute, we select boron neutron capture therapy (BNCT) as an adjuvant radiation therapy after surgical resection. This therapy requires the selective delivery of high concentration of 10 B to malignant tumor tissue. In this study, we focused on a tumor-targeting 10 B delivery system (BDS) for BNCT that uses transferrin-conjugated polyethylene-glycol liposome encapsulating BSH (TF-PEG liposome-BSH) and compared 10 B uptake of the tumor among BSH, PEG liposome-BSH and TF-PEG liposome-BSH. In vitro, we analyzed 10 B concentration of the cultured human U87Δ glioma cells incubated in medium containing 20 μg 10 B/ml derived from each BDS by inductively coupled plasma atomic emission spectrometry (ICP-AES). In vivo, human U87Δ glioma-bearing nude mice were administered with each BDS (35mg 10 B/kg) intravenously. We analyzed 10 B concentration of tumor, normal brain and blood by ICP-AES. The TF-PEG liposome-BSH showed higher absolute concentration more than the other BDS. Moreover, TF-PEG liposome-BSH decreased 10 B concentration in blood and normal tissue while it maintained high 10 B concentration in tumor tissue for a couple of days. This showed the TF-PEG liposome-BSH caused the selective delivery of high concentration of 10 B to malignant tumor tissue. The TF-PEG liposome-BSH is more potent BDS for BNCT to obtain absolute high 10 B concentration and good contrast between tumor and normal tissue than BSH and PEG liposome-BSH. (author)

  12. Structural characterization of slightly boron-deficient LiB, LiB0.9 and LiB0.8, under pressure.

    Science.gov (United States)

    Suarez-Alcubilla, Ainhoa; Gurtubay, Idoia G; Bergara, Aitor

    2014-11-26

    Results of computational investigations of two slightly boron-deficient lithium borides, LiB(0.9) and LiB(0.8), under pressure are reported. Structure predictions based on particle swarm optimization reveal that at low pressure both compositions adopt chain structures, as stoichiometric 1 : 1 LiB. With increasing pressure both undergo phase transitions to layered arrangements. The evolution of the structural parameters of these stoichiometries as a function of pressure and the results obtained from the enthalpies indicate that boron-deficient structures are more favoured than 1 : 1 LiB, even at zero pressure. Moreover, as pressure is increased a larger deficiency in B seems to be favoured.

  13. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: halfon@phys.huji.ac.il; Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Steinberg, D. [Biofilm Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah (Israel); Nagler, A.; Arenshtam, A.; Kijel, D. [Soreq NRC, Yavne 81800 (Israel); Polacheck, I. [Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center (Israel); Srebnik, M. [Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University, Jerusalem 91120 (Israel)

    2009-07-15

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction {sup 7}Li(p,n){sup 7}Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  14. Medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and invention of boron tracedrugs as innovative future-architectural drugs.

    Science.gov (United States)

    Hori, Hitoshi; Uto, Yoshihiro; Nakata, Eiji

    2010-09-01

    We describe herein for the first time our medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and boron tracedrugs as newly emerging drug classes. A new area of antineoplastic drugs and treatments has recently focused on neoplastic cells of the tumor environment/microenvironment involving accessory cells. This tumor hypoxic environment is now considered as a major factor that influences not only the response to antineoplastic therapies but also the potential for malignant progression and metastasis. We review our medicinal electronomics bricolage design of hypoxia-targeting drugs, antiangiogenic hypoxic cell radiosensitizers, sugar-hybrid hypoxic cell radiosensitizers, and hypoxia-targeting 10B delivery agents, in which we design drug candidates based on their electronic structures obtained by molecular orbital calculations, not based solely on pharmacophore development. These drugs include an antiangiogenic hypoxic cell radiosensitizer TX-2036, a sugar-hybrid hypoxic cell radiosensitizer TX-2244, new hypoxia-targeting indoleamine 2,3-dioxygenase (IDO) inhibitors, and a hypoxia-targeting BNCT agent, BSH (sodium borocaptate-10B)-hypoxic cytotoxin tirapazamine (TPZ) hybrid drug TX-2100. We then discuss the concept of boron tracedrugs as a new drug class having broad potential in many areas.

  15. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    International Nuclear Information System (INIS)

    Halfon, S.; Paul, M.; Steinberg, D.; Nagler, A.; Arenshtam, A.; Kijel, D.; Polacheck, I.; Srebnik, M.

    2009-01-01

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction 7 Li(p,n) 7 Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  16. Archimedean (4,8)-tessellation of haeckelite ultrathin nanosheets composed of boron and aluminum-group V binary materials.

    Science.gov (United States)

    Brown, Paul A; Shuford, Kevin L

    2016-11-24

    A compendium of unique haeckelite boron and aluminum-group V binary materials have been assessed for their fundamental thermodynamic and ground state electronic properties within density functional theory. We explore their thermodynamic stability relative to new bulk haeckelite crystal structures and find a number of stable polymorphs of planar and buckled ultrathin nanosheets. The bulk boron and aluminum haeckelite crystals display semiconducting and metallic behavior. From the dispersion curves, we predict the formation of both indirect and direct bandgap crystals. We also discover the existence of a five-coordinate aluminum antimonide crystal hitherto never before observed. Moreover, it is found that a number of the Archimedean four and eight membered ring tessellation planar nanosheets could form should synthesis be attempted. It is predicted that these nanosheets can attain two configurations - planar and buckled. From this work we find that combinations of elements such as boron and nitrogen or phosphorus, and aluminum and nitrogen will likely become true single-atom thick nanosheets. These materials show intrinsic indirect bandgap character, which spans the ultraviolet, visible, and infrared spectrum. In the boron series of these materials, the planar structures show double extrema in the bandstructures with van Hove singularities in the projected density of states at the Fermi energy suggesting strong light-matter interactions. The aluminum series we observe strong charge transfer and larger indirect bandgap nanosheets. This study serves as a starting point for a new class of inorganic bulk and ultrathin film materials, which can have many varied applications in nanotechnology.

  17. Boron reclamation

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-07-01

    A process to recover high purity 10 B enriched crystalline boron powder from a polymeric matrix was developed on a laboratory basis and ultimately scaled up to production capacity. The process is based on controlled pyrolysis of boron-filled scrap followed by an acid leach and dry sieving operation to return the powder to the required purity and particle size specifications. Typically, the recovery rate of the crystalline powder is in excess of 98.5 percent, and some of the remaining boron is recovered in the form of boric acid. The minimum purity requirement of the recovered product is 98.6 percent total boron

  18. Transferrin-loaded nido-carborane liposomes. Synthesis and intracellular targeting to solid tumors for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Nakamura, Hiroyuki; Miyajima, Yusuke; Kuwata, Yasuhiro; Maruyama, Kazuo; Masunaga, Shinichiro; Ono, Koji

    2006-01-01

    The boron ion cluster lipids, as a double-tailed boron lipid synthesized from heptadecanol, formed stable liposomes at 25% molar ratio toward DSPC with cholesterol. Transferrin was able to be introduced on the surface of boron liposomes (Tf-PEG-CL liposomes) by the coupling of transferrin to the PEG-CO 2 H moieties of PEG-CL liposomes. The biodistribution of Tf-PEG-CL liposomes showed that Tf-PEG-CL liposomes accumulated in tumor tissues and stayed there for a sufficiently long time to increase tumor:blood concentration ratio. A 10 B concentration of 22 ppm in tumor tissues was achieved by the injection of Tf-PEG-CL liposome at 7.2 mg/kg body weight 10 B in tumor-bearing mice. After neutron irradiation, the average survival rate of mice not treated with Tf-PEG-CL liposomes was 21 days, whereas that of the treated mice was 31 days. Longer survival rates were observed in the mice treated with Tf-PEG-CL liposomes; one of them even survived for 52 days after BNCT. (author)

  19. Boron-11 MRI and MRS of intact animals infused with a boron neutron capture agent

    International Nuclear Information System (INIS)

    Kabalka, G.W.; Davis, M.; Bendel, P.

    1988-01-01

    Boron neutron capture therapy (BNCT) depends on the delivery of boron-containing drugs to a targeted lesion. Currently, the verification and quantification of in vivo boron content is a difficult problem. Boron-11 spectroscopy was utilized to confirm the presence of a dimeric sulfhydryl dodecaborane BNCT agent contained in an intact animal. Spectroscopy experiments revealed that the decay time of transverse magnetization of the boron-11 spins was less than 1 ms which precluded the use of a 2DFT imaging protocol. A back-projection protocol was developed and utilized to generate the first boron-11 image of a BNCT agent in the liver of an intact Fisher 344 rat

  20. High sensitivity boron quantification in bulk silicon using the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be nuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Marcos V.; Silva, Tiago F. da; Added, Nemitala; Rizutto, Marcia A.; Tabacniks, Manfredo H. [Instituto de Fisica da Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil); Neira, John B.; Neto, Joao B. F. [Institute of Research Tecnology, Cidade Universitaria, SP, 05508-091 (Brazil)

    2013-05-06

    There is a great need to quantify sub-ppm levels of boron in bulk silicon. There are several methods to analyze B in Si: Nuclear Reaction Analysis using the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be reaction exhibits a quantification limit of some hundreds ppm of B in Si. Heavy Ion Elastic Recoil Detection Analysis offers a detection limit of 5 to 10 at. ppm. Secondary Ion Mass Spectrometry is the method of choice of the semiconductor industry for the analysis of B in Si. This work verifies the use of NRA to quantify B in Si, and the corresponding detection limits. Proton beam with 1.6 up to 2.6 MeV was used to obtain the cross-section of the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be nuclear reaction at 170 Degree-Sign scattering angle. The results show good agreementwith literature indicating that the quantification of boron in silicon can be achieved at 100 ppm level (high sensitivity) at LAMFI-IFUSP with about 16% uncertainty. Increasing the detection solid angle and the collected beam charge, can reduce the detection limit to less than 100 ppm meeting present technological needs.

  1. MMP-9 and CXCL8/IL-8 Are Potential Therapeutic Targets in Epidermolysis Bullosa Simplex

    Science.gov (United States)

    Lettner, Thomas; Lang, Roland; Klausegger, Alfred; Hainzl, Stefan

    2013-01-01

    Epidermolysis bullosa refers to a group of genodermatoses that affects the integrity of epithelial layers, phenotypically resulting in severe skin blistering. Dowling-Meara, the major subtype of epidermolysis bullosa simplex, is inherited in an autosomal dominant manner and can be caused by mutations in either the keratin-5 (K5) or the keratin-14 (K14) gene. Currently, no therapeutic approach is known, and the main objective of this study was to identify novel therapeutic targets. We used microarray analysis, semi-quantitative real-time PCR, western blot and ELISA to identify differentially regulated genes in two K14 mutant cell lines carrying the mutations K14 R125P and K14 R125H, respectively. We found kallikrein-related peptidases and matrix metalloproteinases to be upregulated. We also found elevated expression of chemokines, and we observed deregulation of the Cdc42 pathway as well as aberrant expression of cytokeratins and junction proteins. We further demonstrated, that expression of these genes is dependent on interleukin-1 β signaling. To evaluate these data in vivo we analysed the blister fluids of epidermolysis bullosa simplex patients vs. healthy controls and identified matrix metalloproteinase-9 and the chemokine CXCL8/IL-8 as potential therapeutic targets. PMID:23894602

  2. IL-8 as antibody therapeutic target in inflammatory diseases

    DEFF Research Database (Denmark)

    Skov, Lone; Beurskens, Frank J; Zachariae, Claus O C

    2008-01-01

    IL-8 is a chemokine that has been implicated in a number of inflammatory diseases involving neutrophil activation. HuMab 10F8 is a novel fully human mAb against IL-8, which binds a discontinuous epitope on IL-8 overlapping the receptor binding site, and which effectively neutralizes IL-8-dependen...

  3. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Synthesis of o-carboranylmethyl ethers of steroids as potential target substrates for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Schneiderova, L.; Gruener, B.; Strouf, O.; Kimlova, I.

    1992-01-01

    o-carboranylmethyl ethers of steroids were synthesized by insertion of steroidal 2-propynyloxy derivatives into 6,9-bis(acetonitrile)decarborane. This reaction provided compounds with an estrane and androstane skeleton, potentially useful in boron neutron capture therapy of hormone-sensitive forms of cancer: 17β-o-carboranylmethyl ether of estradiol IXb (yield 14%) and 3β- and 17β-carboranylmethyl ethers of androstenediol Vb and VIIb (yield 12% and 13%, respectively). Jones oxidation gave the carboranyl derivative of androsten-17-one VIb in 75% yield. As shown by a study of insertion of 3β-(2-propynyloxy)cholest-5-ene (IVa), the low yields of the insertion reaction cannot be increased by change in the reaction conditions. The relative binding affinity of compound IXb to the estrogen receptor from rat uterine and human breast tumor cytosol was 3.0 and 0.29%, respectively, of that of estradiol. (author) 2 figs., 2 tabs., 20 refs

  5. Crystalline boron nitride aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-12-12

    This disclosure provides methods and materials related to boron nitride aerogels. For example, one aspect relates to a method for making an aerogel comprising boron nitride, comprising: (a) providing boron oxide and an aerogel comprising carbon; (b) heating the boron oxide to melt the boron oxide and heating the aerogel; (c) mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide; and (d) converting at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride. Another aspect relates to a method for making an aerogel comprising boron nitride, comprising heating boron oxide and an aerogel comprising carbon under flow of a nitrogen-containing gas, wherein boron oxide vapor and the nitrogen-containing gas convert at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride.

  6. Study of ceramic mixed boron element as a neutron shielding

    International Nuclear Information System (INIS)

    Ismail Mustapha; Mohd Reusmaazran Yusof; Md Fakarudin Ab Rahman; Nor Paiza Mohamad Hasan; Samihah Mustaffha; Yusof Abdullah; Mohamad Rabaie Shari; Airwan Affandi Mahmood; Nurliyana Abdullah; Hearie Hassan

    2012-01-01

    Shielding upon radiation should not be underestimated as it can causes hazard to health. Precautions on the released of radioactive materials should be well concerned and considered. Therefore, the combination of ceramic and boron make them very useful for shielding purpose in areas of low and intermediate neutron. A six grades of ceramic tile have been produced namely IMN05 - 5 % boron, IMN06 - 6 % boron, IMN07 - 7 % boron, IMN08 - 8 % boron, IMN09 - 9 % boron, IMN10 - 10 % boron from mixing, press and sintered process. Boron is a material that capable of absorbing and capturing neutron, so that neutron and gamma test were conducted to analyze the effectiveness of boron material in combination with ceramic as shielding. From the finding, percent reduction number of count per minute shows the ceramic tiles are capable to capture neutron. Apart from all the percentage of boron used, 10 % is the most effective shields since the percent reduction indicating greater neutron captured increased. (author)

  7. Reduced thymic maturation but normal effector function of CD8+ T cells in CD8 beta gene-targeted mice

    OpenAIRE

    1994-01-01

    CD8 is a cell surface glycoprotein on major histocompatibility complex class I-restricted T cells. Thymocytes and most peripheral T cells express CD8 as heterodimers of CD8 alpha and CD8 beta. The intestinal intraepithelial lymphocytes (IEL), which have been suggested to be generated extrathymically, express CD8 predominantly as homodimers of CD8 alpha. We have generated CD8 beta gene-targeted mice. CD8 alpha+ T cell population in the thymus and in most peripheral lymphoid organs was reduced ...

  8. National Ignition Facility subsystem design requirements target area auxiliary subsystem SSDR 1.8.6

    International Nuclear Information System (INIS)

    Reitz, T.

    1996-01-01

    This Subsystem Design Requirement (SSDR) establishes the performance, design, development, and test requirements for the Target Area Auxiliary Subsystems (WBS 1.8.6), which is part of the NIF Target Experimental System (WBS 1.8). This document responds directly to the requirements detailed in NIF Target Experimental System SDR 003 document. Key elements of the Target Area Auxiliary Subsystems include: WBS 1.8.6.1 Local Utility Services; WBS 1.8.6.2 Cable Trays; WBS 1.8.6.3 Personnel, Safety, and Occupational Access; WBS 1.8.6.4 Assembly, Installation, and Maintenance Equipment; WBS 1.8.6.4.1 Target Chamber Service System; WBS 1.8.6.4.2 Target Bay Service Systems

  9. Edge and substrate-induced bandgap in zigzag graphene nanoribbons on the hexagonal nitride boron 8-ZGNR/h-BN(0001

    Directory of Open Access Journals (Sweden)

    V. V. Ilyasov

    2013-09-01

    Full Text Available The results of DFT (GGA-PBEsol and DFT(PBE-D2 study of the band structure of zigzag graphene nanoribbons on hexagonal nitride boron 8-ZGNR/h-BN(0001 are presented, suitable as potential base for new materials for spintronics. It offers a study of regularities in the changes of the valence band electron structure and the induction of the energy gap in the series 8-ZGNR → 8-ZGNR/h-BN(0001 → graphene/h-BN(0001. The peculiarities of the spin state at the Fermi level, the roles of the edge effect and the effect of substrate in formation of the band gap in 8-ZGNR/h-BN(0001 system are discussed. Our calculations shown that vdW-correction plays an important role in the adsorption of GNR on h-BN and results in reduction of the interplanar distances in equilibrium systems ZGNRs/h-BN(0001. As a result of the structural changes we have obtained new values of the energy gap in the 8-ZGNR-AF and 8-ZGNR-AF/h-BN(0001 systems. The paper demonstrates appearance of 600 meV energy gap in the 8-ZGNR/h-BN(0001 interface. The contributions of nanoribbon edges and the substrate in formation of the gap have been differentiated for the first time. The estimations of local magnetic moments on carbon atoms are made. Shown that in case of ferromagnetic ordering substrate presense causes insignificant splitting of the bands. The splitting reached only (14-28 meV. Since the electronic states of a suspended GNR in point (k=π are degenerate near the Fermi level, we can assume that the above splitting in 8-ZGNR/h-BN(0001 is only determined by the contribution of the h-BN(0001 substrate.

  10. Targeting CD8+ T-cell tolerance for cancer immunotherapy.

    Science.gov (United States)

    Jackson, Stephanie R; Yuan, Jinyun; Teague, Ryan M

    2014-01-01

    In the final issue of Science in 2013, the American Association of Science recognized progress in the field of cancer immunotherapy as the 'Breakthrough of the Year.' The achievements were actually twofold, owing to the early success of genetically engineered chimeric antigen receptors (CAR) and to the mounting clinical triumphs achieved with checkpoint blockade antibodies. While fundamentally very different, the common thread of these independent strategies is the ability to prevent or overcome mechanisms of CD8(+) T-cell tolerance for improved tumor immunity. Here we discuss how circumventing T-cell tolerance has provided experimental insights that have guided the field of clinical cancer immunotherapy to a place where real breakthroughs can finally be claimed.

  11. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  12. National Ignition Facility subsystem design requirements target diagnostics subsystem SSDR 1.8.3

    International Nuclear Information System (INIS)

    Lee, D.

    1996-01-01

    This SSDR establishes the performance, design, development and test requirements for the Target Experimental System's Diagnostic, WBS 1.8. 3. This includes the individual diagnostic components, the Target Diagnostic Data Acquisition System (Target DAS), the diagnostic vacuum system, the timing/fiducial system, and the EMI protection system

  13. Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2014-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).

  14. Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2015-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.

  15. Effects of boron-water on cattle

    Energy Technology Data Exchange (ETDEWEB)

    Green, G.H.; Weeth, H.J.

    1975-01-01

    To determine the effects of subtoxic concentrations of boron in drinking water, 12 Hereford heifers were used in a 3 x 3 latin-square experiment with four squares. Treatments were tap-water (0.8 ppm boron), 150 ppm boron-water, and 300 ppm boron-water. Periods were 30 days each. Total urine was collected during the last week of each period, and renal clearance observations (based on creatinine) were made on the last day of each period. While water consumption and total urine weight were not affected by the boron treatments, hay consumption decreased, and weight loss was noted. Plasma boron concentrations were 0.53 +/- 0.151 ppm, 11.2 +/- 0.91 ppm, and 18.9 +/- 0.60 ppm while the heifers were drinking tap-water, 150 ppm boron-water, and 300 ppm boron-water respectively. Urinary boron excretion rates were tap water, 64 +/- 5.6 mg/day; 150 ppm, 2841 +/- 181.2 mg/day; 300 ppm, 4932 +/- 173.3 mg/day. Although glomerular filtration and osmolal clearance were unaffected by the boron-waters, a relative diuresis was indicated by the free water clearance effects. The percent of filtered boron which was reabsorbed decreased with increased exogenous boron, as well as both plasma and urinary phosphate. These data indicate that 300 ppm boron is not acutely toxic to heifers when consumed via the drinking water. The safe tolerance concentration, however, must lie below 150 ppm because this concentration was responsible for some deleterious effects.

  16. Boron removal from geothermal waters by electrocoagulation.

    Science.gov (United States)

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar; Yilmaz, M Tolga; Paluluoğlu, Cihan

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm(2), but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  17. Boron atom reactions

    International Nuclear Information System (INIS)

    Estes, R.; Tabacco, M.B.; Digiuseppe, T.G.; Davidovits, P.

    1982-01-01

    The reaction rates of atomic boron with various epoxides have been measured in a flow tube apparatus. The bimolecular rate constants, in units of cm 3 molecule -1 s -1 , are: 1,2-epoxypropane (8.6 x 10 -11 ), 1,2-epoxybutane (8.8 x 10 -11 ), 1,2,3,4-diepoxybutane (5.5 x 10 -11 ), 1-chloro-2,3-epoxypropane (5.7 x 10 -11 ), and 1,2-epoxy-3,3,3-trichloropropane (1.5 x 10 -11 ). (orig.)

  18. Technology of boron-containing polyphosphate fertilizer 'Phosphobor'

    International Nuclear Information System (INIS)

    Aldabergenov, M.K.; Balakaeva, T.G.

    1995-01-01

    A technology is developed for producing 'Phosphobor' fertilizer based on the rock phosphate weal (17-18% P 2 O 5 ) with additions of boron-magnesium compound. Boron is part of polyphosphate fertilizer in the form of polymeric compounds of phosphorus and boron. Phosphorus and boron copolymers -boratophosphates - are easily formed in the process of polyphosphate fertilizers production, since borates undergo a mutual polycondensation reaction with phosphates. 8 refs., 1 fig

  19. The effect of boron deficiency on gene expression and boron compartmentalization in sugarbeet

    Science.gov (United States)

    NIP5, BOR1, NIP6, and WRKY6 genes were investigated for their role in boron deficiency in sugar beet, each with a proposed role in boron use in model plant species. All genes showed evidence of polymorphism in fragment size and gene expression in the target genomic DNA and cDNA libraries, with no co...

  20. Removal of boron (B) from waste liquors.

    Science.gov (United States)

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  1. Boron nitride composites

    Science.gov (United States)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  2. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  3. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy.

    Science.gov (United States)

    Ferreira, Tiago H; Miranda, Marcelo C; Rocha, Zildete; Leal, Alexandre S; Gomes, Dawidson A; Sousa, Edesia M B

    2017-04-12

    Currently, nanostructured compounds have been standing out for their optical, mechanical, and chemical features and for the possibilities of manipulation and regulation of complex biological processes. One of these compounds is boron nitride nanotubes (BNNTs), which are a nanostructured material analog to carbon nanotubes, but formed of nitrogen and boron atoms. BNNTs present high thermal stability along with high chemical inertia. Among biological applications, its biocompatibility, cellular uptake, and functionalization potential can be highlighted, in addition to its eased utilization due to its nanometric size and tumor cell internalization. When it comes to new forms of therapy, we can draw attention to boron neutron capture therapy (BNCT), an experimental radiotherapy characterized by a boron-10 isotope carrier inside the target and a thermal neutron beam focused on it. The activation of the boron-10 atom by a neutron generates a lithium atom, a gamma ray, and an alpha particle, which can be used to destroy tumor tissues. The aim of this work was to use BNNTs as a boron-10 carrier for BNCT and to demonstrate its potential. The nanomaterial was characterized through XRD, FTIR, and SEM. The WST-8 assay was performed to confirm the cell viability of BNNTs. The cells treated with BNNTs were irradiated with the neutron beam of a Triga reactor, and the apoptosis caused by the activation of the BNNTs was measured with a calcein AM/propidium iodide test. The results demonstrate that this nanomaterial is a promising candidate for cancer therapy through BNCT.

  4. Methods of forming boron nitride

    Science.gov (United States)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  5. Target duality in N= 8 superconformal mechanics and the coupling of dual pairs

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Marcelo [Carrera de Física Universidad Autónoma Tomás Frías, Av. Del Maestro s/n, Casilla 36, Potosí (Bolivia, Plurinational State of); Khodaee, Sadi; Toppan, Francesco [TEO, CBPF Rua Dr. Xavier Sigaud 150 (Urca), Rio de Janeiro (RJ), cep 22290-180 (Brazil); Lechtenfeld, Olaf [Institut für Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover (Germany); Centre for Quantum Engineering and Space-Time Research, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover (Germany)

    2013-07-15

    We couple dual pairs of N= 8 superconformal mechanics with conical targets of dimension d and 8−d. The superconformal coupling generates an oscillator-type potential on each of the two target factors, with a frequency depending on the respective dual coordinates. In the case of the inhomogeneous (3,8,5) model, which entails a monopole background, it is necessary to add an extra supermultiplet of constants for half of the supersymmetry. The N= 4 analog, joining an inhomogeneous (1,4,3) with a (3,4,1) multiplet, is also analyzed in detail.

  6. miR-31 Regulates Spermatogonial Stem Cells Meiosis via Targeting Stra8.

    Science.gov (United States)

    Wang, Yingjie; Zuo, Qisheng; Bi, Yulin; Zhang, Wenhui; Jin, Jing; Zhang, Liangliang; Zhang, Ya-Ni; Li, Bichun

    2017-12-01

    Stra8 (stimulated by retinoic acid gene 8) is a specific gene that is expressed in mammalian germ cells during transition from mitosis to meiosis and plays a key role in the initiation of meiosis in mammals and birds. So, the evaluation of the Stra8 pathway in cSSCs may provide a deeper insight into mammalian spermatogenesis. miRNA was also an important regulating factor for meiosis of SSCs. However, there is currently no data indicating that miRNA regulate the meiosis of SSCs via Stra8. Here, we predicted the prospective miRNA targeting to Stra8 using the online Bioinformatics database-Targetscan, and performed an analysis of the dual-luciferase recombinant vector, pGL3-CMV-LUC-MCS-Stra8-3'UTR. miR-31 mimics (miR-31m), miR-31 inhibitors (miR-31i), Control (NC, scrambled oligonucleotides transfection) were transfected into cSSCs; Stra8 and miRNA were analyzed by RT-qPCR, immunofluorescence, and Western blot. The detection of haploid was conducted by flow cytometry. The results showed that miR-31 regulates meiosis of cSSCs via targeting Stra8 in vitro and in vivo. Our study identifies a new regulatory pathway that miR-31 targets Stra8 and inhibits spermatogenesis. J. Cell. Biochem. 118: 4844-4853, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  8. Profiling the Targets of Protective CD8+ T Cell Responses to Infection

    Directory of Open Access Journals (Sweden)

    Joseph T. Bruder

    2017-12-01

    Full Text Available T cells are critical effectors of host immunity that target intracellular pathogens, such as the causative agents of HIV, tuberculosis, and malaria. The development of vaccines that induce effective cell-mediated immunity against such pathogens has proved challenging; for tuberculosis and malaria, many of the antigens targeted by protective T cells are not known. Here, we report a novel approach for screening large numbers of antigens as potential targets of T cells. Malaria provides an excellent model to test this antigen discovery platform because T cells are critical mediators of protection following immunization with live sporozoite vaccines and the specific antigen targets are unknown. We generated an adenovirus array by cloning 312 highly expressed pre-erythrocytic Plasmodium yoelii antigens into adenovirus vectors using high-throughput methodologies. The array was screened to identify antigen-specific CD8+ T cells induced by a live sporozoite vaccine regimen known to provide high levels of sterile protection mediated by CD8+ T cells. We identified 69 antigens that were targeted by CD8+ T cells induced by this vaccine regimen. The antigen that recalled the highest frequency of CD8+ T cells, PY02605, induced protective responses in mice, demonstrating proof of principle for this approach in identifying antigens for vaccine development.

  9. Proliferating cell nuclear antigen (Pcna) as a direct downstream target gene of Hoxc8

    Energy Technology Data Exchange (ETDEWEB)

    Min, Hyehyun; Lee, Ji-Yeon; Bok, Jinwoong; Chung, Hyun Joo [Department of Anatomy, Embryology Laboratory, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Myoung Hee, E-mail: mhkim1@yuhs.ac [Department of Anatomy, Embryology Laboratory, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2010-02-19

    Hoxc8 is a member of Hox family transcription factors that play crucial roles in spatiotemporal body patterning during embryogenesis. Hox proteins contain a conserved 61 amino acid homeodomain, which is responsible for recognition and binding of the proteins onto Hox-specific DNA binding motifs and regulates expression of their target genes. Previously, using proteome analysis, we identified Proliferating cell nuclear antigen (Pcna) as one of the putative target genes of Hoxc8. Here, we asked whether Hoxc8 regulates Pcna expression by directly binding to the regulatory sequence of Pcna. In mouse embryos at embryonic day 11.5, the expression pattern of Pcna was similar to that of Hoxc8 along the anteroposterior body axis. Moreover, Pcna transcript levels as well as cell proliferation rate were increased by overexpression of Hoxc8 in C3H10T1/2 mouse embryonic fibroblast cells. Characterization of 2.3 kb genomic sequence upstream of Pcna coding region revealed that the upstream sequence contains several Hox core binding sequences and one Hox-Pbx binding sequence. Direct binding of Hoxc8 proteins to the Pcna regulatory sequence was verified by chromatin immunoprecipitation assay. Taken together, our data suggest that Pcna is a direct downstream target of Hoxc8.

  10. Boron Isotope Compositions of Selected Fresh MORB Glasses From the Northern EPR (8-10° N): Implications for MORB Magma Contamination

    Science.gov (United States)

    Le Roux, P. J.; Shirey, S. B.; Hauri, E. H.; Perfit, M. R.

    2003-12-01

    . These MORB samples have 0.56 to 2.61 ppm B, and B isotope compositions that are surprisingly restricted ranging from δ 11B -5.50 to -8.96‰ . The low δ 11B values are close to the depleted upper mantle value (-10‰ ). The δ 11B data do not correlation with B concentrations, Mg#, Sr, Nd or Pb isotopes, or proxies for brine addition (e.g. Cl/Nb). The lowest δ 11B samples are also the most-incompatible element depleted (high B/Nb ratios). The δ 11B of the on-axis samples increases slightly with increased levels of magma degassing (i.e. lowest δ 11B values in samples extracted undegassed from depths closest to AMC top).Therefore, although the Cl data indicate significant addition of probably a saline brine component to both on- and off-axis MORB magmas, their δ 11B compositions were not significantly affected by this process and the observed variations in δ 11B may have a different origin. Possibly, the low B/Cl ratio of seawater ( ˜ 0.001) coupled with preferential partitioning of Cl relative to B into brines during supercritical phase separation (Berndt and Seyfried, 1990) of seawater in hydrothermal system, results in very saline brines with low boron concentrations. The coupled B-Cl data effectively eliminates simple magmatic assimilation of altered Cl-rich high-B isotope composition oceanic crust in this region.

  11. Boron nitride converted carbon fiber

    Science.gov (United States)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  12. 13 CFR 124.509 - What are non-8(a) business activity targets?

    Science.gov (United States)

    2010-01-01

    ... reasonable marketing strategy, to attain the targeted dollar levels of non-8(a) revenue established in its... modifications affecting price executed during the program year. (2) At the end of each year of participation in..., business development, financing, marketing, accounting, or proposal preparation. (5) SBA may initiate...

  13. Apparatus for the production of boron nitride nanotubes

    Science.gov (United States)

    Smith, Michael W; Jordan, Kevin

    2014-06-17

    An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.

  14. Blow-Out Velocities of Solutions of Hydrocarbons and Boron Hydride - Hydrocarbon Reaction Products in a 1 7/8-Inch-Diameter Combustor

    Science.gov (United States)

    Morris, James F.; Lord, Albert M.

    1957-01-01

    Blow-out velocities were determined for JP-4 solutions containing: (1) 10 % ethylene - decaborane reaction product, (2) 10% and 20% acetylene - diborane reaction product, and (3) 5.5%, 15.7%, and 30.7% methylacetylene - diborane reaction product. These were compared with blow-out velocities for JP-4, propylene oxide, and neohexane and previously reported data for JP-4 solutions of pentaborane. For those reaction products investigated, the blow-out velocities at a fixed equivalence ratio were higher for those materials containing higher boron concentrations; that is, blow-out velocity increased in the following order: (1) methylacetylene - diborane, (2) acetylene - diborane, and (3) ethylene - decaborane reaction products.

  15. Boron nanoparticles inhibit turnour growth by boron neutron capture therapy in the murine B16-OVA model

    DEFF Research Database (Denmark)

    Petersen, Mikkel Steen; Petersen, Charlotte Christie; Agger, Ralf

    2008-01-01

    Background: Boron neutron capture therapy usually relies on soluble, rather than particulate, boron compounds. This study evaluated the use of a novel boron nanoparticle for boron neutron capture therapy. Materials and Methods: Two hundred and fifty thousand B16-OVA tumour cells, pre......-incubated with boron nanoparticles for 12 hours, were injected subcutaneously into C57BL16J mice. The tumour sites were exposed to different doses of neutron radiation one, four, or eight days after tumour cell inoculation. Results: When the tumour site was irradiated with thermal neutrons one day after injection......, tumour growth was delayed and the treated mice survived longer than untreated controls (median survival time 20 days (N=8) compared with 10 days (N=7) for untreated mice). Conclusion: Boron nanoparticles significantly delay the growth of an aggressive B16-OVA tumour in vivo by boron neutron capture...

  16. Boron Isotope Fractionation in Bell Pepper

    OpenAIRE

    Geilert, Sonja; Vogl, Jochen; Rosner, Martin; Voerkelius, Susanne; Eichert, Thomas

    2015-01-01

    Various plant compartments of a single bell pepper plant were studied to verify the variability of boron isotope composition in plants and to identify possible intra-plant isotope fractionation. Boron mass fractions varied from 9.8 mg/kg in the fruits to 70.0 mg/kg in the leaves. Boron (B) isotope ratios reported as δ11B ranged from -11.0‰ to +16.0‰ (U ≤ 1.9‰, k=2) and showed a distinct trend to heavier δ11B values the higher the plant compartments were located in the plant. A fractionatio...

  17. 1,8-cineole prevents UVB-induced skin carcinogenesis by targeting the aryl hydrocarbon receptor

    Science.gov (United States)

    Park, Joon; Kim, Yong Ho; Lee, Nam Hyouck; Kim, Young Eon; Kim, Yoonsook; Song, Kyung-Mo; Jung, Sung Keun

    2017-01-01

    1,8-cineole is a natural monoterpene cyclic ether present in Eucalyptus, and has been reported to exhibit anti-inflammatory and antioxidant effects. However, the preventive effect of 1,8-cineole on skin carcinogenesis and the molecular mechanism of action responsible remains unknown. In the present study, we investigated the effect of 1,8-cineole on UVB-induced skin carcinogenesis. 1,8-cineole inhibited UVB-induced cyclooxygenase-2 (COX-2) protein and mRNA expression and prostaglandin E2 (PGE2) generation in HaCaT cells. 1,8-cineole also inhibited phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, and phosphorylation of its upstream kinases, c-Src and epidermal growth factor receptor (EGFR). Quantitative real-time RT-PCR (qRT-PCR) and drug affinity responsive target stability (DARTS) assay results showed that 1,8-cineole suppressed UVB-induced expression of a target gene of the aryl hydrocarbon receptor (AhR), cyp1a1, and directly binds to AhR. Knockdown of AhR suppressed COX-2 expression as well as phosphorylation of ERK1/2 in HaCaT cells. Furthermore, topical treatment of 1,8-cineole on mouse skin delayed tumor incidence and reduced tumor numbers, while inhibiting COX-2 expression in vivo. Taken together, these results suggest that 1,8-cineole is a potent chemopreventive agent that inhibits UVB-induced COX-2 expression by targeting AhR to suppress UVB-induced skin carcinogenesis. PMID:29285309

  18. Pharmacological treatment and BBB-targeted genetic therapy for MCT8-dependent hypomyelination in zebrafish

    Directory of Open Access Journals (Sweden)

    David Zada

    2016-11-01

    Full Text Available Hypomyelination is a key symptom of Allan-Herndon-Dudley syndrome (AHDS, a psychomotor retardation associated with mutations in the thyroid-hormone (TH transporter MCT8 (monocarboxylate transporter 8. AHDS is characterized by severe intellectual deficiency, neuromuscular impairment and brain hypothyroidism. In order to understand the mechanism for TH-dependent hypomyelination, we developed an mct8 mutant (mct8−/− zebrafish model. The quantification of genetic markers for oligodendrocyte progenitor cells (OPCs and mature oligodendrocytes revealed reduced differentiation of OPCs into oligodendrocytes in mct8−/− larvae and adults. Live imaging of single glial cells showed that the number of oligodendrocytes and the length of their extensions are reduced, and the number of peripheral Schwann cells is increased, in mct8−/− larvae compared with wild type. Pharmacological analysis showed that TH analogs and clemastine partially rescued the hypomyelination in the CNS of mct8−/− larvae. Intriguingly, triiodothyronine (T3 treatment rescued hypomyelination in mct8−/− embryos before the maturation of the blood–brain barrier (BBB, but did not affect hypomyelination in older larvae. Thus, we expressed Mct8-tagRFP in the endothelial cells of the vascular system and showed that even relatively weak mosaic expression completely rescued hypomyelination in mct8−/− larvae. These results suggest potential pharmacological treatments and BBB-targeted gene therapy that can enhance myelination in AHDS and possibly in other TH-dependent brain disorders.

  19. Spectromicroscopy in Boron Neutron Capture Therapy Research

    Science.gov (United States)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  20. Enhanced diffusion of boron by oxygen precipitation in heavily boron-doped silicon

    Science.gov (United States)

    Torigoe, Kazuhisa; Ono, Toshiaki

    2017-06-01

    The enhanced diffusion of boron has been investigated by analyzing out-diffusion profiles in the vicinity of the interface between a lightly boron-doped silicon epitaxial layer and a heavily boron-doped silicon substrate with a resistivity of 8.2 mΩ cm and an oxide precipitate (O.P.) density of 108-1010 cm-3. It is found that the boron diffusion during annealing at 850-1000 °C is enhanced with the increase of the oxide precipitate density. On the basis of a model for boron diffusion mediated by silicon self-interstitials, we reveal that the enhanced diffusion is attributed to self-interstitials supersaturated as a result of the emission from oxide precipitates and the absorption by punched-out dislocations. In addition, the temperature dependence of the fraction of the self-interstitial emission obtained analyzing the diffusion enhancement well explains the morphology changes of oxide precipitates reported in literature.

  1. Mouse Homologue of the Schizophrenia Susceptibility Gene ZNF804A as a Target of Hoxc8

    Directory of Open Access Journals (Sweden)

    Hyun Joo Chung

    2010-01-01

    Full Text Available Using a ChIP-cloning technique, we identified a Zinc finger protein 804a (Zfp804a as one of the putative Hoxc8 downstream target genes. We confirmed binding of Hoxc8 to an intronic region of Zfp804a by ChIP-PCR in F9 cells as well as in mouse embryos. Hoxc8 upregulated Zfp804a mRNA levels and augmented minimal promoter activity in vitro. In E11.5 mouse embryos, Zfp804a and Hoxc8 were coexpressed. Recent genome-wide studies identified Zfp804a (or ZNF804A in humans as a plausible marker for schizophrenia, leading us to hypothesize that this embryogenic regulatory control might also exert influence in development of complex traits such as psychosis.

  2. Targeting of GLUT6 (formerly GLUT9) and GLUT8 in rat adipose cells.

    OpenAIRE

    Lisinski, I; Schürmann, A; Joost, H G; Cushman, S W; Al-Hasani, H

    2001-01-01

    The subcellular targeting of the two recently cloned novel mammalian glucose transporters, GLUT6 [previously referred to as GLUT9 [Doege, Bocianski, Joost and Schürmann (2000) Biochem. J. 350, 771-776] and GLUT8, was analysed by expression of haemagglutinin (HA)-epitope-tagged GLUTs in transiently transfected primary rat adipose cells. Similar to HA-GLUT4, both transporters, HA-GLUT6 and HA-GLUT8, were retained in intracellular compartments in non-stimulated cells. In contrast, mutation of th...

  3. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    Science.gov (United States)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  4. Boron removal from aqueous solution by direct contact membrane distillation.

    Science.gov (United States)

    Hou, Deyin; Wang, Jun; Sun, Xiangcheng; Luan, Zhaokun; Zhao, Changwei; Ren, Xiaojing

    2010-05-15

    The removal of boron from aqueous solution by direct contact membrane distillation (DCMD) was studied with self-prepared polyvinylidene fluoride (PVDF) hollow fiber membranes in the present work. The effect of pH, boron concentration, temperature and salt concentration of the feed solution on the boron rejection was investigated. The experimental results indicated that boron rejection was less dependent on the feed pH and salt concentration. DCMD process had high boron removal efficiency (>99.8%) and the permeate boron was below the maximum permissible level even at feed concentration as high as 750 mg/L. Although the permeate flux was enhanced exponentially with the feed temperature increasing, the influence of feed temperature on the boron rejection could be neglected. Finally, the natural groundwater sample containing 12.7 mg/L of boron was treated by DCMD process. The permeate boron kept below 20 microg/L whether the feed was acidified or not, but pre-acidification was helpful to maintain the permeate flux stability. All the experimental results indicated that DCMD could be efficiently used for boron removal from aqueous solution. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  5. New approaches to novel boronated porphyrins for neutron capture therapy

    International Nuclear Information System (INIS)

    Kahl, S.B.

    1986-01-01

    The use of boon compounds in the treatment of human cancer is based on the unique ability of nonradioactive 10 B nuclei to absorb thermal neutrons. The prompt nuclear reactions, which occur in neutron absorption, deliver a dose of nearly 2.8 MeV only in the vicinity of boron-containing cells, since the nuclear garments produced (alpha particles and recoil lithium atoms) travel only 10 to 15 μm. The practical, clinical use of this technique to date has been limited by the authors inability to target boron-containing compounds specifically to tumor cells in amounts sufficient for therapy and in a chemical form that has an acceptable level of toxicity. Porphyrins are one important and large class of compounds that are known to accumulate in practically all tumor systems yet examined. Such site-specific accumulation is not known to be based on any currently identifiable selective transport mechanism and yet is observed for both natural and synthetic porphyrins. Tetraphenylporphine sulfonate (TPPS) has been shown by Fairchild et al. to be an ideal model compound for assessing porphyrin uptake, and suitably boronated tetraphenyl porphine might be expected to behave similarly. This report describes the synthesis, properties, and preliminary biodistribution of such compounds

  6. Nothing Boring About Boron

    Science.gov (United States)

    Pizzorno, Lara

    2015-01-01

    The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and as recent research suggests, possibly for the evolution of life on Earth. As the current article shows, boron has been proven to be an important trace mineral because it (1) is essential for the growth and maintenance of bone; (2) greatly improves wound healing; (3) beneficially impacts the body’s use of estrogen, testosterone, and vitamin D; (4) boosts magnesium absorption; (5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α); (6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase; (7) protects against pesticide-induced oxidative stress and heavy-metal toxicity; (8) improves the brains electrical activity, cognitive performance, and short-term memory for elders; (9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD+); (10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin’s lymphoma; and (11) may help ameliorate the adverse effects of traditional chemotherapeutic agents. In none of the numerous studies conducted to date, however, do boron’s beneficial effects appear at intakes > 3 mg/d. No estimated average requirements (EARs) or dietary reference intakes (DRIs) have been set for boron—only an upper intake level (UL) of 20 mg/d for individuals aged ≥ 18 y. The absence of studies showing harm in conjunction with the substantial number of articles showing benefits support the consideration of boron supplementation of 3 mg/d for any individual who is consuming a diet lacking in fruits and vegetables or who is at risk for or has osteopenia; osteoporosis

  7. Boron nitride - Composition, optical properties, and mechanical behavior

    Science.gov (United States)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at. percent. The carbon and oxygen impurities were in the 5 to 8 at. percent range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  8. Boron nitride: Composition, optical properties and mechanical behavior

    Science.gov (United States)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  9. Integrated Rig for the Production of Boron Nitride Nanotubes via the Pressurized Vapor-Condenser Method

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor)

    2014-01-01

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  10. Synthesis and characterization of boron fenbufen and its F-18 labeled homolog for boron neutron capture therapy of COX-2 overexpressed cholangiocarcinoma.

    Science.gov (United States)

    Yeh, Chun-Nan; Chang, Chi-Wei; Chung, Yi-Hsiu; Tien, Shi-Wei; Chen, Yong-Ren; Chen, Tsung-Wen; Huang, Ying-Cheng; Wang, Hsin-Ell; Chou, You-Cheng; Chen, Ming-Huang; Chiang, Kun-Chun; Huang, Wen-Sheng; Yu, Chung-Shan

    2017-09-30

    Boron neutron capture therapy (BNCT) is a binary therapy that employs neutron irradiation on the boron agents to release high-energy helium and alpha particles to kill cancer cells. An optimal response to BNCT depends critically on the time point of maximal 10 B accumulation and highest tumor to normal ratio (T/N) for performing the neutron irradiation. The aggressive cholangiocarcinoma (CCA) representing a liver cancer that overexpresses COX-2 enzyme is aimed to be targeted by COX-2 selective boron carrier, fenbufen boronopinacol (FBPin). Two main works were performed including: 1) chemical synthesis of FBPin as the boron carrier and 2) radiochemical labeling with F-18 to provide the radiofluoro congener, m-[ 18 F]fluorofenbufen ester boronopinacol (m-[ 18 F]FFBPin), to assess the binding affinity, cellular accumulation level and distribution profile in CCA rats. FBPin was prepared from bromofenbufen via 3 steps with 82% yield. The binding assay employed [ 18 F]FFBPin to compete FBPin for binding to COX-1 (IC 50 =0.91±0.68μM) and COX-2 (IC 50 =0.33±0.24μM). [ 18 F]FFBPin-derived 60-min dynamic PET scans predict the 10 B-accumulation of 0.8-1.2ppm in liver and 1.2-1.8ppm in tumor and tumor to normal ratio=1.38±0.12. BNCT was performed 40-55min post intravenous administration of FBPin (20-30mg) in the CCA rats. CCA rats treated with BNCT display more tumor reduction than that by NCT with respect of 2-[ 18 F]fluoro-2-deoxy glucose uptake in the tumor region of interest, 20.83±3.00% (n=12) vs. 12.83±3.79% (n=10), P=0.05. The visualizing agent [ 18 F]FFBPin resembles FBPin to generate the time-dependent boron concentration profile. Optimal neutron irradiation period is thus determinable for BNCT. A boron-substituted agent based on COX-2-binding features has been prepared. The moderate COX-2/COX-1 selectivity index of 2.78 allows a fair tumor selectivity index of 1.38 with a mild cardiovascular effect. The therapeutic effect from FBPin with BNCT warrants a proper

  11. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. © 2013 Elsevier Ltd. All rights reserved.

  12. Multiple Targeting Modules on Peroxisomal Proteins Are Not Redundant: Discrete Functions of Targeting Signals within Pmp47 and Pex8p

    OpenAIRE

    Wang, Xiaodong; McMahon, Moira A.; Shelton, Shary N.; Nampaisansuk, Mongkol; Ballard, Johnathan L.; Goodman, Joel M.

    2004-01-01

    Several peroxisomal proteins have two nonoverlapping targeting signals. These signals have been termed “redundant” because targeting can still occur with only one signal. We now report that separate targeting motifs within both Pmp47 and Pex8 provide complementary function. Pmp47 is an ATP translocator that contains six transmembrane domains (TMDs). We had previously shown that the TMD2 region (termed TMD2R, consisting of TMD2 and a short adjacent segment of cytosolic loop) was required for t...

  13. Targeting Hydrothermal Alterations Utilizing LANDSAT-8 Andaster Data in Shahr-E Iran

    Science.gov (United States)

    Safari, M.; Pour, A. B.; Maghsoudi, A.; Hashim, M.

    2017-10-01

    Shahr-e-Babak tract of the Kerman metalogenic belt is one of the most potential segments of Urumieh-Dokhtar (Sahand-Bazman) magmatic arc. This area encompasses several porphyry copper deposits in exploration, development and exploitation hierarchy. The aim of this study is to map hydrothermal alterations caused by early Cenozoic magmatic intrusions in Shahr-e-Babak area. To this purpose, mineral mapping methods including band combinations, ratios and multiplications as well as PCA and MNF data space transforms in SWIR and VNIR for both ASTER and OLI sensors. Alteration zones according to spectral signatures of each type of alteration mineral assemblages such as argillic, phyllic and propylitic are successfully mapped. For enhancing the target areas false color composites and HSI-RGB color space transform are performed on developed band combinations. Previous studies have proven the robust application of ASTER in geology and mineral exploration; nonetheless, the results of this investigation prove applicability of OLI sensor from landsat-8 for alteration mapping. According to the results, evidently OLI sensor data can accurately map alteration zones. Additionally, the 12-bit quantization of OLI data is its privilege over 8-bit data of ASTER in VNIR and SWIR, thus OLI high quality results, which makes it easy to distinguish targets with enhanced color contrast between the altered and unaltered rocks.

  14. TARGETING HYDROTHERMAL ALTERATIONS UTILIZING LANDSAT-8 ANDASTER DATA IN SHAHR-E-BABAK, IRAN

    Directory of Open Access Journals (Sweden)

    M. Safari

    2017-10-01

    Full Text Available Shahr-e-Babak tract of the Kerman metalogenic belt is one of the most potential segments of Urumieh–Dokhtar (Sahand-Bazman magmatic arc. This area encompasses several porphyry copper deposits in exploration, development and exploitation hierarchy. The aim of this study is to map hydrothermal alterations caused by early Cenozoic magmatic intrusions in Shahr-e-Babak area. To this purpose, mineral mapping methods including band combinations, ratios and multiplications as well as PCA and MNF data space transforms in SWIR and VNIR for both ASTER and OLI sensors. Alteration zones according to spectral signatures of each type of alteration mineral assemblages such as argillic, phyllic and propylitic are successfully mapped. For enhancing the target areas false color composites and HSI-RGB color space transform are performed on developed band combinations. Previous studies have proven the robust application of ASTER in geology and mineral exploration; nonetheless, the results of this investigation prove applicability of OLI sensor from landsat-8 for alteration mapping. According to the results, evidently OLI sensor data can accurately map alteration zones. Additionally, the 12-bit quantization of OLI data is its privilege over 8-bit data of ASTER in VNIR and SWIR, thus OLI high quality results, which makes it easy to distinguish targets with enhanced color contrast between the altered and unaltered rocks.

  15. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    Kitaoka, Yoshinori

    1992-09-01

    This volume contains the proceedings of the 4th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 24 in 1992. First, clinical experiences of BNCT in the Kyoto University Research Reactor in 1992 were briefly reported. Then, the killing effects of boron cluster-containing nucleic acid precursors on tumor cells were shown (Chap. 2). The various trials of the optical resolution of B-p-boronophenylalanine for neutron capture therapy were made (Chap. 3). The borate-dextran gel complexes were investigated by the nuclear magnetic resonance spectroscopy. The stability constants of borate complexes were listed, and are useful in the solution chemistry of boron compounds (Chap. 4). The interactions between boron compounds and biological materials were studied by the paper electrophoresis which had been developed by us (Chap. 5). Molecular design of boron-10 carriers and their organic synthesis were reported (Chap. 6). Carborane-containing aziridine boron carriers which were directed to the DNA alkylation were synthesized and their cancer cell killing efficacies were tested (Chap. 7). The solution chemistry of deuterium oxide which is a good neutron moderator was reported, relating to the BNCT (Chap. 8). (author)

  16. Screening of the target genes trans-activated by HLA-HA8 in hepatocytes

    Directory of Open Access Journals (Sweden)

    Qi WANG

    2011-06-01

    Full Text Available Objective To clone and identify the target genes trans-activated by human minor histocompatibility antigen HLA-HA8 in hepatocytes with suppression subtractive hybridization(SSH and bioinfomatics technique.Methods mRNA was isolated from HepG2 cells transfected by pcDNA3.1(--HLA-HA8 and pcDNA3.1(- empty vector,and then used to synthesize the double-stranded cDNA(marked as Tester and Driver,respectively by reverse transcription.After being digested with restriction enzyme Rsa I,the tester cDNA was divided into two parts and ligated to the specific adaptor 1 and adaptor 2,respectively,and then hybridized with driver cDNA twice and underwent PCR twice.The production was subcloned into pEGM-Teasy plasmid vectors to set up the subtractive library.The library was then amplified by transfection into E.coli strain DH5α.The cDNA was sequenced and analyzed in GenBank with Blast search after PCR amplification.Results The subtractive library of genes trans-activated by HLA-HA8 was constructed successfully.The amplified library contained 101 positive clones.Colony PCR showed that all these clones contained 200-1000bp inserts.Twenty eight clones were selected randomly to analyze the sequences.The result of homologous analysis showed that altogether 16 coding sequences were gotten,of which 4 sequences were with unknown function.Conclusions The obtained sequences trans-activated by HLA-HA8 may code different proteins and play important roles in cell growth and metabolism,energy synthesis and metabolism,material transport and signal transduction.This finding will bring some new clues for the studies not only on the biological functions of HLA-HA8,but also on the HBV infection mechanism.

  17. Boron ion beam generation using a self-sputtering planar magnetron.

    Science.gov (United States)

    Vizir, Aleksey; Nikolaev, Aleksey; Oks, Efim; Savkin, Konstantin; Shandrikov, Maxim; Yushkov, Georgy

    2014-02-01

    A boron ion source based on planar magnetron discharge with solid boron target has been developed. To obtain a sufficient conductivity of the boron target for high current discharge ignition, the target was heated to the temperature more than 350 °C. To reach this temperature, thermally isolated target was heated by low-current high-voltage magnetron DC discharge. Applying a high-current pulse (100 μs range) provides a self-sputtering mode of the discharge, which generates the boron plasma. Boron ion beam with current more than 150 mA was extracted from the plasma by applying an accelerating voltage of 20 kV. The boron ion fraction in the beam reached 95%, averaged over the pulse length, and the rest ions were working gas (Kr(+)). It was shown that "keeping alive" DC discharge completely eliminates a time delay of pulsed discharge current onset, and reduces the pulsed discharge minimal working pressure.

  18. Pharmacoinformatic and molecular docking studies reveal potential novel antidepressants against neurodegenerative disorders by targeting HSPB8

    Directory of Open Access Journals (Sweden)

    Sehgal SA

    2016-05-01

    Full Text Available Sheikh Arslan Sehgal,1–4 Shazia Mannan,1 Sannia Ali1 1Department of Bioscience, COMSATS Institute of Information Technology, Sahiwal, Pakistan; 2State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, 3University of Chinese Academy of Sciences, Beijing, People’s Republic of China; 4Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan Abstract: Charcot–Marie–Tooth (CMT disease is an inherited peripheral neuromuscular disorder characterized by length-dependent and progressive degeneration of peripheral nerves, leading to muscular weakness. Research has shown that mutated HSPB8 may be responsible for depression, neurodegenerative disorders, and improper functioning of peripheral nerves, resulting in neuromuscular disorders like CMT. In the current work, a hybrid approach of virtual screening and molecular docking studies was followed by homology modeling and pharmacophore identification. Detailed screening analyses were carried out by 2-D similarity search against prescribed antidepressant drugs with physicochemical properties. LigandScout was employed to ascertain novel molecules and pharmacophore properties. In this study, we report three novel compounds that showed maximum binding affinity with HSPB8. Docking analysis elucidated that Met37, Ser57, Ser58, Trp60, Thr63, Thr114, Lys115, Asp116, Gly117, Val152, Val154, Leu186, Asp189, Ser190, Gln191, and Glu192 are critical residues for ligand–receptor interactions. Our analyses suggested paroxetine as a potent compound for targeting HSPB8. Selected compounds have more effective energy scores than the selected drug analogs. Additionally, site-directed mutagenesis could be significant for further analysis of the binding pocket. The novel findings based on an in silico approach may be momentous for potent drug design against depression and CMT. Keywords: bioinformatics, computer

  19. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential

    International Nuclear Information System (INIS)

    Nigg, David W.

    2012-01-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K(nido-7-CH3(CH2)15-7,8-C2B9H11) in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K(nido-7-CH3(CH2)15-7,8-C2B9H11) in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 (ae-B20H17NH3), administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 ± 16.1 ppm at 48 h and to 43.9 ± 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  20. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg

    2012-05-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 [ae-B20H17NH3], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 {+-} 16.1 ppm at 48 h and to 43.9 {+-} 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  1. Pulverization of boron element and proportions of boron carbide in boron

    International Nuclear Information System (INIS)

    Lang, F.M.; Finck, C.

    1956-01-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 μ. Grain sizes smaller than 1μ are required for applying thin layers of such boron. (author) [fr

  2. Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Aurélie Durgeau

    2018-01-01

    Full Text Available Recent advances in cancer treatment have emerged from new immunotherapies targeting T-cell inhibitory receptors, including cytotoxic T-lymphocyte associated antigen (CTLA-4 and programmed cell death (PD-1. In this context, anti-CTLA-4 and anti-PD-1 monoclonal antibodies have demonstrated survival benefits in numerous cancers, including melanoma and non-small-cell lung carcinoma. PD-1-expressing CD8+ T lymphocytes appear to play a major role in the response to these immune checkpoint inhibitors (ICI. Cytotoxic T lymphocytes (CTL eliminate malignant cells through recognition by the T-cell receptor (TCR of specific antigenic peptides presented on the surface of cancer cells by major histocompatibility complex class I/beta-2-microglobulin complexes, and through killing of target cells, mainly by releasing the content of secretory lysosomes containing perforin and granzyme B. T-cell adhesion molecules and, in particular, lymphocyte-function-associated antigen-1 and CD103 integrins, and their cognate ligands, respectively, intercellular adhesion molecule 1 and E-cadherin, on target cells, are involved in strengthening the interaction between CTL and tumor cells. Tumor-specific CTL have been isolated from tumor-infiltrating lymphocytes and peripheral blood lymphocytes (PBL of patients with varied cancers. TCRβ-chain gene usage indicated that CTL identified in vitro selectively expanded in vivo at the tumor site compared to autologous PBL. Moreover, functional studies indicated that these CTL mediate human leukocyte antigen class I-restricted cytotoxic activity toward autologous tumor cells. Several of them recognize truly tumor-specific antigens encoded by mutated genes, also known as neoantigens, which likely play a key role in antitumor CD8 T-cell immunity. Accordingly, it has been shown that the presence of T lymphocytes directed toward tumor neoantigens is associated with patient response to immunotherapies, including ICI, adoptive cell transfer

  3. Complexion of Boric Acid with 2-Deoxy-D-glucose (DG) as a novel boron carrier for BNCT

    OpenAIRE

    Akan, Zafer; Demiroglu, Hasan; Avcibasi, Ugur; Oto, Gokhan; Ozdemir, Hulya; Deniz, Sabahattin; Basak, Ali Sadi

    2014-01-01

    Objective: Boron neutron capture therapy (BNCT) is an intensive research area for cancer researchers. Especially the side effects and inabilities of conventional therapies in some cases, directs researchers to find out a new cancer therapy methods such as BNCT. One of three important problem of BNCT is targeting of boron to tumor tissue. Borono Phenyl Alanine (BPA) and Borono Sodium Borocaptate (BSH) are already using in clinical studies as boron carriers. New boron carriers are searching fo...

  4. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    Science.gov (United States)

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A new adsorbent for boron removal from aqueous solutions.

    Science.gov (United States)

    Kluczka, Joanna; Korolewicz, Teofil; Zołotajkin, Maria; Simka, Wojciech; Raczek, Malwina

    2013-01-01

    A new adsorbent based on natural clinoptilolite and amorphous zirconium dioxide (ZrO2) was prepared for the uptake of boron from fresh water. The sorption behaviour of this adsorbent for boron was investigated using a batch system and found to obey Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. The ZrO2 loading level, pH, temperature, contact time, initial boron concentration and adsorbent dose, on the removal of boron were studied. It was found that the removal of boron increased while the adsorbent dose increased and the temperature decreased at an optimum pH (pH = 8) and a contact time of 30 min. At optimum conditions, the maximum boron percentage removal was 75%. According to the D-R model, the maximum capacity was estimated to be > 3 mg B/g of the adsorbent. The adsorption energy value (calculated as 9.13 kJ/mol) indicated that the adsorption of boron on clinoptilolite modified with ZrO2 was physical in nature. The parameters of the adsorption models and the pH investigations pointed to the possibility of a chemisorption process. The thermodynamic parameters (standard entropy deltaS degrees, enthalpy deltaH degrees , and free energy deltaG degrees changes) of boron adsorption were also calculated. The negative value of deltaS degrees indicated a decreased randomness at the solid-solution interface during the boron adsorption. Negative values of deltaH degrees showed the exothermic nature of the process. The negative values of deltaG degrees implied that the adsorption of boron on clinoptilolite modified with amorphous ZrO2 at 25 degrees C was spontaneous. It was considered that boron dissolved in water had been adsorbed both physically and chemically on clinoptilolite modified with 30% ZrO2.

  6. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    International Nuclear Information System (INIS)

    Hwang, Dooseong; Choi, Hei Min; Lee, Kune Woo; Moon Jeikwon

    2014-01-01

    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration

  7. Isotopic Enrichment of Boron in the Sputtering of Boron Nitride with Xenon Ions

    Science.gov (United States)

    Ray, P. K.; Shutthanandan, V.

    1998-01-01

    An experimental study is described to measure the isotopic enrichment of boron. Xenon ions from 100 eV to 1.5 keV were used to sputter a boron nitride target. An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 microA/sq cm. Xenon ions impinged on the target surface at 50 deg angle to the surface normal. Since boron nitride is an insulator, a flood electron gun was used in our experiments to neutralize the positive charge buildup on the target surface. The sputtered secondary ions of boron were detected by a quadrupole mass spectrometer. The spectrometer entrance aperture was located perpendicular to the ion beam direction and 10 mm away from the target surface. The secondary ion flux was observed to be enriched in the heavy isotopes at lower ion energies. The proportion of heavy isotopes in the sputtered secondary ion flux was found to decrease with increasing primary ion energy from 100 to 350 eV. Beyond 350 eV, light isotopes were sputtered preferentially. The light isotope enrichment factor was observed to reach an asymptotic value of 1.27 at 1.5 keV. This trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy range.

  8. Fracture toughness of borides formed on boronized ductile iron

    International Nuclear Information System (INIS)

    Sen, Ugur; Sen, Saduman; Koksal, Sakip; Yilmaz, Fevzi

    2005-01-01

    In this study, fracture toughness properties of boronized ductile iron were investigated. Boronizing was realized in a salt bath consisting of borax, boric acid and ferro-silicon. Boronizing heat treatment was carried out between 850 and 950 deg. C under the atmospheric pressure for 2-8 h. Borides e.g. FeB, Fe 2 B formed on ductile iron was verified by X-ray diffraction (XRD) analysis, SEM and optical microscope. Experimental results revealed that longer boronizing time resulted in thicker boride layers. Optical microscope cross-sectional observation of borided layers showed dentricular morphology. Both microhardness and fracture toughness of borided surfaces were measured via Vickers indenter. The harnesses of borides formed on the ductile iron were in the range of 1160-2140 HV 0.1 and fracture toughness were in the range of 2.19-4.47 MPa m 1/2 depending on boronizing time and temperature

  9. Killing of targets by effector CD8 T cells in the mouse spleen follows the law of mass action

    Energy Technology Data Exchange (ETDEWEB)

    Ganusov, Vitaly V [Los Alamos National Laboratory

    2009-01-01

    In contrast with antibody-based vaccines, it has been difficult to measure the efficacy of T cell-based vaccines and to correlate the efficacy of CD8 T cell responses with protection again viral infections. In part, this difficulty is due to poor understanding of the in vivo efficacy of CD8 T cells produced by vaccination. Using a: recently developed experimental method of in vivo cytotoxicity we have investigated quantitative aspects of killing of peptide-pulsed targets by effector and memory CD8 T cells, specific to three epitopes of lymphocytic choriomeningitis virus (LCMV), in the mouse spleen. By analyzing data on killing of targets with varying number of epitope-specific effector and memory CD8 T cells, we find that killing of targets by effectors follows the law of mass-action, that is the death rate of peptide-pulsed targets is proportional to the frequency of CTLs in the spleen. In contrast, killing of targets by memory CD8 T cells does not follow the mass action law because the death rate of targets saturates at high frequencies of memory CD8 T cells. For both effector and memory cells, we also find little support for the killing term that includes the decrease of the death rate of targets with target cell density. Interestingly, our analysis suggests that at low CD8 T cell frequencies, memory CD8 T cells on the per capita basis are more efficient at killing peptide-pulsed targets than effectors, but at high frequencies, effectors are more efficient killers than memory T cells. Comparison of the estimated killing efficacy of effector T cells with the value that is predicted from theoretical physics and based on motility of T cells in lymphoid tissues, suggests that limiting step in the killing of peptide-pulsed targets is delivering the lethal hit and not finding the target. Our results thus form a basis for quantitative understanding of the process of killing of virus-infected cells by T cell responses in tissues and can be used to correlate the

  10. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  11. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy.

    Science.gov (United States)

    Ciofani, Gianni; Raffa, Vittoria; Menciassi, Arianna; Cuschieri, Alfred

    2008-11-25

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of (10)B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  12. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

    Directory of Open Access Journals (Sweden)

    Ciofani Gianni

    2008-01-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  13. Effect of Gd2O3 doping on structure and boron volatility of borosilicate glass sealants in solid oxide fuel cells-A study on the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode

    Science.gov (United States)

    Zhang, Qi; Tan, Shengwei; Ren, Mengyuan; Yang, Hsiwen; Tang, Dian; Chen, Kongfa; Zhang, Teng; Jiang, San Ping

    2018-04-01

    Boron volatility is one of the most important properties of borosilicate-based glass sealants in solid oxide fuel cells (SOFCs), as boron contaminants react with lanthanum-containing cathodes, forming LaBO3 and degrading the activity of SOFCs. Here, we report that the reaction between the volatile boron and a La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode during polarization can be significantly reduced by doping aluminoborosilicate glass with Gd2O3. Specifically, the Gd cations in glass with 2 mol.% Gd2O3 dissolve preferentially in the borate-rich environment to form more Gd-metaborate structures and promote the formation of calcium metaborate (CaB2O4); they also condense the B-O network after heat treatment, which suppresses poisoning by boron contaminants on the LSCF cathode. The results provide insights into design and development of a reliable sealing glass for SOFC applications.

  14. Killing of targets by CD8 T cells in the mouse spleen follows the law of mass action.

    Directory of Open Access Journals (Sweden)

    Vitaly V Ganusov

    2011-01-01

    Full Text Available It has been difficult to correlate the quality of CD8 T cell responses with protection against viral infections. To investigate the relationship between efficacy and magnitude of T cell responses, we quantify the rate at which individual CD8 effector and memory T cells kill target cells in the mouse spleen. Using mathematical modeling, we analyze recent data on the loss of target cells pulsed with three different peptides from the mouse lymphocytic choriomeningitis virus (LCMV in mouse spleens with varying numbers of epitope-specific CD8 T cells. We find that the killing of targets follows the law of mass-action, i.e., the death rate of individual target cells remains proportional to the frequency (or the total number of specific CD8 T cells in the spleen despite the fact that effector cell densities and effector to target ratios vary about a 1000-fold. The killing rate of LCMV-specific CD8 T cells is largely independent of T cell specificity and differentiation stage. Our results thus allow one to calculate the critical T cell concentration at which growth of a virus with a given replication rate can be prevented from the start of infection by memory CD8 T cell response.

  15. Killing of targets by CD8 T cells in the mouse spleen follows the law of mass action.

    Science.gov (United States)

    Ganusov, Vitaly V; Barber, Daniel L; De Boer, Rob J

    2011-01-24

    It has been difficult to correlate the quality of CD8 T cell responses with protection against viral infections. To investigate the relationship between efficacy and magnitude of T cell responses, we quantify the rate at which individual CD8 effector and memory T cells kill target cells in the mouse spleen. Using mathematical modeling, we analyze recent data on the loss of target cells pulsed with three different peptides from the mouse lymphocytic choriomeningitis virus (LCMV) in mouse spleens with varying numbers of epitope-specific CD8 T cells. We find that the killing of targets follows the law of mass-action, i.e., the death rate of individual target cells remains proportional to the frequency (or the total number) of specific CD8 T cells in the spleen despite the fact that effector cell densities and effector to target ratios vary about a 1000-fold. The killing rate of LCMV-specific CD8 T cells is largely independent of T cell specificity and differentiation stage. Our results thus allow one to calculate the critical T cell concentration at which growth of a virus with a given replication rate can be prevented from the start of infection by memory CD8 T cell response.

  16. Analytical techniques for boron and boron 10 analysis in a solid experimental tumor EO.771

    International Nuclear Information System (INIS)

    Porschen, W.; Marx, J.; Feinendegen, L.E.

    1987-01-01

    If a tumor can be preferentially loaded with a suitable boron-10 compound and irradiated with thermal neutrons, malignant cells can be selectively destroyed via the α-particle + Li 7-nucleus from the reaction 10 B(n,α) 7 Li. Neutron capture therapy with two boron-10 amino acid analogs of low toxicity has been tested in recent years: (a) trimethylamine carboxyborane, (A3) and (b) amine-carboxyborane, (A7). Now the boron-10 glycineamide analog (A8), amineboryl carboxamide has been synthsized; it contains 13.81% boron (90% Boron 10+10% Boron 11) and shows a very low toxicity in mice. The effects of this compund were tested on the syngeneic solid adenocarcinoma EO 771 on the right hind leg of male C57 BL/6J mice under standard conditions, by measuring tumor volume growth delay and cell cycle changes using flow cytometry. Boron distribution between tumor and muscle was analyzed by emission spectroscopy with inductively coupled plasma (ICP) following injection of a suspension of peanut oil emulsion. In addition, boron-10 concentration in the tumor were analyzed with prompt γ-activation analysis and neutron capture radiography (Kodak-Pathe LR115) at the MRR reactor in Brookhaven after i.p. injection of 0.4 mg/g A8. Application of A8 alone (0.4 mg/g i.p.) or thermal neutron irradiation of the tumor EO. 771 produced a tumor growth delay of 1-2 days for tumor volume doubling. Application of the boron 10 glycine-amide analog A8 i.p. plus 5x10 12 n/cm 2 resulted in a growth delay of 3-6 days. In contrast intratumoral application of A8 plus 4x10 12 n/cm 2 neutrons gave a growth delay of 7-14 days; the fraction of (G2+M) cells rose from 35% (neutrons alone) to 52%, as evaluated from flow cytometry. (orig.)

  17. Boronated liposome development and evaluation

    International Nuclear Information System (INIS)

    Hawthorne, M.F.

    1995-01-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues

  18. Target Detection Method for Water Mapping Using Landsat 8 OLI/TIRS Imagery

    Directory of Open Access Journals (Sweden)

    Luyan Ji

    2015-02-01

    Full Text Available Extracting surface water distribution with satellite imagery has been an important subject in remote sensing. Spectral indices of water only use information from a limited number of bands, thus they may have poor performance from pixels contaminated by ice/snow, clouds, etc. The detection algorithms using information from all spectral bands, such as constrained energy minimization (CEM, could avoid this problem to some extent. However, these are mostly designed for hyperspectral imagery, and may fail when applied to multispectral data. It has been proved that adding linearly irrelevant data to original data could improve the performance of CEM. In this study, two kinds of linearly irrelevant data are added for water extraction: the spectral indices and the spectral similarity metric data. CEM is designed for targets with low-probability distribution in an image, but water bodies do not always satisfy this condition. We thereby impose a sensible coefficient for each pixel to form the weighted autocorrelation matrix. In this study, the weight is based on the orthogonal subspace projection, so this new method is named Orthogonal subspace projection Weighted CEM (OWCEM. The newly launched Landsat 8 images over two lakes, the Hala Lake in China with ice/snow distributed in the north, and the Huron Lake in North America, a lake with a very large surface area, are selected to test the accuracy and robustness of our algorithm. The Kappa coefficient and the receiver operating characteristic (ROC curve are calculated as an accuracy evaluation standard. For both lakes, our method can greatly suppress the background (including ice/snow and clouds and extract the complete water surface with a high accuracy (Kappa coefficient > 0.96.

  19. Measurement of the $^{7}$Be$(p,\\gamma)^{8}$B Cross-Section with an Implanted Target

    CERN Multimedia

    2002-01-01

    % IS366\\\\ \\\\ The $^7$Be(p,$\\gamma)^8$B capture reaction is of major importance to the physics of the sun and the issues of the ``solar neutrino puzzle'' and neutrino masses. We report here on a new determination of the absolute cross section of this reaction, using a novel method which overcomes some of the major experimental uncertainties of previous measurements. We utilize an implanted $^7$Be target and a uniformly scanned particle beam larger than the target spot, eliminating issues of target homogeneity and backscattering loss of $^8$B reaction products. The target was produced using a beam of 1.8 10$^{10}$/s $^7$Be nuclei extracted at ISOLDE(CERN) from a graphite target bombarded by 1 GeV protons in a two-step resonant laser ionization source. The $^7$Be nuclei were directly implanted into a copper substrate to obtain a target of 2 mm diameter with a total of 3.10$^{15}$ atoms. The measurement of the $^8$B production cross section was carried out at the Van de Graaff laboratory of the Weizmann Institute...

  20. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    mental phase contrast images and the diffraction pattern. Figure 3. (a) Bright field image of electrodeposited boron spec- imen showing a crystallite of size ∼10 × 5 nm; (b) phase contrast image of electrodeposited boron specimen showing a resolved la- ttice and (c) power spectrum of electrodeposited boron specimen.

  1. IL-8 as antibody therapeutic target in inflammatory diseases: Reduction of clinical activity in palmoplantar pustulosis

    DEFF Research Database (Denmark)

    Skov, L.; Beurskens, F.J.; Reitamo, S.

    2008-01-01

    IL-8 is a chemokine that has been implicated in a number of inflammatory diseases involving neutrophil activation. HuMab 10F8 is a novel fully human mAb against IL-8, which binds a discontinuous epitope on IL-8 overlapping the receptor binding site, and which effectively neutralizes IL-8-dependent...... human neutrophil activation and migration. We investigated whether interference in the cytokine network by HuMab 10F8 might benefit patients suffering from palmoplantar pustulosis, a chronic inflammatory skin disease. Treatment of patients with HuMab 10F8 was well tolerated and significantly reduced...... clinical disease activity at all five endpoints, which included a >= 50% reduction in the formation of fresh pustules. IL-8 neutralization was monitored at the site of inflammation by assessing exudates of palmoplantar pustulosis lesions. HuMab 10F8 sequestered IL-8 in situ, as observed by rapid dose...

  2. Enrichment of boron 10

    International Nuclear Information System (INIS)

    Coutinho, C.M.M.; Rodrigues Filho, J.S.R.; Umeda, K.; Echternacht, M.V.

    1990-01-01

    A isotopic separation pilot plant with five ion exchange columns interconnected in series were designed and built in the IEN. The columns are charged with a strong anionic resin in its alkaline form. The boric acid solution is introduced in the separation columns until it reaches a absorbing zone length which is sufficient to obtain the desired boron-10 isotopic concentration. The boric acid absorbing zone movement is provided by the injection of a diluted hydrochloric acid solution, which replace the boric acid throughout the columns. The absorbing zone equilibrium length is proportional to its total length. The enriched boron-10 and the depleted boron are located in the final boundary and in the initial position of the absorbing zones, respectively. (author)

  3. In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.

    1999-06-06

    Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We present results from an investigation of boron uptake in vivo by the synovium.

  4. Boron biodistribution in Beagles after intravenous infusion of 4-dihydroxyborylphenylalanine-fructose complex

    International Nuclear Information System (INIS)

    Kulvik, M.E.; Vaehaetalo, J.K.; Benczik, J.; Snellman, M.; Laakso, J.; Hermans, R.; Jaerviluoma, E.; Rasilainen, M.; Faerkkilae, M.; Kallio, M.E.

    2004-01-01

    Boron biodistribution after intravenous infusion of 4-dihydroxyborylphenylalanine-fructose (BPA-F) complex was investigated in six dogs. Blood samples were evaluated during and following doses of 205 and 250 mg/kgbw BPA in a 30 min infusion, and 500 mg/kgbw in a 1 h infusion. Samples from whole blood, urine, brain and other organs were analysed for boron content after varying times following the onset of infusion. The whole blood boron concentrations declined from 27 to 8.4 ppm over the period of 39-165 min after the onset of infusion and the levels increased from 1.9 to 12 ppm in the grey matter of the brain over the same period. The boron concentrations in whole blood decreased steadily, whereas the boron values in brain tissue rose steadily with time. It was concluded that whole blood boron concentrations do not seem to reflect accurately the boron concentration in brain tissue at respective time points

  5. Identification of novel Pax8 targets in FRTL-5 thyroid cells by gene silencing and expression microarray analysis.

    Directory of Open Access Journals (Sweden)

    Tina Di Palma

    Full Text Available The differentiation program of thyroid follicular cells (TFCs, by far the most abundant cell population of the thyroid gland, relies on the interplay between sequence-specific transcription factors and transcriptional coregulators with the basal transcriptional machinery of the cell. However, the molecular mechanisms leading to the fully differentiated thyrocyte are still the object of intense study. The transcription factor Pax8, a member of the Paired-box gene family, has been demonstrated to be a critical regulator required for proper development and differentiation of thyroid follicular cells. Despite being Pax8 well-characterized with respect to its role in regulating genes involved in thyroid differentiation, genomics approaches aiming at the identification of additional Pax8 targets are lacking and the biological pathways controlled by this transcription factor are largely unknown.To identify unique downstream targets of Pax8, we investigated the genome-wide effect of Pax8 silencing comparing the transcriptome of silenced versus normal differentiated FRTL-5 thyroid cells. In total, 2815 genes were found modulated 72 h after Pax8 RNAi, induced or repressed. Genes previously reported to be regulated by Pax8 in FRTL-5 cells were confirmed. In addition, novel targets genes involved in functional processes such as DNA replication, anion transport, kinase activity, apoptosis and cellular processes were newly identified. Transcriptome analysis highlighted that Pax8 is a key molecule for thyroid morphogenesis and differentiation.This is the first large-scale study aimed at the identification of new genes regulated by Pax8, a master regulator of thyroid development and differentiation. The biological pathways and target genes controlled by Pax8 will have considerable importance to understand thyroid disease progression as well as to set up novel therapeutic strategies.

  6. Identification of Novel Pax8 Targets in FRTL-5 Thyroid Cells by Gene Silencing and Expression Microarray Analysis

    Science.gov (United States)

    Di Palma, Tina; Conti, Anna; de Cristofaro, Tiziana; Scala, Serena; Nitsch, Lucio; Zannini, Mariastella

    2011-01-01

    Background The differentiation program of thyroid follicular cells (TFCs), by far the most abundant cell population of the thyroid gland, relies on the interplay between sequence-specific transcription factors and transcriptional coregulators with the basal transcriptional machinery of the cell. However, the molecular mechanisms leading to the fully differentiated thyrocyte are still the object of intense study. The transcription factor Pax8, a member of the Paired-box gene family, has been demonstrated to be a critical regulator required for proper development and differentiation of thyroid follicular cells. Despite being Pax8 well-characterized with respect to its role in regulating genes involved in thyroid differentiation, genomics approaches aiming at the identification of additional Pax8 targets are lacking and the biological pathways controlled by this transcription factor are largely unknown. Methodology/Principal Findings To identify unique downstream targets of Pax8, we investigated the genome-wide effect of Pax8 silencing comparing the transcriptome of silenced versus normal differentiated FRTL-5 thyroid cells. In total, 2815 genes were found modulated 72 h after Pax8 RNAi, induced or repressed. Genes previously reported to be regulated by Pax8 in FRTL-5 cells were confirmed. In addition, novel targets genes involved in functional processes such as DNA replication, anion transport, kinase activity, apoptosis and cellular processes were newly identified. Transcriptome analysis highlighted that Pax8 is a key molecule for thyroid morphogenesis and differentiation. Conclusions/Significance This is the first large-scale study aimed at the identification of new genes regulated by Pax8, a master regulator of thyroid development and differentiation. The biological pathways and target genes controlled by Pax8 will have considerable importance to understand thyroid disease progression as well as to set up novel therapeutic strategies. PMID:21966443

  7. CD4+CD25+ T regulatory cells from FIV+ cats induce a unique anergic profile in CD8+ lymphocyte targets

    Directory of Open Access Journals (Sweden)

    Tompkins Mary B

    2010-11-01

    Full Text Available Abstract Background Using the FIV model, we reported previously that CD4+CD25+ T regulatory (Treg cells from FIV+ cats are constitutively activated and suppress CD4+CD25- and CD8+ T cell immune responses. In an effort to further explore Treg-mediated suppression, we asked whether Treg cells induce anergy through the alteration of production of cyclins, cyclin-dependent kinases and their inhibitors. Results Lymphocytes were obtained from control or FIV+ cats and sorted by FACS into CD4+CD25+ and CD8+ populations. Following co-culture with CD4+CD25+ cells, CD8+ targets were examined by Western blot for changes in cyclins D3, E and A, retinoblastoma (Rb protein, as well as the cyclin dependent kinase inhibitor p21cip1. Following co-culture with CD4+CD25+cells, we observed up-regulation of p21cip1 and cyclin E, with down-regulation of cyclin D3, in CD8+ cells from FIV+ cats. As expected, CD8+ targets from control cats were quiescent with little up-regulation of p21cip1 and cyclin E. There was also a lack of Rb phosphorylation in CD8+ targets consistent with late G1 cell cycle arrest. Further, IL-2 mRNA was down regulated in CD8+ cells after co-culture with CD4+CD25+ Treg cells. Following CD4+CD25+ co-culture, CD8+ targets from FIV+ cats also had increased Foxp3 mRNA expression; however, these CD8+Foxp3+ cells did not exhibit suppressor function. Conclusions Collectively, these data suggest that CD4+CD25+ Treg cells from FIV+ cats induce CD8+ anergy by disruption of normal G1 to S cell cycle progression.

  8. Boron: Enabling Exciting Metal-Rich Structures and Magnetic Properties.

    Science.gov (United States)

    Scheifers, Jan P; Zhang, Yuemei; Fokwa, Boniface P T

    2017-09-19

    Boron's unique chemical properties and its reactions with metals have yielded the large class of metal borides with compositions ranging from the most boron-rich YB 66 (used as monochromator for synchrotron radiation) up to the most metal-rich Nd 2 Fe 14 B (the best permanent magnet to date). The excellent magnetic properties of the latter compound originate from its unique crystal structure to which the presence of boron is essential. In general, knowing the crystal structure of any given extended solid is the prerequisite to understanding its physical properties and eventually predicting new synthetic targets with desirable properties. The ability of boron to form strong chemical bonds with itself and with metallic elements has enabled us to construct new structures with exciting properties. In recent years, we have discovered new boride structures containing some unprecedented boron fragments (trigonal planar B 4 units, planar B 6 rings) and low-dimensional substructures of magnetically active elements (ladders, scaffolds, chains of triangles). The new boride structures have led to new superconducting materials (e.g., NbRuB) and to new itinerant magnetic materials (e.g., Nb 6 Fe 1-x Ir 6+x B 8 ). The study of boride compounds containing chains (Fe-chains in antiferromagnetic Sc 2 FeRu 5 B 2 ), ladders (Fe-ladders in ferromagnetic Ti 9 Fe 2 Rh 18 B 8 ), and chains of triangles (Cr 3 chains in ferrimagnetic and frustrated TiCrIr 2 B 2 ) of magnetically active elements allowed us to gain a deep understanding of the factors (using density functional theory calculations) that can affect magnetic ordering of such low-dimensional magnetic units. We discovered that the magnetic properties of phases containing these magnetic subunits can be drastically tuned by chemical substitution within the metallic nonmagnetic network. For example, the small hysteresis (measure of magnetic energy storage) of Ti 2 FeRh 5 B 2 can be successively increased up to 24-times by gradually

  9. First Principles Atomistic Model for Carbon-Doped Boron Suboxide

    Science.gov (United States)

    2014-09-01

    Sutherland DG, Van Buuren T, Carlisle JA, Terminello LJ, Himpsel FJ. Photoemission and x - ray -absorption study of boron carbide and its surface thermal...along the C-C chain. If the interstitial dopant is either B or C, a local boron carbide (B4C)-like structure with either a C-B-C or C-C-C chain is...strength, high oxidation resistance (򒱰 °C), and chemical inertness.1–8 However, unlike other high-performance ceramics, boron carbide (B4C) and

  10. TRPM8 channel as a novel molecular target in androgen-regulated prostate cancer cells.

    Science.gov (United States)

    Asuthkar, Swapna; Velpula, Kiran Kumar; Elustondo, Pia A; Demirkhanyan, Lusine; Zakharian, Eleonora

    2015-07-10

    The cold and menthol receptor TRPM8 is highly expressed in prostate and prostate cancer (PC). Recently, we identified that TRPM8 is as an ionotropic testosterone receptor. The TRPM8 mRNA is expressed in early prostate tumors with high androgen levels, while anti-androgen therapy greatly reduces its expression. Here, from the chromatin-immunoprecipitation (ChIP) analysis, we found that an androgen response element (ARE) mediates androgen regulation of trpm8. Furthermore, using immunofluorescence, calcium-imaging and planar lipid bilayers, we identified that TRPM8 channel is functionally regulated by androgens in the prostate. Although TRPM8 mRNA is expressed at high levels, we found that the TRPM8 protein undergoes ubiquitination and degradation in PC cells. The mass-spectrometry analysis of TRPM8, immunoprecipitated from LNCaP cells identified ubiquitin-like modifier-activating enzyme 1 (UBA1). PYR-41, a potent inhibitor of initial enzyme in the ubiquitination cascade, UBA1, increased TRPM8 activity on the plasma membrane (PM) of LNCaP cells. Furthermore, PYR-41-mediated PMTRPM8 activity was accompanied by enhanced activation of p53 and Caspase-9. Interestingly, we found that the trpm8 promoter possesses putative binding sites for p53 and that the overexpression of p53 increased the TRPM8 mRNA levels. In addition to the genomic regulation of TRPM8 by AR and p53, our findings indicate that the testosterone-induced PMTRPM8 activity elicits Ca2+ uptake, subsequently causing apoptotic cell death. These findings support the strategy of rescuing PMTRPM8 expression as a new therapeutic application through the regulation of PC cell growth and proliferation.

  11. Process for microwave sintering boron carbide

    Science.gov (United States)

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  12. Bright prospects for boron

    NARCIS (Netherlands)

    Nanver, L.; Wassink, J.

    2012-01-01

    Professor Lis Nanver at Dimes has laid the foundation for a range of new photodetectors by creating a thin coating of boron on a silicon substrate. The sensors are used in ASML’s latest lithography machines and FEI’s most sensitive electron microscopes.

  13. Methods of producing continuous boron carbide fibers

    Science.gov (United States)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  14. Neutrons around thick target bombarded by 50 MeV/u sup 1 sup 8 O-ion beam

    CERN Document Server

    Li, G; Li, Z; Su, Y; Zhang, S

    1999-01-01

    Neutron energy, fluence rate, angular distributions and dose equivalent rate distributions around thick Be, Cu, Au targets bombarded by a 50 MeV/u sup 1 sup 8 O-ion beam were measured by using a threshold detector activation method. The neutron yields and emission rates in the forward direction were obtained. (author)

  15. Blogging in the Target Language: Review of the “Lang-8” Online Community

    Directory of Open Access Journals (Sweden)

    Judith Bündgens-Kosten

    2011-06-01

    Full Text Available Progress in language learning can be framed as the development of skills in four domains: reading, speaking, writing, and listening. While material to improve reading and listening skills is fairly easy to find, practicing productive skills outside the formal classroom can be more difficult. This is a review of language learning community, Lang-8 (www.lang-8.com.

  16. SU-D-304-07: Application of Proton Boron Fusion Reaction to Radiation Therapy

    International Nuclear Information System (INIS)

    Jung, J; Yoon, D; Shin, H; Kim, M; Suh, T

    2015-01-01

    Purpose: we present the introduction of a therapy method using the proton boron fusion reaction. The purpose of this study is to verify the theoretical validity of proton boron fusion therapy using Monte Carlo simulations. Methods: After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton’s maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here we show that the effectiveness of the proton boron fusion therapy (PBFT) was verified using Monte Carlo simulations. Results: We found that a dramatic increase by more than half of the proton’s maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton’s maximum dose point was located within the boron uptake region (BUR). In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. Conclusion: This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment

  17. Zinc transporter 8 (ZnT8 expression is reduced by ischemic insults: a potential therapeutic target to prevent ischemic retinopathy.

    Directory of Open Access Journals (Sweden)

    Michael Deniro

    Full Text Available The zinc (Zn(++ transporter ZnT8 plays a crucial role in zinc homeostasis. It's been reported that an acute decrease in ZnT8 levels impairs β cell function and Zn(++ homeostasis, which contribute to the pathophysiology of diabetes mellitus (DM. Although ZnT8 expression has been detected in the retinal pigment epithelium (RPE, its expression profile in the retina has yet to be determined. Furthermore, the link between diabetes and ischemic retinopathy is well documented; nevertheless, the molecular mechanism(s of such link has yet to be defined. Our aims were to; investigate the expression profile of ZnT8 in the retina; address the influence of ischemia on such expression; and evaluate the influence of YC-1; (3-(50-hydroxymethyl-20-furyl-1-benzyl indazole, a hypoxia inducible factor-1 (HIF-1 inhibitor, on the status of ZnT8 expression. We used real-time RT-PCR, immunohistochemistry, and Western blot in the mouse model of oxygen-induced retinopathy (OIR and Müller cells to evaluate the effects of ischemia/hypoxia and YC-1 on ZnT8 expression. Our data indicate that ZnT8 was strongly expressed in the outer nuclear layer (ONL, outer plexiform layer (OPL, ganglion cell layer (GCL, and nerve fiber layer (NFL, whereas the photoreceptor layer (PRL, inner nuclear layer (INL and inner plexiform layer (IPL showed moderate ZnT8 immunoreactivity. Furthermore, we demonstrate that retinal ischemic insult induces a significant downregulation of ZnT8 at the message and protein levels, YC-1 rescues the injured retina by restoring the ZnT8 to its basal homeostatic levels in the neovascular retinas. Our data indicate that ischemic retinopathy maybe mediated by aberrant Zn(++ homeostasis caused by ZnT8 downregulation, whereas YC-1 plays a neuroprotective role against ischemic insult. Therefore, targeting ZnT8 provides a therapeutic strategy to combat neovascular eye diseases.

  18. Structures, stability, mechanical and electronic properties of α-boron and α*-boron

    OpenAIRE

    Chaoyu He; J. X. Zhong

    2013-01-01

    The structures, stability, mechanical and electronic properties of α-boron and a promising metastable boron phase (α*-boron) have been studied by first-principles calculations. α-boron and α*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of “3S-6D-3S” and “2S-6D-4S”, respectively. The total energy calculations show that α*-boron is less stable than α-boron but more favorable than the well-known β-boron and γ-boron at zero pressure. Both α-boron and...

  19. Simulated Target Preparation and Separation of Cd (II) - In (III) Matrices Using 8-Hydroxyquinoline Reagent for Producing Indium - III Radioisotope

    International Nuclear Information System (INIS)

    Sunarhadijoso Soenarjo; Swasono R Tamat; Lukiyawati; Lintang Maharani

    2002-01-01

    The potency of production and application of 111 In in Indonesia is not supported yet by capability in required processing technology. The presented paper is a preliminary study on processing technology of 111 In production from 112 Cd target covering simulated target preparation and separation of Cd(II)-In(III) matrices. The target preparation was performed by means of electroplating of CdSO 4 solution prepared from reaction of CdO and sulphuric acid. The separation of Cd(II)-In(III) matrices was proceeded by means of solvent extraction in the presence of 8-hydroxyquinoline as In(III)-complexing agent. The Cd-electroplating deposit was satisfactorily found by using 40-60 mA currents with an electroplating time of 5-7 hours. Simulated matrix solution containing mixture of Cd(II) and In(III) was extracted into chloroform with the presence of 8-hydroxyquinoline. The chloroform phase being assumed to contain In(III)-8-hydroxyquinoline complex was then re-extracted with 1 M HCl or saline solution. Each extraction fraction was spectrophotometrically identified in the region of 200-400 nm. From the resulting absorption spectra, it can be shown that the In(III) species is selectively separated from the Cd(II)-matrix. The use of saline in the re-extraction process is better then 1 M HCl solution due to solubility of 8-hydroxyquinoline in HCl. (author)

  20. Effect of Carbon Doping on the Electronic Structure and Elastic Properties of Boron Suboxide

    Science.gov (United States)

    2015-06-01

    bonding complexity . When one equatorial boron atom neighboring a C-B-C chain is replaced by carbon, a Ce-CO bond forms between the equatorial carbon...Scripta Materialia. 2014;76:9. 8. Wang Z, Zhao Y. In situ pressure Raman spectroscopy and mechanical stability of superhard boron suboxide. Appl Phys...Lett. 2005;86:041911. 9. Nifise E. Study of sintering and structure property relationships in boron suboxide – alkaline earth metal oxide, cobalt

  1. The search for molecular effects in range corrections: boron determination by proton bombardment

    International Nuclear Information System (INIS)

    Olivier, C.; Peisach, M.

    1985-01-01

    Three different nuclear reactions viz. 10 B(p,αγ) 7 Be, 10 B(p,p,'γ) 10 B, and 11 B(p,p'γ) 11 B were used to analyse 21 pure boron compounds and mixtures of known composition by prompt gamma-ray spectrometry under proton bombardment. Elemental stopping powers were calculated from tables and used to compute the stopping power of the target matrices by Bragg's Law. Apparent discrepancies in the measured yield could point to deviations from Bragg's Law and hence to molecular effects. The maximum value for any molecular effect was found to be < 8,3%

  2. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-09

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  3. Determination of boron in nuclear materials at subppm levels by high pressure liquid chromatography (HPLC)

    International Nuclear Information System (INIS)

    Rao, Radhika M.; Aggarwal, S.K.

    2002-11-01

    Experiments were conducted for the determination of boron in U 3 O 8 powder, aluminium metal and milliQ water using dynamically modified Reversed Phase High Pressure Liquid Chromatography (RP-HPLC) and using two precolumn chromogenic agents viz. chromotropic acid and curcumin for complexing boron. The complex was separated from the excess of reagent and determined by HPLC. When present in subppm levels, chromotropic acid was used successfully only for determination boron in water samples. For determination of boron at subppm levels in uranium and aluminium samples, curcumin was used as the precolumn chromogenic agent. The boron curcumin complex (rosocyanin) was formed after extraction of boron with 2-ethyl-l, 3-hexane diol (EHD). The rosocyanin complex was then separated from excess curcumin by displacement chromatography. Linear calibration curves for boron amounts in the range of 0.02 μg to 0.5 μg were developed with correlation coefficients varying from 0.997 to 0.999 and were used for the determination of boron in aluminium and uranium samples. Precision of about 10% was achieved in samples containing less than 1 ppmw of boron. Detection limit of this method is 0.01 μg boron. (author)

  4. Differential Targeting of Viral Components by CD4+ versus CD8+ T Lymphocytes in Dengue Virus Infection

    Science.gov (United States)

    Kumaran, Emmanuelle A. P.; Jovanovic, Vojislav; Nadua, Karen; Teo, En Wei; Pang, Shyue Wei; Teo, Guo Hui; Gan, Victor Chih Hao; Lye, David C.; Leo, Yee Sin; Hanson, Brendon J.; Smith, Kenneth G. C.; Bertoletti, Antonio; Kemeny, David M.; MacAry, Paul A.

    2013-01-01

    Dengue virus (DENV) is the principal arthropod-borne viral pathogen afflicting human populations. While repertoires of antibodies to DENV have been linked to protection or enhanced infection, the role of T lymphocytes in these processes remains poorly defined. This study provides a comprehensive overview of CD4+ and CD8+ T cell epitope reactivities against the DENV 2 proteome in adult patients experiencing secondary DENV infection. Dengue virus-specific T cell responses directed against an overlapping 15mer peptide library spanning the DENV 2 proteome were analyzed ex vivo by enzyme-linked immunosorbent spot assay, and recognition of individual peptides was further characterized in specific T cell lines. Thirty novel T cell epitopes were identified, 9 of which are CD4+ and 21 are CD8+ T cell epitopes. We observe that whereas CD8+ T cell epitopes preferentially target nonstructural proteins (NS3 and NS5), CD4+ epitopes are skewed toward recognition of viral components that are also targeted by B lymphocytes (envelope, capsid, and NS1). Consistently, a large proportion of dengue virus-specific CD4+ T cells have phenotypic characteristics of circulating follicular helper T cells (CXCR5 expression and production of interleukin-21 or gamma interferon), suggesting that they are interacting with B cells in vivo. This study shows that during a dengue virus infection, the protein targets of human CD4+ and CD8+ T cells are largely distinct, thus highlighting key differences in the immunodominance of DENV proteins for these two cell types. This has important implications for our understanding of how the two arms of the human adaptive immune system are differentially targeted and employed as part of our response to DENV infection. PMID:23255803

  5. From boron analogues of amino acids to boronated DNA: potential new pharmaceuticals and neutron capture agents

    International Nuclear Information System (INIS)

    Spielvogel, B.F.; Sood, Anup; Duke Univ., Durham, NC; Shaw, B.R.; Hall, I.H.

    1991-01-01

    Isoelectronic and isostructural boron analogues of the α-amino acids ranging from simple glycine analogues such as H 3 NBH 2 COOH and Me 2 NHBH 2 COOH to alanine analogues have been synthesised. A diverse variety of analogues, including precursors and derivatives (such as peptides) have potent pharmacological activity, including anticancer, antiinflammatory, analgesic, and hypolipidemic activity in animal model studies and in vitro cell cultures. Boronated nucleosides and (oligo)nucleotides, synthetic oligonucleotide analogues of ''antisense'' agents interact with a complementary nucleic acid sequence blocking the biological effect of the target sequence. Nucleosides boronated on the pyrimidine and purine bases have been prepared. It has been established that an entirely new class of nucleic acid derivatives is feasible in which one of the non-bridging oxygens in the internucleotide phosphodiester linkage can be replaced by an isoelectronic analogue, the borane group, (BH 3 ). The boronated oligonucleotides can be viewed as hybrids of the normal oxygen oligonucleotides and the methylphosphonate oligonucleotides. (author)

  6. Overcoming Endocrine Resistance by Targeting ER/FoxA1/IL-8 Axis

    Science.gov (United States)

    2015-10-01

    in two independently developed MCF7 -TamR models (L and RN), but not in other Endo-R cell models; 2) FOXA1 and IL-8 expression at either mRNA or...single cell level in two independently developed MCF7 (L and RN) Endo-R models. FOXA1 amplified cell population (foci ratio ≥4) was highly enriched... MCF7 TamR models, BT474-TamR, another ER+ Endo-R cell model, showed increased FOXA1 CN than that in BT474-P cells (Fig. 2). No FOXA1 amplification

  7. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux

    International Nuclear Information System (INIS)

    Lang, F.M.; Magnier, P.; Finck, C.

    1956-01-01

    Preparation of boron thin film deposits of around 1 mg per cm 2 on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  8. 1,8-Naphthalimide: A Potent DNA Intercalator and Target for Cancer Therapy.

    Science.gov (United States)

    Tandon, Runjhun; Luxami, Vijay; Kaur, Harsovin; Tandon, Nitin; Paul, Kamaldeep

    2017-10-01

    The poor pharmacokinetics, side effects and particularly the rapid emergence of drug resistance compromise the efficiency of clinically used anticancer drugs. Therefore, the discovery of novel and effective drugs is still an extremely primary mission. Naphthalimide family is one of the highly active anticancer drug based upon effective intercalator with DNA. In this article, we review the discovery and development of 1,8-naphthalimide moiety, and, especially, pay much attention to the structural modifications and structure activity relationships. The review demonstrates how modulation of the moiety affecting naphthalimide compound for DNA binding that is achieved to afford a profile of antitumor activity. The DNA binding of imide and ring substitution at naphthalimide, bisnaphthalimide, naphthalimide-metal complexes is achieved by molecular recognition through intercalation mode. Thus, this synthetic/natural small molecule can act as a drug when activation or inhibition of DNA function, is required to cure or control the cancer disease. The present study is a review of the advances in 1,8-naphthalimide-related research, with a focus on how such derivatives are intercalated into DNA for their anticancer activities. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies ...

  10. Neutron sensitivity improvement in boron-lined proportional counters

    International Nuclear Information System (INIS)

    Dighe, P.M.; Prasad, K.R.; Kataria, S.K.

    2002-01-01

    Various techniques have been employed to improve the neutron sensitivity of boron-coated proportional counters developed indigenously. A boron-lined proportional counter (67 mm ID x 750 mm length) of 17 cps/nv thermal neutron sensitivity is developed by coating 92% enriched 10 B on the inner wall of the counter. This counter can be used for low thermal neutron flux (∼0.2 nv) at various applications such as neutron area monitoring, reactor start-up instrumentation, assay of fissile materials and detection of fuel failure. An improvement in sensitivity was also achieved by summing the output signals from four 10 B lined counters and two BF 3 proportional counters. The summation did not change the susceptibility of the device to gamma interference. In view of the scarcity of enriched 10 B isotope, indigenously available natural boron coated two prototype proportional counters are developed of 0.8 cps/nv and 1.1 cps/nv thermal neutron sensitivity. Efforts have been made to improve the sensitivity with boron coated 3-dimensional structures introduced into the sensitive volume. Tests in thermal neutron flux showed 50% improvement in the sensitivity due to the introduction of additional boron coated wires. Another counter with 51 boron-coated annular discs (23 mm OD X 10 mm ID X 1 mm thick) mounted perpendicular to the axis of the cathode showed 1.7 cps/nv neutron sensitivity, an improvement by a factor of 2.5. (author)

  11. Considerations for boron neutron capture therapy studies

    International Nuclear Information System (INIS)

    Faria Gaspar, P. de.

    1994-01-01

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps

  12. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.

    2013-04-01

    Boron removal in seawater desalination presents a particular challenge. In seawater reverse osmosis (SWRO) systems boron removal at low concentration (<0.5 mg/L) is usually achieved by a second pass using brackish water RO membranes. However, this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous solution was carried out by EC process using aluminum and iron electrodes. Several operating parameters on the removal efficiency such as initial pH, current density, initial boron ion concentration, feed concentration, gap between electrodes, and electrode material, were investigated. In the case of bipolar electrocoagulation (BEC), an optimum removal efficiency of 96% corresponding to a final boron concentration of 0.4 mg/L was achieved at a current density of 6 mA/cm2 and pH = 8 using aluminum electrodes. The concentration of NaCl was 2,500 mg/L and the gap between the electrodes of 0.5 cm. Furthermore, a comparison between monopolar electrocoagulation (MEC) and BEC using both aluminum and iron electrodes was carried out. Results showed that the BEC process has reduced the current density applied to obtain high level of boron removal in a short reaction time compared to MEC process. The high performance of the EC showed that the process could be used to reduce boron concentration to acceptable levels at low-cost and more environmentally friendly. © 2013 Copyright Taylor and Francis Group, LLC.

  13. Docking and QSAR Studies of Aryl-valproic Acid Derivatives to Identify Antiproliferative Agents Targeting the HDAC8.

    Science.gov (United States)

    Martínez-Pacheco, Heidy; Ramírez-Galicia, Guillermo; Vergara-Arias, Midalia; Gertsch, Jurg; Fragoso-Vazquez, Jonathan Manuel; Mendez-Luna, David; Abujamra, A L; Cristina, Cabrera-Perez Laura; Cecilia, Rosales-Hernandez Martha; Mendoza-Lujambio, I; Correa-Basurto, Jose

    2017-01-01

    Histone deacetylase 8 (HDAC8) is a plausible target for the development of novel anticancer drugs using a metal-chelating group and hydrophobic moieties as pharmacophores. It is known that valproic acid (administered as its salt, sodium valproate; VPANa+) is an HDAC8 inhibitor characterized by its hydrophobic chains. Nevertheless, VPA is hepatotoxic and VPA analogues might be explored for less hepatotoxic antiproliferative compounds. In this work, docking and QSAR studies of 500 aryl-VPA derivatives as possible HDAC8 inhibitors were performed in order to explore and select potential anti-proliferative compounds. Docking results identified π-π, hydrogen bonds as the most important noncovalent interactions between HDAC8 (PDB: 3F07) and the ligands tested, whereas Belm4 was the best QSAR descriptor and classified as a 2D-BCUT descriptor. Based on theoretical studies, compound DAVP042 was synthesized and evaluated in vitro for its antiproliferative activities on several cancer cell lines (A549-lung, MCF-7-breast, HCT116-colon and U937- lymphoid tissue) in comparison to VPA, as well as for its inhibitory activity on HDAC8 using in vitro models. DAVP042 demonstrated to have antiproliferative activity on all cancer cell lines employed, not only suggesting that this compound should be further studied, but also demonstrating that the methodology herein employed is appropriated to identify new therapeutic candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses

    Science.gov (United States)

    Lilley, Caroline E; Chaurushiya, Mira S; Boutell, Chris; Landry, Sebastien; Suh, Junghae; Panier, Stephanie; Everett, Roger D; Stewart, Grant S; Durocher, Daniel; Weitzman, Matthew D

    2010-01-01

    The ICP0 protein of herpes simplex virus type 1 is an E3 ubiquitin ligase and transactivator required for the efficient switch between latent and lytic infection. As DNA damaging treatments are known to reactivate latent virus, we wished to explore whether ICP0 modulates the cellular response to DNA damage. We report that ICP0 prevents accumulation of repair factors at cellular damage sites, acting between recruitment of the mediator proteins Mdc1 and 53BP1. We identify RNF8 and RNF168, cellular histone ubiquitin ligases responsible for anchoring repair factors at sites of damage, as new targets for ICP0-mediated degradation. By targeting these ligases, ICP0 expression results in loss of ubiquitinated forms of H2A, mobilization of DNA repair proteins and enhanced viral fitness. Our study raises the possibility that the ICP0-mediated control of histone ubiquitination may link DNA repair, relief of transcriptional repression, and activation of latent viral genomes. PMID:20075863

  15. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  16. Boron Activated Neutron Thermometer

    Energy Technology Data Exchange (ETDEWEB)

    Lapsley, A. C. [Argonne National Lab. (ANL), Argonne, IL (United States). Instrument Research & Development

    1952-01-09

    The Brown Instrument Division of Minneapolis-Honeywell Regulator Co. have been making pilot models of boron coated neutron sensitive thermopiles, which show considerable promise of being effective indicators of slow neutron flux. Their loss in sensitivity in a year of operation in the maximum flux of CP-6 calculates to be less than 6 per cent. When used as rooftop indicators, the ratio of the signal of the two units would change by about 2 per cent in a year's time.

  17. Quantitative analysis of proton boron fusion therapy (PBFT) in various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joo-Young; Yoon, Do-Kun; Suh, Tae Suk [College of Medicine, Catholic University of Korea, Seoul (Korea, Republic of)

    2015-05-15

    From the theoretical point of view, the PBFT has some strong advantages over currently existing radiotherapy methods. First, boron-based tumor targeting is required prior to performing the treatments such as boron-neutron capture therapy (BNCT). Tumor targeting should be performed before the BNCT by injecting the boronate compound. If boron is not taken up by the normal tissue, the normal tissue can be spared the irradiation by alpha particles. When boron uptake occurs in the target region, selective therapy is possible by neutron capture reaction of labeled boron particles in the target region. Likewise, when boron is distributed in the tumor region for the PBFT, the proposed method can represent a more critical discriminative therapy than either the BNCT or conventional particle therapy. In the conventional proton therapy, in order to deliver a dose to a tumor, the proton beam energy has to be adjusted along the tumor region (e.g., shape and depth). The proton therapy aims at delivering the maximal dose to the tumor by using protons only. In this study, the effectiveness of the PBFT with respect to several physical parameters was evaluated quantitatively by using Monte Carlo simulations. We confirmed that the PBFT can be used to perform critical discriminative therapy. Also, the results of our studies can be used for constructing the PFBT dose database that can be utilized in treatment planning systems (TPSs)

  18. Profile distribution of total and available Sulphur and boron in sandy ...

    African Journals Online (AJOL)

    The total and available sulphur and boron forms were determined in sandy soils formed from sand dunes, sandy alluvial terrace and sandstone formation in northwestern Nigeria. Hot water and Morgan's solution (sodium acetate/acetic acid solution buffered at pH 4.8) were used as extractants for available boron while ...

  19. The intrinsic flexibility of the aptamer targeting the ribosomal protein S8 is a key factor for the molecular recognition.

    Science.gov (United States)

    Autiero, Ida; Ruvo, Menotti; Improta, Roberto; Vitagliano, Luigi

    2018-04-01

    Aptamers are RNA/DNA biomolecules representing an emerging class of protein interactors and regulators. Despite the growing interest in these molecules, current understanding of chemical-physical basis of their target recognition is limited. Recently, the characterization of the aptamer targeting the protein-S8 has suggested that flexibility plays important functional roles. We investigated the structural versatility of the S8-aptamer by molecular dynamics simulations. Five different simulations have been conducted by varying starting structures and temperatures. The simulation of S8-aptamer complex provides a dynamic view of the contacts occurring at the complex interface. The simulation of the aptamer in ligand-free state indicates that its central region is intrinsically endowed with a remarkable flexibility. Nevertheless, none of the trajectory structures adopts the structure observed in the S8-aptamer complex. The aptamer ligand-bound is very rigid in the simulation carried out at 300 K. A structural transition of this state, providing insights into the aptamer-protein recognition process, is observed in a simulation carried out at 400 K. These data indicate that a key event in the binding is linked to the widening of the central region of the aptamer. Particularly relevant is switch of the A26 base from its ligand-free state to a location that allows the G13-C28 base-pairing. Intrinsic flexibility of the aptamer is essential for partner recognition. Present data indicate that S8 recognizes the aptamer through an induced-fit rather than a population-shift mechanism. The present study provides deeper understanding of the structural basis of the structural versatility of aptamers. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. miR-16 targets transcriptional corepressor SMRT and modulates NF-kappaB-regulated transactivation of interleukin-8 gene.

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    Full Text Available The signaling pathways associated with the Toll-like receptors (TLRs and nuclear factor-kappaB (NF-κB are essential to pro-inflammatory cytokine and chemokine expression, as well as initiating innate epithelial immune responses. The TLR/NF-κB signaling pathways must be stringently controlled through an intricate network of positive and negative regulatory elements. MicroRNAs (miRNAs are non-coding small RNAs that regulate the stability and/or translation of protein-coding mRNAs. Herein we report that miR-16 promotes NF-κB-regulated transactivation of the IL-8 gene by suppression of the silencing mediator for retinoid and thyroid hormone receptor (SMRT. LPS stimulation activated miR-16 gene transcription in human monocytes (U937 and biliary epithelial cells (H69 through MAPK-dependent mechanisms. Transfection of cells with the miR-16 precursor promoted LPS-induced production of IL-8, IL-6, and IL-1α, without a significant effect on their RNA stability. Instead, an increase in NF-κB-regulated transactivation of the IL-8 gene was confirmed in cells following transfection of miR-16 precursor. Importantly, miR-16 targeted the 3'-untranslated region of SMRT and caused translational suppression of SMRT. LPS decreased SMRT expression via upregulation of miR-16. Moreover, functional manipulation of SMRT altered NF-κB-regulated transactivation of LPS-induced IL-8 expression. These data suggest that miR-16 targets SMRT and modulates NF-κB-regulated transactivation of the IL-8 gene.

  1. MicroRNA-127-3p inhibits proliferation and invasion by targeting SETD8 in human osteosarcoma cells

    International Nuclear Information System (INIS)

    Zhang, Jun; Hou, Wengen; Chai, Mingxiang; Zhao, Hongxing; Jia, Jinling; Sun, Xiaohui; Zhao, Bin; Wang, Ran

    2016-01-01

    MicroRNAs (miRNAs) play an essential role in cancer development. Several studies have indicated that miRNAs mediate tumorigenesis processes, such as, inflammation, proliferation, apoptosis and invasion. In the present study, we focused on the influence of the miR-127-3p on the proliferation, migration and invasion of osteosarcoma (OS). MiR-127-3p was found at reduced levels in OS tissues and cell lines. Overexpression of miR-127-3p in the OS cell lines significantly inhibited the cell proliferation, migration and invasion; however, inhibition of miR-127-3p increased the proliferation, migration and invasion of OS in vitro. SETD8 was identified as a direct target of miR-127-3p, and SETD8 expression decreased post miR-127-3p overexpression, while SETD8 overexpression could reverse the potential influence of miR-127-3p on the migration and invasion of OS cells. MiR-127-3p is suggested to act mainly via the suppression of SETD8 expression. Overall, the results revealed that miR-127-3p acts as a tumor suppressor and that its down-regulation in cancer may contribute to OS progression and metastasis, suggesting that miR-127-3p could be a potential therapeutic target in the treatment of OS. - Highlights: • MiR-127-3p is decreased in osteosarcoma tissues and cell lines. • MiR-127-3p overexpression suppresses cell migration and invasion in MG63 and U2OS. • SETD8 overexpression abolishes the roles of miR-127-3p in osteosarcoma.

  2. Superior control of HIV-1 replication by CD8+ T cells targeting conserved epitopes: implications for HIV vaccine design.

    Directory of Open Access Journals (Sweden)

    Pratima Kunwar

    Full Text Available A successful HIV vaccine will likely induce both humoral and cell-mediated immunity, however, the enormous diversity of HIV has hampered the development of a vaccine that effectively elicits both arms of the adaptive immune response. To tackle the problem of viral diversity, T cell-based vaccine approaches have focused on two main strategies (i increasing the breadth of vaccine-induced responses or (ii increasing vaccine-induced responses targeting only conserved regions of the virus. The relative extent to which set-point viremia is impacted by epitope-conservation of CD8(+ T cell responses elicited during early HIV-infection is unknown but has important implications for vaccine design. To address this question, we comprehensively mapped HIV-1 CD8(+ T cell epitope-specificities in 23 ART-naïve individuals during early infection and computed their conservation score (CS by three different methods (prevalence, entropy and conseq on clade-B and group-M sequence alignments. The majority of CD8(+ T cell responses were directed against variable epitopes (p<0.01. Interestingly, increasing breadth of CD8(+ T cell responses specifically recognizing conserved epitopes was associated with lower set-point viremia (r = - 0.65, p = 0.009. Moreover, subjects possessing CD8(+ T cells recognizing at least one conserved epitope had 1.4 log10 lower set-point viremia compared to those recognizing only variable epitopes (p = 0.021. The association between viral control and the breadth of conserved CD8(+ T cell responses may be influenced by the method of CS definition and sequences used to determine conservation levels. Strikingly, targeting variable versus conserved epitopes was independent of HLA type (p = 0.215. The associations with viral control were independent of functional avidity of CD8(+ T cell responses elicited during early infection. Taken together, these data suggest that the next-generation of T-cell based HIV-1 vaccines should focus

  3. Boron contents and isotope compositions of oceanic crusts from the Oman and Troodos ophiolites

    Science.gov (United States)

    Yamaoka, K.; Matsukura, S.; Ishikawa, T.; Kawahata, H.

    2011-12-01

    Boron is excellent tracer for elucidating crustal recycling in subduction zones because of the high concentration of boron in the upper part of the slab and the high mobility of boron during dehydration of the slab. However, fundamental data for vertical distribution of boron in hydrothermally altered oceanic crust are still limited. In this study, boron contents and isotopic compositions were determined for complete section of the oceanic crusts in the Oman and Troodos ophiolite. Although the boron contents of rocks decreased with depth in both the oceanic crusts, altered rocks from deep section showed obvious boron enrichment relative to fresh rocks. The pillow lavas in the Troodos ophiolite, which have been weathered on the seafloor for ~80 Myrs, was highly enriched in boron (>100 ppm), supporting that boron inventory of pillow lava section strongly depends on the crustal age. The δ11B of rocks in the Oman ophiolite systematically increased with depth and negatively correlate with the δ18O values, suggesting that the δ11B values are essentially controlled by alteration temperature. On the other hand, the δ11B profile in the Troodos ophiolite didn't show clear increase trend. The boron contents for the bulk oceanic crusts of the Oman and Troodos ophiolites are estimated to be 3.6 ppm and 12 ppm, respectively. About 8% of δ11B was estimated for both the bulk oceanic crusts. In contrast to previous views, hydrothermally altered gabbro section can be a large sink of boron. This boron-enriched, high-δ11B lower oceanic crust may impact on the estimate of the δ11B value for fluids librated from the subducted oceanic slab, which is believed to largely control the δ11B values of arc magmas generated in the mantle wedge.

  4. Phase Contrast Imaging of Damage Initiation During Ballistic Impact of Boron Carbide

    Science.gov (United States)

    Schuster, Brian; Tonge, Andrew; Ramos, Kyle; Rigg, Paulo; Iverson, Adam; Schuman, Adam; Lorenzo, Nicholas

    2017-06-01

    For several decades, flash X-ray imaging has been used to perform time-resolved investigations of the response of ceramics under ballistic impact. Traditional absorption based contrast offers little insight into the early initiation of inelastic deformation mechanisms and instead typically only shows the gross deformation and fracture behavior. In the present work, we employed phase contrast imaging (PCI) at the Dynamic Compression Sector (DCS) at the Advanced Photon Source, Argonne National Laboratory, to investigate crack initiation and propagation following the impact of copper penetrators into boron carbide targets. These experiments employed a single-stage propellant gun to launch small-scale (0.6 mm diameter by 3 mm long) pure copper impactors at velocities ranging from 0.9 to 1.9 km/s into commercially available boron carbide targets that were 8 mm on a side. At the lowest striking velocities the penetrator undergoes dwell or interface defeat and the target response is consistent with the cone crack formation at the impact site. At higher striking velocities there is a distinct transition to massive fragmentation leading to the onset of penetration.

  5. Boron, calcium and magnesium in Kavaratti lagoon water, Lakshadweep Archipelago

    Digital Repository Service at National Institute of Oceanography (India)

    Nasnolkar, C.M.; Salkar, V.R.; Shirodkar, P.V.; Abidi, S.A.H.

    1228.8 to 1319.8 mg kg sup(-1) (av. 1280.19 mg kg sup(-1)) and the salinity varied from 35.01 to 35.10 x 10 sup(-3) (av. 35.04 x 10 sup(-3)). The ratios of boron, calcium and magnesium to chlorinity in the lagoon water showed wide variation and were...

  6. Stability analysis of zigzag boron nitride nanoribbons

    International Nuclear Information System (INIS)

    Rai, Hari Mohan; Late, Ravikiran; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R.; Jaiswal, Neeraj K.; Srivastava, Pankaj

    2015-01-01

    We have explored the structural stability of bare and hydrogenated zigzag boron nitride nanoribbons (ZBNNRs). In order to investigate the structural stability, we calculate the cohesive energy for bare, one-edge and both edges H-terminated ZBNNRs with different widths. It is found that the ZBNNRs with width Nz=8 are energetically more favorable than the lower-width counterparts (Nz<8). Bare ZBNNRs have been found energetically most stable as compared to the edge terminated ribbons. Our analysis reveals that the structural stability is a function of ribbon-width and it is not affected significantly by the type of edge-passivation (one-edge or both-edges)

  7. Boron isotopes as an artificial tracer.

    Science.gov (United States)

    Quast, Konrad W; Lansey, Kevin; Arnold, Robert; Bassett, Randy L; Rincon, Martha

    2006-01-01

    A field study was conducted using a combination of intrinsic and artificial tracers to estimate travel times and dilution during transport of infiltrate from a reclaimed water infiltration basin to nearby monitoring wells. A major study objective was to validate boric acid enriched in (10)B as an artificial tracer. Basin 10E at the Rio Hondo Spreading Grounds in Whittier, California, was the site of the test. The basin normally receives a mixture of treated municipal waste water, purchased State Project water, and local runoff from the San Gabriel River. Approximately 3.5 kg of (10)B-enriched boric acid was dispersed among 2.05 x 10(5) m(3) of basin water to initiate the experiment. The resultant median delta(11)B in the infiltration basin was -71 per thousand. Prior to tracer addition, the basin water had an intrinsic delta(11)B of +2 per thousand. Local monitoring wells that were used to assess travel times had delta(11)B values of +5 per thousand and +8 per thousand at the time of tracer addition. Analytic results supported an assumption that boron is conserved during ground water transport and that boron enriched in (10)B is a useful artificial tracer. Several intrinsic tracers were used to reinforce the boric acid tracer findings. These included stable isotopes of oxygen (delta(18)O) and hydrogen (deltaD), sulfate concentration, and the boron to chloride ratio. Xenon isotopes, (136)Xe and (124)Xe, also supported boron isotope results. Xenon isotopes were added to the recharge basin as dissolved gases by investigators from the Lawrence Livermore National Laboratory.

  8. Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets

    Science.gov (United States)

    Cabria, I.; López, M. J.; Alonso, J. A.

    2006-02-01

    Hydrogen adsorption on the recently discovered boron nanotubes, BNTs, and on boron sheets is investigated by density functional calculations. Both molecular physisorption and dissociative atomic chemisorption are considered. The geometric and electronic structures of BNTs and boron sheets have been elucidated. These two novel boron structures present buckled surfaces with alternating up and down rows of B atoms, with a large buckling height of about 0.8 Å. The buckled structures are about 0.20 eV/atom more stable than the corresponding flat ones. However, the helicity of some BNTs does not allow for the formation of alternating up and down B rows in the surface and, therefore, these nanotubes have flat surfaces. The buckled and flat nanostructures have different geometric and bonding characteristics, but both are metallic. Molecular hydrogen physisorption energies are about 30-60 meV/molecule on boron sheets and nanotubes, actually lower than in graphene and in carbon nanotubes and far from the energies of 300-400 meV/molecule necessary for efficient hydrogen storage at room temperature and moderate pressures for onboard automotive applications. Chemisorption binding energies on BNTs are about 2.4-2.9 eV/H atom, similar to the ones obtained in CNTs. Finally, the energy barrier from molecular physisorption to dissociative chemisorption of hydrogen is about 1.0 eV /molecule. Therefore, the calculations predict physisorption as the leading adsorption mechanism of hydrogen at moderate temperatures and pressures. The expected hydrogen adsorption capacity of these novel B materials is even smaller than that of CNTs.

  9. Boron isotopes and groundwater pollution

    International Nuclear Information System (INIS)

    Vengosh, A.

    1999-01-01

    Boron can be used as a tracer in ground water because of its high solubility in aqueous solutions, natural abundance in all waters, and the lack of effects by evaporation, volatilisation, oxidation-reduction reactions. Since the boron concentrations in pristine ground waters are generally low and contaminant sources are usually enriched in boron, the δ 11 B of groundwater is highly sensitive to the impact of contamination. The large isotopic variations of the potential sources can be used to trace the origin of the contamination and to reconstruct mixing and flow paths

  10. Stromal Activation Associated with Development of Prostate Cancer in Prostate-Targeted Fibroblast Growth Factor 8b Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Teresa D. Elo

    2010-11-01

    Full Text Available Expression of fibroblast growth factor 8 (FGF-8 is commonly increased in prostate cancer. Experimental studies have provided evidence that it plays a role in prostate tumorigenesis and tumor progression. To study how increased FGF-8 affects the prostate, we generated and analyzed transgenic (TG mice expressing FGF-8b under the probasin promoter that targets expression to prostate epithelium. Prostates of the TG mice showed an increased size and changes in stromal and epithelialmorphology progressing fromatypia and prostatic intraepithelial neoplasia (mouse PIN, mPIN lesions to tumors with highly variable phenotype bearing features of adenocarcinoma, carcinosarcoma, and sarcoma. The development of mPIN lesions was preceded by formation of activated stroma containing increased proportion of fibroblastic cells, rich vasculature, and inflammation. The association between advancing stromal and epithelial alterations was statistically significant. Microarray analysis and validation with quantitative polymerase chain reaction revealed that expression of osteopontin and connective tissue growth factor was markedly upregulated in TG mouse prostates compared with wild type prostates. Androgen receptor staining was decreased in transformed epithelium and in hypercellular stroma but strongly increased in the sarcoma-like lesions. In conclusion, our data demonstrate that disruption of FGF signaling pathways by increased epithelial production of FGF-8b leads to strongly activated and atypical stroma, which precedes development of mPIN lesions and prostate cancer with mixed features of adenocarcinoma and sarcoma in the prostates of TG mice. The results suggest that increased FGF-8 in human prostate may also contribute to prostate tumorigenesis by stromal activation.

  11. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    Vast, N.

    1999-01-01

    The atomic structure and the lattice dynamics of α boron and of B 4 C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B 4 C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  12. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ho Seong; Hwang, Dae Hee; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern.

  13. Hydrogen detection by a boron sheet: A theoretical study .

    Science.gov (United States)

    Dominguez, F. Javier; Novotny, Michal; Krstic, Predrag S.

    A single boron sheet is now considered as a new nanomaterial with promising applications in electronics and as a sensor device. In this study we present quantum-classical molecular dynamic (QCMD) calculation of reflection, adsorption, and transmission processes of hydrogen impacting at energy in range 0.25 to 100 eV on a single boron sheet. Quantum-mechanical component of our QCMD approach is self-consistent charge tight binding density functional theory method (SCC-DFTB,). We consider the corrugated boron sheet as our target, created experimentally, and compare our results with those reported for graphene, showing noticeable differences. Research supported by CONACyT postdoctoral scholarship to FJD and the Fulbright Comission (Grant 15160939) to MN. Results were obtained using the LI-red cluster at IACS.

  14. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    Science.gov (United States)

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents.

  15. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    Science.gov (United States)

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.

  16. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Quintas, Ignacio; Oujja, Mohamed; Sanz, Mikel; Benitez-Cañete, Antonio [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Chater, Richard J. [Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cañamares, Maria Vega [Instituto de Estructura de la Materia, CSIC, Serrano 119, 28006 Madrid (Spain); Marco, José F. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Castillejo, Marta, E-mail: marta.castllejo@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2015-02-15

    Highlights: • Micrometric rods obtained by ns pulsed laser deposition of boron carbide at 1064 and 266 nm. • At 1064 nm microrods display crystalline polyhedral shape with sharp edges and flat sides. • Microrods consist of a mixture of boron, boron oxide, boron carbide and aliphatic hydrocarbons. - Abstract: Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved.

  17. Nano boron nitride flatland.

    Science.gov (United States)

    Pakdel, Amir; Bando, Yoshio; Golberg, Dmitri

    2014-02-07

    Recent years have witnessed many breakthroughs in research on two-dimensional (2D) nanomaterials, among which is hexagonal boron nitride (h-BN), a layered material with a regular network of BN hexagons. This review provides an insight into the marvellous nano BN flatland, beginning with a concise introduction to BN and its low-dimensional nanostructures, followed by an overview of the past and current state of research on 2D BN nanostructures. A comprehensive review of the structural characteristics and synthetic routes of BN monolayers, multilayers, nanomeshes, nanowaves, nanoflakes, nanosheets and nanoribbons is presented. In addition, electronic, optical, thermal, mechanical, magnetic, piezoelectric, catalytic, ecological, biological and wetting properties, applications and research perspectives for these novel 2D nanomaterials are discussed.

  18. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  19. Precision measurement of the $^{7}$Be(p, $\\gamma$)$\\,^{8}$B cross section with an implanted $^{7}$Be target

    CERN Document Server

    Baby, L.T.; Goldring, G.; Hass, M.; Weissman, L.; Fedoseyev, V.N.; Koester, U.; Nir-El, Y.; Haquin, G.; Gaggeler, H.W.; Weinreich, R.

    2003-01-01

    The $^{7}$Be(p, $\\gamma$) $\\,^{8}$B reaction plays a central role in the evaluation of solar neutrino fluxes. We report on a new precision measurement of the cross section of this reaction, following our previous experiment with an implanted $^{7}$Be target, a raster- scanned beam, and the elimination of the backscattering loss. The new measurement incorporates a more abundant $^{7}$Be target and a number of improvements in design and procedure. The point at E$_{lab}$ = 991 keV was measured several times under varying experimental conditions, yielding a value of S$_{17}$(E$_{c.m.}$ = 850 keV) = 24.0 $\\pm$ 0.5 eV b. Measurements were carried out at lower energies as well. Because of the precise knowledge of the implanted $^{7}$Be density profile, it was possible to reconstitute both the off- and on-resonance parts of the cross section and to obtain from the entire set of measurements an extrapolated value of S$_{17}$(0)=21.2 $\\pm$ 0.7 eV b.

  20. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  1. Boron incorporation into rutile: phase equilibria and structural considerations

    Energy Technology Data Exchange (ETDEWEB)

    Grey, I.E.; Li, C.; MacRae, C.M. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Melbourne, VIC (Australia). Div of Minerals; Bursill, L.A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-06-01

    Reduction of rutile in the presence of borate flux stabilised the rutile phase relative to reduced rutiles due to incorporation of boron from the flux. In the presence of borates the rutile phase is stabilised to oxygen fugacities that are lower by almost two orders of magnitude compared with fugacities at the limit of the single-phase rutile phase field in the pure Ti-O system. Boron incorporation is accompanied by reduction of titanium to the trivalent state, according to the charge compensation relation: 3Ti{sup 4+}{identical_to} 3 Ti{sup 3+} + B{sup 3+}. Results of powder X-ray diffraction and transmission electron microscopy studies on samples prepared in the temperature range 1100 to 1300 deg C have been used to establish a model for boron incorporation. It is proposed that at the temperatures studied, local defects in boron doped rutile result from displacement of titanium atoms to adjacent interstitial sites coupled with occupation by boron of the triangular face of the vacated octahedral sites. This atomic grouping represents a small element of the TiBO{sub 3} (calcite-type) structure. Annealing at a lower temperature results in ordering of the local defects to form (101){sub r} planar intergrowths of rutile and calcite-type structures. 14 refs., 3 tabs., 8 figs.

  2. Boron incorporation into rutile: phase equilibria and structural considerations

    International Nuclear Information System (INIS)

    Grey, I.E.; Li, C.; MacRae, C.M.; Bursill, L.A.

    1997-01-01

    Reduction of rutile in the presence of borate flux stabilised the rutile phase relative to reduced rutiles due to incorporation of boron from the flux. In the presence of borates the rutile phase is stabilised to oxygen fugacities that are lower by almost two orders of magnitude compared with fugacities at the limit of the single-phase rutile phase field in the pure Ti-O system. Boron incorporation is accompanied by reduction of titanium to the trivalent state, according to the charge compensation relation: 3Ti 4+ ≡ 3 Ti 3+ + B 3+ . Results of powder X-ray diffraction and transmission electron microscopy studies on samples prepared in the temperature range 1100 to 1300 deg C have been used to establish a model for boron incorporation. It is proposed that at the temperatures studied, local defects in boron doped rutile result from displacement of titanium atoms to adjacent interstitial sites coupled with occupation by boron of the triangular face of the vacated octahedral sites. This atomic grouping represents a small element of the TiBO 3 (calcite-type) structure. Annealing at a lower temperature results in ordering of the local defects to form (101) r planar intergrowths of rutile and calcite-type structures. 14 refs., 3 tabs., 8 figs

  3. Boron biodistribution study in colorectal liver metastases patients in Argentina.

    Science.gov (United States)

    Cardoso, J; Nievas, S; Pereira, M; Schwint, A; Trivillin, V; Pozzi, E; Heber, E; Monti Hughes, A; Sanchez, P; Bumaschny, E; Itoiz, M; Liberman, S

    2009-07-01

    Ex-situ BNCT for multifocal unresectable liver metastases employing whole or partial autograft techniques requires knowledge of boron concentrations in healthy liver and metastases following perfusion and immersion in Wisconsin solution (W), the procedure employed for organ preservation during ex-situ irradiation. Measurements of boron concentration in blood, liver and metastases following an intravenous infusion of BPA-F in five colorectal liver metastases patients scheduled for surgery were performed. Tissue samples were evaluated for boron content pre and post perfusion and immersion in W. Complementary histological studies were performed. The data showed a dose-dependent BPA uptake in liver, a boron concentration ratio liver/blood close to 1 and a wide spread in the metastases/liver concentration ratios in the range 0.8-3.6, partially attributable to histological variations between samples. Based on the boron concentrations and dose considerations (liver or =40 Gy-Eq) at the RA-3 thermal neutron facility (mean flux of about (6+/-1) x 10(9) n cm(-2)s(-1)), ex-situ treatment of liver metastases at RA-3 would be feasible.

  4. Quantification of corrosion resistance of a new-class of criticality control materials: thermal-spray coatings of high-boron iron-based amorphous metals - Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Shaw, C K; Rebak, R; Day, S D; Lian, T; Hailey, P; Payer, J H; Branagan, D J; Aprigliano, L F

    2007-03-28

    An iron-based amorphous metal, Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5), with very good corrosion resistance was developed. This material was produced as a melt-spun ribbon, as well as gas atomized powder and a thermal-spray coating. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. Earlier studies have shown that ingots and melt-spun ribbons of these materials have good passive film stability in these environments. Thermal spray coatings of these materials have now been produced, and have undergone a variety of corrosion testing, including both atmospheric and long-term immersion testing. The modes and rates of corrosion have been determined in the various environments, and are reported here.

  5. Differential response of cotton cultivars to boron toxicity

    OpenAIRE

    Harite, Ümit; Aydın, Mehmet

    2008-01-01

    A greenhouse experiment was performed to study the effects of boron (B) on growth, and B distribution in the plant parts. The reactions of cotton varieties, grown in a mixture of sand and perlite medium, were investigated in point of boron doses. The experiment was conducted with four B doses (0.5, 7.5, 15, 22.5 mg B L-1) and eight cultivars (Barut 2005, Gossipolsüz Nazilli, Gürel Bey, Nazilli 143, Nazilli 342, Nazilli 39, Nazilli-503, STN 8A) in factorial experiment design. Numbe...

  6. Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents.

    Science.gov (United States)

    Banerjee, Swagata; Veale, Emma B; Phelan, Caroline M; Murphy, Samantha A; Tocci, Gillian M; Gillespie, Lisa J; Frimannsson, Daniel O; Kelly, John M; Gunnlaugsson, Thorfinnur

    2013-02-21

    The development of functional 1,8-naphthalimide derivatives as DNA targeting, anticancer and cellular imaging agents is a fast growing area and has resulted in several such derivatives entering into clinical trials. This review gives an overview of the many discoveries and the progression of the use of 1,8-naphthalimides as such agents and their applications to date; focusing mainly on mono-, bis-naphthalimide based structures, and their various derivatives (e.g. amines, polyamine conjugates, heterocyclic, oligonucleotide and peptide based, and those based on metal complexes). Their cytotoxicity, mode of action and cell-selectivity are discussed and compared. The rich photophysical properties of the naphthalimides (which are highly dependent on the nature and the substitution pattern of the aryl ring) make them prime candidates as probes as the changes in spectroscopic properties such as absorption, dichroism, and fluorescence can all be used to monitor their binding to biomolecules. This also makes them useful species for monitoring their uptake and location within cells without the use of co-staining. The photochemical properties of the compounds have also been exploited, for example, for photocleavage of nucleic acids and for the destruction of tumour cells.

  7. Boron ion source based on planar magnetron discharge in self-sputtering mode.

    Science.gov (United States)

    Gushenets, V I; Hershcovitch, A; Kulevoy, T V; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2010-02-01

    An ion source based on a planar magnetron sputtering device with thermally isolated target has been designed and demonstrated. For a boron sputtering target, high target temperature is required because boron has low electrical conductivity at room temperature, increasing with temperature. The target is well-insulated thermally and can be heated by an initial low-current, high-voltage discharge mode. A discharge power of 16 W was adequate to attain the required surface temperature (400 degrees C), followed by transition of the discharge to a high-current, low-voltage mode for which the magnetron enters a self-sputtering operational mode. Beam analysis was performed with a time-of-flight system; the maximum boron ion fraction in the beam is greater than 99%, and the mean boron ion fraction, time-integrated over the whole pulse length, is about 95%. We have plans to make the ion source steady state and test with a bending magnet. This kind of boron ion source could be competitive to conventional boron ion sources that utilize compounds such as BF(3), and could be useful for semiconductor industry application.

  8. Boron neutron capture therapy for recurrent head and neck malignancies

    International Nuclear Information System (INIS)

    Kato, Itsuro; Ono, Koji; Sakurai, Yoshinori

    2006-01-01

    To avoid severe impairment of oro-facial structures and functions, it is necessary to explore new treatments for recurrent head and neck malignancies (HNM). Boron neutron capture therapy (BNCT) is tumor-cell targeted radiotherapy that has significant superiority over conventional radiotherapies in principle. So far for 4 years and 3 months, we have treated with 37 times of BNCT for 21 patients (14 squamous cell carcinomas (SCC), 4 salivary gland carcinomas and 3 sarcomas) with a recurrent and far advanced HNM since 2001. Results are (1) 10 B concentration of tumor/normal tissue ratio (T/N ratio) of FBPA-PET studies were SCC: 1.8-5.7, sarcoma: 2.5-4.0, parotid tumor: 2.5-3.7. (2) Therapeutic effects were CR: 6cases, PR: 11cases, PD: 3cases NE (not evaluated): 1case. Response rate was 81%. (3) Improvement of QOL such as a relief of severe pain, bleeding, and exudates at the local lesion, improvement of PS, disappearance of ulceration, covered with normal skin and preserved oral and maxillofacial functions and tissues. (4) Survival periods after BNCT were 1-51 months (mean: 9.8 months). 4-year survival rate was 39% by Kaplan-Meier analysis. (5) A few adverse-effects such as transient mucositis, alopecia were recognized. These results indicate that BNCT represents a new and promising treatment approach for advanced HNM. (author)

  9. For boron neutron capture therapy,synthesizing boron-polymer compounds and testing in laboratory conditions

    International Nuclear Information System (INIS)

    2011-01-01

    The aim of this project is to establish a focus point at Turkish Atomic Energy Authority (TAEA) in the field of Boron Neutron Capture Therapy which is a binary radiotherapy method for brain tumours. Moreover in the scope of the project, a new alternative of 1 0B-carrier compounds will be synthesized, the neutron source will be determined and the infrastructure to start the clinical trials of BNCT in our country will be established. BNCT is a binary radiotherapy method and the successful of this method is depend on the synthesized boron compounds which have the selective targeting property with tumour cells and neutron optimization. The water-soluble polymer based boron compounds having biochemical and physiological properties will be synthesized and cell culture experiment will be done. In addition, after the neutron source is set up in our country, the infrastructure studies will be started in order to start the clinical trials of BNCT. In this project, there are three different groups as boron compounds, neutron physics and medical group. Neutron physics group is starting the calculations of neutron beam parameters using in BNCT application. But, medical group has no active studies yet. Boron compounds group has been carried out two different experimental studies. In the first experimental study, functional groups have been bound to boron containing polymers to enhance the selectively targeting property and characterized by various analysis methods. Later, cell culture experiment will be done. The first study has been carried out with Hacettepe University. Up to present, completed studies are listed as: -Maleic anhydride oligomer was synthesized and then 2-aminoethyl diphenyl borate (2-AEPB) and monomethoxy poly(ethylene glycol) (PEG) was bound to this oligomer, respectively. Thus, [MAH] n -g 1 -2-AEPB-g 2 -PEG was synthesized. -2-AEPB compound were bound to poly(acrylic acid) polymer at different three mole ratio.Then, the selected Poli(Ac)-g 1 -2-AEPB polymer

  10. Neutron production in bombardments of thin and thick W, Hg, Pb targets by 0.4, 0.8, 1.2, 1.8 and 2.5 GeV protons

    International Nuclear Information System (INIS)

    Letrourneau, A.; Galin, J.; Goldenbaum, F.; Lott, B.; Peghaire, A.; Enke, M.; Hilscher, D.; Jahnke, U.; Nuenighoff, K.; Filges, D.; Neef, R.D.; Paul, N.; Schaal, H.; Sterzenbach, G.; Tietze, A.

    2000-05-01

    Neutron experimental data relevant to the design of the target of neutron spallation sources are presented and discussed. The data include the reaction cross sections for W, Hg and Pb investigated with 0.4, 0.8, 1.2, 1.8 and 2.5 GeV proton beams as well as the neutron production, neutron multiplicity distribution, as determined event per event using a high efficiency detector. The production as a function of target material is investigated for both thin (with a single reaction) and thick targets (multiple reactions). Comparisons are made with the predictions of a high energy transport code. (authors)

  11. Future boronated molecules for neutron capture therapy

    International Nuclear Information System (INIS)

    Soloway, A.H.; Alam, F.; Barth, R.F.

    1986-01-01

    The ability of several boron compounds to localize in tumor cells is examined. A number of first and second generation compounds which were not synthesized specifically for localization are described. Among these are the boron hydrides and boranes. A third generation of boron compounds are designed for selective localization. These fall into two groups: relatively small organic compounds and boronated antibodies, both of which are discussed here

  12. Compression and Associated Properties of Boron Carbide

    Science.gov (United States)

    2008-12-01

    Klandadze, G.I., and Eristavi, A.M., 1999: IR- Active Phonons and Structure Elements of Isotope - Enriched Boron Carbide, J. Sol. State Chem. 154, 79- 86...COMPRESSION AND ASSOCIATED PROPERTIES OF BORON CARBIDE D. P. Dandekar*and J. A. Ciezak Army Research Laboratory, APG, MD 21005 M. Somayazulu...of the observed loss of shear strength in boron carbide under plane shock wave compression to amorphization in boron carbide under triaxial stress

  13. Lattice vibrations in α-boron

    International Nuclear Information System (INIS)

    Richter, W.

    1976-01-01

    α-rhombohedral boron is the simplest boron modification, with only 12 atoms per unit cell. The boron atoms are arranged in B 12 icosahedra, which are centered at the lattice points of a primitive rhombohedral lattice. The icosahedra are slightly deformed, as the five-fold symmetry of the ideal icosahedron is incompatible with any crystal structure. The lattice dynamics of α-boron are discussed in terms of the model developed by Weber and Thorpe. (Auth.)

  14. Synthesis of oligomeric boron-containing phospolyols

    International Nuclear Information System (INIS)

    Bondarenko, S.N.; Khokhlova, T.V.; Orlova, S.A.; Tuzhikov, O.I.

    2006-01-01

    Structure is investigated and reactivity of oligomeric boron-containing phospolyols is studied. Oligomeric boron-containing compound interacts with ethylene glycol, diethylene glycol, glycerol, 1,4-butandiol with formation of linear boron-containing phospolyols. Reactions proceed in noncatalytic conditions with stoichiometric quantities of reagents at 170-200 Deg C in inert gas media. Boron-containing phospolyols are viscous uncolored liquids, their physicochemical characteristics are represented [ru

  15. Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride–hydroxy apatite in rat femurs

    Energy Technology Data Exchange (ETDEWEB)

    Atila, Alptug, E-mail: alptugatila@yahoo.com [Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum 25240 (Turkey); Halici, Zekai; Cadirci, Elif [Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum 25240 (Turkey); Karakus, Emre [Department of Pharmacology and Toxicology, School of Veterinary Medicine, Ataturk University, Erzurum 25240 (Turkey); Palabiyik, Saziye Sezin [Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ataturk University, Erzurum 25240 (Turkey); Ay, Nuran [Department of Material Science and Engineering, Faculty of Engineering, Anadolu University, Eskisehir 26555 (Turkey); Bakan, Feray [Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956 (Turkey); Yilmaz, Sahin [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul 34755 (Turkey)

    2016-01-01

    ABSTRACT: Boron and its derivatives are effective in bone recovery and osteointegration. However, increasing the boron levels in body liquids may cause toxicity. The aim of our study is to investigate serum boron levels using ICP-MS after implantation of different ratios of nano-hBN–HA composites in rat femurs. All rats were (n = 126) divided into five experimental groups (n = 24) and one healthy group (6 rats); healthy (Group1), femoral defect + %100HA (Group2), femoral defect + %2.5hBN + %97.5HA (Group3), femoral defect + %5hBN + %95HA (Group4), femoral defect + %10hBN + %90 HA (Group5), femoral defect + %100hBN (Group6). The femoral defect was created in the distal femur (3 mm drill-bit). Each implant group was divided into four different groups (n = 24) also 6 rats sacrificed for each groups in one week intervals during four weeks. In our results; at 1, 2, 3, and 4 weeks after implantation near bone tissue, serum levels of boron were evaluated using ICP-MS. We demonstrated that neither short-term nor long-term implantation of hBN–HA composite resulted in statistically increased serum boron levels in experimental groups compared to healthy group. In conclusion, this study investigated the implant material produced form hBN–HA for the first time. Our data suggest that hBN is a new promising target for biomaterial and implant bioengineers. - Highlights: • Nano-hBN–HA composites are new targets for biomaterial and implant bioengineers. • Serum boron levels were researched after implantation of nano-hBN–HA composites. • Implantation of hBN–HA composite did not result in increased serum boron levels. • The use of boron in composite form with HA did not change the stability of the implant.

  16. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    Kitaoka, Yoshinori

    1993-09-01

    This volume contains the proceedings of the 5th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 22 in 1993. The solubility of the boron carrier play an important role in the BNCT. New water-soluble p-boronophenylalanine derivatives are synthesized and their biological activities are investigated (Chap. 2 and 3). Some chemical problems on the BNCT were discussed, and the complex formation reaction of hydroxylboryl compounds were studied by the paper electrophoresis (Chap. 4). The results of the medical investigation on the BNCT using BSH compounds are shown in Chap. 5. Syntheses of o- and m-boronophenylalanine were done and their optical resolution was tried (Chap. 6). The complex formation reaction of p-boronophenylalanine (BPA) with L-DOPA and the oxidation reaction of the analogs are found in Chap. 7. The pka of BPA were determined by the isotachophoresis (Chap. 8). The chemical nature of dihydroxyboryl compounds were investigated by an infrared spectroscopy and electrophoresis (Chap. 9). New synthetic methods of BPA and p-boronophenylserine using ester of isocyanoacetic acid are described in Chap. 10. The induction of chromosomal aberations by neutron capture reaction are discussed from a point of the biological view. The a of the presented papers are indexed individually. (J.P.N.)

  17. Structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron

    OpenAIRE

    He, Chaoyu; Zhong, Jianxin

    2013-01-01

    The structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron have been studied by first-principles calculations. Both a-boron and a*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of "3S-6D-3S" and "2S-6D-4S", respectively. The total energy calculations show that a*-boron is less stable than a-boron but more favorable than beta-boron and Gamma-boron at zero pressure. Both a-boron and a*-boron are confirm...

  18. A protein with an unusually short PPR domain, MEF8, affects editing at over 60 Arabidopsis mitochondrial C targets of RNA editing.

    Science.gov (United States)

    Diaz, Michael F; Bentolila, Stephane; Hayes, Michael L; Hanson, Maureen R; Mulligan, R Michael

    2017-11-01

    An RNA-seq approach was used to investigate the role of a PLS-subfamily pentatricopeptide repeat protein, Mitochondrial Editing Factor 8 (MEF8), on editing in Arabidopsis mitochondria and plastids. MEF8 has an intact DYW domain, but possesses an unusually short PLS repeat region of only five repeats. The MEF8 T-DNA insertion (mef8) line exhibited reduced editing at 38 mitochondrial editing sites and increased editing at 24 sites; therefore the absence of MEF8 affects 11% of the mitochondrial editome. Notably, 60% of the matR transcripts' sites showed a decrease of editing extent in the mef8 mutant. An E549A substitution in the MEF8 protein replaced the putatively catalytic glutamate of the HXE motif in the DYW domain. Complementation with MEF8-E549A failed to restore editing at the main target sites but was able to restore editing at the matR transcript; it also decreased the editing extent of most of the C targets exhibiting an increase of editing extent in the mef8 mutant plant. Thus, MEF8 has two antagonistic effects on mitochondrial editing: stimulatory, which requires a catalytic glutamate for most of the targets except for the matR transcript, and inhibitory, for which glutamate is dispensable. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. Boron steel. I Part. Preparation

    International Nuclear Information System (INIS)

    Jaraiz Franco, E.; Esteban Hernandez, J. A.

    1960-01-01

    With the advent of the first nuclear reactors arise the need for control rods and shielding duties for some types of radiations. One of the materials used for this purpose has been the high boron steel. This paper describes the melting and casting procedures employed for the production, at laboratory scale, of steels with Boron content ranging from 1 to 4 per cent, as well as the metallographic and X-Ray techniques used for the identification of the present phases. The electrolytic technique employed for the isolation of the Fe 2 B phase and its subsequent X-Ray identification has proved to be satisfactory. (Author) 11 refs

  20. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  1. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  2. Chemical separation of boron isotopes

    International Nuclear Information System (INIS)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF 3 gas and the liquid molecular addition compounds of BF 3 . Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF 3 solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references

  3. Chemical separation of boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF/sub 3/ gas and the liquid molecular addition compounds of BF/sub 3/. Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF/sub 3/ solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references.

  4. Boron cycling in subduction zones

    OpenAIRE

    Palmer, Martin R.

    2017-01-01

    Subduction zones are geologically dramatic features, with much of the drama being driven by the movement of water. The “light and lively” nature of boron, coupled with its wide variations in isotopic composition shown by the different geo-players in this drama, make it an ideal tracer for the role and movement of water during subduction. The utility of boron ranges from monitoring how the fluids that are expelled from the accretionary prism influence seawater chemistry, to the subduction of c...

  5. Boron Nitride Nanoribbons from Exfoliation of Boron Nitride Nanotubes

    Science.gov (United States)

    Hung, Ching-Cheh; Hurst, Janet; Santiago, Diana

    2017-01-01

    Two types of boron nitride nanotubes (BNNTs) were exfoliated into boron nitride nanoribbons (BNNR), which were identified using transmission electron microscopy: (1) commercial BNNTs with thin tube walls and small diameters. Tube unzipping was indicated by a large decrease of the sample's surface area and volume for pores less than 2 nm in diameter. (2) BNNTs with large diameters and thick walls synthesized at NASA Glenn Research Center. Here, tube unraveling was indicated by a large increase in external surface area and pore volume. For both, the exfoliation process was similar to the previous reported method to exfoliate commercial hexagonal boron nitride (hBN): Mixtures of BNNT, FeCl3, and NaF (or KF) were sequentially treated in 250 to 350 C nitrogen for intercalation, 500 to 750 C air for exfoliation, and finally HCl for purification. Property changes of the nanosized boron nitride throughout this process were also similar to the previously observed changes of commercial hBN during the exfoliation process: Both crystal structure (x-ray diffraction data) and chemical properties (Fourier-transform infrared spectroscopy data) of the original reactant changed after intercalation and exfoliation, but most (not all) of these changes revert back to those of the reactant once the final, purified products are obtained.

  6. Synthesis of boron nitride from boron containing poly (vinyl alcohol ...

    Indian Academy of Sciences (India)

    A ceramic precursor, prepared by condensation reaction from poly(vinyl alcohol) (PVA) and boric acid (H3BO3) in 1:1, 2:1 and 4:1 molar ratios, was synthesized as low temperature synthesis route for boron nitride ceramic. Samples were pyrolyzed at 850°C in nitrogen atmosphere followed by characterization using Fourier ...

  7. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Hawthorne, M. Frederick

    2005-01-01

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic

  8. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick [Univ. of California, Los Angeles, CA (United States)

    2005-04-07

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are

  9. Boron analysis and boron imaging in biological materials for Boron Neutron Capture Therapy (BNCT).

    Science.gov (United States)

    Wittig, Andrea; Michel, Jean; Moss, Raymond L; Stecher-Rasmussen, Finn; Arlinghaus, Heinrich F; Bendel, Peter; Mauri, Pier Luigi; Altieri, Saverio; Hilger, Ralf; Salvadori, Piero A; Menichetti, Luca; Zamenhof, Robert; Sauerwein, Wolfgang A G

    2008-10-01

    Boron Neutron Capture Therapy (BNCT) is based on the ability of the stable isotope 10B to capture neutrons, which leads to a nuclear reaction producing an alpha- and a 7Li-particle, both having a high biological effectiveness and a very short range in tissue, being limited to approximately one cell diameter. This opens the possibility for a highly selective cancer therapy. BNCT strongly depends on the selective uptake of 10B in tumor cells and on its distribution inside the cells. The chemical properties of boron and the need to discriminate different isotopes make the investigation of the concentration and distribution of 10B a challenging task. The most advanced techniques to measure and image boron are described, both invasive and non-invasive. The most promising approach for further investigation will be the complementary use of the different techniques to obtain the information that is mandatory for the future of this innovative treatment modality.

  10. Boron-enhanced diffusion of boron from ultralow-energy boron implantation

    International Nuclear Information System (INIS)

    Agarwal, A.; Eaglesham, D.J.; Gossmann, H.J.; Pelaz, L.; Herner, S.B.; Jacobson, D.C.

    1998-01-01

    The authors have investigated the diffusion enhancement mechanism of BED (boron enhanced diffusion), wherein the boron diffusivity is enhanced three to four times over the equilibrium diffusivity at 1,050 C in the proximity of a silicon layer containing a high boron concentration. It is shown that BED is associated with the formation of a fine-grain polycrystalline silicon boride phase within an initially amorphous Si layer having a high B concentration. For 0.5 keV B + , the threshold implantation dose which leads to BED lies between 3 x 10 14 and of 1 x 10 15 /cm -2 . Formation of the shallowest possible junctions by 0.5 keV B + requires that the implant dose be kept lower than this threshold

  11. Analytical boron diffusivity model in silicon for thermal diffusion from boron silicate glass film

    Science.gov (United States)

    Kurachi, Ikuo; Yoshioka, Kentaro

    2015-09-01

    An analytical boron diffusivity model in silicon for thermal diffusion from a boron silicate glass (BSG) film has been proposed in terms of enhanced diffusion due to boron-silicon interstitial pair formation. The silicon interstitial generation is considered to be a result of the silicon kick-out mechanism by the diffused boron at the surface. The additional silicon interstitial generation in the bulk silicon is considered to be the dissociation of the diffused pairs. The former one causes the surface boron concentration dependent diffusion. The latter one causes the local boron concentration dependent diffusion. The calculated boron profiles based on the diffusivity model are confirmed to agree with the actual diffusion profiles measured by secondary ion mass spectroscopy (SIMS) for a wide range of the BSG boron concentration. This analytical diffusivity model is a helpful tool for p+ boron diffusion process optimization of n-type solar cell manufacturing.

  12. Effect of boron carbide on primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-04-01

    Full Text Available In the paper results of the influence of boron carbide (B4C as inoculant of abrasion-resisting chromium cast iron (about 2,8% carbon and 18% chromium on primary crystallization researches are presented. Boron carbide dispersion was introduced at the bottom of pouring ladle before tap of liquid cast iron. In this investigations were used three different quantities of inoculant in amounts 0,1%; 0,2% and 0,3% with relation to bath weight. It has been demonstrated that such small additions of boron carbide change primary crystallization parameters, particularly temperature characteristic of process, their time and kinetics.

  13. Boron removal from wastewater using adsorbents.

    Science.gov (United States)

    Kluczka, J; Trojanowska, J; Zolotajkin, M; Ciba, J; Turek, M; Dydo, P

    2007-01-01

    In the present study, boron adsorption on activated alumina and activated carbon impregnated with calcium chloride, tartaric acid and mannitol was investigated. The adsorbate in question was the wastewater from the chemical landfill in Tarnowskie Gory of 25-70 mg l(-1) boron content. The removal of boron from the above-described wastewater was examined in the static (batch) and dynamic (column) experiments. The static experiments were carried out to assess boron adsorption isotherms, based on which the most efficient adsorbent as well as the rough resin load was determined. On the basis of the dynamic experiment results, the boron adsorptive capacities of the examined resins were deduced. It was concluded that the use of the impregnants increased the ability of activated carbon to adsorb boron. Granulated activated carbon WG-12 impregnated with mannitol was found to be the most promising for the boron removal from wastewater of the Chemical Wastewater Plant in Tarnowskie Gory.

  14. Vaccine molecules targeting Xcr1 on cross-presenting DCs induce protective CD8+ T-cell responses against influenza virus.

    Science.gov (United States)

    Fossum, Even; Grødeland, Gunnveig; Terhorst, Dorothea; Tveita, Anders A; Vikse, Elisabeth; Mjaaland, Siri; Henri, Sandrine; Malissen, Bernard; Bogen, Bjarne

    2015-02-01

    Targeting antigens to cross-presenting dendritic cells (DCs) is a promising method for enhancing CD8(+) T-cell responses. However, expression patterns of surface receptors often vary between species, making it difficult to relate observations in mice to other animals. Recent studies have indicated that the chemokine receptor Xcr1 is selectively expressed on cross-presenting murine CD8α(+) DCs, and that the expression is conserved on homologous DC subsets in humans (CD141(+) DCs), sheep (CD26(+) DCs), and macaques (CADM1(+) DCs). We therefore tested if targeting antigens to Xcr1 on cross-presenting DCs using antigen fused to Xcl1, the only known ligand for Xcr1, could enhance immune responses. Bivalent Xcl1 fused to model antigens specifically bound CD8α(+) DCs and increased proliferation of antigen-specific T cells. DNA vaccines encoding dimeric Xcl1-hemagglutinin (HA) fusion proteins induced cytotoxic CD8(+) T-cell responses, and mediated full protection against a lethal challenge with influenza A virus. In addition to enhanced CD8(+) T-cell responses, targeting of antigen to Xcr1 induced CD4(+) Th1 responses and highly selective production of IgG2a antibodies. In conclusion, targeting of dimeric fusion vaccine molecules to CD8α(+) DCs using Xcl1 represents a novel and promising method for induction of protective CD8(+) T-cell responses. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Stabilized (111)in-labeled sCCK8 analogues for targeting CCK2-receptor positive tumors: synthesis and evaluation.

    NARCIS (Netherlands)

    Roosenburg, S.; Laverman, P.; Joosten, L.; Eek, A.; Oyen, W.J.G.; Jong, M. de; Rutjes, F.P.J.T.; Delft, F.L. van; Boerman, O.C.

    2010-01-01

    Radiolabeled cholecystokinin-8 (CCK8) peptide analogues can be used for peptide receptor radionuclide imaging and therapy for tumors expressing CCK2/gastrin receptors. Earlier findings indicated that sulfated CCK8 (sCCK8, Asp-Tyr(OSO(3)H)-Met-Gly-Trp-Met-Asp-Phe-NH(2)) may have better

  16. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    Science.gov (United States)

    Lopez-Quintas, Ignacio; Oujja, Mohamed; Sanz, Mikel; Benitez-Cañete, Antonio; Chater, Richard J.; Cañamares, Maria Vega; Marco, José F.; Castillejo, Marta

    2015-02-01

    Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved.

  17. Boronic acids for fluorescence imaging of carbohydrates.

    Science.gov (United States)

    Sun, Xiaolong; Zhai, Wenlei; Fossey, John S; James, Tony D

    2016-02-28

    "Fluorescence imaging" is a particularly exciting and rapidly developing area of research; the annual number of publications in the area has increased ten-fold over the last decade. The rapid increase of interest in fluorescence imaging will necessitate the development of an increasing number of molecular receptors and binding agents in order to meet the demand in this rapidly expanding area. Carbohydrate biomarkers are particularly important targets for fluorescence imaging given their pivotal role in numerous important biological events, including the development and progression of many diseases. Therefore, the development of new fluorescent receptors and binding agents for carbohydrates is and will be increasing in demand. This review highlights the development of fluorescence imaging agents based on boronic acids a particularly promising class of receptors given their strong and selective binding with carbohydrates in aqueous media.

  18. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  19. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  20. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    electrolysis was crystalline in nature, X-ray diffraction pat-. ∗. Author for correspondence (sas@igcar.gov.in) .... Elemental boron was synthesized by the electrolysis of molten potassium fluroborate dissolved in a ... A high-throughput Renishaw micro-Raman spectrome- ter (model Invia) was employed to record Raman ...

  1. Preparation process of boron nitride

    International Nuclear Information System (INIS)

    Mignani, G.; Ardaud, P.

    1990-01-01

    High purity boron nitride, without Si and a low carbon content, is prepared by pyrolysis, under an ammoniac atmosphere, of the reaction product between a B-trihalogenoborazole and a primary amine RNH 2 when R is a hydrocarbon radical eventually substituted containing from 1 to 6 carbon atoms inclusively [fr

  2. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction ...

  3. Method of separating boron isotopes

    Science.gov (United States)

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  4. Prevention of uncontrolled boron dilution

    International Nuclear Information System (INIS)

    Sere, J. L.

    1997-01-01

    The paper presents a synthesis of the global analysis of uncontrolled boron dilution risk performed by (European Consortium Mochovce (EUCOM) in the frame of Safety Measures RC 01 and AA 11. Recommendation for additional improvements (mainly I and C interlocks or inhibition) are presented. (author)

  5. Controlling the Morphology and Oxidation Resistance of Boron Carbide Synthesized Via Carbothermic Reduction Reaction

    Science.gov (United States)

    Ahmed, Yasser M. Z.; El-Sheikh, Said M.; Ewais, Emad M. M.; Abd-Allah, Asmaa A.; Sayed, Said A.

    2017-03-01

    Boron carbide powder was synthesized from boric acid and lactose mixtures via easy procedure. Boric acid and lactose solution mixtures were roasted in stainless steel pot at 280 °C for 24 h. Boron carbide was obtained by heating the roasted samples under flowing of industrial argon gas at 1500 °C for 3 h. The amount of borate ester compound in the roasted samples was highly influenced by the boron/carbon ratio in the starting mixtures and plays a versatile role in the produced boron carbide. The high-purity boron carbide powder was produced with a sample composed of lowest boron/carbon ratio of 1:1 without calcination step. Particle morphology was changed from nano-needles like structure of 8-10 nm size with highest carbon ratio mixture to spherical shape of >150 nm size with lowest one. The oxidation resistance performance of boron carbide is highly dependent on the morphology and grain size of the synthesized powder.

  6. The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach

    International Nuclear Information System (INIS)

    Sabirianov, Ildar F.; Brand, Jennifer I.; Fairchild, Robert W.

    2008-01-01

    Boron carbide diode detectors, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theoretical expectations. The performance of the all boron carbide neutron detector differs, as expected, from devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector). Diodes were fabricated from natural abundance boron (20% 10 B and 80% 11 B.) directly on the metal substrates and metal contacts applied to the films as grown. The total boron depth was on the order of 2 microns. This is clearly not a conversion-layer configuration. The diodes were exposed to thermal neutrons generated from a paraffin moderated plutonium-beryllium source in moderated and un-moderated, as well as shielded and unshielded experimental configurations, where the expected energy peaks at at 2.31 MeV and 2.8 MeV were clearly observed, albeit with some incomplete charge collection typical of thinner diode structures. The results are compared with other boron based thin film detectors and literature models. (authors)

  7. SU-F-T-140: Assessment of the Proton Boron Fusion Reaction for Practical Radiation Therapy Applications Using MCNP6

    International Nuclear Information System (INIS)

    Adam, D; Bednarz, B

    2016-01-01

    Purpose: The proton boron fusion reaction is a reaction that describes the creation of three alpha particles as the result of the interaction of a proton incident upon a 11B target. Theoretically, the proton boron fusion reaction is a desirable reaction for radiation therapy applications in that, with the appropriate boron delivery agent, it could potentially combine the localized dose delivery protons exhibit (Bragg peak) and the local deposition of high LET alpha particles in cancerous sites. Previous efforts have shown significant dose enhancement using the proton boron fusion reaction; the overarching purpose of this work is an attempt to validate previous Monte Carlo results of the proton boron fusion reaction. Methods: The proton boron fusion reaction, 11B(p, 3α), is investigated using MCNP6 to assess the viability for potential use in radiation therapy. Simple simulations of a proton pencil beam incident upon both a water phantom and a water phantom with an axial region containing 100ppm boron were modeled using MCNP6 in order to determine the extent of the impact boron had upon the calculated energy deposition. Results: The maximum dose increase calculated was 0.026% for the incident 250 MeV proton beam scenario. The MCNP simulations performed demonstrated that the proton boron fusion reaction rate at clinically relevant boron concentrations was too small in order to have any measurable impact on the absorbed dose. Conclusion: For all MCNP6 simulations conducted, the increase of absorbed dose of a simple water phantom due to the 11B(p, 3α) reaction was found to be inconsequential. In addition, it was determined that there are no good evaluations of the 11B(p, 3α) reaction for use in MCNPX/6 and further work should be conducted in cross section evaluations in order to definitively evaluate the feasibility of the proton boron fusion reaction for use in radiation therapy applications.

  8. Tribological properties of nitrogen implanted and boron implanted steels

    International Nuclear Information System (INIS)

    Kern, K.T.

    1996-01-01

    Samples of a steel with high chrome content was implanted separately with 75 keV nitrogen ions and with 75 keV boron ions. Implanted doses of each ion species were 2-, 4-, and 8 x 10 17 /cm 2 . Retained doses were measured using resonant non-Rutherford Backscattering Spectrometry. Tribological properties were determined using a pin-on-disk test with a 6-mm diameter ruby pin with a velocity of 0.94 m/min. Testing was done at 10% humidity with a load of 377 g. Wear rate and coefficient of friction were determined from these tests. While reduction in the wear rate for nitrogen implanted materials was observed, greater reduction (more than an order of magnitude) was observed for boron implanted materials. In addition, reduction in the coefficient of friction for high-dose boron implanted materials was observed. Nano-indentation revealed a hardened layer near the surface of the material. Results from grazing incidence x-ray diffraction suggest the formation of Fe 2 N and Fe 3 N in the nitrogen implanted materials and Fe 3 B in the boron implanted materials. Results from transmission electron microscopy will be presented

  9. Boron Neutron Capture Therapy in the Treatment of Recurrent Laryngeal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Haapaniemi, Aaro, E-mail: aaro.haapaniemi@hus.fi [Department of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Kankaanranta, Leena [Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Saat, Riste [Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Koivunoro, Hanna; Saarilahti, Kauko [Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Mäkitie, Antti; Atula, Timo [Department of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Joensuu, Heikki [Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland)

    2016-05-01

    Purpose: To investigate the safety and efficacy of boron neutron capture therapy (BNCT) as a larynx-preserving treatment option for patients with recurrent laryngeal cancer. Methods and Materials: Six patients with locally recurrent squamous cell laryngeal carcinoma and 3 patients with persistent laryngeal cancer after prior treatment were treated with BNCT at the FiR1 facility (Espoo, Finland) in 2006 to 2012. The patients had received prior radiation therapy with or without concomitant chemotherapy to a cumulative median dose of 66 Gy. The median tumor diameter was 2.9 cm (range, 1.4-10.9 cm) before BNCT. Boron neutron capture therapy was offered on a compassionate basis to patients who either refused laryngectomy (n=7) or had an inoperable tumor (n=2). Boronophenylalanine-fructose (400 mg/kg) was used as the boron carrier and was infused over 2 hours intravenously before neutron irradiation. Results: Six patients received BNCT once and 3 twice. The estimated average gross tumor volume dose ranged from 22 to 38 Gy (W) (mean; 29 Gy [W]). Six of the 8 evaluable patients responded to BNCT; 2 achieved complete and 4 partial response. One patient died early and was not evaluable for response. Most common side effects were stomatitis, fatigue, and oral pain. No life-threatening or grade 4 toxicity was observed. The median time to progression within the target volume was 6.6 months, and the median overall survival time 13.3 months after BNCT. One patient with complete response is alive and disease-free with a functioning larynx 60 months after BNCT. Conclusions: Boron neutron capture therapy given after prior external beam radiation therapy is well tolerated. Most patients responded to BNCT, but long-term survival with larynx preservation was infrequent owing to cancer progression. Selected patients with recurrent laryngeal cancer may benefit from BNCT.

  10. Re-sintered boron-rich polycrystalline cubic boron nitride and method for making same

    Energy Technology Data Exchange (ETDEWEB)

    Lavens, T.R.; Corrigan, F.R.; Shott, R.L.; Bovenkerk, H.P.

    1987-06-16

    A method is described for making re-sintered polycrystalline cubic boron nitride (CBN) which comprises: (a) placing sintered substantially catalyst-free boron-rich polycrystalline cubic boron nitride particles in a high pressure/high temperature apparatus, the particles being substantially free of sintering inhibiting impurities; (b) subjecting the boron-rich cubic boron nitride particles to a pressure and a temperature adequate to re-sinter the particles, the temperature being below the CBN reconversion temperature; (c) maintaining the temperature and pressure for a time sufficient to re-sinter the boron-rich cubic boron nitride particles in the apparatus, and (d) recovering the re-sintered polycrystalline cubic boron nitride from the apparatus.

  11. Biodistribution of Boron compounds in an experimental model of liver metastases for Boron Neutron Capture (BNCT) Studies

    International Nuclear Information System (INIS)

    Garabalino, Marcela A.; Monti Hughes, Andrea; Molinari, Ana J.; Heber, Elisa M.; Pozzi, Emiliano C.C.; Itoiz, Maria E.; Trivillin, Veronica A.; Schwint, Amanda E.; Nievas, Susana; Aromando, Romina F.

    2009-01-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10 B carriers in tumors followed by irradiation with thermal or epithermal neutrons. The high linear energy transfer alpha particles and recoiling 7 Li nuclei emitted during the capture of a thermal neutron by a 10 B nucleus have a short range and a high biological effectiveness. Thus, BNCT would potentially target neoplastic tissue selectively. In previous studies we demonstrated the therapeutic efficacy of different BNCT protocols in an experimental model of oral cancer. More recently we performed experimental studies in normal rat liver that evidenced the feasibility of treating liver metastases employing a novel BNCT protocol proposed by JEC based on ex-situ treatment and partial liver auto-transplant. The aim of the present study was to perform biodistribution studies with different boron compounds and different administration protocols to determine the protocols that would be therapeutically useful in 'in vivo' BNCT studies at the RA-3 Nuclear Reactor in an experimental model of liver metastases in rats. Materials and Methods. A total of 70 BDIX rats (Charles River Lab., MA, USA) were inoculated in the liver with syngeneic colon cancer cells DH/DK12/TRb (ECACC, UK) to induce the development of subcapsular metastatic nodules. 15 days post-inoculation the animals were used for biodistribution studies. A total of 11 protocols were evaluated employing the boron compounds boronophenylalanine (BPA) and GB-10 (Na 2 10 B 1 -0H 10 ), alone or combined employing different doses and administration routes. Tumor, normal tissue and blood samples were processed for boron measurement by ICP-OES. Results. Several protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue, i.e. BPA 15.5 mg 10 B/kg iv + GB-10 50 mg 10 B/kg iv; BPA 46.5 mg 10 B/kg ip; BPA 46.5 mg 10 B/kg ip

  12. Visualization of Tumor-Immune Interaction - Target-Specific Imaging of S100A8/A9 Reveals Pre-Metastatic Niche Establishment

    NARCIS (Netherlands)

    Eisenblaetter, M.; Flores-Borja, F.; Lee, J.J.; Wefers, C.; Smith, H.; Hueting, R.; Cooper, M.S.; Blower, P.J.; Patel, D.; Rodriguez-Justo, M.; Milewicz, H.; Vogl, T.; Roth, J.; Tutt, A.; Schaeffter, T.; Ng, T.

    2017-01-01

    Background Systemic cancer spread is preceded by the establishment of a permissive microenvironment in the target tissue of metastasis - the premetastatic niche. As crucial players in establishment of the pre-metastatic niche, myeloid derived suppressor cells (MDSC) release S100A8/A9, an exosomal

  13. Recombination and photosensitivity centres in boron nitride irradiated with ions

    International Nuclear Information System (INIS)

    Kabyshev, A.; Konusov, F.; Lopatin, V.

    2001-01-01

    The physical-chemical processes, taking place during the irradiation of dielectrics with ions distort the electron structure of the compounds and generate additional localise state in the forbidden zone (FZ). Consequently, the semiconductor layer with the specific surface density of σ ≥ 10 -10 S/ forms on the surface of the dielectric. In addition to his, the high concentration of the radiation-induced defects changes the optical and photoelectric properties of the materials and also the energy characteristics. Analysis of the photoelectric properties indicates that the recombination processes take part in electric transport. These processes restricted the increase of the photosensitivity and changing the kinetics of relaxation of photo conductivity (σ hv ). The practical application of the boron nitride (BN) the in the thermonuclear systems (for example, Ref. 7), stimulates research into the reasons for the deceleration of its properties under the effect of radiation of various types. The conductivity of non-irradiated boron nitride is of the electron-hole nature with a large fraction of the activation component in exchange of the charge carriers between the levels of the defects and the forbidden zones. On the basis of the correlation of the energy and kinetic parameters of luminescence and , the authors of Ref. 8 constructed a model of electron transfers accompanying the electric transport of the boron nitride. In addition to ion-thermal modification, the conductivity of boron nitride is also of the electron-hole nature and is accompanied by luminescence. Examination of the characteristics of luminescence may be useful for obtaining more information on the transport mechanism. In this work, in order to clarify the main parameters of the forbidden band, detailed investigations were carried out into the spectrum of the electronic states of radiation defects which determine the photoelectric and luminescence properties of the modified boron nitride. The

  14. Radiation damage in boron nitride x-ray lithography masks

    International Nuclear Information System (INIS)

    King, P.L.; Pan, L.; Pianetta, P.; Shimkunas, A.; Mauger, P.; Seligson, D.

    1988-01-01

    The optical and mechanical properties of boron nitride vapor deposited at 400 0 C are shown to degrade when exposed to synchrotron radiation. The extent of the damage and the rate at which the damage occurs are similar to that first reported by Johnson et al. Transmission through membranes of boron nitride was measured in situ during exposure to x rays. Membranes darkened considerably with the transmission through a typical membrane falling from 50% to 20% after absorbing ∼250 kJ/cm 3 of x rays. Changes in local film stress were measured with a simple cantilever technique. Films originally in tension (∼5E8 dyne/cm 2 ) were found to become compressive after absorbing 300 kJ/cm 3 of x rays. Both forms of damage responded well to annealing. Fourier transform infrared (FTIR) and near-edge x-ray absorption measurements were made to discern the structural differences between degraded and unexposed films. No significant structural changes were observed. Boron nitride films deposited at higher temperatures (600 0 C) proved to be much less susceptible to radiation damage. In a related development, films produced through the pyrolysis of borazine appeared to be completely immune to radiation damage as were silicon and silicon nitride membranes. FTIR spectra indicate that less hydrogen is present in the 600 0 C chemical-vapor deposition (CVD) and the pyrolytic boron nitride films than in the 400 0 C CVD films. As proposed by Johnson et al., hydrogen is implicated as an intermediary in the boron nitride damage mechanism

  15. Boron clusters in luminescent materials.

    Science.gov (United States)

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed.

  16. Boron-10 ABUNCL Active Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-07-09

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from testing of the active mode of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) at Los Alamos National Laboratory using sources and fuel pins.

  17. The boron geochemistry of siliceous sponges

    Science.gov (United States)

    de Leon, A.; Wille, M.; Eggins, S. M.; Ellwood, M. J.

    2009-12-01

    The boron content and isotopic composition (δ11B) of marine carbonate organisms can be linked to the pH of the seawater in which they have grown, making carbonates a useful tool for palaeo-seawater pH reconstruction. A study by Furst (1981) documented unusually high boron concentrations in siliceous sponge spicules, in range from hundreds to a thousand ppm. This observation and the potential for preferential incorporation of the tetrahedral borate species into biogenic silica raises the question as to whether the boron chemistry of biogenic silica might also be influenced by seawater pH. We have measured the boron concentration and isotopic composition of siliceous sponges from the Southern Ocean region, with a view to (1) confirming the observations of Furst (1981), (2) assessing the factors that control boron incorporation and isotopic compositions of sponge silica, and (3) investigating the potentially significant role of siliceous sponges in the marine boron cycle. The measured boron concentrations in a diverse range of both demosponge and hexactinellid sponges confirm the high boron concentrations previously reported. The boron isotope compositions of these sponges vary from around +2‰ to +25‰ and greatly exceed the range in marine carbonates. This isotopic variation is inconsistent with seawater pH control but is correlated with ambient seawater silicon concentration, in a manner that suggests a link to silicon uptake kinetics and demand by sponges.

  18. Mineral resource of the month: boron

    Science.gov (United States)

    Crangle, Robert D.

    2012-01-01

    The article offers information on the mineral, boron. Boron compounds, particularly borates, have more commercial applications than its elemental relative which is a metalloid. Making up the 90% of the borates that are used worldwide are colemanite, kernite, tincal, and ulexite. The main borate deposits are located in the Mojave Desert of the U.S., the Tethyan belt in southern Asia, and the Andean belt of South America. Underground and surface mining are being used in gathering boron compounds. INSETS: Fun facts;Boron production and consumption.

  19. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  20. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells: III. Role of volatile boron species on LSM/YSZ and LSCF

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiao Dong; Templeton, Jared W.; Zhu, Zihua; Chou, Y. S.; Maupin, Gary D.; Lu, Zigui; Brow, R. K.; Stevenson, Jeffry W.

    2010-09-02

    Boron oxide is a key component to tailor the softening temperature and viscosity of the sealing glass for solid oxide fuel cells. The primary concern regarding the use of boron containing sealing glasses is the volatility of boron species, which possibly results in cathode degradation. In this paper, we report the role of volatile boron species on the electrochemical performance of LSM/YSZ and LSCF cathodes at various SOFC operation temperatures. The transport rate of boron, ~ 3.24×10-12 g/cm2•sec was measured at 750°C with air saturated with 2.8% moisture. A reduction in power density was observed in cells with LSM/YSZ cathodes after introduction of the boron source to the cathode air stream. Partial recovery of the power density was observed after the boron source was removed. Results from post-test secondary ion mass spectroscopy (SIMS) analysis the partial recovery in power density correlated with partil removal of the deposited boron by the clean air stream. The presence of boron was also observed in LSCF cathodes by SIMS analysis, however the effect of boron on the electrochemical performance of LSCF cathode was negligible. Coverage of triple phase boundaries in LSM/YSZ was postulated as the cause for the observed reduction in electrochemical performance.

  1. Isotopic fractionation of boron in growing corals and its palaeoenvironmental implication

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y.K.; Shirodkar, P.V.; Zhang, C.G.; Wei, H.Z.; Liu, W.G.; Zhou, W.J.

    observed in this study, gave the average pH va l ues of sea water to be 8.85, 8.17, 7.76 and 8.22 respe c ti vely. This indicates the closeness of a43 value of 0.980 with that of the well - accepted r e ported a43 of 0.981 as the recalculated p... function calculati ons and boron adsorption e x- periments on ion exchange resin. Thereafter, a lower a43 of 0.968 was determined 7 based on adsorption exper i ments of boron onto marine clays. Moreover, Hemming et al. 8 calculated a fractionation...

  2. Design and fabrication of an innovative and environmental friendly adsorbent for boron removal.

    Science.gov (United States)

    Wei, Yu-Ting; Zheng, Yu-Ming; Chen, J Paul

    2011-03-01

    Boron can pose adverse effects on human beings and plants species. It exists in various water environments and is difficult to be removed by conventional technologies. In this study, an efficient and environmental friendly sorbent was fabricated by the functionalization of a natural biopolymer, chitosan, with N-methylglucamine through atom transfer radical polymerization. The SEM and BET studies revealed that the sorbent had a rougher surface and a more porous structure than the chitosan. At the optimum neutral pH, the maximum sorption capacity was as high as 3.25 mmol/g, much higher than the commercial boron selective resins (e.g., Amberlite IRA-743) and many other synthesized sorbents. Almost 90% of boron sorption occurred within 8 h and the equilibrium was established in 12 h, which was well described by an intraparticle surface diffusion model. The presence of sodium chloride and sodium nitrate had no effect on the boron removal. The boron concentration in seawater could be reduced to less than 0.5 mg/L from 4.8 mg/L when a sorbent dosage of 1.2 g/L was used. It was therefore concluded that the sorption technology from this study could be promising for boron removal from aqueous solutions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: Mechanisms and limitations.

    Science.gov (United States)

    Chorghe, Darpan; Sari, Mutiara Ayu; Chellam, Shankararaman

    2017-12-01

    One promising water management strategy during hydraulic fracturing is treatment and reuse of flowback/produced water. In particular, the saline flowback water contains many of the chemicals employed for fracking, which need to be removed before possible reuse as "frac water." This manuscript targets turbidity along with one of the additives; borate-based cross-linkers used to adjust the rheological characteristics of the frac-fluid. Alum and ferric chloride were evaluated as coagulants for clarification and boron removal from saline flowback water obtained from a well in the Eagle Ford shale. Extremely high dosages (> 9000 mg/L or 333 mM Al and 160 mM Fe) corresponding to Al/B and Fe/B mass ratios of ∼70 and molar ratios of ∼28 and 13 respectively were necessary to remove ∼80% boron. Hence, coagulation does not appear to be feasible for boron removal from high-strength waste streams. X-ray photoelectron spectroscopy revealed BO bonding on surfaces of freshly precipitated Al(OH) 3 (am) and Fe(OH) 3 (am) suggesting boron uptake was predominantly via ligand exchange. Attenuated total reflection-Fourier transform infrared spectroscopy provided direct evidence of inner-sphere boron complexation with surface hydroxyl groups on both amorphous aluminum and iron hydroxides. Only trigonal boron was detected on aluminum flocs since possible presence of tetrahedral boron was masked by severe AlO interferences. Both trigonal and tetrahedral conformation of boron complexes were identified on Fe(OH) 3 surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cathepsin W expressed exclusively in CD8+ T cells and NK cells, is secreted during target cell killing but is not essential for cytotoxicity in human CTLs.

    Science.gov (United States)

    Stoeckle, Christina; Gouttefangeas, Cécile; Hammer, Michael; Weber, Ekkehard; Melms, Arthur; Tolosa, Eva

    2009-02-01

    Cathepsin W (CatW, lymphopain) is a putative cysteine protease with restricted expression to natural killer (NK) cells and CD8(+) T cells and so far unknown function and properties. Here, we characterize in detail, the regulation of human CatW during T-cell development in response to different stimuli and its functional involvement in cytotoxic lymphocyte effector function. Western blots and real time polymerase chain reaction of sorted, unstimulated, and stimulated cell subsets (thymocytes, T cells, NK cells) and their culture supernatants were used to study regulation and expression of CatW. Primary CD8(+) T cells and short-term T-cell lines were transfected with small interfering RNA to study the involvement of CatW in effector function such as target cell killing and interferon-gamma production. Levels of CatW expression correlate closely with cytotoxic capacity both during development and in response to factors influencing cytotoxicity. Furthermore, CatW is secreted during specific target cell killing. However, knockdown of CatW expression by small interfering RNA neither influences target cell killing nor interferon-gamma production. Despite being expressed in the effector subset of CD8(+) and NK cells and of being released during target cell killing, our functional inhibition studies exclude an essential role of CatW in the process of cytotoxicity.

  5. Optimal timing of neutron irradiation for boron neutron capture therapy after intravenous infusion of sodium borocaptate in patients with glioblastoma

    International Nuclear Information System (INIS)

    Kageji, Teruyoshi; Nagahiro, Shinji; Kitamura, Katsushi; Nakagawa, Yoshinobu; Hatanaka, Hiroshi; Haritz, Dietrich; Grochulla, Frank; Haselsberger, Klaus; Gabel, Detlef

    2001-01-01

    Purpose: A cooperative study in Europe and Japan was conducted to determine the pharmacokinetics and boron uptake of sodium borocaptate (BSH: Na 2 B 12 H 11 SH), which has been introduced clinically as a boron carrier for boron neutron capture therapy in patients with glioblastoma. Methods and Materials: Data from 56 patients with glioblastoma who received BSH intravenous infusion were retrospectively reviewed. The pharmacokinetics were evaluated in 50 patients, and boron uptake was investigated in 47 patients. Patients received BSH doses between 12 and 100 mg/kg of body weight. For the evaluation, the infused boron dose was scaled linearly to 100 mg/kg BSH. Results: In BSH pharmacokinetics, the average value for total body clearance, distribution volume of steady state, and mean residence time was 3.6±1.5 L/h, 223.3±160.7 L, and 68.0±52.5 h, respectively. The average values of the boron concentration in tumor adjusted to 100 mg/kg BSH, the boron concentration in blood adjusted to 100 mg/kg BSH, and the tumor/blood boron concentration ratio were 37.1±35.8 ppm, 35.2±41.8 ppm, and 1.53±1.43, respectively. A good correlation was found between the logarithmic value of T adj and the interval from BSH infusion to tumor tissue sampling. About 12-19 h after infusion, the actual values for T adj and tumor/blood boron concentration ratio were 46.2±36.0 ppm and 1.70±1.06, respectively. The dose ratio between tumor and healthy tissue peaked in the same interval. Conclusion: For boron neutron capture therapy using BSH administered by intravenous infusion, this work confirms that neutron irradiation is optimal around 12-19 h after the infusion is started

  6. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux; Depots electrophoretiques de bore sur plaques de duralumin destines a des mesures de flux de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Lang, F.M.; Magnier, P.; Finck, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    Preparation of boron thin film deposits of around 1 mg per cm{sup 2} on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  7. MiR-15a/16 deficiency enhances anti-tumor immunity of glioma-infiltrating CD8+ T cells through targeting mTOR.

    Science.gov (United States)

    Yang, Jiao; Liu, Ronghua; Deng, Yuting; Qian, Jiawen; Lu, Zhou; Wang, Yuedi; Zhang, Dan; Luo, Feifei; Chu, Yiwei

    2017-11-15

    MiR-15a/16, a miRNA cluster located at chromosome 13q14, has been reported to act as an immune regulator in inflammatory disorders besides its aberrant expression in cancers. However, little is known about its regulation in tumor-infiltrating immune cells. In our study, using an orthotropic GL261 mouse glioma model, we found that miR-15a/16 deficiency in host inhibited tumor growth and prolonged mice survival, which might be associated with the accumulation of tumor-infiltrating CD8+ T cells. More importantly, tumor-infiltrating CD8+ T cells without miR-15a/16 showed lower expression of PD-1, Tim-3 and LAG-3, and stronger secretion of IFN-γ, IL-2 and TNF-α than WT tumor-infiltrating CD8+ T cells. Also, our in vitro experiments further confirmed that miR-15a/16 -/- CD8+ T displayed higher active phenotypes, more cytokines secretion and faster expansion, compared to WT CD8+ T cells. Mechanismly, mTOR was identified as a target gene of miR-15a/16 to negatively regulate the activation of CD8+ T cells. Taken together, these data suggest that miR-15a/16 deficiency resists the exhaustion and maintains the activation of glioma-infiltrating CD8+ T cells to alleviate glioma progression via targeting mTOR. Our findings provide evidence for the potential immunotherapy through targeting miR-15a/16 in tumor-infiltrating immune cells. © 2017 UICC.

  8. DNA vaccines encoding antigen targeted to MHC class II induce influenza specific CD8+ T cell responses, enabling faster resolution of influenza disease.

    Directory of Open Access Journals (Sweden)

    Laura Lambert

    2016-08-01

    Full Text Available Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine induced protection. Whilst it is clear that antibodies play a protective role, vaccine induced CD8+ T cells can improve protection. To further explore the role of CD8+ T cells we used a DNA vaccine that encodes antigen dimerised to an immune cell targeting module. Immunising CB6F1 mice with the DNA vaccine in a heterologous prime boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared to protein alone. This improved disease resolution was dependent on CD8+ T cells. However, DNA vaccine regimes that induced CD8+ T cells alone were not protective and did not boost the protection provided by protein. The MHC targeting module used was an anti-I-Ed single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting we compared the response between BALB/c, C57BL/6 mice and an F1 cross of the two strains (CB6F1. BALB/c mice were protected, C57BL/6 were not and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines.

  9. DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8+ T Cell Responses, Enabling Faster Resolution of Influenza Disease

    Science.gov (United States)

    Lambert, Laura; Kinnear, Ekaterina; McDonald, Jacqueline U.; Grodeland, Gunnveig; Bogen, Bjarne; Stubsrud, Elisabeth; Lindeberg, Mona M.; Fredriksen, Agnete Brunsvik; Tregoning, John S.

    2016-01-01

    Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine-induced protection. While it is clear that antibodies play a protective role, vaccine-induced CD8+ T cells can improve protection. To further explore the role of CD8+ T cells, we used a DNA vaccine that encodes antigen dimerized to an immune cell targeting module. Immunizing CB6F1 mice with the DNA vaccine in a heterologous prime-boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared with protein alone. This improved disease resolution was dependent on CD8+ T cells. However, DNA vaccine regimes that induced CD8+ T cells alone were not protective and did not boost the protection provided by protein. The MHC-targeting module used was an anti-I-Ed single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting, we compared the response between BALB/c, C57BL/6 mice, and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not, and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that, in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines. PMID:27602032

  10. DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8(+) T Cell Responses, Enabling Faster Resolution of Influenza Disease.

    Science.gov (United States)

    Lambert, Laura; Kinnear, Ekaterina; McDonald, Jacqueline U; Grodeland, Gunnveig; Bogen, Bjarne; Stubsrud, Elisabeth; Lindeberg, Mona M; Fredriksen, Agnete Brunsvik; Tregoning, John S

    2016-01-01

    Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine-induced protection. While it is clear that antibodies play a protective role, vaccine-induced CD8(+) T cells can improve protection. To further explore the role of CD8(+) T cells, we used a DNA vaccine that encodes antigen dimerized to an immune cell targeting module. Immunizing CB6F1 mice with the DNA vaccine in a heterologous prime-boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared with protein alone. This improved disease resolution was dependent on CD8(+) T cells. However, DNA vaccine regimes that induced CD8(+) T cells alone were not protective and did not boost the protection provided by protein. The MHC-targeting module used was an anti-I-E(d) single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting, we compared the response between BALB/c, C57BL/6 mice, and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not, and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that, in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines.

  11. In situ targeting TEM8 via immune response and polypeptide recognition by wavelength-modulated surface plasmon resonance biosensor

    Science.gov (United States)

    Wang, Yimin; Luo, Zewei; Liu, Kunping; Wang, Jie; Duan, Yixiang

    2016-01-01

    There is an increasing interest in real-time and in situ monitoring of living cell activities in life science and medicine. This paper reports a whole cell sensing protocol over the interface of Au film coupled in a wavelength-modulated surface plasmon resonance (WMSPR) biosensor. With dual parabolic mirrors integrated in the sensor, the compact and miniaturized instrument shows satisfactory refractive index sensitivity (2220 nm/RIU) and a high resolution of resonance wavelength shift of 0.3 nm to liquid samples. The affinity interactions between the biomarker of human tumor endothelial marker 8 (TEM8) and antibody (Ab) or specific polypeptide (PEP) were firstly introduced to WMSPR biosensor analysis. Both the interaction events of Ab-cell and PEP-cell over the Au film interface can be recognized by the sensor and the balance time of interactions is about 20 min. The concentration range of Ab for quantitative monitoring of the TEM8 expression on human colon carcinoma SW620 cells was investigated. The present low-cost and time-saving method provides a time resolution of binding specificity between Ab/PEP and TEM8 for real-time analysis of antigen on living tumor cell surface. PMID:26822761

  12. Boron carbide synthesis by carbothermic reduction of boron oxide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Paschoal, J.O.A.

    1988-01-01

    Boron carbide (B 4 C) is a ceramic material of technological applications due to its extreme hardness and high chemical as well as thermal stability. Some parameters of the process for obtaining B 4 C by carbothermic reduction of B 2 O 3 have been determined. The starting powders and the final products have been analysed by chemical, spectrographic and X-ray diffraction methods. The results show that the B 4 C obtained by the carbothermic reduction process is suitable for applications with a definite determination of the free carbon content. (author) [pt

  13. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  14. Boron Carbides As Thermo-electric Materials

    Science.gov (United States)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  15. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  16. Hot flow behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; El-Wahabi, M.; Cabrera, J.M.

    2008-01-01

    This research work studies the effect of boron contents on the hot flow behavior of boron microalloyed steels. For this purpose, uniaxial hot-compression tests were carried out in a low carbon steel microalloyed with four different amounts of boron over a wide range of temperatures (950, 1000, 1050 and 1100 deg. C) and constant true strain rates (10 -3 , 10 -2 and 10 -1 s -1 ). Experimental results revealed that both peak stress and peak strain tend to decrease as boron content increases, which indicates that boron additions have a solid solution softening effect. Likewise, the flow curves show a delaying effect on the kinetics of dynamic recrystallization (DRX) when increasing boron content. Deformed microstructures show a finer austenitic grain size in the steel with higher boron content (grain refinement effect). Results are discussed in terms of boron segregation towards austenitic grain boundaries during plastic deformation, which increases the movement of dislocations, enhances the grain boundary cohesion and modificates the grain boundary structure

  17. Compression and associated properties of boron carbide

    Science.gov (United States)

    Ciezak, Jennifer; Dandekar, Dattatraya

    2009-06-01

    The observed loss of shear strength of boron carbide around 22 GPa has been attributed to presence of amorphous material in the shock recovered, and statically indented and pressurized boron carbide. The present work presents a more direct association of the observed loss of shear strength in boron carbide under plane shock wave compression to amorphization in boron carbide under triaxial stress compression. This evidence is obtained from in-situ measurement of Raman, and infrared vibrational spectra of boron carbide confined in a Diamond Anvil Cell (DAC) under hydrostatic and non-hydrostatic pressures. X-ray-diffraction measurements do show a shift in the compression of boron carbide around 27 GPa. However, X-ray diffraction measurements indicate that the amorphization does not extend to micron scale, as there is no evidence of a loss of crystallinity in the recorded diffraction pattern of boron carbide to 47 GPa. Our work shows that shear plays a very dominant role in the stress-induced amorphization of boron carbide.

  18. Ultratough single crystal boron-doped diamond

    Science.gov (United States)

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  19. Spectral tailoring for boron Neutron capture therapy

    NARCIS (Netherlands)

    Nievaart, V.A.

    2007-01-01

    In several places in the world, such as Petten and Delft in the Netherlands, investigations are in progress in the fight against certain types of cancer with Boron Neutron Capture Therapy. The basic idea is very simple: boron is loaded only into the cancer cells, using a special drug, after which

  20. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Fitzsimmons, M.; Pynn, R.

    1997-01-01

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  1. Possible toxicity of boron on sugar cane

    Energy Technology Data Exchange (ETDEWEB)

    Bravo C., M.

    Analyses of necrotic and green leaf tissues from sugar cane grown in the Tambo Valley (Arequipa, Peru) have shown that the boron concentration in necrotic tissue (average 657.7 ppm) is several times higher than that in the green tissue (average 55.7 ppm). This suggests that the necrosis may be due to boron toxicity.

  2. Investigation of Properties of Asphalt Concrete Containing Boron Waste as Mineral Filler

    Directory of Open Access Journals (Sweden)

    Cahit GÜRER

    2016-05-01

    Full Text Available During the manufacture of compounds in the boron mining industry a large quantity of waste boron is produced which has detrimental effects on the environment. Large areas have to be allocated for the disposal of this waste. Today with an increase in infrastructure construction, more efficient use of the existing sources of raw materials has become an obligation and this involves the recycling of various waste materials. Road construction requires a significant amount of raw materials and it is possible that substantial amounts of boron-containing waste materials can be recycled in these applications. This study investigates the usability of boron wastes as filler in asphalt concrete. For this purpose, asphalt concrete samples were produced using mineral fillers containing 4%, 5%, 6%, 7% and 8% boron waste as well as a 6% limestone filler (6%L as the control sample. The Marshall Design, mechanical immersion and Marshall Stability test after a freeze-thaw cycle and indirect tensile stiffness modulus (ITSM test were performed for each of the series. The results of this experimental study showed that boron waste can be used in medium and low trafficked asphalt concrete pavements wearing courses as filler.

  3. Numerical studies on alpha production from high energy proton beam interaction with Boron

    Science.gov (United States)

    Moustaizis, S. D.; Lalousis, P.; Hora, H.; Korn, G.

    2017-05-01

    Numerical investigations on high energy proton beam interaction with high density Boron plasma allows to simulate conditions concerning the alpha production from recent experimental measurements . The experiments measure the alpha production due to p11B nuclear fusion reactions when a laser-driven high energy proton beam interacts with Boron plasma produced by laser beam interaction with solid Boron. The alpha production and consequently the efficiency of the process depends on the initial proton beam energy, proton beam density, the Boron plasma density and temperature, and their temporal evolution. The main advantage for the p11B nuclear fusion reaction is the production of three alphas with total energy of 8.9 MeV, which could enhance the alpha heating effect and improve the alpha production. This particular effect is termed in the international literature as the alpha avalanche effect. Numerical results using a multi-fluid, global particle and energy balance, code shows the alpha production efficiency as a function of the initial energy of the proton beam, the Boron plasma density, the initial Boron plasma temperature and the temporal evolution of the plasma parameters. The simulations enable us to determine the interaction conditions (proton beam - B plasma) for which the alpha heating effect becomes important.

  4. Studi Awal Pengaruh Pemberian Asam Boron dan Penembakan Neutron terhadap cell fibroblast dan cell lineKanker Payudara

    Directory of Open Access Journals (Sweden)

    Giner Maslebu

    2017-11-01

    Full Text Available Kanker merupakan salah satu penyakit mematikan yang mendapatkan perhatian serius oleh peneliti dan praktisi di bidang kesehatan. Penyakit kanker adalah penyakit yang timbul akibat pertumbuhan tidak normal sel jaringan tubuh yang berubah menjadi sel kanker.Dari berbagai jenis kanker, kasus yang paling banyak terjadi pada kaum perempuan adalah kanker payudara. Teknik pengobatan kanker terus dikembangkan sehingga mampu secara selektif membunuh target sel kanker (cell targeting dan memberikan efek yang minimal bagi sel sehat di sekitar target. Salah satu teknik pengobatan yang menjanjikan adalah Boron Neutron Captured Teraphy (BNCT. Dalam penelitian ini, sel fibroblast dan sel kanker payudara T47D dipanen pada sumuran setelah diinkubasi selama 16 jam, kemudian diberikan perlakuan  asam boron dengan dosis asam boron berjenjang 100 µM, 200 µM, 400 µM.Penembakan neutron diberikan dengan flux sebesar 1010 neutron/cm2s mengggunakan sumber neutron pada fasilitas reaktor Kartini PSTA-Batan terhadap kultur selselama 30 menit. Pada sel fibroblast tingkat kematian sel berkisar antara 2,5-21,212 % setelah pemberian asam Boron dan meningkat menjadi 24,242-71,424 % setelah penembakan neutron. Pada sel kanker payudara T47D tingkat kematian sel berkisar antara 26,761-48,76 % setelah pemberian asam Boron dan meningkat menjadi 36,585-56,25 % setelah penembakan neutron. Hasil penelitian ini menunjukkan ada pengaruh pemberian asam Boron dan penembakan Neutron terhadap tingkat kematian sel.

  5. Termite Resistance of MDF Panels Treated with Various Boron Compounds

    Directory of Open Access Journals (Sweden)

    Sedat Ondaral

    2009-06-01

    Full Text Available In this study, the effects of various boron compounds on the termite resistance of MDF panels were evaluated. Either borax (BX, boric acid (BA, zinc borate (ZB, or sodium perborate tetrahydrate (SPT were added to urea-formaldehyde (UF resin at target contents of 1%, 1.5%, 2% and 2.5% based on dry fiber weight. The panels were then manufactured using 12% urea-formaldehyde resin and 1% NH4Cl. MDF samples from the panels were tested against the subterranean termites, Coptotermes formosanus Shiraki. Laboratory termite resistance tests showed that all samples containing boron compounds had greater resistance against termite attack compared to untreated MDF samples. At the second and third weeks of exposure, nearly 100% termite mortalities were recorded in all boron compound treated samples. The highest termite mortalities were determined in the samples with either BA or BX. Also, it was found that SPT showed notable performance on the termite mortality. As chemical loadings increased, termite mortalities increased, and at the same time the weight losses of the samples decreased.

  6. Methods for separating boron from borated paraffin wax and its determination by ion chromatography

    International Nuclear Information System (INIS)

    Jeyakumar, S.

    2015-01-01

    Boron compounds are found to be useful in shielding against high-energy neutrons. In radiotherapy treatments, in order to protect occupational workers and patients from the undesirable neutron and gamma doses, paraffin wax containing B 4 C/boric acid is used. Low-level borate wastes generated from the nuclear power plants have been immobilized with paraffin wax using a concentrate waste drying system (CWDS). Borated paraffin waxes are prepared by mixing calculated amounts of either boric acid or boron carbide with the molten wax. This necessitates the determination of boron at different locations in order to check the homogeneous distribution of B over the borated wax. The determination of boron in nuclear materials is inevitable due to its high neutron absorption cross section. For the determination of boron in borated waxes, not many methods have been reported. A method based on the pyrohydrolysis extraction of boron and its quantification with ion chromatography was proposed for paraffin waxes borated with H 3 BO 3 and B 4 C. The B 4 C optimum pyrohydrolysis conditions were identified. Wax samples were mixed with U 3 O 8 , which prevents the sample from flare up, and also accelerates the extraction of boron. Pyrohydrolysis was carried out with moist O 2 at 950℃ for 60 and 90 min for wax with H 3 BO 3 and wax with B 4 C, respectively. Two simple methods of separation based on alkali extraction and melting wax in alkali were also developed exclusively for wax with H 3 BO 3 . In all the separations, the recovery of B was above 98%. During IC separation, B was separated as boron-mannitol anion complex. Linear calibration was obtained between 0.1 and 50 ppm of B, and LOD was calculated as 5 ppb (S/N=3). The reproducibility was better than 5% (RSD)

  7. The impact of nurse-driven targeted HIV screening in 8 emergency departments: study protocol for the DICI-VIH cluster-randomized two-period crossover trial.

    Science.gov (United States)

    Leblanc, Judith; Rousseau, Alexandra; Hejblum, Gilles; Durand-Zaleski, Isabelle; de Truchis, Pierre; Lert, France; Costagliola, Dominique; Simon, Tabassome; Crémieux, Anne-Claude

    2016-02-01

    In 2010, to reduce late HIV diagnosis, the French national health agency endorsed non-targeted HIV screening in health care settings. Despite these recommendations, non-targeted screening has not been implemented and only physician-directed diagnostic testing is currently performed. A survey conducted in 2010 in 29 French Emergency Departments (EDs) showed that non-targeted nurse-driven screening was feasible though only a few new HIV diagnoses were identified, predominantly among high-risk groups. A strategy targeting high-risk groups combined with current practice could be shown to be feasible, more efficient and cost-effective than current practice alone. DICI-VIH (acronym for nurse-driven targeted HIV screening) is a multicentre, cluster-randomized, two-period crossover trial. The primary objective is to compare the effectiveness of 2 strategies for diagnosing HIV among adult patients visiting EDs: nurse-driven targeted HIV screening combined with current practice (physician-directed diagnostic testing) versus current practice alone. Main secondary objectives are to compare access to specialist consultation and how early HIV diagnosis occurs in the course of the disease between the 2 groups, and to evaluate the implementation, acceptability and cost-effectiveness of nurse-driven targeted screening. The 2 strategies take place during 2 randomly assigned periods in 8 EDs of metropolitan Paris, where 42 % of France's new HIV patients are diagnosed every year. All patients aged 18 to 64, not presenting secondary to HIV exposure are included. During the intervention period, patients are invited to fill a 7-item questionnaire (country of birth, sexual partners and injection drug use) in order to select individuals who are offered a rapid test. If the rapid test is reactive, a follow-up visit with an infectious disease specialist is scheduled within 72 h. Assuming an 80 % statistical power and a 5 % type 1 error, with 1.04 and 3.38 new diagnoses per 10,000 patients in

  8. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    Mohapatra, K.K.; Bose, Arun

    2014-01-01

    10 B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10 B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH) 4 - ) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10 B and 11 B

  9. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H.J.; Nesper, R. [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  10. Continuum modeling of boron nitride nanotubes

    International Nuclear Information System (INIS)

    Song, J; Wu, J; Hwang, K C; Huang, Y

    2008-01-01

    Boron nitride nanotubes display unique properties and have many potential applications. A finite-deformation shell theory is developed for boron nitride nanotubes directly from the interatomic potential to account for the effect of bending and curvature. Its constitutive relation accounts for the nonlinear, multi-body atomistic interactions, and therefore can model the important effect of tube chirality and radius. The theory is then used to determine whether a single-wall boron nitride nanotube can be modeled as a linear elastic isotropic shell. Instabilities of boron nitride nanotubes under different loadings (e.g., tension, compression, and torsion) are also studied. It is shown that the tension instability of boron nitride nanotubes is material instability, while the compression and torsion instabilities are structural instabilities.

  11. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  12. Similar [DE]XXXL[LI] motifs differentially target GLUT8 and GLUT12 in Chinese Hamster Ovary Cells

    OpenAIRE

    Flessner, Lauren B.; Moley, Kelle H.

    2008-01-01

    The transport of glucose across cell membranes is mediated by facilitative glucose transporters. The recently identified Class III glucose transporter GLUT12 is predominantly expressed in insulin-sensitive tissues such as heart, fat, and skeletal muscle. We examined the subcellular localization of GLUT12 in CHO and HEK293 cells stably expressing murine GLUT12. We have previously shown that another Class III glucose transporter, GLUT8, contains a [DE]XXXL[LI] motif that directs it to late endo...

  13. Isotopic distributions of the sup 1 sup 8 N fragmentation products in coincidence with neutrons on targets sup 1 sup 9 sup 7 Au and sup 9 Be

    CERN Document Server

    Li Xiang Qing; Ye Yan Lin; Hua Hui; Chen Tao; Li Zhi Huan; Ge Yuch Eng; Wang Quan Jin; Wu He Yu; Jin Ge; Duan Li Min; Xiao Zhi Gang; Wang Hong Wei; Li Zhu Yu; Wang Su Fang

    2002-01-01

    The authors present the experimental isotopic distributions of the sup 1 sup 8 N projectile fragmentation products Li, Be, B and C in coincidence with neutrons, as well as the inclusive ones on sup 1 sup 9 sup 7 Au and sup 9 Be targets. In the framework of the abrasion-ablation model, these distributions are calculated for various nucleon density distributions of the projectile. The comparison with experimental isotopic distributions of the projectile-like fragments in coincidence with neutrons shows that the information on the nucleon density distribution of the sup 1 sup 8 N projectile can be extracted

  14. Large animal normal tissue tolerance with boron neutron capture

    International Nuclear Information System (INIS)

    Gavin, P.R.; Swartz, C.D.; Kraft, S.L.; Briebenow, M.L.; DeHaan, C.E.

    1994-01-01

    Normal tissue tolerance of boron neutron capture irradiation using borocaptate sodium (NA 2 B 12 H 11 SH) in an epithermal neutron beam was studied. Large retriever-type dogs were used and the irradiations were performed by single dose, 5 x 10 dorsal portal. Fourteen dogs were irradiated with the epithermal neutron beam alone and 35 dogs were irradiated following intravenous administration of borocaptate sodium. Total body irradiation effect could be seen from the decreased leukocytes and platelets following irradiation. Most values returned to normal within 40 days postirradiation. Severe dermal necrosis occurred in animals given 15 Gy epithermal neutrons alone and in animals irradiated to a total peak physical dose greater than 64 Gy in animals following borocaptate sodium infusion. Lethal brain necrosis was seen in animals receiving between 27 and 39 Gy. Lethal brain necrosis occurred at 22-36 weeks postirradiation. A total peak physical dose of approximately 27 Gy and blood-boron concentrations of 25-50 ppm resulted in abnormal magnetic resonance imaging results in 6 months postexamination. Seven of eight of these animals remained normal and the lesions were not detected at the 12-month postirradiation examination. The bimodal therapy presents a complex challenge in attempting to achieve dose response assays. The resultant total radiation dose is a composite of low and high LET components. The short track length of the boron fission fragments and the geometric effect of the vessels causes much of the intravascular dose to miss the presumed critical target of the endothelial cells. The results indicate a large dose-sparing effect from the boron capture reactions within the blood. 23 refs., 6 figs., 2 tabs

  15. A comparative study of two digestion methods employed for the determination boron in ferroboron used as an advanced shielding material

    International Nuclear Information System (INIS)

    Kamble, Granthali S.; Manisha, V.; Venkatesh, K.

    2015-01-01

    Shielding of nuclear reactor core is an important requirement of fast reactors. An important objective of future Fast Breeder Reactors (FBRs) is to reduce the volume of shields. A large number of materials have been considered for use to reduce the neutron flux to acceptable levels. A shield material which brings down the energy of neutrons by elastic and inelastic scattering along with absorption will be more effective. Ferro boron is identified as one of the advanced shielding materials considered for use in future FBRs, planned to be constructed in India. Ferroboron is an economical and indigenously available material which qualifies as a promising shield material through literature survey and scoping calculations. Experiments have been conducted in KAMINI reactor to understand the effectiveness of prospective shield material Ferro-boron as an in-core shield material for future FBRs. The Ferro boron used in these experiments contained 11.8% and 15% of boron. Precise determination of boron content in these ferro boron samples is very important to determine its effectiveness as a shield material. In this work a comparative study was carried out to determine the boron content in ferro boron samples. In the first method the sample was treated with incremental amounts of nitric acid under reflux (to prevent rigorous reaction and volatalisation of boron). The solution was gradually heated and the solution was filtered through a Whatman Filter paper no. 41. The undissolved ferro boron residue collected in the filter paper after filtration, is transferred to a platinum crucible; mixed with sodium carbonate and is ashed. The crucible is placed over a burner for 1 h to fuse the contents. The fused mass is leached in dilute hydrochloric acid, added to the nitric acid filtrate and made up to pre-determined volume

  16. Shrimp miR-S8 Suppresses the Stemness of Human Melanoma Stem-like Cells by Targeting the Transcription Factor YB-1.

    Science.gov (United States)

    Yang, Fan; Wei, Jun; Zhang, Song; Zhang, Xiaobo

    2017-10-15

    Cross-species regulation of gene expression by microRNA is a possible untapped opportunity for miRNA-based therapy. In this study, we report a novel approach to ablate melanoma stem-like cells by targeting the transcription factor YB-1, which is significantly and selectively upregulated in these cells in melanoma. Silencing YB-1 expression was sufficient to significantly inhibit the stemness of melanoma stem-like cells. In exploring YB-1 targeting, we discovered that the shrimp microRNA miR-S8 could suppress human YB-1 expression in melanoma stem-like cells. Mechanistic investigations revealed that miR-S8 recognized the 3'UTR of YB-1 mRNA and mediated its degradation. In tumor cell and xenograft experiments, miR-S8 suppressed the tumorigenic capacity of melanoma stem-like cells by targeting human YB-1. Overall, our results illuminated a novel aspect of miRNA-mediated cross-species gene expression and its use in regulating cancer stem-like cells. Cancer Res; 77(20); 5543-53. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. DNA recognition by the SwaI restriction endonuclease involves unusual distortion of an 8 base pair A:T-rich target.

    Science.gov (United States)

    Shen, Betty W; Heiter, Daniel F; Lunnen, Keith D; Wilson, Geoffrey G; Stoddard, Barry L

    2017-02-17

    R.SwaI, a Type IIP restriction endonuclease, recognizes a palindromic eight base pair (bp) symmetric sequence, 5΄-ATTTAAAT-3΄, and cleaves that target at its center to generate blunt-ended DNA fragments. Here, we report three crystal structures of SwaI: unbound enzyme, a DNA-bound complex with calcium ions; and a DNA-bound, fully cleaved complex with magnesium ions. We compare these structures to two structurally similar ‘PD-D/ExK’ restriction endonucleases (EcoRV and HincII) that also generate blunt-ended products, and to a structurally distinct enzyme (the HNH endonuclease PacI) that also recognizes an 8-bp target site consisting solely of A:T base pairs. Binding by SwaI induces an extreme bend in the target sequence accompanied by un-pairing and re-ordering of its central A:T base pairs. This result is reminiscent of a more dramatic target deformation previously described for PacI, implying that long A:T-rich target sites might display structural or dynamic behaviors that play a significant role in endonuclease recognition and cleavage.

  18. The K2 Ecliptic Plane Input Catalog (EPIC) and Stellar Classifications of 138,600 Targets in Campaigns 1-8

    Science.gov (United States)

    Huber, Daniel; Bryson, Stephen T.; Haas, Michael R.; Barclay, Thomas; Barentsen, Geert; Howell, Steve B.; Sharma, Sanjib; Stello, Dennis; Thompson, Susan E.

    2016-05-01

    The K2 Mission uses the Kepler spacecraft to obtain high-precision photometry over ≈80 day campaigns in the ecliptic plane. The Ecliptic Plane Input Catalog (EPIC) provides coordinates, photometry, and kinematics based on a federation of all-sky catalogs to support target selection and target management for the K2 mission. We describe the construction of the EPIC, as well as modifications and shortcomings of the catalog. Kepler magnitudes (Kp) are shown to be accurate to ≈0.1 mag for the Kepler field, and the EPIC is typically complete to Kp ≈ 17 (Kp ≈ 19 for campaigns covered by Sloan Digital Sky Survey). We furthermore classify 138,600 targets in Campaigns 1-8 (≈88% of the full target sample) using colors, proper motions, spectroscopy, parallaxes, and galactic population synthesis models, with typical uncertainties for G-type stars of ≈3% in {T}{{eff}}, ≈0.3 dex in {log} g, ≈40% in radius, ≈10% in mass, and ≈40% in distance. Our results show that stars targeted by K2 are dominated by K-M dwarfs (≈41% of all selected targets), F-G dwarfs (≈36%), and K giants (≈21%), consistent with key K2 science programs to search for transiting exoplanets and galactic archeology studies using oscillating red giants. However, we find significant variation of the fraction of cool dwarfs with galactic latitude, indicating a target selection bias due to interstellar reddening and increased contamination by giant stars near the galactic plane. We discuss possible systematic errors in the derived stellar properties, and differences with published classifications for K2 exoplanet host stars. The EPIC is hosted at the Mikulski Archive for Space Telescopes (MAST): http://archive.stsci.edu/k2/epic/search.php.

  19. Comparison of the Level of Boron Concentrations in Black Teas with Fruit Teas Available on the Polish Market

    Science.gov (United States)

    Zioła-Frankowska, Anetta; Frankowski, Marcin; Novotny, Karel; Kanicky, Viktor

    2014-01-01

    The determination of boron by inductively coupled plasma-atomic emission spectrometry has been carried in water-soluble and acid soluble (total content) fractions of 36 samples of traditional black tea and fruit brew. The estimation of the impact of the type of tea on the concentration of boron in water-soluble and acid extracts and potential human health risk from the daily intake of boron was carried out in this study. The levels of boron differed significantly in black and fruit tea types. The mean total content of boron ranged from 8.31 to 18.40 mg/kg in black teas, from 12.85 to 15.13 mg/kg in black tea with fruit flavor, and from 12.09 to 22.77 mg/kg in fruit brews. The degree of extraction of boron in black tea ranged from 8% to 27% and for fruit tea from 17% to 69%. In addition, the values below 25% were of black teas with fruit flavors. The daily intake of B from tea infusions (three cups/day) is still within the average daily intake except for some of the fruit brews which exceed acceptable regulations of the daily intake of total boron by humans. Hence, it may not produce any health risks for human consumption, if other sources of metal contaminated food are not taken at the same time. PMID:25379551

  20. Comparison of the Level of Boron Concentrations in Black Teas with Fruit Teas Available on the Polish Market

    Directory of Open Access Journals (Sweden)

    Anetta Zioła-Frankowska

    2014-01-01

    Full Text Available The determination of boron by inductively coupled plasma-atomic emission spectrometry has been carried in water-soluble and acid soluble (total content fractions of 36 samples of traditional black tea and fruit brew. The estimation of the impact of the type of tea on the concentration of boron in water-soluble and acid extracts and potential human health risk from the daily intake of boron was carried out in this study. The levels of boron differed significantly in black and fruit tea types. The mean total content of boron ranged from 8.31 to 18.40 mg/kg in black teas, from 12.85 to 15.13 mg/kg in black tea with fruit flavor, and from 12.09 to 22.77 mg/kg in fruit brews. The degree of extraction of boron in black tea ranged from 8% to 27% and for fruit tea from 17% to 69%. In addition, the values below 25% were of black teas with fruit flavors. The daily intake of B from tea infusions (three cups/day is still within the average daily intake except for some of the fruit brews which exceed acceptable regulations of the daily intake of total boron by humans. Hence, it may not produce any health risks for human consumption, if other sources of metal contaminated food are not taken at the same time.

  1. Analysis of boron nitride by flame spectrometry methods

    International Nuclear Information System (INIS)

    Telegin, G.F.; Chapysheva, G.Ya.; Shilkina, N.N.

    1989-01-01

    A rapid method has been developed for determination of free and total boron contents as well as trace impurities in boron nitride by using autoclave sample decomposition followed by atomic emission and atomic absorption determination. The relative standard deviation is not greater than 0.03 in the determination of free boron 0.012 in the determination of total boron content

  2. Chemical vapor deposited boron carbide

    International Nuclear Information System (INIS)

    Mackinnon, I.D.R.; Smith, K.L.

    1987-01-01

    Detailed analytical electron microscope (AEM) studies of yellow whiskers produced by chemical vapor deposition (CVD) show that two basic types of whiskers are produced at low temperatures (between 1200 0 C and 1400 0 C) and low boron to carbon gas ratios. Both whisker types show planar microstructures such as twin planes and stacking faults oriented parallel to, or at a rhombohedral angle to, the growth direction. For both whisker types, the presence of droplet-like terminations containing both Si and Ni indicate that the growth process during CVD is via a vapor-liquid-solid (VLS) mechanisms

  3. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  4. Boron Enrichment in Martian Clay

    Science.gov (United States)

    Nagashima, Kazuhide; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  5. Positron annihilation in boron nitride

    Directory of Open Access Journals (Sweden)

    N.Amrane

    2006-01-01

    Full Text Available Electron and positron charge densities are calculated as a function of position in the unit cell for boron nitride. Wave functions are derived from pseudopotential band structure calculations and the independent particle approximation (IPM, respectively, for electrons and positrons. It is observed that the positron density is maximum in the open interstices and is excluded not only from ion cores but also to a considerable degree from valence bonds. Electron-positron momentum densities are calculated for (001,110 planes. The results are used in order to analyse the positron effects in BN.

  6. Sodium borocaptate (BSH) for Boron Neutron Capture Therapy (BNCT) in the hamster cheek pouch oral cancer model: boron biodistribution at 9 post administration time-points

    International Nuclear Information System (INIS)

    Garabalino, M.A.; Heber, E.M.; Monti, Hughes A.; Molinari, A.J.; Pozzi, E.C.C.; Trivillin, V.A.; Schwint, Amanda E.

    2011-01-01

    The therapeutic success of Boron Neutron Capture Therapy (BNCT) depends centrally on boron concentration in tumor and healthy tissue. We previously demonstrated the therapeutic efficacy of boronophenylalanine (BPA) and sodium decahydrodecaborate (GB-10) as boron carriers for BNCT in the hamster cheek pouch oral cancer model. Given the clinical relevance of sodium mercaptoundecahydro-closo-dodecaborate (BSH) as a boron carrier, the aim of the present study was to expand the ongoing BSH biodistribution studies in the hamster cheek pouch oral cancer model. In particular, we studied 3 additional post-administration time-points and increased the sample size corresponding to the time-points evaluated previously, to select more accurately the post-administration time at which neutron irradiation would potentially confer the greatest therapeutic advantage. BSH was dissolved in saline solution in anaerobic conditions to avoid the formation of the dimer BSSB and its oxides which are toxic. The solution was injected intravenously at a dose of 50 mg 10 B/kg (88 mg BSH / kg). Different groups of animals were killed humanely at 7, 8, and 10 h after administration of BSH. The sample size corresponding to the time-points 3, 4, 6, 9 and 12 h was increased. Samples of blood, tumor, precancerous tissue, normal pouch tissue, cheek mucosa, parotid gland, palate, skin, tongue, spinal cord marrow, brain, liver, kidney, spleen and lung were processed for boron measurement by Optic Emission Spectroscopy (ICP-OES). Boron concentration in tumor peaked to 24-34 ppm, 3-10 h post-administration of BSH, with a spread in values that resembled that previously reported in other experimental models and human subjects. The boron concentration ratios tumor/normal pouch tissue and tumor/blood ranged from 1.3 to 1.8. No selective tumor uptake was observed at any of the time points evaluated. The times post-administration of BSH that would be therapeutically most useful would be 5, 7 and 9 h. The

  7. Boron nutrition and yield of alfalfa cultivar crioula in relation to boron supply

    Directory of Open Access Journals (Sweden)

    Santos Anacleto Ranulfo dos

    2004-01-01

    Full Text Available Alfalfa cultivar Crioula (Medicago sativa cv. Crioula is grown in South Brazil and only a few studies on the plants' boron requirement are available. A greenhouse experiment was carried out with alfalfa to measure boron acquisition, production and distribution in the plant; data on critical level and production potentials were recorded. Plants were grown in ground quartz added with 1 L of solution, with the following boron rates: 0, 0.0625, 0.125, 0.25, 0.50, 1.00, and 2.00 mg L-1. Plants were harvested at 46 days of growth. Forage dry mass was increased by boron supply and dry matter accumulation was considerably low in control. Boron concentration in the leaves was higher than in the stems or roots. Boron utilization from the external solution reached 90% at 0.0625 mg L-1 and sharply decreased with further increasing boron rates. Boron concentration and content in the leaves and in plant tops were at maximum when applied boron was between 1.5 and 1.6 mg L-1. Critical levels of boron in plant were 61 mg kg-1 in the leaves and 39 mg kg-1 in plant tops for this cultivar of alfalfa.

  8. Experimental boron neutron capture therapy for melanoma: Systemic delivery of boron to melanotic and amelanotic melanoma

    International Nuclear Information System (INIS)

    Coderre, J.A.; Glass, J.D.; Micca, P.; Greenberg, D.; Packer, S.

    1990-01-01

    The boron-containing melanin precursor analogue p-boronophenylalanine (BPA) has previously been shown to selectively deliver boron to pigmented murine melanomas when administered in a single intragastric dose. If boron neutron capture therapy is to become a clinically useful method of radiation therapy for human malignant melanoma, the boron carrier must be capable of delivering useful amounts of boron to remote tumor sites (metastases) and to poorly pigmented melanomas. The authors have now determined the ability of BPA to accumulate in several nonpigmented melanoma models including human melanoma xenografts in nude mice. The absolute amount of boron in the nonpigmented melanomas was about 50% of the observed in the pigmented counterparts but was still selectively concentrated in the tumor relative to normal tissues in amounts sufficient for effective neutron capture therapy. Single intragastric doses of BPA resulted in selective localization of boron in the amelanotic Greene melanoma carried in the anterior chamber of the rabbit eye and in a pigmented murine melanoma growing in the lungs. The ratio of the boron concentration in these tumors to the boron concentration in the immediately adjacent normal tissue was in the range of 3:1 to 4:1. These distribution studies support the proposal that boron neutron capture therapy may be useful as a regional therapy for malignant melanoma

  9. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [University of Missouri; Wexler, Carlos [University of Missouri; Hawthorne, M. Frederick [University of Missouri; Lee, Mark W. [University of Missouri; Jalistegi, Satish S. [University of Missouri

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  10. Boron neutron capture therapy for recurrent head and neck malignancies

    International Nuclear Information System (INIS)

    Kato, Itsuro; Ono, Koji; Ohmae, Masatoshi

    2005-01-01

    Boron neutron capture therapy (BNCT) is a tumor-cell targeted radiotherapy. When 10 B absorbs thermal neutrons, the alpha and 7 Li particles generated by the 10 B (n, α) 7 Li reaction are high linear energy transfer (LET) particles, and carry high kinetic energy (2.34 MeV), and have short ranges (4-9 micron-meters) of approximately one-cell diameter, resulting in a large relative biological effectiveness (RBE) and selective destruction of tumor cells containing 10 B. We have, for the first time in the world, used BNCT to treat 11 patients with recurrent head and neck malignancies (HNM) after a standard primary therapy since 2001. The 11 patients were composed of 6 squamous cell carcinomas, 3 salivary gland tumors and 2 sarcomas. The results of BNCT were as follows. Regression rates (volume %) were complete response (CR): 2 cases, >90%: 5 cases, 73%: 1 case, 54%: 1 case, progressive disease (PD): 1 case, NE (not evaluated): 1 case. The response rate was 82%. Improvement of quality of life (QOL) was recognized, such as disappearance of tumor ulceration and covering with normal skin: relief of severe pain, bleeding, trismus and dyspnea: improvement of performance status (PS) (from 4 to 2) allowing the patients to return to work and elongate his survival period. Survival periods after BNCT were 1-38 months (mean: 8.5 months). The survival rate was 36% (4 cases). There are a few side-effects such as transient mucositis and alopecia less than Grade-2. These results indicate that BNCT represents a new and promising treatment approach even for a huge or far-advanced HNM. (author)

  11. Analysis of Boron Distribution in Steel using Neutron at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eun-Joo; Seong, Baek-Seok; Kim, Hark-Rho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    Boron is very useful element in steels to improve the mechanical properties. In steel matrix, boron exist several types such as solute, segregation in grain boundary and many kinds of precipitate, which influence the properties of the steel. But, detecting of boron using X-ray or ion-beam is not easy because boron is very light atom than iron. However neutron gives the clear image of boron distribution from the particle tracking autoradiography (PTA) method. The PTA method of boron uses the phenomenon that boron irradiated by neutron emits Liion and alpha particle. Boron distribution can be obtained by observing the traces of the emitted Li-ion and alpha particle. At HANARO, the study for observing of boron distribution has been performed several years ago. Recently, the experimental techniques were improved for the reactor power of 30 MW. In this paper, improved experimental techniques were described and some results for boron added low-carbon steel plate were introduced.

  12. In vivo targeting of human DC-SIGN drastically enhances CD8⁺ T-cell-mediated protective immunity.

    Science.gov (United States)

    Hesse, Christina; Ginter, Wiebke; Förg, Theresa; Mayer, Christian T; Baru, Abdul Mannan; Arnold-Schrauf, Catharina; Unger, Wendy W J; Kalay, Hakan; van Kooyk, Yvette; Berod, Luciana; Sparwasser, Tim

    2013-10-01

    Vaccination is one of the oldest yet still most effective methods to prevent infectious diseases. However, eradication of intracellular pathogens and treatment of certain diseases like cancer requiring efficient cytotoxic immune responses remain a medical challenge. In mice, a successful approach to induce strong cytotoxic CD8⁺ T-cell (CTL) reactions is to target antigens to DCs using specific antibodies against surface receptors in combination with adjuvants. A major drawback for translating this strategy into one for the clinic is the lack of analogous targets in human DCs. DC-SIGN (DC-specific-ICAM3-grabbing-nonintegrin/CD209) is a C-type lectin receptor with potent endocytic capacity and a highly restricted expression on human immature DCs. Therefore, DC-SIGN represents an ideal candidate for DC targeting. Using transgenic mice that express human DC-SIGN under the control of the murine CD11c promoter (hSIGN mice), we explored the efficacy of anti-DC-SIGN antibodies to target antigens to DCs and induce protective immune responses in vivo. We show that anti-DC-SIGN antibodies conjugated to OVA induced strong and persistent antigen-specific CD4⁺ and CD8⁺ T-cell responses, which efficiently protected from infection with OVA-expressing Listeria monocytogenes. Thus, we propose DC targeting via DC-SIGN as a promising strategy for novel vaccination protocols against intracellular pathogens. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Quantifying the Solubility of Boron Nitride Nanotubes and Sheets with Static Light Scattering and Refractometry

    Energy Technology Data Exchange (ETDEWEB)

    Mutz, M [The University of Tennessee; Eastwood, Eric Allen [ORNL; Dadmun, Mark D [ORNL

    2013-01-01

    The dissolution of nanoparticles, particularly those containing boron, is an important area of interest for polymer nanocomposite formation and material development. In this work, the solubility of boron nitride nanotubes (BNNT), functionalized boron nitride nanotubes (FBNNT), and boron nitride sheets (BNZG) is quantified in toluene and THF with static light scattering, refractometry, UV vis spectroscopy, and physical observations. UV vis spectroscopy provides a method to determine the concentration and solubility limits of the solutions tested. Using light scattering, the second virial coefficient, A2, is determined and used to calculate , the solute solvent interaction parameter. The Hildebrand solubility parameter, , is then extracted from this data using the Hildebrand Scatchard Solution Theory. A list of potential good solvents based on the estimated value is provided for each nanoparticle. Single-walled carbon nanotubes (SWNTs) and prepolymers (EN4 and EN8) used to synthesize polyurethanes were also tested, because the published and molar attraction constants of these materials provided a selfconsistent check. The dn/dc of SWNTs and boron-containing particles was measured for the first time in this work. A solvent screen for BN-ZG provides additional information that supports the obtained and . Three systems were found to have values below 0.5 and were thermodynamically soluble: BNNT in THF, EN8 in THF, and EN8 in toluene.

  14. Using voltage-sensor toxins and their molecular targets to investigate NaV1.8 gating.

    Science.gov (United States)

    Gilchrist, John; Bosmans, Frank

    2017-11-29

    Voltage-gated sodium (Na V ) channel gating is a complex phenomenon which involves a distinct contribution of four integral voltage-sensing domains (VSDI, VSDII, VSDIII and VSDIV). Utilizing accrued pharmacological and structural insights, we build on an established chimera approach to introduce animal toxin sensitivity in each VSD of an acceptor channel by transferring in portable S3b-S4 motifs from the four VSDs of a toxin-susceptible donor channel (Na V 1.2). By doing so, we observe that in Na V 1.8, a relatively unexplored channel subtype with distinctly slow gating kinetics, VSDI-III participate in channel opening whereas VSDIV can regulate opening as well as fast inactivation. These results illustrate the effectiveness of a pharmacological approach to investigate the mechanism underlying gating of a mammalian Na V channel complex. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  15. Studies on Separation Process and Production Technology of Boron Isotope

    OpenAIRE

    LI Jian-ping

    2014-01-01

    The boron isotopes separation test was performed by chemical exchange reaction in the benzene ether -three boron fluoride system, which resulted to the boron isotopic enrichment of -10 in the liquid phase, the boron isotopic enrichment of -11 in the gas phase. After then, boron isotope separation trial production has been finished. In this process, the exchange column and complex tower normal operating parameters and the complex tower technology have been obtained, the problems of material di...

  16. Composite boron nitride neutron detectors

    Science.gov (United States)

    Roth, M.; Mojaev, E.; Khakhan, O.; Fleider, A.; Dul`kin, E.; Schieber, M.

    2014-09-01

    Single phase polycrystalline hexagonal boron nitride (BN) or mixed with boron carbide (BxC) embedded in an insulating polymeric matrix acting as a binder and forming a composite material as well as pure submicron size polycrystalline BN has been tested as a thermal neutron converter in a multilayer thermal neutron detector design. Metal sheet electrodes were covered with 20-50 μm thick layers of composite materials and assembled in a multi-layer sandwich configuration. High voltage was applied to the metal electrodes to create an interspacing electric field. The spacing volume could be filled with air, nitrogen or argon. Thermal neutrons were captured in converter layers due to the presence of the 10B isotope. The resulting nuclear reaction produced α-particles and 7Li ions which ionized the gas in the spacing volume. Electron-ion pairs were collected by the field to create an electrical signal proportional to the intensity of the neutron source. The detection efficiency of the multilayer neutron detectors is found to increase with the number of active converter layers. Pixel structures of such neutron detectors necessary for imaging applications and incorporation of internal moderator materials for field measurements of fast neutron flux intensities are discussed as well.

  17. Application of drug delivery system to boron neutron capture therapy for cancer.

    Science.gov (United States)

    Yanagië, Hironobu; Ogata, Aya; Sugiyama, Hirotaka; Eriguchi, Masazumi; Takamoto, Shinichi; Takahashi, Hiroyuki

    2008-04-01

    Tumor cell destruction in boron neutron capture therapy (BNCT) is due to the nuclear reaction between (10)B and thermal neutrons ((10)B + (1)n --> (7)Li + (4)He (alpha) + 2.31 MeV (93.7 %)/2.79 MeV (6.3 %)). The resulting lithium ions and alphaparticles are high linear energy transfer (LET) particles which give a high biological effect. Their short range in tissue (5 - 9 mum) restricts radiation damage to those cells in which boron atoms are located at the time of neutron irradiation. BNCT has been applied clinically for the treatment of malignant brain tumors, malignant melanoma, head and neck cancer and hepatoma. Sodium mercaptoundecahydro-dodecaborate (Na(2)(10)B(12)H(11)SH: BSH) and borono-phenylalanine ((10)BPA) are currently being used in clinical treatments. These low molecule compounds are easily cleared from cancer cells and blood, so high accumulation and selective delivery of boron compounds into tumor tissues and cancer cells are most important to achieve effective BNCT and to avoid damage to adjacent healthy cells. In order to achieve the selective delivery of boron atoms to cancer cells, a drug delivery system (DDS) is an attractive intelligent technology for targeting and controlled release of drugs. We performed literature searches related to boron delivery systems in vitro and in vivo. We describe several DDS technologies for boron delivery to cancer tissues and cancer cells from the past to current status. We are convinced that it will be possible to use liposomes, monoclonal antibodies and WOW emulsions as boron delivery systems for BNCT clinically in accordance with the preparation of good commercial product (GCP) grade materials.

  18. Termite Resistance of MDF Panels Treated with Various Boron Compounds

    OpenAIRE

    Usta, Mustafa; Ustaomer, Derya; Kartal, Saip Nami; Ondaral, Sedat

    2009-01-01

    In this study, the effects of various boron compounds on the termite resistance of MDF panels were evaluated. Either borax (BX), boric acid (BA), zinc borate (ZB), or sodium perborate tetrahydrate (SPT) were added to urea-formaldehyde (UF) resin at target contents of 1%, 1.5%, 2% and 2.5% based on dry fiber weight. The panels were then manufactured using 12% urea-formaldehyde resin and 1% NH4Cl. MDF samples from the panels were tested against the subterranean termites, Coptotermes formosanus ...

  19. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  20. Density separation of boron particles. Final report

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-04-01

    A density distribution much broader than expected was observed in lots of natural boron powder supplied by two different sources. The material in both lots was found to have a rhombohedral crystal structure, and the only other parameters which seemed to account for such a distribution were impurities within the crystal structure and varying isotopic ratios. A separation technique was established to isolate boron particles in narrow densty ranges. The isolated fractions were subsequently analyzed for B 10 and total boron content in an effort to determine whether selective isotopic enrichment and nonhomogeneous impurity distribution were the causes for the broad density distribution of the boron powders. It was found that although the B 10 content remained nearly constant around 18%, the total boron content varied from 37.5 to 98.7%. One of the lots also was found to contain an apparently high level of alpha rhombohedral boron which broadened the density distribution considerably. During this work, a capability for removing boron particles containing gross amounts of impurities and, thereby, improving the overall purity of the remaining material was developed. In addition, the separation technique used in this study apparently isolated particles with alpha and beta rhombohedral crystal structures, although the only supporting evidence is density data

  1. Study of extraction-spectrophotometric micro-determination of boron with methylene blue and its application

    International Nuclear Information System (INIS)

    Zhu Daohong

    1990-08-01

    A sensitive extraction-spectrophotometric method for microdetermination of boron with methylene blue was investigated. The method was based on the extraction of a BF 4 - -methylene blue complex into dichloroethane. Boron was determined directly by measuring the absorbance at 658 nm. The calibration graph was linear over the range of 2.5 x 10 -9 to 8 x 10 -8 g/mL. The blank, mechanism of the reactions, interference of other ions and some optimum conditions of the method were studied in detail. The main source of the blank resulted from methylene blue and the complex of F - -methylene blue. In order to reduce the blank, the amounts of methylene blue, H 2 SO 4 and HF were used as less as possible. Only one to one complex BF 4 - -methylene blue was formed in the medium of H 2 SO 4 . About 90% of methylene blue and F - -methylene blue complex was removre with 5 ml of water and only a little amount of BF 4 -methylene blue complex was decomposed. The extraction-spectrophotometric method with methylene blue was first applied to the microdetermination of boron in sodium metal and UF 6 . The sample of sodium metal was taken and weighed in the glovebox filled with argon. Then sodium metal was oxidized, hydrolyzed, netralized and fluorizated with H 2 O, H 2 SO 4 and HF, respectively. The 0.5 ppm of boron in sodium metal was determined with a relative error about ±4%. This method can be applied to the determination of boron in sodium metal, sodium sulfate and sodium hydroxide at diffeent grades. The species of boron in the hydrolysate of UF 6 is BF 4 - anion, so the sample can be directly analyzed. Boron contents in the range of 0.1 to 0.5 ppm was determined with a relative error about ±3%. Six samples could be analysed in 2h

  2. New Experimental Setup for Boron Isotopes Separation by the Laser Assisted Retardation of Condensation Method.

    Science.gov (United States)

    Lyakhov, Konstantin; Lee, Heon-Ju

    2015-11-01

    Demand in isotopically pure boron is steadily growing in industry and medicine. It makes necessary to search for cheaper ways of isotopes production. We propose a new experimental setup design for boron isotope separation by laser assisted retardation of condensation (SILARC) method based on an energy efficiency use relevant optimization method. This optimization method is based on the transport model for rarefied gas flow dynamics in laser field with frequency tuned for excitation of specific isotopomer. Because product cut and enrichment factor corresponding to the optimal conditions are rather small, target isotopomers should be recovered iteratively.

  3. Pan-Cancer Analysis of the Mediator Complex Transcriptome Identifies CDK19 and CDK8 as Therapeutic Targets in Advanced Prostate Cancer.

    Science.gov (United States)

    Brägelmann, Johannes; Klümper, Niklas; Offermann, Anne; von Mässenhausen, Anne; Böhm, Diana; Deng, Mario; Queisser, Angela; Sanders, Christine; Syring, Isabella; Merseburger, Axel S; Vogel, Wenzel; Sievers, Elisabeth; Vlasic, Ignacija; Carlsson, Jessica; Andrén, Ove; Brossart, Peter; Duensing, Stefan; Svensson, Maria A; Shaikhibrahim, Zaki; Kirfel, Jutta; Perner, Sven

    2017-04-01

    Purpose: The Mediator complex is a multiprotein assembly, which serves as a hub for diverse signaling pathways to regulate gene expression. Because gene expression is frequently altered in cancer, a systematic understanding of the Mediator complex in malignancies could foster the development of novel targeted therapeutic approaches. Experimental Design: We performed a systematic deconvolution of the Mediator subunit expression profiles across 23 cancer entities ( n = 8,568) using data from The Cancer Genome Atlas (TCGA). Prostate cancer-specific findings were validated in two publicly available gene expression cohorts and a large cohort of primary and advanced prostate cancer ( n = 622) stained by immunohistochemistry. The role of CDK19 and CDK8 was evaluated by siRNA-mediated gene knockdown and inhibitor treatment in prostate cancer cell lines with functional assays and gene expression analysis by RNAseq. Results: Cluster analysis of TCGA expression data segregated tumor entities, indicating tumor-type-specific Mediator complex compositions. Only prostate cancer was marked by high expression of CDK19 In primary prostate cancer, CDK19 was associated with increased aggressiveness and shorter disease-free survival. During cancer progression, highest levels of CDK19 and of its paralog CDK8 were present in metastases. In vitro , inhibition of CDK19 and CDK8 by knockdown or treatment with a selective CDK8/CDK19 inhibitor significantly decreased migration and invasion. Conclusions: Our analysis revealed distinct transcriptional expression profiles of the Mediator complex across cancer entities indicating differential modes of transcriptional regulation. Moreover, it identified CDK19 and CDK8 to be specifically overexpressed during prostate cancer progression, highlighting their potential as novel therapeutic targets in advanced prostate cancer. Clin Cancer Res; 23(7); 1829-40. ©2016 AACR . ©2016 American Association for Cancer Research.

  4. Proceedings of workshop on 'Boron Chemistry and Boron Neutron Capture Therapy'

    International Nuclear Information System (INIS)

    Kitaoka, Y.

    1991-07-01

    This volume contains the proceedings of the 3rd Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 12, in 1991. In this workshop, our attention was focused on the chemical nature of boron compounds and the boron neutron capture therapy (BNCT). First, clinical experiences of BNCT in KURRI in 1990 and 1991 were reported (Chap. 3). The feasibility of the gadolinium neutron capture therapy for brain tumors was discussed (Chap. 4). In the chemical field, a rapid spectrophotometric determination of trace amounts of borons in biological samples is described (Chap. 5). The chemical behaviours of p-boronophenylalanine and its analogs in aqueous solutions were investigated by a paper electrophoresis and infrared spectroscopy (Chap. 6). On the molecular design and synthesis of new boron carriers for BNCT, several new synthetic methods for B-10 containing nucleoside derivatives were shown (Chap. 7). (author)

  5. Electrical and thermal conductivities of the graphene, boron nitride and silicon boron honeycomb monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, Hamze, E-mail: hamze.mousavi@gmail.com [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of); Khodadadi, Jabbar [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of); Moradi Kurdestany, Jamshid [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65201 (United States); Yarmohammadi, Zahra [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)

    2016-11-25

    Density of states, electrical and thermal conductivities of electrons in graphene, boron nitride and silicon boron single sheets are studied within the tight-binding Hamiltonian model and Green's function formalism, based on the linear response theory. The results show that while boron nitride keeps significantly the lowest amounts overall with an interval of zero value in low temperatures, due to its insulating nature, graphene exhibits the most electrical and thermal conductivities, slightly higher than silicon boron except for low temperature region where the latter surpasses, owing to its metallic character. This work might make ideas for creating new electronic devices based on honeycomb nanostructures. - Highlights: • Electronic properties of graphene, silicon boron, and boron nitride planes are compared. • Tight-binding Hamiltonian model and Green's function formalism are implemented. • This work might make ideas for creating new electronic devices based on honeycomb nanostructures.

  6. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    Crossley, D.; Wood, A.J.; McInnes, C.A.J.; Jones, I.G.

    1978-09-01

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 300 0 C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 1050 0 C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  7. Determination of boron as boric acid by automatic potentiometric titration

    International Nuclear Information System (INIS)

    Midgley, D.

    1988-06-01

    Boron in PWR primary coolant and related waters may be determined as boric acid by titration with sodium hydroxide, using a glass electrode as a pH indicator. With a modern automatic titrator, the analysis is quick, convenient, accurate and precise. In the titration of 8 mg B (e.g. 4 ml of 2000 mg 1 -1 solution), no significant bias was observed and relative standard deviations were about 0.25%. With 0.8 g B, a bias of about 2% appears, although this could be reduced by restandardizing the titrant, but the relative standard deviation was still -1 B, depending on the stage of the fuel cycle. (author)

  8. In vitro and in vivo analysis of boronated porphyrins

    International Nuclear Information System (INIS)

    Edwards, Benjamin; Matthews, Kristin; Hou, Yongjin; Vicente, M.G.H.; Autry-Conwell, Susan; James, Boggan

    2000-01-01

    New series of meso-phenylporphyrins linked through carbon-carbon bonds to nido-carboranyl groups, and containing 26-31% boron by weight, have been reported. Dark toxicity, photo-toxicity, and measurements of uptake and efflux were performed using mouse, rat, and human malignant cell lines. Drug uptake and retention by log phase cells are shown by spectrophotometry (porphyrins) and ICP-MS (boron) of cellular extracts to be concentration and time dependent, and to be influenced by plasma lipoproteins. Plasma pharmacokinetics and tissues biodistribution were studied in adult male Fisher 344 rats with bilateral subcutaneous 9L tumors injected (2.2 ml, 2 mM i.v.) with carboranyl porphyrin solutions. Whole blood, brain, liver, spleen, skin and tumors were collected at 2, 8, 18, 24 and 48 hours post-injection. Blood cells were separated from plasma and stored frozen with the other tissues. Tissue boron content was determined quantitatively by ICP-MS analysis following microwave digestion of carefully weighed samples. (author)

  9. Medical aspects of boron-slow neutron capture therapy

    International Nuclear Information System (INIS)

    Sweet, W.H.

    1986-01-01

    Earlier radiations of patients with cerebral tumors disclosed the need: (1) to find a carrier of the boron compound which would leave the blood and concentrate in the tumor, (2) to use a more penetrating neutron beam, and (3) to develop a much faster method for assaying boron in blood and tissue. To some extent number1 has been accomplished in the form of Na 2 B 12 H 11 SH, number2 has yet to be achieved, and number3 has been solved by the measurement of the 478-keV gamma ray when the 10 B atom disintegrates following its capture of a slow neutron. The hitherto unreported data in this paper describe through the courtesy of Professor Hiroshi Hatanaka his studies on the pharmacokinetics and quality control of Na 2 B 12 H 11 SH based on 96 boron infusions in 86 patients. Simultaneous blood and tumor data are plotted here for 30 patients with glioblastomas (Grade III-IV gliomas), illustrating remarkable variability. Detailed autopsy findings on 18 patients with BNCT showed radiation injury in only 1. Clinical results in 12 of the most favorably situated glioblastomas reveal that 5 are still alive with a 5-year survival rate of 58% and the excellent Karnofsky performance rating of 87%. For the first time evidence is presented that slow-growing astrocytomas may benefit from BNCT. 10 references, 8 figures, 5 tables

  10. Quantitative boron detection by neutron transmission method

    International Nuclear Information System (INIS)

    Okka, M.; Genceli, M.; Eren, E.; Bayulken, A.

    2008-01-01

    //Quantitative boron detection is mainly performed by chemical methods like colorimetric titration. High neutron absorption cross section of natural boron makes attractive its detection by absorption measurements. This work is an extension of earlier investigations where neutron radiography technique was used for boron detection. In the present investigation, the neutron absorption rate of boron containing solutions is the way to measure quantitatively the boron content of the solutions. The investigation was carried out in Istanbul TRIGA Mark-II reactor. In the end of the experiments, it was observed that even |ppw| grade boron in aqueous solution can be easily detected. The use of this method is certainly very useful for boron utilizing industries like glass and steel industries.The major disadvantage of the method is the obligation to use always aqueous solutions to be able to detect homogeneously the boron content. Then, steel or glass samples have to be put first in an appropriate solution form. The irradiation of steel samples can give the distribution of boron by the help of a imaging and this suggested method will give its quantitative measurement. The superiority of this method are its quick response time and its accuracy. To test this accuracy, a supposed unknown , solution of boric acid is irradiated and then calculated by the help of the calibration curve. The measured value of boric acid was 0.89 mg and the calculated value was found to be 0.98 mg which gives an accuracy of 10 %. It was also seen that the method is more accurate for low concentration. (authors)

  11. Full-scale simulation of seawater reverse osmosis desalination processes for boron removal: Effect of membrane fouling.

    Science.gov (United States)

    Park, Pyung-Kyu; Lee, Sangho; Cho, Jae-Seok; Kim, Jae-Hong

    2012-08-01

    The objective of this study is to further develop previously reported mechanistic predictive model that simulates boron removal in full-scale seawater reverse osmosis (RO) desalination processes to take into account the effect of membrane fouling. Decrease of boron removal and reduction in water production rate by membrane fouling due to enhanced concentration polarization were simulated as a decrease in solute mass transfer coefficient in boundary layer on membrane surface. Various design and operating options under fouling condition were examined including single- versus double-pass configurations, different number of RO elements per vessel, use of RO membranes with enhanced boron rejection, and pH adjustment. These options were quantitatively compared by normalizing the performance of the system in terms of E(min), the minimum energy costs per product water. Simulation results suggested that most viable options to enhance boron rejection among those tested in this study include: i) minimizing fouling, ii) exchanging the existing SWRO elements to boron-specific ones, and iii) increasing pH in the second pass. The model developed in this study is expected to help design and optimization of the RO processes to achieve the target boron removal at target water recovery under realistic conditions where membrane fouling occurs during operation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fogg, Mark [Department of Medicine, Brigham and Women' s Hospital (United States); Murphy, John R. [Departments of Medicine and Microbiology, Boston University School of Medicine, Boston, MA 02118 (United States); Lorch, Jochen; Posner, Marshall [Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 (United States); Wang, Fred, E-mail: fwang@research.bwh.harvard.edu [Department of Medicine, Brigham and Women' s Hospital (United States); Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-07-05

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. - Highlights: • Viral proteins are tumor antigens in Epstein–Barr virus associated Nasopharyngeal Carcinoma. • CD8+ T cell responses against EBV proteins EBNA-1 and LMP2 are suppressed in NPC patients. • T regulatory cells are responsible for suppressing EBV immunity in NPC patients. • Depletion of Tregs with Ontak can rescue EBV-specific CD8+ T cell responses in NPC patients. • This clinically approved drug may be effective for enhancing anti-tumor immunity in NPC patients.

  13. Boron neutron capture synovectomy (BNCS) as a potential therapy for rheumatoid arthritis: boron biodistribution study in a model of antigen-induced arthritis in rabbits.

    Science.gov (United States)

    Trivillin, Verónica A; Abramson, David B; Bumaguin, Gaston E; Bruno, Leandro J; Garabalino, Marcela A; Monti Hughes, Andrea; Heber, Elisa M; Feldman, Sara; Schwint, Amanda E

    2014-11-01

    Boron neutron capture synovectomy (BNCS) is explored for the treatment of rheumatoid arthritis (RA). The aim of the present study was to perform boron biodistribution studies in a model of antigen-induced arthritis (AIA) in female New Zealand rabbits, with the boron carriers boronophenylalanine (BPA) and sodium decahydrodecaborate (GB-10) to assess the potential feasibility of BNCS for RA. Rabbits in chronic phase of AIA were used for biodistribution studies employing the following protocols: intra-articular (ia) (a) BPA-f 0.14 M (0.7 mg (10)B), (b) GB-10 (5 mg (10)B), (c) GB-10 (50 mg (10)B) and intravenous (iv), (d) BPA-f 0.14 M (15.5 mg (10)B/kg), (e) GB-10 (50 mg (10)B/kg), and (f) BPA-f (15.5 mg (10)B/kg) + GB-10 (50 mg (10)B/kg). At different post-administration times (13-85 min for ia and 3 h for iv), samples of blood, pathological synovium (target tissue), cartilage, tendon, muscle, and skin were taken for boron measurement by inductively coupled plasma mass spectrometry. The intra-articular administration protocols at boron concentrations (>20 ppm) in the pathological synovium. Dosimetric estimations suggest that BNCS would be able to achieve a therapeutically useful dose in pathological synovium without exceeding the radiotolerance of normal tissues in the treatment volume, employing boron carriers approved for use in humans. Radiobiological in vivo studies will be necessary to determine the actual therapeutic efficacy of BNCS to treat RA in an experimental model.

  14. Delamination of hexagonal boron nitride in a stirred media mill

    Energy Technology Data Exchange (ETDEWEB)

    Damm, C., E-mail: cornelia.damm@fau.de; Koerner, J.; Peukert, W., E-mail: Wolfgang.Peukert@lfg.fau.de [University Erlangen-Nuremberg, Institute of Particle Technology (Germany)

    2013-04-15

    A scalable process for delamination of hexagonal boron nitride in an aqueous solution of the non-ionic surfactant TWEEN85 using a stirred media mill is presented. The size of the ZrO{sub 2} beads used as grinding media governs the dimensions of the ground boron nitride particles as atomic force microscopic investigations (AFM) reveal: the mean flakes thickness decreases from 3.5 to 1.5 nm and the ratio between mean flake area and mean flake thickness increases from 2,200 to 5,800 nm if the grinding media size is reduced from 0.8 to 0.1 mm. This result shows that a high number of stress events in combination with low stress energy (small grinding media) facilitate delamination of the layered material whereas at high stress energies in combination with a low number of stress events (large grinding media) breakage of the layers dominates over delamination. The results of particle height analyses by AFM show that few-layer structures have been formed by stirred media milling. This result is in agreement with the layer thickness dependence of the delamination energy for hexagonal boron nitride. The concentration of nanoparticles remaining dispersed after centrifugation of the ground suspension increases with grinding time and with decreasing grinding media size. After 5 h of grinding using 0.1 mm ZrO{sub 2} grinding media the yield of nanoparticle formation is about 5 wt%. The nanoparticles exhibit the typical Raman peak for hexagonal boron nitride at 1,366 cm{sup -1} showing that the in-plane order in the milled platelets is remained.

  15. Delamination of hexagonal boron nitride in a stirred media mill

    International Nuclear Information System (INIS)

    Damm, C.; Körner, J.; Peukert, W.

    2013-01-01

    A scalable process for delamination of hexagonal boron nitride in an aqueous solution of the non-ionic surfactant TWEEN85 using a stirred media mill is presented. The size of the ZrO 2 beads used as grinding media governs the dimensions of the ground boron nitride particles as atomic force microscopic investigations (AFM) reveal: the mean flakes thickness decreases from 3.5 to 1.5 nm and the ratio between mean flake area and mean flake thickness increases from 2,200 to 5,800 nm if the grinding media size is reduced from 0.8 to 0.1 mm. This result shows that a high number of stress events in combination with low stress energy (small grinding media) facilitate delamination of the layered material whereas at high stress energies in combination with a low number of stress events (large grinding media) breakage of the layers dominates over delamination. The results of particle height analyses by AFM show that few-layer structures have been formed by stirred media milling. This result is in agreement with the layer thickness dependence of the delamination energy for hexagonal boron nitride. The concentration of nanoparticles remaining dispersed after centrifugation of the ground suspension increases with grinding time and with decreasing grinding media size. After 5 h of grinding using 0.1 mm ZrO 2 grinding media the yield of nanoparticle formation is about 5 wt%. The nanoparticles exhibit the typical Raman peak for hexagonal boron nitride at 1,366 cm −1 showing that the in-plane order in the milled platelets is remained.

  16. Effect of boron concentration on physicochemical properties of boron-doped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Keru, Godfrey; Ndungu, Patrick G.; Nyamori, Vincent O., E-mail: nyamori@ukzn.ac.za

    2015-03-01

    Boron-doped carbon nanotubes (B-CNTs) were synthesized using chemical vapour deposition (CVD) floating catalyst method. Toluene was used as the carbon source, triphenylborane as boron as well as the carbon source while ferrocene was used as the catalyst. The amount of triphenylborane used was varied in a solution of toluene and ferrocene. Ferrocene was kept constant at 2.5 wt.%. while a maximum temperature of 900 °C was used for the synthesis of the shaped carbon nanomaterial (SCNMs). SCNMs obtained were characterized by the use of transmission electron microscope (TEM), scanning electron microscope (SEM), high resolution-electron microscope, electron dispersive X-ay spectroscopy (EDX), Raman spectroscopy, inductively coupled plasma-optical emission spectroscopy (ICP-OES), vibrating sample magnetometer (VSM), nitrogen adsorption at 77 K, and inverse gas chromatography. TEM and SEM analysis confirmed SCNMs obtained were a mixture of B-CNTs and carbon nanofibres (B-CNF). EDX and ICP-OES results showed that boron was successively incorporated into the carbon hexagonal network of CNTs and its concentration was dependent on the amount of triphenylborane used. From the VSM results, the boron doping within the CNTs introduced ferromagnetic properties, and as the percentage of boron increased the magnetic coactivity and squareness changed. In addition, boron doping changed the conductivity and the surface energy among other physicochemical properties of B-CNTs. - Highlights: • Boron-doping of carbon nanotubes (CNTs) changes their physiochemical properties. • Amount of boron-doping was dependent on the wt.% of boron precursor used. • Boron-doping changed CNTs surfaces and the distribution of dispersive energy sites. • Boron-doping affected the conductivity and ferromagnetic properties. • Increased boron-doping results in a more favourable interaction with polar probes.

  17. Study on plasma sprayed boron carbide coating

    Science.gov (United States)

    Zeng, Yi; Lee, Soo W.; Ding, Chuanxian

    2002-03-01

    The microstructure, phase composition, and mechanical properties of boron carbide coatings formed by atmospheric plasma spraying (APS) are studied in the present work. The boron carbide coating with high microhardness and low porosity could be produced by APS. The decomposition of boron carbide powder during the plasma spray process would result in the formation of the BxC phase and an increase of the carbon phase, which is confirmed by transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction results.

  18. Vaccine Targeting of Subdominant CD8+ T Cell Epitopes Increases the Breadth of the T Cell Response upon Viral Challenge, but May Impair Immediate Virus Control

    DEFF Research Database (Denmark)

    Steffensen, Maria A; Pedersen, Louise Holm; Jahn, Marie Louise

    2016-01-01

    to a vaccine expressing the same Ag without its immunodominant epitope. We found that removal of the dominant epitope allowed the induction of CD8(+) T cell responses targeting at least two otherwise subdominant epitopes. Importantly, the overall magnitude of the induced T cell responses was similar, allowing......As a result of the difficulties in making efficient vaccines against genetically unstable viruses such as HIV, it has been suggested that future vaccines should preferentially target subdominant epitopes, the idea being that this should allow a greater breadth of the induced T cell response and......, hence, a greater efficiency in controlling escape variants. However, to our knowledge the evidence supporting this concept is limited at best. To improve upon this, we used the murine lymphocytic choriomeningitis virus model and adenoviral vectors to compare a vaccine expressing unmodified Ag...

  19. Response surface modeling of boron adsorption from aqueous solution by vermiculite using different adsorption agents: Box-Behnken experimental design.

    Science.gov (United States)

    Demirçivi, Pelin; Saygılı, Gülhayat Nasün

    2017-07-01

    In this study, a different method was applied for boron removal by using vermiculite as the adsorbent. Vermiculite, which was used in the experiments, was not modified with adsorption agents before boron adsorption using a separate process. Hexadecyltrimethylammonium bromide (HDTMA) and Gallic acid (GA) were used as adsorption agents for vermiculite by maintaining the solid/liquid ratio at 12.5 g/L. HDTMA/GA concentration, contact time, pH, initial boron concentration, inert electrolyte and temperature effects on boron adsorption were analyzed. A three-factor, three-level Box-Behnken design model combined with response surface method (RSM) was employed to examine and optimize process variables for boron adsorption from aqueous solution by vermiculite using HDTMA and GA. Solution pH (2-12), temperature (25-60 °C) and initial boron concentration (50-8,000 mg/L) were chosen as independent variables and coded x 1 , x 2 and x 3 at three levels (-1, 0 and 1). Analysis of variance was used to test the significance of variables and their interactions with 95% confidence limit (α = 0.05). According to the regression coefficients, a second-order empirical equation was evaluated between the adsorption capacity (q i ) and the coded variables tested (x i ). Optimum values of the variables were also evaluated for maximum boron adsorption by vermiculite-HDTMA (HDTMA-Verm) and vermiculite-GA (GA-Verm).

  20. Boronic Acid Group: A Cumbersome False Negative Case in the Process of Drug Design

    Directory of Open Access Journals (Sweden)

    Sotirios Katsamakas

    2016-09-01

    Full Text Available Herein we present, an exhaustive docking analysis considering the case of autotaxin (ATX. HA155, a small molecule inhibitor of ATX, is co-crystallized. In order to further extract conclusions on the nature of the bond formed between the ligands and the amino acid residues of the active site, density functional theory (DFT calculations were undertaken. However, docking does not provide reproducible results when screening boronic acid derivatives and their binding orientations to protein drug targets. Based on natural bond orbital (NBO calculations, the formed bond between Ser/Thr residues is characterized more accurately as a polar covalent bond instead of a simple nonpolar covalent one. The presented results are acceptable and could be used in screening as an active negative filter for boron compounds. The hydroxyl groups of amino acids are bonded with the inhibitor’s boron atom, converting its hybridization to sp3.

  1. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  2. Application of the boron neutron capture therapy to undifferentiated thyroid cancer using two boron compounds (BPA and BOPP)

    International Nuclear Information System (INIS)

    Viaggi, Mabel; Dagrosa, Maria A.; Juvenal, Guillermo J.; Pisarev, Mario A.; Longhino, Juan M.; Blaumann, Hernan R.; Calzetta Larrieu, Osvaldo A.; Kahl, Stephen B.

    2004-01-01

    We have shown the selective uptake of boronophenylalanine (BPA) by undifferentiated thyroid cancer (UTC) human cell line ARO, both in vitro and in vivo. Moreover, a 50% histologic cure of mice bearing the tumor was observed when the complete boron neutron capture therapy was applied. More recently we have analyzed the biodistribution of BOPP (tetrakis-carborane carboxylate ester of 2,4-bis-(ba-dihydroxyethyl)-deutero-porphyrin IX) and showed that when BOPP was injected 5 days before BPA, and the animals were sacrificed 60 min after the ip injection of BPA, a significant increase in boron uptake by the tumor was found (38-45ppm with both compounds Vs. 20 ppm with BPA alone). Five days post the ip BOPP injection and 1 hr after BPA, the ratios were: tumor/blood 3,75; tumor /distal skin 2. Other important ratios were tumor/thyroid 6,65 and tumor/lung 3,8. The present studies were performed in mice transplanted with ARO cells and injected with BOPP and BPA. Only in mice treated with the neutron beam and injected with the boronated compounds we observed a 100% control of tumor growth. Two groups of mice received different total absorbed doses: 3.00 and 6.01 Gy, but no further improvement in the outcome was found compared to the previous results using BPA alone (4.3 Gy). (author)

  3. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization.

    Science.gov (United States)

    Yamamoto, Yuhei; Shirasaki, Toshihiro; Yonetani, Akira; Imai, Shoji

    2015-01-01

    The measurement conditions for determining boron using graphite furnace-atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L(-1) when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS.

  4. Boron Doped Graphene 3-Dimensi untuk Superkapasitor Kapasitas Tinggi

    Directory of Open Access Journals (Sweden)

    Nurlia Pramita Sari

    2017-08-01

    Full Text Available Chemical doping is an effective approach to improve the property of carbon material. In this study boron doped graphene with 3D structure used as the electrode was investigated. Boron doped graphene was prepared through freeze-dried process followed by pyrolysis of graphene oxide (GO with three types of chemical substances; boron oxide, boric acid, and boron powder in an argon and hydrogen atmosphere at 1000 C for 3 hours. The difference of chemical composition generated a different percentage of boron bond with GO. The results shows that the highest electrochemical performance was found in graphene samples with the addition of boric acid (BA 86 F/g, followed by boron oxide (BO 59.2 F/g, and boron powder (BP 2 F/g. It can be caused by boron concentration bound with graphene. The higher concentration of boron could be increased the electrochemical performance due to better of ion movement.

  5. Breaking the icosahedra in boron carbide.

    Science.gov (United States)

    Xie, Kelvin Y; An, Qi; Sato, Takanori; Breen, Andrew J; Ringer, Simon P; Goddard, William A; Cairney, Julie M; Hemker, Kevin J

    2016-10-25

    Findings of laser-assisted atom probe tomography experiments on boron carbide elucidate an approach for characterizing the atomic structure and interatomic bonding of molecules associated with extraordinary structural stability. The discovery of crystallographic planes in these boron carbide datasets substantiates that crystallinity is maintained to the point of field evaporation, and characterization of individual ionization events gives unexpected evidence of the destruction of individual icosahedra. Statistical analyses of the ions created during the field evaporation process have been used to deduce relative atomic bond strengths and show that the icosahedra in boron carbide are not as stable as anticipated. Combined with quantum mechanics simulations, this result provides insight into the structural instability and amorphization of boron carbide. The temporal, spatial, and compositional information provided by atom probe tomography makes it a unique platform for elucidating the relative stability and interactions of primary building blocks in hierarchically crystalline materials.

  6. Boron adsorption on hematite and clinoptilolite

    International Nuclear Information System (INIS)

    Gainer, G.M.

    1993-01-01

    This thesis describes experiments performed to determine the suitability of boron as a potential reactive tracer for use in saturated-zone C-well reactive tracer studies for the Yucca Mountain Project (YMP). Experiments were performed to identify the prevalent sorption mechanism of boron and to determine adsorption of boron on hematite and clinoptilolite as a function of pH. These minerals are present in the Yucca Mountain tuff in which the C-well studies will be conducted. Evaluation of this sorption mechanism was done by determining the equilibration time of boron-mineral suspensions, by measuring changes in equilibrium to titrations, and by measuring electrophoretic mobility. Experiments were performed with the minerals suspended in NaCl electrolytes of concentrations ranging from 0.1 N NaCl to 0.001 N NaCl. Experimentalconditions included pH values between 3 and 12 and temperature of about 38 degrees C

  7. Determination of boron in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grazhulene, S.S.; Grossman, O.V.; Kuntscher, K.K.; Malygina, L.I.; Muller, E.N.; Telegin, G.F.

    1985-10-01

    In the determination of boron in amorphous alloys containingFe, Co, B, Si, Ni, and P having unusal magnetic and electrical properties, precise analysis and rapid analysis are necessary. To improve the metrological properties of the existing procedure, to find a rapid determination of boron in amorphous alloys, and to verify the accuracy of the results, in the present work the optimization of the photometric determination after extraction of the BF/sup -//sub 4/ ion pair with methylene blue has been studied, and a boron determination by flame photometry using selective methylation has been developed. The determination of boron by the flame photometric and spectrophotometric methods is shown. When a highly precise determination is needed, the spectrophotometric procedure can be used. This procedure is distinguished by its labor intensity and duration. When the need for reproducibility is less severe, the rapid flame photometric procedure is best.

  8. Boron precipitates in ion implanted silicon

    International Nuclear Information System (INIS)

    Wu, W.K.; Washburn, J.

    1975-03-01

    Long rod-like defects are observed in ion implanted silicon when boron is present either as a prior dopant addition or as the implanted species. Results of recent work indicates that these defects have the characteristics of narrow extrinsic dipoles or elongated dislocation loops and that there are two different types along each of the six (110) directions. An annealing kinetics method has been used to identify the nature of these defects formed during post-implantation annealing in boron ion (100 keV) implanted silicon irradiated at room temperature to a dose of 2 x 10 14 /cm 2 . It is concluded that at least two different kinds of rod-like defects exist in boron ion implanted silicon. From the activation energy for shrinkage, it is also concluded that one type (anti A) is composed largely of boron atoms. (U.S.)

  9. Behaviour of boron in Mandovi estuary (Goa)

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Anand, S.P.

    and alkalinity gave positive correlations with a linear variation. Though the overall behavioural pattern of boron indicated non-conservative nature, it showed a quasi-conservative character during premonsoon and a non-conservative during rest of the seasons...

  10. Boron

    Science.gov (United States)

    ... feeding women over 19 years of age. For adolescents 14 to 18 years of age and pregnant or breast-feeding women 14 to 18 years of age, the ... be expected, is 17 mg per day for adolescents 14 to 18 years of age and pregnant or breast-feeding women 14 to 18 years of age. For ...

  11. Boron supplementation improves bone health of non-obese diabetic mice.

    Science.gov (United States)

    Dessordi, Renata; Spirlandeli, Adriano Levi; Zamarioli, Ariane; Volpon, José Batista; Navarro, Anderson Marliere

    2017-01-01

    Diabetes Mellitus is a condition that predisposes a higher risk for the development of osteoporosis. The objective of this study was to investigate the influence of boron supplementation on bone microstructure and strength in control and non-obese diabetic mice for 30days. The animals were supplemented with 40μg/0,5ml of boron solution and controls received 0,5ml of distilled water daily. We evaluated the biochemical parameters: total calcium, phosphorus, magnesium and boron; bone analysis: bone computed microtomography, and biomechanical assay with a three point test on the femur. This study consisted of 28 animals divided into four groups: Group water control - Ctrl (n=10), Group boron control - Ctrl±B (n=8), Group diabetic water - Diab (n=5) and Group diabetic boron - Diab±B (n=5). The results showed that cortical bone volume and the trabecular bone volume fraction were higher for Diab±B and Ctrl±B compared to the Diab and Ctrl groups (p≤0,05). The trabecular specific bone surface was greater for the Diab±B group, and the trabecular thickness and structure model index had the worst values for the Diab group. The boron serum concentrations were higher for the Diab±B group compared to non-supplemented groups. The magnesium concentration was lower for Diab and Diab±B compared with controls. The biomechanical test on the femur revealed maintenance of parameters of the bone strength in animals Diab±B compared to the Diab group and controls. The results suggest that boron supplementation improves parameters related to bone strength and microstructure of cortical and trabecular bone in diabetic animals and the controls that were supplemented. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Abrasive slurry composition for machining boron carbide

    Science.gov (United States)

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  13. Boron-rich oligomers for BNCT

    International Nuclear Information System (INIS)

    Gula, M.; Perleberg, O.; Gabel, D.

    2000-01-01

    The synthesis of two BSH derivatives is described, which can be used for oligomerization in DNA-synthesizers. Synthesis pathways lead to final products in five and six steps, respectively. Because of chirality interesting results were expected. NMR-measurements confirm this expectation. Possible oligomers with high concentrations of boron can be attached to biomolecules. These oligomers can be explored with several imaging methods (EELS, PEM) to determine the lower detection limit of boron with these methods. (author)

  14. Identification of C/EBPα as a novel target of the HPV8 E6 protein regulating miR-203 in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Anna M Marthaler

    2017-06-01

    Full Text Available Patients suffering from Epidermodysplasia verruciformis (EV, a rare inherited skin disease, display a particular susceptibility to persistent infection with cutaneous genus beta-human papillomavirus (beta-HPV, such as HPV type 8. They have a high risk to develop non-melanoma skin cancer at sun-exposed sites. In various models evidence is emerging that cutaneous HPV E6 proteins disturb epidermal homeostasis and support carcinogenesis, however, the underlying mechanisms are not fully understood as yet. In this study we demonstrate that microRNA-203 (miR-203, a key regulator of epidermal proliferation and differentiation, is strongly down-regulated in HPV8-positive EV-lesions. We provide evidence that CCAAT/enhancer-binding protein α (C/EBPα, a differentiation-regulating transcription factor and suppressor of UV-induced skin carcinogenesis, directly binds the miR-203 gene within its hairpin region and thereby induces miR-203 transcription. Our data further demonstrate that the HPV8 E6 protein significantly suppresses this novel C/EBPα/mir-203-pathway. As a consequence, the miR-203 target ΔNp63α, a proliferation-inducing transcription factor, is up-regulated, while the differentiation factor involucrin is suppressed. HPV8 E6 specifically down-regulates C/EBPα but not C/EBPβ expression at the transcriptional level. As shown in knock-down experiments, C/EBPα is regulated by the acetyltransferase p300, a well-described target of cutaneous E6 proteins. Notably, p300 bound significantly less to the C/EBPα regulatory region in HPV8 E6 expressing keratinocytes than in control cells as demonstrated by chromatin immunoprecipitation. In situ analysis confirmed congruent suprabasal expression patterns of C/EBPα and miR-203 in non-lesional skin of EV-patients. In HPV8-positive EV-lesions both factors are potently down-regulated in vivo further supporting our in vitro data. In conclusion our study has unraveled a novel p300/C/EBPα/mir-203-dependent

  15. Radiological analysis of plutonium glass batches with natural/enriched boron

    International Nuclear Information System (INIS)

    Rainisch, R.

    2000-01-01

    The disposition of surplus plutonium inventories by the US Department of Energy (DOE) includes the immobilization of certain plutonium materials in a borosilicate glass matrix, also referred to as vitrification. This paper addresses source terms of plutonium masses immobilized in a borosilicate glass matrix where the glass components include both natural boron and enriched boron. The calculated source terms pertain to neutron and gamma source strength (particles per second), and source spectrum changes. The calculated source terms corresponding to natural boron and enriched boron are compared to determine the benefits (decrease in radiation source terms) for to the use of enriched boron. The analysis of plutonium glass source terms shows that a large component of the neutron source terms is due to (a, n) reactions. The Americium-241 and plutonium present in the glass emit alpha particles (a). These alpha particles interact with low-Z nuclides like B-11, B-10, and O-17 in the glass to produce neutrons. The low-Z nuclides are referred to as target particles. The reference glass contains 9.4 wt percent B 2 O 3 . Boron-11 was found to strongly support the (a, n) reactions in the glass matrix. B-11 has a natural abundance of over 80 percent. The (a, n) reaction rates for B-10 are lower than for B-11 and the analysis shows that the plutonium glass neutron source terms can be reduced by artificially enriching natural boron with B-10. The natural abundance of B-10 is 19.9 percent. Boron enriched to 96-wt percent B-10 or above can be obtained commercially. Since lower source terms imply lower dose rates to radiation workers handling the plutonium glass materials, it is important to know the achievable decrease in source terms as a result of boron enrichment. Plutonium materials are normally handled in glove boxes with shielded glass windows and the work entails both extremity and whole-body exposures. Lowering the source terms of the plutonium batches will make the handling

  16. Discharge cleaning on TFTR after boronization

    International Nuclear Information System (INIS)

    Mueller, D.; Dylla, H.F.; LaMarche, P.H.; Bell, M.G.; Blanchard, W.; Bush, C.E.; Gentile, C.; Hawryluk, R.J.; HIll, K.W.; Janos, A.C.; Jobes, F.C; Owens, D.K.; Pearson, G.; Schivell, J.; Ulrickson, M.A.; Vannoy, C.; Wong, K.L.

    1991-05-01

    At the beginning of the 1990 TFTR experimental run, after replacement of POCO-AXF-5Q graphite tiles on the midplane of the bumper limiter by carbon fiber composite (CFC) tiles and prior to any Pulse Discharge Cleaning (PDC), boronization was performed. Boronization is the deposition of a layer of boron and carbon on the vacuum vessel inner surface by a glow discharge in a diborane, methane and helium mixture. The amount of discharge cleaning required after boronization was substantially reduced compared to that which was needed after previous openings when boronization was not done. Previously, after a major shutdown, about 10 5 low current (∼20 kA) Taylor Discharge Cleaning (TDC) pulses were required before high current (∼400 kA) aggressive Pulse Discharge Cleaning (PDC) pulses could be performed successfully. Aggressive PDC is used to heat the limiters from the vessel bakeout temperature of 150 degrees C to 250 degrees C for a period of several hours. Heating the limiters is important to increase the rate at which water is removed from the carbon limiter tiles. After boronization, the number of required TDC pulses was reduced to <5000. The number of aggressive PDC pulses required was approximately unchanged. 14 refs., 1 tab

  17. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  18. QTL list: qRBAHB-A8 [PGDBj Registered plant list, Marker list, QTL list, Plant DB link and Genome analysis methods[Archive

    Lifescience Database Archive (English)

    Full Text Available QT89481 Brassica napus Brassicaceae qRBAHB-A8 root Boron accumulation root Boron a...ccumulation under high boron conditions 4 ... ChrA08 3 3.43 ... 10.1371/journal.pone.0112089 25375356

  19. Commissioning of accelerator based boron neutron capture therapy system

    International Nuclear Information System (INIS)

    Nakamura, S.; Wakita, A.; Okamoto, H.; Igaki, H.; Itami, J.; Ito, M.; Abe, Y.; Imahori, Y.

    2017-01-01

    Boron neutron capture therapy (BNCT) is a treatment method using a nuclear reaction of 10 B(n, α) 7 Li. BNCT can be deposited the energy to a tumor since the 10 B which has a higher cross-section to a neutron is high is concentrated on the tumor. It is different from conventional radiation therapies that BNCT expects higher treatment effect to radiation resistant tumors since the generated alpha and lithium particles have higher radiological biological effectiveness. In general, BNCT has been performed in research nuclear reactor. Thus, BNCT is not widely applied in a clinical use. According to recent development of accelerator-based boron neutron capture therapy system, the system has an adequate flux of neutrons. Therefore, National Cancer Canter Hospital, Tokyo, Japan is planning to install accelerator based BNCT system. Protons with 2.5 MeV are irradiated to a lithium target system to generate neutrons. As a result, thermal load of the target is 50 kW since current of the protons is 20.0 mA. Additionally, when the accelerator-based BNCT system is installed in a hospital, the facility size is disadvantage in term of neutron measurements. Therefore, the commissioning of the BNCT system is being performed carefully. In this article, we report about the commissioning. (author)

  20. Peptide microarray profiling identifies phospholipase C gamma 1 (PLC-γ1) as a potential target for t(8;21) AML.

    Science.gov (United States)

    Mahmud, Hasan; Scherpen, Frank J G; de Boer, Tiny Meeuwsen; Lourens, Harm-Jan; Schoenherr, Caroline; Eder, Matthias; Scherr, Michaela; Guryev, Victor; De Bont, Eveline S

    2017-09-15

    The t(8;21) (q22;q22) chromosomal translocation is one of the most frequent genetic alterations in acute myeloid leukemia (AML) which has a need for improved therapeutic strategies. We found PLC-γ1 as one of the highest phosphorylated peptides in t(8;21) AML samples compared to NBM or CN-AML in our previous peptide microarray. PLC-γ1 is known to play a role in cancer progression, however, the impact of PLC-γ1 in AML is currently unknown. Therefore, we aimed to study the functional role of PLC-γ1 by investigating the cellular growth, survival and its underlying mechanism in t(8;21) AML. In this study, PLC-γ1 expression was significantly higher in t(8;21) AML compared to other karyotypes. The PLC-γ1 protein expression was suppressed in AML1-ETO knock down cells indicating that it might induce kasumi-1 cell death. ShRNA-mediated PLC-γ1 knockdown in kasumi-1 cells significantly blocked cell growth, induced apoptosis and cell cycle arrest which was explained by the increased activation of apoptotic related and cell cycle regulatory protein expressions. Gene expression array analysis showed the up-regulation of apoptotic and DNA damage response genes together with the downregulation of cell growth, proliferation and differentiation genes in the PLC-γ1 suppressed kasumi-1 cells, consistent with the observed phenotypic effects. Importantly, PLC-γ1 suppressed kasumi-1 cells showed higher chemosensitivity to the chemotherapeutic drug treatments and lower cell proliferation upon hypoxic stress. Taken together, these in vitro finding strongly support an important role for PLC-γ1 in the survival of t(8;21) AML mimicking kasumi-1 cells and identify PLC-γ1 as a potential therapeutic target for t(8;21) AML treatment.

  1. Calculation for Primary Combustion Characteristics of Boron-Based Fuel-Rich Propellant Based on BP Neural Network

    Directory of Open Access Journals (Sweden)

    Wu Wan'e

    2012-01-01

    Full Text Available A practical scheme for selecting characterization parameters of boron-based fuel-rich propellant formulation was put forward; a calculation model for primary combustion characteristics of boron-based fuel-rich propellant based on backpropagation neural network was established, validated, and then was used to predict primary combustion characteristics of boron-based fuel-rich propellant. The results show that the calculation error of burning rate is less than ±7.3%; in the formulation range (hydroxyl-terminated polybutadiene 28%–32%, ammonium perchlorate 30%–35%, magnalium alloy 4%–8%, catocene 0%–5%, and boron 30%, the variation of the calculation data is consistent with the experimental results.

  2. Boron Affects Immune Function Through Modulation of Splenic T Lymphocyte Subsets, Cytokine Secretion, and Lymphocyte Proliferation and Apoptosis in Rats.

    Science.gov (United States)

    Jin, Erhui; Li, Shenghe; Ren, Man; Hu, Qianqian; Gu, Youfang; Li, Kui

    2017-08-01

    This study demonstrated the mechanisms of boron effects in a rat model and provided a scientific basis for the rational of boron use. These findings were achieved by investigating the effects of boron (10, 20, 40, 80, 160, 320, and 640 mg/L in drinking water or 1.5, 3, 6, 12, 24, 48, and 96 mg/kg BW) on rat serum immunoglobulins (IgGs), splenic cytokines, lymphocyte subsets, as well as on lymphocyte proliferation and apoptosis. Addition of 20 (3) and 40 (6) mg/L (mg/kg BW) of boron to drinking water significantly increased rat serum IgG concentrations, splenic IFN-γ and IL-4 expression as well as the number of splenic CD3 + , CD4 + and proliferating cell nuclear antigen (PCNA) + cells. Supplementation of drinking water with 40 mg/L (6 mg/kg BW) boron also markedly increased splenic IL-2 expression and the CD4 + /CD8 + cell ratio and reduced splenic CD8 + cell number. Supplementation with 80 mg/L (12 mg/kg BW) boron significantly increased CD3 + and PCNA + cell numbers (P boron markedly reduced the serum IgG concentrations; splenic IL-2 and IL-10 expression; the number of CD3 + , CD4 + and PCNA + cells; and increased the number of splenic CD8 + and caspase-3 + cells and promoted caspase-3 expression in CD3 + cells. In conclusion, these findings suggest that the supplementation of rat drinking water with 20(3) and 40(6) mg/L (mg/kg BW) boron can markedly enhance humoral and cellular immune functions, while boron concentrations above 320 mg/L (48 mg/kg BW) can have an inhibitory effect or even toxicity on immune functions. These results exhibit a U-shaped response characteristic of low and high doses of boron supplementation on immune function and imply that proper boron supplementation in food for humans and animals could be used as an immunity regulator.

  3. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites

    Science.gov (United States)

    Palmer, M.R.; Slack, J.F.

    1989-01-01

    Boron isotope ratios (11B/10B) have been measured on 60 tourmaline separates from over 40 massive sulfide deposits and tourmalinites from a variety of geologic and tectonic settings. The coverage of these localities is global (5 continents) and includes the giant ore bodies at Kidd Creek and Sullivan (Canada), Broken Hill (Australia), and Ducktown (USA). Overall, the tourmalines display a wide range in ??11B values from -22.8 to +18.3??? Possible controls over the boron isotopic composition of the tourmalines include: 1) composition of the boron source, 2) regional metamorphism, 3) water/rock ratios, 4) seawater entrainment, 5) temperature of formation, and 6) secular variations in seawater ??11B. The most significant control appears to be the composition of the boron source, particularly the nature of footwall lithologies; variations in water/ rock ratios and seawater entrainment are of secondary importance. The boron isotope values seem especially sensitive to the presence of evaporites (marine and non-marine) and carbonates in source rocks to the massive sulfide deposits and tourmalinites. ?? 1989 Springer-Verlag.

  4. Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen

    Science.gov (United States)

    Young, Matthew Garett

    The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type silicon solar cells. This required the development of a boron diffusion process that maintained the bulk lifetime of n-type silicon such that the recombination current density could be extracted by photoconductance spectroscopy. It is demonstrated that by hydrogenating boron diffusions, the majority carrier concentration can be controlled. By using symmetrically diffused test structures with quinhydrone-methanol surface passivation the recombination current density of a hydrogenated boron profile is shown to be less than that of a standard boron profile, by as much as 30%. This is then applied to a modified industrial silicon solar cell process to demonstrate an efficiency enhancement of 0.4%.

  5. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  6. Note: Novel diamond anvil cell for electrical measurements using boron-doped metallic diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, R.; Sasama, Y.; Yamaguchi, T.; Takano, Y. [MANA, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8577 (Japan); Fujioka, M. [MANA, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Laboratory of Nano-Structure Physics, Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020 (Japan); Irifune, T. [Geodynamics Research Center, Ehime University, Matsuyama 790-8577 (Japan); Tanaka, M.; Takeya, H. [MANA, National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2016-07-15

    A novel diamond anvil cell suitable for electrical transport measurements under high pressure has been developed. A boron-doped metallic diamond film was deposited as an electrode on a nano-polycrystalline diamond anvil using a microwave plasma-assisted chemical vapor deposition technique combined with electron beam lithography. The maximum pressure that can be achieved by this assembly is above 30 GPa. We report electrical transport measurements of Pb up to 8 GPa. The boron-doped metallic diamond electrodes showed no signs of degradation after repeated compression.

  7. Ionizing and Non-ionizing Radiation Effects in Thin Layer Hexagonal Boron Nitride

    Science.gov (United States)

    2015-03-01

    ray energy, x is the thickness of the h-BN or Si region, Gammaφ is the gamma flux of the cobalt 60 source, and t is the irradiation time... Boron Nitride Thin Films Grown by Atomic Layer Deposition," Thin Solid Films, no. 571, pp. 51-55, 2014. [8] H. X . Chen, X . G. Zhao, Z. J. Ma, Y. Li...Gehrke and U. Vetter, "Modeling the diode characteristics of boron nitride/silicon carbide heterojunctions," Applied Physics Letters, vol. 97, 2010

  8. Contamination of the ground waters and surface waters by boron in Lerma Valley, NW-Argentina - an inventory

    International Nuclear Information System (INIS)

    Bundschuh, J.

    1992-01-01

    Ground- and surface waters in areas unaffected by pollution from borax and boric acid producing plants exhibit low boron concentrations of less than 300 μg B/l. Only at the boric acid plant 'Mineratea' is the groundwater contaminated, with up to 6200 μg B/l occurring within an area of 8 to 10 km 2 with more than 1000 μg boron/l. Even higher boron concentrations (up to 18 μg B/l) are present in polluted surface waters. Not the boron concentration in the irrigation water, but the absolute amount of boron added to the plants by irrigation is what determines plant toxicity. For the contaminated area of the boric acid 'Mineratea', characterized by boron concentrations of between 1000 and 6000 μg B/l, the maximal amounts of irrigation water that can be applied lies between 300 and 8 mm. In order to protect the local groundwater resoures from present and future contamination, environmental impact assessment on industrial projects in the area are required. In this way, the quality of the drinking and irrigation water can be guaranteed through suitable measures, without hindering further necessary industrial development of the region. (orig./UWA) [de

  9. Surface modification of EN-C35E steels by thermo-chemical boronizing process and its properties

    International Nuclear Information System (INIS)

    Yapar, U.; Arisoy, C.F.; Basman, G.; Yesilcubuk, S.A.; Sesen, M.K.

    2004-01-01

    Boronizing, which involves diffusion of boron atoms into steel substrate to form hard iron borides is well known diffusion coating technique. In this study, salt bath boronizing processes were performed on EN-C35E steel substrate in slurry salt bath containing borax, boric acid as boron sources and ferro-silicon as reductant. The process was performed at 850 and 950 C for 2, 4, 6 and 8 hours. Boride layers were examined by optical microscope (OM), scanning electron microscope (SEM) and X-ray diffraction (XRD). Hardness of borides formed on the steel substrate was measured by knoop indenter under load of 0.5N. Metallographic studies and XRD analysis revealed that single-type Fe 2 B layers were formed. Depending on boronizing time and temperature, it has found that the hardness of boride layer ranged from 1895-2143 HK 0.05 that is nearly 8 times higher than substrate hardness. The thickness of the layer ranged from 25 to 167 μm depending on boronizing time and temperature. (orig.)

  10. Nanotechnology of emerging targeting systems.

    Science.gov (United States)

    Smith, S S

    2008-09-01

    Recent developments in the design and testing of complex nanoscale payload-carrying systems (i.e. systems with payloads that do not exceed 100 nm in size) are the focus of this brief review. Emerging systems include targeted single-walled nanotubes, viral capsids, dendrimers, gold nanoparticles, milled boron carbide nanoparticles, and protein nucleic acid assemblies. Significant advances are emerging with each of these bionanotechnological approaches to cellular targeting.

  11. Boron-containing thioureas for neutron capture therapy

    International Nuclear Information System (INIS)

    Ketz, H.

    1993-01-01

    Melanin is produced in large amounts in malignant melanotic melanomas. Because thiourea compounds are covalently incorporated into melanin during its biosynthesis, the preparation of boronated thiourea-derivatives is of particular interest for the BNCT (Boron Neutron Capture Therapy). Accumulation of boron in tumors by means of boronated thiourea-derivatives may therefore provide levels of 10 B which are useful for BNCT. In BNCT the tumor containing the boron compound is irradiated with epithermal neutrons to generate He- and Li-nuclei from the 10 B which can then destroy the tumor cells. Because of the short ranges of these particles (approximately one cell diameter) the damage will be almost exclusively confined to the tumor leaving normal tissue unharmed. High accumulation of 2-mercapto-1-methylimidazole (methimazole) in melanotic melanomas has been described in the literature. Boronated derivatives of methimazole were therefore synthesized. Boron was in the form of a boronic acid, a nido-carbonate and a mercaptoundeca hydro-closo-dodecaborate (BSH). The synthesis of the boron cluster derivatives of methimazole (nido-carborate- and BSH-derivatives) with 9 resp. 12 boron atoms in the molecule were expected to achieve higher concentrations of boron in the tumor than in the case of the boronic acid compound with its single boron atom. (orig.) [de

  12. Atmospheric contribution to boron enrichment in aboveground wheat tissues.

    Science.gov (United States)

    Wang, Cheng; Ji, Junfeng; Chen, Mindong; Zhong, Cong; Yang, Zhongfang; Browne, Patrick

    2017-05-01

    Boron is an essential trace element for all organisms and has both beneficial and harmful biological functions. A particular amount of boron is discharged into the environment every year because of industrial activities; however, the effects of environmental boron emissions on boron accumulation in cereals has not yet been estimated. The present study characterized the accumulation of boron in wheat under different ecological conditions in the Yangtze River Delta (YRD) area. This study aimed to estimate the effects of atmospheric boron that is associated with industrial activities on boron accumulation in wheat. The results showed that the concentrations of boron in aboveground wheat tissues from the highly industrialized region were significantly higher than those from the agriculture-dominated region, even though there was no significant difference in boron content in soils. Using the model based on the translocation coefficients of boron in the soil-wheat system, we estimated that the contribution of atmosphere to boron accumulation in wheat straw in the highly industrialized region exceeded that in the agriculture-dominated region by 36%. In addition, from the environmental implication of the model, it was estimated that the development of boron-utilizing industries had elevated the concentration of boron in aboveground wheat tissues by 28-53%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. ICRF boronization. A new technique towards high efficiency wall coating for superconducting tokamak reactors

    International Nuclear Information System (INIS)

    Li Jiangang; Zhao Yan Ping; Gu Xue Mao

    1999-01-01

    A new technique for wall conditioning that will be especially useful for future larger superconducting tokamaks, such as ITER, has been successfully developed and encouraging results have been obtained. Solid carborane powder, which is non-toxic and non-explosive, was used. Pulsed RF plasma was produced by a non-Faraday shielding RF antenna with RF power of 10 kW. The ion temperature was about 2 keV with a toroidal magnetic field of 1.8 T and a pressure of 3x10 -1 Pa. Energetic ions broke up the carborane molecules, and the resulting boron ions struck and were deposited on the first wall. In comparison with glow discharge cleaning boronization, the B/C coating film shows higher adhesion, more uniformity and longer lifetime during plasma discharges. The plasma performance was improved after ICRF boronization. (author). Letter-to-the-editor

  14. Theoretical investigation of calcium-decorated β12 boron sheet for hydrogen storage

    Science.gov (United States)

    Tang, Xiao; Gu, Yuantong; Kou, Liangzhi

    2018-03-01

    From first-principles calculations based on density functional theory, we find that the recently synthesized β12 boron sheet is a perfect candidate for calcium-decoration and hydrogen storage application. In contrast to graphene where defects are required to capture Ca, the naturally formed hexagonal hollow ring in β12 boron sheet provides the ideal site for Ca adsorption, and up to 6H2 molecules for each Ca atom can be captured with a desirable binding energy of ∼0.2 eV/H2. The gravimetric hydrogen density for Ca decorated boron sheet can reach up to 8.92 wt%. From the electronic analysis, it is found that both the orbital hybridizations and polarization mechanism play significant roles in H2 adsorption and storage.

  15. Adsorption Isotherms of Boron in Soil: the effects of Sodium Adsorption Ratio (SAR, pH and Ionic strength

    Directory of Open Access Journals (Sweden)

    Mojtaba Moqbeli

    2017-03-01

    Full Text Available Introduction: Boron (B is an essential plant micronutrient whose soil availability is influenced by many soil factors.Understanding the processes controling activity of boron (B in the soil solution is important for soil fertility management. The reaction of adsorption and desorption of boron in soil determines the amount of boron that is available to plants. Adsorption–desorption processes play a major role on boron equilibrium concentration and therefore on its bio-availability. Ionic strength, pH and ionic composition in exchangeable phase are among themajor factors affecting B adsorption reactions.Reducedadsorption of boron at high pH is because of a surface potential decrease onminerals with pH-dependent charge. Ionic strength has also a considerable effect on B adsorption.Several studies have been performed inthe adsorption of boron and the effect of factors such as ionicstrength and cations has been understudied, however, the effect of sodium adsorption ratio and itsinteraction with the ionic strength on boron adsorption behavior has not been reported. In thisstudy, the adsorption isotherms of boron in the soils affected by the combined effects of ionic strengthand sodium adsorption ratio were investigated. Materials and Methods: In order to assess the effects of ionic strength (IS and Sodium Adsorption Ratio (SAR on availability of B, the adsorption of B was investigated in a calcareous soil that hadlow levels of electrical conductivity, sodium adsorption ratio and available P. For this purpose, 5 g soil wasequilibrated with 20 mL of B solution (0, 2, 5, 8, 10, 15, 20 mg L-1 in 0.02, 0.06 and 0.12 M background solutions (prepared by NaC1,CaC12.2H2O, MgCl2.6H2O, at two SAR levels (20 and 100.The reaction temperature was 25◦C. The suspension was centrifuged, filtered, and a sample was removed and B was determined by Azomethine-H spectrophotometric method (at a wavelength of 420 nm. B adsorption in Soil was obtained by subtracting B in

  16. Sediment boron and its relation to sediment properties in a tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Dalal, V.N.K.

    Boron in the sediments of Mandovi estuary varied from 8.0 to 258.0 ppm with an average of 118 ppm. It showed an inverse relation to the texture of sediments and was found to be concentrated in silt and clay fraction with generally decreasing...

  17. Effect of Boron and Phosphate compounds on Thermal and Fire Properties of wood/HDPE composites

    Science.gov (United States)

    Turgay Akbulut; Nadir Ayrilmis; Turker Dundar; Ali Durmus; Robert H. White; Murat Teker

    2011-01-01

    Melting and non-isothermal crystallization behaviors, oxidative induction time, and fire performance of the injection-molded wood flour-high density polyethylene (HDPE) composites (WPCs) incorporated with different levels (4, 8, or 12 wt %) of boron compounds [borax/boric acid (BX/BA) (0.5:0.5 wt %), zinc borate (ZB)] and phosphorus compounds [mono- and di-ammonium...

  18. Role of boron addition on the consolidation and properties of steel ...

    Indian Academy of Sciences (India)

    Composites reinforced with 8 vol% TiB2 were subjected to the consolidation process by spark plasma sintering (SPS). The results show that the addition of boron (1 vol%) introduced to the steel matrix has a significant effect on the composite microstructure, as well as physical, mechanical and tribological properties. The full ...

  19. Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples.

    Science.gov (United States)

    Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K

    2014-11-18

    We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology.

  20. Application of drug delivery system for boron neutron capture therapy. Basic research toward clinical application

    International Nuclear Information System (INIS)

    Yanagie, Hironobu; Takahashi, Hiroyuki

    2010-01-01

    Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between 10 B and thermal neutrons ( 10 B+ 1 n → 7 Li+ 4 He (α) +2.31 MeV (93.7%)/2.79 MeV (6.3%)). The resulting lithium ions and αparticles are high linear energy transfer (LET) particles which give high biological effect. Their short range in tissue (5-9 μm) restricts radiation damage to those cells in which boron atoms are located at the time of neutron irradiation. BNCT has been applied clinically for the treatment of malignant brain tumors, malignant melanoma, head and neck cancer and hepatoma etc, recently. Sodium borocaptate (Na 2 10 B 12 H 11 SH; BSH) and borono-phenylalanine ( 10 BPA) are currently being used in clinical treatments. To achieve the selective delivery of boron atoms to cancer cells, drug delivery system (DDS) becomes an attractive intelligent technology as targeting and controlled release of drugs. We have firstly reported that 10 B atoms delivered by immunoliposomes are cytotoxic to human pancreatic carcinoma cells (AsPC-1) after thermal neutron irradiation in vitro. The intra-tumoural injection of boronated immunoliposomes can increase the retention of 10 B atoms in tumour cells, causing suppression of tumour growth in vivo following thermal neutron irradiation. We prepared polyethylene-glycol binding liposomes (PEG-liposomes) as an effective 10 B carrier to obviate phagocytosis by reticuloendotherial systems. We had prepared 10 BSH entrapped Water-in-Oil-in-Water (WOW) emulsion. The 10 B concentration in VX-2 tumour after intra-arterial injection of 10 BSH entrapped WOW emulsion was superior to the groups of 10 BSH entrapped conventional Lipiodol mix emulsion. 10 Boron entrapped WOW emulsion is one of the most useful for intra-arterial boron delivery carrier on BNCT to hepatocellular carcinoma. (author)

  1. 15th International Conference on Boron Chemistry (IMEBORON XV)

    Czech Academy of Sciences Publication Activity Database

    Grüner, Bohumír; Štíbr, Bohumil

    2015-01-01

    Roč. 87, č. 2 (2015), s. 121 ISSN 0033-4545 Institutional support: RVO:61388980 Keywords : boranes * boron * boron materials * carboranes * IMEBORON XV * medicinal chemistry Subject RIV: CA - Inorganic Chemistry

  2. Removal of boron from aqueous solution using cryptocrystalline magnesite

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2016-05-01

    Full Text Available The present study aimed to evaluate the efficiency of using cryptocrystalline magnesite to remove boron ions from aqueous systems. Batch experimental protocols were used to evaluate the adsorption capacity of magnesite for boron. Parameters...

  3. Boron: out of the sky and onto the ground

    International Nuclear Information System (INIS)

    Kuehl, D.K.

    1975-01-01

    Now an accepted, engineered material for aerospace applications, boron is taking its place on the ground. Both current production applications, prototype (development) applications, and speculative applications abound. In the leisure product market, boron epoxy or boron aluminum has been used or tried in golf clubs (in combination with graphite epoxy or to reinforce aluminum or steel), in tennis racquets, in bicycles, racing shells, skis and skipoles, bows and arrows, and others. In the industrial area, boron has been used to reduce fatigue, increase stiffness, or for its abrasive properties. Textile machinery, honing tools, and cut off wheels or saws are among the applications. In the medical field, prosthetics and orthotic braces, wheel chairs, canes, and crutches are all good applications for boron. Applications for boron in transportation, construction, and heavy industry are also possible. The volume of boron used in these applications could have a major impact on prices, making boron composite parts cost competitive with conventional materials. (U.S.)

  4. Method of manufacture of atomically thin boron nitride

    Science.gov (United States)

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  5. Reduction of shallow boron and phosphorus diffusion by co-implantation

    Science.gov (United States)

    Vanderpool, Aaron

    Control of Boron and Phosphorus Transient Enhanced Diffusion (TED) is the key to the development of high performance n and p type Ultra Shallow Junctions (USJ). Carbon, Fluorine, and Germanium co-implants can be used to reduce or modify the Boron or Phosphorus Interstitialcy Clusters (BIC or PIC) that drive TED. Substitutional Carbon (Cs) or Fluorine-Vacancy (F-V) clusters do this by consuming the interstitials that drive TED by Carbon Kick-out or F-V annihilation. Germanium does this by inhibiting Interstitialcy formation through local lattice strain. It has been found that certain combinations of these techniques can combine to maximize TED reduction and several of the mechanisms have been characterized. Low energy 5keV Germanium and Carbon have yielded a Boron USJ with a junction depth (xj) of 16.8 nm and a sheet resistance (Rs) of 602 O/□, while 8keV Fluorine and Carbon have formed a Phosphorus USJ with xj = 29.5 nm and Rs ≈ 150 O/□. In addition record levels of Boron TED control have been found using Carbon and 12keV Phosphorus co-implants (xj = 13.3 nm). Record levels of Phosphorus TED control have been found using Carbon and 4keV Boron co-implants (xj = 22.2 nm). In these cases the counter-dopant below the USJ is probably forming PIC or BIC consuming interstitials more efficiently than non-electrical dopants dramatically limiting TED. For Phosphorus USJ there is a strong TED dependence on Boron co-implant energy. Uphill diffusion has been observed if the Phosphorus implant energy is below 3 keV, or without amorphization, and increases as Boron co-implant energy decreases. This work has also found the first experimental evidence of F-V clustering acting to limit TED in USJ by toggling the order of Halo implantation which generates a vacancy distribution. This causes a change in Boron diffusion that is well explained by the lack or presence of the F-V clusters. In addition, Phosphorus TED shows a slight decrease as Fluorine co-implant energy decreases

  6. Boron neutron capture therapy using mixed epithermal and thermal neutron beams in patients with malignant glioma-correlation between radiation dose and radiation injury and clinical outcome

    International Nuclear Information System (INIS)

    Kageji, Teruyoshi; Nagahiro, Shinji; Matsuzaki, Kazuhito; Mizobuchi, Yoshifumi; Toi, Hiroyuki; Nakagawa, Yoshinobu; Kumada, Hiroaki

    2006-01-01

    Purpose: To clarify the correlation between the radiation dose and clinical outcome of sodium borocaptate-based intraoperative boron neutron capture therapy in patients with malignant glioma. Methods and Materials: The first protocol (P1998, n = 8) prescribed a maximal gross tumor volume (GTV) dose of 15 Gy. In 2001, a dose-escalated protocol was introduced (P2001, n 11), which prescribed a maximal vascular volume dose of 15 Gy or, alternatively, a clinical target volume (CTV) dose of 18 Gy. Results: The GTV and CTV doses in P2001 were 1.1-1.3 times greater than those in P1998. The maximal vascular volume dose of those with acute radiation injury was 15.8 Gy. The mean GTV and CTV dose in long-term survivors with glioblastoma was 26.4 and 16.5 Gy, respectively. A statistically significant correlation between the GTV dose and median survival time was found. In the 11 glioblastoma patients in P2001, the median survival time was 19.5 months and 1- and 2-year survival rate was 60.6% and 37.9%, respectively. Conclusion: Dose escalation contributed to the improvement in clinical outcome. To avoid radiation injury, the maximal vascular volume dose should be <12 Gy. For long-term survival in patients with glioblastoma after boron neutron capture therapy, the optimal mean dose of the GTV and CTV was 26 and 16 Gy, respectively

  7. Lymph node targeting of BCG vaccines amplifies CD4 and CD8 T-cell responses and protection against Mycobacterium tuberculosis.

    Science.gov (United States)

    Waeckerle-Men, Ying; Bruffaerts, Nicolas; Liang, Yuan; Jurion, Fabienne; Sander, Peter; Kündig, Thomas M; Huygen, Kris; Johansen, Pål

    2013-02-04

    Vaccination with Mycobacterium bovis BCG provides limited protection against pulmonary tuberculosis and a risk of dissemination in immune-compromised vaccinees. For the development of new TB vaccines that stimulate strong T-cell responses a variety of strategies is being followed, especially recombinant BCG and attenuated M. tuberculosis. The objective of the current study was to test potential benefits of vaccination through direct lymph-node targeting of wildtype BCG; the recommended route of vaccination with BCG is intradermal. C57BL/6 mice were immunised with BCG by intradermal, subcutaneous or intralymphatic injections. Cellular immune responses and protection against M. tuberculosis were determined. Intralymphatic vaccination was 100-1000 times more effective in stimulating BCG-specific immune responses than intradermal or subcutaneous immunisation. Intralymphatic administration stimulated high frequencies of mycobacterium-specific lymphocytes with strong proliferating capacity and production of TNF-α, IL-2, IL-17 and, especially, IFN-γ secretion by. CD4 and CD8 T cells. Most importantly, intralymphatic vaccination with 2×10(3)CFU BCG induced sustained protection against M. tuberculosis in intratracheally challenged C57BL/6 mice, whereas subcutaneous vaccination with 2×10(5)CFU BCG conferred only a transient protection. Hence, direct administration of M. bovis BCG to lymph nodes demonstrates that efficient targeting to lymph nodes may help to overcome the efficacy problems of vaccination with BCG. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Study of nuclear reactions and analog isobar states in the system He8 + p for low energy with the help of MAYA active target

    International Nuclear Information System (INIS)

    Demonchy, Ch.E.

    2003-12-01

    With the resent improvements in the field of exotics beams, and specially with the SPIRAL facility at GANIL, we were able to study He 9 shell inversion already known for Be 11 and Li 10 , which are two members of the N=7 family. A new detector was developed and also the software tools for the data analysis. This detector is at the same time the target (active-target) and is called MAYA. The He 9 was studied by determining the properties of its isobaric analogue states in Li 9 . The characteristics of the IAS (isomeric analog state) states were determined by an analysis of the resonances in the elastic scattering cross section for He 8 + p from 2 up to 3.9 MeV/n. A study of (p,d) and (p,t) reactions was done too, in this domain of energy. By comparing the experimental results with calculations, an assignation of spin and parity for two states in He 9 was possible. (author)

  9. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1,8-naphthalimide derivative

    Science.gov (United States)

    Liang, Beibei; Wang, Baiyan; Ma, Qiujuan; Xie, Caixia; Li, Xian; Wang, Suiping

    2018-03-01

    Biological thiols, like cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play crucial roles in biological systems and in lysosomal processes. Highly selective probes for detecting biological thiols in lysomes of living cells are rare. In this work, a lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells was designed and synthesized based on a 1,8-naphthalimide derivative. The probe has a 4-(2-aminoethyl)morpholine unit as a lysosome-targetable group and an acrylate group as the thiol recognition unit as well as a fluorescence quencher. In the absence of biothiols, the probe displayed weak fluorescence due to the photoinduced electron transfer (PET) process. Upon the addition of biothiols, the probe exhibited an enhanced fluorescence emission centered at 550 nm due to cleavage of the acrylate moiety. The probe had high selectivity toward biothiols. Moreover, the probe features fast response time, excitation in the visible region and ability of working in a wide pH range. The linear response range covers a concentration range of Cys from 1.5 × 10- 7 to 1.0 × 10- 5 mol·L- 1 and the detection limit is 6.9 × 10- 8 mol·L- 1 for Cys. The probe has been successfully applied to the confocal imaging of biothiols in lysosomes of A549 cells with low cell toxicity. Furthermore, the method was successfully applied to the determination of thiols in a complex multicomponent mixture such as human serum, which suggests our proposed method has great potential for diagnostic purposes. All of such good properties prove it can be used to monitor biothiols in lysosomes of living cells and to be a good fluorescent probe for the selective detection of thiols.

  10. Cytotoxic Capacity of SIV-Specific CD8+ T Cells against Primary Autologous Targets Correlates with Immune Control in SIV-Infected Rhesus Macaques

    Science.gov (United States)

    Mendoza, Daniel; Migueles, Stephen A.; Rood, Julia E.; Peterson, Bennett; Johnson, Sarah; Doria-Rose, Nicole; Schneider, Douglas; Rakasz, Eva; Trivett, Matthew T.; Trubey, Charles M.; Coalter, Vicky; Hallahan, Claire W.; Watkins, David; Franchini, Genoveffa; Lifson, Jeffrey D.; Connors, Mark

    2013-01-01

    Although the study of non-human primates has resulted in important advances for understanding HIV-specific immunity, a clear correlate of immune control over simian immunodeficiency virus (SIV) replication has not been found to date. In this study, CD8+ T-cell cytotoxic capacity was examined to determine whether this function is a correlate of immune control in the rhesus macaque (RM) SIV infection model as has been suggested in chronic HIV infection. SIVmac251-infected human reverse transcriptase (hTERT)-transduced CD4+ T-cell clone targets were co-incubated with autologous macaque effector cells to measure infected CD4+ T-cell elimination (ICE). Twenty-three SIV-infected rhesus macaques with widely varying plasma viral RNA levels were evaluated in a blinded fashion. Nineteen of 23 subjects (83%) were correctly classified as long-term nonprogressor/elite controller (LTNP/EC), slow progressor, progressor or SIV-negative rhesus macaques based on measurements of ICE (weighted Kappa 0.75). LTNP/EC had higher median ICE than progressors (67.3% [22.0–91.7%] vs. 23.7% [0.0–58.0%], p = 0.002). In addition, significant correlations between ICE and viral load (r = −0.57, p = 0.01), and between granzyme B delivery and ICE (r = 0.89, pspecific CD8+ T cells and efficient delivery of active granzyme B to SIV-infected targets are associated with superior control of SIV infection in rhesus macaques, consistent with observations of HIV infection in humans. Therefore, such measurements appear to represent a correlate of control of viral replication in chronic SIV infection and their role as predictors of immunologic control in the vaccine setting should be evaluated. PMID:23468632

  11. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  12. Impact scenarios in boron carbide: A computational study

    OpenAIRE

    Bell, R. G.; Sugden, I. J.; Plant, D. F.

    2016-01-01

    The effect of radiative impacts on the structure of boron carbide has been studied by both classical and ab initio simulations. As a part of this study, a new forcefield was developed for use in studying boron carbide materials. Impact scenarios in boron carbide were simulated in order to investigate the exceptional resistance of this material, and other icosahedral boron solids, to high-energy impact events. It was observed that interstitial defects created by radiative impacts are likely to...

  13. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  14. Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride-hydroxy apatite in rat femurs.

    Science.gov (United States)

    Atila, Alptug; Halici, Zekai; Cadirci, Elif; Karakus, Emre; Palabiyik, Saziye Sezin; Ay, Nuran; Bakan, Feray; Yilmaz, Sahin

    2016-01-01

    Boron and its derivatives are effective in bone recovery and osteointegration. However, increasing the boron levels in body liquids may cause toxicity. The aim of our study is to investigate serum boron levels using ICP-MS after implantation of different ratios of nano-hBN-HA composites in rat femurs. All rats were (n=126) divided into five experimental groups (n=24) and one healthy group (6 rats); healthy (Group1), femoral defect + %100 HA (Group2), femoral defect + %2.5 hBN + %97.5 HA (Group3), femoral defect + %5 hBN + %95 HA (Group4), femoral defect + %10 hBN + %90 HA (Group5), femoral defect + %100 hBN (Group6). The femoral defect was created in the distal femur (3mm drill-bit). Each implant group was divided into four different groups (n=24) also 6 rats sacrificed for each groups in one week intervals during four weeks. In our results; at 1, 2, 3, and 4 weeks after implantation near bone tissue, serum levels of boron were evaluated using ICP-MS. We demonstrated that neither short-term nor long-term implantation of hBN-HA composite resulted in statistically increased serum boron levels in experimental groups compared to healthy group. In conclusion, this study investigated the implant material produced form hBN-HA for the first time. Our data suggest that hBN is a new promising target for biomaterial and implant bioengineers. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Boron-Loaded Silicone Rubber Scintillators

    CERN Document Server

    Bell, Z W; Maya, L; Sloop, F V J

    2003-01-01

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon respons...

  16. Hot ductility behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; Cabrera, J.M.

    2007-01-01

    The current study analyses the influence of boron contents (between 29 and 105 ppm) on the hot ductility of boron microalloyed steels. For this purpose, hot tensile tests were carried out at different temperatures (700, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s -1 . In general, results revealed an improvement of the hot ductility of steels at increasing boron content. At 700, 900 and 1000 deg. C the ductility is higher than at 800 deg. C, where boron microalloyed steels exhibit a region of ductility loss (trough region). Likewise, dynamic recrystallization only occurred at 900 and 1000 deg. C. The fracture surfaces of the tested steels at temperatures giving the high temperature ductility regime show that the fracture mode is a result of ductile failure, whereas it is ductile-brittle failure in the trough region. Results are discussed in terms of dynamic recrystallization and boron segregation towards austenite grain boundaries, which may retard the formation of pro-eutectoid ferrite and increase grain boundary cohesion

  17. Update on human health effects of boron.

    Science.gov (United States)

    Nielsen, Forrest H

    2014-10-01

    In vitro, animal, and human experiments have shown that boron is a bioactive element in nutritional amounts that beneficially affects bone growth and central nervous system function, alleviates arthritic symptoms, facilitates hormone action and is associated with a reduced risk for some types of cancer. The diverse effects of boron suggest that it influences the formation and/or activity of substances that are involved in numerous biochemical processes. Several findings suggest that this influence is through the formation of boroesters in biomolecules containing cis-hydroxyl groups. These biomolecules include those that contain ribose (e.g., S-adenosylmethionine, diadenosine phosphates, and nicotinamide adenine dinucleotide). In addition, boron may form boroester complexes with phosphoinositides, glycoproteins, and glycolipids that affect cell membrane integrity and function. Both animal and human data indicate that an intake of less than 1.0mg/day inhibits the health benefits of boron. Dietary surveys indicate such an intake is not rare. Thus, increasing boron intake by consuming a diet rich in fruits, vegetables, nuts and pulses should be recognized as a reasonable dietary recommendation to enhance health and well-being. Published by Elsevier GmbH.

  18. INFLUENCE OF FINE-DISPERSED BORON CARBIDE ON THE STRUCTURE AND CHARACTERISTICS OF IRON-BORON ALLOY

    Directory of Open Access Journals (Sweden)

    N. F. Nevar

    2010-01-01

    Full Text Available The influence of boron carbide as fine-dispersed material input into the melt on structure morphology, founding, technological and exploitation characterisstics of cast iron-boron material is shown.

  19. New cathode design boron lined proportional counters for neutron area monitoring application

    International Nuclear Information System (INIS)

    Dighe, Priyamvada M.

    2007-01-01

    A new cathode design boron lined proportional counter of 26mm IDx100mm sensitive length SS304 cathode has been developed with boron-coated baffles separated by 3mm spacers inserted in the sensitive volume perpendicular to the axis. The baffles and the spacers were coated with indigenously available 27.7% enriched 10 B. The introduction of baffles enhanced the boron coated surface area by a factor of 2.8. Tests in 120nv thermal neutron flux show that the counter has 0.84cps/nv thermal neutron sensitivity, which shows enhancement in the sensitivity by a factor of 2.78 due to baffle structure. For comparison standard cylindrical cathode geometry counter coated with 92% enriched 10 B on its inner wall with a coating thickness of 0.8mg/cm 2 is developed with same outer dimensions for neutron area monitoring applications. The counter has 1cps/nv thermal neutron sensitivity. Comparative tests carried out on counters with and without baffle structure show that the baffles enhance the neutron sensitivity and in 2kR/h gamma background the effect of gamma pile up is similar on both the counters. The variation in cathode internal diameter due to baffle structure gives higher voltage plateau slope (2.8%/10V) as compared to conventional cylindrical geometry counter (1.2%/10V). The usability of boron lined counters for neutron area monitoring applications for the cylindrical geometry counter has been studied

  20. Simulating the effect of boron doping in superconducting carbon

    Science.gov (United States)

    Sakai, Yuki; Chelikowsky, James R.; Cohen, Marvin L.

    2018-02-01

    We examine the effect of boron doping in superconducting forms of amorphous carbon. By judiciously optimizing boron substitutional sites in simulated amorphous carbon, we predict a superconducting transition temperature near 37 K at 14% boron concentration. Our findings have direct implications for understanding the recently discovered high-Tc superconductivity in Q-carbon.

  1. Effects of dietary boron on performance, egg production, egg quality ...

    African Journals Online (AJOL)

    engin

    Body weight was not affected by dietary boron supplementation at 16 and 40 weeks of age. ... and human nutrition. In bone metabolism, boron interacts with Ca, vitamin D and Mg (Chapin et al., 1998). In animals and plants, boron affects at least 26 enzymes involved in substrate metabolism, insulin release, oxidation and.

  2. Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals

    Science.gov (United States)

    2013-05-01

    occurs in ballistic impact, and accompanies amorphization in diamond anvil cell (DAC) experiments (Yan et al., 2009). Fracture in boron carbide ...Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals by J. D. Clayton ARL-RP-440 May 2013...Ground, MD 21005-5069 ARL-RP-440 May 2013 Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals J. D. Clayton

  3. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    Directory of Open Access Journals (Sweden)

    Yuya Egawa

    2014-02-01

    Full Text Available In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conjugated azobenzenes have been synthesized. There are several types of boronic acid azobenzenes, and their characteristics tend to rely on the substitute position of the boronic acid moiety. For example, o-substitution of boronic acid to the azo group gives the advantage of a significant color change upon sugar addition. Nitrogen-15 Nuclear Magnetic Resonance (NMR studies clearly show a signaling mechanism based on the formation and cleavage of the B–N dative bond between boronic acid and azo moieties in the dye. Some boronic acid-substituted azobenzenes were attached to a polymer or utilized for supramolecular chemistry to produce glucose-selective binding, in which two boronic acid moieties cooperatively bind one glucose molecule. In addition, boronic acid-substituted azobenzenes have been applied not only for glucose monitoring, but also for the sensing of glycated hemoglobin and dopamine.

  4. Screening of Wheat Genotypes for Boron Efficiency in Bangladesh

    Science.gov (United States)

    A number of Bangladeshi wheat genotypes (varieties and advanced lines) have been tested for boron efficiency through sand culture experiments over two years (2007-08 & 2008-09) against two Thai check varieties ‘Fang 60’ (boron efficient) and ‘SW41’ (boron inefficient). Performances of the genotypes ...

  5. Dietary boron: possible roles in human and animal physiology

    Science.gov (United States)

    Boron is a bioactive element of low molecular weight. Since discovery of the first boron biomolecule, boromycin, in 1967, several other similar biomolecules are now well-characterized. Most recently described was a bacterial cell-to-cell communication signal that requires boron, autoinducer-II. Boro...

  6. A Simulation Study for Radiation Treatment Planning Based on the Atomic Physics of the Proton-Boron Fusion Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunmi; Yoon, Do-Kun; Shin, Han-Back; Jung, Joo-Young; Kim, Moo-Sub; Kim, Kyeong-Hyeon; Jang, Hong-Seok; Suh, Tae Suk [the Catholic University of Korea, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this research is to demonstrate, based on a Monte Carlo simulation code, the procedure of radiation treatment planning for proton-boron fusion therapy (PBFT). A discrete proton beam (60 - 120 MeV) relevant to the Bragg peak was simulated using a Monte Carlo particle extended (MCNPX, Ver. 2.6.0, National Laboratory, Los Alamos NM, USA) simulation code. After computed tomography (CT) scanning of a virtual water phantom including air cavities, the acquired CT images were converted using the simulation source code. We set the boron uptake regions (BURs) in the simulated water phantom to achieve the proton-boron fusion reaction. Proton sources irradiated the BUR, in the phantom. The acquired dose maps were overlapped with the original CT image of the phantom to analyze the dose volume histogram (DVH). We successfully confirmed amplifications of the proton doses (average: 130%) at the target regions. From the DVH result for each simulation, we acquired a relatively accurate dose map for the treatment. A simulation was conducted to characterize the dose distribution and verify the feasibility of proton boron fusion therapy (PBFT). We observed a variation in proton range and developed a tumor targeting technique for treatment that was more accurate and powerful than both conventional proton therapy and boron-neutron capture therapy.

  7. A simulation study for radiation treatment planning based on the atomic physics of the proton-boron fusion reaction

    Science.gov (United States)

    Kim, Sunmi; Yoon, Do-Kun; Shin, Han-Back; Jung, Joo-Young; Kim, Moo-Sub; Kim, Kyeong-Hyeon; Jang, Hong-Seok; Suh, Tae Suk

    2017-03-01

    The purpose of this research is to demonstrate, based on a Monte Carlo simulation code, the procedure of radiation treatment planning for proton-boron fusion therapy (PBFT). A discrete proton beam (60 - 120 MeV) relevant to the Bragg peak was simulated using a Monte Carlo n-particle extended (MCNPX, Ver. 2.6.0, National Laboratory, Los Alamos NM, USA) simulation code. After computed tomography (CT) scanning of a virtual water phantom including air cavities, the acquired CT images were converted using the simulation source code. We set the boron uptake regions (BURs) in the simulated water phantom to achieve the proton-boron fusion reaction. Proton sources irradiated the BUR, in the phantom. The acquired dose maps were overlapped with the original CT image of the phantom to analyze the dose volume histogram (DVH). We successfully confirmed amplifications of the proton doses (average: 130%) at the target regions. From the DVH result for each simulation, we acquired a relatively accurate dose map for the treatment. A simulation was conducted to characterize the dose distribution and verify the feasibility of proton-boron fusion therapy (PBFT). We observed a variation in proton range and developed a tumor-targeting technique for treatment that was more accurate and powerful than both conventional proton therapy and boron-neutron capture therapy.

  8. Development of a Boron Neutron Capture Enhanced Fast Neutron Therapy Beam

    Energy Technology Data Exchange (ETDEWEB)

    Sweezy, Jeremy Ed [Georgia Tech

    2002-01-01

    The combination of fast neutron therapy and boron neutron capture therapy is currently under investigation at several fast neutron therapy centers worldwide. This treatment method, termed boron neutron capture enhanced fast neutron therapy (BNCEFNT) utilizes a boron containing drug to selectively increase the dose to the target tumor. BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiforme. A neutron therapy beam for boron neutron capture enhanced fast neutron therapy has been developed for the existing Fermilab Neutron Therapy Facility. This beam produces a significant dose enhancement due to the the boron neutron capture reaction. The beam was developed by designing a filter and collimator system using the Monte Carlo radiation transport code, MCNPX. The MCNPX code was benchmarked against depth-dose measurements of the standard treatment beam. The new BNCEFNT beam is filtered with 18.3-cm of low carbon steel and is collimated with steel. Measurements of the dose enhancement of the new BNCEFNT beam were performed with paired tissue equivalent ion chambers. One of the ion chambers has boron incorporated in the wall of the chamber to measure the dose due to boron neutron capture. The measured boron dose enhancement of the BNCEFNT beam is (16.3 ± 2.6)% per 100-ppm 10B for a 20-cm diameter beam and (10.0 ± 1.6)% per 100-ppm 10B for a 10-cm diameter beam. The dose rate of the new beam is reduced to 4.4% of the dose rate of the standard treatment beam. xxi A conceptual design that overcomes the reduced dose rate is also presented. This design uses a tungsten collimator placed near the patient, with a 1.5-cm tungsten filter just upstream of the collimator. Using graphite moderation of neutrons around the patient a percent dose enhancement of 15% can be attained with good collimation, for field sizes as small as 5 × 5 cm2 , and without a reduction in dose rate.

  9. Functionalization of regenerated cellulose membrane via surface initiated atom transfer radical polymerization for boron removal from aqueous solution.

    Science.gov (United States)

    Wei, Yu-Ting; Zheng, Yu-Ming; Chen, J Paul

    2011-05-17

    In this study, an adsorptive membrane was prepared for efficient boron removal. Poly(glycidyl methacrylate) was grafted on the surfaces of the regenerated cellulose (RC) membrane via surface-initiated atom transfer radical polymerization, and N-methylglucamine was used to further react with epoxide rings to introduce polyhydroxyl functional groups, which served as the major binding sites for boron. The pristine and modified membranes were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), dynamic water contact angle measurement, and scanning electron microscopy. It was shown that the designed functional groups were successfully grafted onto the RC membrane, and surface modification contributed to higher boron binding capability. The optimal pH range for boron adsorption was 4-8. Under a neutral pH condition, the maximum adsorption capacity of the modified membrane was determined to be 0.75 mmol/g, which was comparable with those of commercial resins. Studies of electrolyte influence indicated the formation of inner-sphere surface complexes on the membrane surface. The ATR-FTIR and XPS analyses showed that secondary alcohol and tertiary amine groups were mainly involved in boron adsorption, and tetrahedral boron complexes were found on the membrane surface.

  10. Hot tensile behaviour in silicon-killed boron microalloyed steels

    Science.gov (United States)

    Chown, Lesley H.; Cornish, Lesley A.

    2017-10-01

    Low carbon steel for drawing and cold heading applications should have low strength, high ductility and low strain ageing rates. To achieve this, nitrogen must be removed from solid solution, which can be done by low additions of boron. A wire producer had been experiencing occasional problems with severe cracking on silicon-killed, boron steel billets during continuous casting, but the solution was not obvious. Samples from four billets, each from different casts, were removed for analysis and testing. The tested steel compositions were within the specification limits, with boron to nitrogen ratios of 0.40-1.19. Hot ductility testing was performed on a Gleeble 1500 using parameters approximating the capabilities of this particular billet caster. The steel specimens were subjected to in situ melting, then cooled at a rate of 2 C.s-1 to temperatures in the range 750-1250°C, where they were then pulled to failure at a strain rate of 8x10-4 s-1. In this work, it was found that both the boron to nitrogen ratio and the manganese to sulphur ratio influenced the hot ductility and hence the crack susceptibility. Excellent hot ductility was found for B:N ratios above 1.0, which confirmed that the B:N ratio should be above a stoichiometric value of 0.8 to remove all nitrogen from solid solution. TEM analysis showed that coarse BN precipitates nucleated on other precipitates, such as (Fe,Mn)S, which have relatively low melting points, and are detrimental to hot ductility. Low Mn:S ratios of 10 - 12 were shown to promote precipitation of FeS, so a Mn:S > 14 was recommended. A narrower billet surface temperature range for straightening was recommended to prevent transverse surface cracking. Additionally, analysis of industrial casting data showed that the scrap percentage due to transverse cracking increased significantly for Mn:S < 14. An exponential decay relationship between the manganese to sulphur ratio and the average scrap percentage due to transverse cracking was

  11. Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes

    Science.gov (United States)

    Liao, Yunlong; Chen, Zhongfang; Connell, John W.; Fay, Catharine C.; Park, Cheol; Kim, Jae-Woo; Lin, Yi

    2014-01-01

    Boron nitride nanotubes (BNNTs), the one-dimensional member of the boron nitride nanostructure family, are generally accepted to be highly inert to oxidative treatments and can only be covalently modifi ed by highly reactive species. Conversely, it is discovered that the BNNTs can be chemically dispersed and their morphology modifi ed by a relatively mild method: simply sonicating the nanotubes in aqueous ammonia solution. The dispersed nanotubes are significantly corroded, with end-caps removed, tips sharpened, and walls thinned. The sonication treatment in aqueous ammonia solution also removes amorphous BN impurities and shortened BNNTs, resembling various oxidative treatments of carbon nanotubes. Importantly, the majority of BNNTs are at least partially longitudinally cut, or "unzipped". Entangled and freestanding BN nanoribbons (BNNRs), resulting from the unzipping, are found to be approximately 5-20 nm in width and up to a few hundred nanometers in length. This is the fi rst chemical method to obtain BNNRs from BNNT unzipping. This method is not derived from known carbon nanotube unzipping strategies, but is unique to BNNTs because the use of aqueous ammonia solutions specifi cally targets the B-N bond network. This study may pave the way for convenient processing of BNNTs, previously thought to be highly inert, toward controlling their dispersion, purity, lengths, and electronic properties.

  12. Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets

    Science.gov (United States)

    Halverson, Danny C.; Landingham, Richard L.

    1988-01-01

    A chemical pretreatment method is used to produce boron carbide-, boron-, and boride-reactive metal composites by an infiltration process. The boron carbide or other starting constituents, in powder form, are immersed in various alcohols, or other chemical agents, to change the surface chemistry of the starting constituents. The chemically treated starting constituents are consolidated into a porous ceramic precursor which is then infiltrated by molten aluminum or other metal by heating to wetting conditions. Chemical treatment of the starting constituents allows infiltration to full density. The infiltrated precursor is further heat treated to produce a tailorable microstructure. The process at low cost produces composites with improved characteristics, including increased toughness, strength.

  13. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Hodapp, T.R.; Jackson, G.L.; Phillips, J.; Holtrop, K.L.; Petersen, P.I.; Winter, J.

    1991-09-01

    A system has been added to the D3-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose of the boron film is to reduce the levels of impurity atoms in the D3-D plasmas. Experiments following the application of the boron film in D3-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime. 9 refs., 1 fig

  14. Boron carbide-carbon composites and composites for cryogenic applications

    International Nuclear Information System (INIS)

    Sheinberg, H.

    1979-01-01

    Because of its neutronic properties, high hardness, and high melting temperature, boron carbide (B 4 C) is widely used at the Los Alamos Scientific Laboratory. However because of its hardness and mode of manufacture, it is expensive to machine finish to tight dimensional specifictions. For some neutronic applications, a density considerably below the theoretical 2.52 Mg/m 3 was acceptable, and this relaxation in density specification permitted addition of carbon as a second phase to reduce machining costs. We conducted an experimental program to prepare 50.8-mm-diam by 34.8-mm-thick cylinders of B 4 C and B 4 C-C composites with concentrations of carbon varying from 5.5 to 30 volume percent. Additionally we used three forms of carbon, natural flake graphite, synthetic graphite flour, and a fine furnace black as the source of the second phase. We determined the sound velocity, compressive strength, coefficient of thermal expansion, electrical resistivity, and microstructure as functions of composition. Additionally, an enriched boron ( 10 B)-carbon composite was studied as an alternate material

  15. Accelerator-driven boron neutron capture therapy

    Science.gov (United States)

    Edgecock, Rob

    2014-05-01

    Boron Neutron Capture Therapy is a binary treatment for certain types of cancer. It works by loading the cancerous cells with a boron-10 carrying compound. This isotope has a large cross-section for thermal neutrons, the reaction producing a lithium nucleus and alpha particle that kill the cell in which they are produced. Recent studies of the boron carrier compound indicate that the uptake process works best in particularly aggressive cancers. Most studied is glioblastoma multiforme and a trial using a combination of BNCT and X-ray radiotherapy has shown an increase of nearly a factor of two in mean survival over the state of the art. However, the main technical problem with BNCT remains producing a sufficient flux of neutrons for a reasonable treatment duration in a hospital environment. This paper discusses this issue.

  16. The ternary system nickel-boron-silicon

    International Nuclear Information System (INIS)

    Lugscheider, E.; Reimann, H.; Knotek, O.

    1975-01-01

    The ternary system Nickel-Boron-Silicon was established at 850 0 C by means of X-ray diffraction, metallographic and micro-hardness examinations. The well known binary nickel borides and silicides resp. were confirmed. In the boron-silicon system two binary phases, SiBsub(4-x) with x approximately 0.7 and SiB 6 were found the latter in equilibrium with the β-rhombohedral boron. Confirming the two ternary silicon borides a greater homogeneity range was found for Ni 6 Si 2 B, the phase Nisub(4,6)Si 2 B published by Uraz and Rundqvist can better be described by the formula Nisub(4.29)Si 2 Bsub(1.43). In relation to further investigations we measured melting temperatures in ternary Ni-10 B-Si alloys by differential thermoanalysis. (author)

  17. Structure of Boron Carbide: Where's the Carbon?

    Science.gov (United States)

    Marx, David; Seidler, Gerald; Fister, Timothy; Nagle, Kenneth; Segre, Carlo

    2008-03-01

    Although the structure of the boron carbide series, B12-xCx with 0.06 x x-ray scattering (LERIX) spectrometer on the PNC-CAT beamline at the Advanced Photon Source at Argonne National Lab has enabled differentiation of the boron and carbon absorption edge data for the various crystallographic sites. The structure (R-3m) consists of twelve-atom icosahedra and three-atom chains. Boron carbide may have a maximum of three carbon atoms, which may be located on the two end of chain sites and in one of two inequivalent sites on the icosahedra. At least one carbon atom must be present in the structure for it to be stable. In this presentation, structural results from non-resonant x-ray scattering for seven samples, ranging from B4C to B10.1C will be presented.

  18. On the Mechanism of Boron Ignition

    Science.gov (United States)

    Keil, D. G.; Dreizin, E. L.; Felder, W.; Vicenzi, E. P.

    1997-01-01

    Boron filaments were electrically heated in air and argon/oxygen mixtures while their resistance, temperature, and radiation at the wavelengths of BO and BO2 bands were monitored. The filaments 'burned' in two distinct stages. Samples of the filaments were quenched at different times before and during the burning and analyzed using electron microscopy. The beginning of the first stage combustion characterized by a local resistance minimum, a sharp spike in boron oxide radiation emission, and a rapid rise in temperature, occurred at 1500 +/- 70 deg. C, independent of pre-heating history and oxygen content (540%) in the gas environment. The data suggest that a phase transition occurs in the filaments at this temperature that triggers stage one combustion. Significant amounts of oxygen were found inside quenched filaments. Large spherical voids formed in the boron filaments during their second stage combustion which is interpreted to indicate a crucial role for the gas dissolution processes in the combustion scenario.

  19. The haloarchaeal MCM proteins: bioinformatic analysis and targeted mutagenesis of the β7-β8 and β9-β10 hairpin loops and conserved zinc binding domain cysteines

    Directory of Open Access Journals (Sweden)

    Tatjana P Kristensen

    2014-03-01

    Full Text Available The hexameric MCM complex is the catalytic core of the replicative helicase in eukaryotic and archaeal cells. Here we describe the first in vivo analysis of archaeal MCM protein structure and function relationships using the genetically tractable haloarchaeon Haloferax volcanii as a model system. Hfx. volcanii encodes a single MCM protein that is part of the previously identified core group of haloarchaeal MCM proteins. Three structural features of the N-terminal domain of the Hfx. volcanii MCM protein were targeted for mutagenesis: the β7-β8 and β9-β10 β-hairpin loops and putative zinc binding domain. Five strains carrying single point mutations in the β7-β8 β-hairpin loop were constructed, none of which displayed impaired cell growth under normal conditions or when treated with the DNA damaging agent mitomycin C. However, short sequence deletions within the β7-β8 β-hairpin were not tolerated and neither was replacement of the highly conserved residue glutamate 187 with alanine. Six strains carrying paired alanine substitutions within the β9-β10 β-hairpin loop were constructed, leading to the conclusion that no individual amino acid within that hairpin loop is absolutely required for MCM function, although one of the mutant strains displays greatly enhanced sensitivity to mitomycin C. Deletions of two or four amino acids from the β9-β10 β-hairpin were tolerated but mutants carrying larger deletions were inviable. Similarly, it was not possible to construct mutants in which any of the conserved zinc binding cysteines was replaced with alanine, underlining the likely importance of zinc binding for MCM function. The results of these studies demonstrate the feasibility of using Hfx. volcanii as a model system for reverse genetic analysis of archaeal MCM protein function and provide important confirmation of the in vivo importance of conserved structural features identified by previous bioinformatic, biochemical and structural

  20. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    NARCIS (Netherlands)

    Mohammadi, V.; Nihtianov, S.

    2016-01-01

    The lateral gas phase diffusion length of boron atoms, LB, along silicon and boron surfaces during chemical vapor deposition(CVD) using diborane (B2H6) is reported. The value of LB is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and

  1. Enhancement and retardation of thermal boron diffusion in silicon from atmospheric pressure chemical vapor deposited boron silicate glass film

    Science.gov (United States)

    Kurachi, Ikuo; Yoshioka, Kentaro

    2014-03-01

    Thermal boron diffusion into silicon from boron silicate glass (BSG) prepared by atmospheric pressure CVD (AP-CVD) has been investigated in terms of the BSG boron concentration dependence on diffusion mechanism for N-type solar cell applications. With thermal diffusion at 950 °C in N2 for 20 min, the sheet resistance of the boron-diffused layer decreases with BSG boron concentration up to approximately 4 × 1021 cm-3 at which a boron-rich layer (BRL) is formed at the surface. However, the resistance increases with BSG boron concentration when the BSG boron concentration is higher than 4 × 1021 cm-3. It is also confirmed that the diffusion depth decreases with increasing BSG boron concentration within this BSG concentration region. To clarify this mechanism, the BSG boron concentration dependence on boron diffusivity has also been studied. From extracted diffusivities, the anomalous diffusion can be explained by silicon interstitials formed owing to kick-out by diffused boron atoms and by silicon interstitial generation-degradation due to BRL formation.

  2. Chemical and mechanical analysis of boron-rich boron carbide processed via spark plasma sintering

    Science.gov (United States)

    Munhollon, Tyler Lee

    Boron carbide is a material of choice for many industrial and specialty applications due to the exceptional properties it exhibits such as high hardness, chemical inertness, low specific gravity, high neutron cross section and more. The combination of high hardness and low specific gravity makes it especially attractive for high pressure/high strain rate applications. However, boron carbide exhibits anomalous behavior when high pressures are applied. Impact pressures over the Hugoniot elastic limit result in catastrophic failure of the material. This failure has been linked to amorphization in cleavage planes and loss of shear strength. Atomistic modeling has suggested boron-rich boron carbide (B13C2) may be a better performing material than the commonly used B4C due to the elimination of amorphization and an increase in shear strength. Therefore, a clear experimental understanding of the factors that lead to the degradation of mechanical properties as well as the effects of chemistry changes in boron carbide is needed. For this reason, the goal of this thesis was to produce high purity boron carbide with varying stoichiometries for chemical and mechanical property characterization. Utilizing rapid carbothermal reduction and pressure assisted sintering, dense boron carbides with varying stoichiometries were produced. Microstructural characteristics such as impurity inclusions, porosity and grain size were controlled. The chemistry and common static mechanical properties that are of importance to superhard materials including elastic moduli, hardness and fracture toughness of the resulting boron-rich boron carbides were characterized. A series of six boron carbide samples were processed with varying amounts of amorphous boron (up to 45 wt. % amorphous boron). Samples with greater than 40 wt.% boron additions were shown to exhibit abnormal sintering behavior, making it difficult to characterize these samples. Near theoretical densities were achieved in samples with

  3. Boron removal by electrocoagulation and recovery.

    Science.gov (United States)

    Isa, Mohamed Hasnain; Ezechi, Ezerie Henry; Ahmed, Zubair; Magram, Saleh Faraj; Kutty, Shamsul Rahman Mohamed

    2014-03-15

    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Evaluation of Ground-Water and Boron Sources by Use of Boron Stable-Isotope Ratios, Tritium, and Selected Water-Chemistry Constituents near Beverly Shores, Northwestern Indiana, 2004

    Science.gov (United States)

    Buszka, Paul M.; Fitzpatrick, John A.; Watson, Lee R.; Kay, Robert T.

    2007-01-01

    from human-affected boron sources. Boron concentrations in potential ground-water sources of boron were largest (15,700 to 24,400 ?g/L) in samples of CCP-affected surficial aquifer water from four wells at a CCP landfill and smallest (27 to 63 ?g/L) in three wells in the surficial aquifer that were distant from human-affected boron sources. Boron concentrations in water from the basal sand aquifer ranged from 656 ?g/L to 1,800 ?g/L. Boron concentrations in water from three domestic-wastewater-affected surficial aquifer wells ranged from 84 to 387 ?g/L. Among the representative ground-water samples, boron concentrations from all four samples of CCP-affected surficial aquifer water and four of five samples of water from the basal sand aquifer had concentrations greater than the RAL. A comparison of boron concentrations in acid-preserved and unacidified samples indicated that boron concentrations reported for this investigation may be from about 11 to 16 percent less than would be reported in a standard analysis of an acidified sample. The stable isotope boron-11 was most enriched in comparison to boron-10 in ground water from a confined aquifer, the basal sand aquifer (d11B, 24.6 to 34.0 per mil, five samples); it was most depleted in CCP-affected water from the surficial aquifer (d11B, 0.1 to 6.6 per mil, four samples). Domestic-wastewater-affected water from the surficial aquifer (d11B, 8.7 to 11.7 per mil, four samples) was enriched in boron-11, in comparison to individual samples of a borax detergent additive and a detergent with perborate bleach; it was intermediate in composition between basal sand aquifer water and CCP-affected water from the surficial aquifer. The similarity between a ground-water sample from the surficial aquifer and a hypothetical mixture of unaffected surficial aquifer and basal sand aquifer waters indicates the potential for long-term upward discharge of ground water into the surficial aquifer from one or more confined aquifers. Est

  5. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  6. Thermal conductivity behavior of boron carbides

    Science.gov (United States)

    Wood, C.; Zoltan, A.; Emin, D.; Gray, P. E.

    1983-01-01

    Knowledge of the thermal conductivity of boron carbides is necessary to evaluate its potential for high temperature thermoelectric energy conversion applications. The thermal diffusivity of hot pressed boron carbide B/sub 1-x/C/sub x/ samples as a function of composition, temperature and temperature cycling was measured. These data in concert with density and specific heat data yield the thermal conductivities of these materials. The results in terms of a structural model to explain the electrical transport data and novel mechanisms for thermal conduction are discussed.

  7. Designing your boron-charging system

    International Nuclear Information System (INIS)

    Miller, J.

    1979-01-01

    High-pressure positive-displacement pumps used in the boron-charging setups of pressurized-water (PWR) nuclear plants because of their inherently high efficiencies over a wide range of pressures and speeds are described. Hydrogen-saturated water containing 4-12% boric acid is fed to the pump from a volume-control tank under a gas blanket. Complicated piping and the pulsation difficulties associated with reciprocating pumps make hydrogen-saturated boron-charging systems a challenge to the designer. The article describes the unusual hydraulics of the systems to help assure a trouble-free design

  8. Unveiling polytype transformation assisted growth mechanism in boron carbide nanowires

    Science.gov (United States)

    Song, Ningning; Li, Xiaodong

    2018-01-01

    We demonstrate direct evidence that the lattice distortion, induced by boron carbide (BxCy) stoichiometry, assists the growth of boron carbide nanowires. The transformation between different polytypic boron carbide phases lowers the energy barrier for boron diffusion, promoting boron migration in the nanowire growth. An atomistic mass transport model has been established to explain such volume-diffusion-induced nanowire growth which cannot be explained by the conventional surface diffusion model alone. These findings significantly advance our understanding of nanowire growth processes and mass transport mechanisms and provide new guidelines for the design of nanowire-structured devices.

  9. Model for calculating the boron concentration in PWR type reactors

    International Nuclear Information System (INIS)

    Reis Martins Junior, L.L. dos; Vanni, E.A.

    1986-01-01

    A PWR boron concentration model has been developed for use with RETRAN code. The concentration model calculates the boron mass balance in the primary circuit as the injected boron mixes and is transported through the same circuit. RETRAN control blocks are used to calculate the boron concentration in fluid volumes during steady-state and transient conditions. The boron reactivity worth is obtained from the core concentration and used in RETRAN point kinetics model. A FSAR type analysis of a Steam Line Break Accident in Angra I plant was selected to test the model and the results obtained indicate a sucessfull performance. (Author) [pt

  10. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D.

    1996-01-01

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope 10 B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/ 10 B reactions ( 10 B(n,α) 7 Li) resulting in the production of localized high LET radiation from alpha and 7 Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams

  11. Hyaluronic acid as a potential boron carrier for BNCT: Preliminary evaluation

    International Nuclear Information System (INIS)

    Zaboronok, A.; Yamamoto, T.; Nakai, K.; Yoshida, F.; Uspenskii, S.; Selyanin, M.; Zelenetskii, A.; Matsumura, Akira

    2015-01-01

    Hyaluronic acid (HA), a nonimmunogenic, biocompatible polymer found in different biological tissues, has the potential to attach to CD44 receptors on the surface of certain cancer cells, where the receptor is overexpressed compared with normal cells. Boron–hyaluronic acid (BHA) was tested for its feasibility as a potential agent for BNCT. BHA with low-viscosity 30 kDa HA could be administered by intravenous injection. The compound showed a certain degree of cytotoxicity and accumulation in C6 rat glioma cells in vitro. Instability of the chelate bonds between boron and HA and/or insufficient specificity of CD44 receptors on C6 cells to BHA could account for the insufficient in vitro accumulation. To ensure the future eligibility of BHA for BNCT experiments, using alternative tumor cell lines and chemically securing the chelate bonds or synthesizing BHA with boron covalently attached to HA might be required. - Highlights: • Hyaluronic acid (HA) is a nonimmunogenic, biocompatible polymer. • Boron–HA (BHA) acid can contain a large number of boron atoms for BNCT. • Active targeting can be realized with CD44 and other HA receptors on tumor cells. • BHA showed a certain degree of toxicity against C6 tumor cells and V79 fibroblasts. • BHA was injected into rats via the tail vein, boron was detected in tumors in vivo.

  12. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.

  13. Synthesis and in-vivo detection of boronated compounds for use in BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G.W.

    1992-01-01

    The primary objective of the DOE program at The University of Tennessee Graduate School of Medicine is the development of effective molecular medicine for use in neutron-capture therapy (NCT). The research focuses primarily on the preparation of new boron-rich NCT agents and the technology to detect them in-vivo. The detection technology involves the development of effective magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques for verifying and measuring NCT agents in-vivo. The synthetic program is directed toward the design of novel boron NCT (BNCT) agents which are targeted to the cell nucleus and gadolinium liposomes targeted to the liver. The UT-DOE program is unique in that it has access to both state-of-the-art whole-body and microscopy MRI instruments.

  14. Increased Thymic Cell Turnover under Boron Stress May Bypass TLR3/4 Pathway in African Ostrich.

    Science.gov (United States)

    Huang, Hai-bo; Xiao, Ke; Lu, Shun; Yang, Ke-li; Ansari, Abdur Rahman; Khaliq, Haseeb; Song, Hui; Zhong, Juming; Liu, Hua-zhen; Peng, Ke-mei

    2015-01-01

    Previous studies revealed that thymus is a targeted immune organ in malnutrition, and high-boron stress is harmful for immune organs. African ostrich is the living fossil of ancient birds and the food animals in modern life. There is no report about the effect of boron intake on thymus of ostrich. The purpose of present study was to evaluate the effect of excessive boron stress on ostrich thymus and the potential role of TLR3/4 signals in this process. Histological analysis demonstrated that long-term boron stress (640 mg/L for 90 days) did not disrupt ostrich thymic structure during postnatal development. However, the numbers of apoptotic cells showed an increased tendency, and the expression of autophagy and proliferation markers increased significantly in ostrich thymus after boron treatment. Next, we examined the expression of TLR3 and TLR4 with their downstream molecular in thymus under boron stress. Since ostrich genome was not available when we started the research, we first cloned ostrich TLR3 TLR4 cDNA from thymus. Ostrich TLR4 was close to white-throated Tinamou. Whole avian TLR4 codons were under purify selection during evolution, whereas 80 codons were under positive selection. TLR3 and TLR4 were expressed in ostrich thymus and bursa of fabricius as was revealed by quantitative real-time PCR (qRT-PCR). TLR4 expression increased with age but significantly decreased after boron treatment, whereas TLR3 expression showed the similar tendency. Their downstream molecular factors (IRF1, JNK, ERK, p38, IL-6 and IFN) did not change significantly in thymus, except that p100 was significantly increased under boron stress when analyzed by qRT-PCR or western blot. Taken together, these results suggest that ostrich thymus developed resistance against long-term excessive boron stress, possibly by accelerating intrathymic cell death and proliferation, which may bypass the TLR3/4 pathway. In addition, attenuated TLRs activity may explain the reduced inflammatory

  15. Removal properties of dissolved boron by glucomannan gel.

    Science.gov (United States)

    Oishi, Kyoko; Maehata, Yugo

    2013-04-01

    Boron ions have long been known to form complexes with the cis-diol group of a polysaccharide. Konjac glucomannan (KGM) which is one of polysaccharides was used to remove dissolved boron in this study. KGM forms a complex with boron, but does not remove boron from contaminated waters as well as other polysaccharides because of its high water solubility. Therefore, the removal efficiencies of dissolved boron were examined using both an insoluble KGM gel and KGM semi-gel. The former did not remove dissolved boron, but the latter did. The difference in the ability of boron removal was due to the presence of diol group inside. KGM loses free diol group during the process of gelation. On the other hand, the semi-gel gelated only surface layer in water has diol group inside. The boron removal capacity of the semi-gel was highest at pHs⩾11, when the boron species is present as B(OH)4(-). The capacity was slightly increased by the addition of Al, Ca and Mg under high pH conditions. This was due to co-precipitation of boron with Ca dissolved from the semi-gel. The boron adsorbed to the semi-gel easily was desorbed under low pH conditions and the hysteresis was not found. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Determination of boron concentration in biopsy-sized tissue samples

    International Nuclear Information System (INIS)

    Hou, Yougjin; Fong, Katrina; Edwards, Benjamin; Autry-Conwell, Susan; Boggan, James

    2000-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is the most sensitive analytical method for boron determination. However, because boron is volatile and ubiquitous in nature, low-concentration boron sample measurement remains a challenge. In this study, an improved ICP-MS method was developed for quantitation of tissue samples with low (less than 10 ppb) and high (100 ppb) boron concentrations. The addition of an ammonia-mannitol solution converts volatile boric acid to the non-volatile ammonium borate in the spray chamber and with the formation of a boron-mannitol complex, the boron memory effect and background are greatly reduced. This results in measurements that are more accurate, repeatable, and efficient. This improved analysis method has facilitated rapid and reliable tissue biodistribution analyses of newly developed boronated compounds for potential use in neutron capture therapy. (author)

  17. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Camillo, M.A.P.; Tomac Junior, U.

    1990-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na 2 10 B 12 H 11 SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author) [pt

  18. A colorimetric determination of boron in biological sample for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Camilo, M.A.P.; Tomac Junior, U.

    1989-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of gliomas and glioblastomas grade III and IV than other therapies. During the treatment of levels of Na 2 10 B 12 H 11 S H must be known in several compartments of the organism and with this purpose the method of colorimetric determination of boron using curcumin was established. This method is simples, reproducible and has adequate sensitivity for this control. (author). 7 refs, 3 figs, 1 tab

  19. Effect of low temperature oxidation (LTO) in reducing boron skin in boron spin on dopant diffused emitter

    Energy Technology Data Exchange (ETDEWEB)

    Singha, Bandana; Solanki, Chetan Singh [Department of Energy Science and Technology, Indian Institute of Technology, Bombay Mumbai-400076, Maharashtra (India)

    2016-05-06

    Formation of boron skin is an unavoidable phenomenon in p-type emitter formation with boron dopant source. The boron skin thickness is generally less than 100 nm and difficult to remove by chemical and physical means. Low temperature oxidation (LTO) used in this work is useful in removing boron skin thickness up to 30 nm and improves the emitter performance. The effective minority carrier lifetime gets improved by more than 30% after using LTO and leakage current of the emitter gets lowered by 100 times thereby showing the importance of low temperature oxidation in boron spin on dopant diffused emitters.

  20. Boron exposure through drinking water during pregnancy and birth size.

    Science.gov (United States)

    Igra, Annachiara Malin; Harari, Florencia; Lu, Ying; Casimiro, Esperanza; Vahter, Marie

    2016-10-01

    Boron is a metalloid found at highly varying concentrations in soil and water. Experimental data indicate that boron is a developmental toxicant, but the few human toxicity data available concern mostly male reproduction. To evaluate potential effects of boron exposure through drinking water on pregnancy outcomes. In a mother-child cohort in northern Argentina (n=194), 1-3 samples of serum, whole blood and urine were collected per woman during pregnancy and analyzed for boron and other elements to which exposure occurred, using inductively coupled plasma mass spectrometry. Infant weight, length and head circumference were measured at birth. Drinking water boron ranged 377-10,929μg/L. The serum boron concentrations during pregnancy ranged 0.73-605μg/L (median 133μg/L) and correlated strongly with whole-blood and urinary boron, and, to a lesser extent, with water boron. In multivariable-adjusted linear spline regression analysis (non-linear association), we found that serum boron concentrations above 80μg/L were inversely associated with birth length (B-0.69cm, 95% CI -1.4; -0.024, p=0.043, per 100μg/L increase in serum boron). The impact of boron appeared stronger when we restricted the exposure to the third trimester, when the serum boron concentrations were the highest (0.73-447μg/L). An increase in serum boron of 100μg/L in the third trimester corresponded to 0.9cm shorter and 120g lighter newborns (p=0.001 and 0.021, respectively). Considering that elevated boron concentrations in drinking water are common in many areas of the world, although more screening is warranted, our novel findings warrant additional research on early-life exposure in other populations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Effectiveness of boron neutron capture therapy for recurrent head and neck malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Itsuro [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan)], E-mail: katoitsu@dent.osaka-u.ac.jp; Fujita, Yusei [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan); Maruhashi, Akira [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan); Kumada, Hiroaki [Japan Atomic Energy Agency, Tokai Research and Development Center, Ibaraki (Japan); Ohmae, Masatoshi [Department of Oral and Maxillofacial Surgery, Izimisano Municipal Hospital, Rinku General Hospital, Izumisano, Osaka (Japan); Kirihata, Mitsunori [Graduate School of Environment and Life Science, Osaka prefectural University, Osaka (Japan); Imahori, Yoshio [Department of Neurosurgery, Kyoto Prefectural University, Kyoto (Japan); CEO of Cancer Intelligence Care Systems, Inc., Tokyo (Japan); Suzuki, Minoru [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan); Sakrai, Yoshinori [Graduate School of Medicine, Sapporo Medical University of Medicine, Hokkaido (Japan); Sumi, Tetsuro; Iwai, Soichi; Nakazawa, Mitsuhiro [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan); Murata, Isao; Miyamaru, Hiroyuki [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University (Japan); Ono, Koji [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan)

    2009-07-15

    It is necessary to explore new treatments for recurrent head and neck malignancies (HNM) to avoid severe impairment of oro-facial structures and functions. Boron neutron capture therapy (BNCT) is tumor-cell targeted radiotherapy that has significant superiority over conventional radiotherapies in principle. We have treated with BNCT 42 times for 26 patients (19 squamous cell carcinomas (SCC), 4 salivary gland carcinomas and 3 sarcomas) with a recurrent and far advanced HNM since 2001. Results of (1) {sup 10}B concentration of tumor/normal tissue ratios (T/N ratio) of FBPA-PET studies were SCC: 1.8-5.7, sarcoma: 2.5-4.0, parotid tumor: 2.5-3.7. (2) Therapeutic effects were CR: 12 cases, PR: 10 cases, PD: 3 cases NE (not evaluated): 1 case. Response rate was 85%. (3) Improvement of QOL such as a relief of severe pain, bleeding, and exudates at the local lesion, improvement of PS, disappearance of ulceration, covered with normal skin and preserved oral and maxillofacial functions and tissues. (4) Survival periods after BNCT were 1-72 months (mean: 13.6 months). Six-year survival rate was 24% by Kaplan-Meier analysis. (5) Adverse-events were transient mucositis and alopecia in most of the cases; three osteomyelitis and one brain necrosis were recognized. These results indicate that BNCT represents a new and promising treatment approach for advanced HNM.

  2. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst.

  3. The investigation of physical conditions of boron uptake region in proton boron fusion therapy (PBFT

    Directory of Open Access Journals (Sweden)

    Joo-Young Jung

    2016-09-01

    Full Text Available We conducted a quantitative study to identify the effectiveness of proton boron fusion therapy (PBFT. Four simulation scenarios were designed to investigate the escalation in total dose with the proton boron reaction using a Monte Carlo n-particle extended (MCNPX 2.6.0 simulation. The peak integrated dose was obtained for three different physical conditions (i.e., boron uptake region (BUR thickness, BUR location, and boron concentration with differing proton beam energy (60–90 MeV. We found that the peak integrated dose was increased by up to 96.62% compared to the pristine proton Bragg-peak. For the synergetic effect to take place with 60–70 MeV proton beam, the BUR had to be at least 0.3 cm thick while spanning the Bragg-peak. Similarly to the thickness, the BUR location needed to be within 0.3 cm from the Bragg-peak when the thickness was maintained at 0.9 cm. An effective proton boron reaction required the boron concentration to be equal to or greater than 14.4 mg/g. These results demonstrate the impact of various physical and beam conditions of the PBFT, which are critical environmental factors for the treatment planning. We envision that this study will advance our understanding of the PBFT, which can be an invaluable treatment method for maximizing the potential of proton therapy.

  4. "Sequential” Boron Neutron Capture Therapy (BNCT): A Novel Approach to BNCT for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model

    Energy Technology Data Exchange (ETDEWEB)

    Ana J. Molinari; Andrea Monti Hughes; Elisa M. Heber; Marcela A. Garabalino; Veronica A. Trivillin; Amanda E. Schwint; Emiliano C. C. Pozzi; Maria E. Itoiz; Silvia I. Thorp; Romina F. Aromando; David W. Nigg; Jorge Quintana; Gustavo A. Santa Cruz

    2011-04-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10B carriers in tumors followed by irradiation with a thermal or epithermal neutron beam. The minor abundance stable isotope of boron, 10B, interacts with low energy (thermal) neutrons to produce high linear energy transfer (LET) a-particles and 7Li ions. These disintegration products are known to have a high relative biological effectiveness (RBE). Their short range (<10 {micro}m) would limit the damage to cells containing 10B (1,2). Thus, BNCT would target tumor tissue selectively, sparing normal tissue. Clinical trials of BNCT for the treatment of glioblastoma multiforme and/or melanoma and, more recently, head and neck tumors and liver metastases, using boronophenylalanine (BPA) or sodium mercaptoundecahydrododecaborane (BSH) as the 10B carriers, have been performed or are underway in Argentina, Japan, the US and Europe (e.g. 3-8). To date, the clinical results have shown a potential, albeit inconclusive, therapeutic advantage for this technique. Contributory translational studies have been carried out employing a variety of experimental models based on the implantation of tumor cells in normal tissue (e.g. 5).

  5. Testing boron carbide under triaxial compression

    Science.gov (United States)

    Anderson, Charles; Chocron, Sidney; Dannemann, Kathryn A.; Nicholls, Arthur E.

    2012-03-01

    This article focuses on the pressure dependence and summarizes the characterization work conducted on intact and predamaged specimens of boron carbide under confinement in a pressure vessel and in a thick steel sleeve. The failure curves obtained are presented, and the data compared to experimental data from the literature.

  6. Kinetic analysis of boron carbide sintering

    International Nuclear Information System (INIS)

    Borchert, W.; Kerler, A.R.

    1975-01-01

    The kinetics of the sintering of boron carbide were investigated by shrinkage measurements with a high-temperature dilatometer under argon atmosphere in dependence on temperature, grain size, and pressure. The activation energies and the reaction mechanisms of the different stages of sintering were determined. (orig.) [de

  7. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian

    1993-01-01

    report on attempts to compact amorphous iron–boron particles prepared by chemical reduction of Fe(II) ions in aqueous solution by NaBH4 (Ref. 2). The particles prepared in this way are pyrophoric, but can be passivated. The small particle size (10–100 nm), characteristic of this preparation technique...

  8. Boron nitride nanosheets reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Saggar, Richa; Porwal, H.; Tatarko, P.; Dlouhý, Ivo; Reece, M. J.

    2015-01-01

    Roč. 114, SEP (2015), S26-S32 ISSN 1743-6753 R&D Projects: GA MŠk(CZ) 7AMB14SK155 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Boron nitride nanosheets * Borosilicate glass * Mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.162, year: 2015

  9. Energetics of Boron Doping of Carbon Pores

    Science.gov (United States)

    Wexler, Carlos; St. John, Alexander; Connolly, Matthew

    2014-03-01

    Carbon-based materials show promise, given their light weight, large surface areas and low cost for storage of hydrogen and other gases, e.g., for energy applications. Alas, the interaction of H2 and carbon, 4-5kJ/mol, is insufficient for room-temperature operation. Boron doping of carbon materials could raise the binding energy of H2 to 12-15kJ/mol. The nature of the incorporation of boron into a carbon structure has not been studied so far. In this talk we will address the energetics of boron incorporation into a carbon matrix via adsorption and decomposition of decaborane by first principles calculations. These demonstrate: (a) A strong adsorption of decaborane to carbon (70-80kJ/mol) resulting in easy incorporation of decaborane, sufficient for up to 10-20% B:C at low decaborane vapour pressures. (b) Identification that boron acts as an electron acceptor when incorporated substitutionally into a graphene-like material, as expected due to its valence. (c) The electrostatic field near the molecule is responsible for ca. 2/3 of the enhancement of the H2-adsorbent interaction in aromatic compounds such as pyrene, coronene and ovalene. Supported by DOE DE-FG36-08GO18142, ACS-PRF 52696-ND5, and NSF 1069091.

  10. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  11. Reaction of boron carbide with molybdenum disilicide

    International Nuclear Information System (INIS)

    Novikov, A.V.; Melekhin, V.F.; Pegov, V.S.

    1989-01-01

    The investigation results of interaction in the B 4 C-MoSi 2 system during sintering in vacuum are presented. Sintering of boron carbide with molybdenum disilicide is shown to lead to the formation of MoB 2 , SiC, Mo 5 Si 3 compounds, the presence of carbon-containing covering plays an important role in sintering

  12. New insight into pecan boron nutrition

    Science.gov (United States)

    Alternate bearing by individual pecan [Carya illinoinensis (Wangenh.) K. Koch] trees is problematic for nut producers and processors. There are many unknowns regarding alternate bearing physiology, such as the relationship between boron and fruit set, nutmeat quality, and kernel maladies. Evidence...

  13. NEW ADVANCES IN BORON SOIL CHEMISTRY - Paper

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  14. NEW ADVANCES IN BORON SOIL CHEMISTRY

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  15. Perfomance analysis of boron carbide in LMFBR

    International Nuclear Information System (INIS)

    Pitner, A.L.; Birney, K.R.

    1975-01-01

    Reactivity control in the FFTF and LMFBR's will be maintained by control elements utilizing boron carbide pellets contained in stainless steel pins. Computer performance codes predict irradiation service conditions of absorber pellets and identify required experimental testing. Test results are incorporated in the codes to improve performance prediction capabilities

  16. Bandgap engineered graphene and hexagonal boron nitride

    Indian Academy of Sciences (India)

    In this article a double-barrier resonant tunnelling diode (DBRTD) has been modelled by taking advantage of single-layer hexagonal lattice of graphene and hexagonal boron nitride (h-BN). The DBRTD performance and operation are explored by means of a self-consistent solution inside the non-equilibrium Green's ...

  17. Investigation into organic boron compounds complexing

    International Nuclear Information System (INIS)

    Yuzhakova, G.A.; Belonovich, M.I.; Rybakova, M.N.; Morozova, T.L.; Lapkin, I.I.

    1983-01-01

    Triarylboranes interact with 4-amino-1, 2, 4-triazole With the formation of complexes of the composition 1:1. Ligand forms coordination bond with boron at the expense of pyridine atom of triazole cycle nitrogen. IR spectra, yields and decomposition temperatures of the complexes are presented

  18. Biological activity of N(4)-boronated derivatives of 2'-deoxycytidine, potential agents for boron-neutron capture therapy.

    Science.gov (United States)

    Nizioł, Joanna; Uram, Łukasz; Szuster, Magdalena; Sekuła, Justyna; Ruman, Tomasz

    2015-10-01

    Boron-neutron capture therapy (BNCT) is a binary anticancer therapy that requires boron compound for nuclear reaction during which high energy alpha particles and lithium nuclei are formed. Unnatural, boron-containing nucleoside with hydrophobic pinacol moiety was investigated as a potential BNCT boron delivery agent. Biological properties of this compound are presented for the first time and prove that boron nucleoside has low cytotoxicity and that observed apoptotic effects suggest alteration of important functions of cancer cells. Mass spectrometry analysis of DNA from cancer cells proved that boron nucleoside is inserted into nucleic acids as a functional nucleotide derivative. NMR studies present very high degree of similarity of natural dG-dC base pair with dG-boron nucleoside system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Boron carbide nanowires: Synthesis and characterization

    Science.gov (United States)

    Guan, Zhe

    Bulk boron carbide has been widely used in ballistic armored vest and the property characterization has been heavily focused on mechanical properties. Even though boron carbides have also been projected as a promising class of high temperature thermoelectric materials for energy harvesting, the research has been limited in this field. Since the thermal conductivity of bulk boron carbide is still relatively high, there is a great opportunity to take advantage of the nano effect to further reduce it for better thermoelectric performance. This dissertation work aims to explore whether improved thermoelectric performance can be found in boron carbide nanowires compared with their bulk counterparts. This dissertation work consists of four main parts. (1) Synthesis of boron carbide nanowires. Boron carbide nanowires were synthesized by co-pyrolysis of diborane and methane at low temperatures (with 879 °C as the lowest) in a home-built low pressure chemical vapor deposition (LPCVD) system. The CVD-based method is energy efficient and cost effective. The as-synthesized nanowires were characterized by electron microscopy extensively. The transmission electron microscopy (TEM) results show the nanowires are single crystalline with planar defects. Depending on the geometrical relationship between the preferred growth direction of the nanowire and the orientation of the defects, the as-synthesized nanowires could be further divided into two categories: transverse fault (TF) nanowires grow normal to the defect plane, while axial fault (AF) ones grow within the defect plane. (2) Understanding the growth mechanism of as-synthesized boron carbide nanowires. The growth mechanism can be generally considered as the famous vapor-liquid-solid (VLS) mechanism. TF and AF nanowires were found to be guided by Ni-B catalysts of two phases. A TF nanowire is lead by a hexagonal phase catalyst, which was proved to be in a liquid state during reaction. While an AF nanowires is catalyzed by a

  20. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.

    Science.gov (United States)

    Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan

    2009-07-01

    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were

  1. Antibody-targeted NY-ESO-1 to mannose receptor or DEC-205 in vitro elicits dual human CD8+ and CD4+ T cell responses with broad antigen specificity.

    Science.gov (United States)

    Tsuji, Takemasa; Matsuzaki, Junko; Kelly, Marcus P; Ramakrishna, Venky; Vitale, Laura; He, Li-Zhen; Keler, Tibor; Odunsi, Kunle; Old, Lloyd J; Ritter, Gerd; Gnjatic, Sacha

    2011-01-15

    Immunization of cancer patients with vaccines containing full-length tumor Ags aims to elicit specific Abs and both CD4(+) and CD8(+) T cells. Vaccination with protein Ags, however, often elicits only CD4(+) T cell responses without inducing Ag-specific CD8(+) T cells, as exogenous protein is primarily presented to CD4(+) T cells. Recent data revealed that Ab-mediated targeting of protein Ags to cell surface receptors on dendritic cells could enhance the induction of both CD4(+) and CD8(+) T cells. We investigated in this study if these observations were applicable to NY-ESO-1, a cancer-testis Ag widely used in clinical cancer vaccine trials. We generated two novel targeting proteins consisting of the full-length NY-ESO-1 fused to the C terminus of two human mAbs against the human mannose receptor and DEC-205, both internalizing molecules expressed on APC. These targeting proteins were evaluated for their ability to activate NY-ESO-1-specific human CD4(+) and CD8(+) T cells in vitro. Both targeted NY-ESO-1 proteins rapidly bound to their respective targets on APC. Whereas nontargeted and Ab-targeted NY-ESO-1 proteins similarly activated CD4(+) T cells, cross-presentation to CD8(+) T cells was only efficiently induced by targeted NY-ESO-1. In addition, both mannose receptor and DEC-205 targeting elicited specific CD4(+) and CD8(+) T cells from PBLs of cancer patients. Receptor-specific delivery of NY-ESO-1 to APC appears to be a promising vaccination strategy to efficiently generate integrated and broad Ag-specific immune responses against NY-ESO-1 in cancer patients.

  2. Dietary boron decreases peak pancreatic in situ insulin release in chicks and plasma insulin concentrations in rats regardless of vitamin D or magnesium status.

    Science.gov (United States)

    Bakken, Naomi A; Hunt, Curtiss D

    2003-11-01

    Because dietary boron deprivation induces hyperinsulinemia in vitamin D-deprived rats, the influence of dietary boron on insulin metabolism as modified by nutritional stressors was examined in two animal models. Male weanling Sprague-Dawley rats were assigned to each of four (Experiment 1) or 8 (Experiment 2) dietary groups for 35 d: the basal diet (magnesium (as magnesium acetate), at 100 (inadequate) or 360-400 (adequate) mg/kg; and with cholecalciferol [vitamin D-3; 25 microg/kg for study length (Experiment 2), or, depleted for 16-17 d then repleted until end of experiment (Experiments 1 and 2)]. In the rat model, boron reduced plasma insulin (Experiment 1, P magnesium status. Cockerels (1 d old) were fed a ground corn, high protein casein and corn oil-based basal diet (low boron; 0.3 mg B/kg) supplemented with boron as orthoboric acid to contain 0.3 or 1.65 mg/kg (a physiologic amount) and vitamin D-3 at 3.13 (inadequate) or 15.60 (adequate) microg/kg. In the chick model, boron decreased (P < 0.045) in situ peak pancreatic insulin release at 26-37 d of age regardless of vitamin D-3 nutriture. These results suggest that physiologic amounts of boron may help reduce the amount of insulin required to maintain plasma glucose.

  3. New long-cycle small modular PWR cores using particle type burnable poisons for low boron operation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hoseong; Hwang, Dae Hee [Department of Nuclear Engineering, Kyung Hee University, Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Hong, Ser Gi, E-mail: sergihong@khu.ac.kr [Department of Nuclear Engineering, Kyung Hee University, Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Shin, Ho Choel [Core and Fuel Analysis Group, Korea Hydro & Nuclear Power Central Research Institute (KHNP-CRI), Daejon 305-343 (Korea, Republic of)

    2017-04-01

    Highlights: • New advanced burnable poison rods (BPR) are suggested for low boron operation in PWR. • The new SMR cores have long cycle length of ∼4.5 EFPYs with low boron concentration. • The SMR core satisfies all the design targets and constraints. - Abstract: In this paper, new small long-cycle PWR (Pressurized Water Reactor) cores for low boron concentration operation are designed by employing advanced burnable poison rods (BPRs) in which the BISO (Bi-Isotropic) particles of burnable poison are distributed in a SiC matrix. The BPRs are designed by adjusting the kernel diameter, the kernel material and the packing fraction to effectively reduce the excess reactivity in order to reduce the boron concentration in the coolant and achieve a flat change in excess reactivity over a long operational cycle. In addition, axial zoning of the BPRs was suggested to improve the core performances, and it was shown that the suggested axial zoning of BPRs considerably extends the cycle length compared to a core with no BPR axial zoning. The results of the core physics analyses showed that the cores using BPRs with a B{sub 4}C kernel have long cycle lengths of ∼4.5 EFPYs (Effective Full Power Years), small maximum CBCs (Critical Boron Concentration) lower than 370 ppm, low power peaking factors, and large shutdown margins of control element assemblies.

  4. Note: Development of real-time epithermal neutron detector for boron neutron capture therapy.

    Science.gov (United States)

    Tanaka, H; Sakurai, Y; Takata, T; Watanabe, T; Kawabata, S; Suzuki, M; Masunaga, S-I; Taki, K; Akabori, K; Watanabe, K; Ono, K

    2017-05-01

    The real-time detection of epithermal neutrons forms an important aspect of boron neutron capture therapy. In this context, we developed an epithermal neutron detector based on the combination of a small Eu:LiCaAlF 6 scintillator and a quartz fiber in order to fulfill the irradiation-field requirements for boron neutron capture therapy. The irradiation test is performed with the use of a reactor-based neutron source. The thermal and epithermal neutron sensitivities of our epithermal neutron detector are estimated to be 9.52 × 10 -8 ± 1.59 × 10 -8 cm 2 and 1.20 × 10 -6 cm 2 ± 8.96 × 10 -9 cm 2 , respectively. We also subject the developed epithermal neutron detector to actual irradiation fields, and we confirm that the epithermal neutron flux can be measured in realtime.

  5. Mechanisms of boron removal from hydraulic fracturing wastewater by aluminum electrocoagulation.

    Science.gov (United States)

    Sari, Mutiara Ayu; Chellam, Shankararaman

    2015-11-15

    Boron uptake from highly saline hydraulic fracturing wastewater by freshly precipitated amorphous Al(OH)3 precipitates is due to ligand exchange and complexation with surface hydroxyl groups. Consequently, aluminum electrocoagulation can be a feasible approach to remove boron from flowback/produced water. Actual hydraulic fracturing wastewater containing ∼120mg/L boron from the Eagle Ford shale play was employed. Electrocoagulation was performed over a range of aluminum dosages (0-1350mg/L), pH 6.4 and 8, and high current densities (20-80mA/cm(2)) using a cylindrical aluminum anode encompassed by a porous cylindrical 316-stainless steel cathode. Direct measurements of boron uptake along with its chemical state and coordination were made using Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-Ray Photoelectron Spectroscopy. Boron removal increased monotonically with aluminum dosage and was higher at pH 8, but remained relatively constant at ⩾20mA/cm(2). Chloride ions induced anodic pitting and super-Faradaic (131% efficiency) aluminum dissolution and their electrooxidation produced free chlorine. ATR-FTIR suggested outer-sphere and inner-sphere complexation of trigonal B(OH)3 with Al(OH)3, which was confirmed by the BO bond shifting toward lower binding energies in XPS. Severe AlO interferences precluded evidence for tetrahedral B(OH)4(-) complexation. No evidence for co-precipitation was obtained. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Work Function Characterization of Potassium-Intercalated, Boron Nitride Doped Graphitic Petals

    Directory of Open Access Journals (Sweden)

    Patrick T. McCarthy

    2017-07-01

    Full Text Available This paper reports on characterization techniques for electron emission from potassium-intercalated boron nitride-modified graphitic petals (GPs. Carbon-based materials offer potentially good performance in electron emission applications owing to high thermal stability and a wide range of nanostructures that increase emission current via field enhancement. Furthermore, potassium adsorption and intercalation of carbon-based nanoscale emitters decreases work functions from approximately 4.6 eV to as low as 2.0 eV. In this study, boron nitride modifications of GPs were performed. Hexagonal boron nitride is a planar structure akin to graphene and has demonstrated useful chemical and electrical properties when embedded in graphitic layers. Photoemission induced by simulated solar excitation was employed to characterize the emitter electron energy distributions, and changes in the electron emission characteristics with respect to temperature identified annealing temperature limits. After several heating cycles, a single stable emission peak with work function of 2.8 eV was present for the intercalated GP sample up to 1,000 K. Up to 600 K, the potassium-intercalated boron nitride modified sample exhibited improved retention of potassium in the form of multiple emission peaks (1.8, 2.5, and 3.3 eV resulting in a large net electron emission relative to the unmodified graphitic sample. However, upon further heating to 1,000 K, the unmodified GP sample demonstrated better stability and higher emission current than the boron nitride modified sample. Both samples deintercalated above 1,000 K.

  7. Development of Cutting Tool Through Superplastic Boronizing of Duplex Stainless Steel

    Science.gov (United States)

    Jauhari, Iswadi; Harun, Sunita; Jamlus, Siti Aida; Sabri, Mohd Faizul Mohd

    2017-03-01

    In this study, a cutting tool is developed from duplex stainless steel (DSS) using the superplastic boronizing technique. The feasibility of the development process is studied, and the cutting performances of the cutting tool are evaluated and compared with commercially available carbide and high-speed steel (HSS) tools. The superplastically boronized (SPB) cutting tool yielded a dense boronized layer of 50.5 µm with a surface hardness of 3956 HV. A coefficient of friction value of 0.62 is obtained, which is lower than 1.02 and 0.8 of the carbide and HSS tools. When tested on an aluminum 6061 surface under dry condition, the SPB cutting tool is also able to produce turning finishing below 0.4 µm, beyond the travel distance of 3000 m, which is comparable to the carbide tool, but produces much better results than HSS tool. Through superplastic boronizing of DSS, it is possible to produce a high-quality metal-based cutting tool that is comparable to the conventional carbide tool.

  8. Determination of boron in graphite by a wet oxidation decomposition/curcumin photometric method

    International Nuclear Information System (INIS)

    Watanabe, Kazuo; Toida, Yukio

    1995-01-01

    The wet oxidation decomposition of graphite materials has been studied for the accurate determination of boron using a curcumin photometric method. A graphite sample of 0.5 g was completely decomposed with a mixture of 5 ml of sulfuric acid, 3 ml of perchloric acid, 0.5 ml of nitric acid and 5 ml of phosphoric acid in a silica 100 ml Erlenmeyer flask fitted with an air condenser at 200degC. Any excess of perchloric and nitric acids in the solution was removed by heating on a hot plate at 150degC. Boron was distilled with methanol, and then recovered in 10 ml of 0.2 M sodium hydroxide. The solution was evaporated to dryness. To the residue were added curcumin-acetic acid and sulfuric-acetic acid. The mixture was diluted with ethanol, and the absorbance at 555 nm was measured. The addition of 5 ml of phosphoric acid proved to be effective to prevent any volatilization loss of boron during decomposition of the graphite sample and evaporation of the resulting solution. The relative standard deviation was 4-8% for samples with 2 μg g -1 levels of boron. The results on CRMs JAERI-G5 and G6 were in good agreement with the certified values. (author)

  9. Equilibrium p-T Phase Diagram of Boron: Experimental Study and Thermodynamic Analysis

    Science.gov (United States)

    Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.

    2013-01-01

    Solid-state phase transformations and melting of high-purity crystalline boron have been in situ and ex situ studied at pressures to 20 GPa in the 1500–2500 K temperature range where diffusion processes become fast and lead to formation of thermodynamically stable phases. The equilibrium phase diagram of boron has been constructed based on thermodynamic analysis of experimental and literature data. The high-temperature part of the diagram contains p-T domains of thermodynamic stability of rhombohedral β-B106, orthorhombic γ-B28, pseudo-cubic (tetragonal) t'-B52, and liquid boron (L). The positions of two triple points have been experimentally estimated, i.e. β–t'–L at ~ 8.0 GPa and ~ 2490 K; and β–γ–t' at ~ 9.6 GPa and ~ 2230 K. Finally, the proposed phase diagram explains all thermodynamic aspects of boron allotropy and significantly improves our understanding of the fifth element. PMID:23912523

  10. Raman spectroscopy of boron-doped single-layer graphene.

    Science.gov (United States)

    Kim, Yoong Ahm; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Endo, Morinobu; Fujimori, Toshihiko; Kaneko, Katsumi; Terrones, Mauricio; Behrends, Jan; Eckmann, Axel; Casiraghi, Cinzia; Novoselov, Kostya S; Saito, Riichiro; Dresselhaus, Mildred S

    2012-07-24

    The introduction of foreign atoms, such as nitrogen, into the hexagonal network of an sp(2)-hybridized carbon atom monolayer has been demonstrated and constitutes an effective tool for tailoring the intrinsic properties of graphene. Here, we report that boron atoms can be efficiently substituted for carbon in graphene. Single-layer graphene substitutionally doped with boron was prepared by the mechanical exfoliation of boron-doped graphite. X-ray photoelectron spectroscopy demonstrated that the amount of substitutional boron in graphite was ~0.22 atom %. Raman spectroscopy demonstrated that the boron atoms were spaced 4.76 nm apart in single-layer graphene. The 7-fold higher intensity of the D-band when compared to the G-band was explained by the elastically scattered photoexcited electrons by boron atoms before emitting a phonon. The frequency of the G-band in single-layer substitutionally boron-doped graphene was unchanged, which could be explained by the p-type boron doping (stiffening) counteracting the tensile strain effect of the larger carbon-boron bond length (softening). Boron-doped graphene appears to be a useful tool for engineering the physical and chemical properties of graphene.

  11. Laser-induced photochemical enrichment of boron isotopes

    International Nuclear Information System (INIS)

    Freund, S.M.; Ritter, J.J.

    1976-01-01

    A boron trichloride starting material containing both boron-10 isotopes and boron-11 isotopes is selectively enriched in one or the other of these isotopes by a laser-induced photochemical method involving the reaction of laser-excited boron trichloride with either H 2 S or D 2 S. The method is carried out by subjecting a low pressure gaseous mixture of boron trichloride starting material and the sulfide to infrared radiation from a carbon dioxide TE laser. The wave length of the radiation is selected so as to selectively excite one or the other of boron-10 BCl 3 molecules or boron-11 BCl 3 molecules, thereby making them preferentially more reactive with the sulfide. The laser-induced reaction produces both a boron-containing solid phase reaction product and a gaseous phase containing mostly unreacted BCl 3 and small amounts of sulfhydroboranes. Pure boron trichloride selectively enriched in one of the isotopes is recovered as the primary product of the method from the gaseous phase by a multi-step recovery procedure. Pure boron trichloride enriched in the other isotope is recovered as a secondary product of the method by the subsequent chlorination of the solid phase reaction product followed by separation of BCl 3 from the mixture of gaseous products resulting from the chlorination

  12. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-07-17

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  13. Hemorrhage in mouse tumors induced by dodecaborate cluster lipids intended for boron neutron capture therapy

    Directory of Open Access Journals (Sweden)

    Schaffran T

    2014-07-01

    Full Text Available Tanja Schaffran,1 Nan Jiang,1 Markus Bergmann,2,3 Ekkehard Küstermann,4 Regine Süss,5 Rolf Schubert,5 Franz M Wagner,6 Doaa Awad,7 Detlef Gabel1,2,8 1Department of Chemistry, University of Bremen, 2Institute of Neuropathology, Klinikum Bremen-Mitte; 3Cooperative Center Medicine, University of Bremen, 4“In-vivo-MR” AG, FB2, University of Bremen, Bremen, 5Pharmaceutical Technology, University of Freiburg, Freiburg im Breisgau, 6Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II, Technische Unversitaet Muenchen, Garching, Germany; 7Department of Biochemistry, Alexandria University, Alexandria, Egypt; 8School of Engineering and Science, Jacobs University Bremen, Bremen, Germany Abstract: The potential of boron-containing lipids with three different structures, which were intended for use in boron neutron capture therapy, was investigated. All three types of boron lipids contained the anionic dodecaborate cluster as the headgroup. Their effects on two different tumor models in mice following intravenous injection were tested; for this, liposomes with boron lipid, distearoyl phosphatidylcholine, and cholesterol as helper lipids, and containing a polyethylene glycol lipid for steric protection, were administered intravenously into tumor-bearing mice (C3H mice for SCCVII squamous cell carcinoma and BALB/c mice for CT26/WT colon carcinoma. With the exception of one lipid (B-THF-14, the lipids were well tolerated, and no other animal was lost due to systemic toxicity. The lipid which led to death was not found to be much more toxic in cell culture than the other boron lipids. All of the lipids that were well tolerated showed hemorrhage in both tumor models within a few hours after administration. The hemorrhage could be seen by in vivo magnetic resonance and histology, and was found to occur within a few hours. The degree of hemorrhage depended on the amount of boron administered and on the tumor model. The observed unwanted effect of the lipids

  14. Experimental Evaluation of pH and Temperature Effects on the Adsorption of Boron onto Clay Minerals

    Science.gov (United States)

    Hoenisch, B.; Marone, D.; Ruprecht, J.

    2017-12-01

    Modeling the secular evolution of the concentration [B] and isotopic composition (δ11B) of boron in seawater is hampered by limited constraints on the relative sources (i.e. riverine input of weathering products, hydrothermal convection at mid-ocean ridges and fluids expelled from accretionary prisms) and sinks (i.e. alteration of the oceanic crust, adsorption onto clays, and co-precipitation in carbonates) of boron to and from the ocean. Clays remove approximately 28% of total boron from the ocean and quantification of this sink thus represents a major factor for reconstructing the secular evolution of seawater [B] and δ11B over the Cenozoic. However, the relative strength of the clay sink could have been much smaller in the early Cenozoic compared to today, because borate ion as the charged species is preferentially adsorbed onto detrital clays over boric acid, and because the relative abundance of borate in seawater should have been lower under the more acidic conditions of the early Cenozoic. In addition, different clay minerals tend to fractionate boron isotopes differentially, and the relative composition of clay minerals has varied in the past with the dominant climate and weathering patterns on the continents. We have conducted a range of pH (7.5-8.4) and temperature (3-32°C) experiments with four clay minerals (Kaolinite, Illite, Montmorillonite and Chlorite), to build on previously published but limited experimental data. Similar to a previous study and as expected based on the relative abundance of borate ion in seawater, boron adsorption onto these clays increases at higher pH and lower temperatures, but whereas Montmorillonite and Illite absorb similar quantities of boron, Kaolinite is most and Chlorite least efficient in this process. We are now in the process of characterizing the boron isotope fractionation associated with these adsorption experiments.

  15. The Boron Isotopic Composition of Elephant Dung: Inputs to the Global Boron Budget

    Science.gov (United States)

    Williams, L. B.; Hervig, R. L.

    2011-12-01

    A survey of boron in kerogen showed isotopically light δ11B values (0 to -50%) that are distinctly different from most mineral and natural water B reservoirs. Diagenesis releases this isotopically light B into pore fluids when hydrocarbons are generated, thus enriching oilfield brines in 10B. This observation suggests that borated biomolecules (BM) are primarily tetrahedral favoring 10B, whereas 11B is preferred in trigonal coordination. Plants, with optimal concentrations up to 100ppm, contribute more B than animal remains to sediment. Elephants are one of the largest herbivores on earth, consuming 200 - 250 kg of plant material/day and producing 50 kg of manure/day. They are inefficient at digestion, thus the manure contains >50% undigested plant material. Dung samples are therefore ideal for studying the δ11B of both the food input and digested output of a significant B supply to sedimentary systems. Horse and rabbit manure were studied for comparison to evaluate B isotope variations in the food supply and potential vital effects on the output. B-content and isotopic composition of dung plant material and digested fractions were measured in the solid state by secondary ion mass spectrometry. The digests were rinsed in 1.8% mannitol, a B-complexing agent, to remove surface adsorbed-B, then air dried and Au-coated for charge compensation. Results showed that the elephant diet contains 3-13 ppm B, with an average δ11B of -20 ± 0.8% (1σ), while rabbit food had 88 ppm B with a δ11B of -50 ± 1.3 %. The digested fraction of the elephant dung contains 4-10ppm B with average δ11B values of -12 ± 1.2%. In comparison, horse manure with 11-21 ppm B has a δ11B of -10.7 ± 0.5% and rabbit manure contains 2-3 ppm B with a δ11B of -8.8 ± 1%. Boron isotope compositions of these manures are indistinguishable (within error). Clearly plant material is a major contributor of isotopically light B to sediments. The herbivores studied fractionate their total B intake in

  16. Thermal conductivity of polymer composites with oriented boron nitride

    International Nuclear Information System (INIS)

    Ahn, Hong Jun; Eoh, Young Jun; Park, Sung Dae; Kim, Eung Soo

    2014-01-01

    Highlights: • Thermal conductivity depended on the orientation of BN in the polymer matrices. • Hexagonal boron nitride (BN) particles were treated by C 27 H 27 N 3 O 2 and C 14 H 6 O 8 . • Amphiphilic-agent-treated BN particles are more easily oriented in the composite. • BN/PVA composites with C 14 H 6 O 8 -treated BN showed the highest thermal conductivity. • Thermal conductivity of the composites was compared with several theoretical models. - Abstract: Thermal conductivity of boron nitride (BN) with polyvinyl alcohol (PVA) and/or polyvinyl butyral (PVB) was investigated as a function of the degree of BN orientation, the numbers of hydroxyl groups in the polymer matrices and the amphiphilic agents used. The composites with in-plane orientation of BN showed a higher thermal conductivity than the composites with out-of-plane orientation of BN due to the increase of thermal pathway. For a given BN content, the composites with in-plane orientation of BN/PVA showed higher thermal conductivity than the composites with in-plane orientation of BN/PVB. This result could be attributed to the improved degree of orientation of BN, caused by a larger number of hydroxyl groups being present. Those treated with C 14 H 6 O 8 amphiphilic agent demonstrated a higher thermal conductivity than those treated by C 27 H 27 N 3 O 2 . The measured thermal conductivity of the composites was compared with that predicted by the several theoretical models

  17. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    Science.gov (United States)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  18. Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models

    Directory of Open Access Journals (Sweden)

    Charles A Maitz

    2017-08-01

    Full Text Available Boron neutron capture therapy (BNCT was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. Mice were implanted with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH3(CH215–7,8-C2B9H11] in the lipid bilayer and encapsulated Na3[1-(2`-B10H9-2-NH3B10H8] within the liposomal core. Mice were irradiated 30 hours after the second injection in a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. Despite relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.

  19. Chemoradiotherapy of cancer using boronated monoclonal antibodies. Progress report, December 1, 1982-November 30, 1983

    International Nuclear Information System (INIS)

    Soloway, A.H.

    1984-01-01

    The feasibility was established of using antibodies for the delivery of 10 B. Problems faced included 1) preservation of antibody activity following boronation, 2) antigenic receptor site density of the target cells, and 3) delivery of a critical number of 10 B atoms per cell. The linkage of a heavily boronated polymeric species to antibody by means of a single functional group allow for the delivery of a large number 10 B atoms per antibody molecule without a significant reduction in affinity. Both the polyclonally derived anti-thymocyte globulin (ATG) and the monoclonal anti-colorectal carcinoma antibody (17-1A) recognize antigens that are expressed with a density of approximately 10 6 epitopes per cell. The major concept that we advance is that just as effective cancer chemotherapy is based on the use of a combination of drugs, similarly a combination of compounds could be employed to deliver the requisite amount of 10 B to tumor target cells. This could include compounds such as Na 2 B 12 H 11 Sh together with boronated antibodies directed against tumor associated antigens. (DT)

  20. Diffusion Boronizing of H11 Hot Work Tool Steel

    Science.gov (United States)

    Jurči, Peter; Hudáková, Mária

    2011-10-01

    The H11 hot work tool steel was boronized at various processing parameters, austenitized, quenched, and tempered to a core hardness of 47-48 HRC. Microstructure, phase constitution, and microhardness of boronized layers were investigated. Effect of boronized region on the bulk properties was determined by the Charpy impact test. Structure of boronized regions is formed by the compound layers and diffusion inter-layer. The compound layers consisted of only (Fe,Cr)2B phase, but in the case of longer processing time, they contained also of the (Fe,Cr)B-phase. The inter-layer contained enhanced portion of carbides, formed due to carbon diffusion from the boride compounds toward the substrate. Microhardness of boronized layers exceeded considerably 2000 HV 0.1. However, boronizing led to a substantial lowering of the Charpy impact toughness of the material.

  1. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.

    Science.gov (United States)

    Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P

    2015-12-18

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.

  2. Influence of dopants, particularly carbon, on β-rhombohedral boron

    Science.gov (United States)

    Werheit, H.; Flachbart, K.; Pristáš, G.; Lotnyk, D.; Filipov, V.; Kuhlmann, U.; Shitsevalova, N.; Lundström, T.

    2017-09-01

    Due to the high affinity of carbon to boron, the preparation of carbon-free boron is problematic. Even high-purity (6 N) β-rhombohedral boron contains 30-60 ppm of C. Hence, carbon affects the boron physical properties published so far more or less significantly. We studied well-defined carbon-doped boron samples based on pure starting material carefully annealed with up to about 1% C, thus assuring homogeneity. We present and discuss their electrical conductivity, optical absorption, luminescence and phonon spectra. Earlier attempts of other authors to determine the conductivity of C-doped boron are revised. Our results allow estimating the effects of oxygen and iron doping on the electrical conductivity using results taken from literature. Discontinuities at low T impair the electronic properties.

  3. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  4. Boron autoradiography method applied to the study of steels

    International Nuclear Information System (INIS)

    Gugelmeier, R.; Barcelo, G.N.; Boado, J.H.; Fernandez, C.

    1986-01-01

    The boron state, contained in the steel microestructure, is determined. The autoradiography by neutrons is used, permiting to obtain boron distribution images by means of additional information which is difficult to acquire by other methods. The application of the method is described, based on the neutronic irradiation of a polished steel sample, over which a celulose nitrate sheet or other appropriate material is fixed to constitute the detector. The particles generated by the neutron-boron interaction affect the detector sheet, which is subsequently revealed with a chemical treatment and can be observed at the optical microscope. In the case of materials used for the construction of nuclear reactors, special attention must be given to the presence of boron, since owing to the exceptionaly high capacity of neutron absorption, lowest quantities of boron acquire importance. The adaption of the method to metallurgical problems allows the obtainment of a correlation between the boron distribution images and the material's microstructure. (M.E.L.) [es

  5. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F.; Lin, S.Y. [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China); Peir, J.J. [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China); Liao, J.W. [Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan (China); Lin, Y.C. [Department of Veterinary Medicine, National Chung Hsing University, Taiwan (China); Chou, F.I., E-mail: fichou@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China)] [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China)

    2011-12-15

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 {mu}g {sup 10}B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague-Dawley (SD) rats were studied by administrating 25 mg {sup 10}B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4-6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  6. Strongly Phosphorescent Transition Metal π-Complexes of Boron-Boron Triple Bonds.

    Science.gov (United States)

    Braunschweig, Holger; Dellermann, Theresa; Dewhurst, Rian D; Hupp, Benjamin; Kramer, Thomas; Mattock, James D; Mies, Jan; Phukan, Ashwini K; Steffen, Andreas; Vargas, Alfredo

    2017-04-05

    Herein are reported the first π-complexes of compounds with boron-boron triple bonds with transition metals, in this case Cu I . Three different compounds were isolated that differ in the number of copper atoms bound to the BB unit. Metalation of the B-B triple bonds causes lengthening of the B-B and B-C NHC bonds, as well as large upfield shifts of the 11 B NMR signals, suggesting greater orbital interactions between the boron and transition metal atoms than those observed with recently published diboryne/alkali metal cation complexes. In contrast to previously reported fluorescent copper(I) π-complexes of boron-boron double bonds, the Cu n -π-diboryne compounds (n = 2, 3) show intense phosphorescence in the red to near-IR region from their triplet excited states, according to their microsecond lifetimes, with quantum yields of up to 58%. While the Cu diborene bond is dominated by electrostatic interactions, giving rise to S 1 and T 1 states of pure IL(π-π*) nature, DFT studies show that the Cu I π-complexes of diborynes reported herein exhibit enhanced metal d orbital contributions to HOMO and HOMO-1, which results in S 1 and T 1 having significant MLCT character, enabling strong spin-orbit coupling for highly efficient intersystem-crossing S 1 → T n and phosphorescence T 1 → S 0 .

  7. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    OpenAIRE

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass ...

  8. Boron Drug Delivery via Encapsulated Magnetic Nanocomposites: A New Approach for BNCT in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Yinghuai Zhu

    2010-01-01

    Full Text Available Ortho-carborane cages have been successfully attached to modified magnetic nanoparticles via catalytic azide-alkyne cycloadditions between 1-R-2-butyl-Ortho-C2B10H10(R=Me,3;Ph,4 and propargyl group-enriched magnetic nanoparticles. A loading amount of 9.83 mmol boron atom/g starch-matrixed magnetic nanoparticles has been reached. The resulting nanocomposites have been found to be highly tumor-targeted vehicles under the influence of an external magnetic field (1.14T, yielding a high boron concentration of 51.4 μg/g tumor and ratios of around 10 : 1 tumor to normal tissues.

  9. Isotopic effects on the phonon modes in boron carbide.

    Science.gov (United States)

    Werheit, H; Kuhlmann, U; Rotter, H W; Shalamberidze, S O

    2010-10-06

    The effect of isotopes ((10)B-(11)B; (12)C-(13)C) on the infrared- and Raman-active phonons of boron carbide has been investigated. For B isotopes, the contributions of the virtual crystal approximation, polarization vector and isotopical disorder are separated. Boron and carbon isotope effects are largely opposite to one another and indicate the share of the particular atoms in the atomic assemblies vibrating in specific phonon modes. Some infrared-active phonons behave as expected for monatomic boron crystals.

  10. Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages.

    Science.gov (United States)

    Routray, Indusmita; Ali, Shakir

    2016-01-01

    Chemical mediators of inflammation (CMI) are important in host defense against infection. The reduced capacity of host to induce the secretion of these mediators following infection is one of the factors in host susceptibility to infection. Boron, which has been suggested for its role in infection, is reported in this study to increase lymphocyte proliferation and the secretion of CMI by the lipopolysaccharide (LPS)-stimulated peritoneal macrophages in BALB/c mice. Boron was administered to mice orally as borax at different doses for 10 consecutive days, followed by the stimulation of animals with ovalbumin and isolation of splenocytes for proliferation assay. The lymphocyte subsets were determined by flow cytometry in spleen cell suspension. The mediators of inflammation, TNF-α, IL-6, IL-1β and nitric oxide (NO), were measured in culture supernatant of LPS-primed macrophages isolated from borax treated mice. TNF and ILs were measured by ELISA. NO was determined by Griess test. The expression of inducible nitric oxide synthase (iNOS) in macrophages was studied by confocal microscopy. Results showed a significant increase in T and B cell populations, as indicated by an increase in CD4 and CD19, but not CD8, cells. Boron further stimulated the secretion of TNF-α, IL-6, IL-1β, NO and the expression of iNOS by the LPS-primed macrophages. The effect was dose dependent and most significant at a dose level of 4.6 mg/kg b. wt. Taken together, the study concludes that boron at physiological concentration induces lymphocyte proliferation and increases the synthesis and secretion of pro-inflammatory mediators by the LPS-primed macrophages, more specifically the M1 macrophages, possibly acting through Toll-like receptor. The study implicates boron as a regulator of the immune and inflammatory reactions and macrophage polarization, thus playing an important role in augmenting host defense against infection, with possible role in cancer and other diseases.

  11. A shielding design for an accelerator-based neutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, A.E.; Blue, T.E. E-mail: blue.1@osu.edu; Woollard, J.E

    2004-11-01

    Research in boron neutron capture therapy (BNCT) at The Ohio State University Nuclear Engineering Department has been primarily focused on delivering a high quality neutron field for use in BNCT using an accelerator-based neutron source (ABNS). An ABNS for BNCT is composed of a proton accelerator, a high-energy beam transport system, a {sup 7}Li target, a target heat removal system (HRS), a moderator assembly, and a treatment room. The intent of this paper is to demonstrate the advantages of a shielded moderator assembly design, in terms of material requirements necessary to adequately protect radiation personnel located outside a treatment room for BNCT, over an unshielded moderator assembly design.

  12. Mode Grüneisen parameters of boron carbide

    Science.gov (United States)

    Werheit, Helmut; Manghnani, Murli H.; Kuhlmann, Udo; Hushur, Anwar; Shalamberidze, Sulkhan

    2017-10-01

    IR- and Raman-active phonons of boron carbide and the mode Grüneisen parameters γ related are studied concerning their dependence on chemical composition, temperatures between 30 and 800 K and pressures up to ∼70 GPa. Most bulk phonons yield γ between +1.5 and - 1.5: those related to icosahedra yield γ = 0.8(3). Surface phonons are distinguished by considerably higher γ. Negative γ of chain bending modes supports the assumption that the chain center buckles out under pressure. Some striking specific mode Grüneisen parameters are explained. Pressure-dependent bond lengths suggest the reversible high-pressure phase transition to be second order.

  13. Electron field emission from boron doped microcrystalline diamond

    International Nuclear Information System (INIS)

    Roos, M.; Baranauskas, V.; Fontana, M.; Ceragioli, H.J.; Peterlevitz, A.C.; Mallik, K.; Degasperi, F.T.

    2007-01-01

    Field emission properties of hot filament chemical vapor deposited boron doped polycrystalline diamond have been studied. Doping level (N B ) of different samples has been varied by the B/C concentration in the gas feed during the growth process and doping saturation has been observed for high B/C ratios. Threshold field (E th ) for electron emission as function of B/C concentration has been measured, and the influences of grain boundaries, doping level and surface morphology on field emission properties have been investigated. Carrier transport through conductive grains and local emission properties of surface sites have been figured out to be two independent limiting effects in respect of field emission. Emitter current densities of 500 nA cm -2 were obtained using electric fields less than 8 V/μm

  14. Behavior of disordered boron carbide under stress.

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W; Chhowalla, Manish

    2006-07-21

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6 GPa approximately = P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2-3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  15. Steam activation of boron doped diamond electrodes

    International Nuclear Information System (INIS)

    Ohashi, Tatsuya; Zhang Junfeng; Takasu, Yoshio; Sugimoto, Wataru

    2011-01-01

    Highlights: → Steam activation of boron doped diamond (BDD) electrodes. → Steam activated BDD has a porous columnar texture. → Steam activated BDD has a wide potential window. - Abstract: Boron doped diamond (BDD) electrodes were activated in steam at various temperatures, resulting in high quality BDD electrodes with a porous microstructure. Distinct columnar structures were observed by scanning electron microscopy. The electrochemically active surface area of the steam-activated BDD was up to 20 times larger than the pristine BDD electrode owing to the porous texture. In addition, a widening of the potential window was observed after steam activation, suggesting that the quality of BDD was enhanced due to oxidative removal of graphitic impurities during the activation process.

  16. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  17. CVD mechanism of pyrolytic boron nitride

    International Nuclear Information System (INIS)

    Tanji, H.; Monden, K.; Ide, M.

    1987-01-01

    Pyrolytic boron nitride (P-BN) has become a essential material for III-V compound semiconductor manufacturing process. As the demand from electronics industry for larger single crystals increases, the demand for larger and more economical P-BN components is growing rapidly. P-BN is manufactured by low pressure CVD using boron-trihalides and ammonia as the reactants. In spite that P-BN has been in the market for quite a long time, limited number of fundamental studies regarding the kinetics and the formation mechanism of P-BN have been reported. As it has been demonstrated in CVD of Si, knowledge and both theoretical and empirical modeling of CVD process can be applied to improve the deposition technology and to give more uniform deposition with higher efficiency, and it should also apply to the deposition of P-BN

  18. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; hide

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  19. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    Ferreira, T.H.; Sousa, E.M.B.

    2010-01-01

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  20. Characterization of boron doped nanocrystalline diamonds

    International Nuclear Information System (INIS)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V

    2008-01-01

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/μm range

  1. Development of boron epoxy rocket motor chambers.

    Science.gov (United States)

    Jensen, W. M.; Knoell, A. C.; Zweben, C.

    1972-01-01

    A 71 cm diameter 74 cm length boron/epoxy composite rocket motor chamber was designed based on the geometric configuration of the JPL Applications Technology Satellite titanium alloy apogee motor chamber. Because analyses showed large stress concentrations in the domes, the configuration was modified using the same basic constraints for openings and attachments. The rocket motor chamber was then fabricated by filament winding with boron/epoxy tape and hydrostatically tested to failure at 264 N/sq cm, 57.2 N/sq cm above the design value. Two more rocket motor chambers were fabricated with the same basic constraints, but shortened to 57.6 cm for a smaller propellant load. The first of these short chambers failed in proof because of filament winding fabrication difficulties. The second chamber was successfully fabricated and passed the hydrostatic proof test.

  2. Microadditions of boron and vanadium in ADI

    Directory of Open Access Journals (Sweden)

    Rzychoń T.

    2007-01-01

    Full Text Available In the second part of the study, describing the role of vanadium and boron microadditions in the process of structure formation in heavy-walled castings made from ADI, the results of own investigations were presented. Within this study two series of melts of the ductile iron were made, introducing microadditions of the above mentioned elements to both unalloyed ductile iron and the ductile iron containing high levels of nickel and copper (the composition typical of ADI. Melts were conducted with iron-nickel-magnesium master alloy. Thermal analysis of the solidification process of the cast keel blocks was conducted, the heat treatment of the alloys was carried out, and then the effect of the introduced additions of boron and vanadium on the hardenability of the investigated cast iron was examined and evaluated.

  3. Low-Energy Sputtering Studies of Boron Nitride with Xenon Ions

    Science.gov (United States)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    Sputtering of boron nitride with xenon ions was investigated using secondary ion (SIMS) and secondary neutral (SNMS) mass spectrometry. The ions generated from the ion gun were incident on the target at an angle of 50' with respect to the surface'normal. The energy of ions ranged from 100 eV to 3 keV. A flood electron gun was used to neutralize the positive charge build-up on the target surface. The intensities of sputtered neutral and charged particles, including single atoms, molecules, and clusters, were measured as a function of ion energy. Positive SIMS spectra were dominated by the two boron isotopes whereas BN- and B- were the two major constituents of the negative SIMS spectra. Nitrogen could be detected only in the SNMS spectra. The intensity-energy curves of the sputtered particles were similar in shape. The knees in P-SIMS and SNMS intensity-energy curves appear at around I keV which is significantly higher that 100 to 200 eV energy range at which knees appear in the sputtering of medium and heavy elements by ions of argon and xenon. This difference in the position of the sputter yield knee between boron nitride and heavier targets is due to the reduced ion energy differences. The isotopic composition of secondary ions of boron were measured by bombarding boron nitride with xenon ions at energies ranging from 100 eV to 1.5 keV using a quadrupole mass spectrometer. An ion gun was used to generate the ion beam. A flood electron gun was used to neutralize the positive charge buildup on the target surface. The secondary ion flux was found to be enriched in heavy isotopes at lower incident ion energies. The heavy isotope enrichment was observed to decrease with increasing primary ion energy. Beyond 350 eV, light isotopes were sputtered preferentially with the enrichment increasing to an asymptotic value of 1.27 at 1.5 keV. The trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy

  4. Bismuth-boron multiple bonding in BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, RI (United States)

    2017-08-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}, containing triple and double B-Bi bonds are presented. The BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -} clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB{sub 2}O{sup -} ([Bi≡B-B≡O]{sup -}) and Bi{sub 2}B{sup -} ([Bi=B=Bi]{sup -}), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Dependence of boron cluster dissolution on the annealing ambient

    International Nuclear Information System (INIS)

    Radic, Ljubo; Lilak, Aaron D.; Law, Mark E.

    2002-01-01

    Boron is introduced into silicon via implantation to form p-type layers. This process creates damage in the crystal that upon annealing causes enhanced diffusion and clustering of the boron layer. Reactivation of the boron is not a well-understood process. In this letter we experimentally investigate the effect of the annealing ambient on boron reactivation kinetics. An oxidizing ambient which injects silicon interstitials is compared to an inert ambient. Contrary to published theory, an excess of interstitials does not accelerate the reactivation process

  6. Molecular Dynamics Modeling of Piezoelectric Boron Nirtride Nanotubes

    Data.gov (United States)

    National Aeronautics and Space Administration — Conduct a systematic computational study on the physical and electro-mechanical properties of Boron Nitride Nanotubes (BNNTs) to evaluate their functional...

  7. Cobalt Doping of Semiconducting Boron Carbide Using Cobaltocene

    National Research Council Canada - National Science Library

    Carlson, Lonnie

    2007-01-01

    .... This temperature dependent surface photovoltage effect is not compelling evidence for the majority carrier type but does suggest an increase in the carrier concentration in semiconducting boron...

  8. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  9. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  10. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  11. Boron Isotopes Enrichment via Continuous Annular Chromatography

    OpenAIRE

    Sağlam, Gonca

    2016-01-01

    ABSTRACT Boron has two stable isotopes namely 10B and 11B isotopes. The large cross section of 10B isotope for thermal neutrons is used for reactor control in nuclear fission reactors. The thermal neutrons absorption cross sections of pure 10B and 11B are 3837 and 0.005 barns respectively. In the literature, amongst others, batch elution chromatography techniques are reported for 10B isotope enrichment. This work focuses on continuous chromatographic 10B isotope separation system via continuo...

  12. Clinical aspects of boron neutron capture therapy

    International Nuclear Information System (INIS)

    Goodman, J.H.; Gahbauer, R.; Clendenon, N.

    1986-01-01

    Boron neutron capture therapy is potentially useful in treating malignant tumors of the central nervous system and is technically possible. Additional in vitro and in vivo testing is required to determine toxicities, normal tissue tolerances and tissue responses to treatment parameters. Adequate tumor uptake of the capture agent can be evaluated clinically prior to implementation of a finalized treatment protocol. Phase I and Phase II protocol development, clinical pharmacokinetic studies and neutron beam development

  13. Feasibility of boron neutron capture therapy for malignant spinal tumors

    International Nuclear Information System (INIS)

    Nakai, Kei; Kumada, Hiroaki; Yamamoto, Tetsuya; Tsurubuchi, Takao; Zaboronok, Alexander; Matsumura, Akira

    2009-01-01

    Treatment of malignant spinal cord tumors is currently ineffective. The characteristics of the spine are its seriality, small volume, and vulnerability: severe QOL impairment can be brought about by small neuronal damage. The present study aimed to investigate the feasibility of BNCT as a tumor-selective charged particle therapy for spinal cord tumors from the viewpoint of protecting the normal spine. A previous report suggested the tolerance dose of the spinal cord was 13.8 Gy-Eq for radiation myelopathy; a dose as high as 11 Gy-Eq demonstrated no spinal cord damage in an experimental animal model. We calculated the tumor dose and the normal spinal cord dose on a virtual model of a spinal cord tumor patient with a JAEA computational dosimetry system (JCDS) treatment planning system. The present study made use of boronophenylalanine (BPA). In these calculations, conditions were set as follows: tumor/normal (T/N) ratio of 3.5, blood boron concentration of 12 ppm, tumor boron concentration of 42 ppm, and relative biological effectiveness (RBE) values for tumor and normal spinal cord of 3.8 and 1.35, respectively. We examined how to optimize neutron irradiation by changing the beam direction and number. In our theoretical example, simple opposed two-field irradiation achieved 28.0 Gy-Eq as a minimum tumor dose and 7.3 Gy-Eq as a maximum normal spinal dose. The BNCT for the spinal cord tumor was therefore feasible when a sufficient T/N ratio could be achieved. The use of F-BPA PET imaging for spinal tumor patients is supported by this study.

  14. Nanotwins soften boron-rich boron carbide (B13C2)

    Science.gov (United States)

    An, Qi; Goddard, William A.

    2017-03-01

    Extensive studies of metals and alloys have observed that nanotwins lead to strengthening, but the role of nanotwins in ceramics is not well established. We compare here the shear strength and the deformation mechanism of nanotwinned boron-rich boron carbide (B13C2) with the perfect crystal under both pure shear and biaxial shear deformations. We find that the intrinsic shear strength of crystalline B13C2 is higher than that of crystalline boron carbide (B4C). But nanotwins in B13C2 lower the strength, making it softer than crystalline B4C. This reduction in strength of nanotwinned B13C2 arises from the interaction of the twin boundary with the C-B-C chains that connect the B12 icosahedra.

  15. Boron-carbide-aluminum and boron-carbide-reactive metal cermets

    Science.gov (United States)

    Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.

    1986-01-01

    Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

  16. A fundamental study of industrial boron carbide

    International Nuclear Information System (INIS)

    Zuppiroli, L.; Kormann, R.; Lesueur, D.

    1983-09-01

    Some of the physical properties of boron carbide, before and after irradiation are reviewed on the basis of several new experiments performed in our laboratory. The layered aspect of the grains of this ceramic, due to a microtwinning of the rhomboedral structure, is emphasized first. Then, the location of free carbon in samples of composition close to B 4 C is discussed in relation with new sputtering experiments. Coupled studies of the electric conductivities and the electron spin resonance lines have demonstrated the important role of free carbon in the electronic properties of boron carbide and revealed the existence of a homogeneous short range disorder, the origin of which is not very clear (amorphous concept). The elementary processes responsible of the swelling and microcracking of neutron irradiated boron carbide are rather well understood. The role of the point defects in these processes is reported. The displacement threshold energies and formation volumes are discussed in relation with electron irradiation experiments, and displacement rates are calculated in different irradiation situations including neutron irradiations [fr

  17. Water-dispersed thermo-responsive boron nitride nanotubes: synthesis and properties

    Czech Academy of Sciences Publication Activity Database

    Kalay, S.; Stetsyshyn, Y.; Lobaz, Volodymyr; Harhay, K.; Ohar, H.; Ҫulha, M.

    2016-01-01

    Roč. 27, č. 3 (2016), 035703_1-035703_8 ISSN 0957-4484 R&D Projects: GA ČR(CZ) GA13-08336S; GA MPO(CZ) FR-TI4/625 Institutional support: RVO:61389013 Keywords : boron nitride nanotubes * thermo-responsive polymer brushes * poly(N-isopropylacrylamide) Subject RIV: CA - Inorganic Chemistry Impact factor: 3.440, year: 2016

  18. Effect of boron compounds on physical, mechanical, and fire properties of injection molded wood plastic composites

    Science.gov (United States)

    Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Zeki Candan; Umit Buyuksari; Erkan Avci

    2011-01-01

    Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites (WPCs) incorporated with different levels of boron compounds, borax/boric acid (BX/BA) (0.5:0.5 wt %) and zinc borate (ZB) (4, 8, or 12 wt %) were investigated. The effect of the coupling agent loading (2, 4, or 6 wt %), maleic anhydride-grafted PP (MAPP), on the...

  19. BOREX: Solar neutrino experiment via weak neutral and charged currents in boron-11

    International Nuclear Information System (INIS)

    Kovacs, T.; Mitchell, J.W.; Raghavan, P.

    1989-01-01

    Borex, and experiment to observe solar neutrinos using boron loaded liquid scintillation techniques, is being developed for operation at the Gran Sasso underground laboratory. It aims to observe the spectrum of electron type 8 B solar neutrinos via charged current inverse β-decay of 11 B and the total flux solar neutrinos regardless of flavor by excitation of 11 B via the weak neutral current. 14 refs

  20. Probing the General Time Scale Question of Boronic Acid Binding with Sugars in Aqueous Solution at Physiological pH

    Science.gov (United States)

    Ni, Nanting; Laughlin, Sarah; Wang, Yingji; Feng, You; Zheng, Yujun

    2012-01-01

    The boronic acid group is widely used in chemosensor design due to its ability to reversibly bind diol-containing compounds. The thermodynamic properties of the boronic acid-diol binding process have been investigated extensively. However, there are few studies of the kinetic properties of such binding processes. In this report, stopped-flow method was used for the first time to study the kinetic properties of the binding between three model arylboronic acids, 4-, 5-, and 8-isoquinolinylboronic acids, and various sugars. With all the boronic acid-diol pair sexamined, reactions were complete within seconds. The kon values with various sugars follow the order of D-fructose >D-tagatose>D-mannose >D-glucose. This trend tracks the thermodynamic binding affinities for these sugars and demonstrates that the “on” rate is the key factor determining the binding constant. PMID:22464680