WorldWideScience

Sample records for boron 11 target

  1. Boron-11 MRI and MRS of intact animals infused with a boron neutron capture agent

    International Nuclear Information System (INIS)

    Kabalka, G.W.; Davis, M.; Bendel, P.

    1988-01-01

    Boron neutron capture therapy (BNCT) depends on the delivery of boron-containing drugs to a targeted lesion. Currently, the verification and quantification of in vivo boron content is a difficult problem. Boron-11 spectroscopy was utilized to confirm the presence of a dimeric sulfhydryl dodecaborane BNCT agent contained in an intact animal. Spectroscopy experiments revealed that the decay time of transverse magnetization of the boron-11 spins was less than 1 ms which precluded the use of a 2DFT imaging protocol. A back-projection protocol was developed and utilized to generate the first boron-11 image of a BNCT agent in the liver of an intact Fisher 344 rat

  2. Real-time boronization in PBX-M using erosion of solid boronized targets

    International Nuclear Information System (INIS)

    Kugel, H.W.; Timberlake, J.; Bell, R.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Tighe, W.; Hirooka, Y.

    1994-11-01

    Thirty one real-time boronizations were applied to PBX-M using the plasma erosion of solid target probes. More than 17 g of boron were deposited in PBX-M using this technique. The probes were positioned at the edge plasma to optimize vaporization and minimize spallation. Auger depth profile analysis of poloidal and toroidal deposition sample coupon arrays indicate that boron was transported by the plasma around the torus and deep into the divertors. During discharges with continuous real-time boronization, low-Z and high-Z impurities decreased rapidly as plasma surfaces were covered during the first 20-30 discharges. After boronization, a short-term improvement in plasma conditions persisted prior to significant boron erosion from plasma surfaces, and a longer term, but less significant improvement persisted as boron farther from the edge continued gettering. Real-time solid target boronization has been found to be very effective for accelerating conditioning to new regimes and maintaining high performance plasma conditions

  3. Meeting the challenge of homogenous boron targeting of heterogeneous tumors for effective boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Heber, Elisa M.; Trivillin, Veronica A.; Itoiz, Maria E.; Rebagliati, J. Raul; Batistoni, Daniel; Kreimann, Erica L.; Schwint, Amanda E.; Nigg, David W.; Gonzalez, Beatriz N.

    2006-01-01

    BNCT is a tumor cell targeted radiation therapy. Inadequately boron targeted tumor populations jeopardize tumor control. Meeting the to date unresolved challenge of homogeneous targeting of heterogeneous tumors with effective boron carriers would contribute to therapeutic efficacy. The aim of the present study was to evaluate the degree of variation in boron content delivered by boronophenylalanine (BPA), GB-10 (Na 2 10 B 10 H 10 ) and the combined administration of (BPA+GB-10) in different portions of tumor, precancerous tissue around tumor and normal pouch tissue in the hamster cheek pouch oral cancer model. Boron content was evaluated by ICP-AES. The degree of homogeneity in boron targeting was assessed in terms of the coefficient of variation ([S.D./Mean]x100) of boron values. Statistical analysis of the results was performed by one-way ANOVA and the least significant difference test. GB-10 and GB-10 plus BPA achieved respectively a statistically significant 1.8-fold and 3.3-fold increase in targeting homogeneity over BPA. The combined boron compound administration protocol contributes to homogeneous targeting of heterogeneous tumors and would increase therapeutic efficacy of BNCT by exposing all tumor populations to neutron capture reactions in boron. (author)

  4. A critical assessment of boron target compounds for boron neutron capture therapy.

    Science.gov (United States)

    Hawthorne, M Frederick; Lee, Mark W

    2003-01-01

    Boron neutron capture therapy (BNCT) has undergone dramatic developments since its inception by Locher in 1936 and the development of nuclear energy during World War II. The ensuing Cold War spawned the entirely new field of polyhedral borane chemistry, rapid advances in nuclear reactor technology and a corresponding increase in the number to reactors potentially available for BNCT. This effort has been largely oriented toward the eradication of glioblastoma multiforme (GBM) and melanoma with reduced interest in other types of malignancies. The design and synthesis of boron-10 target compounds needed for BNCT was not channeled to those types of compounds specifically required for GBM or melanoma. Consequently, a number of potentially useful boron agents are known which have not been biologically evaluated beyond a cursory examination and only three boron-10 enriched target species are approved for human use following their Investigational New Drug classification by the US Food and Drug Administration; BSH, BPA and GB-10. All ongoing clinical trials with GBM and melanoma are necessarily conducted with one of these three species and most often with BPA. The further development of BNCT is presently stalled by the absence of strong support for advanced compound evaluation and compound discovery driven by recent advances in biology and chemistry. A rigorous demonstration of BNCT efficacy surpassing that of currently available protocols has yet to be achieved. This article discusses the past history of compound development, contemporary problems such as compound classification and those problems which impede future advances. The latter include means for biological evaluation of new (and existing) boron target candidates at all stages of their development and the large-scale synthesis of boron target species for clinical trials and beyond. The future of BNCT is bright if latitude is given to the choice of clinical disease to be treated and if a recognized study

  5. Three New Offset {delta}{sup 11}B Isotope Reference Materials for Environmental Boron Isotope Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, M. [BAM Federal Institute for Materials Research and Testing, Berlin (Germany); IsoAnalysis UG, Berlin (Germany); Vogl, J. [BAM Federal Institute for Materials Research and Testing, Berlin (Germany)

    2013-07-15

    The isotopic composition of boron is a well established tool in various areas of science and industry. Boron isotope compositions are typically reported as {delta}{sup 11}B values which indicate the isotopic difference of a sample relative to the isotope reference material NIST SRM 951. A significant drawback of all of the available boron isotope reference materials is that none of them covers a natural boron isotope composition apart from NIST SRM 951. To fill this gap of required {delta}{sup 11}B reference materials three new solution boric acid reference materials were produced, which cover 60 per mille of the natural boron isotope variation (-20 to 40 per mille {delta}{sup 11}B) of about 100 per mille . The new reference materials are certified for their {delta}{sup 11}B values and are commercially available through European Reference Materials (http://www.erm-crm.org). The newly produced and certified boron isotope reference materials will allow straightforward method validation and quality control of boron isotope data. (author)

  6. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications.

    NARCIS (Netherlands)

    Mandal, S.; Bakeine, G.J.; Krol, S.; Ferrari, C.; Clerici, A.M.; Zonta, C.; Cansolino, L.; Ballarini, F.; Bortolussi, S.; Stella, S.; Protti, N.; Bruschi, P.; Altieri, S.

    2011-01-01

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were

  7. Epidermal growth factor (EGF) as a potential targeting agent for delivery of boron to malignant gliomas

    International Nuclear Information System (INIS)

    Capala, J.; Barth, R.F.; Adams, D.M.; Bailey, M.Q.; Soloway, A.H.; Carlsson, J.

    1994-01-01

    The majority of high grade gliomas express an amplified epidermal growth factor receptor (EGFR) gene, and this often is associated with an increase in cell surface receptor expression. The rapid internalization and degradation of EGF-EGFR complexes, as well as their high affinity make EGF a potential targeting agent for delivery of 10 B to tumor cells with an amplified number of EGFR. Human glioma cells can expresses as many as 10 5 -10 6 EGF receptors per cell, and if these could be saturated with boronated EGF, then > 10 8 boron atoms would be delivered per cell. Since EGF has a comparatively low molecular weight (∼ 6 kD), this has allowed us to construct relatively small bioconjugates containing ∼ 900 boron atoms per EGF molecule 3 , which also had high affinity for EGFR on tumor cells. In the present study, the feasibility of using EGF receptors as a potential target for therapy of gliomas was investigated by in vivo scintigraphic studies using 131 I- or 99m T c -labeled EGF in a rat brain tumor model. Our results indicate that intratumorally delivered boron- EGF conjugates might be useful for targeting EGFR on glioma cells if the boron containing moiety of the conjugates persisted intracellularly. Further studies are required, however, to determine if this approach can be used for BNCT of the rat glioma

  8. Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser

    Directory of Open Access Journals (Sweden)

    A. Picciotto

    2014-08-01

    Full Text Available We show that a spatially well-defined layer of boron dopants in a hydrogen-enriched silicon target allows the production of a high yield of alpha particles of around 10^{9} per steradian using a nanosecond, low-contrast laser pulse with a nominal intensity of approximately 3×10^{16}  W cm^{−2}. This result can be ascribed to the nature of the long laser-pulse interaction with the target and with the expanding plasma, as well as to the optimal target geometry and composition. The possibility of an impact on future applications such as nuclear fusion without production of neutron-induced radioactivity and compact ion accelerators is anticipated.

  9. Interaction of iron with boron in metal-rich metallaboranes resulting in large deshielding and rapid relaxation processes of the boron-11 nucleus

    International Nuclear Information System (INIS)

    Rath, N.P.; Fehlner, T.P.

    1988-01-01

    A first-order, parameterized model for calculating 11 B chemical shifts in metal-rich ferraboranes and a correlation of chemical shift with boron Mulliken populations from Fenske-Hall calculations are presented. These correlations are qualitatively different from those reported earlier for boranes and suggest that direct iron-boron interactions lead to large deshielding due to substantial increases in multiple-bond contributions to the shielding tensor. Relaxation rates have been measured for [Fe 4 (CO) 12 BH/sub 3-n/]/sup n-/ (n = 0-2) and correlated with electric field gradients at the boron nucleus estimated from Fenske-Hall calculations. These results demonstrate that formation of the boride, [Fe 4 (CO) 12 B] 3- , by deprotonation is accompanied by the development of large asymmetries in the electronic charge distribution around the boron nucleus. Finally, 7 Li NMR is used to probe the nature of the anions [Fe 4 (CO) 12 BH/sub 3-n/]/sup n-/ (n = 1-3), and observed line shapes suggest close association of Li + with the trianion. 28 references, 3 figures, 4 tables

  10. BOREX: Solar neutrino experiment via weak neutral and charged currents in boron-11

    International Nuclear Information System (INIS)

    Kovacs, T.; Mitchell, J.W.; Raghavan, P.

    1989-01-01

    Borex, and experiment to observe solar neutrinos using boron loaded liquid scintillation techniques, is being developed for operation at the Gran Sasso underground laboratory. It aims to observe the spectrum of electron type 8 B solar neutrinos via charged current inverse β-decay of 11 B and the total flux solar neutrinos regardless of flavor by excitation of 11 B via the weak neutral current. 14 refs

  11. From Urey To The Ocean's Glacial Ph: News From The Boron-11 Paleo-acidimetry.

    Science.gov (United States)

    Zeebe, R. E.; Wolf-Gladrow, D. A.; Bijma, J.

    Boron paleo-acidimetry is based on the stable boron isotope composition of foraminiferal shells which has been shown to be a function of seawater pH. It is cur- rently one of the most promising paleo-carbonate chemistry proxies. One important parameter of the proxy is the equilibrium fractionation between the dissolved boron species B(OH)3 and B(OH)- which was calculated to be 19 per mil at 25C by Kak- 4 ihana and Kotaka (1977), based on Urey's theory. The calculated equilibrium frac- tionation, however, depends on the vibrational frequencies of the molecules for which different values have been reported in the literature. We have recalculated the equilib- rium fractionation and find that it may be distinctly different from 19 per mil (this is the bad news). The good news is that - theoretically - the use of 11B as a paleo-pH indicator is not compromised through vital effects in planktonic foraminifera. We de- rive this conclusion by the use of a diffusion-reaction model that calculates pH profiles and 11B values in the vicinity of a foraminifer.

  12. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Subhra [Department of Tumor Immunology, Radboud University Nijmegen Medical Centre (Netherlands); Bakeine, Gerald J., E-mail: Jamesbakeine1@yahoo.com [Department of Internal Medicine and Therapeutics-Section of Clinical Toxicology, University of Pavia, Piazza Botta 10, 27100 Pavia (Italy); Krol, Silke [Institute of Neurology, Fondazione IRCCS Carlo Besta, Milan (Italy); Ferrari, Cinzia; Clerici, Anna M.; Zonta, Cecilia; Cansolino, Laura [Department of Surgery, Laboratory of Experimental Surgery, University of Pavia (Italy); Ballarini, Francesca [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bortolussi, Silva [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Stella, Subrina; Protti, Nicoletta [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bruschi, Piero [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Altieri, Saverio [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy)

    2011-12-15

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coated with multilayers of polyelectrolytes functionalized with the fluorescent dye (FITC), boronophenylalanine and folic acid. In vitro confocal fluorescence microscopy demonstrated significant uptake of the nanoparticles in cancer cells that are known to overexpress folate receptors. - Highlights: Black-Right-Pointing-Pointer Synthesis of multi-labeled gold nanoparticles for selective boron delivery to tumor cells. Black-Right-Pointing-Pointer Tumor selectivity is achieved through folic acid receptor targeting. Black-Right-Pointing-Pointer Optical fluorescent microscopy allows tracking of cellular uptake of the gold nanoparticle. Black-Right-Pointing-Pointer In vitro tests demonstrate selective nanoparticle up in folate receptor positive tumor cells.

  13. A new target concept for proton accelerator driven boron neutron capture therapy applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1998-01-01

    A new target concept termed Discs Incorporating Sector Configured Orbiting Sources (DISCOS), is proposed for spallation applications, including BNCT (Boron Neutron Capture Therapy). In the BNCT application a proton beam impacts a sequence of ultra thin lithium DISCOS targets to generate neutrons by the 7 Li(p,n) 7 Be reaction. The proton beam loses only a few keV of its ∼MeV energy as it passes through a given target, and is re-accelerated to its initial energy, by a DC electric field between the targets

  14. Chirality Relay in 2,2'-Substituted 1,1'-Binaphthyl: Access to Propeller Chirality of the Tricoordinate Boron Center.

    Science.gov (United States)

    Wang, Chen; Sun, Zuo-Bang; Xu, Qing-Wen; Zhao, Cui-Hua

    2016-11-14

    It is a challenging issue to achieve propeller chirality for triarylboranes owing to the low transition barrier between the P and M forms of the boron center. Herein, we report a new strategy to achieve propeller chirality of triarylboranes. It was found that the chirality relay from axially chiral 1,1'-binaphthyl to propeller chirality of the trivalent boron center can be realized when a Me 2 N and a Mes 2 B group (Mes=mesityl) are introduced at the 2,2'-positions of the 1,1'-binaphthyl skeleton (BN-BNaph) owing to the strong π-π interaction between the Me 2 N-bonded naphthyl ring and the phenyl ring of one adjacent Mes group, which not only exerts great steric hindrance on the rotation of the two Mes groups but also gives unequal stability to the two configurations of the boron center for a given configuration of the binaphthyl moiety. The stereostructures of the boron center were fully characterized through 1 H NMR spectroscopy, X-ray crystal analyses, and theoretical calculations. Detailed comparisons with the analog BN-Ph-BNaph, in which the Mes 2 B group is separated from 1,1'-binaphthyl by a para-phenylene spacer, confirmed the essential role of π-π interaction for the successful chirality relay in BN-BNaph. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Application of in situ current normalized PIGE method for determination of total boron and its isotopic composition

    International Nuclear Information System (INIS)

    Chhillar, Sumit; Acharya, R.; Sodaye, S.; Pujari, P.K.

    2014-01-01

    A particle induced gamma-ray emission (PIGE) method using proton beam has been standardized for determination of isotopic composition of natural boron and enriched boron samples. Target pellets of boron standard and samples were prepared in cellulose matrix. The prompt gamma rays of 429 keV, 718 keV and 2125 keV were measured from 10 B(p,αγ) 7 Be, 10 B(p, p'γ) 10 B and 11 B(p, p'γ) 11 B nuclear reactions, respectively. For normalizing the beam current variations in situ current normalization method was used. Validation of method was carried out using synthetic samples of boron carbide, borax, borazine and lithium metaborate in cellulose matrix. (author)

  16. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy.

    Science.gov (United States)

    Ciofani, Gianni; Raffa, Vittoria; Menciassi, Arianna; Cuschieri, Alfred

    2008-11-25

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of (10)B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  17. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

    Directory of Open Access Journals (Sweden)

    Ciofani Gianni

    2008-01-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  18. Radiological analysis of plutonium glass batches with natural/enriched boron

    International Nuclear Information System (INIS)

    Rainisch, R.

    2000-01-01

    The disposition of surplus plutonium inventories by the US Department of Energy (DOE) includes the immobilization of certain plutonium materials in a borosilicate glass matrix, also referred to as vitrification. This paper addresses source terms of plutonium masses immobilized in a borosilicate glass matrix where the glass components include both natural boron and enriched boron. The calculated source terms pertain to neutron and gamma source strength (particles per second), and source spectrum changes. The calculated source terms corresponding to natural boron and enriched boron are compared to determine the benefits (decrease in radiation source terms) for to the use of enriched boron. The analysis of plutonium glass source terms shows that a large component of the neutron source terms is due to (a, n) reactions. The Americium-241 and plutonium present in the glass emit alpha particles (a). These alpha particles interact with low-Z nuclides like B-11, B-10, and O-17 in the glass to produce neutrons. The low-Z nuclides are referred to as target particles. The reference glass contains 9.4 wt percent B 2 O 3 . Boron-11 was found to strongly support the (a, n) reactions in the glass matrix. B-11 has a natural abundance of over 80 percent. The (a, n) reaction rates for B-10 are lower than for B-11 and the analysis shows that the plutonium glass neutron source terms can be reduced by artificially enriching natural boron with B-10. The natural abundance of B-10 is 19.9 percent. Boron enriched to 96-wt percent B-10 or above can be obtained commercially. Since lower source terms imply lower dose rates to radiation workers handling the plutonium glass materials, it is important to know the achievable decrease in source terms as a result of boron enrichment. Plutonium materials are normally handled in glove boxes with shielded glass windows and the work entails both extremity and whole-body exposures. Lowering the source terms of the plutonium batches will make the handling

  19. Boron-isotope fractionation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Marentes, E [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada); Vanderpool, R A [USDA/ARS Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota (United States); Shelp, B J [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada)

    1997-10-15

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, {sup 11}B and {sup 10}B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in {sup 11}B relative to the nutrient solution, and the leaves were enriched in {sup 10}B and the stem in {sup 11}B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  20. Boron-isotope fractionation in plants

    International Nuclear Information System (INIS)

    Marentes, E.; Vanderpool, R.A.; Shelp, B.J.

    1997-01-01

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, 11 B and 10 B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in 11 B relative to the nutrient solution, and the leaves were enriched in 10 B and the stem in 11 B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  1. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drug

    Directory of Open Access Journals (Sweden)

    Feng S

    2016-09-01

    Full Text Available Shini Feng,1 Huijie Zhang,1 Ting Yan,1 Dandi Huang,1 Chunyi Zhi,2 Hideki Nakanishi,1 Xiao-Dong Gao1 1Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China; 2Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China Abstract: With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS with receptor-mediated targeting. Folic acid (FA was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 µg/mL. Then, doxorubicin hydrochloride (DOX, a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy. Keywords: boron nitride nanospheres, folic acid, doxorubicin, targeted delivery, cancer therapy

  2. Developments in boron magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Schweizer, M.

    1995-01-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain

  3. A technique to prepare boronated B72.3 monoclonal antibody for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Ranadive, G.N.; Rosenzweig, H.S.; Epperly, M.W.

    1993-01-01

    B72.3 monoclonal antibody has been successfully boronated using mercaptoundecahydro-closo-dodecaborate (boron cage compound). The reagent was incorporated by first reacting the lysine residues of the antibody with m-maleimidobenzoyl succinimide ester (MBS), followed by Michael addition to the maleimido group by the mercapto boron cage compound to form a physiologically stable thioether linkage. Boron content of the antibody was determined by atomic absorption spectroscopy. For biodistribution studies, boronated antibody was radioiodinated with iodogen. 125 I-labeled and boronated B72.3 monoclonal antibody demonstrated clear tumor localization when administered via tail vein injections to athymic nude mice bearing LS174-T tumor xenografts. Boronated antibody was calculated to deliver 10 6 boron atoms per tumor cell. Although this falls short of the specific boron content originally proposed as necessary for boron neutron capture therapy (BNCT), recent calculations suggest that far fewer atoms of 10 B per tumor cell would be necessary to effect successful BNCT when the boron is targeted to the tumor cell membrane. (author)

  4. The study of high-boron steel and high-boron cast iron used for shield

    International Nuclear Information System (INIS)

    Pan Xuerong; Lu Jixin; Wen Yaozeng; Wang Zhaishu; Cheng Jiantin; Cheng Wen; Shun Danqi; Yu Jinmu

    1996-12-01

    The smelting, forging, heat-treatment technology and the mechanical properties of three kinds of high-boron steels (type 1: 0.5% boron; type 2: 0.5% boron and 4% or 2% nickel; type 3: 0.5% boron, 0.5% nickel and 0.5% molybdenum) were studied. The test results show that the technology for smelting, forging and heat-treatment (1050 degree C/0.5 h water cooled + 810 degree C/1 h oil cooled) in laboratory is feasible. Being sensitive to notch, the impact toughness of high-boron steel type 1 is not steady and can not meet the technology requirements on mechanical properties. The mechanical properties of both high-boron steel type 2 and type 3 can meet the technological requirements. The smelting technology of high-boron casting iron containing 0.5% boron was researched. The tests show that this casting iron can be smelted in laboratory and its properties can basically satisfy the technology requirements. (10 refs., 6 figs., 11 tab.)

  5. Laser-induced photochemical enrichment of boron isotopes

    International Nuclear Information System (INIS)

    Freund, S.M.; Ritter, J.J.

    1976-01-01

    A boron trichloride starting material containing both boron-10 isotopes and boron-11 isotopes is selectively enriched in one or the other of these isotopes by a laser-induced photochemical method involving the reaction of laser-excited boron trichloride with either H 2 S or D 2 S. The method is carried out by subjecting a low pressure gaseous mixture of boron trichloride starting material and the sulfide to infrared radiation from a carbon dioxide TE laser. The wave length of the radiation is selected so as to selectively excite one or the other of boron-10 BCl 3 molecules or boron-11 BCl 3 molecules, thereby making them preferentially more reactive with the sulfide. The laser-induced reaction produces both a boron-containing solid phase reaction product and a gaseous phase containing mostly unreacted BCl 3 and small amounts of sulfhydroboranes. Pure boron trichloride selectively enriched in one of the isotopes is recovered as the primary product of the method from the gaseous phase by a multi-step recovery procedure. Pure boron trichloride enriched in the other isotope is recovered as a secondary product of the method by the subsequent chlorination of the solid phase reaction product followed by separation of BCl 3 from the mixture of gaseous products resulting from the chlorination

  6. Nuclear magnetic resonance spectroscopy of boron compounds containing two-, three- and four-coordinate boron

    International Nuclear Information System (INIS)

    Wrackmeyer, B.

    1988-01-01

    The influence of boron chemistry on various areas of research in inorganic, organic and theoretical chemistry is well documented. In fact, many models presently employed to describe chemical bonding in general can be traced to attempts to understand bonding in boranes. The confirmation of many theoretical predictions in boron chemistry relies on direct and indirect structural information provided by various physical methods that - fortunately - became available almost at the same rate as that with which the interest in boron compounds was growing. Clearly, there has always been a strong link between the interest in synthesis and the application of physical methods. As in many other areas of chemistry, developments in boron chemistry have been greatly accelerated by NMR. 11 B NMR has been at the center of interest from the beginning, accompanied by routine 1 H NMR measurements, and occasional 14 N, 19 F and 31 P NMR work. In the last 12 years, we have seen an increasing number of 13 C NMR studies of boron compounds. The availability of multinuclear facilities for PFT NMR spectrometers stimulates the measurement of the NMR spectra of other nuclei, like 29 Si, 119 Sn or other metals, in order to obtain additional information. This paper is intended to serve several purposes: to update previous reviews on 11 B NMR of boron compounds, to demonstrate some applications of multinuclear NMR to boron chemistry; to attempt to incorporate new NMR parameters into the known data set; and to summarize the experimental facts required for obtaining the maximum information from NMR studies on boron compounds

  7. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential

    International Nuclear Information System (INIS)

    Nigg, David W.

    2012-01-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K(nido-7-CH3(CH2)15-7,8-C2B9H11) in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K(nido-7-CH3(CH2)15-7,8-C2B9H11) in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 (ae-B20H17NH3), administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 ± 16.1 ppm at 48 h and to 43.9 ± 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  8. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg

    2012-05-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 [ae-B20H17NH3], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 {+-} 16.1 ppm at 48 h and to 43.9 {+-} 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  9. The preparation and composition design of boron-rich lanthanum hexaboride target for sputtering

    International Nuclear Information System (INIS)

    Chen, Defang; Min, Guanghui; Wu, Yan; Yu, Huashun; Zhang, Lin

    2015-01-01

    Highlights: • High-purity LaB 6 powder was prepared due to significant reduction of residual B 4 C and effective purification process. • The effects of raw materials ratio on the size, morphology, phase structure and crystalline size of LaB 6 were studied. • The correlation of component between LaB 6 films and boron-rich targets was established. • The variation of densities of LaB 6 targets with sintering time and sintering temperature was investigated. - Abstract: Lanthanum Hexaboride (LaB 6 ) nano-film has been proved to be promising transparent thermal insulation material, while its properties are limited on purity and composition. High-purity LaB 6 polycrystalline powder was prepared through boron carbide reduction method in this work. A series of techniques such as scanning electron microscopy, X-ray diffraction, laser particle analyzer and inductively coupled plasma emission spectrometer were employed to characterize LaB 6 powder. As raising the content of La 2 O 3 in reactants, more uniform, finer (2.686 μm) and purer (99.5139 wt%) LaB 6 powder is prepared, with only 0.4434 wt% residual B 4 C. The density of targets increases with the rise of sintering temperature and the extension of sintering time, while crystallite size increases simultaneously with the extension of sintering time. The introduction of B powder in target is conductive to sintering process, increasing hardness and flexural strength of targets. X-ray photoelectron spectrometer was used to characterize the composition and microstructure of LaB 6 nano-film which is tentatively considered to be composed of LaB 6 nanocrystalline and amorphous microstructure of La and B atoms. The film LaB 6.0627±0.02 was obtained when the ratio of B and La of sputtering target reached 12.5. The thickness and deposition rate decrease with the increase of B content in targets

  10. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  11. The effect of boron deficiency on gene expression and boron compartmentalization in sugarbeet

    Science.gov (United States)

    NIP5, BOR1, NIP6, and WRKY6 genes were investigated for their role in boron deficiency in sugar beet, each with a proposed role in boron use in model plant species. All genes showed evidence of polymorphism in fragment size and gene expression in the target genomic DNA and cDNA libraries, with no co...

  12. Synthesis of the new boron hydride nido-undecaborane(15), B11H15, and the x-ray structure of its conjugate base tetradecahydroundecaborate(1-), [B11H14]-

    International Nuclear Information System (INIS)

    Getman, T.D.; Krause, J.A.; Shore, S.G.

    1988-01-01

    The preparation of nido-undecaborane, B 11 H 15 , from the protonation of K[B 11 H 14 ] and the subsequent deprotonation of B 11 H 15 by P(CH 3 ) 3 to give [P(CH 3 ) 3 H][B 11 H 14 ] is described. The structure of [P(CH 3 ) 3 H][B 11 H 14 ] has been determined from single-crystal x-ray data. The spectral data indicate that the boron framework of B 11 H 15 is similar to that of [B 11 H 14 ] - . 11 references, 1 figure

  13. SU-F-T-140: Assessment of the Proton Boron Fusion Reaction for Practical Radiation Therapy Applications Using MCNP6

    Energy Technology Data Exchange (ETDEWEB)

    Adam, D; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: The proton boron fusion reaction is a reaction that describes the creation of three alpha particles as the result of the interaction of a proton incident upon a 11B target. Theoretically, the proton boron fusion reaction is a desirable reaction for radiation therapy applications in that, with the appropriate boron delivery agent, it could potentially combine the localized dose delivery protons exhibit (Bragg peak) and the local deposition of high LET alpha particles in cancerous sites. Previous efforts have shown significant dose enhancement using the proton boron fusion reaction; the overarching purpose of this work is an attempt to validate previous Monte Carlo results of the proton boron fusion reaction. Methods: The proton boron fusion reaction, 11B(p, 3α), is investigated using MCNP6 to assess the viability for potential use in radiation therapy. Simple simulations of a proton pencil beam incident upon both a water phantom and a water phantom with an axial region containing 100ppm boron were modeled using MCNP6 in order to determine the extent of the impact boron had upon the calculated energy deposition. Results: The maximum dose increase calculated was 0.026% for the incident 250 MeV proton beam scenario. The MCNP simulations performed demonstrated that the proton boron fusion reaction rate at clinically relevant boron concentrations was too small in order to have any measurable impact on the absorbed dose. Conclusion: For all MCNP6 simulations conducted, the increase of absorbed dose of a simple water phantom due to the 11B(p, 3α) reaction was found to be inconsequential. In addition, it was determined that there are no good evaluations of the 11B(p, 3α) reaction for use in MCNPX/6 and further work should be conducted in cross section evaluations in order to definitively evaluate the feasibility of the proton boron fusion reaction for use in radiation therapy applications.

  14. Highly-focused boron implantation in diamond and imaging using the nuclear reaction {sup 11}B(p, α){sup 8}Be

    Energy Technology Data Exchange (ETDEWEB)

    Ynsa, M.D., E-mail: m.ynsa@uam.es [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Física Aplicada, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Ramos, M.A. [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Física de la Materia Condensada and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Skukan, N. [Laboratory for Ion Beam Interactions, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb (Croatia); Torres-Costa, V. [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Física Aplicada, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Jakšić, M. [Laboratory for Ion Beam Interactions, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb (Croatia)

    2015-04-01

    Diamond is an especially attractive material because of its gemological value as well as its unique mechanical, chemical and physical properties. One of these properties is that boron-doped diamond is an electrically p-type semiconducting material at practically any boron concentration. This property makes it possible to use diamonds for multiple industrial and technological applications. Boron can be incorporated into pure diamond by different techniques including ion implantation. Although typical energies used to dope diamond by ion implantation are about 100 keV, implantations have also been performed with energies above MeV. In this work CMAM microbeam setup has been used to demonstrate capability to implant boron with high energies. An 8 MeV boron beam with a size of about 5 × 3 μm{sup 2} and a beam current higher than 500 pA has been employed while controlling the beam position and fluence at all irradiated areas. The subsequent mapping of the implanted boron in diamond has been obtained using the strong and broad nuclear reaction {sup 11}B(p, α){sup 8}Be at E{sub p} = 660 keV. This reaction has a high Q-value (8.59 MeV for α{sub 0} and 5.68 MeV for α{sub 1}) and thus is almost interference-free. The sensitivity of the technique is studied in this work.

  15. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: halfon@phys.huji.ac.il; Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Steinberg, D. [Biofilm Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah (Israel); Nagler, A.; Arenshtam, A.; Kijel, D. [Soreq NRC, Yavne 81800 (Israel); Polacheck, I. [Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center (Israel); Srebnik, M. [Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University, Jerusalem 91120 (Israel)

    2009-07-15

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction {sup 7}Li(p,n){sup 7}Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  16. Medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and invention of boron tracedrugs as innovative future-architectural drugs.

    Science.gov (United States)

    Hori, Hitoshi; Uto, Yoshihiro; Nakata, Eiji

    2010-09-01

    We describe herein for the first time our medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and boron tracedrugs as newly emerging drug classes. A new area of antineoplastic drugs and treatments has recently focused on neoplastic cells of the tumor environment/microenvironment involving accessory cells. This tumor hypoxic environment is now considered as a major factor that influences not only the response to antineoplastic therapies but also the potential for malignant progression and metastasis. We review our medicinal electronomics bricolage design of hypoxia-targeting drugs, antiangiogenic hypoxic cell radiosensitizers, sugar-hybrid hypoxic cell radiosensitizers, and hypoxia-targeting 10B delivery agents, in which we design drug candidates based on their electronic structures obtained by molecular orbital calculations, not based solely on pharmacophore development. These drugs include an antiangiogenic hypoxic cell radiosensitizer TX-2036, a sugar-hybrid hypoxic cell radiosensitizer TX-2244, new hypoxia-targeting indoleamine 2,3-dioxygenase (IDO) inhibitors, and a hypoxia-targeting BNCT agent, BSH (sodium borocaptate-10B)-hypoxic cytotoxin tirapazamine (TPZ) hybrid drug TX-2100. We then discuss the concept of boron tracedrugs as a new drug class having broad potential in many areas.

  17. Research of boron conversion coating in neutron detector with boron deposited GEM

    International Nuclear Information System (INIS)

    Ye Di; Sun Zhijia; Zhou Jianrong; Wang Yanfeng; Yang Guian; Xu Hong; Chen Yuanbai; Xiao Yu; Diao Xungang

    2014-01-01

    GEM is a flourishing new gas detector and nowadays its technology become more mature. It has outstanding properties, such as excellent position resolution, high counting rate, radiation resistance, simple and flexible signal readout, can be large-area detector, wide application range. Detector with boron deposited GEM uses multilayer GEM with deposited boron film as neutron conversion carrier which reads out the information of neutron shot from the readout electrode with gas amplification from every GEM layer. The detector is high performance which can meet the demands of neutron detector of a new generation. Boron deposited neutron conversion electrode with boron deposited cathode and GEM included is the core part of the detector. As boron is a high-melting-point metalloid (> 2 000 ℃), electroplating and thermal evaporation are inappropriate ways. So finding a way to deposit boron on electrode which can meet the demands become a key technology in the development of neutron detector with boron deposited GEM. Compared with evaporation, sputtering has features such as low deposition temperature, high film purity, nice adhesive, thus is appropriate for our research. Magnetron sputtering is a improved way of sputtering which can get lower sputtering air pressure and higher target voltage, so that we can get better films. Through deposit process, the research uses magnetron sputtering to deposit pure boron film on copper electrode and GEM film. This method can get high quality, nice adhere, high purity, controllable uniformity, low cost film with high speed film formation. (authors)

  18. B4C solid target boronization of the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Cekic, M.; Fiksel, G.; Hokin, S.A.; Kendrick, R.D.; Prager, S.C.; Stoneking, M.R.

    1992-10-01

    A solid rod of hot-pressed boron carbide is being used as the source of boron during boronization of MST. The most striking result of this procedure is the reduction in oxygen contamination of the plasma (O III radiation, characteristic of oxygen at the edge, falls by about a factor of 3 after boronization.). The radiated power fraction drops to about half its initial value. Particle reflux from the wall is also lowered, making density control simpler. The rod (12.7 mm diameter) is inserted into the edge plasma of normal high-power RFP discharges. B 4 C is ablated from the surface of the rod and deposited in a thin film (a-B/C:H) on the walls and limiters. The energy flux carried by ''superthermal'' (not ''runaway'') electrons at the edge of MST appears to enhance the efficient, non-destructive ablation of the boron carbide rod

  19. Boron atom reactions

    International Nuclear Information System (INIS)

    Estes, R.; Tabacco, M.B.; Digiuseppe, T.G.; Davidovits, P.

    1982-01-01

    The reaction rates of atomic boron with various epoxides have been measured in a flow tube apparatus. The bimolecular rate constants, in units of cm 3 molecule -1 s -1 , are: 1,2-epoxypropane (8.6 x 10 -11 ), 1,2-epoxybutane (8.8 x 10 -11 ), 1,2,3,4-diepoxybutane (5.5 x 10 -11 ), 1-chloro-2,3-epoxypropane (5.7 x 10 -11 ), and 1,2-epoxy-3,3,3-trichloropropane (1.5 x 10 -11 ). (orig.)

  20. New Carbonate Standard Reference Materials for Boron Isotope Geochemistry

    Science.gov (United States)

    Stewart, J.; Christopher, S. J.; Day, R. D.

    2015-12-01

    The isotopic composition of boron11B) in marine carbonates is well established as a proxy for past ocean pH. Yet, before palaeoceanographic interpretation can be made, rigorous assessment of analytical uncertainty of δ11B data is required; particularly in light of recent interlaboratory comparison studies that reported significant measurement disagreement between laboratories [1]. Well characterised boron standard reference materials (SRMs) in a carbonate matrix are needed to assess the accuracy and precision of carbonate δ11B measurements throughout the entire procedural chemistry; from sample cleaning, to ionic separation of boron from the carbonate matrix, and final δ11B measurement by multi-collector inductively coupled plasma mass spectrometry. To date only two carbonate reference materials exist that have been value-assigned by the boron isotope measurement community [2]; JCp-1 (porites coral) and JCt-1 (Giant Clam) [3]. The National Institute of Standards and Technology (NIST) will supplement these existing standards with new solution based inorganic carbonate boron SRMs that replicate typical foraminiferal and coral B/Ca ratios and δ11B values. These new SRMs will not only ensure quality control of full procedural chemistry between laboratories, but have the added benefits of being both in abundant supply and free from any restrictions associated with shipment of biogenic samples derived from protected species. Here we present in-house δ11B measurements of these new boron carbonate SRM solutions. These preliminary data will feed into an interlaboratory comparison study to establish certified values for these new NIST SRMs. 1. Foster, G.L., et al., Chemical Geology, 2013. 358(0): p. 1-14. 2. Gutjahr, M., et al., Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses. Geophysical Research Abstracts, EGU General Assembly 2014, 2014. 16(EGU2014-5028-1). 3. Inoue, M., et al., Geostandards and

  1. Chemoradiotherapy of cancer using boronated monoclonal antibodies. Progress report, December 1, 1982-November 30, 1983

    International Nuclear Information System (INIS)

    Soloway, A.H.

    1984-01-01

    The feasibility was established of using antibodies for the delivery of 10 B. Problems faced included 1) preservation of antibody activity following boronation, 2) antigenic receptor site density of the target cells, and 3) delivery of a critical number of 10 B atoms per cell. The linkage of a heavily boronated polymeric species to antibody by means of a single functional group allow for the delivery of a large number 10 B atoms per antibody molecule without a significant reduction in affinity. Both the polyclonally derived anti-thymocyte globulin (ATG) and the monoclonal anti-colorectal carcinoma antibody (17-1A) recognize antigens that are expressed with a density of approximately 10 6 epitopes per cell. The major concept that we advance is that just as effective cancer chemotherapy is based on the use of a combination of drugs, similarly a combination of compounds could be employed to deliver the requisite amount of 10 B to tumor target cells. This could include compounds such as Na 2 B 12 H 11 Sh together with boronated antibodies directed against tumor associated antigens. (DT)

  2. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    International Nuclear Information System (INIS)

    Zhang, L.L.; Yang, Q.; Tang, Y.; Yang, L.; Zhang, C.; Hu, Y.; Cui, X.

    2015-01-01

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B 4 C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B 4 C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp 3 bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp 3 bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp 3 bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films

  3. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    Science.gov (United States)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  4. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Camillo, M.A.P.; Tomac Junior, U.

    1990-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na 2 10 B 12 H 11 SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author) [pt

  5. Structure and single-phase regime of boron carbides

    International Nuclear Information System (INIS)

    Emin, D.

    1988-01-01

    The boron carbides are composed of twelve-atom icosahedral clusters which are linked by direct covalent bonds and through three-atom intericosahedral chains. The boron carbides are known to exist as a single phase with carbon concentrations from about 8 to about 20 at. %. This range of carbon concentrations is made possible by the substitution of boron and carbon atoms for one another within both the icosahedra and intericosahedral chains. The most widely accepted structural model for B 4 C (the boron carbide with nominally 20% carbon) has B/sub 11/C icosahedra with C-B-C intericosahedral chains. Here, the free energy of the boron carbides is studied as a function of carbon concentration by considering the effects of replacing carbon atoms within B 4 C with boron atoms. It is concluded that entropic and energetic considerations both favor the replacement of carbon atoms with boron atoms within the intericosahedral chains, C-B-C→C-B-B. Once the carbon concentration is so low that the vast majority of the chains are C-B-B chains, near B/sub 13/C 2 , subsequent substitutions of carbon atoms with boron atoms occur within the icosahedra, B/sub 11/C→B/sub 12/. Maxima of the free energy occur at the most ordered compositions: B 4 C,B/sub 13/C 2 ,B/sub 14/C. This structural model, determined by studying the free energy, agrees with that previously suggested by analysis of electronic and thermal transport data. These considerations also provide an explanation for the wide single-phase regime found for boron carbides

  6. A colorimetric determination of boron in biological sample for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Camilo, M.A.P.; Tomac Junior, U.

    1989-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of gliomas and glioblastomas grade III and IV than other therapies. During the treatment of levels of Na 2 10 B 12 H 11 S H must be known in several compartments of the organism and with this purpose the method of colorimetric determination of boron using curcumin was established. This method is simples, reproducible and has adequate sensitivity for this control. (author). 7 refs, 3 figs, 1 tab

  7. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    Mohapatra, K.K.; Bose, Arun

    2014-01-01

    10 B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10 B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH) 4 - ) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10 B and 11 B

  8. Pulverization of boron element and proportions of boron carbide in boron

    International Nuclear Information System (INIS)

    Lang, F.M.; Finck, C.

    1956-01-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 μ. Grain sizes smaller than 1μ are required for applying thin layers of such boron. (author) [fr

  9. Probing the direct step of relativistic heavy ion fragmentation: (12C, 11B+p) at 2.1 GeV/nucleon with C and CH2 targets

    International Nuclear Information System (INIS)

    Webb, M.L.

    1987-06-01

    Relativistic heavy ion collisions may be classified as central (and near central), peripheral, and grazing with each collision type producing different proton and other charged projectile fragment scattering mechanisms and characteristics. This report focuses on peripheral and grazing collisions in the fragmentation of Carbon-12 into Boron-11 and a proton, testing models of the kinetics involved in this reaction. The data were measured at the Heavy Ion Superconducting Spectrometer (HISS) at Lawrence Berkeley Laboratory and include excitation energy for the p/Boron-11 pair, and rapidity versus transverse momentum for protons and Boron-11. 58 refs., 35 figs., 8 tabs

  10. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    Science.gov (United States)

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  11. Irradiation Effects in Fortiweld Steel Containing Different Boron Isotopes

    International Nuclear Information System (INIS)

    Grounes, M.

    1967-07-01

    Tensile specimens and miniature impact specimens of the low alloyed pressure vessel steel Fortiweld have been irradiated at 265 deg C in R2 to two neutron doses, 6.5 x 10 18 n/cm 2 (> 1 MeV) and 4 x 10 19 n/cm 2 (thermal) and also 9.0 x 10 18 n/cm 2 (> 1 MeV) and 6 x 10 19 n/cm 2 (thermal). Material from three laboratory melts, in which the boron consisted of 10 B, 11 B and natural boron respectively, were investigated. The results both of tensile tests and impact tests with miniature impact specimens show that the 10 B-alloyed material was changed more and the 11 B-alloyed material was changed less than the material containing natural boron. At the higher neutron dose the increase in yield strength (0.2 % offset yield strength) was 11 kg/mm in the 10 B containing material compared to 5 kg/mm in the 11 B-containing material. The decrease in total elongation was 5 and 0 percentage units respectively. The transition temperature was increased 190 deg C at the higher neutron dose in the 10 B-alloyed material, 40 deg C in the 11 B-alloyed material and 80 deg C in the material containing natural boron

  12. Isotopic evidence of boron in precipitation originating from coal burning in Asian continent

    International Nuclear Information System (INIS)

    Sakata, Masahiro; Natsumi, Masahiro; Tani, Yukinori

    2010-01-01

    The boron concentration and isotopic composition (δ 11 B) of precipitation collected from December 2002 to March 2006 at three sites on the Japan Sea coast were measured. Those sites have been considerably affected by the long-range transport of air pollutants from the Asian continent during winter and spring when the airflows from the Asian continent are predominant. The boron concentration in the precipitation increased primarily during winter whereas the δ 11 B decreased during winter or spring. It is assumed that this decrease in δ 11 B is not associated with a Rayleigh distillation process, because the previous δD values of the precipitation collected at a site on the Japan Sea coast did not decrease in the same manner. A weak correlation (r 2 =0.13-0.24, P 11 B and the nonsea-salt sulfate (nss-SO 4 2- )/B ratio at each site, suggesting that boron in the precipitation originate primarily from two sources. The first source, which is characterized by high δ 11 B and nss-SO 4 2- /B=0, is seawater. At the northern site, the enrichment factor for boron in the precipitation relative to seawater approached unity during winter. This implies that much of the boron in the precipitation is derived from unfractionated sea salts rather than gaseous boron evaporated from seawater. The second source is characterized by low δ 11 B and high nss-SO 4 2- /B ratio. Most of the nss-SO 4 2- in the precipitation originates from anthropogenic combustion activities in the Asian continent based on the previous model calculations. Coal accounts for a major portion of the total primary energy supply in China. Moreover, coal enriches boron and represents generally negative δ 11 B values. Hence, we propose that the emission of boron from coal burning is the most likely second source. Thus, boron isotopes may be useful as tracers of coal-burning plumes from the Asian continent. (author)

  13. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  14. Boron isotope fractionation in magma via crustal carbonate dissolution

    Science.gov (United States)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to -41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  15. The effect of the boron source composition ratio on the adsorption performance of hexagonal boron nitride without a template

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail: zhangning5832@163.com; Zhang, Tong; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Cui, Xingyu

    2015-08-01

    An inexpensive boric acid (H{sub 3}BO{sub 3}) and borax (Na{sub 2}B{sub 4}O{sub 7}·10H{sub 2}O) mix was used as a source of boron with different composition ratios, and urea was used as a nitrogen source, in flowing ammonia atmosphere, for the preparation of hexagonal boron nitride (h-BN) with different micro-morphologies. Under a certain synthesis process, the effects of the molar ratio of borax and boric acid (or simply the boron source composition ratio for short) on the phase composition of the sample were studied; the work also explored the effect of boron source composition ratio on the micro-morphology, adsorption desorption isotherm and specific surface area of the h-BN powder. The main purpose of this work was to determine the optimum composition ratio of preparing spherical mesoporous h-BN and ensure that the micro-mechanism underpinning the formation of spherical mesoporous h-BN was understood. The results showed that at the optimum boron source composition ratio of 1:1, globular mesoporous spheres with a diameter of approximately 600–800 nm could be obtained with the highest pore volume and specific surface area (230.2 m{sup 2}/g). - Graphical abstract: Display Omitted - Highlights: • Spherical h-BN was synthesized by controlling the boron source composition ratio. • Without extra spherical template, solid Na{sub 2}O was equal to a spherical template. • At boron source composition ratio of 1:1, h-BN had best adsorption performance.

  16. Boron ion irradiation induced structural and surface modification of glassy carbon

    International Nuclear Information System (INIS)

    Kalijadis, Ana; Jovanović, Zoran; Cvijović-Alagić, Ivana; Laušević, Zoran

    2013-01-01

    The incorporation of boron into glassy carbon was achieved by irradiating two different types of targets: glassy carbon polymer precursor and carbonized glassy carbon. Targets were irradiated with a 45 keV B 3+ ion beam in the fluence range of 5 × 10 15 –5 × 10 16 ions cm −2 . For both types of targets, the implanted boron was located in a narrow region under the surface. Following irradiation, the polymer was carbonized under the same condition as the glassy carbon samples (at 1273 K) and examined by Raman spectroscopy, temperature programmed desorption, hardness and cyclic voltammetry measurements. Structural analysis showed that during the carbonization process of the irradiated polymers, boron is substitutionally incorporated into the glassy carbon structure, while for irradiated carbonized glassy carbon samples, boron irradiation caused an increase of the sp 3 carbon fraction, which is most pronounced for the highest fluence irradiation. Further analyses showed that different nature of boron incorporation, and thus changed structural parameters, are crucial for obtaining glassy carbon samples with modified mechanical, chemical and electrochemical properties over a wide range

  17. Application of drug delivery system to boron neutron capture therapy for cancer.

    Science.gov (United States)

    Yanagië, Hironobu; Ogata, Aya; Sugiyama, Hirotaka; Eriguchi, Masazumi; Takamoto, Shinichi; Takahashi, Hiroyuki

    2008-04-01

    Tumor cell destruction in boron neutron capture therapy (BNCT) is due to the nuclear reaction between (10)B and thermal neutrons ((10)B + (1)n --> (7)Li + (4)He (alpha) + 2.31 MeV (93.7 %)/2.79 MeV (6.3 %)). The resulting lithium ions and alphaparticles are high linear energy transfer (LET) particles which give a high biological effect. Their short range in tissue (5 - 9 mum) restricts radiation damage to those cells in which boron atoms are located at the time of neutron irradiation. BNCT has been applied clinically for the treatment of malignant brain tumors, malignant melanoma, head and neck cancer and hepatoma. Sodium mercaptoundecahydro-dodecaborate (Na(2)(10)B(12)H(11)SH: BSH) and borono-phenylalanine ((10)BPA) are currently being used in clinical treatments. These low molecule compounds are easily cleared from cancer cells and blood, so high accumulation and selective delivery of boron compounds into tumor tissues and cancer cells are most important to achieve effective BNCT and to avoid damage to adjacent healthy cells. In order to achieve the selective delivery of boron atoms to cancer cells, a drug delivery system (DDS) is an attractive intelligent technology for targeting and controlled release of drugs. We performed literature searches related to boron delivery systems in vitro and in vivo. We describe several DDS technologies for boron delivery to cancer tissues and cancer cells from the past to current status. We are convinced that it will be possible to use liposomes, monoclonal antibodies and WOW emulsions as boron delivery systems for BNCT clinically in accordance with the preparation of good commercial product (GCP) grade materials.

  18. Coupling of dextrans conjugated with boron to gamma globulin: a model for NCT

    International Nuclear Information System (INIS)

    Elmore, J.J. Jr.; Borg, D.C.; Micca, P.; Gabel, D.

    1983-01-01

    Our project is to meet more effectively the well known primary requirement for treatment with boron-10 neutron capture therapy (NCT): namely, the selective localization of a sufficient amount of boron in or on target cells. Monoclonal antibodies (MCA) to tumor-associated antigens are attractive targeting carriers for boron-10 in terms of the needed selective localization. However the densities of surface receptors on tumor cells have seemed deficient to achieve successful NCT. If one seeks the necessary radiotherapeutic ratios by increasing the numbers of boron atoms or carborane cages bound per MCA, then inactivation of the antibody can occur through loss of receptor specificity and/or by precipitation of the protein. To achieve the goal of overcoming the limitations of antibody binding capacity, we have elected to use water-soluble dextrans as intermediate carriers. This permits each MCA molecule to target many atoms of boron-10 to the specified antigenic receptors while only 5 to 10 of the amino acid residues of the protein are conjugated by dextrans carrying boron-10

  19. Irradiation Effects in Fortiweld Steel Containing Different Boron Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M

    1967-07-15

    Tensile specimens and miniature impact specimens of the low alloyed pressure vessel steel Fortiweld have been irradiated at 265 deg C in R2 to two neutron doses, 6.5 x 10{sup 18} n/cm{sup 2} (> 1 MeV) and 4 x 10{sup 19} n/cm{sup 2} (thermal) and also 9.0 x 10{sup 18} n/cm{sup 2} (> 1 MeV) and 6 x 10{sup 19} n/cm{sup 2} (thermal). Material from three laboratory melts, in which the boron consisted of {sup 10}B, {sup 11}B and natural boron respectively, were investigated. The results both of tensile tests and impact tests with miniature impact specimens show that the {sup 10}B-alloyed material was changed more and the {sup 11}B-alloyed material was changed less than the material containing natural boron. At the higher neutron dose the increase in yield strength (0.2 % offset yield strength) was 11 kg/mm in the {sup 10}B containing material compared to 5 kg/mm in the {sup 11}B-containing material. The decrease in total elongation was 5 and 0 percentage units respectively. The transition temperature was increased 190 deg C at the higher neutron dose in the {sup 10}B-alloyed material, 40 deg C in the {sup 11}B-alloyed material and 80 deg C in the material containing natural boron.

  20. ISOBORDAT: An Online Data Base on Boron Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Pennisi, M.; Adorni-Braccesi, A.; Andreani, D.; Gori, L.; Gonfiantini, R. [Istituto di Geoscienze e Georisorse, CNR, Pisa (Italy); Sciuto, P. F. [Servizio Geologico, Sismico e dei Suoli, D.G. Ambiente e Difesa del Suolo e della Costa, Regione Emilia Romagna, Bologna (Italy)

    2013-07-15

    From 1986, boron isotope data in natural substances increased sharply in scientific publications. Analytical difficulties derived from complex geochemical matrices have been faced and interlaboratory calibrations reported in the boron literature. Boron isotopes are nowdays applied to investigate boron origin and migration in natural waters, sources of boron contamination, water-rock interactions and also contribute to water resource management. This is especially important in those areas where boron content exceeds the local regulations for drinking water supply and boron sources need to be identified. ISOBORDAT, an interactive database on boron isotope composition and content in natural waters is presented to the wider community of boron isotope users. The database's structure, scope and applications are reported, along with a discussion on {delta}{sup 11}B values obtained in Italian waters. In the database boron data are structured in the following categories: rainwater, rivers, lakes, groundwater and potential contaminants. New categories (medium and high enthalpy fluids from volcanic and geothermal areas) are anticipated. ISOBORDAT aims to be as interactive as possible and will be developed taking into account information and suggestions received. The database is continually undergoing revision to keep pace with continuous data publication. Indications of data that are missing at present are greatly appreciated. (author)

  1. Boron neutron capture therapy. Synthesis of boronated amines- and DNA intercalating agents for potential use in cancer therapy

    International Nuclear Information System (INIS)

    Ghaneolhosseini, H.

    1998-01-01

    Boron Neutron Capture Therapy is a binary cancer treatment modality, involving the delivery of a suitable boron compound to tumour cells followed by irradiation of the tumour by thermal neutrons. Boronated agents can selectively be delivered to tumour cells either directly with tumour-specific boron compounds, or by use of targeting strategies. However, the efficacy of this method would increase if the boron agents are localised in the cell nucleus rather than in the cell cytoplasm when neutron irradiation takes place. With these considerations in mind, some boronated DNA intercalating/interacting agents such as phenanthridine- acridine- spermidine- and naphthalimide derivatives were synthesised. Aminoalkyl-o-carboranes were synthesised in order to be used both for coupling to macromolecules and also for halogenation of their corresponding nido-derivatives. The amino groups were introduced using the Gabriel reagent N, N-dibenzyl iminodicarboxylate to provide 1-(aminomethyl)- and 1-(2-aminoethyl)-o-carboranes. The first attempt to achieve the possibility to accumulate a higher concentration of boron atoms in the cell nucleus was to synthesize carboranyl phenanthridinium analogues by reacting a p- or o-carboranyl moiety with phenanthridine, a chromophore with a planar aromatic ring system as DNA intercalator. Boronated acridine-spermidine, boronated diacridine, and boronated dispermidine were obtained in order to increase water solubility to avoid the interaction of these agents with non-DNA sides of the cell, especially membranes; and to enhance the feasibility of a higher DNA-binding constant and also decrease the DNA-drug dissociation rate. Finally, the synthesis of a boronated naphthalimide derivative was carried out by nucleophilic reaction of a primary aminoalkyl-p-carborane with naphthalic anhydride. Biological evaluations on DNA-binding, toxicity, and cellular binding with carboranyl phenanthridinium analogues, boronated acridine- and spermidine are described

  2. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0mA/cm{sup 2}, initial boron concentration 100mg/L and solution temperature 293K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following;[ECB]=7.6x10{sup 6}x[OH]{sup 0.11}x[CD]{sup 0.62}x[IBC]{sup -0.57}x[DSE]{sup -0.}= {sup 04}x[T]{sup -2.98}x[t] Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  3. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar

    2007-01-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0mA/cm 2 , initial boron concentration 100mg/L and solution temperature 293K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following;[ECB]=7.6x10 6 x[OH] 0.11 x[CD] 0.62 x[IBC] -0.57 x[DSE] -0.04 x[T] -2.98 x[t] Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  4. Boron tolerance in NS wheat lines

    Directory of Open Access Journals (Sweden)

    Brdar Milka

    2006-01-01

    Full Text Available Boron is an essential micronutrient for higher plants. Present in excessive amounts boron becomes toxic and can limit plant growth and yield. Suppression of root growth is one of the symptoms of boron toxicity in wheat. This study was undertaken to investigate the response of 10 perspective NS lines of wheat to high concentrations of boron. Analysis of root growth was done on young plants, germinated and grown in the presence of different concentrations of boric acid (0, 50,100 and 150 mg/1. Significant differences occurred between analyzed genotypes and treatments regarding root length. Average suppression of root growth was between 11,6 and 34,2%, for line NS 252/02 are even noted 61,4% longer roots at treatments in relation to the control. Lines with mean suppression of root growth less than 20% (NS 101/02, NS 138/01, NS 53/03 and NS 73/02 may be considered as boron tolerant. Spearmans coefficients showed high level of agreement regarding rang of root length for genotypes treated with 100 and 150 mg H3BO3/l.

  5. Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride–hydroxy apatite in rat femurs

    Energy Technology Data Exchange (ETDEWEB)

    Atila, Alptug, E-mail: alptugatila@yahoo.com [Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum 25240 (Turkey); Halici, Zekai; Cadirci, Elif [Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum 25240 (Turkey); Karakus, Emre [Department of Pharmacology and Toxicology, School of Veterinary Medicine, Ataturk University, Erzurum 25240 (Turkey); Palabiyik, Saziye Sezin [Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ataturk University, Erzurum 25240 (Turkey); Ay, Nuran [Department of Material Science and Engineering, Faculty of Engineering, Anadolu University, Eskisehir 26555 (Turkey); Bakan, Feray [Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956 (Turkey); Yilmaz, Sahin [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul 34755 (Turkey)

    2016-01-01

    ABSTRACT: Boron and its derivatives are effective in bone recovery and osteointegration. However, increasing the boron levels in body liquids may cause toxicity. The aim of our study is to investigate serum boron levels using ICP-MS after implantation of different ratios of nano-hBN–HA composites in rat femurs. All rats were (n = 126) divided into five experimental groups (n = 24) and one healthy group (6 rats); healthy (Group1), femoral defect + %100HA (Group2), femoral defect + %2.5hBN + %97.5HA (Group3), femoral defect + %5hBN + %95HA (Group4), femoral defect + %10hBN + %90 HA (Group5), femoral defect + %100hBN (Group6). The femoral defect was created in the distal femur (3 mm drill-bit). Each implant group was divided into four different groups (n = 24) also 6 rats sacrificed for each groups in one week intervals during four weeks. In our results; at 1, 2, 3, and 4 weeks after implantation near bone tissue, serum levels of boron were evaluated using ICP-MS. We demonstrated that neither short-term nor long-term implantation of hBN–HA composite resulted in statistically increased serum boron levels in experimental groups compared to healthy group. In conclusion, this study investigated the implant material produced form hBN–HA for the first time. Our data suggest that hBN is a new promising target for biomaterial and implant bioengineers. - Highlights: • Nano-hBN–HA composites are new targets for biomaterial and implant bioengineers. • Serum boron levels were researched after implantation of nano-hBN–HA composites. • Implantation of hBN–HA composite did not result in increased serum boron levels. • The use of boron in composite form with HA did not change the stability of the implant.

  6. From boron analogues of amino acids to boronated DNA: potential new pharmaceuticals and neutron capture agents

    International Nuclear Information System (INIS)

    Spielvogel, B.F.; Sood, Anup; Duke Univ., Durham, NC; Shaw, B.R.; Hall, I.H.

    1991-01-01

    Isoelectronic and isostructural boron analogues of the α-amino acids ranging from simple glycine analogues such as H 3 NBH 2 COOH and Me 2 NHBH 2 COOH to alanine analogues have been synthesised. A diverse variety of analogues, including precursors and derivatives (such as peptides) have potent pharmacological activity, including anticancer, antiinflammatory, analgesic, and hypolipidemic activity in animal model studies and in vitro cell cultures. Boronated nucleosides and (oligo)nucleotides, synthetic oligonucleotide analogues of ''antisense'' agents interact with a complementary nucleic acid sequence blocking the biological effect of the target sequence. Nucleosides boronated on the pyrimidine and purine bases have been prepared. It has been established that an entirely new class of nucleic acid derivatives is feasible in which one of the non-bridging oxygens in the internucleotide phosphodiester linkage can be replaced by an isoelectronic analogue, the borane group, (BH 3 ). The boronated oligonucleotides can be viewed as hybrids of the normal oxygen oligonucleotides and the methylphosphonate oligonucleotides. (author)

  7. Biodistribution of Boron compounds in an experimental model of liver metastases for Boron Neutron Capture (BNCT) Studies

    International Nuclear Information System (INIS)

    Garabalino, Marcela A.; Monti Hughes, Andrea; Molinari, Ana J.; Heber, Elisa M.; Pozzi, Emiliano C.C.; Itoiz, Maria E.; Trivillin, Veronica A.; Schwint, Amanda E.; Nievas, Susana; Aromando, Romina F.

    2009-01-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10 B carriers in tumors followed by irradiation with thermal or epithermal neutrons. The high linear energy transfer alpha particles and recoiling 7 Li nuclei emitted during the capture of a thermal neutron by a 10 B nucleus have a short range and a high biological effectiveness. Thus, BNCT would potentially target neoplastic tissue selectively. In previous studies we demonstrated the therapeutic efficacy of different BNCT protocols in an experimental model of oral cancer. More recently we performed experimental studies in normal rat liver that evidenced the feasibility of treating liver metastases employing a novel BNCT protocol proposed by JEC based on ex-situ treatment and partial liver auto-transplant. The aim of the present study was to perform biodistribution studies with different boron compounds and different administration protocols to determine the protocols that would be therapeutically useful in 'in vivo' BNCT studies at the RA-3 Nuclear Reactor in an experimental model of liver metastases in rats. Materials and Methods. A total of 70 BDIX rats (Charles River Lab., MA, USA) were inoculated in the liver with syngeneic colon cancer cells DH/DK12/TRb (ECACC, UK) to induce the development of subcapsular metastatic nodules. 15 days post-inoculation the animals were used for biodistribution studies. A total of 11 protocols were evaluated employing the boron compounds boronophenylalanine (BPA) and GB-10 (Na 2 10 B 1 -0H 10 ), alone or combined employing different doses and administration routes. Tumor, normal tissue and blood samples were processed for boron measurement by ICP-OES. Results. Several protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue, i.e. BPA 15.5 mg 10 B/kg iv + GB-10 50 mg 10 B/kg iv; BPA 46.5 mg 10 B/kg ip; BPA 46.5 mg 10 B/kg ip

  8. The search for molecular effects in range corrections: boron determination by proton bombardment

    International Nuclear Information System (INIS)

    Olivier, C.; Peisach, M.

    1985-01-01

    Three different nuclear reactions viz. 10 B(p,αγ) 7 Be, 10 B(p,p,'γ) 10 B, and 11 B(p,p'γ) 11 B were used to analyse 21 pure boron compounds and mixtures of known composition by prompt gamma-ray spectrometry under proton bombardment. Elemental stopping powers were calculated from tables and used to compute the stopping power of the target matrices by Bragg's Law. Apparent discrepancies in the measured yield could point to deviations from Bragg's Law and hence to molecular effects. The maximum value for any molecular effect was found to be < 8,3%

  9. An overview the boron dilution issue in PWRs

    International Nuclear Information System (INIS)

    Hyvaerinen, J.

    1994-01-01

    The presentation is an overview of boron (boric acid) dilution in pressurized water reactors (PWRs). Boric acid has been widely used in PWRs as a dissolved poison, as one of the main reactivity controlling means, for a long time, from nearly but not quite from the beginning of the design, construction and operation of PWRs in the present-day sense. The specific safety issue, namely the risk of uncontrolled reactivity insertion due to inadvertent boron dilution, is discussed first, followed by a brief look on the history of boron usage in PWRs. A discussion of boron dilution phenomenology is presented next in general terms. Some particular concerns that boron dilution phenomena arouse in the minds of a regulator will also be presented before concluding with a brief look on the future of dissolved poisons. (11 refs.)

  10. Investigation of Hard Boron Rich Solids: Osmium Diboride and β-Rhombohedral Boron

    Science.gov (United States)

    Hebbache, M.; Živković, D.

    Recently, we succeeded in synthesizing three osmium borides, i.e., OsB1.1, Os2B3 and OsB2. Up to date, almost nothing is known about the physical properties of these materials. Microhardness measurements show that OsB2 is extremely hard. Ab initio calculations show that it is due to formation of covalent bonds between boron atoms. OsB2 is also a low compressibility material. It can be used for hard coatings. The β-rhombohedral polymorph of boron is the second hardest elemental crystal (H ≈ 33 GPa). It is also very light and a p-type semiconductor. In early 1970s, it has been shown that the doping of boron with 3d transition elements enhances its hardness by about 25%. We predict that, in general, heavily doped samples MBx, with x ≤ 31 or equivalently a dopant concentration larger than 3.2 at.%, should be ultrahard, i.e., H > 43 GPa. The relevant dopants M are Al, Cu, Sc, Mn, Mg and Li. In addition to these properties, boron-rich materials have a very low volatility, a high chemical inertness and high melting point. They are suitable for applications under extreme conditions and thermoelectric equipment.

  11. Coupling of dextrans conjugated with boron to γ globulin: a model for NCT

    International Nuclear Information System (INIS)

    Elmore, J.J. Jr.; Borg, D.C.; Micca, P.; Gabel, D.

    1982-01-01

    To achieve the selective localization of boron in or on cancer cells or other target cells, the authors have elected to use water-soluble dextrans as intermediate carriers. This permits each MCA molecule to target many atoms of boron-10 to the specified antigenic receptors while only 5 to 10 of the amino acid residues of the protein are conjugated by dextrans carrying boron-10. As a result, there should be little of the loss of receptor specificity or affinity

  12. One-step synthesis of an {sup 18}F-labeled boron-derived methionine analog. A substitute for {sup 11}C-methionine?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen; Lan, Xiaoli [Huazhong University of Science and Technology, Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Wuhan (China); Huazhong University of Science and Technology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Wuhan (China); Ehlerding, Emily B. [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); Cai, Weibo [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin - Madison, Carbone Cancer Center, Madison, WI (United States)

    2018-04-15

    Amino acid-based tracers have been extensively investigated for positron emission tomography (PET) imaging of brain tumors, and {sup 11}C-methionine ({sup 11}C-MET) is one of the most extensively investigated. However, widespread clinical use of {sup 11}C-MET is challenging due to the short half-life of {sup 11}C and low radiolabeling yield. In this issue of the European Journal of Nuclear Medicine and Molecular Imaging, Yang and colleagues report an {sup 18}F-labeled boron-derived methionine analog, {sup 18}F-B-MET, as a potential substitute for {sup 11}C-MET in PET imaging of glioma. The push-button synthesis, highly efficient radiolabeling, and good imaging performance in glioma models make this tracer a promising candidate for future clinical translation. (orig.)

  13. Design, synthesis and structure of new potential electrochemically active boronic acid-based glucose sensors

    DEFF Research Database (Denmark)

    Norrild, Jens Chr.; Søtofte, Inger

    2002-01-01

    In the course of our investigations on new boronic acid based carbohydrate sensors three new boronic acids 3, 7 and 11 containing a ferrocene moiety were synthesised. Their design includes an intramolecular B-N bonding motif in order to facilitate binding at physiological pH. We report the synthe......In the course of our investigations on new boronic acid based carbohydrate sensors three new boronic acids 3, 7 and 11 containing a ferrocene moiety were synthesised. Their design includes an intramolecular B-N bonding motif in order to facilitate binding at physiological pH. We report...

  14. Ion implantation of boron in germanium

    International Nuclear Information System (INIS)

    Jones, K.S.

    1985-05-01

    Ion implantation of 11 B + into room temperature Ge samples leads to a p-type layer prior to any post implant annealing steps. Variable temperature Hall measurements and deep level transient spectroscopy experiments indicate that room temperature implantation of 11 B + into Ge results in 100% of the boron ions being electrically active as shallow acceptor, over the entire dose range (5 x 10 11 /cm 2 to 1 x 10 14 /cm 2 ) and energy range (25 keV to 100 keV) investigated, without any post implant annealing. The concentration of damage related acceptor centers is only 10% of the boron related, shallow acceptor center concentration for low energy implants (25 keV), but becomes dominant at high energies (100 keV) and low doses ( 12 /cm 2 ). Three damage related hole traps are produced by ion implantation of 11 B + . Two of these hole traps have also been observed in γ-irradiated Ge and may be oxygen-vacancy related defects, while the third trap may be divacancy related. All three traps anneal out at low temperatures ( 0 C). Boron, from room temperature implantation of BF 2 + into Ge, is not substitutionally active prior to a post implant annealing step of 250 0 C for 30 minutes. After annealing additional shallow acceptors are observed in BF 2 + implanted samples which may be due to fluorine or flourine related complexes which are electrically active

  15. Boron

    Science.gov (United States)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  16. Large animal normal tissue tolerance with boron neutron capture.

    Science.gov (United States)

    Gavin, P R; Kraft, S L; DeHaan, C E; Swartz, C D; Griebenow, M L

    1994-03-30

    Normal tissue tolerance of boron neutron capture irradiation using borocaptate sodium (NA2B12H11SH) in an epithermal neutron beam was studied. Large retriever-type dogs were used and the irradiations were performed by single dose, 5 x 10 dorsal portal. Fourteen dogs were irradiated with the epithermal neutron beam alone and 35 dogs were irradiated following intravenous administration of borocaptate sodium. Total body irradiation effect could be seen from the decreased leukocytes and platelets following irradiation. Most values returned to normal within 40 days postirradiation. Severe dermal necrosis occurred in animals given 15 Gy epithermal neutrons alone and in animals irradiated to a total peak physical dose greater than 64 Gy in animals following borocaptate sodium infusion. Lethal brain necrosis was seen in animals receiving between 27 and 39 Gy. Lethal brain necrosis occurred at 22-36 weeks postirradiation. A total peak physical dose of approximately 27 Gy and blood-boron concentrations of 25-50 ppm resulted in abnormal magnetic resonance imaging results in 6 months postexamination. Seven of eight of these animals remained normal and the lesions were not detected at the 12-month postirradiation examination. The bimodal therapy presents a complex challenge in attempting to achieve dose response assays. The resultant total radiation dose is a composite of low and high LET components. The short track length of the boron fission fragments and the geometric effect of the vessels causes much of the intravascular dose to miss the presumed critical target of the endothelial cells. The results indicate a large dose-sparing effect from the boron capture reactions within the blood.

  17. Large animal normal tissue tolerance with boron neutron capture

    International Nuclear Information System (INIS)

    Gavin, P.R.; Swartz, C.D.; Kraft, S.L.; Briebenow, M.L.; DeHaan, C.E.

    1994-01-01

    Normal tissue tolerance of boron neutron capture irradiation using borocaptate sodium (NA 2 B 12 H 11 SH) in an epithermal neutron beam was studied. Large retriever-type dogs were used and the irradiations were performed by single dose, 5 x 10 dorsal portal. Fourteen dogs were irradiated with the epithermal neutron beam alone and 35 dogs were irradiated following intravenous administration of borocaptate sodium. Total body irradiation effect could be seen from the decreased leukocytes and platelets following irradiation. Most values returned to normal within 40 days postirradiation. Severe dermal necrosis occurred in animals given 15 Gy epithermal neutrons alone and in animals irradiated to a total peak physical dose greater than 64 Gy in animals following borocaptate sodium infusion. Lethal brain necrosis was seen in animals receiving between 27 and 39 Gy. Lethal brain necrosis occurred at 22-36 weeks postirradiation. A total peak physical dose of approximately 27 Gy and blood-boron concentrations of 25-50 ppm resulted in abnormal magnetic resonance imaging results in 6 months postexamination. Seven of eight of these animals remained normal and the lesions were not detected at the 12-month postirradiation examination. The bimodal therapy presents a complex challenge in attempting to achieve dose response assays. The resultant total radiation dose is a composite of low and high LET components. The short track length of the boron fission fragments and the geometric effect of the vessels causes much of the intravascular dose to miss the presumed critical target of the endothelial cells. The results indicate a large dose-sparing effect from the boron capture reactions within the blood. 23 refs., 6 figs., 2 tabs

  18. High sensitivity boron quantification in bulk silicon using the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be nuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Marcos V.; Silva, Tiago F. da; Added, Nemitala; Rizutto, Marcia A.; Tabacniks, Manfredo H. [Instituto de Fisica da Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil); Neira, John B.; Neto, Joao B. F. [Institute of Research Tecnology, Cidade Universitaria, SP, 05508-091 (Brazil)

    2013-05-06

    There is a great need to quantify sub-ppm levels of boron in bulk silicon. There are several methods to analyze B in Si: Nuclear Reaction Analysis using the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be reaction exhibits a quantification limit of some hundreds ppm of B in Si. Heavy Ion Elastic Recoil Detection Analysis offers a detection limit of 5 to 10 at. ppm. Secondary Ion Mass Spectrometry is the method of choice of the semiconductor industry for the analysis of B in Si. This work verifies the use of NRA to quantify B in Si, and the corresponding detection limits. Proton beam with 1.6 up to 2.6 MeV was used to obtain the cross-section of the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be nuclear reaction at 170 Degree-Sign scattering angle. The results show good agreementwith literature indicating that the quantification of boron in silicon can be achieved at 100 ppm level (high sensitivity) at LAMFI-IFUSP with about 16% uncertainty. Increasing the detection solid angle and the collected beam charge, can reduce the detection limit to less than 100 ppm meeting present technological needs.

  19. Thermoelectric properties of boron and boron phosphide CVD wafers

    Energy Technology Data Exchange (ETDEWEB)

    Kumashiro, Y.; Yokoyama, T.; Sato, A.; Ando, Y. [Yokohama National Univ. (Japan)

    1997-10-01

    Electrical and thermal conductivities and thermoelectric power of p-type boron and n-type boron phosphide wafers with amorphous and polycrystalline structures were measured up to high temperatures. The electrical conductivity of amorphous boron wafers is compatible to that of polycrystals at high temperatures and obeys Mott`s T{sup -{1/4}} rule. The thermoelectric power of polycrystalline boron decreases with increasing temperature, while that of amorphous boron is almost constant in a wide temperature range. The weak temperature dependence of the thermal conductivity of BP polycrystalline wafers reflects phonon scattering by grain boundaries. Thermal conductivity of an amorphous boron wafer is almost constant in a wide temperature range, showing a characteristic of a glass. The figure of merit of polycrystalline BP wafers is 10{sup -7}/K at high temperatures while that of amorphous boron is 10{sup -5}/K.

  20. Boron steel. I Part. Preparation

    International Nuclear Information System (INIS)

    Jaraiz Franco, E.; Esteban Hernandez, J. A.

    1960-01-01

    With the advent of the first nuclear reactors arise the need for control rods and shielding duties for some types of radiations. One of the materials used for this purpose has been the high boron steel. This paper describes the melting and casting procedures employed for the production, at laboratory scale, of steels with Boron content ranging from 1 to 4 per cent, as well as the metallographic and X-Ray techniques used for the identification of the present phases. The electrolytic technique employed for the isolation of the Fe 2 B phase and its subsequent X-Ray identification has proved to be satisfactory. (Author) 11 refs

  1. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  2. Effect of Dissolved Silica on Immobilization of Boron by Magnesium Oxide

    Directory of Open Access Journals (Sweden)

    Shoko Nozawa

    2018-02-01

    Full Text Available The effect of silica on the immobilization reaction of boron by magnesium oxide was investigated by laboratory experiments. In the absence of silica, due to dissolution of the magnesium oxide, boron was removed from solutions by the precipitation of multiple magnesium borates. In the presence of silica, magnesium silica hydrate (M-S-H was formed as a secondary mineral, which takes up boron. Here 11B magic-angle spinning nuclear magnetic resonance (MAS-NMR and Fourier transform infrared spectrometer (FT-IR data show that a part of the boron would be incorporated into M-S-H structures by isomorphic substitution of silicon. Another experiment where magnesium oxide and amorphous silica were reacted beforehand and boron was added later showed that the shorter the reaction time of the preceding reaction, the higher the sorption ratio of boron. That is, boron was incorporated into the M-S-H mainly by coprecipitation. The experiments in the study here show that the sorption of boron in the presence of silica is mainly due to the incorporation of boron during the formation of the M-S-H structure, which suggests that boron would not readily leach out, and that stable immobilization of boron can be expected.

  3. Possible application of boron neutron capture therapy to canine osteosarcoma

    International Nuclear Information System (INIS)

    Takeuchi, Akira

    1985-01-01

    Possibility for successful treatment of canine osteosarcoma by boron neutron capture therapy (BNCT) was demonstrated based upon an uptake study of the boron compound and an experimental treatment by BNCT. In the up take study following intravenous administration of Na 2 B 12 H 11 SH, satisfactorily higher boron concentration with some variation between tumors is likely to be obtained 12 hours after the administration, together with significantly lower boron levels in blood and bone. Based upon these results, osteosarcoma of a mongrel dog was successfully treated by BNCT. The tumor received approximately 3800 rads with single neutron irradiation (approximately 1.4 x 10 13 n./cm 2 ) about 12 hours after intravenous infusion of Na 2 B 12 H 11 SH of 96 % enriched 10 B in the ratio of 50 mg 10 B/kg. Clinical and radiographical improvements were remarkable and no neoplastic cell was found in any part of the original neoplastic lesion and its surrounding tissue at the time of autopsy after 30 days. (author)

  4. Defects in boron carbide: First-principles calculations and CALPHAD modeling

    International Nuclear Information System (INIS)

    Saengdeejing, Arkapol; Saal, James E.; Manga, Venkateswara Rao; Liu Zikui

    2012-01-01

    The energetics of defects in B 4+x C boron carbide and β-boron are studied through first-principles calculations, the supercell phonon approach and the Debye–Grüneisen model. It is found that suitable sublattice models for β-boron and B 4+x C are B 101 (B,C) 4 and B 11 (B,C) (B,C,Va) (B,Va) (B,C,Va), respectively. The thermodynamic properties of B 4+x C, β-boron, liquid and graphite are modeled using the CALPHAD approach based on the thermochemical data from first-principles calculations and experimental phase equilibrium data in the literature. The concentrations of various defects are then predicted as a function of carbon composition and temperature.

  5. Boron chemistry in relation to its variations in eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Singbal, S.Y.S.

    in the offshore waters. Percent addition and removal of boron computEd. by taking into consideration the world average B/Cl of 0.232 indicated an addition up to 16% and removal up to 11.65% resulting in a net addition of boron to the coastal waters. At few...

  6. Boron Neutron Capture Therapy (BCNT) for the Treatment of Liver Metastases: Biodistribution Studies of Boron Compounds in an Experimental Model

    Energy Technology Data Exchange (ETDEWEB)

    Marcela A. Garabalino; Andrea Monti Hughes; Ana J. Molinari; Elisa M. Heber; Emiliano C. C. Pozzi; Maria E. Itoiz; Veronica A. Trivillin; Amanda E. Schwint; Jorge E. Cardoso; Lucas L. Colombo; Susana Nievas; David W. Nigg; Romina F. Aromando

    2011-03-01

    Abstract We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of 10B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na210B10H10), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3.

  7. Investigations on boron isotopic geochemistry of salt lakes in Qaidam basin, Qinghai

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y; Shirodkar, P.V.; Liu, W.G.; Wang, Y; Jin, L.

    of brine and are related to boron origin, the corrosion of salt and to certain chemical constituents. The distribution of boron isotopes in Quidam Basin showed a regional feature: salt lake brines in the west and northwest basin have the highest d11B values...

  8. Oxytetracycline as a new analytical reagent for the spectrophotometric determination of boron

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, G L

    1984-05-01

    Oxytetracycline hydrochloride, Terramycin, is introduced as a new reagent for the spectrophotometric determination of trace quantities of boron in concentrated sulphuric acid medium. The reagent has an absorption maximum at 430 nm, and that of the boron complex at 520 nm. The colored system conformed to Beer's law between 2 and 10 ..mu..g of boron at 520 nm. The molar absorptivity calculated on the basis of boron is 10,800 1 mol/sup -1/ cm/sup -1/. The composition of the complex has been shown to be 1:1 both by the slope ratio and molar ratio methods. 16 references.

  9. Oxytetracycline as a new analytical reagent for the spectrophotometric determination of boron

    International Nuclear Information System (INIS)

    Narayana, G.L.

    1984-01-01

    Oxytetracycline hydrochloride, Terramycin, is introduced as a new reagent for the spectrophotometric determination of trace quantities of boron in concentrated sulphuric acid medium. The reagent has an absorption maximum at 430 nm, and that of the boron complex at 520 nm. The coloured system conformed to Beer's law between 2 and 10 μg of boron at 520 nm. The molar absorptivity calculated on the basis of boron is 10,800 1 mol -1 cm -1 . The composition of the complex has been shown to be 1:1 both by the slope ratio and molar ratio methods. (author)

  10. Thermoelectric properties of β-boron and some boron compounds. Final report, August 1981-September 1984

    International Nuclear Information System (INIS)

    Slack, G.A.; Rosolowski, J.H.; Miller, M.L.; Huseby, I.C.

    1984-12-01

    The thermoelectric properties, that is the Seebeck coefficient, and electrical and thermal conductivity, of doped β-boron have been measured from 300 to 1600 K. Most of the useful doping elements are transition metals and occupy interstitial sites in the lattice. The highest figure of merit so far achieved at 1000 K is ZT = 0.11 for P-type, polycrystalline, hot-pressed β-boron doped with copper. Higher values may be achievable once a better P-type dopant is found. Some experiments on B 68 Y, α-B 12 Al, B 4 C, and B 6 Si are described. Transition metals appear to be effective dopants for B 68 Y and B 4 C

  11. Reactive sputter deposition of boron nitride

    International Nuclear Information System (INIS)

    Jankowski, A.F.; Hayes, J.P.; McKernan, M.A.; Makowiecki, D.M.

    1995-10-01

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied -300 V dc bias

  12. The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach

    International Nuclear Information System (INIS)

    Sabirianov, Ildar F.; Brand, Jennifer I.; Fairchild, Robert W.

    2008-01-01

    Boron carbide diode detectors, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theoretical expectations. The performance of the all boron carbide neutron detector differs, as expected, from devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector). Diodes were fabricated from natural abundance boron (20% 10 B and 80% 11 B.) directly on the metal substrates and metal contacts applied to the films as grown. The total boron depth was on the order of 2 microns. This is clearly not a conversion-layer configuration. The diodes were exposed to thermal neutrons generated from a paraffin moderated plutonium-beryllium source in moderated and un-moderated, as well as shielded and unshielded experimental configurations, where the expected energy peaks at at 2.31 MeV and 2.8 MeV were clearly observed, albeit with some incomplete charge collection typical of thinner diode structures. The results are compared with other boron based thin film detectors and literature models. (authors)

  13. Imaging with 11B of intact tissues using magnetic resonance gradient echoes

    International Nuclear Information System (INIS)

    Richards, T.L.; Bradshaw, K.M.; Freeman, D.M.; Sotak, C.H.; Gavin, P.R.

    1988-01-01

    Boron neutron capture therapy (BNCT) is a proposed method of treating Glioblastoma Multiforme. BNCT is based on 10 B intake by the tumor and in-situ activation by neutron beam. It is estimated that to have successful BNCT, a 10 B delivery mechanism must deposit 20 ppM or more of 10 B within the tumor. To study and understand this delivery mechanism, 11 B can be used instead of 10 B. The pharmacokinetics of any compound using 11 B will be the same as 10 B. The advantage of using 11 B over 10 B is its greater nuclear magnetic resonance sensitivity for both spectroscopy and imaging. The use of 11 B imaging to detect and quantitate boron uptake non-invasively in animal tumor modes will facilitate continued work with 10 B. Preliminary work has shown that 11 B nuclear magnetic resonance (NMR) spectroscopy (nonlocalized) can detect 11 B in intact mouse tissues and the area under the boron peak correlates with the total boron content (correlation coefficient of 0.997). Once the ability to non-invasively measure the boron compound is established using magnetic resonance imaging (MRI) combined with spectroscopy, we will be able to address the following questions: (1) what is the optimum method of boron administration for maximum tumor selective uptake, (2) at what time is peak tumor boron concentration after infusion, and (3) what is the dose distribution in the head (based on neutron radiation and boron concentration)? The purpose of this study was to test the feasibility of imaging 11 B in intact tissues using magnetic resonance

  14. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    Directory of Open Access Journals (Sweden)

    Barth Rolf F

    2012-08-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH. In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger

  15. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry

    Science.gov (United States)

    Kaczmarek, K.; Langer, G.; Nehrke, G.; Horn, I.; Misra, S.; Janse, M.; Bijma, J.

    2015-03-01

    A number of studies have shown that the boron isotopic composition (δ11B) and the B / Ca ratio of biogenic carbonates (mostly foraminifers) can serve as proxies for two parameters of the ocean's carbonate chemistry, rendering it possible to calculate the entire carbonate system. However, the B incorporation mechanism into marine carbonates is still not fully understood and analyses of field samples show species-specific and hydrographic effects on the B proxies complicating their application. Identifying the carbonate system parameter influencing boron incorporation is difficult due to the co-variation of pH, CO32- and B(OH)4-. To shed light on the question which parameter of the carbonate system is related to the boron incorporation, we performed culture experiments with the benthic symbiont-bearing foraminifer Amphistegina lessonii using a decoupled pH-CO32- chemistry. The determination of the δ11B and B / Ca ratios was performed simultaneously by means of a new in situ technique combining optical emission spectroscopy and laser ablation MC-ICP-MS. The boron isotopic composition in the tests gets heavier with increasing pH and B / Ca increases with increasing B(OH)4- / HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH)4- and HCO3-. Furthermore, the simultaneous determination of B / Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B / Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.

  16. The Aggregation of Boron on the Tissues of Gold Fish (Carassius auratus Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    Tuncer Okan Genç

    2015-03-01

    Full Text Available In this study, it was aimed to determine the water-borne and food-borne boron accumulation in the liver and muscle tissues of Gold Fish (Carassius auratus Linnaeus, 1758. For each treatment, 12 individuals were. The water-borne boron treatments were applied as boron acid concentration of 1 mg/L, 10 mg/L and 20 mg/L in the aquarium water, while the food-borne boron treatments were prepared food contained the defined levels of boron (1 mg/kg, 5 mg/kg and 10 mg/kg as boric acid. The boron levels in the tissues were determined by an ICP-MS procedure. The maximum boron concentration was found in the 20mg/L water borne boron treatment in the liver tissue (1.78±0.02 mg/kg. In the water-borne boron treatments, the maximum Transfer Factor (TF was found in the 20mg/L boron concentration, and TF values were increased when the boron concentrations were decreasing. In the 1 mg/kg food-borne boron treatment, TF was found as 0, and increasing concentration of boron in the food caused an increase in TF reached about 0.06. This study suggested that the target organ for boron accumulation is the liver rather than the muscles and the accumulation of food-borne boron is lower when comparing water-borne boron.

  17. Design, synthesis and structure of new potential electrochemically active boronic acid-based glucose sensors

    DEFF Research Database (Denmark)

    Norrild, Jens Chr.; Søtofte, Inger

    2002-01-01

    In the course of our investigations on new boronic acid based carbohydrate sensors three new boronic acids 3, 7 and 11 containing a ferrocene moiety were synthesised. Their design includes an intramolecular B-N bonding motif in order to facilitate binding at physiological pH. We report the synthe......In the course of our investigations on new boronic acid based carbohydrate sensors three new boronic acids 3, 7 and 11 containing a ferrocene moiety were synthesised. Their design includes an intramolecular B-N bonding motif in order to facilitate binding at physiological pH. We report...... the synthesis of the compounds and our investigations on glucose complexation as studied by C-13 NMR spectroscopy. The crystal structure of 2,4,6-tris[2-(N-ferrocenylmethyl-N-methylaminomethyl) phenyl] boroxin (13) (boroxin of boronic acid 3) (boroxin = cyclotriboroxane) was obtained and compared...... with structures obtained of 2,4,6-tris[2-(N,N-dimethylaminomethyl)phenyl]boroxin (14) and 2,2-dimethyl-1,3-diyl[2-(N,N-dimethylaminomethyl)phenyl]boronate (15). The structure of 13 shows the existence of intramolecular B-N bonds in the solid phase....

  18. Chemical erosion of sintered boron carbide due to H+ impact

    International Nuclear Information System (INIS)

    Davis, J.W.; Haasz, A.A.

    1990-06-01

    The production of hydrocarbons and boron hydrides due to H + bombardment of sintered B 4 C has been investigated as a function of sample temperature and incident ion energy. While hydrocarbon production was observed, the yields were approximately two orders of magnitude smaller than observed for graphite. There was no evidence to indicate the production of any volatile boron-containing compounds. (3 figs., 11 refs.)

  19. Impact of impregnation with boron compounds on combustion ...

    African Journals Online (AJOL)

    user

    2011-04-11

    Apr 11, 2011 ... 2Gazi University, Industrial Arts Education Faculty, Department of ... security. Key words: Combustion, flame retardance, coatings, boron compounds, varnish. ..... attack in wood deterioration and its prevention by preservative.

  20. Boron-enhanced diffusion of boron from ultralow-energy boron implantation

    International Nuclear Information System (INIS)

    Agarwal, A.; Eaglesham, D.J.; Gossmann, H.J.; Pelaz, L.; Herner, S.B.; Jacobson, D.C.

    1998-01-01

    The authors have investigated the diffusion enhancement mechanism of BED (boron enhanced diffusion), wherein the boron diffusivity is enhanced three to four times over the equilibrium diffusivity at 1,050 C in the proximity of a silicon layer containing a high boron concentration. It is shown that BED is associated with the formation of a fine-grain polycrystalline silicon boride phase within an initially amorphous Si layer having a high B concentration. For 0.5 keV B + , the threshold implantation dose which leads to BED lies between 3 x 10 14 and of 1 x 10 15 /cm -2 . Formation of the shallowest possible junctions by 0.5 keV B + requires that the implant dose be kept lower than this threshold

  1. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Yilmaz, M. Tolga; Kocakerim, M. Muhtar

    2005-01-01

    In this study, boron removal from boron-containing wastewaters prepared synthetically was investigated. The experiments in which Amberlite IRA 743, boron specific resin was used were carried out in a column reactor. The bed volume of resin, boron concentration, flow rate and temperature were selected as experimental parameters. The experimental results showed that percent of boron removal increased with increasing amount of resin and with decreasing boron concentration in the solution. Boron removal decreased with increasing of flow rate and the effect of temperature on the percent of total boron removal increased the boron removal rate. As a result, it was seen that about 99% of boron in the wastewater could be removed at optimum conditions

  2. Model for the boron-doping dependence of the critical temperature of superconducting boron-doped diamond

    Czech Academy of Sciences Publication Activity Database

    Šopík, Břetislav

    2009-01-01

    Roč. 11, č. 10 (2009), 103026/1-103026/10 ISSN 1367-2630 R&D Projects: GA AV ČR IAA100100712 Grant - others:GAČR(CZ) GA202/07/0597 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * boron-doped diamond Subject RIV: BE - Theoretical Physics Impact factor: 3.312, year: 2009

  3. Hydrolytic Stability of Boronate Ester-Linked Covalent Organic Frameworks

    KAUST Repository

    Li, Huifang

    2018-01-30

    The stability of covalent organic frameworks (COFs) is essential to their applications. However, the common boronate ester-linked COFs are susceptible to attack by nucleophiles (such as water molecules) at the electron-deficient boron sites. To provide an understanding of the hydrolytic stability of the representative boronate ester-linked COF-5 and of the associated hydrolysis mechanisms, density functional theory (DFT) calculations were performed to characterize the hydrolysis reactions of the molecule formed by the condensation of 1,4-phenylenebis(boronic acid) (PBBA) and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) monomers; two cases were considered, one dealing with the freestanding molecule and the other with the molecule interacting with COF layers. It was found that the boronate ester (B–O) bond dissociation, which requires one H2O molecule, has a relatively high energy barrier of 22.3 kcal mol−1. However, the presence of an additional H2O molecule significantly accelerates hydrolysis by reducing the energy barrier by a factor of 3. Importantly, the hydrolysis of boronate ester bonds situated in a COF environment follows reaction pathways that are different and have increased energy barriers. These results point to an enhanced hydrolytic stability of COF-5 crystals.

  4. Application of drug delivery system for boron neutron capture therapy. Basic research toward clinical application

    International Nuclear Information System (INIS)

    Yanagie, Hironobu; Takahashi, Hiroyuki

    2010-01-01

    Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between 10 B and thermal neutrons ( 10 B+ 1 n → 7 Li+ 4 He (α) +2.31 MeV (93.7%)/2.79 MeV (6.3%)). The resulting lithium ions and αparticles are high linear energy transfer (LET) particles which give high biological effect. Their short range in tissue (5-9 μm) restricts radiation damage to those cells in which boron atoms are located at the time of neutron irradiation. BNCT has been applied clinically for the treatment of malignant brain tumors, malignant melanoma, head and neck cancer and hepatoma etc, recently. Sodium borocaptate (Na 2 10 B 12 H 11 SH; BSH) and borono-phenylalanine ( 10 BPA) are currently being used in clinical treatments. To achieve the selective delivery of boron atoms to cancer cells, drug delivery system (DDS) becomes an attractive intelligent technology as targeting and controlled release of drugs. We have firstly reported that 10 B atoms delivered by immunoliposomes are cytotoxic to human pancreatic carcinoma cells (AsPC-1) after thermal neutron irradiation in vitro. The intra-tumoural injection of boronated immunoliposomes can increase the retention of 10 B atoms in tumour cells, causing suppression of tumour growth in vivo following thermal neutron irradiation. We prepared polyethylene-glycol binding liposomes (PEG-liposomes) as an effective 10 B carrier to obviate phagocytosis by reticuloendotherial systems. We had prepared 10 BSH entrapped Water-in-Oil-in-Water (WOW) emulsion. The 10 B concentration in VX-2 tumour after intra-arterial injection of 10 BSH entrapped WOW emulsion was superior to the groups of 10 BSH entrapped conventional Lipiodol mix emulsion. 10 Boron entrapped WOW emulsion is one of the most useful for intra-arterial boron delivery carrier on BNCT to hepatocellular carcinoma. (author)

  5. Boron reclamation

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-07-01

    A process to recover high purity 10 B enriched crystalline boron powder from a polymeric matrix was developed on a laboratory basis and ultimately scaled up to production capacity. The process is based on controlled pyrolysis of boron-filled scrap followed by an acid leach and dry sieving operation to return the powder to the required purity and particle size specifications. Typically, the recovery rate of the crystalline powder is in excess of 98.5 percent, and some of the remaining boron is recovered in the form of boric acid. The minimum purity requirement of the recovered product is 98.6 percent total boron

  6. Boron isotopic compositions in growing corals from the South China Sea

    Science.gov (United States)

    Xiao, Jun; Xiao, Yingkai; Jin, Zhangdong; Liu, Congqiang; He, Maoyong

    2013-01-01

    In order to determine incorporation of boron species, boron isotopic fractionation, and influence of trace elements on isotopic compositions of boron in corals (δ11Bcoral), concentrations of Mg, Sr, Na, B and δ11Bcoral in growing corals from the South China Sea were measured. Relative to seawater, Sr enriched while Mg depleted in corals in the South China Sea. Although the δ11Bcoral values were different from various species and were not closely correlated with the element concentrations in corals in the South China Sea, Mg(OH)2 existed in corals can result in high δ11Bcoral. Thus, it is necessary to examine the existence of Mg(OH)2 and to choose the same species when δ11Bcoral is used in the δ11B-pH proxy. Based on the measured δ11B values of corals and coexisting seawater as well as the seawater pH in the South China Sea, a new isotopic fractionation factor a4-3 between B(OH)4- and B(OH)3 was determined to be 0.979. Besides B(OH)4- into corals, our results showed that B(OH)3 may also be incorporated into corals with variable proportions. The incorporation of B(OH)3 into corals may challenge the hypothesis of δ11Bcoral = δ11B4, resulting in increasing uncertainty to the calculated seawater pH values to the δ11B-pH proxy. We suggested that a best-fit empirical equation between δ11B of bio-carbonates and seawater pH needs to be established by the precipitation experiments of inorganic carbonates or culture experiments of corals or foraminifera.

  7. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  8. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Reviews and syntheses: Revisiting the boron systematics of aragonite and their application to coral calcification

    Science.gov (United States)

    DeCarlo, Thomas M.; Holcomb, Michael; McCulloch, Malcolm T.

    2018-05-01

    The isotopic and elemental systematics of boron in aragonitic coral skeletons have recently been developed as a proxy for the carbonate chemistry of the coral extracellular calcifying fluid. With knowledge of the boron isotopic fractionation in seawater and the B/Ca partition coefficient (KD) between aragonite and seawater, measurements of coral skeleton δ11B and B/Ca can potentially constrain the full carbonate system. Two sets of abiogenic aragonite precipitation experiments designed to quantify KD have recently made possible the application of this proxy system. However, while different KD formulations have been proposed, there has not yet been a comprehensive analysis that considers both experimental datasets and explores the implications for interpreting coral skeletons. Here, we evaluate four potential KD formulations: three previously presented in the literature and one newly developed. We assess how well each formulation reconstructs the known fluid carbonate chemistry from the abiogenic experiments, and we evaluate the implications for deriving the carbonate chemistry of coral calcifying fluid. Three of the KD formulations performed similarly when applied to abiogenic aragonites precipitated from seawater and to coral skeletons. Critically, we find that some uncertainty remains in understanding the mechanism of boron elemental partitioning between aragonite and seawater, and addressing this question should be a target of additional abiogenic precipitation experiments. Despite this, boron systematics can already be applied to quantify the coral calcifying fluid carbonate system, although uncertainties associated with the proxy system should be carefully considered for each application. Finally, we present a user-friendly computer code that calculates coral calcifying fluid carbonate chemistry, including propagation of uncertainties, given inputs of boron systematics measured in coral skeleton.

  10. Aspects of the chemistry of boron

    International Nuclear Information System (INIS)

    Moellinger, H.

    1976-01-01

    Crystal phases of elementary boron are reviewed as well as boron-sulphur, boron-selenum, boron-tellurium, and boron-nitrogen compounds, carboranes, and boron-carbohydrate complexes. A boron cadastre of rivers and lakes serves to illustrate the role of boron in environmental protection. Technically relevant boron compounds and their uses are mentioned. (orig.) 891 HK/orig. 892 MB [de

  11. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Qingcai Xu

    2015-01-01

    Full Text Available Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from -19.45‰ to +28.13‰ (total range: 47.58‰ with a mean value of 2.61±11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems.

  12. Solid-state nuclear magnetic resonance studies of phosphorus and boron in coals and combustion residues

    Energy Technology Data Exchange (ETDEWEB)

    Burchill, P.; Howarth, O.W.; Richards, D.G.; Sword, B.J. (British Coal Corporation, Stoke Orchard (UK). Coal Research Establishment)

    1990-04-01

    Solid-state nuclear magnetic resonance spectroscopy with magic angle spinning (MAS-n.m.r.) was used to study the occurrence of phosphorus and boron in coal, and their fate on combustion. These elements are only minor components of coal, but may significantly influence the utilization properties. {sup 31} P MAS-n.m.r. spectroscopy has confirmed that phosphorus is present in coal predominantly as apatite. This mineral is thermally stable under oxidizing conditions, and survives largely unaltered in high temperature ashes. However, under the semi-reducing bed conditions of certain stoker-fired boilers, it may be decomposed, volatilizing the phosphorus. The {sup 31}P MAS-n.m.r. spectra of bonded deposits show phosphorus in a markedly different coordination environment to that in apatite, the chemical shift suggesting aluminium phosphate or boron phosphate. {sup 11}B MAS-n.m.r. spectra of coals exhibit resonances due to both trigonal and tetrahedrally coordinated boron. Trigonal boron is probably present as tourmaline, but the nature of the tetrahedral boron is less certain; it may be held in tetrahedral sites within certain clay minerals. In common with phosphorus, boron may be volatilized during combustion. The {sup 11}B MAS-n.m.r. spectra of bonded deposits show a tetrahedral resonance with a chemical shift quite consistent with that of boron phosphate. 39 refs., 9 figs., 5 tabs.

  13. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    Crossley, D.; Wood, A.J.; McInnes, C.A.J.; Jones, I.G.

    1978-09-01

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 300 0 C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 1050 0 C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  14. Boronate esters: Synthesis, characterization and molecular base receptor analysis

    Science.gov (United States)

    Gómez-Jaimes, Gelen; Barba, Victor

    2014-10-01

    The synthesis of three boronate esters obtained by reacting 4-fluorophenylboronic (1), 4-iodophenylboronic (2) and 3,4-chlorophenylboronic (3) acids with 2,4,5-trihidroxybenzaldehyde is reported. The structural characterization was determined by spectroscopic and spectrometric techniques. The boron atom was evaluated to acts as Lewis acid center in the reaction with pyridine (Py), triethylamine (TEA) and fluoride anion (F-). The titration method was followed by UV-Vis and 11B NMR spectroscopy; results indicate the good interaction with the fluoride ion but poor coordination towards pyridine in solution.

  15. Implantation of boron in silicon

    International Nuclear Information System (INIS)

    Hofker, W.K.

    1975-01-01

    The distribution versus depth of boron implanted in silicon and the corresponding electrical activity obtained after annealing are studied. The boron distributions are measured by secondary-ion mass spectrometry. Boron distributions implanted at energies in the range from 30 keV to 800 keV in amorphous and polycrystalline silicon are analysed. Moments of these distributions are determined by a curve-fitting programme and compared with moments calculated by Winterbon. Boron distributions obtained by implantations along a dense crystallographic direction in monocrystalline silicon are found to have penetrating tails. After investigation of some possible mechanisms of tail formation it is concluded that the tails are due to channelling. It was found that the behaviour of boron during annealing is determined by the properties of three boron fractions consisting of precipitated boron, interstitial boron and substitutional boron. The electrical activity of the boron versus depth is found to be consistent with the three boron fractions. A peculiar redistribution of boron is found which is induced by the implantation of a high dose of heavy ions and subsequent annealing. Different mechanisms which may cause the observed effects, such as thermal diffusion which is influenced by lattice strain and damage, are discussed. (Auth.)

  16. Standard specification for boron-Based neutron absorbing material systems for use in nuclear spent fuel storage racks

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This specification defines criteria for boron-based neutron absorbing material systems used in racks in a pool environment for storage of nuclear light water reactor (LWR) spent-fuel assemblies or disassembled components to maintain sub-criticality in the storage rack system. 1.2 Boron-based neutron absorbing material systems normally consist of metallic boron or a chemical compound containing boron (for example, boron carbide, B4C) supported by a matrix of aluminum, steel, or other materials. 1.3 In a boron-based absorber, neutron absorption occurs primarily by the boron-10 isotope that is present in natural boron to the extent of 18.3 ± 0.2 % by weight (depending upon the geological origin of the boron). Boron, enriched in boron-10 could also be used. 1.4 The materials systems described herein shall be functional – that is always be capable to maintain a B10 areal density such that subcriticality Keff <0.95 or Keff <0.98 or Keff < 1.0 depending on the design specification for the service...

  17. Full-scale simulation of seawater reverse osmosis desalination processes for boron removal: Effect of membrane fouling.

    Science.gov (United States)

    Park, Pyung-Kyu; Lee, Sangho; Cho, Jae-Seok; Kim, Jae-Hong

    2012-08-01

    The objective of this study is to further develop previously reported mechanistic predictive model that simulates boron removal in full-scale seawater reverse osmosis (RO) desalination processes to take into account the effect of membrane fouling. Decrease of boron removal and reduction in water production rate by membrane fouling due to enhanced concentration polarization were simulated as a decrease in solute mass transfer coefficient in boundary layer on membrane surface. Various design and operating options under fouling condition were examined including single- versus double-pass configurations, different number of RO elements per vessel, use of RO membranes with enhanced boron rejection, and pH adjustment. These options were quantitatively compared by normalizing the performance of the system in terms of E(min), the minimum energy costs per product water. Simulation results suggested that most viable options to enhance boron rejection among those tested in this study include: i) minimizing fouling, ii) exchanging the existing SWRO elements to boron-specific ones, and iii) increasing pH in the second pass. The model developed in this study is expected to help design and optimization of the RO processes to achieve the target boron removal at target water recovery under realistic conditions where membrane fouling occurs during operation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    International Nuclear Information System (INIS)

    Yoo, Ho Seong; Hwang, Dae Hee; Hong, Ser Gi

    2015-01-01

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern

  19. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ho Seong; Hwang, Dae Hee; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern.

  20. Ground-water pollution determined by boron isotope systematics

    International Nuclear Information System (INIS)

    Vengosh, A.; Kolodny, Y.; Spivack, A.J.

    1998-01-01

    Boron isotopic systematics as related to ground-water pollution is reviewed. We report isotopic results of contaminated ground water from the coastal aquifers of the Mediterranean in Israel, Cornia River in north-western Italy, and Salinas Valley, California. In addition, the B isotopic composition of synthetic B compounds used for detergents and fertilizers was investigated. Isotopic analyses were carried out by negative thermal ionization mass spectrometry. The investigated ground water revealed different contamination sources; underlying saline water of a marine origin in saline plumes in the Mediterranean coastal aquifer of Israel (δ 11 B=31.7 per mille to 49.9 per mille, B/Cl ratio ∼1.5x10 -3 ), mixing of fresh and sea water (25 per mille to 38 per mille, B/Cl∼7x10 -3 ) in saline water associated with salt-water intrusion to Salinas Valley, California, and a hydrothermal contribution (high B/Cl of ∼0.03, δ 11 B=2.4 per mille to 9.3 per mille) in ground water from Cornia River, Italy. The δ 11 B values of synthetic Na-borate products (-0.4 per mille to 7.5 per mille) overlap with those of natural Na-borate minerals (-0.9 per mille to 10.2 per mille). In contrast, the δ 11 B values of synthetic Ca-borate and Na/Ca borate products are significantly lower (-15 per mille to -12.1 per mille) and overlap with those of the natural Ca-borate minerals. We suggest that the original isotopic signature of the natural borate minerals is not modified during the manufacturing process of the synthetic products, and it is controlled by the crystal chemistry of borate minerals. The B concentrations in pristine ground-waters are generally low ( 11 B=39 per mille), salt-water intrusion and marine-derived brines (40 per mille to 60 per mille) are sharply different from hydrothermal fluids (δ 11 B=10 per mille to 10 per mille) and anthropogenic sources (sewage effluent: δ 11 B=0 per mille to 10 per mille; boron-fertilizer: δ 11 B=-15 per mille to 7 per mille). some

  1. Boron exposure assessment using drinking water and urine in the North of Chile.

    Science.gov (United States)

    Cortes, S; Reynaga-Delgado, E; Sancha, A M; Ferreccio, C

    2011-12-01

    Boron is an essential trace element for plants and humans however it is still an open question what levels of boron are actually safe for humans. This study, conducted between 2006 and 2010, measured exposure levels of boron in drinking water and urine of volunteers in Arica, an area in the North of Chile with high levels of naturally occurring boron. Samples were taken of tap and bottled water (173 and 22, respectively), as well as urine from 22 volunteers, and subsequently analyzed by inductively coupled plasma spectroscopy (ICP-OES). Boron varied in public tap water from 0.22 to 11.3mgL(-1), with a median value of 2.9mgL(-1), while concentrations of boron in bottled water varied from 0.01 to 12.2mgL(-1). Neither tap nor bottled water samples had concentrations of boron within WHO recommended limits. The concentration of boron in urine varied between 0.45 and 17.4mgL(-1), with a median of 4.28mgL(-1) and was found to be correlated with tap water sampled from the homes of the volunteers (r=0.64). Authors highly recommend that in northern Chile - where levels of boron are naturally high - that the tap and bottled water supplies be monitored in order to protect public health and that regulatory standards also be established for boron in drinking water in order to limit exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Boron exposure assessment using drinking water and urine in the North of Chile

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, S., E-mail: scortes@med.puc.cl [Departamento de Salud Publica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Reynaga-Delgado, E. [Centro de Investigaciones Biologicas del Noroeste, La Paz B.C.S. (Mexico); Sancha, A.M. [Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago (Chile); Ferreccio, C. [Departamento de Salud Publica, Pontificia Universidad Catolica de Chile, Santiago (Chile)

    2011-12-01

    Boron is an essential trace element for plants and humans however it is still an open question what levels of boron are actually safe for humans. This study, conducted between 2006 and 2010, measured exposure levels of boron in drinking water and urine of volunteers in Arica, an area in the North of Chile with high levels of naturally occurring boron. Samples were taken of tap and bottled water (173 and 22, respectively), as well as urine from 22 volunteers, and subsequently analyzed by inductively coupled plasma spectroscopy (ICP-OES). Boron varied in public tap water from 0.22 to 11.3 mg L{sup -1}, with a median value of 2.9 mg L{sup -1}, while concentrations of boron in bottled water varied from 0.01 to 12.2 mg L{sup -1}. Neither tap nor bottled water samples had concentrations of boron within WHO recommended limits. The concentration of boron in urine varied between 0.45 and 17.4 mg L{sup -1}, with a median of 4.28 mg L{sup -1} and was found to be correlated with tap water sampled from the homes of the volunteers (r = 0.64). Authors highly recommend that in northern Chile - where levels of boron are naturally high - that the tap and bottled water supplies be monitored in order to protect public health and that regulatory standards also be established for boron in drinking water in order to limit exposure.

  3. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Hawthorne, M. Frederick

    2005-01-01

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic

  4. Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride-hydroxy apatite in rat femurs.

    Science.gov (United States)

    Atila, Alptug; Halici, Zekai; Cadirci, Elif; Karakus, Emre; Palabiyik, Saziye Sezin; Ay, Nuran; Bakan, Feray; Yilmaz, Sahin

    2016-01-01

    Boron and its derivatives are effective in bone recovery and osteointegration. However, increasing the boron levels in body liquids may cause toxicity. The aim of our study is to investigate serum boron levels using ICP-MS after implantation of different ratios of nano-hBN-HA composites in rat femurs. All rats were (n=126) divided into five experimental groups (n=24) and one healthy group (6 rats); healthy (Group1), femoral defect + %100 HA (Group2), femoral defect + %2.5 hBN + %97.5 HA (Group3), femoral defect + %5 hBN + %95 HA (Group4), femoral defect + %10 hBN + %90 HA (Group5), femoral defect + %100 hBN (Group6). The femoral defect was created in the distal femur (3mm drill-bit). Each implant group was divided into four different groups (n=24) also 6 rats sacrificed for each groups in one week intervals during four weeks. In our results; at 1, 2, 3, and 4 weeks after implantation near bone tissue, serum levels of boron were evaluated using ICP-MS. We demonstrated that neither short-term nor long-term implantation of hBN-HA composite resulted in statistically increased serum boron levels in experimental groups compared to healthy group. In conclusion, this study investigated the implant material produced form hBN-HA for the first time. Our data suggest that hBN is a new promising target for biomaterial and implant bioengineers. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    Vast, N.

    1999-01-01

    The atomic structure and the lattice dynamics of α boron and of B 4 C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B 4 C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  6. Molecular medicine: Synthesis and in-vivo detection of agents for use in boron neutron capture therapy. Final report, May 1, 1993--April 30, 1996

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1997-08-01

    During the early stages of this project, the author developed the first whole-body boron MRI technique. They found that, for the first time, information concerning both the location and the quantity of boron present in living tissues could be obtained through the use of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) respectively. However, it was also discovered that boron MRI was not without problems. Both naturally occurring isotopes of boron (boron-10 and boron-11) possess magnetic moments, making them amenable to MR detection. The author found that there are difficulties in obtaining boron MRI images which are a consequence of the inherently poor magnetic resonance characteristics of the boron nucleus. The magnetogyric ratios of both boron-10 and boron-11 are smaller than those of hydrogen, which makes boron much less sensitive to magnetic resonance detection. In addition, both isotopes of boron posses nuclear electric quadrupole moments which serve to shorten their magnetization relaxation times; this causes the MR signal to broaden and decay rapidly, often before the receiver coils can collect the MR information. The rapid rate of signal decay is enhanced in biological systems which leads to further signal loss and a decrease in the signal to noise ratio (SNR)

  7. Separation of boron isotopes using NMG type anion exchange resin

    International Nuclear Information System (INIS)

    Itagaki, Takaharu; Kosuge, Masao; Fukuda, Junji; Fujii, Yasuhiko.

    1992-01-01

    Ion exchange separation of boron isotopes (B-10 and B-11) has been studied by using a special boron selective ion exchange resin; NMG (n-methyl glucamine)-type anion exchange resin. The resin has shown a large isotope separation coefficient of 1.02 at the experimental conditions of temperature, 80degC, and boric acid concentration, 0.2 M (mole/dm 3 ). Enriched B-10 (92%) was obtained after the migration of 1149 m by a recyclic operation of ion exchange columns in a merry-go-round method. (author)

  8. Dose distribution and clinical response of glioblastoma treated with boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)], E-mail: mhide-m@gk9.so-net.ne.jp; Yamamoto, T. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Kumada, H. [Japan Atomic Energy Agency, Shirakatashirane 2-4, Tokai (Japan); Nakai, K.; Shirakawa, M.; Tsurubuchi, T.; Matsumura, A. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)

    2009-07-15

    The dose distribution and failure pattern after treatment with the external beam boron neutron capture therapy (BNCT) protocol were retrospectively analyzed. BSH (5 g/body) and BPA (250 mg/kg) based BNCT was performed in eight patients with newly diagnosed glioblastoma. The gross tumor volume (GTV) and clinical target volume (CTV)-1 were defined as the residual gadolinium-enhancing volume. CTV-2 and CTV-3 were defined as GTV plus a margin of 2 and 3 cm, respectively. As additional photon irradiation, a total X-ray dose of 30 Gy was given to the T2 high intensity area on MRI. Five of the eight patients were alive at analysis for a mean follow-up time of 20.3 months. The post-operative median survival time of the eight patients was 27.9 months (95% CI=21.0-34.8). The minimum tumor dose of GTV, CTV-2, and CTV-3 averaged 29.8{+-}9.9, 15.1{+-}5.4, and 12.4{+-}2.9 Gy, respectively. The minimum tumor non-boron dose of GTV, CTV-2, and CTV-3 averaged 2.0{+-}0.5, 1.3{+-}0.3, and 1.1{+-}0.2 Gy, respectively. The maximum normal brain dose, skin dose, and average brain dose were 11.4{+-}1.5, 9.6{+-}1.4, and 3.1{+-}0.4 Gy, respectively. The mean minimum dose at the failure site in cases of in-field recurrence (IR) and out-field recurrence (OR) was 26.3{+-}16.7 and 14.9 GyEq, respectively. The calculated doses at the failure site were at least equal to the tumor control doses which were previously reported. We speculate that the failure pattern was related to an inadequate distribution of boron-10. Further improvement of the microdistribution of boron compounds is expected, and may improve the tumor control by BNCT.

  9. Dosimetry boron neutron capture therapy in liver cancer (hepatocellular carcinoma) by means of MCNP-code with neutron source from thermal column

    International Nuclear Information System (INIS)

    Irhas; Andang Widi Harto; Yohannes Sardjono

    2014-01-01

    Boron Neutron Capture Therapy (BNCT) using physics principle when B 10 (Boron-10) irradiated by low energy neutron (thermal neutron). Boron and thermal neutron reaction produced B 11m (Boron-11m) (t 1/2 =10 -2 s). B 11m decay emitted alpha, Li 7 (Lithium-7) particle and gamma ray. Irradiated time needed to ensure cancer dose enough. Liver cancer was primary malignant who located in liver (Hepatocellular carcinoma). Malignant in liver were different to metastatic from Breast, Colon Cancer, and the other. This condition was Metastatic Liver Cancer. Monte Carlo method used by Monte Carlo N-Particle (MCNP) Software. Probabilistic approach used for probability of interaction occurred and record refers to characteristic of particle and material. In this case, thermal neutron produced by model of Collimated Thermal Column Kartini Research Nuclear Reactor, Yogyakarta. Modelling organ and source used liver organ that contain of cancer tissue and research reactor. Variation of boron concentration was 20, 25, 30, 35, 40, 45, and 47 µg/g cancers. Output of MCNP calculation were neutron scattering dose, gamma ray dose and neutron flux from reactor. Neutron flux used to calculate alpha, proton and gamma ray dose from interaction of tissue material and thermal neutron. Variation of boron concentration result dose rate to every variation were 0,059; 0,072; 0,084; 0,098; 0.108; 0,12; 0,125 Gy/sec. Irradiation time who need to every concentration were 841,5 see (14 min 1 sec); 696,07 sec(11 min 36 sec); 593.11 sec (9 min 53 sec); 461,35 sec (8 min 30 sec); 461,238 sec (7 min 41 sec); 414,23 sec (6 min 54 sec); 398,38 sec (6 min 38 sec). Irradiating time could shortly when boron concentration more high. (author)

  10. Post-targeting strategy for ready-to-use targeted nanodelivery post cargo loading.

    Science.gov (United States)

    Zhu, J Y; Hu, J J; Zhang, M K; Yu, W Y; Zheng, D W; Wang, X Q; Feng, J; Zhang, X Z

    2017-12-14

    Based on boronate formation, this study reports a post-targeting methodology capable of readily installing versatile targeting modules onto a cargo-loaded nanoplatform in aqueous mediums. This permits the targeted nanodelivery of broad-spectrum therapeutics (drug/gene) in a ready-to-use manner while overcoming the PEGylation-dilemma that frequently occurs in conventional targeting approaches.

  11. Note on boron toxicity in oats

    Energy Technology Data Exchange (ETDEWEB)

    Langille, W M; Mahoney, J F

    1959-01-01

    Boron was applied at the rate of 35 pounds per acre of borax to a field of oats. With the first noticeable growth there appeared a definite chlorotic condition of the oat seedlings on plots receiving boron treatments. Analysis of chlorotic tissue at 3 weeks after seeding indicated 110 ppm boron, while apparently healthy tissue contained 6.1 ppm boron at the same stage of growth. There was a rapid decline in the boron content of the oat tissue as the crop grew older. At maturity the oat tissue from the boron-treated plots contained an average of 14.15 ppm boron as compared with 4.10 boron from untreated areas. Boron toxicity had no harmful effect so far as yields were concerned, under the conditions of this experiment. 3 references.

  12. Method for producing polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Alexeevskii, V.P.; Bochko, A.V.; Dzhamarov, S.S.; Karpinos, D.M.; Karyuk, G.G.; Kolomiets, I.P.; Kurdyumov, A.V.; Pivovarov, M.S.; Frantsevich, I.N.; Yarosh, V.V.

    1975-01-01

    A mixture containing less than 50 percent of graphite-like boron nitride treated by a shock wave and highly defective wurtzite-like boron nitride obtained by a shock-wave method is compressed and heated at pressure and temperature values corresponding to the region of the phase diagram for boron nitride defined by the graphite-like compact modifications of boron nitride equilibrium line and the cubic wurtzite-like boron nitride equilibrium line. The resulting crystals of boron nitride exhibit a structure of wurtzite-like boron nitride or of both wurtzite-like and cubic boron nitride. The resulting material exhibits higher plasticity as compared with polycrystalline cubic boron nitride. Tools made of this compact polycrystalline material have a longer service life under impact loads in machining hardened steel and chilled iron. (U.S.)

  13. Study on the preparation of boron-rich film by magnetron sputtering in oxygen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhangmin; Yang, Yiming; Huang, Jian; Ren, Bing; Yu, Hongze; Xu, Run; Ji, Huanhuan; Wang, Lin; Wang, Linjun, E-mail: ljwang@shu.edu.cn

    2016-12-01

    Highlights: • Boron ({sup 10}B) oxide films were successfully grown using RF magnetron sputtering. • Effects of oxygen partial pressure on the property of the films were studied. • Substrates were covered with B-rich film and film surface was covered with B{sub 2}O{sub 3}. • The growth mechanism of films in oxygen atmosphere was analyzed using XPS. - Abstract: In this paper, the growth of boron ({sup 10}B) oxide films on (1 0 0) silicon substrate were achieved by radio frequency (r.f.) magnetron sputtering under the different oxygen partial pressure with a target of boron and boron oxide. The structure and properties of deposited films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), respectively. The results showed that the substrate was covered with boron-rich films tightly and the surface of films was covered with B{sub 2}O{sub 3}. And the growth mechanism of boron-rich film in oxygen atmosphere was also analyzed.

  14. Bismuth-boron multiple bonding in BiB_2O"- and Bi_2B"-

    International Nuclear Information System (INIS)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng

    2017-01-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB_2O"- and Bi_2B"-, containing triple and double B-Bi bonds are presented. The BiB_2O"- and Bi_2B"- clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB_2O"- ([Bi≡B-B≡O]"-) and Bi_2B"- ([Bi=B=Bi]"-), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. β-Rhombohedral Boron: At the Crossroads of the Chemistry of Boron and the Physics of Frustration [Boron: a frustrated element

    Energy Technology Data Exchange (ETDEWEB)

    Ogitsu, Tadashi [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Galli, Giulia [Univ. of California, Davis, CA (United States)

    2013-05-08

    In the periodic table boron occupies a peculiar, crossover position: on the first row, it is surrounded by metal forming elements on the left and by non-metals on the right. In addition, it is the only non-metal of the third column. Therefore it is perhaps not surprising that the crystallographic structure and topology of its stable allotrope at room temperature (β-boron) are not shared by any other element, and are extremely complex. The formidable intricacy of β- boron, with interconnecting icosahedra, partially occupied sites, and an unusually large number of atoms per unit cell (more than 300) has been known for more than 40 years. Nevertheless boron remains the only element purified in significant quantities whose ground state geometry has not been completely determined by experiments. However theoretical progress reported in the last decade has shed light on numerous properties of elemental boron, leading to a thorough characterization of its structure at ambient conditions, as well as of its electronic and thermodynamic properties. This review discusses in detail the properties of β-boron, as inferred from experiments and the ab-initio theories developed in the last decade.

  16. The hot working characteristics of a boron bearing and a conventional low carbon steel

    International Nuclear Information System (INIS)

    Stumpf, Waldo; Banks, Kevin

    2006-01-01

    Constitutive hot working constants were determined for an 11 ppm boron low carbon strip steel and compared from 875 to 1140 deg. C and strain rates of 0.001-2.5 s -1 to a high nitrogen low carbon strip steel. The boron steel showed a different hot working behaviour than the conventional steel with the steady state flow stress about 50-60% higher, the peak strain more than 50% higher and the eventual ferrite grain size about 40% smaller, if compared at the same temperature compensated strain rates or Z values. This difference persisted where the soaking temperature before compression was varied between 1140 and 1250 deg. C, proving that undissolved AlN in the boron-bearing steel was not responsible. With systematically varied linear cooling rates after hot working, the final ferrite grain size in the boron steel is finer and is independent of the two Z values applied during hot working. Retarded softening by dynamic recrystallisation during hot working in the boron containing steel is probably caused by boron solute drag of moving grain boundaries

  17. The irradiation behaviour of boron carbide/graphite between 800 and 1,1000C

    International Nuclear Information System (INIS)

    Hattenbach, K.; Hilgendorff, W.; Weiler, K.; Zimmermann, H.U.

    1975-01-01

    64 samples of boron carbide/graphite, a material used as burnable poison in high temperature reactors, were irradiated at temperatures between 800 and 1,100 0 C up to a fluence of 1-2 x 10 20 nvt. The following post-investigations were extended to dimensional measurements to determime a possible swelling or shrinking of the pellet, corrosion tests in completely desalinated water at 300 0 C, preparation of metallographic microsections to check for crack formation, determination of the helium hold back power and the thus involved gas chromatic analysis, as well as burn-up determinations by determining the boron 10/boron 11 ratio and the lithium concentration. (orig./LN) [de

  18. Synthesis of boron-containing heterocyclic compounds

    International Nuclear Information System (INIS)

    Azev, Yuri; Slepukhina, Irina; Gabel, Detlef

    2004-01-01

    The synthesis of boron-containing 1,3,5-triazines and 1,2,4-triazines is described. Derivatives of 1,3,5-triazine containing the o-carborane cluster have been obtained by reacting the corresponding propargyl derivatives with B 10 H 14 . Derivatives of 1,2,4-triazine containing the B 12 H 12 2- cluster have been obtained by nucleophilic substitution of ethylsulfone derivatives with B 12 H 11 SH 2- . They have been isolated in their ring-protonated form. Reaction of RNH 2 -B 8 H 11 NH-R with stericly demanding heterocycles failed, either for steric or for solubility reasons

  19. Medical aspects of boron-slow neutron capture therapy

    International Nuclear Information System (INIS)

    Sweet, W.H.

    1986-01-01

    Earlier radiations of patients with cerebral tumors disclosed the need: (1) to find a carrier of the boron compound which would leave the blood and concentrate in the tumor, (2) to use a more penetrating neutron beam, and (3) to develop a much faster method for assaying boron in blood and tissue. To some extent number1 has been accomplished in the form of Na 2 B 12 H 11 SH, number2 has yet to be achieved, and number3 has been solved by the measurement of the 478-keV gamma ray when the 10 B atom disintegrates following its capture of a slow neutron. The hitherto unreported data in this paper describe through the courtesy of Professor Hiroshi Hatanaka his studies on the pharmacokinetics and quality control of Na 2 B 12 H 11 SH based on 96 boron infusions in 86 patients. Simultaneous blood and tumor data are plotted here for 30 patients with glioblastomas (Grade III-IV gliomas), illustrating remarkable variability. Detailed autopsy findings on 18 patients with BNCT showed radiation injury in only 1. Clinical results in 12 of the most favorably situated glioblastomas reveal that 5 are still alive with a 5-year survival rate of 58% and the excellent Karnofsky performance rating of 87%. For the first time evidence is presented that slow-growing astrocytomas may benefit from BNCT. 10 references, 8 figures, 5 tables

  20. Boronated liposome development and evaluation

    International Nuclear Information System (INIS)

    Hawthorne, M.F.

    1995-01-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues

  1. Response of the oral mucosa to porphyrin mediated boron neutron capture therapy

    International Nuclear Information System (INIS)

    Morris, G.M.

    2003-01-01

    Pre-clinical studies are now in progress to develop boron neutron capture therapy (BNCT) modalities for the treatment of head and neck carcinomas. BNCT is a bimodal therapy which involves the administration of a boron-10 enriched compound, that accumulates preferentially in tumours, prior to irradiation with low energy neutrons. These neutrons are captured by boron-10 atoms to produce a highly localised radiation exposure. More recently, it has been demonstrated that various boronated porphyrins can target a variety of tumours. Of the porphyrins evaluated to date, copper tetracarboranylphenyl porphyrin (CuTCPH) is a strong candidate for potential clinical evaluation. It has extremely high specificity for a variety of tumour models. Therapeutic efficacy of CuTCPH mediated BNCT has been demonstrated in pre-clinical studies using the murine EMT-6 carcinoma model. In the present investigation the response of the oral mucosa to CuTCPH mediated boron neutron capture (BNC) irradiation was assessed using a standard rat model (ventral tongue). Single exposure irradiation was carried out on the thermal neutron beam at the Brookhaven Medical Research Reactor, at 3 days after the final injection of the boronated porphyrin. The impact of CuTCPH mediated BNC irradiation on oral mucosa at therapeutically effective exposure times, assessed using the ventral tongue model, was minimal. This was primarily due to the fact that blood boron levels (from CuTCPH) were very low at the time of irradiation. Analysis of the dose-effect data for CuTCPH gave a compound biological effectiveness (CBE) factor of 2.5. It can be concluded that, although, the CBE factor (calculated using blood boron concentrations) was relatively high, CuTCPH mediated BNC irradiation should not cause significant damage at clinically relevant radiation doses. This is because blood boron levels would be very low at the time of irradiation

  2. Magnetostriction of the polycrystalline Fe80Al20 alloy doped with boron

    International Nuclear Information System (INIS)

    Bormio-Nunes, Cristina; Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus; Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael

    2012-01-01

    Highlights: ► Fe 80 Al 20 polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. ► B stabilizes α-FeAl phase and a coexistence of α-FeAl + Fe 3 Al improves magnetostriction. ► Presence of Fe 2 B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe 80 Al 20 polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic α-FeAl and/or Fe 3 Al and Fe 2 B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of α-FeAl and a correspondent decrease of the Fe 3 Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe 2 B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe 80 Al 20 alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the α-FeAl and Fe 3 Al phases could be reached.

  3. GE11 Peptide as an Active Targeting Agent in Antitumor Therapy: A Minireview

    Directory of Open Access Journals (Sweden)

    Ida Genta

    2017-12-01

    Full Text Available A lot of solid tumors are characterized by uncontrolled signal transduction triggered by receptors related to cellular growth. The targeting of these cell receptors with antitumor drugs is essential to improve chemotherapy efficacy. This can be achieved by conjugation of an active targeting agent to the polymer portion of a colloidal drug delivery system loaded with an antitumor drug. The goal of this minireview is to report and discuss some recent results in epidermal growth factor receptor targeting by the GE11 peptide combined with colloidal drug delivery systems as smart carriers for antitumor drugs. The minireview chapters will focus on explaining and discussing: (i Epidermal growth factor receptor (EGFR structures and functions; (ii GE11 structure and biologic activity; (iii examples of GE11 conjugation and GE11-conjugated drug delivery systems. The rationale is to contribute in gathering information on the topic of active targeting to tumors. A case study is introduced, involving research on tumor cell targeting by the GE11 peptide combined with polymer nanoparticles.

  4. Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages

    Directory of Open Access Journals (Sweden)

    F.M.F. Abdel-Motagally

    2018-04-01

    Full Text Available Two field experiments were conducted to determine the effect of boron foliar application and water stress on yield of wheat plant grown in calcareous soil during 2013/2014 and 2014/2015 seasons. The highest mean values obtained against boron application time were potential contributor to total grains mass by improving the plant height (99.42 and 98.32 cm, spike length (11.86 and 11.72 cm, number of spikelets m−2 (332.65 and 324.35, grain yield plant−1 (21.56 and 20.26 g, 1000-grain weight (35.2 and 37.4 g and grain yield (1.87 and 1.85 ton fed.−1, which were recorded at normal irrigation level (100% from the amount of water consumption for wheat with boron spraying at booting stage (B1 in the first and second seasons, respectively. Furthermore, boron application significantly enhanced all studied growth traits under water stress levels (50% from the amount of water consumption for wheat compared to B-untreated plants. Boron spraying at booting stage enhances also plant pigments contents recording its highest mean values under normal water level (100% from the amount of water consumption for wheat. The reduction in stress markers (proline and H2O2 and the enhancement of plant pigments content under water stress levels (50% from the amount of water consumption for wheat by B spraying suggests an alleviating effect of boron foliar application to water stress in the test plant. This alleviating effect was more pronounced when B applied at booting stage. Therefore, booting stage was found to be the best time for boron application to get higher grains production and consequently, better economic returns of wheat. Keywords: Wheat, Growth stages, Boron application time, Water stress, Crop yield, Plant pigments, Proline, H2O2

  5. Boronated monoclonal antibody 225.28S for potential use in neutron capture therapy of malignant melanoma

    International Nuclear Information System (INIS)

    Tamat, S.R.; Moore, D.E.; Patwardhan, A.; Hersey, P.

    1989-01-01

    The concept of conjugating boron cluster compounds to monoclonal antibodies has been examined by several groups of research workers in boron neutron capture therapy (BNCT). The procedures reported to date for boronation of monoclonal antibodies resulted in either an inadequate level of boron incorporation, the precipitation of the conjugates, or a loss of immunological activity. The present report describes the conjugation of dicesium-mercapto-undecahydrododecaborate (Cs2B12H11SH) to 225.28S monoclonal antibody directed against high molecular weight melanoma-associated antigens (HMW-MAA), using poly-L-ornithine as a bridge to increase the carrying capacity of the antibody and to minimize change in the conformational structure of antibody. The method produces a boron content of 1,300 to 1,700 B atoms per molecule 225.28S while retaining the immunoreactivity. Characterization in terms of the homogeneity of the conjugation of the boron-monoclonal antibody conjugates has been studied by gel electrophoresis and ion-exchange HPLC

  6. LiB and its boron-deficient variants under pressure

    KAUST Repository

    Hermann, Andreas

    2012-10-15

    Results of computational investigations of the structural and electronic properties of the ground states of binary compounds LiB x with 0.67 ≤x≤1.00 under pressure are reported. Structure predictions based on evolutionary algorithms and particle swarm optimization reveal that with increasing pressure, stoichiometric 1:1-LiB undergoes a variety of phase transitions, is significantly stabilized with respect to the elements and takes up a diamondoid boron network at high pressures. The Zintl picture is very useful in understanding the evolution of structures with pressure. The experimentally seen finite range of stability for LiB x phases with 0.8≤x≤1.00 is modeled both by boron-deficient variants of the 1:1-LiB structure and lithium-enriched intercalation structures. We find that the finite stability range vanishes at pressures P≥40GPa, where stoichiometric compounds then become more stable. A metal-to-insulator transition for LiB is predicted at P = 70 GPa. © 2012 American Physical Society.

  7. LiB and its boron-deficient variants under pressure

    KAUST Repository

    Hermann, Andreas; Suarez-Alcubilla, Ainhoa; Gurtubay, Idoia G.; Yang, Li-Ming; Bergara, Aitor; Ashcroft, N. W.; Hoffmann, Roald

    2012-01-01

    Results of computational investigations of the structural and electronic properties of the ground states of binary compounds LiB x with 0.67 ≤x≤1.00 under pressure are reported. Structure predictions based on evolutionary algorithms and particle swarm optimization reveal that with increasing pressure, stoichiometric 1:1-LiB undergoes a variety of phase transitions, is significantly stabilized with respect to the elements and takes up a diamondoid boron network at high pressures. The Zintl picture is very useful in understanding the evolution of structures with pressure. The experimentally seen finite range of stability for LiB x phases with 0.8≤x≤1.00 is modeled both by boron-deficient variants of the 1:1-LiB structure and lithium-enriched intercalation structures. We find that the finite stability range vanishes at pressures P≥40GPa, where stoichiometric compounds then become more stable. A metal-to-insulator transition for LiB is predicted at P = 70 GPa. © 2012 American Physical Society.

  8. Preparation of new boron compounds with potential for application in 10B NCT: Derivatives of monocarbon carboranes

    International Nuclear Information System (INIS)

    Morris, J.H.; Khan, S.A.; Mair, F.; Peters, G.

    1992-01-01

    In order to extend the range and versatility of boron clusters appropriate to NCT the authors have studied routes to derivatives of the anions 1-carba-closo-dodecahydrododecaborate-1, [CB 11 H 12 ] - , (1), and its synthetic precursor, 7-carba-nido-tridecahydroundecaborate-1, [CB 10 H 13 ] - , (2). Substitution chemistry of closo-[CB 11 H 12 ] - and its derivatives had been examined previously primarily with respect to substituents at the C-atom. The different isomeric sites of boron substitution, which have been much less studied, offer potential scope for subtle modification of properties of the substituted species. They have sought to prepare thiol substituted derivatives analogous to the widely studied species [B 12 H 11 SH] 2- . The preliminary experiments to introduce the thiol substituent by routes analogous to those for the preparation of [B 12 H 11 SH] 2- or 1- and 2-[B 10 H 9 SH] 2- were unsuccessful. Therefore they considered routes involving prior substitution of either the precursor nido-[CB 10 H 13 ] - and its derivatives, or the monoboron species used for boron insertion

  9. 11B NMR study of calcium-hexaborides

    International Nuclear Information System (INIS)

    Mean, B.J.; Lee, K.H.; Kang, K.H.; Lee, Moohee; Rhee, J.S.; Cho, B.K.

    2005-01-01

    We have performed 11 B nuclear magnetic resonance (NMR) measurements to look for microscopic evidence of the ferromagnetic state in several CaB 6 single crystals. A number of 11 B NMR resonance peaks are observed with the frequency and intensity of those peaks distinctively changing depending on the angle between the crystalline axis and a magnetic field. Analyzing this behavior, we find that the electric field gradient tensor at the boron has its principal axis perpendicular to the six cubic faces with a quadrupole resonance frequency ν Q ∼600kHz. However, the satellite resonances are found to be made of two peaks. Detailed analysis of the four composite satellite peaks confirms that there are two different boron sites with slightly different ν Q 's. This suggests that the boron octahedron cages are locally distorted. However, this distortion is not directly related to ferromagnetism. Even though the magnetization data highlight the ferromagnetic hysteresis, 11 B NMR linewidth and shift data show no clear microscopic evidence of the ferromagnetic state in several different compositions of CaB 6 single crystals

  10. Biodistribution, toxicity and efficacy of a boronated porphyrin for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Miura, Michiko; Micca, P.; Fairchild, R.; Slatkin, D.; Gabel, D.

    1992-01-01

    Boron-containing porphyrins may be useful for boron neutron capture therapy (BNCT) in the treatment of brain tumors. Porphyrins have been shown to accumulate in tumor tissue and to be essentially excluded from normal brain. However, problems of toxicity may prevent some boron-containing porphyrins from being considered for BNCT. The authors have synthesized the boronated porphyrin 2,4-bis-vinyl-o-nidocarboranyl-deuteroporphyrin IX (VCDP). Preliminary studies in tumor-bearing mice showed considerable uptake of boron at a total dose of 150 μg/gbw with low mortality. They now report that a total dose to mice of ∼ 275 μg VCDP/gbw administered in multiple intraperitoneal (ip) injections can provide 40-50μg B per gram of tumor with acceptable toxicity. Toxicity experiments and a preliminary trial of BNCT in mice given such doses are also reported

  11. A New Boron Analysis Method

    Energy Technology Data Exchange (ETDEWEB)

    Weitman, J; Daaverhoeg, N; Farvolden, S

    1970-07-01

    In connection with fast neutron (n, {alpha}) cross section measurements a novel boron analysis method has been developed. The boron concentration is inferred from the mass spectrometrically determined number of helium atoms produced in the thermal and epithermal B-10 (n, {alpha}) reaction. The relation between helium amount and boron concentration is given, including corrections for self shielding effects and background levels. Direct and diffusion losses of helium are calculated and losses due to gettering, adsorption and HF-ionization in the release stage are discussed. A series of boron determinations is described and the results are compared with those obtained by other methods, showing excellent agreement. The lower limit of boron concentration which can be measured varies with type of sample. In e.g. steel, concentrations below 10-5 % boron in samples of 0.1-1 gram may be determined.

  12. Two-channel neutron boron meter

    International Nuclear Information System (INIS)

    Chen Yongqing; Yin Guowei; Chai Songshan; Deng Zhaoping; Zhou Bin

    1993-09-01

    The two-channel neutron boron meter is a continuous on-line measuring device to measure boron concentration of primary cooling liquid of reactors. The neutron-leakage-compensation method is taken in the measuring mechanism. In the primary measuring configuration, the mini-boron-water annulus and two-channel and central calibration loop are adopted. The calibration ring and constant-temperature of boron-water can be remotely controlled by secondary instruments. With the microcomputer data processing system the boron concentration is automatically measured and calibrated in on-line mode. The meter has many advantages such as high accuracy, fast response, multi-applications, high reliability and convenience

  13. Evaluating the complexation behavior and regeneration of boron selective glucaminium-based ionic liquids when used as extraction solvents

    International Nuclear Information System (INIS)

    Joshi, Manishkumar D.; Steyer, Daniel J.; Anderson, Jared L.

    2012-01-01

    Highlights: ► Glucaminium-based ILs exhibit high selectivity for boron species using DLLME. ► The concentration of glucaminium-based IL affects type of boron complex formed. ► Use of 0.1 M HCl allows for regeneration of the IL solvent following extraction. ► Selectivity of the glucaminium-based ILs for boron species in seawater is similar to Milli-Q water. - Abstract: Glucaminium-based ionic liquids are a new class of solvents capable of extracting boron-species from water with high efficiency. The complexation behavior of these ILs with borate was thoroughly studied using 11 B NMR. Two different complexes, namely, monochelate complex and bischelate complex, were observed. 11 B NMR was used extensively to determine the formation constants for monochelate and bischelate complexes. The IL concentration was observed to have a significant effect on the IL–borate complexes. Using an in situ dispersive liquid–liquid microextraction (in situ DLLME) method, the extraction efficiency for boron species was increased dramatically when lithium bis[(trifluoromethyl)sulfonyl]imide (LiNTf 2 ) was used as the metathesis salt in an aqueous solution containing 0.1 M sodium chloride. IL regeneration after extraction was achieved using 0.1 M hydrochloric acid. The extraction efficiency of boron species was consistent when the IL was employed after three regeneration cycles. The selectivity of the IL for boron species in synthetic seawater samples was similar to performing the same extraction from Milli-Q water samples.

  14. Lattice vibrations in α-boron

    International Nuclear Information System (INIS)

    Richter, W.

    1976-01-01

    α-rhombohedral boron is the simplest boron modification, with only 12 atoms per unit cell. The boron atoms are arranged in B 12 icosahedra, which are centered at the lattice points of a primitive rhombohedral lattice. The icosahedra are slightly deformed, as the five-fold symmetry of the ideal icosahedron is incompatible with any crystal structure. The lattice dynamics of α-boron are discussed in terms of the model developed by Weber and Thorpe. (Auth.)

  15. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  16. Boron-containing thioureas for neutron capture therapy

    International Nuclear Information System (INIS)

    Ketz, H.

    1993-01-01

    Melanin is produced in large amounts in malignant melanotic melanomas. Because thiourea compounds are covalently incorporated into melanin during its biosynthesis, the preparation of boronated thiourea-derivatives is of particular interest for the BNCT (Boron Neutron Capture Therapy). Accumulation of boron in tumors by means of boronated thiourea-derivatives may therefore provide levels of 10 B which are useful for BNCT. In BNCT the tumor containing the boron compound is irradiated with epithermal neutrons to generate He- and Li-nuclei from the 10 B which can then destroy the tumor cells. Because of the short ranges of these particles (approximately one cell diameter) the damage will be almost exclusively confined to the tumor leaving normal tissue unharmed. High accumulation of 2-mercapto-1-methylimidazole (methimazole) in melanotic melanomas has been described in the literature. Boronated derivatives of methimazole were therefore synthesized. Boron was in the form of a boronic acid, a nido-carbonate and a mercaptoundeca hydro-closo-dodecaborate (BSH). The synthesis of the boron cluster derivatives of methimazole (nido-carborate- and BSH-derivatives) with 9 resp. 12 boron atoms in the molecule were expected to achieve higher concentrations of boron in the tumor than in the case of the boronic acid compound with its single boron atom. (orig.) [de

  17. Against Drought Stress Effect of Antioxidant Enzymes of Boron

    Directory of Open Access Journals (Sweden)

    Mahmut Doğan

    2013-04-01

    Full Text Available In this study, soybean seeds (Glycine max. L., cv., “A3935 were grown under controlled conditions (25±2 C composed of different boron compounds. In the experiment, 5 groups were determined respectively as potassium tetraborate tetrahydrate (1 mg/1, ammonium tetraborate tetrahydrate (1 mg/1, sodium boron hydride (1 mg/1, lithium tetraborate tetrahydrate (100 mg/1, and sodium tetraborate decahydrate (100 mg/1. The doses used in this study were determined according to the results of a preliminary study. Soybean seeds were exposed to different amounts of drought stress based on time (control, 3, 6, 9, 12, 15, and 18 days. Activities of antioxidant enzymes superoxide dismutase (SOD: EC 1.15.1.1, glutathione reductase (GR: EC 1.6.4.2, ascorbate peroxidase (APX: EC 1.11.1.11 and catalase (CAT: EC 1.11.1.6 measured. According to the results stress+potassium tetraborate tetrahydrate environment has increased the amount of CAT, decreased the amount GR, APX and SOD. Potassium tetraborate 0.1 mg / l dose administration is the most appropriate critical value, and the most important indicator of drought CAT enzyme found to give the best results.

  18. Effect of boron incorporation on the structure and electrical properties of diamond-like carbon films deposited by femtosecond and nanosecond pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, A. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Bourgeois, O. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Sanchez-Lopez, J.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Rouzaud, J.-N. [Laboratoire de Geologie, UMR 8538 CNRS, Ecole Normale Superieure, 45 Rue d' Ulm, 75230 Paris Cedex 05 (France); Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Loir, A.-S. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Garden, J.-L. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Garrelie, F. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Donnet, C., E-mail: christophe.donnet@univ-st-etienne.f [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France)

    2009-12-31

    The influence of the incorporation of boron in diamond-like carbon (DLC) films on the microstructure of the coatings has been investigated. The boron-containing DLC films (a-C:B) have been deposited by pulsed laser deposition (PLD) at room temperature in high vacuum conditions, by ablating graphite and boron targets either with a femtosecond pulsed laser (800 nm, 150 fs, fs-DLC) or with a nanosecond pulsed laser (248 nm, 20 ns, ns-DLC). Alternative ablation of the graphite and boron targets has been carried out to deposit the a-C:B films. The film structure and composition have been highlighted by coupling Field Emission Scanning Electron Microscopy, Electron Energy Loss Spectroscopy and High Resolution Transmission Electron Microscopy. Using the B K-edge, EELS characterization reveals the boron effect on the carbon bonding. Moreover, the plasmon energy reveals a tendency of graphitization associated to the boron doping. Pure boron particles have been characterized by HRTEM and reveal that those particles are amorphous or crystallized. The nanostructures of the boron-doped ns-DLC and the boron-doped fs-DLC are thus compared. In particular, the incorporation of boron in the DLC matrix is highlighted, depending on the laser used for deposition. Electrical measurements show that some of these films have potentialities to be used in low temperature thermometry, considering their conductivity and temperature coefficient of resistance (TCR) estimated within the temperature range 160-300 K.

  19. Separation of boron isotopes by infrared laser

    International Nuclear Information System (INIS)

    Suzuki, Kazuya

    1995-01-01

    Vibrationally excited chemical reaction of boron tribromide (BBr 3 ) with oxygen (O 2 ) is utilized to separate 10 B and 11 B. Infrared absorption of 10 BBr 3 is at 11.68μ and that of 11 BBr 3 is at 12.18μ. The wavelengths of ammonia laser made in the laboratory were mainly 11.71μ, 12.08μ and 12.26μ. Irradiation was done by focussing the laser with ZnSe lens on the sample gas (mixture of 1.5 torr of natural BBr 3 and 4.5 torr of O 2 ) in the reaction cell. Depletions of 10 BBr 3 and 11 BBr 3 due to chemical reaction of BBr 3 with O 2 was measured with infrared spectrometer. The maximum separation factor β( 10 B/ 11 B) obtained was about 4.5 (author)

  20. Boron isotopic composition of tertiary borate deposits in the Puna Plateau of the Central Andes, NW Argentina

    International Nuclear Information System (INIS)

    Kasemann, Simone; Franz, Gerhard; Viramonte, Jose G.; Alonso, Ricardo N.

    1998-01-01

    Full text: The most important borate deposits in South America are concentrated in the Central Andes. The Neogene deposits are located in the Puna Plateau of N W Argentina. These continental deposits are stratiform in the tectonically deformed Tertiary rocks. The largest borate accumulations Tincalayu, Sijes and Loma Blanca are part of the Late Miocene Sijes Formation, composed by different evaporitic and clastic units. In the main borate units of each location different phases of borates dominate. In Tincalayu the mayor mineral is borax with minor amounts of kernite and other rare borate minerals (ameginite, rivadavite, etc.). The principal minerals in Loma Blanca are borax with minor ulexite and inyoite. In the two main units of Sijes hydroboracite and colemanite are the major minerals; inyoite and ulexite appear subordinately. The deposition of the borates is due to a strong evaporation in playa lakes, which were fed by boron bearing thermal fluids (Alonso and Viramonte 1990). From Loma Blanca we determined δ 11 B values of ulexite (- 6.3 %0), inyoite (-12.7 %0) and terrugite (-16.2 %0); and from Tincalayu the δ 11 B values of borax (-10.5 %0), tincal (-12.2 %0) kernite (-11.7 %0) and inderite (-15.4 %0). The borates of Sijes are hydroboracite (-16.8 %0 to -17.2 %0), ulexite (-22.4 %0) and inyoite (-28.5 %0 to -29.6 %0). In order to get information about the δ 11 B values and pH of a boron solution we analysed the thermal spring of Antuco. It has a δ 11 B of -12.5%0 at a pH of 7.9. The presently forming ulexite deposit has a δ 11 B of -22.4%0. Borates within one depositional unit show a decreasing δ 11 B value sequence from the Na-Borates to the Ca-Borates related to the boron coordination of the minerals (Oi et al. 1989). The difference in the δ 11 B values excludes the precipitation in equilibrium from solutions with constant pH. According to results from previous work on Neogene borates (Turkey, USA) we interpret the borate succession due to

  1. Considerations for boron neutron capture therapy studies

    International Nuclear Information System (INIS)

    Faria Gaspar, P. de.

    1994-01-01

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps

  2. Boron supplementation in broiler diets

    Directory of Open Access Journals (Sweden)

    EJ Fassani

    2004-12-01

    Full Text Available Boron supplementation in broiler feed is not a routine practice. However, some reports suggest a positive effect of boron on performance. This study assessed the effects of boron supplementation on broiler performance. Diets were based on maize and soybean meal, using boric acid P.A. as boron source. Six supplementation levels (0, 30, 60, 90, 120 and 150 ppm were evaluated using 1,440 one-day old males housed at a density of 30 chickens in each of 48 experimental plots of 3m². A completely randomized block design was used with 8 replicates. Feed intake, weight gain and feed conversion were assessed in the periods from 1 to 7 days, 1 to 21 days and 1 to 42 days of age, and viability was evaluated for the total 42-day rearing period. No performance variable was affected by boron supplementation (p>0.05 in the period from 1 to 7 days. The regression analysis indicated an ideal level of 37.4 ppm of boron for weight gain from 1 to 21 days (p0.05, although feed intake was reduced linearly with increased boron levels (p0.05. Ash and calcium percentages in the tibias of broilers and viability in the total rearing period were not affected by boron supplementation (p>0.05.

  3. Study the gas sensing properties of boron nitride nanosheets

    International Nuclear Information System (INIS)

    Sajjad, Muhammad; Feng, Peter

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized boron nitride nanosheets (BNNSs) on silicon substrate. • We analyzed gas sensing properties of BNNSs-based gas-sensor device. • CH 4 gas is used to measure gas-sensing properties of the device. • Quick response and recovery time of the device is recorded. • BNNSs showed excellent sensitivity to the working gas. - Abstract: In the present communication, we report on the synthesis of boron nitride nanosheets (BNNSs) and study of their gas sensing properties. BNNSs are synthesized by irradiating pyrolytic hexagonal boron nitride (h-BN) target using CO 2 laser pulses. High resolution transmission electron microscopic measurements (HRTEM) revealed 2-dientional honeycomb crystal lattice structure of BNNSs. HRTEM, electron diffraction, XRD and Raman scattering measurements clearly identified h-BN. Gas sensing properties of synthesized BNNSs were analyzed with prototype gas sensor using methane as working gas. A systematic response curve of the sensor is recorded in each cycle of gas “in” and “out”; suggesting excellent sensitivity and high performance of BNNSs-based gas-sensor

  4. Production of [11C]CO2 with gas target at low proton energies

    International Nuclear Information System (INIS)

    Sansaloni, Francesc; Lagares, Juan Ignacio; Llop, Jordi; Arce, Pedro; Díaz, Carlos; Pérez-Morales, José Manuel

    2013-01-01

    Nowadays the demand and the installation of self-shielded low-energy cyclotrons is growing, allowing the use of 11 C in many more centers. The aim of this study was the design of a new target and the evaluation of the production of 11 C as [ 11 C]CO 2 at low proton energies. The target was coupled to an IBA Cyclone-18/9 and the energy was decreased to 4–16 MeV. The newly designed target allowed the production of [ 11 C]CO 2 at different proton energies, and the results suggest that the cyclotron energy of Cyclone-18/9 is slightly higher than the nominal 18 MeV

  5. Shallow boron dopant on silicon An MD study

    International Nuclear Information System (INIS)

    Perez-Martin, A. Mari Carmen; Jimenez-Rodriguez, Jose J.; Jimenez-Saez, Jose Carlos

    2004-01-01

    Low energy boron bombardment of silicon has been simulated at room temperature by molecular dynamics (MD). Tersoff potential T3 was used in the simulation smoothly linked up with the universal potential. The boron-silicon (B-Si) interaction was simulated according to Tersoff potential for SiC but modified to account for the B-Si interaction. The algorithm can distinguish a B from a Si neighbour. Si-c, with (2 x 1) surface reconstruction, was bombarded with boron at 200 and 500 eV. These energies were initially chosen as good representative values of the low energy range. Reliable results require of a reasonable good statistic so that 1000-impact points were chosen uniformly distributed over a representative area of a 2 x 1 surface. The distribution of mean projected range for B is given. All kinds of point defect were looked for in a Si damaged target after bombardment. Energetically stable substitutional and interstitial configurations are presented and the relative appearances of the different types of interstitials, for both Si and B, are given. It is also determined the mean length of the distance to the first neighbours of defects

  6. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Boron isotopes at the catchment scale, a new potential tool to infer critical zone processes.

    Science.gov (United States)

    Gaillardet, J.; Noireaux, J.; Braun, J. J.; Riotte, J.; Louvat, P.; Bouchez, J.; Lemarchand, D.; Muddu, S.; Mohan Kumar, M.; Candaudap, F.

    2017-12-01

    Boron is a mid-mass element that has two isotopes, 10B and 11B. These isotopes are largely fractioned by a number of chemical, biological and physical processes. Boron as a great affinity for clays and is useful for life, making it a double tracer of critical zone processes. This study focuses on the Mule Hole Critical Zone Observatory in South India. This is part of the French Research Infrastructure OZCAR and has benefited from the fruitful Indo-French collaboration (Indo-French Cell for Water Sciences) for more that 15 years. Boron and its isotopes were measured in the different compartment of the CZ in Mule Hole, vegetation, atmosphere, throughfall, soil, soil water, river water and compared to the behavior of other elements. The well constrained hydrology in Mule Hole allowed us to calculate the main fluxes affecting boron in the Critical Zone and came to the first order conclusion that the recycling of boron by vegetation is by far the most important flux within the system, reaching 15-20 times the catchment outlet flux. From an isotopic point of view, the total range of variation is measured between -3 ‰ and 77‰, with a bedrock value at 10‰ in classical delta unit, making boron a well suited tracer for constraining CZ processes. The flux of boron most enriched in heavy boron is the throughfall, showing the importance of biological processes in controlling the boron isotopic composition of the stream. Boron in soils in depleted in the heavy isotope but is enriched in boron compared to the bedrock, a surprising situation that we interpret as the legacy of a previous stage of transient weathering. These results indicate a strong decoupling between the behaviors of boron at the surface of the CZ and at depth.

  8. Defect and dopant depth profiles in boron-implanted silicon studied with channeling and nuclear reaction analysis

    NARCIS (Netherlands)

    Vos, M.; Boerma, D.O.; Smulders, P.J.M.; Oosterhoff, S.

    1986-01-01

    Single crystals of silicon were implanted at RT with 1 MeV boron ions to a dose of 1 × 1015 ions/cm2. The depth profile of the boron was measured using the 2060-keV resonance of the 11B(α, n)14N nuclear reaction. The distribution of the lattice disorder as a function of depth was determined from

  9. Synthesis and characterization of boron carbon nitride films by radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.F.; Bello, I.; Lei, M.K.; Lee, C.S.; Lee, S.T. [City Univ. of Hong Kong, Kowloon (Hong Kong). Dept. of Physics and Materials Science; Li, K.Y. [Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Kowloon (Hong Kong)

    2000-06-01

    Boron carbon nitride (BCN) films were deposited on silicon substrates by radio frequency (r.f.) (13.56 MHz) magnetron sputtering from hexagonal boron nitride (h-BN) and graphite targets in an Ar-N{sub 2} gas mixture of a constant pressure of 1.0 Pa. During deposition, the substrates were maintained at a temperature of 400 C and negatively biased using a pulsed voltage with a frequency of 330 kHz. Different analysis techniques such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD) and scanning Auger electron microscopy (SAM) were used for characterization. In addition, the mechanical and tribological properties of the films were investigated by nano-indentation and micro-scratching. The carbon concentration in the films could be adjusted by the coverage area of a graphite sheet on the h-BN target, and decreased with increasing bias voltage. It was found that the ternary compound films within the B-C-N composition triangle possessed a less ordered structure. B--N, B--C and C--N chemical bonds were established in the films, and no phase separation of graphite and h-BN occurred. At zero bias voltage, amorphous BC{sub 2}N films with atomically smooth surface could be obtained, and the microfriction coefficient was 0.11 under a normal load of 1000 {mu}N. Hardness as determined by nano-indentation was usually in the range of 10-30 GPa, whereas the Young's modulus was within 100-200 GPa. (orig.)

  10. Cell cycle dependence of boron uptake in various boron compounds used for neutron capture therapy

    International Nuclear Information System (INIS)

    Yoshida, F.; Matsumura, A.; Shibata, Y.; Yamamoto, T.; Nose, T.; Okumura, M.

    2000-01-01

    In neutron capture therapy, it is important that the tumor take boron in selectively. Furthermore, it is ideal when the uptake is equal in each tumor cell. Some indirect proof of differences in boron uptake among neoplastic cell cycles has been documented. However, no investigation has yet measured boron uptake directly. Using flow cytometry, in the present study cells were sorted by G0/G1 phase and G2/M phase, and the boron concentration of each fraction was measured with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results were that BSH (sodiumborocaptate) and BPA (p-boronophenylalanine) had higher rates of boron uptake in the G2/M group than in the G0/G1 group. However, in BPA the difference was more prominent, which revealed a 2.2-3.3 times higher uptake of boron in the G2/M group than in the G0/G1 group. (author)

  11. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet.

    Science.gov (United States)

    Hakki, Sema S; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Kerimoglu, Ulku; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H

    2013-04-01

    An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Equations of state and melting curve of boron carbide in the high-pressure range of shock compression

    Energy Technology Data Exchange (ETDEWEB)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Shakhrai, D. V. [Russian Academy of Sciences, Institute for Problems in Chemical Physics (Russian Federation)

    2017-03-15

    We have constructed the equations of state for crystalline boron carbide B{sub 11}C (C–B–C) and its melt under high dynamic and static pressures. A kink on the shock adiabat for boron carbide has been revealed in the pressure range near 100 GPa, and the melting curve with negative curvature in the pressure range 0–120 GPa has been calculated. The results have been used for interpreting the kinks on the shock adiabat for boron carbide in the pressure range of 0–400 GPa.

  13. A Simulation Study for Radiation Treatment Planning Based on the Atomic Physics of the Proton-Boron Fusion Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunmi; Yoon, Do-Kun; Shin, Han-Back; Jung, Joo-Young; Kim, Moo-Sub; Kim, Kyeong-Hyeon; Jang, Hong-Seok; Suh, Tae Suk [the Catholic University of Korea, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this research is to demonstrate, based on a Monte Carlo simulation code, the procedure of radiation treatment planning for proton-boron fusion therapy (PBFT). A discrete proton beam (60 - 120 MeV) relevant to the Bragg peak was simulated using a Monte Carlo particle extended (MCNPX, Ver. 2.6.0, National Laboratory, Los Alamos NM, USA) simulation code. After computed tomography (CT) scanning of a virtual water phantom including air cavities, the acquired CT images were converted using the simulation source code. We set the boron uptake regions (BURs) in the simulated water phantom to achieve the proton-boron fusion reaction. Proton sources irradiated the BUR, in the phantom. The acquired dose maps were overlapped with the original CT image of the phantom to analyze the dose volume histogram (DVH). We successfully confirmed amplifications of the proton doses (average: 130%) at the target regions. From the DVH result for each simulation, we acquired a relatively accurate dose map for the treatment. A simulation was conducted to characterize the dose distribution and verify the feasibility of proton boron fusion therapy (PBFT). We observed a variation in proton range and developed a tumor targeting technique for treatment that was more accurate and powerful than both conventional proton therapy and boron-neutron capture therapy.

  14. Trichlorosilane and silicon tetrachloride sample preparation for determination of boron, phosphorus and arsenic microelements

    International Nuclear Information System (INIS)

    Stolyarova, I.V.; Orlova, V.A.

    1995-01-01

    The conditions of sample preparation ensuring virtually complete elimination of boron, phosphorus, and arsenic losses are elaborated. Analysis procedures are proposed that involve hydrolysis in an autoclave for exothermic reactions and/or in an open reaction reservoir on frozen twice-distilled water with complexing-agent and oxidant solutionsd applied layer-by-layer, with the possible subsequent atomic-emission, extraction-spectrophotometric, or extraction-colorimetric determination of boron, phosphorus, and arsenic. The procedures improve the accuracy and precision of the results and reduce the duration of chemical preparation due to the quantitative preconcentration of boron, phosphorus, and arsenic; they almost completely eliminate the possibility of the formation of volatile fluoride forms of these elements. 11 refs.; 3 tabs

  15. Room-temperature near-infrared electroluminescence from boron-diffused silicon pn junction diodes

    Directory of Open Access Journals (Sweden)

    Si eLi

    2015-02-01

    Full Text Available Silicon pn junction diodes with different doping concentrations were prepared by boron diffusion into Czochralski (CZ n-type silicon substrate. Their room-temperature near-infrared electroluminescence (EL was measured. In the EL spectra of the heavily boron doped diode, a luminescence peak at ~1.6 m (0.78 eV was observed besides the band-to-band line (~1.1eV under the condition of high current injection, while in that of the lightly boron doped diode only the band-to-band line was observed. The intensity of peak at 0.78 eV increases exponentially with current injection with no observable saturation at room temperature. Furthermore, no dislocations were found in the cross-sectional transmission electron microscopy image, and no dislocation-related luminescence was observed in the low-temperature photoluminescence spectra. We deduce the 0.78 eV emission originates from the irradiative recombination in the strain region of diodes caused by the diffusion of large number of boron atoms into silicon crystal lattice.

  16. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  17. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Hodapp, T.R.; Jackson, G.L.; Phillips, J.; Holtrop, K.L.; Peterson, P.L.; Winters, J.

    1992-01-01

    A system has been added to the DIII-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose f the boron film is to reduce the levels of impurity atoms in the DIII-D plasmas. Experiments following the application of the boron film in DIII-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime

  18. Investigation of boron extraction process with aid magnesium hydroxide from mother liquor of boron production

    International Nuclear Information System (INIS)

    Balapanova, B.S.; Zhajmina, R.E.; Serazetdinov, D.Z.

    1988-01-01

    Conditions of boron - magnesium concentrate preparation from mother liquor by coprecipitation of borate - ions by magnesium hydroxide are investigated. It is shown that boron - magnesium concentrate and products of its heat treatment at 100 - 500 deg C in water are dissolved partially, and in ammonium citrate - practically completely. Suppositions are made on the composition of the product prepared, on the the structure of its crystal lattice and the processes taking place in it during heat treatment. The conclusion is made on the perspectiveness of processing of mother liquor of boron industry for boron - magnesium concentrate

  19. Transferrin-loaded nido-carborane liposomes. Synthesis and intracellular targeting to solid tumors for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Nakamura, Hiroyuki; Miyajima, Yusuke; Kuwata, Yasuhiro; Maruyama, Kazuo; Masunaga, Shinichiro; Ono, Koji

    2006-01-01

    The boron ion cluster lipids, as a double-tailed boron lipid synthesized from heptadecanol, formed stable liposomes at 25% molar ratio toward DSPC with cholesterol. Transferrin was able to be introduced on the surface of boron liposomes (Tf-PEG-CL liposomes) by the coupling of transferrin to the PEG-CO 2 H moieties of PEG-CL liposomes. The biodistribution of Tf-PEG-CL liposomes showed that Tf-PEG-CL liposomes accumulated in tumor tissues and stayed there for a sufficiently long time to increase tumor:blood concentration ratio. A 10 B concentration of 22 ppm in tumor tissues was achieved by the injection of Tf-PEG-CL liposome at 7.2 mg/kg body weight 10 B in tumor-bearing mice. After neutron irradiation, the average survival rate of mice not treated with Tf-PEG-CL liposomes was 21 days, whereas that of the treated mice was 31 days. Longer survival rates were observed in the mice treated with Tf-PEG-CL liposomes; one of them even survived for 52 days after BNCT. (author)

  20. Substitution of yttrium for boron in the structure of YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Dwelk, H.; Herrmann, R.; Pruss, N.; Freude, D.; Pfeifer, H.

    1989-01-01

    The influence of boron on superconducting properties of Y 1-x B x Ba 2 Cu 3 O 7-δ with x = 0 to 0.4 is studied. The analysis of 11 B NMR spectra and measurements of electric conductivity as a function of temperature show that boron is not incorporated into the YBa 2 Cu 3 O 7-δ framework on yttrium positions. (author)

  1. Short-term coral bleaching is not recorded by skeletal boron isotopes.

    Science.gov (United States)

    Schoepf, Verena; McCulloch, Malcolm T; Warner, Mark E; Levas, Stephen J; Matsui, Yohei; Aschaffenburg, Matthew D; Grottoli, Andréa G

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  2. Enhanced EGFR Targeting Activity of Plasmonic Nanostructures with Engineered GE11 Peptide.

    Science.gov (United States)

    Biscaglia, Francesca; Rajendran, Senthilkumar; Conflitti, Paolo; Benna, Clara; Sommaggio, Roberta; Litti, Lucio; Mocellin, Simone; Bocchinfuso, Gianfranco; Rosato, Antonio; Palleschi, Antonio; Nitti, Donato; Gobbo, Marina; Meneghetti, Moreno

    2017-12-01

    Plasmonic nanostructures show important properties for biotechnological applications, but they have to be guided on the target for exploiting their potentialities. Antibodies are the natural molecules for targeting. However, their possible adverse immunogenic activity and their cost have suggested finding other valid substitutes. Small molecules like peptides can be an alternative source of targeting agents, even if, as single molecules, their binding affinity is usually not very good. GE11 is a small dodecapeptide with specific binding to the epidermal growth factor receptor (EGFR) and low immunogenicity. The present work shows that thousands of polyethylene glycol (PEG) chains modified with lysines and functionalized with GE11 on clusters of naked gold nanoparticles, obtained by laser ablation in water, achieves a better targeting activity than that recorded with nanoparticles decorated with the specific anti-EGFR antibody Cetuximab (C225). The insertion of the cationic spacer between the polymeric part of the ligand and the targeting peptide allows for a proper presentation of GE11 on the surface of the nanosystems. Surface enhanced resonance Raman scattering signals of the plasmonic gold nanoparticles are used for quantifying the targeting activity. Molecular dynamic calculations suggest that subtle differences in the exposition of the peptide on the PEG sea are important for the targeting activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation.

    Science.gov (United States)

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  4. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  5. Pulverization of boron element and proportions of boron carbide in boron; Broyage de bore element et dosage de carbure de bore dans le bore

    Energy Technology Data Exchange (ETDEWEB)

    Lang, F M; Finck, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 {mu}. Grain sizes smaller than 1{mu} are required for applying thin layers of such boron. (author) [French] Il est possible de pulveriser finement du bore element au moyen de mortier et pilon en carbure de bore fritte, le taux de carbure de bore introduit etant inferieur a 1 pour cent. Le bore element dont nous disposons est constitue de petits grains brun fonce, a aretes vives, de dimension moyenne superieure a 5 {mu}. L'application de ce bore en couches minces demande des grains de dimensions inferieures a 1 {mu}. (aute0008.

  6. Boron uptake measurements in a rat model for Boron Neutron Capture Therapy of lung tumours

    Energy Technology Data Exchange (ETDEWEB)

    Bortolussi, S., E-mail: silva.bortolussi@pv.infn.i [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Bakeine, J.G. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); Ballarini, F. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); Gadan, M.A. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Protti, N.; Stella, S. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Clerici, A.; Ferrari, C.; Cansolino, L.; Zonta, C.; Zonta, A. [Department of Surgery, University of Pavia, via Ferrata 27100 Pavia (Italy); Nano, R. [Department of Animal Biology, University of Pavia, via Ferrata 27100 Pavia (Italy); Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6, 27100 Pavia (Italy)

    2011-02-15

    Lung carcinoma is the leading cause of cancer mortality in the Western countries. Despite the introduction over the last few years of new therapeutic agents, survival from lung cancer has shown no discernible improvement in the last 20 years. For these reasons any efforts to find and validate new effective therapeutic procedures for lung cancer are very timely. The selective boron uptake in the tumour with respect to healthy tissues makes Boron Neutron Capture Therapy a potentially advantageous option in the treatment of tumours that affect whole vital organs, and that are surgically inoperable. To study the possibility of applying BNCT to the treatment of diffuse pulmonary tumours, an animal model for boron uptake measurements in lung metastases was developed. Both healthy and tumour-bearing rats were infused with Boronophenylalanine (BPA) and sacrificed at different time intervals after drug administration. The lungs were extracted, and prepared for boron analysis by neutron autoradiography and {alpha}-spectroscopy. The boron concentrations in tumour and normal lung were plotted as a function of the time elapsed after BPA administration. The concentration in tumour is almost constant within the error bars for all the time intervals of the experiment (1-8 h), while the curve in normal lung decreases after 4 h from BPA infusion. At 4 h, the ratio of boron concentration in tumour to boron concentration in healthy lung is higher than 3, and it stays above this level up to 8 h. Also the images of boron distribution in the samples, obtained by neutron autoradiography, show a selective absorption in the metastases.

  7. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Hodapp, T.R.; Jackson, G.L.; Phillips, J.; Holtrop, K.L.; Petersen, P.I.; Winter, J.

    1991-09-01

    A system has been added to the D3-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose of the boron film is to reduce the levels of impurity atoms in the D3-D plasmas. Experiments following the application of the boron film in D3-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime. 9 refs., 1 fig

  8. Hot flow behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; El-Wahabi, M.; Cabrera, J.M.

    2008-01-01

    This research work studies the effect of boron contents on the hot flow behavior of boron microalloyed steels. For this purpose, uniaxial hot-compression tests were carried out in a low carbon steel microalloyed with four different amounts of boron over a wide range of temperatures (950, 1000, 1050 and 1100 deg. C) and constant true strain rates (10 -3 , 10 -2 and 10 -1 s -1 ). Experimental results revealed that both peak stress and peak strain tend to decrease as boron content increases, which indicates that boron additions have a solid solution softening effect. Likewise, the flow curves show a delaying effect on the kinetics of dynamic recrystallization (DRX) when increasing boron content. Deformed microstructures show a finer austenitic grain size in the steel with higher boron content (grain refinement effect). Results are discussed in terms of boron segregation towards austenitic grain boundaries during plastic deformation, which increases the movement of dislocations, enhances the grain boundary cohesion and modificates the grain boundary structure

  9. Effects of boron on experimental dental caries activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.T.Y.; Lin, H.S.

    1974-01-01

    Drinking water supplemented with 1, 10, 30, 50, 100 or 283 ppM of boron or 10 or 25 ppM of fluoride individually or in combination was supplied to weanling rats which were fed a cariogenic diet. Results showed that B did not exert a cariostatic effect nor did it synergize the F in reducing dental caries activity. 11 references, 4 figures, 3 tables.

  10. Boron-based nanostructures: Synthesis, functionalization, and characterization

    Science.gov (United States)

    Bedasso, Eyrusalam Kifyalew

    Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any

  11. Termite Resistance of MDF Panels Treated with Various Boron Compounds

    Directory of Open Access Journals (Sweden)

    Sedat Ondaral

    2009-06-01

    Full Text Available In this study, the effects of various boron compounds on the termite resistance of MDF panels were evaluated. Either borax (BX, boric acid (BA, zinc borate (ZB, or sodium perborate tetrahydrate (SPT were added to urea-formaldehyde (UF resin at target contents of 1%, 1.5%, 2% and 2.5% based on dry fiber weight. The panels were then manufactured using 12% urea-formaldehyde resin and 1% NH4Cl. MDF samples from the panels were tested against the subterranean termites, Coptotermes formosanus Shiraki. Laboratory termite resistance tests showed that all samples containing boron compounds had greater resistance against termite attack compared to untreated MDF samples. At the second and third weeks of exposure, nearly 100% termite mortalities were recorded in all boron compound treated samples. The highest termite mortalities were determined in the samples with either BA or BX. Also, it was found that SPT showed notable performance on the termite mortality. As chemical loadings increased, termite mortalities increased, and at the same time the weight losses of the samples decreased.

  12. Boron steel. I Part. Preparation; Aceros al Boro Parte I. Preparacion

    Energy Technology Data Exchange (ETDEWEB)

    Jaraiz Franco, E; Esteban Hernandez, J A

    1960-07-01

    With the advent of the first nuclear reactors arise the need for control rods and shielding duties for some types of radiations. One of the materials used for this purpose has been the high boron steel. This paper describes the melting and casting procedures employed for the production, at laboratory scale, of steels with Boron content ranging from 1 to 4 per cent, as well as the metallographic and X-Ray techniques used for the identification of the present phases. The electrolytic technique employed for the isolation of the Fe{sub 2}B phase and its subsequent X-Ray identification has proved to be satisfactory. (Author) 11 refs.

  13. Study of a neutron producing target via the 7Li(p,n)7Be reaction near its energy threshold for BNCT (boron neutron capture therapy)

    International Nuclear Information System (INIS)

    Burlon, Alejandro; Kreiner, Andres J.; Debray, Mario E.; Stoliar, Pablo; Kesque, Jose M.; Naab, Fabian; Ozafran, Mabel J.; Schuff, Juan; Vazquez, Monica; Caraballo, Maria E.; Valda, Alejandro; Somacal, Hector; Davidson, Miguel; Davidson, Jorge

    2000-01-01

    In the framework of Accelerator Based BNCT (AB-BNCT) the 7 Li(p,n) 7 Be reaction near its energy threshold is one of the most promising. In this work a thick LiF target irradiated with a proton beam was studied as a neutron source. The 1.88-2.0 MeV proton beam was produced by the tandem accelerator TANDAR at CNEA's facilities in Buenos Aires. A water-filled phantom, containing a boron sample was irradiated with the resulting neutron beam. The boron neutron capture reaction produces a 0.478 MeV gamma ray in 94 % of the cases. The neutron yield was monitored by detecting this gamma ray using a germanium detector with an 'anti-Compton' shield. Moreover, the thermal neutron flux was evaluated at different depths inside the phantom using bare and Cd-covered gold foils. A maximum neutron thermal flux of 1.4 x 10 8 1/(cm 2 -s-mA) was obtained at 4.2 cm from the phantom surface. (author)

  14. The Boron Isotopic Composition of Elephant Dung: Inputs to the Global Boron Budget

    Science.gov (United States)

    Williams, L. B.; Hervig, R. L.

    2011-12-01

    A survey of boron in kerogen showed isotopically light δ11B values (0 to -50%) that are distinctly different from most mineral and natural water B reservoirs. Diagenesis releases this isotopically light B into pore fluids when hydrocarbons are generated, thus enriching oilfield brines in 10B. This observation suggests that borated biomolecules (BM) are primarily tetrahedral favoring 10B, whereas 11B is preferred in trigonal coordination. Plants, with optimal concentrations up to 100ppm, contribute more B than animal remains to sediment. Elephants are one of the largest herbivores on earth, consuming 200 - 250 kg of plant material/day and producing 50 kg of manure/day. They are inefficient at digestion, thus the manure contains >50% undigested plant material. Dung samples are therefore ideal for studying the δ11B of both the food input and digested output of a significant B supply to sedimentary systems. Horse and rabbit manure were studied for comparison to evaluate B isotope variations in the food supply and potential vital effects on the output. B-content and isotopic composition of dung plant material and digested fractions were measured in the solid state by secondary ion mass spectrometry. The digests were rinsed in 1.8% mannitol, a B-complexing agent, to remove surface adsorbed-B, then air dried and Au-coated for charge compensation. Results showed that the elephant diet contains 3-13 ppm B, with an average δ11B of -20 ± 0.8% (1σ), while rabbit food had 88 ppm B with a δ11B of -50 ± 1.3 %. The digested fraction of the elephant dung contains 4-10ppm B with average δ11B values of -12 ± 1.2%. In comparison, horse manure with 11-21 ppm B has a δ11B of -10.7 ± 0.5% and rabbit manure contains 2-3 ppm B with a δ11B of -8.8 ± 1%. Boron isotope compositions of these manures are indistinguishable (within error). Clearly plant material is a major contributor of isotopically light B to sediments. The herbivores studied fractionate their total B intake in

  15. Determination of boron in graphite, boron carbide and glass by ICP-MS, ICP-OES and conventional wet chemical methods

    International Nuclear Information System (INIS)

    Venkatesh, K.; Kamble, Granthali S.; Venkatesh, Manisha; Kumar, Sanjukta A.; Reddy, A.V.R.

    2014-01-01

    Boron is an important element of interest in nuclear reactor materials due to its high neutron absorption cross section (σ 0 =3837 barns for 10 B). In the present paper, R and D work and routinely used methods have been described for the analysis of case samples (1) Graphite where boron is present at trace levels, (2) Boron Carbide having boron concentration of about 80% and (3) Glass containing 4-6 % boron. (author)

  16. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  17. Boron removal from geothermal waters by electrocoagulation

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar; Yilmaz, M. Tolga; Paluluoglu, Cihan

    2008-01-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm 2 , but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%

  18. Removal of boron (B) from waste liquors.

    Science.gov (United States)

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  19. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide powder and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Total Carbon by Combustion and Gravimetry 7-17 Total Boron by Titrimetry 18-28 Isotopic Composition by Mass Spectrometry 29-38 Chloride and Fluoride Separation by Pyrohydrolysis 39-45 Chloride by Constant-Current Coulometry 46-54 Fluoride by Ion-Selective Electrode 55-63 Water by Constant-Voltage Coulometry 64-72 Impurities by Spectrochemical Analysis 73-81 Soluble Boron by Titrimetry 82-95 Soluble Carbon by a Manometric Measurement 96-105 Metallic Impurities by a Direct Reader Spectrometric Method 106-114

  20. Modeling of a cyclotron target for the production of 11C with Geant4.

    Science.gov (United States)

    Chiappiniello, Andrea; Zagni, Federico; Infantino, Angelo; Vichi, Sara; Cicoria, Gianfranco; Morigi, Maria Pia; Marengo, Mario

    2018-04-12

    In medical cyclotron facilities, 11C is produced according to the 14N(p,α)11C reaction and widely employed in studies of prostate and brain cancers by Positron Emission Tomography. It is known from literature [1] that the 11C-target assembly shows a reduction in efficiency during time, meaning a decrease of activity produced at the end of bombardment. This effect might depend on aspects still not completely known. Possible causes of the loss of performance of the 11C-target assembly were addressed by Monte Carlo simulations. Geant4 was used to model the 11C-target assembly of a GE PETtrace cyclotron. The physical and transport parameters to be used in the energy range of medical applications were extracted from literature data and 11C routine productions. The Monte Carlo assessment of 11C saturation yield was performed varying several parameters such as the proton energy and the angle of the target assembly with respect to the proton beam. The estimated 11C saturation yield is in agreement with IAEA data at the energy of interest, while is about the 35% greater than experimental value. A more comprehensive modeling of the target system, including thermodynamic effect, is required. The energy absorbed in the inner layer of the target chamber was up to 46.5 J/mm2 under typical irradiation conditions. This study shows that Geant4 is potentially a useful tool to design and optimize targetry for PET radionuclide productions. Tests to choose the Geant4 physics libraries should be performed before using this tool with different energies and materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Continued biological investigations of boron-rich oligomeric phosphate diesters (OPDs). Tumor-selective boron agents for BNCT

    International Nuclear Information System (INIS)

    Lee, Mark W.; Shelly, Kenneth; Kane, Robert R.; Hawthorne, M. Frederick

    2006-01-01

    Clinical success of Boron Neutron Capture Therapy will rely on the selective intracellular delivery of high concentrations of boron-10 to tumor tissue. In order for a boron agent to facilitate clinical success, the simultaneous needs of obtaining a high tumor dose, high tumor selectivity, and low systemic toxicity must be realized. Boron-rich oligomeric phosphate diesters (OPDs) are a class of highly water-soluble compounds containing up to 40% boron by weight. Previous work in our groups demonstrated that once placed in the cytoplasm of tumor cells, OPDs quickly accumulate within the cell nucleus. The objective of the current study was to determine the biodistribution of seven different free OPDs in BALB/c mice bearing EMT6 tumors. Fructose solutions containing between 1.4 and 6.4 micrograms of boron per gram of tissue were interveinously injected in mice seven to ten days after tumor implantation. At intervals during the study, animals were euthanized and samples of tumor, blood, liver, kidney, brain and skin were collected and analyzed for boron content using ICP-AES. Tumor boron concentrations of between 5 and 29 ppm were achieved and maintained over the 72-hour time course of each experiment. Several OPDs demonstrated high tumor selectivity with one oligomer exhibiting a tumor to blood ratio of 35:1. The apparent toxicity of each oligomer was assessed through animal behavior during the experiment and necropsy of each animal upon sacrifice. (author)

  2. Quality control in manufacture of lead boron polyethylene plate

    International Nuclear Information System (INIS)

    Wu Ying

    2008-01-01

    For the quality assurance management in the manufacture of lead boron polyethylene plate,target shall be defined and planning shall be conducted first; personnel shall be trained to improve the execution force; institutional system shall be continuously upgraded and environment protection shall be strengthened.Quality management has achieved excellent result, with qualification rate for contracts reaches 100%, to ensure successful production. (author)

  3. Axial channeling of boron ions into silicon

    International Nuclear Information System (INIS)

    La Ferla, A.; Galvagno, G.; Raineri, V.; Setola, R.; Rimini, E.; Carnera, A.; Gasparotto, A.

    1992-01-01

    Channeling boron implants were performed into (100) and (110) silicon substrates in the energy range 80-700 keV. The dose ranged between 3.5x10 11 and 1x10 15 atoms/cm 2 . The axial channeling concentration profiles of implanted B + were compared with that obtained for incidence along the random direction of the crystal and with that obtained by implantation in amorphous silicon. The electrical and chemical boron distributions were obtained by spreading resistance and secondary ion mass spectrometry measurements, respectively. The inelastic stopping power, S c , was extracted from the experimental maximum ranges for the [100] and [110] axis. The energy dependence of the electronic stopping power is given by S e = KE p with p [100] = 0.469±0.010 and p [110] = 0.554±0.004. Simulations obtained by the MARLOWE code, using the Oen-Robinson impact parameter dependent formula, for the electronic energy loss reproduce quite well the experimental depth profiles. (orig.)

  4. SHB1/HY1 Alleviates Excess Boron Stress by Increasing BOR4 Expression Level and Maintaining Boron Homeostasis in Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Qiang Lv

    2017-05-01

    Full Text Available Boron is an essential mineral nutrient for higher plant growth and development. However, excessive amounts of boron can be toxic. Here, we report on the characterization of an Arabidopsis mutant, shb1 (sensitive to high-level of boron 1, which exhibits hypersensitivity to excessive boron in roots. Positional cloning demonstrated that the shb1 mutant bears a point mutation in a gene encoding a heme oxygenase 1 (HO1 corresponding to the HY1 gene involved in photomorphogenesis. The transcription level of the SHB1/HY1 gene in roots is up-regulated under excessive boron stimulation. Either overexpressing SHB1/HY1 or applying the HO1 inducer hematin reduces boron accumulation in roots and confers high boron tolerance. Furthermore, carbon monoxide and bilirubin, catalytic products of HO1, partially rescue the boron toxicity-induced inhibition of primary root growth in shb1. Additionally, the mRNA level of BOR4, a boron efflux transporter, is reduced in shb1 roots with high levels of boron supplementation, and hematin cannot relieve the boron toxicity-induced root inhibition in bor4 mutants. Taken together, our study reveals that HO1 acts via its catalytic by-products to promote tolerance of excessive boron by up-regulating the transcription of the BOR4 gene and therefore promoting the exclusion of excessive boron in root cells.

  5. Dynamic Failure and Fragmentation of a Hot-Pressed Boron Carbide

    Science.gov (United States)

    Sano, Tomoko; Vargas-Gonzalez, Lionel; LaSalvia, Jerry; Hogan, James David

    2017-12-01

    This study investigates the failure and fragmentation of a hot-pressed boron carbide during high rate impact experiments. Four impact experiments are performed using a composite-backed target configuration at similar velocities, where two of the impact experiments resulted in complete target penetration and two resulted in partial penetration. This paper seeks to evaluate and understand the dynamic behavior of the ceramic that led to either the complete or partial penetration cases, focusing on: (1) surface and internal failure features of fragments using optical, scanning electron, and transmission electron microscopy, and (2) fragment size analysis using state-of-the-art particle-sizing technology that informs about the consequences of failure. Detailed characterization of the mechanical properties and the microstructure is also performed. Results indicate that transgranular fracture was the primary mode of failure in this boron carbide material, and no stress-induced amorphization features were observed. Analysis of the fragment sizes for the partial and completely penetrated experiments revealed a possible correlation between larger fragment sizes and impact performance. The results will add insight into designing improved advanced ceramics for impact protection applications.

  6. Boron rates for triticale and wheat crops

    Directory of Open Access Journals (Sweden)

    Corrêa Juliano Corulli

    2005-01-01

    Full Text Available No reports are registered on responses to boron fertilization nutrient deficiency and toxicity in triticale crops. The aim of this study was to evaluate triticale response to different rates of boron in comparison to wheat in an hapludox with initial boron level at 0.08 mg dm-3 4 4 factorial design trial completely randomized blocks design (n = 4. Boron rates were 0; 0.62; 1.24 and 1.86 mg dm-3; triticale cultivars were IAC 3, BR 4 and BR 53 and IAPAR 38 wheat crop was used for comparison. The wheat (IAPAR 38 crop presented the highest boron absorption level of all. Among triticale cultivars, the most responsive was IAC 53, presenting similar characteristics to wheat, followed by BR 4; these two crops are considered tolerant to higher boron rates in soil. Regarding to BR 53, no absorption effect was observed, and the cultivars was sensitive to boron toxicity. Absorption responses differed for each genotype. That makes it possible to choose and use the best-adapted plants to soils with different boron rates.

  7. Helium diffusion in irradiated boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.

    1981-03-01

    Boron carbide has been internationally adopted as the neutron absorber material in the control and safety rods of large fast breeder reactors. Its relatively large neutron capture cross section at high neutron energies provides sufficient reactivity worth with a minimum of core space. In addition, the commercial availability of boron carbide makes it attractive from a fabrication standpoint. Instrumented irradiation experiments in EBR-II have provided continuous helium release data on boron carbide at a variety of operating temperatures. Although some microstructural and compositional variations were examined in these experiments most of the boron carbide was prototypic of that used in the Fast Flux Test Facility. The density of the boron carbide pellets was approximately 92% of theoretical. The boron carbide pellets were approximately 1.0 cm in diameter and possessed average grain sizes that varied from 8 to 30 μm. Pellet centerline temperatures were continually measured during the irradiation experiments

  8. Viability study on using calcium carbonate for the boron adsorption process in waste waters

    International Nuclear Information System (INIS)

    Rodriguez Guerreiro, M. J.; Munoz Camacho, E.; Bernal Pita da Veiga, M. B.

    2009-01-01

    This study evaluates how viable it is to employ calcium carbonate for the boron adsorption process in waters that could be contaminated by this element. A residue form mussel shells-abundant in Galicia, northwestern Spain, was used. The data gathered from the experiments show that the performance of the boron adsorption within the sample is below 2%. Despite the inferior data obtained, the general aim was reached. An attempt was made to find solutions to the environmental problem caused by the residues mentioned above. (Author) 11 refs.

  9. Targeting the interleukin-11 receptor α in metastatic prostate cancer: A first-in-man study.

    Science.gov (United States)

    Pasqualini, Renata; Millikan, Randall E; Christianson, Dawn R; Cardó-Vila, Marina; Driessen, Wouter H P; Giordano, Ricardo J; Hajitou, Amin; Hoang, Anh G; Wen, Sijin; Barnhart, Kirstin F; Baze, Wallace B; Marcott, Valerie D; Hawke, David H; Do, Kim-Anh; Navone, Nora M; Efstathiou, Eleni; Troncoso, Patricia; Lobb, Roy R; Logothetis, Christopher J; Arap, Wadih

    2015-07-15

    Receptors in tumor blood vessels are attractive targets for ligand-directed drug discovery and development. The authors have worked systematically to map human endothelial receptors ("vascular zip codes") within tumors through direct peptide library selection in cancer patients. Previously, they selected a ligand-binding motif to the interleukin-11 receptor alpha (IL-11Rα) in the human vasculature. The authors generated a ligand-directed, peptidomimetic drug (bone metastasis-targeting peptidomimetic-11 [BMTP-11]) for IL-11Rα-based human tumor vascular targeting. Preclinical studies (efficacy/toxicity) included evaluating BMTP-11 in prostate cancer xenograft models, drug localization, targeted apoptotic effects, pharmacokinetic/pharmacodynamic analyses, and dose-range determination, including formal (good laboratory practice) toxicity across rodent and nonhuman primate species. The initial BMTP-11 clinical development also is reported based on a single-institution, open-label, first-in-class, first-in-man trial (National Clinical Trials number NCT00872157) in patients with metastatic, castrate-resistant prostate cancer. BMTP-11 was preclinically promising and, thus, was chosen for clinical development in patients. Limited numbers of patients who had castrate-resistant prostate cancer with osteoblastic bone metastases were enrolled into a phase 0 trial with biology-driven endpoints. The authors demonstrated biopsy-verified localization of BMTP-11 to tumors in the bone marrow and drug-induced apoptosis in all patients. Moreover, the maximum tolerated dose was identified on a weekly schedule (20-30 mg/m(2) ). Finally, a renal dose-limiting toxicity was determined, namely, dose-dependent, reversible nephrotoxicity with proteinuria and casts involving increased serum creatinine. These biologic endpoints establish BMTP-11 as a targeted drug candidate in metastatic, castrate-resistant prostate cancer. Within a larger discovery context, the current findings indicate that

  10. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar

    2007-01-01

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively

  11. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  12. The application of FEL-EXPERT system in the interpretation of boron compounds toxicity

    International Nuclear Information System (INIS)

    Strouf, O.; Marik, V.

    1990-01-01

    The effect of substructural features of boron compounds on their toxicity (LD 50 , mice, i.p.) was studied using the FEL-EXPERT system developed by the Czech Technical University of Prague. A set of 108 compounds containing one or two boron atoms in their molecule was arbitrarily divided into three classes: compounds with high toxicity (LD 50 50 50 ≥1000 mg/kg). The compounds were represented by 70 substructural fragments, 27 of them being ''central substructures'' containing boron atom(s). The inference net consisted of 118 nodes (74 of the Bayesian type), 362 production rules and 74 context links. The total classification correctness was 98%. As a case-study, the classification of p-tolylboronic acid (LD 50 =520 mg/kg) and 4-carboxyphenylboronic acid (LD 50 =3838 mg/kg) was discussed. 4 figs., 2 tabs., 11 refs

  13. Hydrogen-boron complexes in heavily boron-doped silicon treated with high concentration of hydrogen atoms

    International Nuclear Information System (INIS)

    Fukata, N.; Fukuda, S.; Sato, S.; Ishioka, K.; Kitajima, M.; Hishita, S.; Murakami, K.

    2006-01-01

    The formation of hydrogen (H)-related complexes was investigated in boron (B)-doped Si treated with high concentration of H. The isotope shifts of H-related Raman peaks by replacement of H to deuterium and 1 B to 11 B clearly showed the formation of the B-H complexes in which H directly bonds to B in Si. The results of the resistivity measurements suggested that the B acceptors are passivated via the formation of the B-H complexes, as well as the well-known passivation center in B-doped Si, namely, H-B passivation center

  14. The effect of carbon and boron on the accumulation of vacancy-oxygen complexes in silicon

    International Nuclear Information System (INIS)

    Akhmetov, V.D.; Bolotov, V.V.

    1980-01-01

    By means of IR-absorption measurements the dose dependencies of the concentrations of vacancy-oxygen complexes (VO), interstitial oxygen atoms (Osub(I)), substitutional carbon atoms (Csub(S)) and interstitial carbon-oxygen complexes (Csub(I)Osub(I)) in n- and p-type silicon irradiated with 1.1 MeV electrons have been investigated. The observed increase of the production rate of VO-complexes with the rise of carbon and boron atoms concentrations (these impurities act as sinks for silicon interstitial atoms) has been explained in terms of annihilation of the vacancies and interstitials on the oxygen atoms. The results obtained show that boron atoms are more effective sinks than carbon atoms for the interstitial silicon atoms. That seems to be connected not only with the higher probability of boron injection into interstitial position but also with the further capture of interstitial silicon atoms on the interstitial boron, i.e. with the interstitial cluster formation. (author)

  15. Raman spectroscopy of boron-doped single-layer graphene.

    Science.gov (United States)

    Kim, Yoong Ahm; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Endo, Morinobu; Fujimori, Toshihiko; Kaneko, Katsumi; Terrones, Mauricio; Behrends, Jan; Eckmann, Axel; Casiraghi, Cinzia; Novoselov, Kostya S; Saito, Riichiro; Dresselhaus, Mildred S

    2012-07-24

    The introduction of foreign atoms, such as nitrogen, into the hexagonal network of an sp(2)-hybridized carbon atom monolayer has been demonstrated and constitutes an effective tool for tailoring the intrinsic properties of graphene. Here, we report that boron atoms can be efficiently substituted for carbon in graphene. Single-layer graphene substitutionally doped with boron was prepared by the mechanical exfoliation of boron-doped graphite. X-ray photoelectron spectroscopy demonstrated that the amount of substitutional boron in graphite was ~0.22 atom %. Raman spectroscopy demonstrated that the boron atoms were spaced 4.76 nm apart in single-layer graphene. The 7-fold higher intensity of the D-band when compared to the G-band was explained by the elastically scattered photoexcited electrons by boron atoms before emitting a phonon. The frequency of the G-band in single-layer substitutionally boron-doped graphene was unchanged, which could be explained by the p-type boron doping (stiffening) counteracting the tensile strain effect of the larger carbon-boron bond length (softening). Boron-doped graphene appears to be a useful tool for engineering the physical and chemical properties of graphene.

  16. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  17. Numerical simulations to model laser-driven coil-capacitor targets for generation of kilo-Tesla magnetic fields

    Directory of Open Access Journals (Sweden)

    F. Schillaci

    2018-02-01

    Full Text Available A coil-capacitor target is modeled using FEM simulations and analytical calculations, which allow to explain the time evolution of such complex target during magnetic field production driven by the flow of an extremely high current generated through the interaction with a high power laser. The numerical model includes a detailed study of the magnetic field produced by the coil-capacitor target, both in the static and transient cases, as well as magnetic force and Joule heating. The model is validated by experimental data reported in literature and can be of interest for several applications. As an example, the combination of two synchronized nanosecond lasers with the purpose of producing a plasma responsible of the proton-boron (p+ + 11B → 8.5 MeV + 3α fusion reaction, and energizing two multi-turn coils with the main purpose of confining such a plasma could enhance the reaction rate. The preliminary conceptual design of a magnetic mirror configuration to be used for confining protons and boron ions up to a few MeV/u in a region of less than 1 mm2 is briefly reported.

  18. Numerical simulations to model laser-driven coil-capacitor targets for generation of kilo-Tesla magnetic fields

    Science.gov (United States)

    Schillaci, F.; De Marco, M.; Giuffrida, L.; Fujioka, S.; Zhang, Z.; Korn, G.; Margarone, D.

    2018-02-01

    A coil-capacitor target is modeled using FEM simulations and analytical calculations, which allow to explain the time evolution of such complex target during magnetic field production driven by the flow of an extremely high current generated through the interaction with a high power laser. The numerical model includes a detailed study of the magnetic field produced by the coil-capacitor target, both in the static and transient cases, as well as magnetic force and Joule heating. The model is validated by experimental data reported in literature and can be of interest for several applications. As an example, the combination of two synchronized nanosecond lasers with the purpose of producing a plasma responsible of the proton-boron (p+ + 11B → 8.5 MeV + 3α) fusion reaction, and energizing two multi-turn coils with the main purpose of confining such a plasma could enhance the reaction rate. The preliminary conceptual design of a magnetic mirror configuration to be used for confining protons and boron ions up to a few MeV/u in a region of less than 1 mm2 is briefly reported.

  19. Genome-wide identification of Bcl11b gene targets reveals role in brain-derived neurotrophic factor signaling.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available B-cell leukemia/lymphoma 11B (Bcl11b is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq in combination with genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. ChIP-seq analysis demonstrated that Bcl11b bound a mixture of coding and non-coding sequences that were within 10 kb of the transcription start site of an annotated gene. Integrating all ChIP-seq hits with the microarray expression data, 248 direct targets of Bcl11b were identified. Functional analysis on the integrated gene target list identified several zinc-finger encoding genes as Bcl11b targets, and further revealed a significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. Analysis of ChIP-seq binding regions revealed significant consensus DNA binding motifs for Bcl11b. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders. Specific targeting of the Bcl11b-DNA interaction could represent a novel therapeutic approach to lowering BDNF signaling specifically in striatal cells.

  20. Boronization on NSTX using Deuterated Trimethylboron

    International Nuclear Information System (INIS)

    Blanchard, W.R.; Gernhardt, R.C.; Kugel, H.W.; LaMarche, P.H.

    2002-01-01

    Boronization on the National Spherical Torus Experiment (NSTX) has proved to be quite beneficial with increases in confinement and density, and decreases in impurities observed in the plasma. The boron has been applied to the interior surfaces of NSTX, about every 2 to 3 weeks of plasma operation, by producing a glow discharge in the vacuum vessel using deuterated trimethylboron (TMB) in a 10% mixture with helium. Special NSTX requirements restricted the selection of the candidate boronization method to the use of deuterated boron compounds. Deuterated TMB met these requirements, but is a hazardous gas and special care in the execution of the boronization process is required. This paper describes the existing GDC, Gas Injection, and Torus Vacuum Pumping System hardware used for this process, the glow discharge process, and the automated control system that allows for remote operation to maximize both the safety and efficacy of applying the boron coating. The administrative requirements and the detailed procedure for the setup, operation and shutdown of the process are also described

  1. Deuterated-decaborane using boronization on JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Yagyu, Jun-ichi; Arai, Takashi; Kaminaga, Atsushi; Miyata, Katsuyuki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Arai, Masaru [Kaihatsu Denki Co., Ltd., Tokyo (Japan)

    2001-03-01

    In JT-60U, boronization using hydride-decaborane (B{sub 10}H{sub 14}) vaporization has been conducted for the first wall conditioning. Compared to other discharge cleaning (DC), boronization is claimed to be efficient in reduction of oxygen impurities and hydrogen recycling in plasma. However, there are some problems in reduction of hydrogen included in boron film and stabilization of DC glow discharge during the boronization. To solve these problems, a new boronization method using deuterated-decaborane (B{sub 10}D{sub 14}) was adopted instead of the conventional hydride-decaborane. As a result, hydrogen content in the boron film decreased clearly and discharge conditioning shots, for decreasing hydrogen content in plasmas, after the boronization were reduced to 1/10 in comparison to the conventional process. Furthermore, DC glow discharge became stable, with only helium carrier gas, and it was possible to save 30 hours in maximum of the time necessary to boronization. It is shown that the boronization using deuterated-decaborane is very efficient and effective method for the first wall conditioning. (author)

  2. Synthesis and characterizaton of some new coordination compounds of boron with mixed azines

    Directory of Open Access Journals (Sweden)

    MANISH GODARA

    2007-04-01

    Full Text Available Some new boron complexes have been synthesized by the reaction of triisopropohxyborane with the mixed azines, prepared by the condensation of salicylaldehyde and hydrazine with aldehydes/ketones in a 1:1:1 mole ratio to give a new series of (OPri2B(NO type of complexes. Their structures were confirmed on the basis of elemental analyses, ultraviolet, infrared, 1H-NMR and 11B-NMR spectral studies. The ligands and their boron complexes were also screened for their antifungal activity. Several of these complexes were found to be quite active in this respect.

  3. Technology of boron-containing polyphosphate fertilizer 'Phosphobor'

    International Nuclear Information System (INIS)

    Aldabergenov, M.K.; Balakaeva, T.G.

    1995-01-01

    A technology is developed for producing 'Phosphobor' fertilizer based on the rock phosphate weal (17-18% P 2 O 5 ) with additions of boron-magnesium compound. Boron is part of polyphosphate fertilizer in the form of polymeric compounds of phosphorus and boron. Phosphorus and boron copolymers -boratophosphates - are easily formed in the process of polyphosphate fertilizers production, since borates undergo a mutual polycondensation reaction with phosphates. 8 refs., 1 fig

  4. The development and preliminary testing of new boronated agents for BNCT based on PET derived data

    International Nuclear Information System (INIS)

    Nichols, T.; Kabalka, G.; Kahn, M.; Das, B.; Das, S.; Bao, W.; Miller, L.

    2000-01-01

    Positron emission tomography (PET) has been utilized at the University of Tennessee for evaluating a variety of tumors including glioblastoma multiforme (GBM) and metastatic malignant melanoma (MM). Studies have been carried out utilizing fluorine-18 labeled p-boronophenylalanine ( 18 F-BPA) and other unnatural amino acids. A comparison of PET studies obtained using 18 F-BPA and a carbon-11 labeled cyclobutane-based amino acid ( 11 C-ACBC) revealed that 11 C-ACBC localized effectively in GBM tumors. Based on these results, we have prepared a series of boronated, aminocyclobutanecarboxylic acids. Preliminary uptake and cell toxicity studies have been carried out and show that many of the agents are not toxic. In one instance, a biodistribution study carried out using nude mice implanted with a human glioblastoma tumor, the tumor to normal tissue uptake of boron exceeds that observed for BPA. (author)

  5. Radio response of human lymphocytes pretreated with boron and gadoliniums assessed by the, comet assay

    International Nuclear Information System (INIS)

    Kim, J. K.; Park, T. W.; Cebulska-Wasiewska, A.; Nili, M.

    2009-01-01

    Boron and gadolinium are among the nuclides that hold a unique property of being a neutron capture therapy agent. Neutron beams have often a considerable portion of gamma rays with fast neutrons. Gamma rays, as beam contaminants, can cause considerable damage to normal tissues even if such tissues do contain high boron concentrations. Materials and Methods: The modification of radio response in human lymphocytes pretreated with boron or gadolinium compound was studied by assessing the DNA damage using single cell gel electrophoresis, the comet assay. The lymphocytes from the human peripheral blood were irradiated with 0, 1, 2 and 4 Gy of gamma rays from a 60 Co isotopic source with or without pretreatment of boron or gadolinium compound for 10 minutes at 4 d egree C . Post-irradiation procedures included slide preparation, cell-lysing, unwinding and electrophoresis, neutralization, staining, and analytic steps, gel electrophoresis. Results: The results indicate that pretreatment with boron compound (50 n M or 250 n M of 10 B) is effective in reducing the radiosensitivity of the lymphocyte DNA. Conversely, pretreatment with gadolinium compound (50 n M) led to a dose-dependent increase in the radiosensitivity, most prominently with a dose of 4 Gy (P<0.001). Furthermore, when the lymphocytes were pretreated with a Combined mixture (1:1) of boron (250 n M) and gadolinium (50 n M) compounds, the reduced radiosensitivity was also observed.

  6. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H J; Nesper, R [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  7. Hyaluronic acid as a potential boron carrier for BNCT: Preliminary evaluation

    International Nuclear Information System (INIS)

    Zaboronok, A.; Yamamoto, T.; Nakai, K.; Yoshida, F.; Uspenskii, S.; Selyanin, M.; Zelenetskii, A.; Matsumura, Akira

    2015-01-01

    Hyaluronic acid (HA), a nonimmunogenic, biocompatible polymer found in different biological tissues, has the potential to attach to CD44 receptors on the surface of certain cancer cells, where the receptor is overexpressed compared with normal cells. Boron–hyaluronic acid (BHA) was tested for its feasibility as a potential agent for BNCT. BHA with low-viscosity 30 kDa HA could be administered by intravenous injection. The compound showed a certain degree of cytotoxicity and accumulation in C6 rat glioma cells in vitro. Instability of the chelate bonds between boron and HA and/or insufficient specificity of CD44 receptors on C6 cells to BHA could account for the insufficient in vitro accumulation. To ensure the future eligibility of BHA for BNCT experiments, using alternative tumor cell lines and chemically securing the chelate bonds or synthesizing BHA with boron covalently attached to HA might be required. - Highlights: • Hyaluronic acid (HA) is a nonimmunogenic, biocompatible polymer. • Boron–HA (BHA) acid can contain a large number of boron atoms for BNCT. • Active targeting can be realized with CD44 and other HA receptors on tumor cells. • BHA showed a certain degree of toxicity against C6 tumor cells and V79 fibroblasts. • BHA was injected into rats via the tail vein, boron was detected in tumors in vivo.

  8. Studies related to antibody-mediated boron delivery for BNCT

    International Nuclear Information System (INIS)

    Hawthorne, M.F.; Varadarajan, A.; Paxton, R.J.; Beatty, B.G.; Curtis, F.L.

    1992-01-01

    Of the many methods of selective boron delivery to tumor presently under consideration the use of boron-labeled tumor-targeted monoclonal antibodies (Mabs) and their immunoreactive fragments appears to offer the most general, but complex, approach. Assuming that tumor cells generally carry 10 6 characteristic antigenic sites of any one type and that there are approximately 10 9 cells per gram of tumor, one calculates that about 600 10 B atoms must be attached to each individual Mab molecule (if all antigenic sites are complexed) for each 10 ppm of 10 B supplied to tumor. Rather than randomly attack IgG Mab molecules with a large number of relatively small boron-containing conjugation reagent molecules the authors have chosen to assemble a series of discrete, precisely synthesized oligomeric reagents ('trailers') each of which contains a fixed number of B-atoms up to approximately 200. These oligomeric reagents would carry a radioactive or fluorescent group for analytical purposes attached to a terminal-NH 2 group of their chain and the remaining -COOH terminus would be free for conjugation with the lysine var-epsilon-NH 2 groups of Mab protein. Two types of oligomeric trailer reagents are envisioned; hydrophilic peptides and polyamides

  9. Fine-tuning the nucleophilic reactivities of boron ate complexes derived from aryl and heteroaryl boronic esters.

    Science.gov (United States)

    Berionni, Guillaume; Leonov, Artem I; Mayer, Peter; Ofial, Armin R; Mayr, Herbert

    2015-02-23

    Boron ate complexes derived from thienyl and furyl boronic esters and aryllithium compounds have been isolated and characterized by X-ray crystallography. Products and mechanisms of their reactions with carbenium and iminium ions have been analyzed. Kinetics of these reactions were monitored by UV/Vis spectroscopy, and the influence of the aryl substituents, the diol ligands (pinacol, ethylene glycol, neopentyl glycol, catechol), and the counterions on the nucleophilic reactivity of the boron ate complexes were examined. A Hammett correlation confirmed the polar nature of their reactions with benzhydrylium ions, and the correlation lg k(20 °C)=sN (E+N) was employed to determine the nucleophilicities of the boron ate complexes and to compare them with those of other borates and boronates. The neopentyl and ethylene glycol derivatives were found to be 10(4) times more reactive than the pinacol and catechol derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structural models of increasing complexity for icosahedral boron carbide with compositions throughout the single-phase region from first principles

    Science.gov (United States)

    Ektarawong, A.; Simak, S. I.; Alling, B.

    2018-05-01

    We perform first-principles calculations to investigate the phase stability of boron carbide, concentrating on the recently proposed alternative structural models composed not only of the regularly studied B11Cp (CBC) and B12(CBC), but also of B12(CBCB) and B12( B4 ). We find that a combination of the four structural motifs can result in low-energy electron precise configurations of boron carbide. Among several considered configurations within the composition range of B10.5C and B4C , we identify in addition to the regularly studied B11Cp (CBC) at the composition of B4C two low-energy configurations, resulting in a new view of the B-C convex hull. Those are [B12 (CBC)]0.67[B12(B4)] 0.33 and [B12 (CBC)]0.67[ B12 (CBCB)]0.33, corresponding to compositions of B10.5C and B6.67C , respectively. As a consequence, B12(CBC) at the composition of B6.5C , previously suggested in the literature as a stable configuration of boron carbide, is no longer part of the B -C convex hull. By inspecting the electronic density of states as well as the elastic moduli, we find that the alternative models of boron carbide can provide a reasonably good description for electronic and elastic properties of the material in comparison with the experiments, highlighting the importance of considering B12(CBCB) and B12( B4 ), together with the previously proposed B11Cp (CBC) and B12(CBC), as the crucial ingredients for modeling boron carbide with compositions throughout the single-phase region.

  11. Nothing Boring About Boron

    Science.gov (United States)

    Pizzorno, Lara

    2015-01-01

    The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and as recent research suggests, possibly for the evolution of life on Earth. As the current article shows, boron has been proven to be an important trace mineral because it (1) is essential for the growth and maintenance of bone; (2) greatly improves wound healing; (3) beneficially impacts the body’s use of estrogen, testosterone, and vitamin D; (4) boosts magnesium absorption; (5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α); (6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase; (7) protects against pesticide-induced oxidative stress and heavy-metal toxicity; (8) improves the brains electrical activity, cognitive performance, and short-term memory for elders; (9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD+); (10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin’s lymphoma; and (11) may help ameliorate the adverse effects of traditional chemotherapeutic agents. In none of the numerous studies conducted to date, however, do boron’s beneficial effects appear at intakes > 3 mg/d. No estimated average requirements (EARs) or dietary reference intakes (DRIs) have been set for boron—only an upper intake level (UL) of 20 mg/d for individuals aged ≥ 18 y. The absence of studies showing harm in conjunction with the substantial number of articles showing benefits support the consideration of boron supplementation of 3 mg/d for any individual who is consuming a diet lacking in fruits and vegetables or who is at risk for or has osteopenia; osteoporosis

  12. Boronization in TEXTOR

    International Nuclear Information System (INIS)

    Winter, J.; Esser, H.G.; Koenen, L.; Reimer, H.; Seggern, J. v.; Schlueter, J.; Waelbroeck, F.; Wienhold, P.; Veprek, S.

    1989-01-01

    The liner and limiters of TEXTOR have been coated in situ with a boron containing carbon film using a RG discharge in a throughflow of 0.8 He + 0.1 B 2 H 6 + 0.1 CH 4 . The average film thickness was 30-50 nm, the ratio of boron and carbon in the layer was about 1:1 according to Auger Electron Spectroscopy. Subsequent tokamak discharges are characterized by a small fraction of radiated power ( eff lower than 1.2 are derived from conductivity measurements. The most prominent change in the impurity concentration compared to good conditions in a carbonized surrounding is measured for oxygen. The value OVI/anti n e of the OVI intensity normalized to the averaged plasma density anti n e decreases by more than a factor of four. The decrease in the oxygen content manifests itself also as a reduction of the CO and CO 2 partial pressures measured during and after the discharge with a sniffer probe. The carbon levels are reduced by a factor of about two as measured by the normalized intensity CII/anti n e of the CII line and via the ratio of the C fluxes and deuterium fluxed measured at the limiter (CI/D α ). The wall shows a pronounced sorption of hydrogen from the plasma, easing the density control and the establishment of low recycling conditions. The beneficial conditions did not show a significant deterioration during more than 200 discharges, including numerous shots at ICRH power levels >2 MW. (orig.)

  13. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P.

    2015-12-17

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  14. Magnetostriction of the polycrystalline Fe{sub 80}Al{sub 20} alloy doped with boron

    Energy Technology Data Exchange (ETDEWEB)

    Bormio-Nunes, Cristina, E-mail: cristina@demar.eel.usp.br [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael [Institut fuer Festkoerperphysik, TU Dresden, D-01062 Dresden (Germany)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer Fe{sub 80}Al{sub 20} polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. Black-Right-Pointing-Pointer B stabilizes {alpha}-FeAl phase and a coexistence of {alpha}-FeAl + Fe{sub 3}Al improves magnetostriction. Black-Right-Pointing-Pointer Presence of Fe{sub 2}B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe{sub 80}Al{sub 20} polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic {alpha}-FeAl and/or Fe{sub 3}Al and Fe{sub 2}B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of {alpha}-FeAl and a correspondent decrease of the Fe{sub 3}Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe{sub 2}B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe{sub 80}Al{sub 20} alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the {alpha}-FeAl and Fe{sub 3}Al phases could be reached.

  15. Investigation of tautomeric transformations of adducts of 7,8-dicarba-nido-undecaborana(11) with derivatives of pyridine by 11B NMR spectroscopy method

    International Nuclear Information System (INIS)

    Volkov, O.V.; Il'inchik, E.A.; Volkov, V.V.

    1999-01-01

    Tautomeric transformations are investigated in solutions of o-carborane(12) derivatives 7,8-C 2 B 9 H 11 ·Py(X), where Py(X)=4-picoline (4-CH 3 -C 5 H 4 N), 3-picoline (3-CH 3 -C 5 H 4 N), 4-stilbazol (4-C 6 H 5 -C 2 H 2 -C 5 H 4 N), 3-bromopyridine (3-Br-C 5 H 4 N) and 7,8-C 2 B 9 H 10 I·C 5 H 5 N. Uncovered tautomeric transformations are bound with migration of bridge hydrogen of C 2 B 9 H 11 cluster assisting in structure of these compounds. Signal of boron nuclei in 11 B NMR spectra is observed in the region of high field of spectrum if the nearest two atoms of boron are bounded by bridge hydrogen additionally. That permits to fix happening dynamic structural transformations of adducts investigated. The dependence of tautomeric equilibrium on nature of substituents introduced in heterocyclic ligand and carborane cluster. Increase of electron-acceptor properties of substituent induces displacement of equilibrium in the direction of tautomer bridge hydrogen in which is removed from boron atom bounded with substituent [ru

  16. Tribo-mechanical and electrical properties of boron-containing coatings

    Science.gov (United States)

    Qian, Jincheng

    the nanoscale. Their tribo-mechanical, corrosion, and electrical properties are studied in relation to the composition and microstructure, aiming at enhancing their performance for multi-functional protective coating applications via microstructural design. First, B1-xCx (0 < x < 1) films with tailored tribo-mechanical properties were deposited by magnetron sputtering using one graphite and two boron targets. The hardness of the B1-xC x films was found to reach 25 GPa both for boron-rich and carbon-rich films, and the friction coefficient and wear rate can be adjusted from 0.66 to 0.13 and from 6.4x10-5 mm3/Nm to 1.3x10 -7 mm3/Nm, respectively, by changing the carbon content from 19 to 76 at.%. The hardness variation is closely related to the microstructure, and the low friction and wear rate of the B0.24C0.76 film are due to the high portion of an amorphous carbon phase. Moreover, application of the B0.81C0.19 film improves the corrosion resistance of the M2 steel substrate significantly, indicated by the decrease of the corrosion current by almost four orders of magnitude. Based on the optimization of the B1-xCx films, nanostructured Ti-B-C films with different compositions were deposited by adding titanium by simultaneously sputtering a titanium diboride target. We found that the film microstructure features TiB2 nanocrystallites embedded in an amorphous boron carbide matrix. The film hardness varies from 33 to 42 GPa with different titanium contents, which is related to the changes in microstructure, namely, the size and concentration of the TiB2 nanocrystallites. The friction coefficient and wear rate are in the ranges of 0.37-0.73 and of 3.3x10-6-5.7x10-5 mm3/Nm, respectively, which are affected by the mechanical properties and the surface chemical states of the films. By applying the Ti-B-C films, the corrosion resistance of the M2 steel substrate is significantly enhanced as documented by a reduction of the corrosion current density by two orders of magnitude

  17. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  18. Bismuth-boron multiple bonding in BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, RI (United States)

    2017-08-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}, containing triple and double B-Bi bonds are presented. The BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -} clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB{sub 2}O{sup -} ([Bi≡B-B≡O]{sup -}) and Bi{sub 2}B{sup -} ([Bi=B=Bi]{sup -}), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Boron-Doped Carbon Nano-/Microballs from Orthoboric Acid-Starch: Preparation, Characterization, and Lithium Ion Storage Properties

    Directory of Open Access Journals (Sweden)

    Xinhua Lu

    2018-01-01

    Full Text Available A boron-doped carbon nano-/microballs (BC was successfully obtained via a two-step procedure including hydrothermal reaction (180°C and carbonization (800°C with cheap starch and H3BO3 as the carbon and boron source. As a new kind of boron-doped carbon, BC contained 2.03 at% B-content and presented the morphology as almost perfect nano-/microballs with different sizes ranging from 500 nm to 5 μm. Besides that, due to the electron deficient boron, BC was explored as anode material and presented good lithium storage performance. At a current density of 0.2 C, the first reversible specific discharge capacity of BC electrode reached as high as 964.2 mAh g–1 and kept at 699 mAh g–1 till the 11th cycle. BC also exhibited good cycle ability with a specific capacity of 356 mAh g–1 after 79 cycles at a current density of 0.5 C. This work proved to be an effective approach for boron-doped carbon nanostructures which has potential usage for lithium storage material.

  20. Analytical dosimetry for spontaneous tumor dogs receiving boron neutron capture therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Atkinson, C.A.; Gavin, P.R.

    1992-01-01

    The dog irradiation project of the Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program is administered by Washington State University (WSU) with analytical and physical dosimetry provided by the Idaho National Engineering Laboratory (INEL). One subtask of this project includes BNCT safety studies for dogs with spontaneously-occurring brain tumors. The boron compound (Na 2 B 12 H 11 SH or BSH) was administered and single irradiations performed using the epithermal-neutron beam at the Brookhaven Medical Research Reactor (BMRR). The main goal of the study was not to provide therapy, but to determine tumorcidal effect while administering a subtolerance dose to healthy tissue. Irradiation times were based on delivery of 19 Gy peak physical dose to the blood

  1. ICP-MS determination of boron: method optimization during preparation of graphite reference material for boron

    International Nuclear Information System (INIS)

    Granthali, S.K.; Shailaja, P.P.; Mainsha, V.; Venkatesh, K.; Kallola, K.S.; Sanjukta, A.K.

    2017-01-01

    Graphite finds widespread use in nuclear reactors as moderator, reflector, and fuel fabricating components because of its thermal stability and integrity. The manufacturing process consists of various mixing, moulding and baking operations followed by heat-treatment between 2500 °C and 3000 °C. The high temperature treatment is required to drive the amorphous carbon-to-graphite phase transformation. Since synthetic graphite is processed at high temperature, impurity concentrations in the precursor carbon get significantly reduced due to volatilization. However boron may might partly gets converted into boron carbide at high temperatures in the carbon environment of graphite and remains stable (B_4C: boiling point 3500 °C) in the matrix. Literature survey reveals the use of various methods for determination of boron. Previously we have developed a method for determination of boron in graphite electrodes using inductively coupled plasma mass spectrometry (ICP-MS). The method involves removal of graphite matrix by ignition of the sample at 800°C in presence of saturated barium hydroxide solution to prevent the loss of boron. Here we are reporting a modification in the method by using calcium carbonate in place of barium hydroxide and using beryllium (Be) as an internal standard, which resulted in a better precession. The method was validated by spike recovery experiments as well as using another technique viz. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The modified method was applied in evaluation of boron concentration in the graphite reference material prepared

  2. Chemistry and technology of boron and its compounds

    International Nuclear Information System (INIS)

    Zhigach, A.F.; Parfenov, B.P.; Svitsyn, R.A.

    1995-01-01

    The results of research dealing with development of technologies of boron trichloride, boron hydride, aminoderivative boron hydrides, metal borohydrides, carboranes, carborane-containing polymers, carried out at the institute of organoelemental compounds, are presented. Physicochemical properties of the compounds have been studied and analytical methods have been developed. Data on toxicity and fire hazard of boron compounds are provided

  3. Commissioning of accelerator based boron neutron capture therapy system

    International Nuclear Information System (INIS)

    Nakamura, S.; Wakita, A.; Okamoto, H.; Igaki, H.; Itami, J.; Ito, M.; Abe, Y.; Imahori, Y.

    2017-01-01

    Boron neutron capture therapy (BNCT) is a treatment method using a nuclear reaction of 10 B(n, α) 7 Li. BNCT can be deposited the energy to a tumor since the 10 B which has a higher cross-section to a neutron is high is concentrated on the tumor. It is different from conventional radiation therapies that BNCT expects higher treatment effect to radiation resistant tumors since the generated alpha and lithium particles have higher radiological biological effectiveness. In general, BNCT has been performed in research nuclear reactor. Thus, BNCT is not widely applied in a clinical use. According to recent development of accelerator-based boron neutron capture therapy system, the system has an adequate flux of neutrons. Therefore, National Cancer Canter Hospital, Tokyo, Japan is planning to install accelerator based BNCT system. Protons with 2.5 MeV are irradiated to a lithium target system to generate neutrons. As a result, thermal load of the target is 50 kW since current of the protons is 20.0 mA. Additionally, when the accelerator-based BNCT system is installed in a hospital, the facility size is disadvantage in term of neutron measurements. Therefore, the commissioning of the BNCT system is being performed carefully. In this article, we report about the commissioning. (author)

  4. Insights into the Mechanisms Underlying Boron Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Akira Yoshinari

    2017-11-01

    Full Text Available Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed.

  5. Hot rolling of chromium - nickel - manganese stainless steel containing nitrogen and boron

    International Nuclear Information System (INIS)

    Khorosh, V.A.; Bulat, S.I.; Mukhina, M.A.; Sorokina, N.A.; Yushchenko, K.A.; Tsentral'nyj Nauchno-Issledovatel'skij Inst. Chernoj Metallurgii, Moscow; AN Ukrainskoj SSR, Kiev. Inst. Ehlektrosvarki)

    1976-01-01

    The strength of stainless steel of the 03Kh2ON16AG6 type increases perceptibly with an increase in the nitrogen content from 0.11 to 0.37%. At the same time, however, its ductility in the region of hot deformation temperatures (red brittleness range of 800 to 1,000 deg C) decreases. Microalloying with boron (0.002 to 0.005% by calculation) permits enhancing the hot ductility to an acceptable level without adversely affecting the working properties. The mechaniusm of boron effect is analyzed. The temperature at which ingots are heated prior to rolling to achieve the desired effect must be sufficiently low. Optimum condition for two stage heating of 6.2-ton ingots are recommeded

  6. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  7. Enrichment of boron 10

    International Nuclear Information System (INIS)

    Coutinho, C.M.M.; Rodrigues Filho, J.S.R.; Umeda, K.; Echternacht, M.V.

    1990-01-01

    A isotopic separation pilot plant with five ion exchange columns interconnected in series were designed and built in the IEN. The columns are charged with a strong anionic resin in its alkaline form. The boric acid solution is introduced in the separation columns until it reaches a absorbing zone length which is sufficient to obtain the desired boron-10 isotopic concentration. The boric acid absorbing zone movement is provided by the injection of a diluted hydrochloric acid solution, which replace the boric acid throughout the columns. The absorbing zone equilibrium length is proportional to its total length. The enriched boron-10 and the depleted boron are located in the final boundary and in the initial position of the absorbing zones, respectively. (author)

  8. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.

  9. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D.

    1996-01-01

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope 10 B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/ 10 B reactions ( 10 B(n,α) 7 Li) resulting in the production of localized high LET radiation from alpha and 7 Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams

  10. Analysis of boron nitride by flame spectrometry methods

    International Nuclear Information System (INIS)

    Telegin, G.F.; Chapysheva, G.Ya.; Shilkina, N.N.

    1989-01-01

    A rapid method has been developed for determination of free and total boron contents as well as trace impurities in boron nitride by using autoclave sample decomposition followed by atomic emission and atomic absorption determination. The relative standard deviation is not greater than 0.03 in the determination of free boron 0.012 in the determination of total boron content

  11. Structure prediction of boron-doped graphene by machine learning

    Science.gov (United States)

    M. Dieb, Thaer; Hou, Zhufeng; Tsuda, Koji

    2018-06-01

    Heteroatom doping has endowed graphene with manifold aspects of material properties and boosted its applications. The atomic structure determination of doped graphene is vital to understand its material properties. Motivated by the recently synthesized boron-doped graphene with relatively high concentration, here we employ machine learning methods to search the most stable structures of doped boron atoms in graphene, in conjunction with the atomistic simulations. From the determined stable structures, we find that in the free-standing pristine graphene, the doped boron atoms energetically prefer to substitute for the carbon atoms at different sublattice sites and that the para configuration of boron-boron pair is dominant in the cases of high boron concentrations. The boron doping can increase the work function of graphene by 0.7 eV for a boron content higher than 3.1%.

  12. Discharge cleaning on TFTR after boronization

    International Nuclear Information System (INIS)

    Mueller, D.; Dylla, H.F.; LaMarche, P.H.; Bell, M.G.; Blanchard, W.; Bush, C.E.; Gentile, C.; Hawryluk, R.J.; HIll, K.W.; Janos, A.C.; Jobes, F.C; Owens, D.K.; Pearson, G.; Schivell, J.; Ulrickson, M.A.; Vannoy, C.; Wong, K.L.

    1991-05-01

    At the beginning of the 1990 TFTR experimental run, after replacement of POCO-AXF-5Q graphite tiles on the midplane of the bumper limiter by carbon fiber composite (CFC) tiles and prior to any Pulse Discharge Cleaning (PDC), boronization was performed. Boronization is the deposition of a layer of boron and carbon on the vacuum vessel inner surface by a glow discharge in a diborane, methane and helium mixture. The amount of discharge cleaning required after boronization was substantially reduced compared to that which was needed after previous openings when boronization was not done. Previously, after a major shutdown, about 10 5 low current (∼20 kA) Taylor Discharge Cleaning (TDC) pulses were required before high current (∼400 kA) aggressive Pulse Discharge Cleaning (PDC) pulses could be performed successfully. Aggressive PDC is used to heat the limiters from the vessel bakeout temperature of 150 degrees C to 250 degrees C for a period of several hours. Heating the limiters is important to increase the rate at which water is removed from the carbon limiter tiles. After boronization, the number of required TDC pulses was reduced to <5000. The number of aggressive PDC pulses required was approximately unchanged. 14 refs., 1 tab

  13. Superplastic boronizing of duplex stainless steel under dual compression method

    International Nuclear Information System (INIS)

    Jauhari, I.; Yusof, H.A.M.; Saidan, R.

    2011-01-01

    Highlights: → Superplastic boronizing. → Dual compression method has been developed. → Hard boride layer. → Bulk deformation was significantly thicker the boronized layer. → New data on boronizing could be expanded the application of DSS in industries. - Abstract: In this work, SPB of duplex stainless steel (DSS) under compression method is studied with the objective to produce ultra hard and thick boronized layer using minimal amount of boron powder and at a much faster boronizing time as compared to the conventional process. SPB is conducted under dual compression methods. In the first method DSS is boronized using a minimal amount of boron powder under a fix pre-strained compression condition throughout the process. The compression strain is controlled in such a way that plastic deformation is restricted at the surface asperities of the substrate in contact with the boron powder. In the second method, the boronized specimen taken from the first mode is compressed superplastically up to a certain compressive strain under a certain strain rate condition. The process in the second method is conducted without the present of boron powder. As compared with the conventional boronizing process, through this SPB under dual compression methods, a much harder and thicker boronized layer thickness is able to be produced using a minimal amount of boron powder.

  14. Superplastic boronizing of duplex stainless steel under dual compression method

    Energy Technology Data Exchange (ETDEWEB)

    Jauhari, I., E-mail: iswadi@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yusof, H.A.M.; Saidan, R. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-10-25

    Highlights: {yields} Superplastic boronizing. {yields} Dual compression method has been developed. {yields} Hard boride layer. {yields} Bulk deformation was significantly thicker the boronized layer. {yields} New data on boronizing could be expanded the application of DSS in industries. - Abstract: In this work, SPB of duplex stainless steel (DSS) under compression method is studied with the objective to produce ultra hard and thick boronized layer using minimal amount of boron powder and at a much faster boronizing time as compared to the conventional process. SPB is conducted under dual compression methods. In the first method DSS is boronized using a minimal amount of boron powder under a fix pre-strained compression condition throughout the process. The compression strain is controlled in such a way that plastic deformation is restricted at the surface asperities of the substrate in contact with the boron powder. In the second method, the boronized specimen taken from the first mode is compressed superplastically up to a certain compressive strain under a certain strain rate condition. The process in the second method is conducted without the present of boron powder. As compared with the conventional boronizing process, through this SPB under dual compression methods, a much harder and thicker boronized layer thickness is able to be produced using a minimal amount of boron powder.

  15. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [University of Missouri; Wexler, Carlos [University of Missouri; Hawthorne, M. Frederick [University of Missouri; Lee, Mark W. [University of Missouri; Jalistegi, Satish S. [University of Missouri

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  16. A review on the determination of isotope ratios of boron with mass spectrometry.

    Science.gov (United States)

    Aggarwal, Suresh Kumar; You, Chen-Feng

    2017-07-01

    The present review discusses different mass spectrometric techniques-viz, thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and secondary ion mass spectrometry (SIMS)-used to determine 11 B/ 10 B isotope ratio, and concentration of boron required for various applications in earth sciences, marine geochemistry, nuclear technology, environmental, and agriculture sciences, etc. The details of the techniques-P-TIMS, which uses Cs 2 BO 2 + , N-TIMS, which uses BO 2 - , and MC-ICPMS, which uses B + ions for bulk analysis or B - and B + ions for in situ micro-analysis with SIMS-are highlighted. The capabilities, advantages, limitations, and problems in each mass spectrometric technique are summarized. The results of international interlaboratory comparison experiments conducted at different times are summarized. The certified isotopic reference materials available for boron are also listed. Recent developments in laser ablation (LA) ICPMS and QQQ-ICPMS for solids analysis and MS/MS analysis, respectively, are included. The different aspects of sample preparation and analytical chemistry of boron are summarized. Finally, the future requirements of boron isotope ratios for future applications are also given. Presently, MC-ICPMS provides the best precision and accuracy (0.2-0.4‰) on isotope ratio measurements, whereas N-TIMS holds the potential to analyze smallest amount of boron, but has the issue of bias (+2‰ to 4‰) which needs further investigations. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:499-519, 2017. © 2016 Wiley Periodicals, Inc.

  17. Isolation and characterization of DUSP11, a novel p53 target gene

    DEFF Research Database (Denmark)

    Caprara, Greta; Zamponi, Raffaella; Melixetian, Marina

    2009-01-01

    target gene. Consistent with this, the expression of DUSP11 is induced in a p53-dependent manner after treatment with DNA damaging agents. Chromatin immunoprecipitation analysis showed that p53 binds to 2 putative p53 DNA binding sites in the promoter region of DUSP11. Colony formation and proliferation...

  18. Separation process for boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, S D

    1975-06-12

    The method according to the invention is characterized by the steps of preparing a gaseous mixture of BCl/sub 3/ containing the isotopes of boron and oxygen as the extractor, irradiating that mixture in the tube of the separator device by means of P- or R-lines of a CO/sub 2/ laser for exciting the molecules containing a given isotope of boron, simultaneously irradiating the mixture with UV for photodissociating the excited BCl/sub 3/ molecules and separating BCl/sub 3/ from the reaction products of photodissociation and from oxygen. Such method is suitable for preparing boron used in nuclear reactors.

  19. Extraction of trace nitrophenols in environmental water samples using boronate affinity sorbent

    International Nuclear Information System (INIS)

    Zhang, Yong; Mei, Meng; Huang, Xiaojia; Yuan, Dongxing

    2015-01-01

    In this research, the applicability of a new sorbent based on boronate affinity material is demonstrated. For this purpose, six strong polar nitrophenols were selected as models which are difficult to be extracted in neutral form (only based on hydrophobic interactions). The extracted nitrophenols were separated and determined by high-performance liquid chromatography with diode array detection. The sorbent was synthesized by in situ copolymerization of 3-acrylamidophenylboronic acid and divinylbenzene using dimethyl sulfoxide and azobisisobutyronitrile as porogen solvent and initiator, respectively. The effect of the preparation parameters in the polymerization mixture on extraction performance was investigated in detail. The size and morphology of the sorbent have been characterized via different techniques such as infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry. The important parameters influencing the extraction efficiency were studied and optimized thoroughly. Under the optimum extraction conditions, the limits of detection (S/N = 3) and limits of quantification (S/N = 10) for the target nitrophenols were 0.097–0.28 and 0.32–0.92 μg/L, respectively. The precision of the proposed method was evaluated in terms of intra- and inter-assay variability calculated as RSD, and it was found that the RSDs were all below 9%. Finally, the developed method was successfully applied for environmental water samples such as wastewater, tap, lake and river water. The recoveries varied within the range of 71.2–115% with RSD below 11% in all cases. The results well demonstrate that the new boronate affinity sorbent can extract nitrophenols effectively through multi-interactions including boron–nitrogen coordination, hydrogen-bond and hydrophobic interactions between sorbent and analytes. - Highlights: • A new boronate affinity sorbent (BAS) was prepared. • The BAS was used as the extractive medium of stir

  20. The irradiation induced creep of graphite under accelerated damage produced by boron doping

    International Nuclear Information System (INIS)

    Brocklehurst, J.E.

    1975-01-01

    The presence of boron enhances fast neutron irradiation damage in graphite by providing nucleation sites for interstitial loop formation. Doping with 11 B casues an increase in the irradiation induced macroscopic dimensional changes, which have been shown to result from an acceleration in the differential crystal growth rate for a given carbon atom displacement rate. Models of irradiation induced creep in graphite have centred around those in which creep is induced by internal stresses due to the anisotopic crystal growth, and those in which creep is activated by atomic displacements. A creep test on boron doped graphite has been performed in an attempt to establish which of these mechanisms is the determining factor. An isotropic nuclear graphite was doped to a 11 B concentration of 0.27 wt.%. The irradiation induced volume shrinkage rate at 750 0 C increased by a factor of 3 over that of the virgin graphite, in agreement with predictions from the earlier work, but the total creep strains were comparable in both doped and virgin samples. This observation supports the view that irradiation induced creep is dependent only on the carbon atom displacement rate and not on the internal stress level determined by the differential crystal growth rate. The implications of this result on the irradiation behaviour of graphite containing significant concentrations of boron are briefly discussed. (author)

  1. Density separation of boron particles. Final report

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-04-01

    A density distribution much broader than expected was observed in lots of natural boron powder supplied by two different sources. The material in both lots was found to have a rhombohedral crystal structure, and the only other parameters which seemed to account for such a distribution were impurities within the crystal structure and varying isotopic ratios. A separation technique was established to isolate boron particles in narrow densty ranges. The isolated fractions were subsequently analyzed for B 10 and total boron content in an effort to determine whether selective isotopic enrichment and nonhomogeneous impurity distribution were the causes for the broad density distribution of the boron powders. It was found that although the B 10 content remained nearly constant around 18%, the total boron content varied from 37.5 to 98.7%. One of the lots also was found to contain an apparently high level of alpha rhombohedral boron which broadened the density distribution considerably. During this work, a capability for removing boron particles containing gross amounts of impurities and, thereby, improving the overall purity of the remaining material was developed. In addition, the separation technique used in this study apparently isolated particles with alpha and beta rhombohedral crystal structures, although the only supporting evidence is density data

  2. Raman spectra of hot-pressed boron suboxide

    CSIR Research Space (South Africa)

    Machaka, R

    2011-01-01

    Full Text Available on in- situ/online measurements (such as GIXRD, Raman Spectroscopy, FIB- Electron Microscopy) during (i) ion implantation, (ii) PLD growth of nanoparticles SW/MW-CNTs, oxide semiconductor multi-layer, metal/Si and metal/metal systems. Moreover, He...], aluminium magnesium boride ? AlMgB14 [8], and the newly synthesized boron subnitride ? B13N2 [9, 10]. With hardness values reported between 24 GPa and 45 GPa [7, 11, 12], B6O is sometimes considered to be the third hardest material only after diamond...

  3. Boron dose determination for BNCT using Fricke and EPR dosimetry

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ciesielski, B.

    1995-01-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to α and 7 Li charged particles resulting from a neutron capture by 10 B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient's dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here

  4. Application of ICPMS for performance evaluation of boron enrichment plant at HWP, Manuguru

    International Nuclear Information System (INIS)

    Murthy, P.K.; Mohapatra, C.; Vithal, G.K.

    2011-01-01

    10 B enriched compounds are used in neutron control rod in Fast Breeder Reactors (FBR), Neutron Detector, Neutron Capture Therapy, and Neutron Shielding. Heavy Water Board (HWB) is given a mandate to produce enriched elemental boron which is being produced using Ion exchange chromatography and BF 3 - ether complex distillation methods. Ion Exchange Chromatography based Boron Enrichment Plant is operating at HWP, Manuguru. Ion Exchange Chromatography based process depends, besides other process parameters, on column run time and movement of band length. For effective process and quality control, it is necessary to analyze 10 B/ 11 B ratio in feed, process stream, waste and the product. 10 B/ 11 B ratio measurements are possible by Thermal Ionization Mass Spectrometer (TIMS) and Inductively Coupled Plasma Mass Spectrometer (ICPMS), the former offers better accuracy but takes longer analysis time whereas the later offers quick analysis of isotopic ratios and as well as trace metal impurities in the Boric acid

  5. Development of magnetic resonance technology for noninvasive boron quantification

    International Nuclear Information System (INIS)

    Bradshaw, K.M.

    1990-11-01

    Boron magnetic resonance imaging (MRI) and spectroscopy (MRS) were developed in support of the noninvasive boron quantification task of the Idaho National Engineering Laboratory (INEL) Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) program. The hardware and software described in this report are modifications specific to a GE Signa trademark MRI system, release 3.X and are necessary for boron magnetic resonance operation. The technology developed in this task has been applied to obtaining animal pharmacokinetic data of boron compounds (drug time response) and the in-vivo localization of boron in animal tissue noninvasively. 9 refs., 21 figs

  6. Synthesis and characterization of ammonium phosphate fertilizers with boron

    Directory of Open Access Journals (Sweden)

    ANGELA MAGDA

    2010-07-01

    Full Text Available The concentration of boron, an essential micronutrient for plants, presents a narrow range between deficiency and toxicity. In order to provide the boron requirement for plants, and to avoid toxicity problems, boron compounds are mixed with basic fertilizers. Sodium borate pentahydrate was used as a boron source. Ammonium orthophosphates fertilizers with boron were prepared by neutralizing phosphoric acid with ammonia and addition of variable amounts of sodium tetraborate pentahydrate to the reaction mixture at a NH3:H3PO4 molar ratio of 1.5. The fertilizers obtained with boron contents ranging from 0.05 to 1 % (w/w were fully characterized by chemical analysis, thermal analysis, X-ray diffraction and infrared spectrophotometry. The studies showed that up to 500 °C, regardless of the boron content, no significant changes concerning thermal stability and nutritional properties occurred. Above 500 °C, an increase of thermal stability with an increase of the boron content was observed. X-Ray diffraction of a heat-treated sample containing 5 % (w/w boron indicated the appearance of boron orthophosphate, BPO4, as a new crystalline phase, and the disappearance of the previous structures above 500 °C, which explains the increase in thermal stability.

  7. Combined Effects of Boron and NaCl on Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    ZHEN Mei-nan

    2015-08-01

    Full Text Available To investigate the combined effects of boron(Band NaCl on the growth of wheat, a pot experiment was conducted using wheat (Triticum aestivum Linn.seedlings. Boron concentrations of culture medium were set as 0, 50 mg·kg-1 and 100 mg·kg-1, and NaCl concentrations were 0, 1 g·kg-1 and 2 g·kg-1. The results showed that both boron and NaCl could significantly inhibit wheat growth. At 50 mg B·kg-1, NaCl aggravated growth inhibition caused by boron. At 100 mg B·kg-1, however, NaCl alleviated the inhibition caused by boron. The combined stress of boron and NaCl significantly increased the root to shoot ratio of wheat. NaCl inhibited the uptake of boron by wheat. It suggests that under severe boron stress, NaCl is able to alleviate boron toxicity in wheat by increasing root to shoot ratio and reducing boron uptake.

  8. Study of ceramic mixed boron element as a neutron shielding

    International Nuclear Information System (INIS)

    Ismail Mustapha; Mohd Reusmaazran Yusof; Md Fakarudin Ab Rahman; Nor Paiza Mohamad Hasan; Samihah Mustaffha; Yusof Abdullah; Mohamad Rabaie Shari; Airwan Affandi Mahmood; Nurliyana Abdullah; Hearie Hassan

    2012-01-01

    Shielding upon radiation should not be underestimated as it can causes hazard to health. Precautions on the released of radioactive materials should be well concerned and considered. Therefore, the combination of ceramic and boron make them very useful for shielding purpose in areas of low and intermediate neutron. A six grades of ceramic tile have been produced namely IMN05 - 5 % boron, IMN06 - 6 % boron, IMN07 - 7 % boron, IMN08 - 8 % boron, IMN09 - 9 % boron, IMN10 - 10 % boron from mixing, press and sintered process. Boron is a material that capable of absorbing and capturing neutron, so that neutron and gamma test were conducted to analyze the effectiveness of boron material in combination with ceramic as shielding. From the finding, percent reduction number of count per minute shows the ceramic tiles are capable to capture neutron. Apart from all the percentage of boron used, 10 % is the most effective shields since the percent reduction indicating greater neutron captured increased. (author)

  9. New approaches to novel boronated porphyrins for neutron capture therapy

    International Nuclear Information System (INIS)

    Kahl, S.B.

    1986-01-01

    The use of boon compounds in the treatment of human cancer is based on the unique ability of nonradioactive 10 B nuclei to absorb thermal neutrons. The prompt nuclear reactions, which occur in neutron absorption, deliver a dose of nearly 2.8 MeV only in the vicinity of boron-containing cells, since the nuclear garments produced (alpha particles and recoil lithium atoms) travel only 10 to 15 μm. The practical, clinical use of this technique to date has been limited by the authors inability to target boron-containing compounds specifically to tumor cells in amounts sufficient for therapy and in a chemical form that has an acceptable level of toxicity. Porphyrins are one important and large class of compounds that are known to accumulate in practically all tumor systems yet examined. Such site-specific accumulation is not known to be based on any currently identifiable selective transport mechanism and yet is observed for both natural and synthetic porphyrins. Tetraphenylporphine sulfonate (TPPS) has been shown by Fairchild et al. to be an ideal model compound for assessing porphyrin uptake, and suitably boronated tetraphenyl porphine might be expected to behave similarly. This report describes the synthesis, properties, and preliminary biodistribution of such compounds

  10. Fraction of boroxol rings in vitreous boron oxide from a first-principles analysis of Raman and NMR spectra.

    Science.gov (United States)

    Umari, P; Pasquarello, Alfredo

    2005-09-23

    We determine the fraction f of B atoms belonging to boroxol rings in vitreous boron oxide through a first-principles analysis. After generating a model structure of vitreous B2O3 by first-principles molecular dynamics, we address a large set of properties, including the neutron structure factor, the neutron density of vibrational states, the infrared spectra, the Raman spectra, and the 11B NMR spectra, and find overall good agreement with corresponding experimental data. From the analysis of Raman and 11B NMR spectra, we yield consistently for both probes a fraction f of approximately 0.75. This result indicates that the structure of vitreous boron oxide is largely dominated by boroxol rings.

  11. Boron: out of the sky and onto the ground

    International Nuclear Information System (INIS)

    Kuehl, D.K.

    1975-01-01

    Now an accepted, engineered material for aerospace applications, boron is taking its place on the ground. Both current production applications, prototype (development) applications, and speculative applications abound. In the leisure product market, boron epoxy or boron aluminum has been used or tried in golf clubs (in combination with graphite epoxy or to reinforce aluminum or steel), in tennis racquets, in bicycles, racing shells, skis and skipoles, bows and arrows, and others. In the industrial area, boron has been used to reduce fatigue, increase stiffness, or for its abrasive properties. Textile machinery, honing tools, and cut off wheels or saws are among the applications. In the medical field, prosthetics and orthotic braces, wheel chairs, canes, and crutches are all good applications for boron. Applications for boron in transportation, construction, and heavy industry are also possible. The volume of boron used in these applications could have a major impact on prices, making boron composite parts cost competitive with conventional materials. (U.S.)

  12. Interleukin-11 Receptor Is a Candidate Target for Ligand-Directed Therapy in Lung Cancer: Analysis of Clinical Samples and BMTP-11 Preclinical Activity.

    Science.gov (United States)

    Cardó-Vila, Marina; Marchiò, Serena; Sato, Masanori; Staquicini, Fernanda I; Smith, Tracey L; Bronk, Julianna K; Yin, Guosheng; Zurita, Amado J; Sun, Menghong; Behrens, Carmen; Sidman, Richard L; Lee, J Jack; Hong, Waun K; Wistuba, Ignacio I; Arap, Wadih; Pasqualini, Renata

    2016-08-01

    We previously isolated an IL-11-mimic motif (CGRRAGGSC) that binds to IL-11 receptor (IL-11R) in vitro and accumulates in IL-11R-expressing tumors in vivo. This synthetic peptide ligand was used as a tumor-targeting moiety in the rational design of BMTP-11, which is a drug candidate in clinical trials. Here, we investigated the specificity and accessibility of IL-11R as a target and the efficacy of BMTP-11 as a ligand-targeted drug in lung cancer. We observed high IL-11R expression levels in a large cohort of patients (n = 368). In matching surgical specimens (i.e., paired tumors and nonmalignant tissues), the cytoplasmic levels of IL-11R in tumor areas were significantly higher than in nonmalignant tissues (n = 36; P = 0.003). Notably, marked overexpression of IL-11R was observed in both tumor epithelial and vascular endothelial cell membranes (n = 301; P < 0.0001). BMTP-11 induced in vitro cell death in a representative panel of human lung cancer cell lines. BMTP-11 treatment attenuated the growth of subcutaneous xenografts and reduced the number of pulmonary tumors after tail vein injection of human lung cancer cells in mice. Our findings validate BMTP-11 as a pharmacologic candidate drug in preclinical models of lung cancer and patient-derived tumors. Moreover, the high expression level in patients with non-small cell lung cancer is a promising feature for potential translational applications. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Feasibility study of SMART core with soluble boron

    International Nuclear Information System (INIS)

    Kim, Kang Seog; Lee, Chung Chan; Zee, Sung Quun

    2000-11-01

    The excess reactivity of SMART core without soluble boron is effectively controlled by 49 CEDM. We suggest another method to control the core excess reactivity using both the checkerboard type of 25 CEDM and soluble boron and perform a feasibility calculation. The soluble boron operation is categorized into the on-line and the off-line mechanisms. The former is to successively control the boron concentration according to the excess reactivity during operation and the latter is to add and change some soluble boron during refueling and repairing. Since the on-line soluble boron control system of SMART is conceptually identical to that of the commercial pressurized water reactor, we did not perform the analysis. Since the soluble boron in the complete off-line system increases the moderator temperature coefficient, the reactivity defect between hot and cold moderator temperature is decreased. However, the decrease of the reactivity is not big to satisfy the core reactivity limits. When using 25 CEDM, the possible mechanism is to control the excess reactivity by both control rod and on-line boron control mechanism between cold and hot zero power and by only control rod at hot full power. We selected the loading pattern satisfying the requirement in the view of nuclear design

  14. Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models

    Directory of Open Access Journals (Sweden)

    Charles A Maitz

    2017-08-01

    Full Text Available Boron neutron capture therapy (BNCT was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. Mice were implanted with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH3(CH215–7,8-C2B9H11] in the lipid bilayer and encapsulated Na3[1-(2`-B10H9-2-NH3B10H8] within the liposomal core. Mice were irradiated 30 hours after the second injection in a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. Despite relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.

  15. Determination of isotopic composition of boron in boron carbide by TIMS and PIGE: an inter-comparison study

    International Nuclear Information System (INIS)

    Sasibhushan, K.; Rao, R.M.; Parab, A.R.; Alamelu, D.; Aggarwal, S.K.; Acharya, R.; Chhillar, S.; Pujari, P.K.

    2015-01-01

    The paper reports a comparison of results on the determination of isotopic composition of boron in boron carbide (B 4 C) samples by Thermal Ionisation Mass Spectrometry (TIMS) and Particle Induced Gamma ray Spectrometry (PIGE). B 4 C samples having varying boron isotopic composition (natural, enriched with respect to 10 B) and their synthetic mixtures) have been analysed by both the techniques. The 10 B atom% was found to be in the range of 20-67%. (author)

  16. Graphite and boron carbide composites made by hot-pressing

    International Nuclear Information System (INIS)

    Miyazaki, K.; Hagio, T.; Kobayashi, K.

    1981-01-01

    Composites consisting of graphite and boron carbide were made by hot-pressing mixed powders of coke carbon and boron carbide. The change of relative density, mechanical strength and electrical resistivity of the composites and the X-ray parameters of coke carbon were investigated with increase of boron carbide content and hot-pressing temperature. From these experiments, it was found that boron carbide powder has a remarkable effect on sintering and graphitization of coke carbon powder above the hot-pressing temperature of 2000 0 C. At 2200 0 C, electrical resistivity of the composite and d(002) spacing of coke carbon once showed minimum values at about 5 to 10 wt% boron carbide and then increased. The strength of the composite increased with increase of boron carbide content. It was considered that some boron from boron carbide began to diffuse substitutionally into the graphite structure above 2000 0 C and densification and graphitization were promoted with the diffusion of boron. Improvements could be made to the mechanical strength, density, oxidation resistance and manufacturing methods by comparing with the properties and processes of conventional graphites. (author)

  17. Studies on the influence of surface pre-treatments on electroless copper coating of boron carbide particles

    International Nuclear Information System (INIS)

    Deepa, J.P.; Resmi, V.G.; Rajan, T.P.D.; Pavithran, C.; Pai, B.C.

    2011-01-01

    Boron carbide is one of the hard ceramic particles which find application as structural materials and neutron shielding material due to its high neutron capture cross section. Copper coating on boron carbide particle is essential for the synthesis of metal-ceramic composites with enhanced sinterability and dispersibility. Surface characteristics of the substrate and the coating parameters play a foremost role in the formation of effective electroless coating. The effect of surface pre-treatment conditions and pH on electroless copper coating of boron carbide particles has been studied. Surface pre-treatement of B 4 C when compared to acid treated and alkali treated particles were carried out. Uniform copper coating was observed at pH 12 in alkali treated particles when compared to others due to the effective removal of inevitable impurities during the production and processing of commercially available B 4 C. A threshold pH 11 was required for initiation of copper coating on boron carbide particles. The growth pattern of the copper coating also varies depending on the surface conditions from acicular to spherical morphology.

  18. Detection of Pathogenic Biofilms with Bacterial Amyloid Targeting Fluorescent Probe, CDy11

    DEFF Research Database (Denmark)

    Kim, Jun Young; Sahu, Srikanta; Yau, Yin Hoe

    2016-01-01

    Bacterial biofilms are responsible for a wide range of persistent infections. In the clinic, diagnosis of biofilm-associated infections relies heavily on culturing methods, which fail to detect nonculturable bacteria. Identification of novel fluorescent probes for biofilm imaging will greatly...... facilitate diagnosis of pathogenic bacterial infection. Herein, we report a novel fluorescent probe, CDy11 (compound of designation yellow 11), which targets amyloid in the Pseudomonas aeruginosa biofilm matrix through a diversity oriented fluorescent library approach (DOFLA). CDy11 was further demonstrated...

  19. Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality

    Energy Technology Data Exchange (ETDEWEB)

    Sergeeva, Alina P.; Popov, Ivan A.; Piazza, Zachary A.; Li, Wei-Li; Romanescu, Constantin; Wang, Lai S.; Boldyrev, Alexander I.

    2014-04-15

    Conspectus Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center–two-electron (2c–2e) σ bonds on the periphery and delocalized multicenter–two-electron (nc–2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron’s electron deficiency and leads to fluxional behavior, which has been observed in B13+ and B19–. A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiation has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B–, formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B

  20. Biological effects of accelerated boron, carbon, and neon ions

    International Nuclear Information System (INIS)

    Grigoryev, Yu.G.; Ryzhov, N.I.; Popov, V.I.

    1975-01-01

    The biological effects of accelerated boron, carbon, and neon ions on various biological materials were determined. The accelerated ions included 10 B, 11 B, 12 C, 20 Ne, 22 Ne, and 40 Ar. Gamma radiation and x radiation were used as references in the experiments. Among the biological materials used were mammalian cells and tissues, yeasts, unicellular algae (chlorella), and hydrogen bacteria. The results of the investigation are given and the biophysical aspects of the problem are discussed

  1. Modeling of interstitial diffusion of ion-implanted boron

    International Nuclear Information System (INIS)

    Velichko, O.I.; Knyazheva, N.V.

    2009-01-01

    A model of the interstitial diffusion of ion-implanted boron during rapid thermal annealing of silicon layers previously amorphized by implantation of germanium has been proposed. It is supposed that the boron interstitials are created continuously during annealing due to generation, dissolution, or rearrangement of the clusters of impurity atoms which are formed in the ion-implanted layers with impurity concentration above the solubility limit. The local elastic stresses arising due to the difference of boron atomic radius and atomic radius of silicon also contribute to the generation of boron interstitials. A simulation of boron redistribution during thermal annealing for 60 s at a temperature of 850 C has been carried out. The calculated profile agrees well with the experimental data. A number of the parameters of interstitial diffusion have been derived. In particular, the average migration length of nonequilibrium boron interstitials is equal to 12 nm. It was also obtained that approximately 1.94% of boron atoms were converted to the interstitial sites, participated in the fast interstitial migration, and then became immobile again transferring into a substitutional position or forming the electrically inactive complexes with crystal lattice defects. (authors)

  2. The influence of boron on the crystal structure and properties of mullite. Investigations at ambient, high-pressure, and high-temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Luehrs, Hanna

    2013-11-21

    Mullite is one of the most important synthetic compounds for advanced structural and functional ceramic materials. The crystal structure of mullite with the composition Al{sub 2}[Al{sub 2+2x}Si{sub 2-2x}]O{sub 10-x} can incorporate a large variety of foreign cations, including (amongst others) significant amounts of boron. However, no chemical or crystal structure analyses of boron-mullites (B-mullites) were available prior to this work, thus representing the key aspects of this thesis. Furthermore, the influence of boron on selected properties of mullite under ambient, high-temperature, and high-pressure conditions are addressed. Starting from a 3:2 mullite composition (Al{sub 4.5}Si{sub 1.5}O{sub 9.75}), the initial hypothesis for this study was a 1:1 isomorphous replacement of silicon by boron according to the coupled substitution mechanism: 2 Si{sup 4+} + O{sup 2-} → 2 B{sup 3+} + □. Based on a series of compounds synthesized from sol-gel derived precursors at ambient pressure and 1200 C, the formation conditions and physical properties of B-mullites were investigated. The formation temperature for B-mullites decreases with increasing boron-content, as revealed by thermal analyses. An anisotropic development of lattice parameters is observed: Whereas lattice parameters a and b only exhibit minor changes, a linear relationship between lattice parameter c and the amount of boron in the crystal structure was established, on the basis of prompt gamma activation analyses (PGAA) and Rietveld refinements. According to this relationship about 15% of the silicon in mullite can be replaced by boron yielding single-phase B-mullite. B-mullites with significantly higher (∝ factor 3) boron-contents in the mullite structure were also observed but the respective samples contain alumina impurities. Fundamental new details regarding the response of B-mullite to high-temperature and highpressure are presented in this thesis. On the one hand, long-term thermal stability at

  3. Boron exposure through drinking water during pregnancy and birth size.

    Science.gov (United States)

    Igra, Annachiara Malin; Harari, Florencia; Lu, Ying; Casimiro, Esperanza; Vahter, Marie

    2016-10-01

    Boron is a metalloid found at highly varying concentrations in soil and water. Experimental data indicate that boron is a developmental toxicant, but the few human toxicity data available concern mostly male reproduction. To evaluate potential effects of boron exposure through drinking water on pregnancy outcomes. In a mother-child cohort in northern Argentina (n=194), 1-3 samples of serum, whole blood and urine were collected per woman during pregnancy and analyzed for boron and other elements to which exposure occurred, using inductively coupled plasma mass spectrometry. Infant weight, length and head circumference were measured at birth. Drinking water boron ranged 377-10,929μg/L. The serum boron concentrations during pregnancy ranged 0.73-605μg/L (median 133μg/L) and correlated strongly with whole-blood and urinary boron, and, to a lesser extent, with water boron. In multivariable-adjusted linear spline regression analysis (non-linear association), we found that serum boron concentrations above 80μg/L were inversely associated with birth length (B-0.69cm, 95% CI -1.4; -0.024, p=0.043, per 100μg/L increase in serum boron). The impact of boron appeared stronger when we restricted the exposure to the third trimester, when the serum boron concentrations were the highest (0.73-447μg/L). An increase in serum boron of 100μg/L in the third trimester corresponded to 0.9cm shorter and 120g lighter newborns (p=0.001 and 0.021, respectively). Considering that elevated boron concentrations in drinking water are common in many areas of the world, although more screening is warranted, our novel findings warrant additional research on early-life exposure in other populations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Tumor cell killing effect of boronated dipeptide. Boromethylglycylphenylalanine on boron neutron capture therapy for malignant brain tumors

    International Nuclear Information System (INIS)

    Takagaki, Masao; Ono, Koji; Masunaga, Shinichiro; Kinashi, Yuko; Kobayashi, Toru; Oda, Yoshifumi; Kikuchi, Haruhiko; Spielvogel, B.F.

    1994-01-01

    The killing effect of Boron Neutron Capture Therapy; BNCT, is dependant on the boron concentration ratio of tumor to normal brain (T/N ratio), and also that of tumor to blood (T/B ratio). The clinical boron carrier of boro-captate (BSH) showed the large T/N ratio of ca. 8, however the T/B ratio was around 1, which indicated nonselective accumulation into tumor. Indeed high boron concentration of blood restrict the neutron irradiation dose in order to circumvent the normal endothelial damage, especially in the case of deeply seated tumor. Phenylalanine analogue of para borono-phenylalanine (BPA) is an effective boron carrier on BNCT for malignant melanoma. For the BNCT on brain tumors, however, BPA concentration in normal brain was reported to be intolerably high. In order to improve the T/N ratio of BPA in brain, therefore, a dipeptide of boromethylglycylphenylalanine (BMGP) was synthesized deriving from trimethylglycine conjugated with BPA. It is expected to be selectively accumulated into tumor with little uptake into normal brain. Because a dipeptide might not pass through the normal blood brain barrier (BBB). Its killing effect on cultured glioma cell, T98G, and its distribution in rat brain bearing 9L glioma have been investigated in this paper. The BNCT effect of BMGP on cultured cells was nearly triple in comparison with DL-BPA. The neutron dose yielding 1% survival ratio were 7x10 12 nvt for BMGP and 2x10 13 nvt for BPA respectively on BNCT after boron loading for 16 hrs in the same B-10 concentration of 20ppm. Quantitative study of boron concentration via the α-auto radiography and the prompt gamma ray assay on 9L brain tumor rats revealed that T/N ratio and T/B ratio are 12.0 and 3.0 respectively. Those values are excellent for BNCT use. (author)

  5. Influence of dopants, particularly carbon, on β-rhombohedral boron

    Science.gov (United States)

    Werheit, H.; Flachbart, K.; Pristáš, G.; Lotnyk, D.; Filipov, V.; Kuhlmann, U.; Shitsevalova, N.; Lundström, T.

    2017-09-01

    Due to the high affinity of carbon to boron, the preparation of carbon-free boron is problematic. Even high-purity (6 N) β-rhombohedral boron contains 30-60 ppm of C. Hence, carbon affects the boron physical properties published so far more or less significantly. We studied well-defined carbon-doped boron samples based on pure starting material carefully annealed with up to about 1% C, thus assuring homogeneity. We present and discuss their electrical conductivity, optical absorption, luminescence and phonon spectra. Earlier attempts of other authors to determine the conductivity of C-doped boron are revised. Our results allow estimating the effects of oxygen and iron doping on the electrical conductivity using results taken from literature. Discontinuities at low T impair the electronic properties.

  6. Effect of concentrated light on morphology and vibrational properties of boron and tantalum mixtures

    Directory of Open Access Journals (Sweden)

    Lina Sartinska

    2018-03-01

    Full Text Available Heating a mixture of boron (impurities: carbon ∼ B50C2, boric acid – H3BO3 and tantalum (Ta powders in nitrogen flow in a xenon high-flux optical furnace was performed. As-received powder composed of h-BN, H3BO3, TaB2, B9H11 and a number of other phases including β-rhombohedral boron, apparently, heavily doped with Ta. FT–IR examination of any sample of the material reveals the complicated vibration spectrum containing, in particular, an absorption band near 2260 cm−1. The shapes of these bands are different for samples because powders were synthesized at different temperatures. Known, that in β-rhombohedral boron lattice, there are nano-sized voids of different types, which allow an accommodation of single atoms or small groups of atoms. Theoretical calculations performed by the method of quasi-classical type yields the same value, 2260 cm−1, for the vibrations frequency of Ta atoms in D-type crystallographic voids in β-rhombohedral boron lattice. Since, Ta atoms are known to prefer accommodation just in D-voids the experimentally detected bands can be identified with localized vibrations of Ta atoms. Keywords: Condensed matter physics, Materials science, Nanotechnology

  7. Boron Drug Delivery via Encapsulated Magnetic Nanocomposites: A New Approach for BNCT in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Yinghuai Zhu

    2010-01-01

    Full Text Available Ortho-carborane cages have been successfully attached to modified magnetic nanoparticles via catalytic azide-alkyne cycloadditions between 1-R-2-butyl-Ortho-C2B10H10(R=Me,3;Ph,4 and propargyl group-enriched magnetic nanoparticles. A loading amount of 9.83 mmol boron atom/g starch-matrixed magnetic nanoparticles has been reached. The resulting nanocomposites have been found to be highly tumor-targeted vehicles under the influence of an external magnetic field (1.14T, yielding a high boron concentration of 51.4 μg/g tumor and ratios of around 10 : 1 tumor to normal tissues.

  8. Boron concentration measurements by alpha spectrometry and quantitative neutron autoradiography in cells and tissues treated with different boronated formulations and administration protocols

    International Nuclear Information System (INIS)

    Bortolussi, Silva; Ciani, Laura; Postuma, Ian; Protti, Nicoletta; Luca Reversi,; Bruschi, Piero; Ferrari, Cinzia; Cansolino, Laura; Panza, Luigi; Ristori, Sandra; Altieri, Saverio

    2014-01-01

    The possibility to measure boron concentration with high precision in tissues that will be irradiated represents a fundamental step for a safe and effective BNCT treatment. In Pavia, two techniques have been used for this purpose, a quantitative method based on charged particles spectrometry and a boron biodistribution imaging based on neutron autoradiography. A quantitative method to determine boron concentration by neutron autoradiography has been recently set-up and calibrated for the measurement of biological samples, both solid and liquid, in the frame of the feasibility study of BNCT. This technique was calibrated and the obtained results were cross checked with those of α spectrometry, in order to validate them. The comparisons were performed using tissues taken form animals treated with different boron administration protocols. Subsequently the quantitative neutron autoradiography was employed to measure osteosarcoma cell samples treated with BPA and with new boronated formulations. - Highlights: • A method for 10B measurements in samples based on neutron autoradiography was developed. • The results were compared with those of alpha spectrometry applied on tissue and cell samples. • Boronated liposomes were developed and administered to osteosarcoma cell cultures. • Neutron autoradiography was employed to measure boron concentration due to liposomes. • Liposomes were proved to be more effective in concentrating boron in cells than BPA

  9. Exploiting the enantioselectivity of Baeyer-Villiger monooxygenases via boron oxidation

    NARCIS (Netherlands)

    Brondani, Patricia B.; Dudek, Hanna; Reis, Joel S.; Fraaije, Marco W.; Andrade, Leandro H.

    2012-01-01

    The enantioselective carbon-boron bond oxidation of several chiral boron-containing compounds by Baeyer-Villiger monooxygenases was evaluated. PAMO and M446G PAMO conveniently oxidized 1-phenylethyl boronate into the corresponding 1-(phenyl)ethanol (ee = 82-91%). Cyclopropyl boronic esters were also

  10. Boronic acid-based chemical sensors for saccharides.

    Science.gov (United States)

    Zhang, Xiao-Tai; Liu, Guang-Jian; Ning, Zhang-Wei; Xing, Guo-Wen

    2017-11-27

    During the past decades, the interaction between boronic acids-functionalized sensors and saccharides is of great interest in the frontier domain of the interdiscipline concerning both biology and chemistry. Various boronic acid-based sensing systems have been developed to detect saccharides and corresponding derivatives in vitro as well as in vivo, which embrace unimolecular sensors, two-component sensing ensembles, functional assemblies, and boronic acid-loaded nanomaterials or surfaces. New sensing strategies emerge in endlessly with excellent selectivity and sensitivity. In this review, several typical sensing systems were introduced and some promising examples were highlighted to enable the deep insight of saccharides sensing on the basis of boronic acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Boron removal in radioactive liquid waste by forward osmosis membrane

    Energy Technology Data Exchange (ETDEWEB)

    Doo Seong Hwang; Hei Min Choi; Kune Woo Lee; Jei Kwon Moon [KAERI, Daejeon (Korea, Republic of)

    2013-07-01

    This study investigated the treatment of boric acid contained in liquid radioactive waste using a forward osmosis membrane. The boron permeation through the membrane depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7 and increases with an increase of the osmotic driving force. The boron flux decreases slightly with the salt concentration, but is not heavily influenced by a low salt concentration. The boron flux increases linearly with the concentration of boron. No element except for boron was permeated through the FO membrane in the multi-component system. The maximum boron flux is obtained in an active layer facing a draw solution orientation of the CTA-ES membrane under conditions of less than pH 7 and high osmotic pressure. (authors)

  12. New long-cycle small modular PWR cores using particle type burnable poisons for low boron operation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hoseong; Hwang, Dae Hee [Department of Nuclear Engineering, Kyung Hee University, Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Hong, Ser Gi, E-mail: sergihong@khu.ac.kr [Department of Nuclear Engineering, Kyung Hee University, Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Shin, Ho Choel [Core and Fuel Analysis Group, Korea Hydro & Nuclear Power Central Research Institute (KHNP-CRI), Daejon 305-343 (Korea, Republic of)

    2017-04-01

    Highlights: • New advanced burnable poison rods (BPR) are suggested for low boron operation in PWR. • The new SMR cores have long cycle length of ∼4.5 EFPYs with low boron concentration. • The SMR core satisfies all the design targets and constraints. - Abstract: In this paper, new small long-cycle PWR (Pressurized Water Reactor) cores for low boron concentration operation are designed by employing advanced burnable poison rods (BPRs) in which the BISO (Bi-Isotropic) particles of burnable poison are distributed in a SiC matrix. The BPRs are designed by adjusting the kernel diameter, the kernel material and the packing fraction to effectively reduce the excess reactivity in order to reduce the boron concentration in the coolant and achieve a flat change in excess reactivity over a long operational cycle. In addition, axial zoning of the BPRs was suggested to improve the core performances, and it was shown that the suggested axial zoning of BPRs considerably extends the cycle length compared to a core with no BPR axial zoning. The results of the core physics analyses showed that the cores using BPRs with a B{sub 4}C kernel have long cycle lengths of ∼4.5 EFPYs (Effective Full Power Years), small maximum CBCs (Critical Boron Concentration) lower than 370 ppm, low power peaking factors, and large shutdown margins of control element assemblies.

  13. Boron adsorption on hematite and clinoptilolite

    International Nuclear Information System (INIS)

    Gainer, G.M.

    1993-01-01

    This thesis describes experiments performed to determine the suitability of boron as a potential reactive tracer for use in saturated-zone C-well reactive tracer studies for the Yucca Mountain Project (YMP). Experiments were performed to identify the prevalent sorption mechanism of boron and to determine adsorption of boron on hematite and clinoptilolite as a function of pH. These minerals are present in the Yucca Mountain tuff in which the C-well studies will be conducted. Evaluation of this sorption mechanism was done by determining the equilibration time of boron-mineral suspensions, by measuring changes in equilibrium to titrations, and by measuring electrophoretic mobility. Experiments were performed with the minerals suspended in NaCl electrolytes of concentrations ranging from 0.1 N NaCl to 0.001 N NaCl. Experimentalconditions included pH values between 3 and 12 and temperature of about 38 degrees C

  14. Determination of boron in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grazhulene, S.S.; Grossman, O.V.; Kuntscher, K.K.; Malygina, L.I.; Muller, E.N.; Telegin, G.F.

    1985-10-01

    In the determination of boron in amorphous alloys containingFe, Co, B, Si, Ni, and P having unusal magnetic and electrical properties, precise analysis and rapid analysis are necessary. To improve the metrological properties of the existing procedure, to find a rapid determination of boron in amorphous alloys, and to verify the accuracy of the results, in the present work the optimization of the photometric determination after extraction of the BF/sup -//sub 4/ ion pair with methylene blue has been studied, and a boron determination by flame photometry using selective methylation has been developed. The determination of boron by the flame photometric and spectrophotometric methods is shown. When a highly precise determination is needed, the spectrophotometric procedure can be used. This procedure is distinguished by its labor intensity and duration. When the need for reproducibility is less severe, the rapid flame photometric procedure is best.

  15. Boron removal by electrocoagulation and recovery.

    Science.gov (United States)

    Isa, Mohamed Hasnain; Ezechi, Ezerie Henry; Ahmed, Zubair; Magram, Saleh Faraj; Kutty, Shamsul Rahman Mohamed

    2014-03-15

    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Numerical simulation of boron injection in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, Hernan, E-mail: htb@forsmark.vattenfall.s [Forsmarks Kraftgrupp AB, SE-742 03 Osthammar (Sweden); Buchwald, Przemyslaw [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Frid, Wiktor, E-mail: wiktor@reactor.sci.kth.s [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2010-02-15

    The present study constitutes a first step to understand the process of boron injection, transport and mixing in a BWR. It consists of transient CFD simulations of boron injection in a model of the downcomer of Forsmark's Unit 3 containing about 6 million elements. The two cases studied are unintentional start of boron injection under normal operation and loss of offsite power with partial ATWS leaving 10% of the core power uncontrolled. The flow conditions of the second case are defined by means of an analysis with RELAP5, assuming boron injection start directly after the first ECCS injection. Recent publications show that meaningful conservative results may be obtained for boron or thermal mixing in PWRs with grids as coarse as that utilized here, provided that higher order discretization schemes are used to minimize numerical diffusion. The obtained results indicate an apparently strong influence of the scenario in the behavior of the injection process. The normal operation simulation shows that virtually all boron solution flows down to the Main Recirculation Pump inlet located directly below the boron inlet nozzle. The loss of offsite power simulation shows initially a spread of the boron solution over the entire sectional area of the lower part of the downcomer filled with colder water. This remaining effect of the ECCS injection lasts until all this water has left the downcomer. Above this region, the boron injection jet develops in a vertical streak, eventually resembling the injection of the normal operation scenario. Due to the initial spread, this boron injection will probably cause larger temporal and spatial concentration variations in the core. In both cases, these variations may cause reactivity transients and fuel damage due to local power escalation. To settle this issue, an analysis using an extended model containing the downcomer, the MRPs and the Lower Plenum will be carried out. Also, the simulation time will be extended to a scale of

  17. Numerical simulation of boron injection in a BWR

    International Nuclear Information System (INIS)

    Tinoco, Hernan; Buchwald, Przemyslaw; Frid, Wiktor

    2010-01-01

    The present study constitutes a first step to understand the process of boron injection, transport and mixing in a BWR. It consists of transient CFD simulations of boron injection in a model of the downcomer of Forsmark's Unit 3 containing about 6 million elements. The two cases studied are unintentional start of boron injection under normal operation and loss of offsite power with partial ATWS leaving 10% of the core power uncontrolled. The flow conditions of the second case are defined by means of an analysis with RELAP5, assuming boron injection start directly after the first ECCS injection. Recent publications show that meaningful conservative results may be obtained for boron or thermal mixing in PWRs with grids as coarse as that utilized here, provided that higher order discretization schemes are used to minimize numerical diffusion. The obtained results indicate an apparently strong influence of the scenario in the behavior of the injection process. The normal operation simulation shows that virtually all boron solution flows down to the Main Recirculation Pump inlet located directly below the boron inlet nozzle. The loss of offsite power simulation shows initially a spread of the boron solution over the entire sectional area of the lower part of the downcomer filled with colder water. This remaining effect of the ECCS injection lasts until all this water has left the downcomer. Above this region, the boron injection jet develops in a vertical streak, eventually resembling the injection of the normal operation scenario. Due to the initial spread, this boron injection will probably cause larger temporal and spatial concentration variations in the core. In both cases, these variations may cause reactivity transients and fuel damage due to local power escalation. To settle this issue, an analysis using an extended model containing the downcomer, the MRPs and the Lower Plenum will be carried out. Also, the simulation time will be extended to a scale of several

  18. High pressure synthesis and investigations of properties of boron allotropes and boron carbide

    International Nuclear Information System (INIS)

    Chuvashova, Irina

    2017-01-01

    This work aimed at the development of the high-pressure high-temperature (HPHT) synthesis of single crystals of boron allotropes and boron-rich compounds, which could be used further for precise investigations of their structures, properties, and behavior at extreme conditions. To summarize, the present work resulted in the HPHT synthesis of the first previously unknown non-icosahedral boron allotrope ζ-B. This finding confirmed earlier theoretical predictions, which stayed unproven for decades because of experimental challenges which couldn't be overcome until recently. Structural stability of α-B and β-B in the Mbar pressure range and B 13 C 2 up to 68 GPa was experimentally proven. Accurate measurements of the unit cell and B 12 icosahedra volumes of the stoichiometric boron carbide B 13 C 2 as a function of pressure led to conclusion that they undergo a similar reduction upon compression that is typical for covalently bonded solids. Neither 'molecular-like' nor 'inversed molecular-like' solid behavior upon compression was detected that has closed a long-standing scientific dispute. A comparison of the compressional behavior of B 13 C 2 with that of α-B and γ-B allotropes and B 4 C showed that it is determined by the types of bonding involved in the course of compression.

  19. High pressure synthesis and investigations of properties of boron allotropes and boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Chuvashova, Irina

    2017-06-12

    This work aimed at the development of the high-pressure high-temperature (HPHT) synthesis of single crystals of boron allotropes and boron-rich compounds, which could be used further for precise investigations of their structures, properties, and behavior at extreme conditions. To summarize, the present work resulted in the HPHT synthesis of the first previously unknown non-icosahedral boron allotrope ζ-B. This finding confirmed earlier theoretical predictions, which stayed unproven for decades because of experimental challenges which couldn't be overcome until recently. Structural stability of α-B and β-B in the Mbar pressure range and B{sub 13}C{sub 2} up to 68 GPa was experimentally proven. Accurate measurements of the unit cell and B{sub 12} icosahedra volumes of the stoichiometric boron carbide B{sub 13}C{sub 2} as a function of pressure led to conclusion that they undergo a similar reduction upon compression that is typical for covalently bonded solids. Neither 'molecular-like' nor 'inversed molecular-like' solid behavior upon compression was detected that has closed a long-standing scientific dispute. A comparison of the compressional behavior of B{sub 13}C{sub 2} with that of α-B and γ-B allotropes and B{sub 4}C showed that it is determined by the types of bonding involved in the course of compression.

  20. Impact of Boron pollution to Biota Marine aquatic

    International Nuclear Information System (INIS)

    Heni Susiati; Yarianto-SBS; Imam Hamzah; Fepriadi

    2003-01-01

    Power plants and industrial facilities can release potentially harmful chemicals, like boron through direct aqueous discharges or cycling of cooling water to aquatic ecosystems environmental at plant surrounding. Boron is an essential trace element for the growth of marine biota, but can be toxic in excessive amount. Therefore will adversely affect of growth, reproduction or survival. Toxicity to aquatic organism, including vertebrates, invertebrates and plants can vary depending on the organism's life stage and environment. It is recommended that the maximum concentration of total boron for the protection of marine aquatic life should not exceed 1,2 mg B/L. Early stages of life cycle are more sensitive to boron than later ones, and the use of reconstituted water shows higher toxicity in lower boron concentrations than natural waters. (author)

  1. Doping-Induced Isotopic Mg11B2 Bulk Superconductor for Fusion Application

    Directory of Open Access Journals (Sweden)

    Qi Cai

    2017-03-01

    Full Text Available Superconducting wires are widely used for fabricating magnetic coils in fusion reactors. Superconducting magnet system represents a key determinant of the thermal efficiency and the construction/operating costs of such a reactor. In consideration of the stability of 11B against fast neutron irradiation and its lower induced radioactivation properties, MgB2 superconductor with 11B serving as the boron source is an alternative candidate for use in fusion reactors with a severe high neutron flux environment. In the present work, the glycine-doped Mg11B2 bulk superconductor was synthesized from isotopic 11B powder to enhance the high field properties. The critical current density was enhanced (103 A·cm−2 at 20 K and 5 T over the entire field in contrast with the sample prepared from natural boron.

  2. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model

    Energy Technology Data Exchange (ETDEWEB)

    Heber, Elisa M. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Hawthorne, M. Frederick [Univ. of Missouri, Columbia, MO (United States). International Inst. of Nano and Molecular Medicine; Kueffer, Peter J. [Univ. of Missouri, Columbia, MO (United States). International Inst. of Nano and Molecular Medicine; Garabalino, Marcela A. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Thorp, Silvia I. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Pozzi, Emiliano C. C. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Hughes, Andrea Monti [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Maitz, Charles A. [Univ. of Missouri, Columbia, MO (United States). International Inst. of Nano and Molecular Medicine; Jalisatgi, Satish S. [Univ. of Missouri, Columbia, MO (United States). International Inst. of Nano and Molecular Medicine; Nigg, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Curotto, Paula [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Trivillin, Verónica A. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Schwint, Amanda E. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina)

    2014-11-11

    Unilamellar liposomes formulated with an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the lipid bilayer, and encapsulating Na3[1-(2’-B10-H9)-2-NH3B10H8] were prepared by probe sonication and investigated in vivo. Microwave assisted digestion followed by inductively coupled plasma-optical emission spectroscopy was utilized to determine the biodistribution of boron in various tissues following either a single tail vein injection or two identical injections (separated by 24 hours) of the liposomal suspension in BALB/c mice bearing EMT6 mammary adenocarcinomas in their right flank. Double-injection protocols resulted in a boron content in the tumor exceeding 50 µg of boron per gram of tissue for 48 to 72 hours subsequent to the initial injection while tumor:blood boron ratios were more ideal from 54 hours (1.9:1) to 96 hours (5.7:1) subsequent to the initial injection. Tumor bearing mice were given a double-injection of liposomes containing the 10B-enriched analogs of the aforementioned agents and subjected to a 30 minute irradiation by thermal neutrons with a flux of 8.8 x 108 (±7%) neutrons/cm2 s integrated over the energy range of 0.0 – 0.414 eV. Significant tumor response for a single BNCT treatment was demonstrated by growth curves versus a control group. Vastly diminished tumor growth was witnessed at 14 days (186% increase versus 1551% in controls) in mice that were given a second injection/radiation treatment 7 days after the first. Mice given a one hour neutron irradiation following the double-injection of liposomes had a similar response (169% increase at 14 days) suggesting that neutron fluence is the limiting factor towards BNCT efficacy in this study.

  3. Preparation and electrical properties of boron and boron phosphide films obtained by gas source molecular beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kumashiro, Y.; Yokoyama, T.; Sakamoto, T.; Fujita, T. [Yokohama National Univ. (Japan)

    1997-10-01

    Boron and boron phosphide films were prepared by gas source molecular beam deposition on sapphire crystal at various substrate temperatures up to 800{degrees}C using cracked B{sub 2}H{sub 6} (2% in H{sub 2}) at 300{degrees}C and cracked PH{sub 3} (20% in H{sub 2}) at 900{degrees}C. The substrate temperatures and gas flow rates of the reactant gases determined the film growth. The boron films with amorphous structure are p type. Increasing growth times lead to increasing mobilities and decreasing carrier concentrations. Boron phosphide film with maximum P/B ratio is obtained at a substrate temperature of 600{degrees}C, below and above which they become phosphorous deficient due to insufficient supply of phosphorus and thermal desorption of the phosphorus as P{sub 2}, respectively, but they are all n type conductors due to phosphorus vacancies.

  4. Gas targets for the production of 15O, 11C and 18F for PET studies

    International Nuclear Information System (INIS)

    Hichwa, R.D.; Hugel, E.A.; Moskwa, J.J.; Raylman, R.R.

    1987-01-01

    Production of 15 O, 11 C and 18 F is achieved with particle irradiation of gaseous targets. Design features for generalized targets include characterization of window materials and cooling, target size and shape, beam size and profile, and chamber cooling and operating pressure. A cylindrical design is employed that utilizes a C-ring for sealing the target window to the target body. Ultrapure materials are required for fabrication of 11 C and 18 F targets. Use of welded joints are to be limited on all targets and eliminated on 18 F systems. Tomographic techniques will be used to determine the cross-sectional temperature profile of target gases during bombardment. Mass species are measured with a sector focused mass spectrometer while the target undergoes particle irradiation for production of clinical agents. This diagnostic information is useful for tailoring the bombardment conditions to achieve optimal precursor production and the highest specific activity that may be obtained from the target. (orig.)

  5. Boron Isotopic Fractionation and Trace Element Incorporation in Various Species of Modern Corals in Sanya Bay, South China Sea

    Institute of Scientific and Technical Information of China (English)

    Haizhen Wei; Shaoyong Jiang; Yingkai Xiao; N Gary Hemming

    2014-01-01

    The boron isotope paleo-pH proxy has been extensively studied due to its potential for understanding past climate change, and further calibrations were considered for accurate applications of the proxy because of significant variability related to biocarbonate microstructure. In this work, we studied the boron isotopic fractionation between modern marine corals and their coexisting seawater collected along shallow area in Sanya Bay, South China Sea. The apparent partition coefficient of boron (KD) ranged from 0.83×10-3 to 1.69×10-3, which are in good agreement with previous studies. As the an-alyzed coral skeleton (~5 g) spanned the growth time period of 1-2 years, we discussed the boron iso-topic fractionation between pristine corals and modern seawater using the annual mean seawater pH of 8.12 in this sea area. Without taking the vital effect into account, (11B/10B)coral values of all living corals spread over the curves of (11B/10B)borate vs. (11B/10B)sw with theα4-3 values ranging from 0.974 to 0.982. After calibrating the biological effect on the calcifying fluid pH, the field-based calcification on calcify-ing fluid pH (i.e.,Δ(pHbiol-pHsw)) for coral species of Acropora, Pavona, Pocillopora, Faviidae, and others including Proites are 0.42, 0.33, 0.36, 0.19, respectively, and it is necessary to be validated by coral cul-turing experiment in the future. Correlations in B/Ca vs. Sr/Ca and B/Ca vs. pHbiol approve tempera-ture and calcifying fluid pH influence on skeletal B/Ca. Fundamental understanding of the thermody-namic basis of the boron isotopes in marine carbonates and seawater will strengthen the confidence in the use of paleo-pH proxy as a powerful tool to monitor atmospheric CO2 variations in the past.

  6. [11C]NS8880, a promising PET radiotracer targeting the norepinephrine transporter

    DEFF Research Database (Denmark)

    Vase, Karina Højrup; Peters, Dan; Nielsen, Elsebeth Ø

    2014-01-01

    -azabicyclo[3.2.1]octane (NS8880), targeting NET. NS8880 has an in vitro binding profile comparable to desipramine and is structurally not related to reboxetine. METHODS: Labeling of NS8880 with [11C] was achieved by a non-conventional technique: substitution of pyridinyl fluorine with [11C]methanolate...... yields with high purity. The PET in vivo evaluation in pig and rat revealed a rapid brain uptake of [11C]NS8880 and fast obtaining of equilibrium. Highest binding was observed in thalamic and hypothalamic regions. Pretreatment with desipramine efficiently reduced binding of [11C]NS8880. CONCLUSION: Based...... on the pre-clinical results obtained so far [11C]NS8880 displays promising properties for PET imaging of NET....

  7. Structural Modification in Carbon Nanotubes by Boron Incorporation

    Directory of Open Access Journals (Sweden)

    Handuja Sangeeta

    2009-01-01

    Full Text Available Abstract We have synthesized boron-incorporated carbon nanotubes (CNTs by decomposition of ferrocene and xylene in a thermal chemical vapor deposition set up using boric acid as the boron source. Scanning and transmission electron microscopy studies of the synthesized CNT samples showed that there was deterioration in crystallinity and improvement in alignment of the CNTs as the boron content in precursor solution increased from 0% to 15%. Raman analysis of these samples showed a shift of ~7 cm−1in wave number to higher side and broadening of the G band with increasing boron concentration along with an increase in intensity of the G band. Furthermore, there was an increase in the intensity of the D band along with a decrease in its wave number position with increase in boron content. We speculate that these structural modifications in the morphology and microstructure of CNTs might be due to the charge transfer from boron to the graphite matrix, resulting in shortening of the carbon–carbon bonds.

  8. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  9. Optimal timing of neutron irradiation for boron neutron capture therapy after intravenous infusion of sodium borocaptate in patients with glioblastoma

    International Nuclear Information System (INIS)

    Kageji, Teruyoshi; Nagahiro, Shinji; Kitamura, Katsushi; Nakagawa, Yoshinobu; Hatanaka, Hiroshi; Haritz, Dietrich; Grochulla, Frank; Haselsberger, Klaus; Gabel, Detlef

    2001-01-01

    Purpose: A cooperative study in Europe and Japan was conducted to determine the pharmacokinetics and boron uptake of sodium borocaptate (BSH: Na 2 B 12 H 11 SH), which has been introduced clinically as a boron carrier for boron neutron capture therapy in patients with glioblastoma. Methods and Materials: Data from 56 patients with glioblastoma who received BSH intravenous infusion were retrospectively reviewed. The pharmacokinetics were evaluated in 50 patients, and boron uptake was investigated in 47 patients. Patients received BSH doses between 12 and 100 mg/kg of body weight. For the evaluation, the infused boron dose was scaled linearly to 100 mg/kg BSH. Results: In BSH pharmacokinetics, the average value for total body clearance, distribution volume of steady state, and mean residence time was 3.6±1.5 L/h, 223.3±160.7 L, and 68.0±52.5 h, respectively. The average values of the boron concentration in tumor adjusted to 100 mg/kg BSH, the boron concentration in blood adjusted to 100 mg/kg BSH, and the tumor/blood boron concentration ratio were 37.1±35.8 ppm, 35.2±41.8 ppm, and 1.53±1.43, respectively. A good correlation was found between the logarithmic value of T adj and the interval from BSH infusion to tumor tissue sampling. About 12-19 h after infusion, the actual values for T adj and tumor/blood boron concentration ratio were 46.2±36.0 ppm and 1.70±1.06, respectively. The dose ratio between tumor and healthy tissue peaked in the same interval. Conclusion: For boron neutron capture therapy using BSH administered by intravenous infusion, this work confirms that neutron irradiation is optimal around 12-19 h after the infusion is started

  10. A comparative study of two digestion methods employed for the determination boron in ferroboron used as an advanced shielding material

    International Nuclear Information System (INIS)

    Kamble, Granthali S.; Manisha, V.; Venkatesh, K.

    2015-01-01

    Shielding of nuclear reactor core is an important requirement of fast reactors. An important objective of future Fast Breeder Reactors (FBRs) is to reduce the volume of shields. A large number of materials have been considered for use to reduce the neutron flux to acceptable levels. A shield material which brings down the energy of neutrons by elastic and inelastic scattering along with absorption will be more effective. Ferro boron is identified as one of the advanced shielding materials considered for use in future FBRs, planned to be constructed in India. Ferroboron is an economical and indigenously available material which qualifies as a promising shield material through literature survey and scoping calculations. Experiments have been conducted in KAMINI reactor to understand the effectiveness of prospective shield material Ferro-boron as an in-core shield material for future FBRs. The Ferro boron used in these experiments contained 11.8% and 15% of boron. Precise determination of boron content in these ferro boron samples is very important to determine its effectiveness as a shield material. In this work a comparative study was carried out to determine the boron content in ferro boron samples. In the first method the sample was treated with incremental amounts of nitric acid under reflux (to prevent rigorous reaction and volatalisation of boron). The solution was gradually heated and the solution was filtered through a Whatman Filter paper no. 41. The undissolved ferro boron residue collected in the filter paper after filtration, is transferred to a platinum crucible; mixed with sodium carbonate and is ashed. The crucible is placed over a burner for 1 h to fuse the contents. The fused mass is leached in dilute hydrochloric acid, added to the nitric acid filtrate and made up to pre-determined volume

  11. Flame-photometric determination of boron in alloys with chromatographic separation

    International Nuclear Information System (INIS)

    Telegin, G.F.; Popandopulo, Yu.I.; Grazhuiene, S.S.

    1983-01-01

    A study was made on the possibility of using flame-photometric method for boron determination in iron base alloys. The method of extraction chromatography was used for boron separation from iron. It is possible to reliably determine boron in Fesub(x)Bsub(100-x) alloys only at a concentration ratio of iron to boron <=0.2. The technique for determination of boron in Fesub(x)Bsub(100-x) alloys was developed on the base of the conducted investigation

  12. Flame-photometric determination of boron in alloys with chromatographic separation

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, G.F.; Popandopulo, Yu.I.; Grazhuiene, S.S. (AN SSSR, Chernogolovka. Inst. Fiziki Tverdogo Tela)

    1983-01-01

    A study was made on the possibility of using flame-photometric method for boron determination in iron base alloys. The method of extraction chromatography was used for boron separation from iron. It is possible to reliably determine boron in Fesub(x)Bsub(100-x) alloys only at a concentration ratio of iron to boron <=0.2. The technique for determination of boron in Fesub(x)Bsub(100-x) alloys was developed on the base of the conducted investigation.

  13. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  14. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.

    1996-01-01

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  15. Design, Fabrication and Performance of Boron-Carbide Control Elements

    International Nuclear Information System (INIS)

    Brammer, H.A.; Jacobson, J.

    1964-01-01

    A control blade design, incorporating boron-carbide (B 4 C) in stainless-steel tubes, was introduced into service in boiling water reactors in April 1961. Since that time this blade has become the standard reference control element in General Electric boiling-water reactors, replacing the 2% boron-stainless-steel blades previously used. The blades consist of a sheathed, cruciform array of small vertical stainless-steel tubes filled with compácted boron-carbide powder. The boron-carbide powder is confined longitudinally into several independent compartments by swaging over ball bearings located inside the tubes. The development and use of boron-carbide control rods is discussed in five phases: 1. Summary of experience with boron-steel blades and reasons for transition to boron-carbide control; 2. Design of the boron-carbide blade, beginning with developmental experiments, including early measurements performed in the AEC ''Control Rod Material and Development Program'' at the Vallecitos Atomic Laboratory, through a description of the final control blade configuration; 3. Fabrication of the blades and quality control procedures; 4. Results of confirmatory pre-operational mechanical and reactivity testing; and 5. Post-operational experience with the blades, including information on the results of mechanical inspection and reactivity testing after two years of reactor service. (author) [fr

  16. Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.

    Science.gov (United States)

    Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J

    2015-04-01

    The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10 7 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF 3 composite and a stacked Al/Teflon design) at various incident electron energies

  18. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hannah E. [Georgia Inst. of Technology, Atlanta, GA (United States)

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies.

  19. Computer modeling the boron compound factor in normal brain tissue

    International Nuclear Information System (INIS)

    Gavin, P.R.; Huiskamp, R.; Wheeler, F.J.; Griebenow, M.L.

    1993-01-01

    The macroscopic distribution of borocaptate sodium (Na 2 B 12 H 11 SH or BSH) in normal tissues has been determined and can be accurately predicted from the blood concentration. The compound para-borono-phenylalanine (p-BPA) has also been studied in dogs and normal tissue distribution has been determined. The total physical dose required to reach a biological isoeffect appears to increase directly as the proportion of boron capture dose increases. This effect, together with knowledge of the macrodistribution, led to estimates of the influence of the microdistribution of the BSH compound. This paper reports a computer model that was used to predict the compound factor for BSH and p-BPA and, hence, the equivalent radiation in normal tissues. The compound factor would need to be calculated for other compounds with different distributions. This information is needed to design appropriate normal tissue tolerance studies for different organ systems and/or different boron compounds

  20. NMR investigation of boron impurities in refined metallurgical grade silicon

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, Hans-Joachim; Loeser, Wolfgang; Schmitz, Steffen; Sakaliyska, Miroslava [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Institute for Solid State Physics, Technische Universitaet Dresden (Germany); Eisert, Stefan; Reichenbach, Birk; Mueller, Tim [Adensis GmbH, Dresden (Germany); Acker, Joerg; Rietig, Anja; Ducke, Jana [Department of Chemistry, Faculty for Natural Sciences, Brandenburg Technical University Cottbus-Senftenberg, Senftenberg (Germany)

    2015-09-15

    The nuclear magnetic resonance (NMR) method was applied for tracking boron impurities in the refining process of metallurgical grade (MG) silicon. From the NMR signal of the {sup 11}B isotope at an operating temperature 4.2 K, the boron concentration can be estimated down to the order of 1-10 wppm B. After melting and resolidification of MG-Si alloyed with Ca and Ti, a major fraction of B impurities remains in the Si solid solution as inferred from the characteristic NMR frequency. The alloying element Ti does not form substantial fractions of TiB{sub 2}. Acid leaching of crushed powders of MG-Si alloyed with Ca and Ti can diminish the initial impurity content of B suggesting its accumulation in the grain boundary phases. NMR signals of TiB{sub 2} at 4.2 K and room temperature (RT), and of poly-Si with different B doping at 4.2 K. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    Science.gov (United States)

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  2. Analysis and separation of boron isotopes; Analyse et separation des isotopes du bore

    Energy Technology Data Exchange (ETDEWEB)

    Perie, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-11-01

    The nuclear applications of boron-10 justify the study of a method of measurement of its isotopic abundance as well as of very small traces of boron in different materials. A systematic study of thermionic emission of BO{sub 2}Na{sub 2}{sup +} has been carried out. In the presence of a slight excess of alkalis, the thermionic emission is considerably reduced. On the other hand, the addition of a mixture of sodium hydroxide-glycerol (or mannitol) to borax permits to obtain an intense and stable beam. These results have permitted to establish an operative method for the analysis of traces of boron by isotopic dilution. In other respects, the needs of boron-10 in nuclear industry Justify the study of procedures of separation of isotopes of boron. A considerable isotopic effect has been exhibited in the chemical exchange reaction between methyl borate and borate salt in solution. In the case of exchange between methyl borate and sodium borate, the elementary separation factor {alpha} is: {alpha}=(({sup 11}B/{sup 10}B)vap.)/(({sup 11}B/{sup 10}B)liq.)=1.03{sub 3}. The high value of this elementary effect has been multiplied in a distillation column in which the problem of regeneration of the reactive has been resolved. An alternative procedure replacing the alkali borate by a borate of volatile base, for example diethylamine, has also been studied ({alpha}=1,02{sub 5} in medium hydro-methanolic with 2,2 per cent water). (author) [French] Les applications nucleaires du bore 10 justifient l'etude d'une methode de mesure de son abondance isotopique dans divers materiaux ainsi que le dosage de tres faibles traces de bore. Une etude systematique de l'emission thermoionique de BO{sub 2} Na{sub 2}{sup +} a ete effectuee. En presence d'un leger exces d'alcalins, l'emission thermoionique est considerablement reduite. Par contre l'addition au borax d'un melange soude-glycerol (ou mannitol) permet d'obtenir un faisceau stable et intense. Ces resultats ont permis d'etablir un mode

  3. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo; Li, Zhenyu; Sarp, Sarper; Park, Y. G.; Amy, Gary L.; Vrouwenvelder, Johannes S.

    2014-01-01

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  4. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-07-17

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  5. miR-11 regulates pupal size of Drosophila melanogaster via directly targeting Ras85D.

    Science.gov (United States)

    Li, Yao; Li, Shengjie; Jin, Ping; Chen, Liming; Ma, Fei

    2017-01-01

    MicroRNAs play diverse roles in various physiological processes during Drosophila development. In the present study, we reported that miR-11 regulates pupal size during Drosophila metamorphosis via targeting Ras85D with the following evidences: pupal size was increased in the miR-11 deletion mutant; restoration of miR-11 in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant; ectopic expression of miR-11 in brain insulin-producing cells (IPCs) and whole body shows consistent alteration of pupal size; Dilps and Ras85D expressions were negatively regulated by miR-11 in vivo; miR-11 targets Ras85D through directly binding to Ras85D 3'-untranslated region in vitro; removal of one copy of Ras85D in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant. Thus, our current work provides a novel mechanism of pupal size determination by microRNAs during Drosophila melanogaster metamorphosis. Copyright © 2017 the American Physiological Society.

  6. Iron solubility in highly boron-doped silicon

    International Nuclear Information System (INIS)

    McHugo, S.A.; McDonald, R.J.; Smith, A.R.; Hurley, D.L.; Weber, E.R.

    1998-01-01

    We have directly measured the solubility of iron in high and low boron-doped silicon using instrumental neutron activation analysis. Iron solubilities were measured at 800, 900, 1000, and 1100thinsp degree C in silicon doped with either 1.5x10 19 or 6.5x10 14 thinspboronthinspatoms/cm 3 . We have measured a greater iron solubility in high boron-doped silicon as compared to low boron-doped silicon, however, the degree of enhancement is lower than anticipated at temperatures >800thinsp degree C. The decreased enhancement is explained by a shift in the iron donor energy level towards the valence band at elevated temperatures. Based on this data, we have calculated the position of the iron donor level in the silicon band gap at elevated temperatures. We incorporate the iron energy level shift in calculations of iron solubility in silicon over a wide range of temperatures and boron-doping levels, providing a means to accurately predict iron segregation between high and low boron-doped silicon. copyright 1998 American Institute of Physics

  7. Hot ductility behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; Cabrera, J.M.

    2007-01-01

    The current study analyses the influence of boron contents (between 29 and 105 ppm) on the hot ductility of boron microalloyed steels. For this purpose, hot tensile tests were carried out at different temperatures (700, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s -1 . In general, results revealed an improvement of the hot ductility of steels at increasing boron content. At 700, 900 and 1000 deg. C the ductility is higher than at 800 deg. C, where boron microalloyed steels exhibit a region of ductility loss (trough region). Likewise, dynamic recrystallization only occurred at 900 and 1000 deg. C. The fracture surfaces of the tested steels at temperatures giving the high temperature ductility regime show that the fracture mode is a result of ductile failure, whereas it is ductile-brittle failure in the trough region. Results are discussed in terms of dynamic recrystallization and boron segregation towards austenite grain boundaries, which may retard the formation of pro-eutectoid ferrite and increase grain boundary cohesion

  8. Role of carbon in boron suboxide thin films

    International Nuclear Information System (INIS)

    Music, Denis; Kugler, Veronika M.; Czigany, Zsolt; Flink, Axel; Werner, Oskar; Schneider, Jochen M.; Hultman, Lars; Helmersson, Ulf

    2003-01-01

    Boron suboxide thin films, with controlled carbon content, were grown by rf dual magnetron sputtering of boron and carbon targets in an argon-oxygen atmosphere. Film composition, structure, mechanical, and electrical properties were evaluated with x-ray photoelectron spectroscopy, Auger electron spectroscopy, x-ray diffraction, transmission electron microscopy, nanoindentation, and high-frequency capacitance-voltage measurements. X-ray amorphous B-O-C films (O/B=0.02) showed an increase in density from 2.0 to 2.4 g/cm 3 as C content was increased from 0 to 0.6 at. % and the film with the highest density had nanocrystalline inclusions. The density increase occurred most likely due to the formation of B-C bonds, which are shorter than B-B bonds. All measured material properties were found to depend strongly on the C content and thus film density. The elastic modulus increased from 188 to 281 GPa with the increasing C content, while the relative dielectric constant decreased from 19.2 to 0.9. Hence, B-O-C films show a potential for protective coatings and even for application in electronic and optical devices

  9. Geochemical and isotopic evidences for a severe anthropogenic boron contamination: A case study from Castelluccio (Arezzo, central Italy)

    International Nuclear Information System (INIS)

    Venturi, Stefania; Vaselli, Orlando; Tassi, Franco; Nisi, Barbara; Pennisi, Maddalena; Cabassi, Jacopo; Bicocchi, Gabriele; Rossato, Luca

    2015-01-01

    In 2009 a deterioration of garden plants watered with domestic wells was related to high boron concentrations (up to 57 mg/L) measured in the shallow aquifer from the industrial area of Castelluccio (Tuscany, Italy), where several factories are or were using boron compounds for their industrial processes. Since 2012 a geochemical and isotopic survey of stream, ground and waste waters, and sediment samples was performed. In addition, monthly geochemical surveys were carried out from January to September 2013, during which concentrations of boron up to 139 mg/L were measured. The geochemical dataset also included raw (borax and sodium boron-hydride) and anthropogenic materials (B-rich slags and muds stored in one of the local factories), the latter being, to the best of our knowledge, analyzed for the first time in this work for bulk and leachate boron concentration and isotopic ratios. The results highlighted that the high concentrations of boron found in the local shallow aquifer had unequivocally an anthropogenic source. It was suggested that prolonged interaction between industrial (presently stored at ground level or buried) by-products and waste and meteoric waters was likely the main process responsible of the groundwater contamination as supported by the analysis of the major solutes. The dispersion of the contaminant could not clearly be observed downward the shallow hydrogeological circuit. Consequently, the presence of other sources of boron in the industrial area of Castelluccio cannot be excluded. This would also explain the reason why no univocal results were obtained by the "1"1B/"1"0B isotopic ratios measured in water, sediment and (bulk and leachate) anthropogenic samples. To minimize the boron contamination a hydraulic barrier should be constructed where the highest concentrations of boron were measured. - Highlights: • High boron concentrations were measured in a groundwater system near Arezzo (Italy). • Several factories in the local

  10. {sup 1}H and {sup 10}B NMR and MRI investigation of boron- and gadolinium-boron compounds in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, M., E-mail: marco.bonora@unipv.it [Physics Department ' A. Volta' , University of Pavia, Via Bassi 6, 27100 Pavia (Italy)] [CNISM Unit (Italy); Corti, M.; Borsa, F. [Physics Department ' A. Volta' , University of Pavia, Via Bassi 6, 27100 Pavia (Italy)] [CNISM Unit (Italy); Bortolussi, S.; Protti, N.; Santoro, D.; Stella, S.; Altieri, S. [Nuclear and Theoretical Physics Department, University of Pavia, Via Bassi 6, 27100 Pavia (Italy)] [INFN Pavia (Italy); Zonta, C.; Clerici, A.M.; Cansolino, L.; Ferrari, C.; Dionigi, P. [Surgical Sciences Department, Experimental Surgery Laboratory, University of Pavia, Pavia (Italy); Porta, A.; Zanoni, G.; Vidari, G. [Organic Chemistry Department, University of Pavia, Via Taramelli 10, 27100 Pavia (Italy)

    2011-12-15

    {sup 10}B molecular compounds suitable for Boron Neutron Capture Therapy (BNCT) are tagged with a Gd(III) paramagnetic ion. The newly synthesized molecule, Gd-BPA, is investigated as contrast agent in Magnetic Resonance Imaging (MRI) with the final aim of mapping the boron distribution in tissues. Preliminary Nuclear Magnetic Resonance (NMR) measurements, which include {sup 1}H and {sup 10}B relaxometry in animal tissues, proton relaxivity of the paramagnetic Gd-BPA molecule in water and its absorption in tumoral living cells, are reported.

  11. Effect of microalloying with boron on the microstructure and mechanical properties of Mg–Zn–Y–Mn alloy

    International Nuclear Information System (INIS)

    Yang, Kai; Zhang, Jinshan; Zong, Ximei; Wang, Wenxian; Xu, Chunxiang; Cheng, Weili; Nie, Kaibo

    2016-01-01

    The addition of boron to long-periodic stacking ordered (LPSO) phase-strengthened Mg–Zn–Y system alloys has been studied for the first time. The as-cast Mg 94 Zn 2.5 Y 2.5 Mn 1 alloy containing 0.003 wt% B with abundant LPSO phase and refined grains exhibited optimal mechanical performance with ultimate tensile strength and elongation of 252.5 MPa and 11.0%, respectively. - Highlights: • The effect of a trace amount of boron (B) on the formation of long-periodic stacking ordered (LPSO) phase was investigated. • Adding small amounts of B to the Mg–Zn–Y–Mn alloy can highly increase the volume fraction of LPSO phase. • The as-cast Mg–Zn–Y–Mn–B alloy has high strength (UTS=252.5 MPa) and good ductility (elongation=11.0%) in low Y/Zn ratio.

  12. Internal stress control of boron thin film

    Energy Technology Data Exchange (ETDEWEB)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M. [Osaka Univ., Suita (Japan). Graduate Sch. of Eng.

    1998-09-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s{sup -1} and substrate temperature of 300 C. (orig.) 12 refs.

  13. Internal stress control of boron thin film

    International Nuclear Information System (INIS)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M.

    1998-01-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s -1 and substrate temperature of 300 C. (orig.)

  14. Characterization of KIF11 as a novel prognostic biomarker and therapeutic target for oral cancer.

    Science.gov (United States)

    Daigo, Kayo; Takano, Atsushi; Thang, Phung Manh; Yoshitake, Yoshihiro; Shinohara, Masanori; Tohnai, Iwau; Murakami, Yoshinori; Maegawa, Jiro; Daigo, Yataro

    2018-01-01

    Oral cancer has a high mortality rate, and its incidence is increasing gradually worldwide. As the effectiveness of standard treatments is still limited, the development of new therapeutic strategies is eagerly awaited. Kinesin family member 11 (KIF11) is a motor protein required for establishing a bipolar spindle in cell division. The role of KIF11 in oral cancer is unclear. Therefore, the present study aimed to assess the role of KIF11 in oral cancer and evaluate its role as a prognostic biomarker and therapeutic target for treating oral cancer. Immunohistochemical analysis demonstrated that KIF11 was expressed in 64 of 99 (64.6%) oral cancer tissues but not in healthy oral epithelia. Strong KIF11 expression was significantly associated with poor prognosis among oral cancer patients (P=0.034), and multivariate analysis confirmed its independent prognostic value. In addition, inhibition of KIF11 expression by transfection of siRNAs into oral cancer cells or treatment of cells with a KIF11 inhibitor significantly suppressed cell proliferation, probably through G2/M arrest and subsequent induction of apoptosis. These results suggest that KIF11 could be a potential prognostic biomarker and therapeutic target for oral cancer.

  15. Effect of boron and zinc fertilization on white oats grown in soil with average content of these nutrients

    Directory of Open Access Journals (Sweden)

    Deise Dalazen Castagnara

    2012-07-01

    Full Text Available The objective of this study was to evaluate the effect of fertilization with zinc or boron on the growth and dry matter production, nutritional value and accumulation of nutrients in white oats. The study comprised two experiments conducted in glasshouses, the first consisting of the application of four doses of zinc (0, 0.2, 0.4 and 0.6 mg/dm³ in the form of zinc sulphate (20% Zn, and the second consisting of the application of four doses of boron (0, 0.2, 0.4 and 0.6 mg/dm³ in the form of Borax (11% B. The experimental design in each case was a randomized block design, with five replicates. Fertilization with zinc and boron increased the growth of white oats, but had no significant effect on the nutritional value of the forage. Higher levels of absorption and accumulation of nutrients in plant tissues were observed following the application of boron and zinc at rates of up to 0.60 mg/dm³ of soil.

  16. Investigations on the binary systems of boron with chromium, columbium, nickel, and thorium, including a discussion of the Phase TiB in the titanium-boron system

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, L H; Kiessling, R

    1950-01-01

    Investigations on the binary systems chromium-, columbium-, nickel-, and thorium-boron are reported. The titanium-boron system is discussed, and it is shown that the phase TiB, previously assumed to have zincblende structure, probably has a face-centered titanium lattice with boron in the octahedral interstices. In the chromium-boron system, the structure of the eta phase has been determined. It has the composition Cr/sub 3/B/sub 4/ and is isomorphous with Ta/sub 3/B/sub 4/ and Mn/sub 3/B/sub 4/. Some data for the delta phase are also given. For the columbium-boron system, a phase analysis has been carried out. The structures of three of the intermediary phases, CbB, Cb/sub 3/B/sub 2/, and CbB/sub 2/ (with extended homogeneity range), have been determined. They are isomorphous with corresponding phases of the tantalum-boron system. A brief phase analysis of the nickel-boron system showed the existence of a phase with lower boron content than Ni/sub 2/B, which has not been previously reported. In the thorium-boron system a new phase, probably with a complicated structure, was found with a boron content of about 50 at. %.

  17. Boron-containing thioureas for neutron capture therapy. Borhaltige Thioharnstoffe fuer die Neutroneneinfangtherapie

    Energy Technology Data Exchange (ETDEWEB)

    Ketz, H.

    1993-10-21

    Melanin is produced in large amounts in malignant melanotic melanomas. Because thiourea compounds are covalently incorporated into melanin during its biosynthesis, the preparation of boronated thiourea-derivatives is of particular interest for the BNCT (Boron Neutron Capture Therapy). Accumulation of boron in tumors by means of boronated thiourea-derivatives may therefore provide levels of [sup 10]B which are useful for BNCT. In BNCT the tumor containing the boron compound is irradiated with epithermal neutrons to generate He- and Li-nuclei from the [sup 10]B which can then destroy the tumor cells. Because of the short ranges of these particles (approximately one cell diameter) the damage will be almost exclusively confined to the tumor leaving normal tissue unharmed. High accumulation of 2-mercapto-1-methylimidazole (methimazole) in melanotic melanomas has been described in the literature. Boronated derivatives of methimazole were therefore synthesized. Boron was in the form of a boronic acid, a nido-carbonate and a mercaptoundeca hydro-closo-dodecaborate (BSH). The synthesis of the boron cluster derivatives of methimazole (nido-carborate- and BSH-derivatives) with 9 resp. 12 boron atoms in the molecule were expected to achieve higher concentrations of boron in the tumor than in the case of the boronic acid compound with its single boron atom. (orig.)

  18. Boron content of South African surface waters: prelimenary assessment for irrigation

    International Nuclear Information System (INIS)

    Reid, P.C.; Davies, E.

    1989-01-01

    Boron, a naturally occuring constituent of surface and ground water, is an essential plant nutrient. However, at relatively low concentrations, boron becomes toxic to plant growth. In order to assess the boron status in South African surface waters, the Department of Water Affairs launched a long-term boron water quality assessment programme in 1985, encompassing the analysis of water samples taken at 91 sites throughout South Africa. Results to date indicate that the boron concentration in South African surface waters varies between 0,02 to 0,33 mg l -1 . At these concentrations even the most boron sensitive crops can be grown without fear of boron toxicity. 3 refs., 1 fig., 2 tabs

  19. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  20. Measurement of boron isotope ratios in groundwater studies

    International Nuclear Information System (INIS)

    Porteous, N.C.; Walsh, J.N.; Jarvis, K.E.

    1995-01-01

    Boron is present at low levels in groundwater and rainfall in the UK, ranging between 2 and 200 ng ml -1 . A sensitive technique has been developed using inductively coupled plasma mass spectrometry (ICP-MS) to measure boron isotope ratios at low concentrations with a precision (s r ) of between 0.1 and 0.2%. Samples were evaporated to increase elemental boron concentrations to 200 ng ml -1 and interfering matrix elements were removed by an adapted cation-exchange separation procedure. The validity of measuring boron isotopic ratios by ICP-MS at this concentration level is discussed in relation to the theoretical instrument precision attainable based on counting statistics. (author)

  1. The breast cancer antigen 5T4 interacts with Rab11, and is a target and regulator of Rab11 mediated trafficking.

    Science.gov (United States)

    Harris, Janelle L; Dave, Keyur; Gorman, Jeffrey; Khanna, Kum Kum

    2018-06-01

    5T4 is a transmembrane glycoprotein with limited expression in normal adult tissues and expression in some solid tumours. It is unclear whether 5T4 is preferentially expressed by stem or differentiated cell types. Modes of 5T4 regulation are unknown despite its ongoing development as a cancer immunotherapy target. Our aims were to clarify the differentiation status of 5T4 expressing cells in breast cancer and to understand the mechanism underlying 5T4 membrane presentation. We analysed 5T4 expression in breast cancer cell populations by flow cytometery and found that 5T4 is highly expressed on differentiated cells, where it localizes to focal adhesions. Using immunoprecipitation and mass spectrometry, we identified interactions between 5T4 and the membrane trafficking proteins Rab11, Rab18 and ARF6. Mechanistically we found that Rab11 and Rab18 have oppositional roles in controlling expression and surface presentation of 5T4. 5T4 depletion stabilizes Rab11 protein expression with a consequent stimulation transferrin surface labelling, indicating that 5T4 represses endocytic activity. Successful immunotherapeutic targeting of 5T4 requires surface presentation and different immunotherapy strategies require surface presentation versus endocytosis. While breast cancer cells with high 5T4 surface expression and rapid cell surface turnover would be susceptible to antibody-drug conjugates that rely on intracellular release, 5T4 positive cells with lower expression or lower turnover may still be responsive to T-cell mediated approaches. We find that endocytosis of 5T4 is strongly Rab11 dependent and as such Rab11 activity could affect the success or failure of 5T4-targetted immunotherapy, particularly for antibody-drug conjugate approaches. In fact, 5T4 itself represses Rab11 expression. This newly uncovered relationship between Rab11 and 5T4 suggests that breast tumours with high 5T4 expression may not have efficient endocytic uptake of 5T4-targetted immunotherapeutics

  2. Optical properties of boron carbide near the boron K edge evaluated by soft-x-ray reflectometry from a Ru/B4C multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Panzner, Tobias; Schlemper, Christoph; Morawe, Christian; Pietsch, Ullrich

    2009-12-10

    Soft-x-ray Bragg reflection from two Ru/B4C multilayers with 10 and 63 periods was used for independent determination of both real and imaginary parts of the refractive index n = 1 -{delta} + i{beta} close to the boron K edge ({approx}188 eV). Prior to soft x-ray measurements, the structural parameters of the multilayers were determined by x-ray reflectometry using hard x rays. For the 63-period sample, the optical properties based on the predictions made for elemental boron major deviations were found close to the K edge of boron for the 10-period sample explained by chemical bonding of boron to B4C and various boron oxides.

  3. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Fitzsimmons, M.; Pynn, R.

    1997-01-01

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  4. Intermolecular Formation of Two C−C Bonds across Olefins Enabled by Boron-Based Relay Strategies

    Czech Academy of Sciences Publication Activity Database

    Hidasová, Denisa; Jahn, Ullrich

    2017-01-01

    Roč. 56, č. 33 (2017), s. 9656-9658 ISSN 1433-7851 Institutional support: RVO:61388963 Keywords : 1,2- metal ate rearrangement * C−C bond formation * radical reactions * transition metal catalysis * vinyl boronates Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 11.994, year: 2016

  5. Quantitative neutron capture radiography for studying the biodistribution of tumor-seeking boron-containing compounds

    International Nuclear Information System (INIS)

    Gabel, D.; Holstein, H.; Larsson, B.; Gille, L.; Ericson, G.; Sacker, D.; Som, P.; Fairchild, R.G.

    1987-01-01

    Biodistribution of two compounds presently considered for use in neutron capture therapy has been studied in mice carrying a transplantable Harding-Passey melanoma. A method is described by which quantitative assessment can be made of the boron distribution in whole-body sections of such animals. An alpha-particle-sensitive film is placed in close contact with a freeze-dried section of an animal and exposed to neutrons. The tracks visible after etching are analyzed optoelectronically in fields of 0.6 X 0.6 mm2 and compared to standards of boron homogeneously distributed in liver homogenates. The dynamic range of this method is about two orders of magnitude in concentration, with a lower detection limit of 0.1 to 0.01 ppm 10 B, depending on the rate of induction of spurious tracks by fast neutrons present in the neutron beam chosen. In a transplantable Harding-Passey melanoma in mice, it was found that the sulfhydryl boron hydride Na2B12H11SH presently used for therapy of glioblastoma clears blood, muscle, and brain very rapidly. Its accumulation in tumors was persistent for more than three days. A higher tumor accumulation was observed with its disulfide, which has been suggested for neutron capture therapy. For both compounds, a marked heterogeneity of boron distribution within one tumor was found

  6. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  7. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  8. Boron autoradiography method applied to the study of steels

    International Nuclear Information System (INIS)

    Gugelmeier, R.; Barcelo, G.N.; Boado, J.H.; Fernandez, C.

    1986-01-01

    The boron state, contained in the steel microestructure, is determined. The autoradiography by neutrons is used, permiting to obtain boron distribution images by means of additional information which is difficult to acquire by other methods. The application of the method is described, based on the neutronic irradiation of a polished steel sample, over which a celulose nitrate sheet or other appropriate material is fixed to constitute the detector. The particles generated by the neutron-boron interaction affect the detector sheet, which is subsequently revealed with a chemical treatment and can be observed at the optical microscope. In the case of materials used for the construction of nuclear reactors, special attention must be given to the presence of boron, since owing to the exceptionaly high capacity of neutron absorption, lowest quantities of boron acquire importance. The adaption of the method to metallurgical problems allows the obtainment of a correlation between the boron distribution images and the material's microstructure. (M.E.L.) [es

  9. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  10. Impurity and particle recycling reduction by boronization in JT-60U

    International Nuclear Information System (INIS)

    Higashijima, S.; Sugie, T.; Kubo, H.; Tsuji, S.; Shimada, M.; Asakura, N.; Hosogane, N.; Kawano, Y.; Nakamura, H.; Itami, K.; Sakasai, A.; Shimizu, K.; Ando, T.; Saidoh, M.

    1995-01-01

    In JT-60U boronization using decaborane was carried out. Boronization reduced the oxygen impurity in OH discharges and shortened the wall conditioning after the vacuum vessel vent and consequently enabled JT-60U to produce clean plasmas easily except for NB heated plasmas. After boronization, particle recycling was reduced drastically in OH and NB discharges. High confinement plasmas were obtained including high β p mode and H-mode discharges. In the latest boronization part of divertor plates were replaced with B 4 C coated tiles with a B 4 C thickness similar 300 μm. After introducing B 4 C divertor tiles, an explosive generation of boron particles from the tiles was observed. By the combined effects of boronization with decaborane and boron generation from B 4 C tiles, oxygen impurity was so low that oxygen line signals were reduced to noise levels after the latest boronization. On the other hand, boron burst from the B 4 C tiles restricted the operation of JT-60U. ((orig.))

  11. Influence of boron reduction strategies on PWR accident management flexibility

    International Nuclear Information System (INIS)

    Papukchiev, Angel Aleksandrov; Liu, Yubo; Schaefer, Anselm

    2007-01-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. Design changes to reduce boron concentration in the reactor coolant are of general interest regarding three aspects - improved reactivity feedback properties, lower impact of boron dilution scenarios on PWR safety and eventually more flexible accident management procedures. In order to assess the potential advantages through the introduction of boron reduction strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 ppm and 805 ppm. For the assessment of the potential safety advantages of these cores a hypothetical beyond design basis accident has been simulated with the system code ATHLET. The analyses showed improved inherent safety and increased accident management flexibility of the low boron cores in comparison with the standard PWR. (author)

  12. Bulk-boronized limiter operation in the Wendelstein 7-AS stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Brakel, R; Burhenn, R; Behrisch, R; Grigull, P; Hacker, H; Hildebrandt, D; Hofmann, J V; Mahn, C; Roth, J; Schneider, U; Weller, A [Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany); Hirooka, Y [Inst. of Plasma Physics and Fusion Research, Univ. California, Los Angeles, CA (United States); W7-AS Team; NI Group; ECRH Group

    1992-12-01

    Bulk-boronized graphite (20% boron) has been tested as a limiter material in the Wendelstein 7-AS stellarator. The recycling behaviour and the plasma impurities are compared for the new material and the formerly used TiC-coated graphite with stainless steel and boronized walls. After conditioning the recycling and the oxygen and carbon levels are comparable for both materials. No significant impact of sputter boronization from the limiters on the oxygen level was observed. A drastical reduction of oxygen by about a factor of 10 was obtained only after additional gas boronization. In this case Z[sub eff] is primarily determined by carbon and boron. For ECF standard discharges Z[sub eff][approx equal]2 with P[sub rad]=6% of the input power was found as compared to Z[sub eff]< or approx.3 and P[sub rad]=10% before boronization and Z[sub eff][approx equal]4, P[sub rad]=20% with TiC-limiters. (orig.).

  13. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    Kitaoka, Yoshinori

    1993-09-01

    This volume contains the proceedings of the 5th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 22 in 1993. The solubility of the boron carrier play an important role in the BNCT. New water-soluble p-boronophenylalanine derivatives are synthesized and their biological activities are investigated (Chap. 2 and 3). Some chemical problems on the BNCT were discussed, and the complex formation reaction of hydroxylboryl compounds were studied by the paper electrophoresis (Chap. 4). The results of the medical investigation on the BNCT using BSH compounds are shown in Chap. 5. Syntheses of o- and m-boronophenylalanine were done and their optical resolution was tried (Chap. 6). The complex formation reaction of p-boronophenylalanine (BPA) with L-DOPA and the oxidation reaction of the analogs are found in Chap. 7. The pka of BPA were determined by the isotachophoresis (Chap. 8). The chemical nature of dihydroxyboryl compounds were investigated by an infrared spectroscopy and electrophoresis (Chap. 9). New synthetic methods of BPA and p-boronophenylserine using ester of isocyanoacetic acid are described in Chap. 10. The induction of chromosomal aberations by neutron capture reaction are discussed from a point of the biological view. The a of the presented papers are indexed individually. (J.P.N.)

  14. Screening of Wheat Genotypes for Boron Efficiency in Bangladesh

    Science.gov (United States)

    A number of Bangladeshi wheat genotypes (varieties and advanced lines) have been tested for boron efficiency through sand culture experiments over two years (2007-08 & 2008-09) against two Thai check varieties ‘Fang 60’ (boron efficient) and ‘SW41’ (boron inefficient). Performances of the genotypes ...

  15. The investigation of parameters affecting boron removal by electrocoagulation method

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar; Keskinler, Buelent

    2005-01-01

    Boron removal from wastewaters by electrocoagulation using aluminum electrode material was investigated in this paper. Several working parameters, such as pH, current density, boron concentration and type and concentration of supporting electrolyte were studied in an attempt to achieve a higher removal capacity. The experiments were carried out by keeping the pH of solution constant and optimum pH of solution was determined 8.0 for the aluminum electrode. Although energy consumption increased with decreasing boron concentration, which conductivity of these solutions were low, boron removal efficiency was higher at 100 mg/L than that of 1000 mg/L. Current density was an important parameter affecting removal efficiency. Boron removal efficiency and energy consumption increased with increasing current density from 1.2 to 6.0 mA/cm 2 . The types of different supporting electrolyte were experimented in order to investigate to this parameter effect on boron removal. The highest boron removal efficiency, 97%, was found by CaCl 2 . Added CaCl 2 increased more the conductivity of solution according to other supporting electrolytes, but decreased energy consumption. The results showed to have a high effectiveness of the electrocoagulation method in removing boron from aqueous solutions

  16. Effect of boron on growth criteria of some wheat cultivars

    Directory of Open Access Journals (Sweden)

    Ashraf Metwally

    2012-01-01

    Full Text Available Introduction: Toxic soil concentrations of the essential micronutrient boron (B represent major limitations to crop production worldwide. Plants have a range of defense systems that might be involved in their affinity to resist and tolerate nutrients stress.Materials and methods: The experiments were carried out to study the differential responses in five wheat cultivars to boron toxicity. Results: The fresh and dry matter yield of the test wheat cultivars showed marked decrease as the concentration of boron was increased. Elevated concentration of boron had a notable inhibitory effect on the biosynthesis of pigments fractions in the test wheat cultivars as severely as dry matter gain. The adverse concentration effects of boron on some metabolic responses were clearly displayed by shoot and root systems, exhibited in the elevated rates of proline, hydrogen peroxide and malondialdehyde formation. Potassium leakage was severely affected by boron-stress in some cultivars at all tested concentrations, while in some others a moderate damage was manifested only at the higher boron concentrations.Conclusions: Sakha 93 out of all the different cultivars investigated was found to display the lowest sensitivity to boron-stress, while Gemmeza 9 was the most sensitive one.

  17. Dependence of boron cluster dissolution on the annealing ambient

    International Nuclear Information System (INIS)

    Radic, Ljubo; Lilak, Aaron D.; Law, Mark E.

    2002-01-01

    Boron is introduced into silicon via implantation to form p-type layers. This process creates damage in the crystal that upon annealing causes enhanced diffusion and clustering of the boron layer. Reactivation of the boron is not a well-understood process. In this letter we experimentally investigate the effect of the annealing ambient on boron reactivation kinetics. An oxidizing ambient which injects silicon interstitials is compared to an inert ambient. Contrary to published theory, an excess of interstitials does not accelerate the reactivation process

  18. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  19. The Immunosuppressive drug – Rapamycin – Electroanalytical Sensing Using Boron- Doped Diamond electrode

    International Nuclear Information System (INIS)

    Stanković, Dalibor M.; Kalcher, Kurt

    2015-01-01

    Graphical abstract: Display Omitted -- Abstract: This paper presents for the first time the study of electrochemical behavior of well known immunosuppressant drug – rapamycin (sirolimus) using boron-doped diamond electrode. Rapamycin provided single and oval-shaped oxidation peak at +1.1 V vs. Ag/AgCl electrode in Britton–Robinson buffer solution at pH 3 confirming highly irreversible behavior of analyte at boron-doped diamond electrode. A differential pulse voltammetry was used for quantification of tested drug under the optimum experimental conditions. The calibration curve was linear over the range from 0.5 to 19.5 μM (R 2 = 0.9976) with detection limit of 0.22 μM. Repeatability of ten successfully measurements of three different concentrations (5, 10 and 15 μM) was 2.5, 1.9 and 1,7 %, respectively. Influence of most common biomolecules presented in urine samples was evaluated. The suggested analytical methodology was successfully applied for determination of rapamycin in four urine samples with excellent recoveries. The developed approach could be beneficial in analysis of rapamycin in biological samples using boron-doped diamond electrode as up-to-date electrochemical sensor and could represent inexpensive analytical alternative to separation methods

  20. Boron effect on stainless steel plasticity under hot deformation

    International Nuclear Information System (INIS)

    Bulat, S.I.; Kardonov, B.A.; Sorokina, N.A.

    1978-01-01

    The effect of boron on plasticity of stainless steels at temperatures of hot deformation has been studied at three levels of alloying, i.e. 0-0.01% (micro-alloying or modifying), 0.01-0.02% (low alloying) and 0.02-2.0% (high alloying). Introduction of 0.001-0.005% of boron increases hot plasticity of both low and high carbon stainless steels due to decrease in grain size and strengthening of grain boundaries. Microalloying by boron has a positive effect at temperatures below 1200-1220 deg C. At higher temperatures, particularly when its content exceeds 0.008%, boron deteriorates plasticity by increasing the size of grains and weakening their boundaries. 0.1-2% boron strengthen the stainless steel and dectease its plasticity

  1. Using the Nova target chamber for high-yield targets

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1987-01-01

    The existing 2.2-m-radius Nova aluminum target chamber, coated and lined with boron-seeded carbon shields, is proposed for use with 1000-MJ-yield targets in the next laser facility. The laser beam and diagnostic holes in the target chamber are left open and the desired 10 -2 Torr vacuum is maintained both inside and outside the target chamber; a larger target chamber room is the vacuum barrier to the atmosphere. The hole area available is three times that necessary to maintain a maximum fluence below 12 J/cm 2 on optics placed at a radius of 10 m. Maximum stress in the target chamber wall is 73 MPa, which complies with the intent of the ASME Pressure Vessel Code. However, shock waves passing through the inner carbon shield could cause it to comminute. We propose tests and analyses to ensure that the inner carbon shield survives the environment. 13 refs

  2. Boron solubility in Fe-Cr-B cast irons

    International Nuclear Information System (INIS)

    Guo Changqing; Kelly, P.M.

    2003-01-01

    Boron solubility in the as-cast and solution treated martensite of Fe-Cr-B cast irons, containing approximately 1.35 wt.% of boron, 12 wt.% of chromium, as well as other alloying elements, has been investigated using conventional microanalysis. The significant microstructural variations after tempering at 750 deg. C for 0.5-4 h, compared with the original as-cast and solution treated microstructures, indicated that the matrix consisted of boron and carbon supersaturated solid solutions. The boron solubility detected by electron microprobe was between 0.185-0.515 wt.% for the as-cast martensite and 0.015-0.0589 wt.% for the solution treated martensite, much higher than the accepted value of 0.005 wt.% in pure iron. These remarkable increases are thought to be associated with some metallic alloying element addition, such as chromium, vanadium and molybdenum, which have atomic diameters larger than iron, and expand the iron lattice to sufficiently allow boron atoms to occupy the interstitial sites in iron lattice

  3. Boron determination in tourmaline by neutron induced radiography

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, A.A. E-mail: aaqureshi@pinstech.org.pk; Akram, M.; Ayub Khan, M.; Khattak, N.U.; Qureshi, I.E.; Khan, H.A

    2001-06-01

    The technique of neutron induced radiography has been applied to determine the boron concentration and its spatial distribution in mineral tourmaline collected from Swat Tourmaline Granite, Northern Pakistan. The technique involves the simultaneous irradiation of sample and a standard fixed on a track detector with thermal neutrons and the counting of alpha and {sup 7}Li tracks produced in the detector from the nuclear reaction {sup 10}B(n,{alpha}){sup 7}Li. Boron concentration is determined by comparing the {sup 7}Li and alpha particle tracks density with that of a standard of known boron concentration. Boron concentration in tourmaline has been found to be (3.40{+-}0.01)% in this study which is on the upper side within the normal range (2.5-3.8)% reported in the world. The presence of somewhat higher concentration of boron in tourmaline indicates that the Swat Tourmaline Granite was generated as a late stage hydrothermal activity during the Himalayan Orogeny.

  4. Boron- and salt-tolerant trees and shrubs for northern Nevada

    Science.gov (United States)

    Heidi Kratsch

    2012-01-01

    Boron is a mineral that, in small quantities, is essential for plant growth and development , but becomes toxic at levels above 0.5 to 1 part per million (ppm) in the soil. Excess boron may be naturally present in the soil, and it can accumulate by irrigating with water high in boron. Boron occurs naturally in arid soils originating from geologically young deposits. It...

  5. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Choi, Hei Min; Lee, Kune Woo; Moon Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration.

  6. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    International Nuclear Information System (INIS)

    Hwang, Dooseong; Choi, Hei Min; Lee, Kune Woo; Moon Jeikwon

    2014-01-01

    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration

  7. Contamination of urban garden soils with copper and boron

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D

    1966-06-04

    Spectrochemical analyses of garden soils sampled in the Edinburgh and Dundee areas indicate that there is substantial contamination of urban soils with copper and boron. These soils were analyzed spectrochemically with respect to total copper and water-extractable boron content with the view of comparing the levels obtained in urban areas with levels in arable soils in rural areas. The results indicate that urban garden soils contain about four times as much copper and two to three times as much water-soluble boron as rural arable soils. The existence of such a marked disparity between the levels of two potentially toxic elements in urban and rural areas is evidence of slow poisoning of the soil environment in built-up areas and is cause for concern. While the major source of contamination of soils with copper and boron is still a matter for speculation, it is probable that the addition of soot to garden soils and the fall-out of sooty material in built-up areas where atmospheric pollution is a problem make a substantial contribution to the water-extractable boron content of urban soils. Three samples of soot from domestic chimneys, obtained from independent sources, were found on analysis to contain 640, 650 and 555 p.p.m. water-extractable boron, and it is evident that the addition to soil of even small amounts of soot with a boron content of this order would have a marked effect on its water-extractable boron content.

  8. Model for calculating the boron concentration in PWR type reactors

    International Nuclear Information System (INIS)

    Reis Martins Junior, L.L. dos; Vanni, E.A.

    1986-01-01

    A PWR boron concentration model has been developed for use with RETRAN code. The concentration model calculates the boron mass balance in the primary circuit as the injected boron mixes and is transported through the same circuit. RETRAN control blocks are used to calculate the boron concentration in fluid volumes during steady-state and transient conditions. The boron reactivity worth is obtained from the core concentration and used in RETRAN point kinetics model. A FSAR type analysis of a Steam Line Break Accident in Angra I plant was selected to test the model and the results obtained indicate a sucessfull performance. (Author) [pt

  9. Effect of Boronization on Ohmic Plasmas in NSTX

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Maingi, R.; Wampler, W.R.; Blanchard, W.; Bell, M.; Bell, R.; LeBlanc, B.; Gates, D.; Kaye, S.; LaMarche, P.; Menard, J.; Mueller, D.; Na, H.K.; Nishino, N.; Paul, S.; Sabbagh, S.; Soukhanovskii, V.

    2001-01-01

    Boronization of the National Spherical Torus Experiment (NSTX) has enabled access to higher density, higher confinement plasmas. A glow discharge with 4 mTorr helium and 10% deuterated trimethyl boron deposited 1.7 g of boron on the plasma facing surfaces. Ion beam analysis of witness coupons showed a B+C areal density of 10 to the 18 (B+C) cm to the -2 corresponding to a film thickness of 100 nm. Subsequent ohmic discharges showed oxygen emission lines reduced by x15, carbon emission reduced by two and copper reduced to undetectable levels. After boronization, the plasma current flattop time increased by 70% enabling access to higher density, higher confinement plasmas

  10. Spectrographic determination of traces of boron in steels

    International Nuclear Information System (INIS)

    Alduan, F.A.; Roca, M.

    1976-01-01

    A spectrographic method has been developed to determine quantitatively boron in steels in the 0.5 to 250 ppm concentration range. The samples are dissolved in acids and transformed into oxides, avoiding boron losses by the addition of mannitol. For the fluoride evolution of boron in the dc arc the following compounds have been considered: CuF 2 , LiF, NaF, and SrF 2 . CuF 2 , at a concentration of 10%, provides the highest line-to-background intensity ratio. An arc current of 5 amperes eliminates the interference from iron spectrum on the most sensitive boron line - B 2497.7 A. Variations in chromium and nickel contents have no effect on the analytical results. (author)

  11. Boron neutron capture therapy using mixed epithermal and thermal neutron beams in patients with malignant glioma-correlation between radiation dose and radiation injury and clinical outcome

    International Nuclear Information System (INIS)

    Kageji, Teruyoshi; Nagahiro, Shinji; Matsuzaki, Kazuhito; Mizobuchi, Yoshifumi; Toi, Hiroyuki; Nakagawa, Yoshinobu; Kumada, Hiroaki

    2006-01-01

    Purpose: To clarify the correlation between the radiation dose and clinical outcome of sodium borocaptate-based intraoperative boron neutron capture therapy in patients with malignant glioma. Methods and Materials: The first protocol (P1998, n = 8) prescribed a maximal gross tumor volume (GTV) dose of 15 Gy. In 2001, a dose-escalated protocol was introduced (P2001, n 11), which prescribed a maximal vascular volume dose of 15 Gy or, alternatively, a clinical target volume (CTV) dose of 18 Gy. Results: The GTV and CTV doses in P2001 were 1.1-1.3 times greater than those in P1998. The maximal vascular volume dose of those with acute radiation injury was 15.8 Gy. The mean GTV and CTV dose in long-term survivors with glioblastoma was 26.4 and 16.5 Gy, respectively. A statistically significant correlation between the GTV dose and median survival time was found. In the 11 glioblastoma patients in P2001, the median survival time was 19.5 months and 1- and 2-year survival rate was 60.6% and 37.9%, respectively. Conclusion: Dose escalation contributed to the improvement in clinical outcome. To avoid radiation injury, the maximal vascular volume dose should be <12 Gy. For long-term survival in patients with glioblastoma after boron neutron capture therapy, the optimal mean dose of the GTV and CTV was 26 and 16 Gy, respectively

  12. Density functional theory investigation of oxygen interaction with boron-doped graphite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [State Key Lab of New Ceramic and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-12-30

    Highlights: • Density-functional approach is applied to study the interaction of oxygen with boron-doped graphite. • Adsorption and diffusion of oxygen atoms on boron doped graphite surfaces are studied. • Recombination of oxygen is investigated by ER and LH mechanisms. • Low boron concentration facilitates O{sub 2} formation while high boron loading inhibits the recombination. • The presence of B−B bonds due to boron accumulation makes it impossible for oxygen recombination. - Abstract: Boron inserted as impurity by substitution of carbon atoms in graphite is known to change (improve or deteriorate) oxidation resistance of nuclear graphite, but the reason for both catalytic and inhibiting oxidation is still uncertain. As a first step, this work is more specially devoted to the adsorption and diffusion of oxygen atoms on the surface and related to the problem of oxygen retention on the pure and boron-containing graphite surfaces. Adsorption energies and energy barriers associated to the diffusion for molecular oxygen recombination are calculated in the density functional theory framework. The existence of boron modifies the electronic structure of the surface, which results in an increase of the adsorption energy for O. However, low boron loading makes it easier for the recombination into molecular oxygen. For high boron concentration, it induces a better O retention capability in graphite because the presence of B-B bonds decreases recombination of the adsorbed oxygen atoms. A possible explanation for both catalytic and inhibiting effects of boron in graphite is proposed.

  13. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    Science.gov (United States)

    Liu, Tao; Luo, Ruiying; Yoon, Seong-Ho; Mochida, Isao

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g -1 and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by "molecular bridging" between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper.

  14. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission

    International Nuclear Information System (INIS)

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-01-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. - Highlights: • PIGE was evaluated for measuring blood boron concentration during clinical BNCT. • PIGE detected 18 μgB/mL f-BPA in culture medium. • All measurements of any given sample were taken within 20 min. • Two hours of f-BPA exposure is required to create boron distribution image by PIGE. • Boron on the cell membrane could not be distinguished from boron in the cytoplasm.

  15. A neutron dynamic therapy with a boron tracedrug UTX-51 using a compact neutron generator.

    Science.gov (United States)

    Hori, Hitoshi; Tada, Ryu; Uto, Yoshihiro; Nakata, Eiji; Morii, Takashi; Masuda, Kai

    2014-08-01

    We are developing a neutron dynamic therapy (NDT) with boron tracedrugs for a new mechanical-clearance treatment of pathotoxic misfolded, aggregated, and self-propagating prion-associated disease proteins. We present a compact neutron generator-based NDT using a boron tracedrug UTX-51. Our NDT is based on the weak thermal neutron-bombarded destructive action of UTX-51 on bovine serum albumin (BSA) using the neutron beams produced from a compact inertial electrostatic confinement fusion (IECF) neutron generator. BSA as an NDT molecular target was subjected to thermal neutron irradiation for eight hours using a compact neutron generator. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern showed no protein band when 2 nmoles of BSA were irradiated with more than 100 nmoles of UTX-51, while BSA was not affected when irradiated without UTX-51. For the first time, we have succeeded in the molecular destruction of a prion-disease model protein, BSA, by NDT with a boron tracedrug, UTX-51, using a compact neutron generator. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Utilization of thymine analogue as a boron carrier for neutron capture therapy

    International Nuclear Information System (INIS)

    Zhang, Z.H.; Oda, Y.; Takagaki, M.

    1993-01-01

    The BNCT effect of 5'- carboranyl uridine (5'-CU), one of a most powerful candidate of thymine analogues as a boron carrier, was investigated on experimental brain tumor models. 5'-CU was highly accumulated into tumor cells through its multi-affinity potential to a variety of subcellular fractions of DNA/RNA and proteins. The boron concentration in tumor was more than 100 ppm, and its tumor/normal brain ratio was more than 11. Thermal neutron dose yielding 37% surviving fraction on cultured glioma cells was 3.7x10 12 nvt which was lower than that of control dose of 5.8x10 12 nvt. However, α-autoradiogram revealed that 5'-CU tightly binded to a variety of normal brain structures; choloid plexus, ependymal layer and so on. Indeed, the mean surviving fraction of brain tumor rats after BNCT using 5'-CU was slightly lower than that of control rats which did not received neutrons and 5'-CU. Furthermore its cytotoxicity was not low enough, 1/10-1/20 dose of rat LD 50 was required as a therapeutic dose. We are now under investigation of its clinical applicability as a boron carrier through its chemical modification in order to circumvent those problems, or warrant of further experiments in this area. (author)

  17. Use of fluorine-18-BPA PET images and image registration to enhance radiation treatment planning for boron neutron capture therapy

    Science.gov (United States)

    Khan, Mohammad Khurram

    The Monte-Carlo based simulation environment for radiation therapy (SERA) software is used to simulate the dose administered to a patient undergoing boron neutron capture therapy (BNCT). Point sampling of tumor tissue results in an estimate of a uniform boron concentration scaling factor of 3.5. Under conventional treatment protocols, this factor is used to scale the boron component of the dose linearly and homogenously within the tumor and target volumes. The average dose to the tumor cells by such a method could be improved by better methods of quantifying the in-vivo 10B biodistribution. A better method includes radiolabeling para-Boronophenylalanine (p-BPA) with 18F and imaging the pharmaceutical using positron emission tomography (PET). This biodistribution of 18F-BPA can then be used to better predict the average dose delivered to the tumor regions. This work uses registered 18F-BPA PET images to incorporate the in-vivo boron biodistribution within current treatment planning. The registered 18F-BPA PET images are then coupled in a new computer software, PET2MRI.m, to linearly scale the boron component of the dose. A qualititative and quantitative assessment of the dose contours is presented using the two approaches. Tumor volume, tumor axial extent, and target locations are compared between using MRI or PET images to define the tumor volume. In addition, peak-to-normal brain value at tumor axial center is determined for pre and post surgery patients using 18F-BPA PET images. The differences noted between the registered GBM tumor volumes (range: 34.04--136.36%), tumor axial extent (range: 20--150%), and the beam target location (1.27--4.29 cm) are significantly different. The peak-to-normal brain values are also determined at the tumor axial center using the 18F-BPA PET images. The peak-to-normal brain values using the last frame of the pre-surgery study for the GBM patients ranged from 2.05--3.4. For post surgery time weighted PET data, the peak

  18. Boron-rich oligomers for BNCT

    International Nuclear Information System (INIS)

    Gula, M.; Perleberg, O.; Gabel, D.

    2000-01-01

    The synthesis of two BSH derivatives is described, which can be used for oligomerization in DNA-synthesizers. Synthesis pathways lead to final products in five and six steps, respectively. Because of chirality interesting results were expected. NMR-measurements confirm this expectation. Possible oligomers with high concentrations of boron can be attached to biomolecules. These oligomers can be explored with several imaging methods (EELS, PEM) to determine the lower detection limit of boron with these methods. (author)

  19. Preparation of in-house graphite reference material for boron

    International Nuclear Information System (INIS)

    Kumar, Sanjukta A.; Venkatesh, K.; Swain, Kallola K.; Manisha, V.; Kamble, Granthali S.; Pandey, Shailaja P.; Remya Devi, P.S.; Ghosh, M.; Verma, R.

    2016-05-01

    Graphite is extensively used in nuclear technology. Boron concentration in graphite is one of the important parameters that decide its acceptability for nuclear applications. Reliable analytical methods are essential for the determination of boron in graphite at concentration about 5 mg kg -1 . Reference materials are used for validation of existing analytical methods and developing new methodologies. In view of the importance of determination of boron in graphite and unavailability of graphite reference material, an In-house graphite reference material was prepared in Analytical Chemistry Division. Graphite source material was procured, processed to obtain powder of ≤ 75 μm (200 mesh) and bottled. Procedures were developed for the determination of boron in graphite using inductively coupled plasma optical emission spectrometry (ICPOES) and inductively coupled plasma mass spectrometry (ICPMS) techniques. Homogeneity testing was carried out on the bottled units and boron content along with the combined and expanded uncertainties were established. The assigned boron concentration in the In-house graphite reference material is (7.3±0.46) mg kg -1 . (author)

  20. The investigation of parameters affecting boron removal by electrocoagulation method

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey); Kocakerim, M. Muhtar [Department of Chemical Engineering, 25240, Atatuerk University, Faculty of Engineering Erzurum (Turkey); Keskinler, Buelent [Department of Environmental Engineering, Gebze Institute of Technology, Gebze/Kocaeli 41400 (Turkey)

    2005-10-17

    Boron removal from wastewaters by electrocoagulation using aluminum electrode material was investigated in this paper. Several working parameters, such as pH, current density, boron concentration and type and concentration of supporting electrolyte were studied in an attempt to achieve a higher removal capacity. The experiments were carried out by keeping the pH of solution constant and optimum pH of solution was determined 8.0 for the aluminum electrode. Although energy consumption increased with decreasing boron concentration, which conductivity of these solutions were low, boron removal efficiency was higher at 100 mg/L than that of 1000 mg/L. Current density was an important parameter affecting removal efficiency. Boron removal efficiency and energy consumption increased with increasing current density from 1.2 to 6.0 mA/cm{sup 2}. The types of different supporting electrolyte were experimented in order to investigate to this parameter effect on boron removal. The highest boron removal efficiency, 97%, was found by CaCl{sub 2}. Added CaCl{sub 2} increased more the conductivity of solution according to other supporting electrolytes, but decreased energy consumption. The results showed to have a high effectiveness of the electrocoagulation method in removing boron from aqueous solutions.

  1. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida

    International Nuclear Information System (INIS)

    Rámila, Consuelo d.P.; Contreras, Samuel A.; Di Domenico, Camila; Molina-Montenegro, Marco A.; Vega, Andrea; Handford, Michael; Bonilla, Carlos A.

    2016-01-01

    Highlights: • P. frigida presents an extremely high boron toxicity threshold. • Restricting uptake and internal tolerance mechanisms could confer boron tolerance. • P. frigida is a boron hyperaccumulator over a wide range of concentrations. • The species has potential for phytoremediation purposes. - Abstract: Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500 mg/L), and within its tissues (>5000 mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems.

  2. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida

    Energy Technology Data Exchange (ETDEWEB)

    Rámila, Consuelo d.P. [Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); Contreras, Samuel A.; Di Domenico, Camila [Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); Molina-Montenegro, Marco A. [Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo (Chile); Instituto de Ciencias Biológicas, Universidad de Talca, Avda. Lircay s/n, Talca (Chile); Vega, Andrea [Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); Handford, Michael [Departmento de Biología, Facultad de Ciencias, Universidad de Chile, Avenida Las Palmeras 3425, 7800024 Santiago (Chile); Bonilla, Carlos A. [Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); Centro de Desarrollo Urbano Sustentable (CEDEUS), Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); and others

    2016-11-05

    Highlights: • P. frigida presents an extremely high boron toxicity threshold. • Restricting uptake and internal tolerance mechanisms could confer boron tolerance. • P. frigida is a boron hyperaccumulator over a wide range of concentrations. • The species has potential for phytoremediation purposes. - Abstract: Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500 mg/L), and within its tissues (>5000 mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems.

  3. New techniques for producing thin boron films

    International Nuclear Information System (INIS)

    Thomas, G.E.

    1988-01-01

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs

  4. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Luo, Ruiying [School of Science, Beihang University, Beijing 100083 (China); Yoon, Seong-Ho; Mochida, Isao [Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2010-03-15

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g{sup -1} and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by ''molecular bridging'' between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper. (author)

  5. BC-454 boron-loaded plastic scintillator

    International Nuclear Information System (INIS)

    Bellian, J.G.

    1984-01-01

    Prototype samples of plastic scintillators containing up to 10% by weight of natural boron have been produced. The maximum size scintillators made to date are 28 mm dia. x 100 mm long. Rods containing up to 2% boron are now made routinely and work is progressing on higher concentrations. The plastics are clear and emit the same blue fluorescence as other common plastic scintillators. It is expected that rods up to 3'' dia. containing 5% boron will be produced during the next few months. BC-454 is particularly useful in neutron research, materials studies, some types of neutron dosimetry, and monitoring of medium to high energy neutrons in the presence of other types radiation. It combines attractive features that enhance its usefulness to the physics community

  6. Lattice dynamics of {alpha} boron and of boron carbide; Proprietes vibrationnelles du bore {alpha} et du carbure de bore

    Energy Technology Data Exchange (ETDEWEB)

    Vast, N

    1999-07-01

    The atomic structure and the lattice dynamics of {alpha} boron and of B{sub 4}C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In {alpha} boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B{sub 4}C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  7. Fractionation of boron isotopes in Icelandic hydrothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.K.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive δ 1 1B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive δ 1 1B than the high temperature systems, indicating fractionation of boron due to absorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems. (author). 14 refs., 2 figs

  8. Biological effects of tolerable level chronic boron intake on transcription factors.

    Science.gov (United States)

    Orenay Boyacioglu, Seda; Korkmaz, Mehmet; Kahraman, Erkan; Yildirim, Hatice; Bora, Selin; Ataman, Osman Yavuz

    2017-01-01

    The mechanism of boron effect on human transcription and translation has not been fully understood. In the current study it was aimed to reveal the role of boron on the expression of certain transcription factors that play key roles in many cellular pathways on human subjects chronically exposed to low amounts of boron. The boron concentrations in drinking water samples were 1.57±0.06mg/l for boron group while the corresponding value for the control group was 0.016±0.002mg/l. RNA isolation was performed using PAX gene RNA kit on the blood samples from the subjects. The RNA was then reverse transcribed into cDNA and analyzed using the Human Transcription Factors RT 2 Profiler™ PCR Arrays. While the boron amount in urine was detected as 3.56±1.47mg/day in the boron group, it was 0.72±0.30mg/day in the control group. Daily boron intake of the boron and control groups were calculated to be 6.98±3.39 and 1.18±0.41mg/day, respectively. The expression levels of the transcription factor genes were compared between the boron and control groups and no statistically significant difference was detected (P>0.05). The data suggest that boron intake at 6.98±3.39mg/day, which is the dose at which beneficial effects might be seen, does not result in toxicity at molecular level since the expression levels of transcription factors are not changed. Although boron intake over this level will seem to increase RNA synthesis, further examination of the topic is needed using new molecular epidemiological data. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida.

    Science.gov (United States)

    Rámila, Consuelo D P; Contreras, Samuel A; Di Domenico, Camila; Molina-Montenegro, Marco A; Vega, Andrea; Handford, Michael; Bonilla, Carlos A; Pizarro, Gonzalo E

    2016-11-05

    Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Attenuation of Neutron and Gamma Radiation by a Composite Material Based on Modified Titanium Hydride with a Varied Boron Content

    Science.gov (United States)

    Yastrebinskii, R. N.

    2018-04-01

    The investigations on estimating the attenuation of capture gamma radiation by a composite neutron-shielding material based on modified titanium hydride and Portland cement with a varied amount of boron carbide are performed. The results of calculations demonstrate that an introduction of boron into this material enables significantly decreasing the thermal neutron flux density and hence the levels of capture gamma radiation. In particular, after introducing 1- 5 wt.% boron carbide into the material, the thermal neutron flux density on a 10 cm-thick layer is reduced by 11 to 176 factors, and the capture gamma dose rate - from 4 to 9 times, respectively. The difference in the degree of reduction in these functionals is attributed to the presence of capture gamma radiation in the epithermal region of the neutron spectrum.

  11. Problems and possibilities of development of boron nitride ceramics

    International Nuclear Information System (INIS)

    Rusanova, L.N.; Romashin, A.G.; Kulikova, G.I.; Golubeva, O.P.

    1988-01-01

    The modern state of developments in the field of technology of ceramics produced from boron nitride is analyzed. Substantial difficulties in production of pure ceramics from hexagonal and wurtzite-like boron nitride are stated as related to the structure peculiarities and inhomogeneity of chemical bonds in elementary crystal cells of various modifications. Advantages and disadvantages of familiar technological procedures in production of boron nitride ceramics are compared. A new technology is suggested, which is based on the use of electroorganic compounds for hardening and protection of porous high-purity boron-nitride die from oxidation, and as high-efficient sintered elements for treatment of powders of various structures and further pyrolisis. The method is called thermal molecular lacing (TML). Properties of ceramics produced by the TML method are compared with characteristics of well-known brands of boron nitride ceramics

  12. Interaction of boron with graphite: A van der Waals density functional study

    International Nuclear Information System (INIS)

    Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2016-01-01

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  13. Interaction of boron with graphite: A van der Waals density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [Beijing Key Lab of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-08-30

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  14. Modeling of long-range migration of boron interstitials

    International Nuclear Information System (INIS)

    Velichko, O.I.; Burunova, O.N.

    2009-01-01

    A model of the interstitial migration of ion-implanted dopant in silicon during low-temperature thermal treatment has been formulated. It is supposed that the boron interstitials are created during ion implantation or at the initial stage of annealing. During thermal treatment a migration of these impurity interstitials to the surface and in the bulk of a semiconductor occurs. On this basis, a simulation of boron redistribution during thermal annealing for 35 minutes at a temperature of 800 0 C has been carried out. The calculated boron profile agrees well with the experimental data. A number of the parameters describing the interstitial diffusion have been derived. In particular, the average migration length of nonequilibrium boron interstitials is equal to 0.092 μm at a temperature of 800 0 C. To carry out modeling of ion-implanted boron redistribution, the analytical solutions of nonstationary diffusion equation for impurity interstitials have been obtained. The case of Dirichlet boundary conditions and the case of reflecting boundary on the surface of a semiconductor have been considered. (authors)

  15. Physical modelling of a rapid boron dilution transient

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, N.G.; Hemstroem, B.; Karlsson, R. [Vattenfall Utveckling AB, Aelvkarleby (Sweden); Jacobson, S. [Vattenfall AB, Ringhals, Vaeroebacka (Sweden)

    1995-09-01

    The analysis of boron dilution accidents in pressurised water reactors has traditionally assumed that mixing is instantaneous and complete everywhere, eliminating in this way the possibility of concentration inhomogeneities. Situations can nevertheless arise where a volume of coolant with a low boron concentration may eventually enter the core and generate a severe reactivity transient. The work presented in this paper deals with a category of Rapid Boron Dilution Events characterised by a rapid start of a Reactor Coolant Pump (RCP) with a plug of relatively unborated water present in the RCS pipe. Model tests have been made at Vattenfall Utveckling AB in a simplified 1:5 scale model of a Westinghouse PWR. Conductivity measurements are used to determine dimensionless boron concentration. The main purpose of this experimental work is to define an experimental benchmark against which a mathematical model can be tested. The final goal is to be able to numerically predict Boron Dilution Transients. This work has been performed as a part of a Co-operative Agreement with Electricite` de France (EDF).

  16. Boron-Based Nanostructures, Stability, Functionality and Synthetic Routes

    Energy Technology Data Exchange (ETDEWEB)

    Yakobson, Boris I. [Rice Univ., Houston, TX (United States); Ajayan, Pulickel M. [Rice Univ., Houston, TX (United States)

    2017-08-04

    Boron (B) is one of the most intriguing elements not only because of its position between metals and nonmetals in periodic table but also because of its ability to form an enormous number of allotropes. Apart from several bulk three-dimensional (3D) phases, boron can form 0D clusters, 1D nanotubes and nanowires, and 2D layers. In particular, boron sheets of monoatomic thickness have raised interest as a potential new 2D-material and as a (conceptual) precursor, for example, so-called α-sheets, from which other boron structures - fullerene cages and tubes - might be constructed. In fact, a number of planar B clusters up to tens of atoms, found in experiments, appear as seeds for extended sheets. In this project we developed theoretical methods to guide synthesis, have successfully identified the material substrates (Ag, Au, Cu) to producing the pure boron layers, and further even predicted what atomistic structures should be expected. These guidelines have successfully led to discoveries in several labs and now have grown into an active line of research worldwide.

  17. Salinity’s influence on boron toxicity in broccoli: II. Impacts on boron uptake, uptake mechanisms and tissue ion relations.

    Science.gov (United States)

    Limited research has been conducted on the interactive effects of salinity and boron stresses on plants despite their common occurrence in natural systems. The purpose of this research was to determine and quantify the interactive effects of salinity, salt composition and boron on broccoli (Brassica...

  18. Preparation of boron-nitrogen films by sputtering

    International Nuclear Information System (INIS)

    Klose, S.; Winde, B.

    1980-01-01

    Hard boron-nitrogen films adherent to various substrates can be prepared by sputtering. IR investigations suggest the existence of cubic boron nitride in certain layers. Transmission electron microscope studies have shown a quasi-amorphous structure irregularly incorporating crystallites of zinc blende structure of some nm in diameter

  19. Structure and photoluminescence of boron and nitrogen co-doped carbon nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Gao, B. [College of Computer Science, Chongqing University, Chongqing 400044 (China); Chongqing Municipal Education Examinations Authority, Chongqing 401147 (China); Zhong, X.X., E-mail: xxzhong@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Shao, R.W.; Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2016-07-15

    Graphical abstract: Boron- and nitrogen- doped carbon nanorods. - Highlights: • The co-doping of nitrogen and boron in carbon nanorods. • The doping mechanism of nitrogen and boron in carbon nanorods by plasma. • Photoluminescence properties of nitrogen- and boron-doped carbon nanorods. - Abstract: Boron and nitrogen doped carbon nanorods (BNCNRs) were synthesized by plasma-enhanced hot filament chemical vapor deposition, where methane, nitrogen and hydrogen were used as the reaction gases and boron carbide was the boron source. The results of scanning electron microscopy, micro-Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy indicate that boron and nitrogen can be used as co-dopants in amorphous carbon nanorods. Combined with the characterization results, the doping mechanism was studied. The mechanism is used to explain the formation of different carbon materials by different methods. The photoluminescence (PL) properties of BNCNRs were studied. The PL results show that the BNCNRs generate strong green PL bands and weak blue PL bands, and the PL intensity lowered due to the doping of boron. The outcomes advance our knowledge on the synthesis and optical properties of carbon-based nanomaterials and contribute to the development of optoelectronic nanodevices based on nano-carbon mateirals.

  20. Boron toxicity causes multiple effects on Malus domestica pollen tube growth

    Directory of Open Access Journals (Sweden)

    Kefeng eFang

    2016-02-01

    Full Text Available Boron is an essential micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this stress is not known. This study aimed to evaluate the effect of boron stress on Malus domestica pollen tube growth and its possible regulatory pathway. Our results show that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron stress could decrease [Ca2+]c and induce the disappearance of the [Ca2+]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron stress. Immuno-localization and fluorescence labeling, together with Fourier-transform infrared analysis (FTIR, suggested that boron stress influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca2+]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth.

  1. Boron Toxicity Causes Multiple Effects on Malus domestica Pollen Tube Growth.

    Science.gov (United States)

    Fang, Kefeng; Zhang, Weiwei; Xing, Yu; Zhang, Qing; Yang, Liu; Cao, Qingqin; Qin, Ling

    2016-01-01

    Boron is an important micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this toxicity is not known. This study aimed to evaluate the effect of boron toxicity on Malus domestica pollen tube growth and its possible regulatory pathway. Our results showed that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron toxicity could decrease [Ca(2+)]c and induce the disappearance of the [Ca(2+)]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron toxicity. Immuno-localization and fluorescence labeling, together with fourier-transform infrared analysis, suggested that boron toxicity influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins, and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca(2+)]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth.

  2. Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates

    International Nuclear Information System (INIS)

    Chang, P.-Y.; Yeh, P.-C.; Yang, J.-M.

    2008-01-01

    The fatigue crack initiation behavior of a high modulus and hybrid boron/glass/aluminum fiber/metal laminate (FML) was investigated experimentally and analytically. Two types of hybrid boron/glass/aluminum FMLs were fabricated and studied, which consisted of aluminum alloy sheets as the metal layers and a mixture of boron fibers and glass fibers as the composite layers. For the first type, the boron fiber/prepreg and the glass fiber/prepreg were used separately in the composite layers, and for the second type, the boron fibers and the glass fibers were mingled together to form a hybrid boron/glass/prepreg composite layer. These hybrid FMLs were consolidated using an autoclave curing process. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, would improve the fatigue crack initiation life of the Al sheet. The experimental results clearly showed that the fatigue crack initiation lives for both types of hybrid boron/glass/aluminum FMLs were superior to the monolithic aluminum alloy under the same loading condition. An analytical approach was proposed to calculate the fatigue crack initiation lives of hybrid boron/glass/aluminum FMLs based on the classical laminate theory and the small-crack theory. A good correlation was obtained between the predictions and the experimental results

  3. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  4. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Yushen [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Deng, Xiaohui [Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008 (China); Zhang, G. P. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States)

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  5. Boron Removal from Seawater by Thin-Film Composite Reverse Osmosis Membranes

    KAUST Repository

    Al Sunbul, Yasmeen

    2018-04-01

    Reverse Osmosis membranes have been successfully proven to remove almost 99% of chemicals dissolved in seawater. However, removal of certain trace elements, such as boron is challenging and relatively low for seawater reverse osmosis desalination plants compared to thermal desalination plants. Boron is naturally occurring and is present in seawater at an average concentration of 4.5-5 mg/L. While boron is a vital element, its toxicity has been proven on crops, animals and possibly humans. Additionally, boron should be removed to comply with the current guideline value of 0.5 mg/L, for drinking water, issued by the World Health Organization (WHO), which is barely attained by a single-pass process seawater reverse osmosis plant. Currently, multipass reverse osmosis membrane operations with pH modifications are the only valid method for boron removal. However, this is not economically efficient as it requires higher energy and chemicals consumptions. The objective of this study was to investigate boron removal by commercial TFC RO membranes in addition to custom-made KAUST-synthesized TFC membrane. Five membrane samples were examined: Toray, Sepro, Koch, and KAUST in-house synthesized membrane. Three different feed pH conditions were used: pH6, pH8, and pH10. Filtration experiments were conducted in two parts. In experiment 1, all five membranes were examined for boron rejection in a dead-end permeation system, whereas in experiment 2 the two membranes with the highest boron rejection from experiment 1 were tested in a cross-flow system. Permeate and feed samples were taken continuously and analyzed for boron concentration, rejection calculation. Membrane surfaces were characterized according to hydrophilicity, roughness and surface charge. The results showed for all the tested membranes that boron rejection increased as the feed pH increased. KAUST, defect-free TFC, showed the highest performance for boron rejection for all pH conditions, although, it shows the

  6. Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Qingyun [Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Abu-Reesh, Ibrahim M. [Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha (Qatar); He, Zhen, E-mail: zhenhe@vt.edu [Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2016-11-01

    Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level < 2 mg L{sup −} {sup 1}. The ratio between the anolyte and the catholyte flow rates should be kept > 22.2 in order to avoid boron accumulation in the anolyte effluent. - Highlights: • Mathematical models are developed to understand boron removal in BES. • Boron removal can be driven by electromigration induced by current generation. • Diffusion induced by a salt concentration gradient also contributes to boron removal. • Osmosis and current driven convection transport play diverse roles in different BES.

  7. Neutron pre-emission at the fusion of 11 Li halo nuclei with Si targets

    International Nuclear Information System (INIS)

    Petrascu, M.; Isbasescu, A.; Petrascu, H.; Bordeanu, C.; David, I.; Lazar, I.; Mihai, I.; Vaman, G.; Tanihata, I.; Kobayashi, T.; Korsheninnikov, A.; Fukuda, S.; Kumagai, H.; Momota, S.; Ozawa, A.; Yoshida, K.; Nikolski, E.; Giurgiu, M.

    1997-01-01

    In this contribution, the first experiment on fusion of 11 Li halo nuclei with Si targets is reported. A novel effect consisting of a large neutron pre-emission probability in the fusion process was observed. The neutron halo nuclei are characterized by very large matter radii, small separation energy and small internal momentum of the valence neutrons. Until now, the halo nuclei were investigated mostly by elastic, inelastic scattering and breakup processes. It was recently predicted that due to the very large dimension of 11 Li, one may expect, that in a fusion experiment on a light target, the valence neutrons will not be absorbed together with the 9 Li core, but will be emitted in the early stage of the reaction process. The experiment aiming to check this expectation, performed at RIKEN-RIPS facility, is described. In the experimental arrangement, three main parts are present: the first part contains the detectors used for the control, identification and determination of the beam characteristics; the second part consists of a Multiple Sampling Ionisation Chamber (MUSIC), used for identification of the inclusive evaporation residue spectra produced in the detector-target; the third part consists of two wall neutron detectors, each made up of 15 plastic scintillators. This detector was used for the energy and position determination of the neutrons originating from the target. The projectile energy range was 11.2 - 15.2 AMeV, centered at 13 AMeV. The neutrons resulting from the reaction were measured by time-of-light technique. The position on the 'wall' of the detected neutrons could be also determined. The measured neutron spectra from 11 Li and 9 Li are shown. A marked different between the two spectra was found and it is explained by the contribution of a large amount of pre-emission (breakup) processes, in case of 11 Li projectiles. The position spectra point out the evaporation origin of the neutrons in case of 9 Li projectiles while for 11 Li only the

  8. Boron neutron capture therapy for malignant melanoma: An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, B.S.; Larsson, B.; Roberto, A. (Uppsala Univ. (Sweden))

    1989-07-01

    Previous studies have shown that some thioamides, e.g., thiouracil, are incorporated as false precursors into melanin during its synthesis. If boronated analogs of the thioamides share this property, the melanin of melanotic melanomas offers a possibility for specific tumoural uptake and retention of boron as a basis for neutron capture therapy. We report on the synthesis of boronated 1H-1,2,4-triazole-3-thiol (B-TZT), boronated 5-carboxy-2-thiouracil (B-CTU), and boronated 5-diethylaminomethyl-2-thiouracil (B-DEAMTU) and the localization of these substances in melanotic melanomas transplanted to mice. The distribution in the mice was studied by boron neutron capture radiography. B-TZT and B-CTU showed the highest tumour:normal tissue concentration ratios, with tumour:liver ratios of about 4 and tumour:muscle ratios of about 14; B-DEAMTU showed corresponding ratios of 1.4 and 5, respectively. The absolute concentration of boron in the tumours, however, was more than three times higher in the mice injected with B-TZT, compared with B-CTU. The results suggest that B-TZT may be the most promising compound of the three tested with regard to possible therapy of melanotic melanomas.

  9. The optical properties of boron carbide near boron K-edge inside periodical multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Schlemper, Christoph; Pietsch, Ullrich [University of Siegen (Germany)

    2010-07-01

    Multilayer mirrors made for the use in the wavelength range near K-edge of boron (188 eV) are of great interest for X-ray fluorescence analysis of boron content in doped semiconductors, plasma diagnostics, astronomy and lithography. Moreover, multilayer mirrors composed by a metal and a low Z element like boron are used as optical elements in both the soft x-ray spectral range as well as at higher photon energies on 3rd generation synchrotron beamlines. Using an energy-resolved photon-in-photon-out method we reconstructed the optical data from energy dependence of both integrated peak intensity and FWHM of the 1st order ML Bragg peak measured at the UHV triple axis soft-x-ray reflectometer at BESSY II. The experiments clearly demonstrate that the peak shape of the ML Bragg peak is most sensitive to any kind of electronic excitation and recombination in solid. The soft-ray reflectivity can give detailed information for MLs with thickness up to several tens of nanometers. In addition, measurements close to a resonance edge probe the chemical state of the respective constituent accompanied with a high sensitivity of changes close to the sample surface.

  10. Fracture toughness of borides formed on boronized ductile iron

    International Nuclear Information System (INIS)

    Sen, Ugur; Sen, Saduman; Koksal, Sakip; Yilmaz, Fevzi

    2005-01-01

    In this study, fracture toughness properties of boronized ductile iron were investigated. Boronizing was realized in a salt bath consisting of borax, boric acid and ferro-silicon. Boronizing heat treatment was carried out between 850 and 950 deg. C under the atmospheric pressure for 2-8 h. Borides e.g. FeB, Fe 2 B formed on ductile iron was verified by X-ray diffraction (XRD) analysis, SEM and optical microscope. Experimental results revealed that longer boronizing time resulted in thicker boride layers. Optical microscope cross-sectional observation of borided layers showed dentricular morphology. Both microhardness and fracture toughness of borided surfaces were measured via Vickers indenter. The harnesses of borides formed on the ductile iron were in the range of 1160-2140 HV 0.1 and fracture toughness were in the range of 2.19-4.47 MPa m 1/2 depending on boronizing time and temperature

  11. Development of effective methods for determination of boron in soils and soil solutions

    Directory of Open Access Journals (Sweden)

    Мaruan Tanasheva

    2012-12-01

    Full Text Available This paper is related to serious ecological problem in agriculture: soil degradation in rice fields in South Kazakhstan and in particular, to boron toxicity in rice, which resulted in reduced crop yields. The following abiotic factors were studied to determine the ability of boron to accumulate in rice fields: soil type, soil properties like salinity and acidity', season (level of precipitation, water logging /water shortage. The results shows that the severity of boron excess for fertility of rice crop which depends on boron ionic composition in soil. Adverse impact of both boron deficiency and boron excess are discussed. The necessity of boron fertilizers is shown for soils with high boron mobility.

  12. The ternary system nickel-boron-silicon

    International Nuclear Information System (INIS)

    Lugscheider, E.; Reimann, H.; Knotek, O.

    1975-01-01

    The ternary system Nickel-Boron-Silicon was established at 850 0 C by means of X-ray diffraction, metallographic and micro-hardness examinations. The well known binary nickel borides and silicides resp. were confirmed. In the boron-silicon system two binary phases, SiBsub(4-x) with x approximately 0.7 and SiB 6 were found the latter in equilibrium with the β-rhombohedral boron. Confirming the two ternary silicon borides a greater homogeneity range was found for Ni 6 Si 2 B, the phase Nisub(4,6)Si 2 B published by Uraz and Rundqvist can better be described by the formula Nisub(4.29)Si 2 Bsub(1.43). In relation to further investigations we measured melting temperatures in ternary Ni-10 B-Si alloys by differential thermoanalysis. (author)

  13. Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems.

    Science.gov (United States)

    Ping, Qingyun; Abu-Reesh, Ibrahim M; He, Zhen

    2016-11-01

    Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level 22.2 in order to avoid boron accumulation in the anolyte effluent. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    Science.gov (United States)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  15. Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.

    Science.gov (United States)

    Heyer, Steffen; Janssen, Wiebke; Turner, Stuart; Lu, Ying-Gang; Yeap, Weng Siang; Verbeeck, Jo; Haenen, Ken; Krueger, Anke

    2014-06-24

    The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.

  16. Neutron Damage in Steels Containing Small Amounts of Boron

    Energy Technology Data Exchange (ETDEWEB)

    Myers, H P

    1961-05-15

    Certain low alloy steels contain small amounts (0.003 to 0.007 w/o) of boron which element contributes to the development of the air hardening properties of these steels. Such steels appear attractive for reactor pressure vessel construction but the question arises whether they will, due to the (n,{alpha}) reaction in boron, be more susceptible to neutron radiation damage than other steels which do not contain boron. We have attempted to estimate the importance of damage arising through boron fission relative to that caused by fast neutrons by assuming that the two sources of damage will be proportional to the numbers of displaced atoms produced in the two processes when no annealing or re combination of defects occurs. Within the approximations used we conclude that in a neutron spectrum which may be represented by an equivalent thermal flux {phi}{sub t} and an equivalent fast flux at 1 MeV of {phi}{sub f}, then D, the ratio of damage to boron fission to that caused by fast neutrons, is D = 4.5 x 10{sup -2} {phi}{sub t}/{phi}{sub f} (for 0. 003 w/o B). For the conditions at the inside of the reactor tank to R3 this would imply D = 1.2 x 10{sup -2} , i.e. if the R3 tank were built with a steel containing 0.003 w/o B then damage due to boron fission would be only {approx} 1 % of that caused by fast neutrons. Further problems with such steels as here discussed are the probability of embrittlement due to the introduction of boron fission fragments lithium and helium and the possibility of a radiation enhanced diffusion of boron which might lead to accentuated slow strain rate embrittlement. We argue that none of these problems should arise. It is concluded that a constructional steel containing 0.003 to 0.007 w/o B should not on this account be more susceptible to radiation damage than other non boron containing steels.

  17. Functional characterization of Citrus macrophylla BOR1 as a boron transporter.

    Science.gov (United States)

    Cañon, Paola; Aquea, Felipe; Rodríguez-Hoces de la Guardia, Amparo; Arce-Johnson, Patricio

    2013-11-01

    Plants have evolved to develop an efficient system of boron uptake and transport using a range of efflux carriers named BOR proteins. In this work we isolated and characterized a boron transporter of citrus (Citrus macrophylla), which was named CmBOR1 for its high homology to AtBOR1. CmBOR1 has 4403 bp and 12 exons. Its coding region has 2145 bp and encodes for a protein of 714 amino acids. CmBOR1 possesses the molecular features of BORs such as an anion exchanger domain and the presence of 10 transmembrane domains. Functional analysis in yeast indicated that CmBOR1 has an efflux boron transporter activity, and transformants have increased tolerance to excess boron. CmBOR1 is expressed in leaves, stem and flowers and shows the greatest accumulation in roots. The transcript accumulation was significantly increased under boron deficiency conditions in shoots. In contrast, the accumulation of the transcript did not change in boron toxicity conditions. Finally, we observed that constitutive expression of CmBOR1 was able to increase tolerance to boron deficiency conditions in Arabidopsis thaliana, suggesting that CmBOR1 is a xylem loading boron transporter. Based on these results, it was determined that CmBOR1 encodes a boric acid/borate transporter involved in tolerance to boron deficiency in plants. © 2013 Scandinavian Plant Physiology Society.

  18. Coordination Networks Based on Boronate and Benzoxaborolate Ligands

    Directory of Open Access Journals (Sweden)

    Saad Sene

    2016-05-01

    Full Text Available Despite the extensive range of investigations on boronic acids (R-B(OH2, some aspects of their reactivity still need to be explored. This is the case for the coordination chemistry of boronate anions (R-B(OH3−, which has only recently been started to be studied. The purpose of this review is to summarize some of the key features of boronate ligands (and of their cyclic derivatives, benzoxaborolates in materials: (i coordination properties; (ii spectroscopic signatures; and (iii emerging applications.

  19. The effects of boron management on soil microbial population and ...

    African Journals Online (AJOL)

    Soil microorganisms directly influence boron content of soil as maximum boron release corresponds with the highest microbial activity. The objective of this study is to determine the effects of different levels of boron fertilizer on microbial population, microbial respiration and soil enzyme activities in different soil depths in ...

  20. Modelling of capillary Z-pinch recombination pumping of boron extreme ultraviolet laser

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Bobrova, N. A.; Sasorov, P. V.; Vrbová, M.; Hübner, Jakub

    2009-01-01

    Roč. 16, č. 7 (2009), 073105 1-073105 11 ISSN 1070-664X R&D Projects: GA ČR GA102/07/0275 Institutional research plan: CEZ:AV0Z20430508 Keywords : Boron * capillary * discharges (electric * laser ablation * optical pumping * plasma heating by laser * plasma kinetic theory * plasma magnetohydrodynamics * Z pinch Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.475, year: 2009 http://link.aip.org/link/? PHP /16/073105

  1. No evidence that boron influences tree species distributions in lowland tropical forests of Panama.

    Science.gov (United States)

    Turner, Benjamin L; Zalamea, Paul-Camilo; Condit, Richard; Winter, Klaus; Wright, S Joseph; Dalling, James W

    2017-04-01

    It was recently proposed that boron might be the most important nutrient structuring tree species distributions in tropical forests. Here we combine observational and experimental studies to test this hypothesis for lowland tropical forests of Panama. Plant-available boron is uniformly low in tropical forest soils of Panama and is not significantly associated with any of the > 500 species in a regional network of forest dynamics plots. Experimental manipulation of boron supply to seedlings of three tropical tree species revealed no evidence of boron deficiency or toxicity at concentrations likely to occur in tropical forest soils. Foliar boron did not correlate with soil boron along a local scale gradient of boron availability. Fifteen years of boron addition to a tropical forest increased plant-available boron by 70% but did not significantly change tree productivity or boron concentrations in live leaves, wood or leaf litter. The annual input of boron in rainfall accounts for a considerable proportion of the boron in annual litterfall and is similar to the pool of plant-available boron in the soil, and is therefore sufficient to preclude boron deficiency. We conclude that boron does not influence tree species distributions in Panama and presumably elsewhere in the lowland tropics. No claim to original US government works New Phytologist © 2016 New Phytologist Trust.

  2. Rare earth-iron-boron premanent magnets

    International Nuclear Information System (INIS)

    Ghendehari, M.H.

    1988-01-01

    This patent describes a method for producing rare earth-iron-boron permanent magnets containing added rare earth oxide, comprising the steps of: (a) mixing a particulate alloy containing at least one rare earth metal, iron, and boron with at least one particulate rare earth oxide; (b) aligning magnetic domains of the mixture in a magnetic field; (c) compacting the aligned mixture to form a shape; and (d) sintering the compacted shape

  3. Drug delivery system design and development for boron neutron capture therapy on cancer treatment

    International Nuclear Information System (INIS)

    Sherlock Huang, Lin-Chiang; Hsieh, Wen-Yuan; Chen, Jiun-Yu; Huang, Su-Chin; Chen, Jen-Kun; Hsu, Ming-Hua

    2014-01-01

    We have already synthesized a boron-containing polymeric micellar drug delivery system for boron neutron capture therapy (BNCT). The synthesized diblock copolymer, boron-terminated copolymers (Bpin-PLA-PEOz), consisted of biodegradable poly(D,L-lactide) (PLA) block and water-soluble polyelectrolyte poly(2-ethyl-2-oxazoline) (PEOz) block, and a cap of pinacol boronate ester (Bpin). In this study, we have demonstrated that synthesized Bpin-PLA-PEOz micelle has great potential to be boron drug delivery system with preliminary evaluation of biocompatibility and boron content. - Highlights: • Herein, we have synthesized boron-modified diblock copolymer. • Bpin-PLA-PEOz, which will be served as new boron containing vehicle for transporting the boron drug. • This boron containing Bpin-PLA-PEOz micelle was low toxicity can be applied to drug delivery

  4. Primary Coolant pH Control for Soluble Boron-Free PWRs

    International Nuclear Information System (INIS)

    Cheon, Yang Ho; Lee, Nam Yeong; Park, Byeong Ho; Park, Seong Chan; Kim, Eun Kee

    2015-01-01

    These should be considered when evaluating and designing the operating pH program for nuclear power plants. This paper discusses the advanced water chemistry strategies to keep pace with the recent global trends related to pH control in the primary water system for soluble boron pressurized water reactor (PWR) plants. Finally, the objective of this work is to study primary coolant pH control for soluble boron-free PWR plants. This paper reviewed the advanced water chemistry strategies to keep pace with the recent global trends related to pH control in the primary water chemistry system for soluble boron PWR plants. The new chemistry trend for the primary coolant is towards adaption of the constant and elevated chemistry. Finally, this work studied primary coolant pH control for soluble boron-free PWR plants. The ammonia-based water chemistry related to pH control for boron-free PWR plants was discussed. The ammonia-based water chemistry is not recommended to avoid fluctuation of the pH value by ammonia radiolysis and to reduce C-14 production in reactor coolant from reaction with dissolved nitrogen. Also, the potassium-based water chemistry related to pH control for boron-free PWR plants was discussed. KOH has a potential as an alternative pH control agent for soluble boron-free PWR plants. The potassium-based water chemistry related to pH control is recommended for boron-free operation as follows

  5. Designing your boron-charging system

    International Nuclear Information System (INIS)

    Miller, J.

    1979-01-01

    High-pressure positive-displacement pumps used in the boron-charging setups of pressurized-water (PWR) nuclear plants because of their inherently high efficiencies over a wide range of pressures and speeds are described. Hydrogen-saturated water containing 4-12% boric acid is fed to the pump from a volume-control tank under a gas blanket. Complicated piping and the pulsation difficulties associated with reciprocating pumps make hydrogen-saturated boron-charging systems a challenge to the designer. The article describes the unusual hydraulics of the systems to help assure a trouble-free design

  6. Spectrophotometric Determination of Boron in Environmental Water Samples

    International Nuclear Information System (INIS)

    San San; Khin Win Kyi; Kwaw Naing

    2002-02-01

    The present paper deals with the study on the methods for the determination of boron in the environmental water samples. The standard methods which are useful for this determination are discussed thoroughly in this work. Among the standard methods approved by American Public Health Association, the carmine method was selected for this study. Prior to the determination of boron in the water samples, the precision and accuracy of the methods of choice were examined by using standard boron solutions. The determination of Boron was carried out by using water samples, waste water from Aquaculture Research Centre, University of Yangon, the Ayeyarwady River water near Magway Myathalon Pagoda in Magway Division, ground water from Sanchaung Township, and tap water from Universities' Research Centre, University of Yangon. Analyses of these water samples were done and statistical treatment of the results was carried out. (author)

  7. Kerma factors in interaction of neutrons with boron carbide

    International Nuclear Information System (INIS)

    Bondarenko, I.M.

    1979-01-01

    Heat generation in neutron interactions with boron carbide B 10 ; B 11 and 12 C is calculated. Kerma-factors (kerma-kinetic energy released in materials) were calculated for neutron energies between 10 -4 eV and 15 MeV. No major simplifying assumptions are introduced, and the accuracy of the calculated kerma-factors depends only on availability and accuracy of the basic nuclear data. The ENDF/B-4 data and recent experimental information are used for the calculation of kerma-factors. Plots of these kerma-factors are presented in units of eVxb/atom and wtxsec/(cmxn) as a function of neutron energy

  8. Indirect Measurements for (p,α) Reactions Involving Boron Isotopes

    International Nuclear Information System (INIS)

    Lamia, L.; Spitaleri, C.; Romano, S.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Pizzone, R. G.; Puglia, S. M. R.; Sergi, M. L.; Tudisco, S.; Tumino, A.; Carlin, N.; Szanto, M. G. del; Liguori Neto, R.; Moura, M. M. de; Munhoz, M. G.; Souza, F. A.; Suaide, A. A. P.; Szanto, E.

    2008-01-01

    Light elements lithium, beryllium and boron (LiBeB) were used in the last years as 'possible probe' for a deeper understanding of some extra-mixing phenomena occurring in young Main-Sequence stars. They are mainly destroyed by (p,α) reactions and cross section measurements for such channels are then needed. The Trojan Horse Method (THM) allows one to extract the astrophysical S(E)-factor without the experience of tunneling through the Coulomb barrier. In this work a resume of the recent results about the 11 B(p,α 0 ) 8 Be and 10 B(p,α) 7 Be reactions is shown

  9. Combustion Performance of a Staged Hybrid Rocket with Boron addition

    Science.gov (United States)

    Lee, D.; Lee, C.

    2018-04-01

    In this paper, the effect of boron on overall system specific impulse was investigated. Additionally, a series of combustion tests was carried out to analyze and evaluate the effect of boron addition on O/F variation and radial temperature profiles. To maintain the hybrid rocket engine advantages, upper limit of boron contents in solid fuel was set to be 10 wt%. The results also suggested that, when adding boron to solid fuel, it helped to provide more uniform radial temperature distribution and also to increase specific impulse by 3.2%.

  10. Production of no-carrier-added 64Cu from zinc metal irradiated under boron shielding.

    Science.gov (United States)

    Zinn, K R; Chaudhuri, T R; Cheng, T P; Morris, J S; Meyer, W A

    1994-02-01

    Positron emission tomography offers advantages for radioimmunodiagnosis of cancer but requires radionuclides of appropriate half-life that have high specific activity and high radio-purity. This work was designed to develop a viable method to produce and purify 64Cu, which has high specific activity, for positron emission tomography. 64Cu was produced at the University of Missouri Research Reactor by the nuclear reaction, 64Zn(n,p)64Cu. Highly pure zinc metal (99.9999%) was irradiated in a specially designed boron nitrite lined container, which minimized thermal neutron reactions during irradiation. A new two-step procedure was developed to chemically separate the no-carrier-added 64Cu from the zinc metal target. 64Cu recovery for 24 runs averaged 0.393 (+/- 0.007) mCi per milligram of zinc irradiated. The boron-lined irradiation container reduced unwanted zinc radionuclides 14.3-fold. Zinc radionuclides and non-radioactive zinc were separated successfully from the 64Cu. The new separation technique was fast (2 hours total time) and highly efficient for removing the zinc. The zinc separation factor for this technique averaged 8.5 x 10(-8), indicating less than 0.0000085% of the zinc remained after separation. Thus far, the highest 64Cu specific activity at end of irradiation was 683 Ci/mg Cu, with an average of 512 Ci/mg Cu for the last six analyzed runs. The boron-lined irradiation container has sufficient capacity for 75-fold larger-sized zinc targets (up to 45 g). The new separation technique was excellent for separating 64Cu, which appears to be a radionuclide with great potential for positron emission tomography.

  11. On Certain Topological Indices of Boron Triangular Nanotubes

    Science.gov (United States)

    Aslam, Adnan; Ahmad, Safyan; Gao, Wei

    2017-08-01

    The topological index gives information about the whole structure of a chemical graph, especially degree-based topological indices that are very useful. Boron triangular nanotubes are now replacing usual carbon nanotubes due to their excellent properties. We have computed general Randić (Rα), first Zagreb (M1) and second Zagreb (M2), atom-bond connectivity (ABC), and geometric-arithmetic (GA) indices of boron triangular nanotubes. Also, we have computed the fourth version of atom-bond connectivity (ABC4) and the fifth version of geometric-arithmetic (GA5) indices of boron triangular nanotubes.

  12. Influence of boron content on the microstructure and tribological properties of Cr-B-N coatings in water lubrication

    Science.gov (United States)

    Ma, Qiang; Zhou, Fei; Gao, Song; Wu, Zhiwei; Wang, Qianzhi; Chen, Kangmin; Zhou, Zhifeng; Li, Lawrence Kwok-Yan

    2016-07-01

    Cr-B-N coatings with different boron contents were deposited on Si(1 0 0) wafers and 316 L stainless steels using unbalanced magnetron sputtering system by way of adjusting the CrB2 target currents. The microstructure and mechanical properties of Cr-B-N coatings were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), white light interferometric three dimensional profilometer and nano-indentation tester, respectively. The tribological properties of Cr-B-N/SiC tribopairs in water were studied using ball-on-disk tribometer. The results showed that the Cr-B-N coatings showed a fine nanocomposite structure consisted of CrN nanograins and amorphous BN phase regardless of boron contents, and the typical columnar structure became featureless with increasing the CrB2 target current. The hardness and reduced elastic modulus first increased to 28.9 GPa and 330 GPa at the CrB2 target current of 2 A, and then decreased gradually with further increasing the CrB2 target current to 4 A. As compared with the CrN/SiC tribopairs, the lowest friction coefficient of Cr-B-N/SiC ball tribopairs in water was 0.15, and the wear resistance of Cr-B-N coatings was effectively enhanced.

  13. INFLUENCE RESEARCH OF COLD PLASTIC DEFORMATION ON DIFFUSION SATURATION PROCESS BY CARBON AND BORON OF THE LOW-CARBON AND BORON-CONTAINING ALLOYS

    Directory of Open Access Journals (Sweden)

    N. Yu. Filonenko

    2010-06-01

    Full Text Available This work is devoted to the study of influence of cold prestrain with degree of deformation within the range 0…40 % on diffusion saturation with boron and carbon for low-carbon and boron steels. It is determined that the plastic prestrain with degree of deformation 20 % at temperature 750 °С for the low-carbon steel promote increasing of boron-cementation layer thickness by 25 % and microhardness of perlite layer by 20 %.

  14. Electrodialysis of boron-containing solutions using homogeneuos ionite membranes

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Grebenyuk, V.D.; Mel'nik, L.A.

    1989-01-01

    Electrodialysis of boron-containing solutions is studied when preparing potable water from the sea one with the limiting admissible concentration (LAC) of boron 0.5 mg/dm 3 . It is ascertained that at pH>7 diffusion permeability of anion- and cation-exchange membranes as regards boron reduces both in the absence of external field and at current density 0.3 A/dm 3 . It is shown that when MK-100 homogeneous cationic membranes and MA-100 homogeneous anionic membranes are used, boron concentration in dialyzate decreases to LAC, if the process is realized in acid and low-acid media and if the depth of freshening increases to 0.2g/l

  15. Development of a NiO target for the production of {sup 11}C at ISAC/TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Bricault, Pierre G.; Ames, Friedhelm; Dombsky, Marik; Kunz, Peter; Lassen, Jens; Mjøs, Anders; Wong, John

    2016-01-01

    High intensity {sup 11}C beams are necessary for the investigation of the formation of {sup 12}C via the nuclear reaction {sup 11}C(p, γ){sup 12}N → {sup 12}C + e{sup +} + ν. The production of intense carbon beams on-line is quite challenging due to the thermodynamic properties and chemical reactivity of carbon at high temperatures. A previous attempt, using a medical isotope cyclotron production method in batch mode, was not conclusive. The intensity obtained was at least one order of magnitude too low for a direct proton capture experiment using the DRAGON facility at ISAC/TRIUMF. Producing a {sup 11}C beams using the ISOL method requires a target capable of efficiently releasing the carbon isotopes. NiO has been selected as a target material because most of the nickel carbides are not stable at high temperature. The development of carbon beams using a composite NiO/Ni target on-line is described.

  16. Accuracy Improvement of Boron Meter Adopting New Fitting Function and Multi-Detector

    Directory of Open Access Journals (Sweden)

    Chidong Kong

    2016-12-01

    Full Text Available This paper introduces a boron meter with improved accuracy compared with other commercially available boron meters. Its design includes a new fitting function and a multi-detector. In pressurized water reactors (PWRs in Korea, many boron meters have been used to continuously monitor boron concentration in reactor coolant. However, it is difficult to use the boron meters in practice because the measurement uncertainty is high. For this reason, there has been a strong demand for improvement in their accuracy. In this work, a boron meter evaluation model was developed, and two approaches were considered to improve the boron meter accuracy: the first approach uses a new fitting function and the second approach uses a multi-detector. With the new fitting function, the boron concentration error was decreased from 3.30 ppm to 0.73 ppm. With the multi-detector, the count signals were contaminated with noise such as field measurement data, and analyses were repeated 1,000 times to obtain average and standard deviations of the boron concentration errors. Finally, using the new fitting formulation and multi-detector together, the average error was decreased from 5.95 ppm to 1.83 ppm and its standard deviation was decreased from 0.64 ppm to 0.26 ppm. This result represents a great improvement of the boron meter accuracy.

  17. Accuracy improvement of boron meter adopting new fitting function and multi-detector

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chidong; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); KIm, Si Hwan; Lyou, Seok Jean [Users Incorporated Company, Hansin S-MECA, Daejeon (Korea, Republic of)

    2016-12-15

    This paper introduces a boron meter with improved accuracy compared with other commercially available boron meters. Its design includes a new fitting function and a multi-detector. In pressurized water reactors (PWRs) in Korea, many boron meters have been used to continuously monitor boron concentration in reactor coolant. However, it is difficult to use the boron meters in practice because the measurement uncertainty is high. For this reason, there has been a strong demand for improvement in their accuracy. In this work, a boron meter evaluation model was developed, and two approaches were considered to improve the boron meter accuracy: the first approach uses a new fitting function and the second approach uses a multi-detector. With the new fitting function, the boron concentration error was decreased from 3.30 ppm to 0.73 ppm. With the multi-detector, the count signals were contaminated with noise such as field measurement data, and analyses were repeated 1,000 times to obtain average and standard deviations of the boron concentration errors. Finally, using the new fitting formulation and multi-detector together, the average error was decreased from 5.95 ppm to 1.83 ppm and its standard deviation was decreased from 0.64 ppm to 0.26 ppm. This result represents a great improvement of the boron meter accuracy.

  18. Theoretical isotopic fractionation between structural boron in carbonates and aqueous boric acid and borate ion

    Science.gov (United States)

    Balan, Etienne; Noireaux, Johanna; Mavromatis, Vasileios; Saldi, Giuseppe D.; Montouillout, Valérie; Blanchard, Marc; Pietrucci, Fabio; Gervais, Christel; Rustad, James R.; Schott, Jacques; Gaillardet, Jérôme

    2018-02-01

    The 11B/10B ratio in calcite and aragonite is an important proxy of oceanic water pH. However, the physico-chemical mechanisms underpinning this approach are still poorly known. In the present study, we theoretically determine the equilibrium isotopic fractionation properties of structural boron species in calcium carbonates, BO33-, BO2(OH)2- and B(OH)4- anions substituted for carbonate groups, as well as those of B(OH)4- and B(OH)3 species in vacuum. Significant variability of equilibrium isotopic fractionation properties is observed among these structural species which is related to their contrasted coordination state, Bsbnd O bond lengths and atomic-scale environment. The isotopic composition of structural boron does not only depend on its coordination number but also on its medium range environment, i.e. farther than its first coordination shell. The isotopic fractionation between aqueous species and their counterparts in vacuum are assessed using previous investigations based on similar quantum-mechanical modeling approaches. At 300 K, the equilibrium isotope composition of structural trigonal species is 7-15‰ lighter than that of aqueous boric acid molecules, whereas substituted tetrahedral borate ions are heavier than their aqueous counterparts by 10-13‰. Although significant uncertainties are known to affect the theoretical prediction of fractionation factors between solids and solutions, the usually assumed lack of isotopic fractionation during borate incorporation in carbonates is challenged by these theoretical results. The present theoretical equilibrium fractionation factors between structural boron and aqueous species differ from those inferred from experiments which may indicate that isotopic equilibrium, unlike chemical equilibrium, was not reached in most experiments. Further research into the isotopic fractionation processes at the interface between calcium carbonates and aqueous solution as well as long duration experiments aimed at

  19. Matrix Transformation in Boron Containing High-Temperature Co-Re-Cr Alloys

    Science.gov (United States)

    Strunz, Pavel; Mukherji, Debashis; Beran, Přemysl; Gilles, Ralph; Karge, Lukas; Hofmann, Michael; Hoelzel, Markus; Rösler, Joachim; Farkas, Gergely

    2018-03-01

    An addition of boron largely increases the ductility in polycrystalline high-temperature Co-Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ɛ (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co-17Re-23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ɛ to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co-17Re-23Cr-1.2Ta-2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0-1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.

  20. Study of the boron distribution in pea and alfalfa plants using SSNTD

    International Nuclear Information System (INIS)

    Li Jianming; Inst. for Application of Atomic Energy)" data-affiliation=" (Chinese Academy of Agricultural Sciences, Beijing, BJ (China)> Inst. for Application of Atomic Energy)" >Deng Hongmin

    1988-01-01

    The distribution of boron in pea (Pisum sativum L.) and alfalfa (Medicago sativa L.) was determined by using SSNTD. The results show that boron concentrations in leaves are highest, furthermore boron concentrations of the base leaves are higher than those of the top leaves. Among flower tissues, calyx has the highest boron concentration

  1. Preparation of boron-rich aluminum boride nanoparticles by RF thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sooseok [Inha University, Department of Chemical Engineering and Regional Innovation Center for Environmental Technology of Thermal Plasma (Korea, Republic of); Matsuo, Jiro; Cheng, Yingying [Tokyo Institute of Technology, Department of Environmental Chemistry and Engineering (Japan); Watanabe, Takayuki, E-mail: watanabe@chemenv.titech.ac.jp [Kyushu University, Department of Chemical Engineering (Japan)

    2013-08-15

    Boron-rich compounds of AlB{sub 12} and AlB{sub 10} nanoparticles were synthesized by a radiofrequency thermal plasma. Aluminum and boron raw powders were evaporated in virtue of high enthalpy of the thermal plasma in upstream region, followed by the formation of aluminum boride nanoparticles in the tail region of plasma flame with rapid quenching. A high production rate of aluminum boride was confirmed by the X-ray diffraction measurement in the case of high input power, high boron content in raw material and helium inner gas. Polyhedral nanoparticles of 20.8 nm in mean size were observed by a transmission electron microscope. In the raw powder mixture of aluminum, titanium, and boron, titanium-boride nanoparticles were synthesized preferentially, because the Gibbs free energy for the boridation of titanium is lower than that of aluminum. Since the nucleation temperature of boron is higher than that of aluminum, the condensation of metal monomers onto boron nuclei results in the formation of boron-rich aluminum boride nanoparticles.

  2. Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies

    Science.gov (United States)

    Boukhvalov, D. W.; Zhidkov, I. S.; Kukharenko, A. I.; Slesarev, A. I.; Zatsepin, A. F.; Cholakh, S. O.; Kurmaev, E. Z.

    2018-05-01

    Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.

  3. Boron isotope fractionation in column chromatography with glucamine type fibers

    International Nuclear Information System (INIS)

    Sonoda, Akinari; Makita, Yoji; Hirotsu, Takahiro

    2008-01-01

    Glucamine type polymers have specific affinity toward boric acid and borate ion. Among them, Chelest Fiber GRY-L showed larger fractionation for boron isotopes than other polymers in our previous study. For this study, we used Chelest Fibers with different fiber lengths (1.0 mm, 0.5 mm, and 0.3 mm) as column packing materials to perform chromatographic separation of boron isotopes. The shorter fiber has larger packing density when packed into the column using a dry method. The 0.3-mm-long fiber has a larger backpressure than fibers of other lengths. Boron adsorption capacities were measured using the breakthrough operation. At this time, the 0.5-mm-long fiber showed the highest capacity. When we measured the isotope ratio profile for fibers of different length using column chromatography, 0.5-mm-long fibers displayed the highest boron isotope fractionation. The 0.5-mm-long fiber is promising as a packing material of column chromatography for boron isotope separation. We also changed operation methods. The lower eluent concentration and the slower flow rate are suitable for boron isotope separation. (author)

  4. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    Science.gov (United States)

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  5. Elastic modulus and fracture of boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Walther, G.

    1978-12-01

    The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C

  6. Boron Diffusion in Surface-Treated Framing Lumber

    Science.gov (United States)

    Patricia K. Lebow; Stan T. Lebow; Steven A. Halverson

    2013-01-01

    The extent of boron penetration in framing lumber treated by spray applications during construction is not well quantified. This study evaluated the effect of formulation and concentration on diffusion of boron in lumber specimens that were equilibrated in conditions that produced wood moisture contents of 18 to 21 percent. One set of specimens was pressure treated...

  7. BCM6: New Generation of Boron Meter

    International Nuclear Information System (INIS)

    Pirat, P.

    2010-01-01

    Full text of publication follows: Rolls-Royce has developed a new generation of boron meter, based on more than 30 years of experience. The Rolls-Royce BCM6 boron meter provides Nuclear Power Plant (NPP) operators with the boron concentration of the primary circuit. The meter provides continuous and safe measurements with no manual sampling and no human contact. In this paper, technical features, advantages and customer benefits of the use of the new generation of Rolls-Royce BCM6 boron meter will be detailed. Values and associated alarms are provides over different media: 4-20 mA outputs, relays, displays in the main control room and in the chemical lab, and digital links. A special alarm avoids unexpected homogeneous dilution of the primary circuit, which is a critical operational parameter. The Rolls-Royce BCM6 boron meter is fully configurable over a set of parameters allowing adaptation to customer needs. It has a differential capability, thus eliminating neutronic noise and keeping measurements accurate, even in the case of fuel clad rupture. Measurements are accurate, reliable, and have a quick response time. Equipment meets state-of-the-art qualification requests. Designed in 2008, the BCM6 boron meter is the newest equipment of Rolls-Royce boron meters product line. It has been chosen to equip the French EPR NPP and complies with the state-of-the-art of the technology. Rolls-Royce has more than 30 years of experience in Instrumentation and Controls with more than 75 NPP units operating worldwide. All of this experience return has been put in this new generation of equipment to provide the customer with the best operation. About Rolls-Royce Rolls-Royce is a global business providing integrated power systems for use on land, at sea and in the air. The Group has a balanced business portfolio with leading market positions. Rolls-Royce has a broad range of civil nuclear expertise, including work related to licensing and safety reviews, engineering design

  8. Photoluminescence properties of boron doped InSe single crystals

    International Nuclear Information System (INIS)

    Ertap, H.; Bacıoğlu, A.; Karabulut, M.

    2015-01-01

    Undoped and boron doped InSe single crystals were grown by Bridgman–Stockbarger technique. The PL properties of undoped, 0.1% and 0.5% boron doped InSe single crystals have been investigated at different temperatures. PL measurements revealed four emission bands labeled as A, B, C and D in all the single crystals studied. These emission bands were associated with the radiative recombination of direct free excitons (n=1), impurity-band transitions, donor–acceptor recombinations and structural defect related band (impurity atoms, defects, defect complexes, impurity-vacancy complex etc.), respectively. The direct free exciton (A) bands of undoped, 0.1% and 0.5% boron doped InSe single crystals were observed at 1.337 eV, 1.335 eV and 1.330 eV in the PL spectra measured at 12 K, respectively. Energy positions and PL intensities of the emission bands varied with boron addition. The FWHM of direct free exciton band increases while the FWHM of the D emission band decreases with boron doping. Band gap energies of undoped and boron doped InSe single crystals were calculated from the PL measurements. It was found that the band gap energies of InSe single crystals decreased with increasing boron content. - Highlights: • PL spectra of InSe crystals have been studied as a function of temperature. • Four emission bands were observed in the PL spectra at low temperatures. • PL intensity and position of free exciton band vary with doping and temperature. • Temperature dependences of the bands observed in the PL spectra were analyzed

  9. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.

    2013-04-01

    Boron removal in seawater desalination presents a particular challenge. In seawater reverse osmosis (SWRO) systems boron removal at low concentration (<0.5 mg/L) is usually achieved by a second pass using brackish water RO membranes. However, this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous solution was carried out by EC process using aluminum and iron electrodes. Several operating parameters on the removal efficiency such as initial pH, current density, initial boron ion concentration, feed concentration, gap between electrodes, and electrode material, were investigated. In the case of bipolar electrocoagulation (BEC), an optimum removal efficiency of 96% corresponding to a final boron concentration of 0.4 mg/L was achieved at a current density of 6 mA/cm2 and pH = 8 using aluminum electrodes. The concentration of NaCl was 2,500 mg/L and the gap between the electrodes of 0.5 cm. Furthermore, a comparison between monopolar electrocoagulation (MEC) and BEC using both aluminum and iron electrodes was carried out. Results showed that the BEC process has reduced the current density applied to obtain high level of boron removal in a short reaction time compared to MEC process. The high performance of the EC showed that the process could be used to reduce boron concentration to acceptable levels at low-cost and more environmentally friendly. © 2013 Copyright Taylor and Francis Group, LLC.

  10. Beneficial effect of boron in layered sodium-ion cathode materials - The example of Na2/3B0.11Mn0.89O2

    Science.gov (United States)

    Vaalma, Christoph; Buchholz, Daniel; Passerini, Stefano

    2017-10-01

    Sodium-ion batteries are regarded as a complementary drop-in technology to lithium-ion batteries because they promise lower cost and a higher degree of environmental friendliness. Among other reasons, these benefits come from the use of manganese-based materials, whose stabilization via cation substitution is intensively studied to improve the electrochemical performance. Although multiple elements have been considered as substituent, surprisingly, boron has not been reported for layered sodium-ion cathode materials up to date. Our investigation of layered Na2/3B0.11Mn0.89O2 reveals an unexpectedly good electrochemical performance, with charge and discharge capacities of more than 175 mAh g-1 at 10 mA g-1 and 135 mAh g-1 at 500 mA g-1. The measured capacities are among the highest ever reported for sodium-based layered oxides in the potential range of 4.0-2.0 V vs. Na/Na+.

  11. Continuum modelling for carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M

    2007-01-01

    Continuum based models are presented here for certain boron nitride and carbon nanostructures. In particular, certain fullerene interactions, C 60 -C 60 , B 36 N 36 -B 36 N 36 and C 60 -B 36 N 36 , and fullerene-nanotube oscillator interactions, C 60 -boron nitride nanotube, C 60 -carbon nanotube, B 36 N 36 -boron nitride nanotube and B 36 N 36 -carbon nanotube, are studied using the Lennard-Jones potential and the continuum approach, which assumes a uniform distribution of atoms on the surface of each molecule. Issues regarding the encapsulation of a fullerene into a nanotube are also addressed, including acceptance and suction energies of the fullerenes, preferred position of the fullerenes inside the nanotube and the gigahertz frequency oscillation of the inner molecule inside the outer nanotube. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures

  12. Nuclear Design Study for Reduced Boron Concentration Operation

    International Nuclear Information System (INIS)

    Daing, Aung Tharn; Kim, Myung Hyun

    2008-01-01

    In PWR, Boron Dilution Accident (BDA) which is an inadvertent reduction of the soluble boron concentration in the primary coolant, can lead to a positive reactivity insertion and a power increase. In this study, an optimal Low Boron Concentration (LBC) core design will be developed by reducing an excess reactivity so as to possess passive inherently safety features as well as one of attentively preventive measures of BDA scenarios. The scope of the research project concerning the change of operational procedure in chemical shim system, will involve three main parts namely, nuclear design for LBC core, feasibility check on the proposed core in safety and costs, and PSA approach on design change benefits. In addition, successful system analysis of the reactivity effects due to boron dilution transients, require a full coupling between core thermal hydraulic, reactor dynamics, and the use of Computational Fluid Dynamics (CFD) codes

  13. Nuclear Design Study for Reduced Boron Concentration Operation

    Energy Technology Data Exchange (ETDEWEB)

    Daing, Aung Tharn; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2008-10-15

    In PWR, Boron Dilution Accident (BDA) which is an inadvertent reduction of the soluble boron concentration in the primary coolant, can lead to a positive reactivity insertion and a power increase. In this study, an optimal Low Boron Concentration (LBC) core design will be developed by reducing an excess reactivity so as to possess passive inherently safety features as well as one of attentively preventive measures of BDA scenarios. The scope of the research project concerning the change of operational procedure in chemical shim system, will involve three main parts namely, nuclear design for LBC core, feasibility check on the proposed core in safety and costs, and PSA approach on design change benefits. In addition, successful system analysis of the reactivity effects due to boron dilution transients, require a full coupling between core thermal hydraulic, reactor dynamics, and the use of Computational Fluid Dynamics (CFD) codes.

  14. 15th International Conference on Boron Chemistry (IMEBORON XV)

    Czech Academy of Sciences Publication Activity Database

    Grüner, Bohumír; Štíbr, Bohumil

    2015-01-01

    Roč. 87, č. 2 (2015), s. 121 ISSN 0033-4545 Institutional support: RVO:61388980 Keywords : boranes * boron * boron materials * carboranes * IMEBORON XV * medicinal chemistry Subject RIV: CA - Inorganic Chemistry

  15. Influence of boron content on the morphological, spectral, and electroanalytical characteristics of anodically oxidized boron-doped diamond electrodes

    Czech Academy of Sciences Publication Activity Database

    Schwarzová-Pecková, K.; Vosáhlová, J.; Barek, J.; Šloufová, I.; Pavlova, Ewa; Petrák, Václav; Zavázalová, J.

    2017-01-01

    Roč. 243, 20 July (2017), s. 170-182 ISSN 0013-4686 R&D Projects: GA TA ČR(CZ) TE01020118 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : 2-aminobiphenyl * boron content * boron-doped diamond Subject RIV: CD - Macromolecular Chemistry; CG - Electrochemistry (FZU-D) OBOR OECD: Polymer science; Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) (FZU-D) Impact factor: 4.798, year: 2016

  16. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  17. Structure and distribution of cross-links in boron-modified phenol-formaldehyde resins designed for soft magnetic composites: a multiple-quantum 11B-11B MAS NMR correlation spectroscopy study

    Czech Academy of Sciences Publication Activity Database

    Kobera, Libor; Czernek, Jiří; Strečková, M.; Urbanová, Martina; Abbrent, Sabina; Brus, Jiří

    2015-01-01

    Roč. 48, č. 14 (2015), s. 4874-4881 ISSN 0024-9297 R&D Projects: GA MŠk(CZ) LD14010 Grant - others:European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:61389013 Keywords : phenol-formaldehyde polymers * boron crosslinks * soft magnetic composites Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.554, year: 2015

  18. Morphological and electrochemical studies of spherical boron doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mendes de Barros, R.C. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Ferreira, N.G. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Azevedo, A.F. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Corat, E.J. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Sumodjo, P.T.A. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Serrano, S.H.P. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil)]. E-mail: shps@iq.usp.br

    2006-08-14

    Morphological and electrochemical characteristics of boron doped diamond electrode in new geometric shape are presented. The main purpose of this study is a comparison among voltammetric behavior of planar glassy carbon electrode (GCE), planar boron doped diamond electrode (PDDE) and spherical boron doped diamond electrode (SDDE), obtained from similar experimental parameters. SDDE was obtained by the growth of boron doped film on textured molybdenum tip. This electrode does not present microelectrode characteristics. However, its voltammetric peak current, determined at low scan rates, is largest associated to the smallest {delta}E {sub p} values for ferrocyanide system when compared with PDDE or GCE. In addition, the capacitance is about 200 times smaller than that for GCE. These results show that the analytical performance of boron doped diamond electrodes can be implemented just by the change of sensor geometry, from plane to spherical shape.

  19. Setd7 and its contribution to boron-induced bone regeneration in B-MBG scaffolds.

    Science.gov (United States)

    Yin, Chengcheng; Jia, Xiaoshi; Miron, Richard J; Long, Qiaoyun; Xu, Hudi; Wei, Yan; Wu, Min; Zhang, Yufeng; Li, Zubing

    2018-04-20

    Boron (B), a trace element found in the human body, plays an important role for health of bone by promoting the proliferation and differentiation of osteoblasts. Our research group previously fabricated B-mesoporous bioactive glass (MBG) scaffolds, which successfully promoted osteogenic differentiation of osteoblasts when compared to pure MBG scaffolds without boron. However, the mechanisms of the positive effect of B-MBG scaffolds on osteogenesis remains unknown. Therefore, we performed in-vivo experiments in an OVX rat models with pure MBG scaffolds and compared them to B-MBG scaffold. As a result, we found that B-MBG scaffold induced more new bone regeneration compared to pure MBG scaffold and examined genes related to bone regeneration induced by B-MBG scaffold through RNA-seq to obtain target genes and epigenetic mechanisms. The results demonstrated an increased expression and affiliation of Setd7 in the B-MBG group when compared to the MBG group. Immunofluorescent staining from our in vivo samples further demonstrated a higher localization of Setd7 and H3K4me3 in Runx2-positive cells in defects treated with B-MBG scaffolds. KEGG results suggested that specifically Wnt/β-catenin signaling pathway was highly activated in new bone area associated with B-MBG scaffolds. Thereafter, in vitro studies with human bone marrow stem cells (hBMSCs) stimulated by extracted liquid of B-MBG was associated with significantly elevated levels of Setd7, as well as H3K4me3 when compared to MBG alone. To verify the role of Setd7 in new bone formation in the presence of Boron, Setd7 was knocked down in hBMSCs with stimulation of the extracted liquids of B-MBG or MBG scaffolds. The result showed that osteoblast differentiation of hBMSCs was inhibited when Setd7 was knocked down, which could not be rescued by the extract liquids of B-MBG scaffolds confirming its role in osteoblast differentiation and bone regeneration. As a histone methylase, Setd7 may be expected to be a potential

  20. Dose modification factors in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.J. (Australian Nuclear Science and Technology Organization (ANSTO), Menai (Australia))

    1993-01-01

    The effective treatment depth and therapeutic ratio in boron neutron capture therapy (BNCT) depend on a number of macroscopic dose factors such as boron concentrations in the tumor, normal tissue and blood. However, the role of various microscopic dose modification factors can be of critical importance in the evaluation of normal tissue tolerance levels. An understanding of these factors is valuable in designing BNCT experiments and the selection of appropriate boron compounds. These factors are defined in this paper and applied to the case of brain tumors with particular attention to capillary endothelial cells and oligodendrocytes. (orig.).

  1. On certain topological indices of boron triangular nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Aslam, Adnan [Univ. of Engineering and Technology, Lahore (Pakistan). Dept. of Natural Sciences and Humanities; Ahmad, Safyan [GC Univ. Lahore (Pakistan). Abdus Salam School of Mathematical Sciences; Gao, Wei [Yunnan Normal Univ., Kunming (China). School of Information Science and Technology

    2017-11-01

    The topological index gives information about the whole structure of a chemical graph, especially degree-based topological indices that are very useful. Boron triangular nanotubes are now replacing usual carbon nanotubes due to their excellent properties. We have computed general Randic (R{sub a}), first Zagreb (M{sub 1}) and second Zagreb (M{sub 2}), atom-bond connectivity (ABC), and geometric-arithmetic (GA) indices of boron triangular nanotubes. Also, we have computed the fourth version of atom-bond connectivity (ABC{sub 4}) and the fifth version of geometric-arithmetic (GA{sub 5}) indices of boron triangular nanotubes.

  2. Chemical separation of boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF/sub 3/ gas and the liquid molecular addition compounds of BF/sub 3/. Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF/sub 3/ solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references.

  3. Chemical separation of boron isotopes

    International Nuclear Information System (INIS)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF 3 gas and the liquid molecular addition compounds of BF 3 . Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF 3 solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references

  4. Determination of boron over a large dynamic range by prompt-gamma activation analysis

    International Nuclear Information System (INIS)

    Harrison, R.K.; Landsberger, S.

    2009-01-01

    An evaluation of the PGAA method for the determination of boron across a wide dynamic range of concentrations was performed for trace levels up to 5 wt.% boron. This range encompasses a transition from neutron transparency to significant self- shielding conditions. To account for self-shielding, several PGAA techniques were employed. First, a calibration curve was developed in which a set of boron standards was tested and the count rate to boron mass curve was determined. This set of boron measurements was compared with an internal standard self-shielding correction method and with a method for determining composition using PGAA peak ratios. The advantages and disadvantages of each method are analyzed. The boron concentrations of several laboratory-grade chemicals and standard reference materials were measured with each method and compared. The evaluation of the boron content of nanocrystalline transition metals prepared with a boron-containing reducing agent was also performed with each of the methods tested. Finally, the k 0 method was used for non-destructive measurement of boron in catalyst materials for the characterization of new non-platinum fuel cell catalysts.

  5. Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis

    Science.gov (United States)

    Uluisik, Irem; Kaya, Alaattin; Fomenko, Dmitri E.; Karakaya, Huseyin C.; Carlson, Bradley A.; Gladyshev, Vadim N.; Koc, Ahmet

    2011-01-01

    Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance. PMID:22114689

  6. Boron stress activates the general amino acid control mechanism and inhibits protein synthesis.

    Directory of Open Access Journals (Sweden)

    Irem Uluisik

    Full Text Available Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance.

  7. Analytical methods for the determination of boron in reactor materials programme

    International Nuclear Information System (INIS)

    Chitre, R.S.; Joshi, V.R.; Iyer, C.S.P.

    1983-01-01

    Spectrophotometric methods of determination of boron based on the complexation reaction between boric acid and protonated curcumin are briefly reviewed. Direct determination of boron in heavy water, plant leaves, copper and its alloys, and aluminium and its alloys using a modified method of Hayes and Metcalfe is described. A method for determination of boron, when its content is very low as in case of uranium metal, diuranate, uranium oxide and thorium nitrate, is also described. In this method, boron is first separated as methyl borate by distillation of the sample with methanol in acid media. The distilled ester is absorbed by hydroxide solution and boron is analysed after removal of methanol. The precision obtained is indicated. (M.G.B.)

  8. Depth-Dose and LET Distributions of Antiproton Beams in Various Target Materials

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Olsen, Sune; Petersen, Jørgen B.B.

    the annihilation process. Materials We have investigated the impact of substituting the target material on  the depth-dose distribution of pristine and  spread out antiproton beams using the FLUKA Monte Carlo transport program. Classical ICRP targets are compared to water phantoms. In addition, track average...... unrestricted LET is calculated for all configurations. Finally, we investigate which concentrations of gadolinium and boron are needed in a water target in order to observe a significant change in the antiproton depth-dose distribution.  Results Results indicate, that there is no significant change...... in the depth-dose distribution and average LET when substituting the materials. Adding boron and gadolinium up to concentrations of 1 per 1000 atoms to a water phantom, did not change the depth-dose profile nor the average LET. Conclusions  According to our FLUKA calculations, antiproton neutron capture...

  9. Depth resolved investigations of boron implanted silicon

    Science.gov (United States)

    Sztucki, M.; Metzger, T. H.; Milita, S.; Berberich, F.; Schell, N.; Rouvière, J. L.; Patel, J.

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6×10 15 ions/cm -2 at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {1 1 1} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  10. Targeting interleukin-11 receptor in leukemia and lymphoma: A functional ligand-directed study and hematopathology analysis of patient-derived specimens

    Science.gov (United States)

    Karjalainen, Katja; Jaalouk, Diana E.; Bueso-Ramos, Carlos; Bover, Laura; Sun, Yan; Kuniyasu, Akihiko; Driessen, Wouter H. P.; Cardó-Vila, Marina; Rietz, Cecilia; Zurita, Amado J.; O’Brien, Susan; Kantarjian, Hagop M.; Cortes, Jorge E.; Calin, George A.; Koivunen, Erkki; Arap, Wadih; Pasqualini, Renata

    2015-01-01

    Purpose The interleukin-11 receptor (IL-11R) is an established molecular target in primary tumors of bone, such as osteosarcoma, and in secondary bone metastases from solid tumors such as prostate cancer. However, its potential role in management of hematopoietic malignancies has not yet been determined. Here we evaluated the IL-11R as a candidate therapeutic target in human leukemia and lymphoma. Experimental Design and Results First, we show that the IL-11R protein is expressed in a variety of human leukemia- and lymphoma derived cell lines and in a large panel of bone marrow samples from leukemia and lymphoma patients, while expression is absent from non-malignant control bone marrow. Moreover, a targeted peptidomimetic prototype (termed BMTP-11) specifically bound to leukemia and lymphoma cell membranes, induced ligand-receptor internalization mediated by the IL-11R, and resulted in a specific dose-dependent cell death induction in these cells. Finally, a pilot drug lead-optimization program yielded a new myristoylated BMTP-11 analog with an apparent improved anti-leukemia cell profile. Conclusion These results indicate (i) that the IL-11R is a suitable cell surface target for ligand-directed applications in human leukemia and lymphoma and (ii) that BMTP-11 and its derivatives have translational potential against this group of malignant diseases. PMID:25779950

  11. Targeting IL11 Receptor in Leukemia and Lymphoma: A Functional Ligand-Directed Study and Hematopathology Analysis of Patient-Derived Specimens.

    Science.gov (United States)

    Karjalainen, Katja; Jaalouk, Diana E; Bueso-Ramos, Carlos; Bover, Laura; Sun, Yan; Kuniyasu, Akihiko; Driessen, Wouter H P; Cardó-Vila, Marina; Rietz, Cecilia; Zurita, Amado J; O'Brien, Susan; Kantarjian, Hagop M; Cortes, Jorge E; Calin, George A; Koivunen, Erkki; Arap, Wadih; Pasqualini, Renata

    2015-07-01

    The IL11 receptor (IL11R) is an established molecular target in primary tumors of bone, such as osteosarcoma, and in secondary bone metastases from solid tumors, such as prostate cancer. However, its potential role in management of hematopoietic malignancies has not yet been determined. Here, we evaluated the IL11R as a candidate therapeutic target in human leukemia and lymphoma. First, we show that the IL11R protein is expressed in a variety of human leukemia- and lymphoma-derived cell lines and in a large panel of bone marrow samples from leukemia and lymphoma patients, whereas expression is absent from nonmalignant control bone marrow. Moreover, a targeted peptidomimetic prototype (termed BMTP-11), specifically bound to leukemia and lymphoma cell membranes, induced ligand-receptor internalization mediated by the IL11R, and resulted in a specific dose-dependent cell death induction in these cells. Finally, a pilot drug lead-optimization program yielded a new myristoylated BMTP-11 analogue with an apparent improved antileukemia cell profile. These results indicate (i) that the IL11R is a suitable cell surface target for ligand-directed applications in human leukemia and lymphoma and (ii) that BMTP-11 and its derivatives have translational potential against this group of malignant diseases. ©2015 American Association for Cancer Research.

  12. Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon

    International Nuclear Information System (INIS)

    Ma, Fa-Jun; Duttagupta, Shubham; Shetty, Kishan Devappa; Meng, Lei; Hoex, Bram; Peters, Ian Marius; Samudra, Ganesh S.

    2014-01-01

    Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boron diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed

  13. Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes

    Science.gov (United States)

    Liao, Yunlong; Chen, Zhongfang; Connell, John W.; Fay, Catharine C.; Park, Cheol; Kim, Jae-Woo; Lin, Yi

    2014-01-01

    Boron nitride nanotubes (BNNTs), the one-dimensional member of the boron nitride nanostructure family, are generally accepted to be highly inert to oxidative treatments and can only be covalently modifi ed by highly reactive species. Conversely, it is discovered that the BNNTs can be chemically dispersed and their morphology modifi ed by a relatively mild method: simply sonicating the nanotubes in aqueous ammonia solution. The dispersed nanotubes are significantly corroded, with end-caps removed, tips sharpened, and walls thinned. The sonication treatment in aqueous ammonia solution also removes amorphous BN impurities and shortened BNNTs, resembling various oxidative treatments of carbon nanotubes. Importantly, the majority of BNNTs are at least partially longitudinally cut, or "unzipped". Entangled and freestanding BN nanoribbons (BNNRs), resulting from the unzipping, are found to be approximately 5-20 nm in width and up to a few hundred nanometers in length. This is the fi rst chemical method to obtain BNNRs from BNNT unzipping. This method is not derived from known carbon nanotube unzipping strategies, but is unique to BNNTs because the use of aqueous ammonia solutions specifi cally targets the B-N bond network. This study may pave the way for convenient processing of BNNTs, previously thought to be highly inert, toward controlling their dispersion, purity, lengths, and electronic properties.

  14. Boron biodistribution in Beagles after intravenous infusion of 4-dihydroxyborylphenylalanine-fructose complex

    International Nuclear Information System (INIS)

    Kulvik, M.E.; Vaehaetalo, J.K.; Benczik, J.; Snellman, M.; Laakso, J.; Hermans, R.; Jaerviluoma, E.; Rasilainen, M.; Faerkkilae, M.; Kallio, M.E.

    2004-01-01

    Boron biodistribution after intravenous infusion of 4-dihydroxyborylphenylalanine-fructose (BPA-F) complex was investigated in six dogs. Blood samples were evaluated during and following doses of 205 and 250 mg/kgbw BPA in a 30 min infusion, and 500 mg/kgbw in a 1 h infusion. Samples from whole blood, urine, brain and other organs were analysed for boron content after varying times following the onset of infusion. The whole blood boron concentrations declined from 27 to 8.4 ppm over the period of 39-165 min after the onset of infusion and the levels increased from 1.9 to 12 ppm in the grey matter of the brain over the same period. The boron concentrations in whole blood decreased steadily, whereas the boron values in brain tissue rose steadily with time. It was concluded that whole blood boron concentrations do not seem to reflect accurately the boron concentration in brain tissue at respective time points

  15. Thermal desorption spectroscopy of boron/carbon films after keV deuterium irradiation

    International Nuclear Information System (INIS)

    Yamaki, T.; Gotoh, Y.; Ando, T.; Jimbou, R.; Ogiwara, N.; Saidoh, M.

    1994-01-01

    Thermal desorption spectroscopy (TDS) of D 2 and CD 4 was done on boron/carbon films (B/(B+C)=0-74%), after 3 keV D 3 + irradiation to 4.5x10 17 D/cm 2 at 473 K. The D 2 desorption peaks were observed at 1050, 850 and 650 K. For a sputter B/C film (0%), only the 1050 K peak was observed. With increasing boron concentration to 3%, a sharp peak appeared at 850 K, the intensity of which was found to increase with increasing boron concentration to 23%, and then to decrease at 74%. The 650 K shoulder, which was observed for high boron concentration specimens, was speculated to be deuterium trapped by boron atoms in the boron clusters. The relative amount of CD 4 desorption was found to decrease with increasing boron concentration, which was attributed to the decrease in the trapped deuterium concentration in the implantation layer at temperatures at which CD 4 desorption proceeds. ((orig.))

  16. Experimental and computational validation of BDTPS using a heterogeneous boron phantom

    CERN Document Server

    Daquino, G G; Mazzini, M; Moss, R L; Muzi, L

    2004-01-01

    The idea to couple the treatment planning system (TPS) to the information on the real boron distribution in the patient acquired by positron emission tomography (PET) is the main added value of the new methodology set-up at DIMNP (Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione) of University of Pisa, in collaboration with the JRC (Joint Research Centre) at Petten (NL). This methodology has been implemented in a new TPS, called Boron Distribution Treatment Planning System (BDTPS), which takes into account the actual boron distribution in the patient's organ, as opposed to other TPSs used in BNCT that assume an ideal uniform boron distribution. BDTPS is based on the Monte Carlo technique and has been experimentally validated comparing the computed main parameters (thermal neutron flux, boron dose, etc.) to those measured during the irradiation of an ad hoc designed phantom (HEterogeneous BOron phanto M, HEBOM). The results are also in good agreement with those obtained by the standard TPS SER...

  17. Rapid transporter regulation prevents substrate flow traffic jams in boron transport

    Science.gov (United States)

    Sotta, Naoyuki; Duncan, Susan; Tanaka, Mayuki; Sato, Takafumi

    2017-01-01

    Nutrient uptake by roots often involves substrate-dependent regulated nutrient transporters. For robust uptake, the system requires a regulatory circuit within cells and a collective, coordinated behaviour across the tissue. A paradigm for such systems is boron uptake, known for its directional transport and homeostasis, as boron is essential for plant growth but toxic at high concentrations. In Arabidopsis thaliana, boron uptake occurs via diffusion facilitators (NIPs) and exporters (BORs), each presenting distinct polarity. Intriguingly, although boron soil concentrations are homogenous and stable, both transporters manifest strikingly swift boron-dependent regulation. Through mathematical modelling, we demonstrate that slower regulation of these transporters leads to physiologically detrimental oscillatory behaviour. Cells become periodically exposed to potentially cytotoxic boron levels, and nutrient throughput to the xylem becomes hampered. We conclude that, while maintaining homeostasis, swift transporter regulation within a polarised tissue context is critical to prevent intrinsic traffic-jam like behaviour of nutrient flow. PMID:28870285

  18. Kinetics of chemical vapor deposition of boron on molybdenum

    International Nuclear Information System (INIS)

    Tanaka, W.; Nakaanishi, N.; Kato, E.

    1987-01-01

    Experimental rate data of chemical vapor deposition of boron by reduction of boron trichloride with hydrogen are analyzed to determine the reaction mechanism. The reaction orders with respect to the partial pressures of hydrogen and boron trichloride are one half and one third, respectively. It has been found that the outer layer of a deposited film is Mo/sub 2/B/sub 5/ and the inner layer is MoB by the use of X-ray diffraction and EPMA line analysis

  19. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    Science.gov (United States)

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  20. Joining of boron carbide using nickel interlayer

    International Nuclear Information System (INIS)

    Vosughi, A.; Hadian, A. M.

    2008-01-01

    Carbide ceramics such as boron carbide due to their unique properties such as low density, high refractoriness, and high strength to weight ratio have many applications in different industries. This study focuses on direct bonding of boron carbide for high temperature applications using nickel interlayer. The process variables such as bonding time, temperature, and pressure have been investigated. The microstructure of the joint area was studied using electron scanning microscope technique. At all the bonding temperatures ranging from 1150 to 1300 d eg C a reaction layer formed across the ceramic/metal interface. The thickness of the reaction layer increased by increasing temperature. The strength of the bonded samples was measured using shear testing method. The highest strength value obtained was about 100 MPa and belonged to the samples bonded at 1250 for 75 min bonding time. The strength of the joints decreased by increasing the bonding temperature above 1250 d eg C . The results of this study showed that direct bonding technique along with nickel interlayer can be successfully utilized for bonding boron carbide ceramic to itself. This method may be used for bonding boron carbide to metals as well.

  1. Alleviation of Boron Stress through Plant Derived Smoke Extracts in Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    Pirzada Khan

    2014-08-01

    Full Text Available Boron is an essential micronutrient necessary for plant growth at optimum concentration. However, at high concentrations boron affects plant growth and is toxic to cells. Aqueous extract of plant-derived smoke has been used as a growth regulator for the last two decades to improve seed germination and seedling vigor. It has been established that plant-derived smoke possesses some compounds that act like plant growth hormones. The present research was the first comprehensive attempt to investigate the alleviation of boron stress with plant-derived smoke aqueous extract on Sorghum (Sorghum bicolor seed. Smoke extracts of five plants, i.e. Cymbopogon jwarancusa, Eucalyptus camaldulensis, Peganum harmala, Datura alba and Melia azedarach each with six dilutions (Concentrated, 1:100, 1:200, 1:300, 1:400 and 1:500 were used. While boron solutions at concentrations of 5, 10, 15, 20 and 25 ppm were used for stress. Among the dilutions of smoke, 1:500 of E. camaldulensis significantly increased germination percentage, root and shoot length, number of secondary roots and fresh weight of root and shoot while, boron stress reduced growth of Sorghum. It was observed that combined effect of boron solution and E. camaldulensis smoke extract overcome inhibition and significantly improved plant growth. Present research work investigated that the smoke solution has the potential to alleviate boron toxicity by reducing the uptake of boron by maintaining integrity of plant cell wall. The present investigation suggested that plant derived smoke has the potential to alleviate boron stress and can be used to overcome yield losses caused by boron stress to plants.

  2. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Doğan, Ayşegül; Demirci, Selami [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University 34755 Istanbul (Turkey); Bayir, Yasin [Department of Biochemistry, Faculty of Pharmacy, Ataturk University, 25240, Erzurum (Turkey); Halici, Zekai [Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Karakus, Emre [Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum (Turkey); Aydin, Ali [Department of Orthopedics and Traumatology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Cadirci, Elif [Department of Pharmacology, Faculty of Pharmacy, Ataturk University, 25240, Erzurum (Turkey); Albayrak, Abdulmecit [Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Demirci, Elif [Department of Pathology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Karaman, Adem [Department of Radiology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Ayan, Arif Kursat [Department of Nuclear Medicine, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Gundogdu, Cemal [Department of Pathology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Şahin, Fikrettin, E-mail: fsahin@yeditepe.edu.tr [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University 34755 Istanbul (Turkey)

    2014-11-01

    Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering. - Highlights: • Boron containing PLGA scaffolds were developed for bone tissue engineering. • Boron incorporation increased cell viability and mineralization of stem cells. • Boron containing scaffolds increased bone-related protein expression in vivo. • Implantation of stem cells on boron containing scaffolds improved bone healing.

  3. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Doğan, Ayşegül; Demirci, Selami; Bayir, Yasin; Halici, Zekai; Karakus, Emre; Aydin, Ali; Cadirci, Elif; Albayrak, Abdulmecit; Demirci, Elif; Karaman, Adem; Ayan, Arif Kursat; Gundogdu, Cemal; Şahin, Fikrettin

    2014-01-01

    Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering. - Highlights: • Boron containing PLGA scaffolds were developed for bone tissue engineering. • Boron incorporation increased cell viability and mineralization of stem cells. • Boron containing scaffolds increased bone-related protein expression in vivo. • Implantation of stem cells on boron containing scaffolds improved bone healing

  4. Effect of boron on the microstructure and mechanical properties of carbidic austempered ductile iron

    International Nuclear Information System (INIS)

    Peng Yuncheng; Jin Huijin; Liu Jinhai; Li Guolu

    2011-01-01

    Highlights: → Boron are applied to carbidic austempered ductile iron (CADI). → Boron microalloying CADI is a new high hardenability of wear-resistant cast iron. → Addition of boron to CADI significantly improves hardenability. → Effect of boron on the CADI grinding ball were investigated. → Optimum property is obtained when boron content at 0.03 wt%. - Abstract: Carbidic austempered ductile iron (CADI) castings provide a unique combination of high hardness and toughness coupled with superior wear resistance properties, but their hardenability restricts their range of applications. The purpose of this study was to investigate the influence of boron on the microstructure and mechanical properties of CADI. The experimental results indicate that the CADI comprises graphite nodules, which are dispersive boron-carbides that are distributed in the form of strips, and the matrix is a typical ausferritic matrix. Microscopic amounts of boron can improve the hardenability of CADI, but higher boron content reduces the hardenability and toughness of CADI. The results are discussed in the context of the influence of boron content on the microstructure and mechanical properties of grinding balls.

  5. Boron effects on creep rupture strength of W containing advanced ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Mito, N.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    The creep strength in ferritic creep resistant steels is increased by boron addition. However, the strengthening mechanisms have not yet been studied. This study clarifies the strengthening mechanism of 9% chromium steels with 10{proportional_to}100ppm boron and 0.5{proportional_to}2.0mass% tungsten in the laboratory. The strengthening effect of simultaneous addition of boron and tungsten was analyzed by hardenability, room-temperature strength and creep tests at 650 C. Changes in the microstructure as a result of the addition of boron and tungsten were also examined by optical microscope and transmission electron microscope (TEM). In addition, Alpha-ray Track Etching (ATE) method was used to detect the boron distribution and analyze the mechanisms change in the mechanical properties. Boron addition did not affect room-temperature strength, however, simultaneous addition of boron and tungsten increased room-temperature and high-temperature strength. According to ATE analysis, boron exists at the grain boundary. Therefore, synergistic effects of boron and tungsten on the creep strength suggest the tungsten precipitates stabilization by boron at the grain boundary. (orig.)

  6. Boron Neutron Capture Therapy in the Treatment of Recurrent Laryngeal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Haapaniemi, Aaro, E-mail: aaro.haapaniemi@hus.fi [Department of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Kankaanranta, Leena [Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Saat, Riste [Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Koivunoro, Hanna; Saarilahti, Kauko [Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Mäkitie, Antti; Atula, Timo [Department of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Joensuu, Heikki [Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland)

    2016-05-01

    Purpose: To investigate the safety and efficacy of boron neutron capture therapy (BNCT) as a larynx-preserving treatment option for patients with recurrent laryngeal cancer. Methods and Materials: Six patients with locally recurrent squamous cell laryngeal carcinoma and 3 patients with persistent laryngeal cancer after prior treatment were treated with BNCT at the FiR1 facility (Espoo, Finland) in 2006 to 2012. The patients had received prior radiation therapy with or without concomitant chemotherapy to a cumulative median dose of 66 Gy. The median tumor diameter was 2.9 cm (range, 1.4-10.9 cm) before BNCT. Boron neutron capture therapy was offered on a compassionate basis to patients who either refused laryngectomy (n=7) or had an inoperable tumor (n=2). Boronophenylalanine-fructose (400 mg/kg) was used as the boron carrier and was infused over 2 hours intravenously before neutron irradiation. Results: Six patients received BNCT once and 3 twice. The estimated average gross tumor volume dose ranged from 22 to 38 Gy (W) (mean; 29 Gy [W]). Six of the 8 evaluable patients responded to BNCT; 2 achieved complete and 4 partial response. One patient died early and was not evaluable for response. Most common side effects were stomatitis, fatigue, and oral pain. No life-threatening or grade 4 toxicity was observed. The median time to progression within the target volume was 6.6 months, and the median overall survival time 13.3 months after BNCT. One patient with complete response is alive and disease-free with a functioning larynx 60 months after BNCT. Conclusions: Boron neutron capture therapy given after prior external beam radiation therapy is well tolerated. Most patients responded to BNCT, but long-term survival with larynx preservation was infrequent owing to cancer progression. Selected patients with recurrent laryngeal cancer may benefit from BNCT.

  7. Substitutional Boron in Nanodiamond, Bucky-Diamond, and Nanocrystalline Diamond Grain Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Amanda S.; Sternberg, Michael G.

    2006-10-05

    Although boron has been known for many years to be a successful dopant in bulk diamond, efficient doping of nanocrystalline diamond with boron is still being developed. In general, the location, configuration, and bonding structure of boron in nanodiamond is still unknown, including the fundamental question of whether it is located within grains or grain boundaries of thin films and whether it is within the core or at the surface of nanoparticles. Presented here are density functional tight-binding simulations examining the configuration, potential energy surface, and electronic charge of substitutional boron in various types of nanocrystalline diamond. The results predict that boron is likely to be positioned at the surface of isolated particles and at the grain boundary of thin-film samples.

  8. Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers

    Science.gov (United States)

    Abad, Carlos; Florek, Stefan; Becker-Ross, Helmut; Huang, Mao-Dong; Heinrich, Hans-Joachim; Recknagel, Sebastian; Vogl, Jochen; Jakubowski, Norbert; Panne, Ulrich

    2017-10-01

    Boron isotope amount ratios n(10B)/n(11B) have been determined by monitoring the absorption spectrum of boron monohydride (BH) in a graphite furnace using high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Bands (0 → 0) and (1 → 1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Clean and free of memory effect molecular spectra of BH were recorded. In order to eliminate the memory effect of boron, a combination of 2% (v/v) hydrogen gas in argon and 1% trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers was used. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, for the evaluated region of 437 nm, an accuracy of 0.15‰ is obtained as the average deviation from the isotope reference materials. Expanded uncertainties with a coverage factor of k = 2 range between 0.15 and 0.44‰. This accuracy and precision are compatible with those obtained by mass spectrometry for boron isotope ratio measurements.

  9. Deposition of Boron in Possible Evaporite Deposits in Gale Crate

    Science.gov (United States)

    Gasda, P. J.; Peets, E.; Lamm, S. N.; Rapin, W.; Lanza, N.; Frydenvang, J.; Clark, B. C.; Herkenhoff, K. E.; Bridges, J.; Schwenzer, S. P.; Haldeman, E. B.; Wiens, R. C.; Maurice, S.; Clegg, S. M.; Delapp, D.; Sanford, V.; Bodine, M. R.; McInroy, R.

    2017-12-01

    Boron has been previously detected in Gale crater using the ChemCam instrument on board the NASA Curiosity rover within calcium sulfate fracture fill hosted by lacustrine mudstone and eolian sandstone units. Recent results show that up to 300 ppm B is present in the upper sections of the lacustrine unit. Boron has been detected in both the groundwater-emplaced calcium sulfate fracture fill materials and bedding-parallel calcium sulfate layers. The widespread bedding-parallel calcium sulfate layers within the upper strata of the lacustrine bedrock that Curiosity has encountered recently could be interpreted as primary evaporite deposits. We have two hypotheses for the history of boron in Gale crater. In both hypotheses, borates were first deposited as lake water evaporated, depositing primary evaporates that were later re-dissolved by groundwater, which redistributed the boron into secondary evaporitic calcium sulfate fracture fill deposits. In the first scenario, Gale crater may have undergone a period of perennial lake formation during a drier period of martian history, depositing layers of evaporitic minerals (including borates) among lacustrine mudstone layers. In the second scenario, lake margins could have become periodically exposed during cyclic drops in lake level and subsequently desiccated. Evaporites were deposited and desiccation features were formed in lowstand deposits. Either hypothetical scenario of evaporite deposition would promote prebiotic chemical reactions via wet-dry cycles. Boron may be an important prebiotic element, and as such, its presence in ancient martian surface and groundwater provides evidence that important prebiotic chemical reactions could occur on Mars if organics were present. The presence of boron in ancient Gale crater groundwater also provides additional evidence that a habitable environment existed in the martian subsurface well after the expected disappearance of liquid water on the surface of Mars. We will report on the

  10. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux

    International Nuclear Information System (INIS)

    Lang, F.M.; Magnier, P.; Finck, C.

    1956-01-01

    Preparation of boron thin film deposits of around 1 mg per cm 2 on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  11. Advances in boronization on NSTX-Upgrade

    Directory of Open Access Journals (Sweden)

    C. H Skinner

    2017-08-01

    Full Text Available Boronization has been effective in reducing plasma impurities and enabling access to higher density, higher confinement plasmas in many magnetic fusion devices. The National Spherical Torus eXperiment, NSTX, has recently undergone a major upgrade to NSTX-U in order to develop the physics basis for a ST-based Fusion Nuclear Science Facility (FNSF with capability for double the toroidal field, plasma current, and NBI heating power and increased pulse duration from 1–1.5s to 5–8s. A new deuterated tri-methyl boron conditioning system was implemented together with a novel surface analysis diagnostic. We report on the spatial distribution of the boron deposition versus discharge pressure, gas injection and electrode location. The oxygen concentration of the plasma facing surface was measured by in-vacuo XPS and increased both with plasma exposure and with exposure to trace residual gases. This increase correlated with the rise of oxygen emission from the plasma.

  12. On the Mechanism of Boron Ignition

    Science.gov (United States)

    Keil, D. G.; Dreizin, E. L.; Felder, W.; Vicenzi, E. P.

    1997-01-01

    Boron filaments were electrically heated in air and argon/oxygen mixtures while their resistance, temperature, and radiation at the wavelengths of BO and BO2 bands were monitored. The filaments 'burned' in two distinct stages. Samples of the filaments were quenched at different times before and during the burning and analyzed using electron microscopy. The beginning of the first stage combustion characterized by a local resistance minimum, a sharp spike in boron oxide radiation emission, and a rapid rise in temperature, occurred at 1500 +/- 70 deg. C, independent of pre-heating history and oxygen content (540%) in the gas environment. The data suggest that a phase transition occurs in the filaments at this temperature that triggers stage one combustion. Significant amounts of oxygen were found inside quenched filaments. Large spherical voids formed in the boron filaments during their second stage combustion which is interpreted to indicate a crucial role for the gas dissolution processes in the combustion scenario.

  13. Determination of boron in uranium and aluminium by high pressure liquid chromatography (HPLC)

    International Nuclear Information System (INIS)

    Rao, Radhika M.; Aggarwal, S.K.

    2003-01-01

    Experiments were conducted for the determination of boron in U 3 O 8 powder and aluminium metal using dynamically modified reversed phase high pressure liquid chromatography (RP-HPLC) and using precolumn chromogenic agent viz. curcumin for complexing boron. The complex was separated from the excess of reagent and determined by HPLC. The boron curcumin complex (rosocyanin) was formed after extraction of boron with 2-ethyl-1,3-hexane diol (EHD). Linear calibration curves for boron amounts in the range of 0.02 μg to 0.5 μg were developed and used for the determination of boron in aluminium and uranium samples. (author)

  14. Photometric and emission-spectrometric determination of boron in steels

    International Nuclear Information System (INIS)

    Thierig, D.

    1982-01-01

    A method for the photometric determination of boron in unalloyed and alloyed steels is described, in which Curcumine is used as reagent. A separation of boron is not necessary. Limit of detection: 0.0003% B. The decomposition of boron nitride in the steel is achieved by heating the whole sample in fuming sulphuric acid/phosphoric acid. For the emission spectrometric investigation of solid steel samples and for the spectrochemical analysis of solutions with plasma excitation working parameters are given and possibilities of interferences are demonstrated. (orig.) [de

  15. The major facilitator superfamily transporter Knq1p modulates boron homeostasis in Kluyveromyces lactis.

    Science.gov (United States)

    Svrbicka, Alexandra; Toth Hervay, Nora; Gbelska, Yvetta

    2016-03-01

    Boron is an essential micronutrient for living cells, yet its excess causes toxicity. To date, the mechanisms of boron toxicity are poorly understood. Recently, the ScATR1 gene has been identified encoding the main boron efflux pump in Saccharomyces cerevisiae. In this study, we analyzed the ScATR1 ortholog in Kluyveromyces lactis--the KNQ1 gene, to understand whether it participates in boron stress tolerance. We found that the KNQ1 gene, encoding a permease belonging to the major facilitator superfamily, is required for K. lactis boron tolerance. Deletion of the KNQ1 gene led to boron sensitivity and its overexpression increased K. lactis boron tolerance. The KNQ1 expression was induced by boron and the intracellular boron concentration was controlled by Knq1p. The KNQ1 promoter contains two putative binding motifs for the AP-1-like transcription factor KlYap1p playing a central role in oxidative stress defense. Our results indicate that the induction of the KNQ1 expression requires the presence of KlYap1p and that Knq1p like its ortholog ScAtr1p in S. cerevisiae functions as a boron efflux pump providing boron resistance in K. lactis.

  16. Proposed physiologic functions of boron in plants pertinent to animal and human metabolism.

    Science.gov (United States)

    Blevins, D G; Lukaszewski, K M

    1994-01-01

    Boron has been recognized since 1923 as an essential micronutrient element for higher plants. Over the years, many roles for boron in plants have been proposed, including functions in sugar transport, cell wall synthesis and lignification, cell wall structure, carbohydrate metabolism, RNA metabolism, respiration, indole acetic acid metabolism, phenol metabolism and membrane transport. However, the mechanism of boron involvement in each case remains unclear. Recent work has focused on two major plant-cell components: cell walls and membranes. In both, boron could play a structural role by bridging hydroxyl groups. In membranes, it could also be involved in ion transport and redox reactions by stimulating enzymes like nicotinamide adenine dinucleotide and reduced (NADH) oxidase. There is a very narrow window between the levels of boron required by and toxic to plants. The mechanisms of boron toxicity are also unknown. In nitrogen-fixing leguminous plants, foliarly applied boron causes up to a 1000% increase in the concentration of allantoic acid in leaves. In vitro studies show that boron inhibits the manganese-dependent allantoate amidohydrolase, and foliar application of manganese prior to application of boron eliminates allantoic acid accumulation in leaves. Interaction between borate and divalent cations like manganese may alter metabolic pathways, which could explain why higher concentrations of boron can be toxic to plants. PMID:7889877

  17. Kerma factors in interaction of neutrons with boron carbide

    International Nuclear Information System (INIS)

    Bondarenko, I.M.

    1986-03-01

    Heat generation in neutron interactions with boron carbide B 10 ; B 11 and 12 C is calculated. Kerma-factors (kerma-kinetic energy released in materials) were calculated for neutron energies between 10 -4 eV and 15 MeV. No major simplifying assumptions are introduced, and the accuracy of the calculated kerma-factors depends only on availability and accuracy of the basic nuclear data. The ENDF/B-4 data and recent experimental information are used for the calculation of kerma-factors. Plots of these kerma-factors are presented in units of eVxb/atom and wtxsec/(cmxn) as a function of neutron energy [fr

  18. Boronic ionogel electrolytes to improve lithium transport for Li-ion batteries

    International Nuclear Information System (INIS)

    Lee, Albert S.; Lee, Jin Hong; Hong, Soon Man; Lee, Jong-Chan; Hwang, Seung Sang; Koo, Chong Min

    2016-01-01

    Boron containing ionogels were fabricated through chemical crosslinking of boron allyloxide with polyethylene glycol dimethacrylate in an ionic liquid electrolyte solution to obtain mechanically robust gels. Because of the relatively small concentration of crosslinking agent required to fully solidify the ionic liquid electrolyte, good characters of high ionic conductivity, high thermal stability, and good electrochemical stability were observed. A spectroscopic investigation of the boronic ionogels revealed that the lithium mobility was noticeably enhanced compared with ionogels fabricated without the boronic crosslinker, leading to promising Li-ion battery performance at elevated temperatures.

  19. Mg-doping experiment and electrical transport measurement of boron nanobelts

    International Nuclear Information System (INIS)

    Kirihara, K.; Hyodo, H.; Fujihisa, H.; Wang, Z.; Kawaguchi, K.; Shimizu, Y.; Sasaki, T.; Koshizaki, N.; Soga, K.; Kimura, K.

    2006-01-01

    We measured electrical conductance of single crystalline boron nanobelts having α-tetragonal crystalline structure. The doping experiment of Mg was carried out by vapor diffusion method. The pure boron nanobelt is a p-type semiconductor and its electrical conductivity was estimated to be on the order of 10 -3 (Ω cm) -1 at room temperature. The carrier mobility of pure boron nanobelt was measured to be on the order of 10 -3 (cm 2 Vs -1 ) at room temperature and has an activation energy of ∼0.19 eV. The Mg-doped boron nanobelts have the same α-tetragonal crystalline structure as the pristine nanobelts. After Mg vapor diffusion, the nanobelts were still semiconductor, while the electrical conductance increased by a factor of 100-500. Transition to metal or superconductor by doping was not observed. - Graphical abstract: SEM micrographs of boron nanobelt after Ni/Au electrode fabrication by electron beam lithography. Display Omitted

  20. Calculations for BDAS Setpoint with Non-conservative Boron Dilution Analysis

    International Nuclear Information System (INIS)

    Lee, Hwan Soo; Shin, Ho Cheol; Kim, Yong Bae

    2014-01-01

    BDAS (Boron Dilution Alarm System) utilizes the ex-core detector instrumentation signals to detect a possible inadvertent boron dilution event during operation mode 3, 4, 5, 6. For boron dilution analysis, discrepancies in the active coolant volume and the assumed linearity of the ex-core instrumentation response were identified for CE type PWR and they were reported by NASL-04-02 These discrepancies have potential to impact to determine BDAS setpoint in a non-conservative manner Therefore, in this study, the calculation of BDAS setpoint with those discrepancies condition about OPR1000 was performed and analyzed for checking the safety of BDAS. The new BDAS setpoint is calculated with conservative condition which recommended from Westinghouse Electric Company. The setpoint of BDAS using non-linear ICRR curve decrease to about 5% compared to the setpoint of that using linear ICRR curve. And this effect of the non-linearity is to slightly delay the boron dilution alarm during the inadvertence boron dilution at mode 3, 4, and 5