WorldWideScience

Sample records for boron 11 beams

  1. Boron-11 MRI and MRS of intact animals infused with a boron neutron capture agent

    International Nuclear Information System (INIS)

    Kabalka, G.W.; Davis, M.; Bendel, P.

    1988-01-01

    Boron neutron capture therapy (BNCT) depends on the delivery of boron-containing drugs to a targeted lesion. Currently, the verification and quantification of in vivo boron content is a difficult problem. Boron-11 spectroscopy was utilized to confirm the presence of a dimeric sulfhydryl dodecaborane BNCT agent contained in an intact animal. Spectroscopy experiments revealed that the decay time of transverse magnetization of the boron-11 spins was less than 1 ms which precluded the use of a 2DFT imaging protocol. A back-projection protocol was developed and utilized to generate the first boron-11 image of a BNCT agent in the liver of an intact Fisher 344 rat

  2. Depth profiling of boron implanted silicon by positron beam

    International Nuclear Information System (INIS)

    Oevuenc, S.

    2004-01-01

    Positron depth profiling analyses of low energy implants of silicon aim to observe tbe structure and density of the vacancies generating by implantation and the effect of annealing. This work present the results to several set of data starting S and W parameters. Boron implanted Silicon samples with different implantation energies,20,22,24,and 26 keV are analyzed by Slow positron beam (0-40 keV and 10 5 e + /s )(Variable Energy Positron) at the Positron Centre Delf-HOLLAND

  3. Preparation and electrical properties of boron and boron phosphide films obtained by gas source molecular beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kumashiro, Y.; Yokoyama, T.; Sakamoto, T.; Fujita, T. [Yokohama National Univ. (Japan)

    1997-10-01

    Boron and boron phosphide films were prepared by gas source molecular beam deposition on sapphire crystal at various substrate temperatures up to 800{degrees}C using cracked B{sub 2}H{sub 6} (2% in H{sub 2}) at 300{degrees}C and cracked PH{sub 3} (20% in H{sub 2}) at 900{degrees}C. The substrate temperatures and gas flow rates of the reactant gases determined the film growth. The boron films with amorphous structure are p type. Increasing growth times lead to increasing mobilities and decreasing carrier concentrations. Boron phosphide film with maximum P/B ratio is obtained at a substrate temperature of 600{degrees}C, below and above which they become phosphorous deficient due to insufficient supply of phosphorus and thermal desorption of the phosphorus as P{sub 2}, respectively, but they are all n type conductors due to phosphorus vacancies.

  4. Boron

    Science.gov (United States)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  5. Highly-focused boron implantation in diamond and imaging using the nuclear reaction {sup 11}B(p, α){sup 8}Be

    Energy Technology Data Exchange (ETDEWEB)

    Ynsa, M.D., E-mail: m.ynsa@uam.es [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Física Aplicada, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Ramos, M.A. [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Física de la Materia Condensada and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Skukan, N. [Laboratory for Ion Beam Interactions, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb (Croatia); Torres-Costa, V. [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Física Aplicada, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Jakšić, M. [Laboratory for Ion Beam Interactions, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb (Croatia)

    2015-04-01

    Diamond is an especially attractive material because of its gemological value as well as its unique mechanical, chemical and physical properties. One of these properties is that boron-doped diamond is an electrically p-type semiconducting material at practically any boron concentration. This property makes it possible to use diamonds for multiple industrial and technological applications. Boron can be incorporated into pure diamond by different techniques including ion implantation. Although typical energies used to dope diamond by ion implantation are about 100 keV, implantations have also been performed with energies above MeV. In this work CMAM microbeam setup has been used to demonstrate capability to implant boron with high energies. An 8 MeV boron beam with a size of about 5 × 3 μm{sup 2} and a beam current higher than 500 pA has been employed while controlling the beam position and fluence at all irradiated areas. The subsequent mapping of the implanted boron in diamond has been obtained using the strong and broad nuclear reaction {sup 11}B(p, α){sup 8}Be at E{sub p} = 660 keV. This reaction has a high Q-value (8.59 MeV for α{sub 0} and 5.68 MeV for α{sub 1}) and thus is almost interference-free. The sensitivity of the technique is studied in this work.

  6. Three New Offset {delta}{sup 11}B Isotope Reference Materials for Environmental Boron Isotope Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, M. [BAM Federal Institute for Materials Research and Testing, Berlin (Germany); IsoAnalysis UG, Berlin (Germany); Vogl, J. [BAM Federal Institute for Materials Research and Testing, Berlin (Germany)

    2013-07-15

    The isotopic composition of boron is a well established tool in various areas of science and industry. Boron isotope compositions are typically reported as {delta}{sup 11}B values which indicate the isotopic difference of a sample relative to the isotope reference material NIST SRM 951. A significant drawback of all of the available boron isotope reference materials is that none of them covers a natural boron isotope composition apart from NIST SRM 951. To fill this gap of required {delta}{sup 11}B reference materials three new solution boric acid reference materials were produced, which cover 60 per mille of the natural boron isotope variation (-20 to 40 per mille {delta}{sup 11}B) of about 100 per mille . The new reference materials are certified for their {delta}{sup 11}B values and are commercially available through European Reference Materials (http://www.erm-crm.org). The newly produced and certified boron isotope reference materials will allow straightforward method validation and quality control of boron isotope data. (author)

  7. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    International Nuclear Information System (INIS)

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 10 8 n/cm 2 · s. The fast neutron and gamma radiation KERMA factors are 10 x 10 -11 cGy·cm 2 /n epi and 20 x 10 -11 cGy·cm 2 /n epi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power

  8. BOREX: Solar neutrino experiment via weak neutral and charged currents in boron-11

    International Nuclear Information System (INIS)

    Kovacs, T.; Mitchell, J.W.; Raghavan, P.

    1989-01-01

    Borex, and experiment to observe solar neutrinos using boron loaded liquid scintillation techniques, is being developed for operation at the Gran Sasso underground laboratory. It aims to observe the spectrum of electron type 8 B solar neutrinos via charged current inverse β-decay of 11 B and the total flux solar neutrinos regardless of flavor by excitation of 11 B via the weak neutral current. 14 refs

  9. Primary study for boron neutron capture therapy uses the RSG-GAS beam tube facility

    International Nuclear Information System (INIS)

    Suroso

    2000-01-01

    The minimum epithermal neutron flux as one of the prerequisite of Boron Neutron Capture Therapy (BNCT) is 1.0 x 10 9 n/(cm 2 s) RSG-GAS have 6 beam tube facilities for neutron source, which is one of the beam tube S-2 has a possibility to utilization for BNCT facility. The totally flux neutron measurement in the front of S-2 beam tube is 1.8 x 10 7 n/(cm 2 s). The neutron flux measurement was less than for BNCT minimum prerequisite. Concerning to the flux neutron production in the reactor, which is reach to 2.5 x 10 14 n/(cm 2 s), there for the S-2 beam tube could be used beside collimator modification

  10. From Urey To The Ocean's Glacial Ph: News From The Boron-11 Paleo-acidimetry.

    Science.gov (United States)

    Zeebe, R. E.; Wolf-Gladrow, D. A.; Bijma, J.

    Boron paleo-acidimetry is based on the stable boron isotope composition of foraminiferal shells which has been shown to be a function of seawater pH. It is cur- rently one of the most promising paleo-carbonate chemistry proxies. One important parameter of the proxy is the equilibrium fractionation between the dissolved boron species B(OH)3 and B(OH)- which was calculated to be 19 per mil at 25C by Kak- 4 ihana and Kotaka (1977), based on Urey's theory. The calculated equilibrium frac- tionation, however, depends on the vibrational frequencies of the molecules for which different values have been reported in the literature. We have recalculated the equilib- rium fractionation and find that it may be distinctly different from 19 per mil (this is the bad news). The good news is that - theoretically - the use of 11B as a paleo-pH indicator is not compromised through vital effects in planktonic foraminifera. We de- rive this conclusion by the use of a diffusion-reaction model that calculates pH profiles and 11B values in the vicinity of a foraminifer.

  11. Beam neutron energy optimization for boron neutron capture therapy using monte Carlo method

    International Nuclear Information System (INIS)

    Pazirandeh, A.; Shekarian, E.

    2006-01-01

    In last two decades the optimal neutron energy for the treatment of deep seated tumors in boron neutron capture therapy in view of neutron physics and chemical compounds of boron carrier has been under thorough study. Although neutron absorption cross section of boron is high (3836b), the treatment of deep seated tumors such as glioblastoma multiform requires beam of neutrons of higher energy that can penetrate deeply into the brain and thermalized in the proximity of the tumor. Dosage from recoil proton associated with fast neutrons however poses some constraints on maximum neutron energy that can be used in the treatment. For this reason neutrons in the epithermal energy range of 10eV-10keV are generally to be the most appropriate. The simulation carried out by Monte Carlo methods using MCBNCT and MCNP4C codes along with the cross section library in 290 groups extracted from ENDF/B6 main library. The ptimal neutron energy for deep seated tumors depends on the sue and depth of tumor. Our estimated optimized energy for the tumor of 5cm wide and 1-2cm thick stands at 5cm depth is in the range of 3-5keV

  12. Epithermal neutron beam adoption for lung and pancreatic cancer treatment by boron neutron capture therapy

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo; Fukushima, Yuji

    2001-01-01

    The depth-dose distributions were evaluated for possible treatment of both lung and pancreatic cancers using an epithermal neutron beam. The Monte Carlo Neutron Photon (MCNP) calculations showed that physical dose in tumors were 6 and 7 Gy/h, respectively, for lung and pancreas, attaining an epithermal neutron flux of 5 x 10 8 ncm -2 s -1 . The boron concentrations were assumed at 100 ppm and 30 ppm, respectively, for lung and pancreas tumors and normal tissues contains 1/10 tumor concentrations. The dose ratios of tumor to normal tissue were 2.5 and 2.4, respectively, for lung and pancreas. The dose evaluation suggests that BNCT using an epithermal neutron beam could be applied for both lung and pancreatic cancer treatment. (author)

  13. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Kastenber, W.E.; Karni, Y.; Regev, D.; Verbeke, J.M.; Leung, K.N.; Chivers, D.; Guess, S.; Kim, L.; Waldron, W.; Zhu, Y.

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  14. Interaction of iron with boron in metal-rich metallaboranes resulting in large deshielding and rapid relaxation processes of the boron-11 nucleus

    International Nuclear Information System (INIS)

    Rath, N.P.; Fehlner, T.P.

    1988-01-01

    A first-order, parameterized model for calculating 11 B chemical shifts in metal-rich ferraboranes and a correlation of chemical shift with boron Mulliken populations from Fenske-Hall calculations are presented. These correlations are qualitatively different from those reported earlier for boranes and suggest that direct iron-boron interactions lead to large deshielding due to substantial increases in multiple-bond contributions to the shielding tensor. Relaxation rates have been measured for [Fe 4 (CO) 12 BH/sub 3-n/]/sup n-/ (n = 0-2) and correlated with electric field gradients at the boron nucleus estimated from Fenske-Hall calculations. These results demonstrate that formation of the boride, [Fe 4 (CO) 12 B] 3- , by deprotonation is accompanied by the development of large asymmetries in the electronic charge distribution around the boron nucleus. Finally, 7 Li NMR is used to probe the nature of the anions [Fe 4 (CO) 12 BH/sub 3-n/]/sup n-/ (n = 1-3), and observed line shapes suggest close association of Li + with the trianion. 28 references, 3 figures, 4 tables

  15. Determination of boron in aqueous solutions by solid state nuclear track detectors technique, using a filtered neutron beam

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Pugliesi, R.; Khouri, M.T.F.C.

    1985-11-01

    The solid state nuclear track detectors technique has been used for determination of boron in aqueous solutions, using a filtered neutron beam. The particles tracks from the 10 B(n,α)Li 7 reaction were registered in the CR-39 film, chemically etched in a (30%) KOH solution 70 0 C during 90 minutes. The obtained results showed the usefulness of this technique for boron determination in the ppm range. The inferior detectable limit was 9 ppm. The combined track registration efficiency factor K has been evaluated in the solutions, for the CR-39 detector and its values is K= (4,60 - + 0,06). 10 -4 cm. (Author) [pt

  16. High sensitivity boron quantification in bulk silicon using the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be nuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Marcos V.; Silva, Tiago F. da; Added, Nemitala; Rizutto, Marcia A.; Tabacniks, Manfredo H. [Instituto de Fisica da Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil); Neira, John B.; Neto, Joao B. F. [Institute of Research Tecnology, Cidade Universitaria, SP, 05508-091 (Brazil)

    2013-05-06

    There is a great need to quantify sub-ppm levels of boron in bulk silicon. There are several methods to analyze B in Si: Nuclear Reaction Analysis using the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be reaction exhibits a quantification limit of some hundreds ppm of B in Si. Heavy Ion Elastic Recoil Detection Analysis offers a detection limit of 5 to 10 at. ppm. Secondary Ion Mass Spectrometry is the method of choice of the semiconductor industry for the analysis of B in Si. This work verifies the use of NRA to quantify B in Si, and the corresponding detection limits. Proton beam with 1.6 up to 2.6 MeV was used to obtain the cross-section of the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be nuclear reaction at 170 Degree-Sign scattering angle. The results show good agreementwith literature indicating that the quantification of boron in silicon can be achieved at 100 ppm level (high sensitivity) at LAMFI-IFUSP with about 16% uncertainty. Increasing the detection solid angle and the collected beam charge, can reduce the detection limit to less than 100 ppm meeting present technological needs.

  17. Boron nitride stamp for ultra-violet nanoimprinting lithography fabricated by focused ion beam lithography

    International Nuclear Information System (INIS)

    Altun, Ali Ozhan; Jeong, Jun-Ho; Rha, Jong-Joo; Kim, Ki-Don; Lee, Eung-Sug

    2007-01-01

    Cubic boron nitride (c-BN) is one of the hardest known materials (second after diamond). It has a high level of chemical resistance and high UV transmittance. In this study, a stamp for ultra-violet nanoimprint lithography (UV-NIL) was fabricated using a bi-layered BN film deposited on a quartz substrate. Deposition of the BN was done using RF magnetron sputtering. A hexagonal boron nitride (h-BN) layer was deposited for 30 min before c-BN was deposited for 30 min. The thickness of the film was measured as 160 nm. The phase of the c-BN layer was investigated using Fourier transform infrared (FTIR) spectrometry, and it was found that the c-BN layer has a 40% cubic phase. The deposited film was patterned using focused ion beam (FIB) lithography for use as a UV-NIL stamp. Line patterns were fabricated with the line width and line distance set at 150 and 150 nm, respectively. The patterning process was performed by applying different currents to observe the effect of the current value on the pattern profile. The fabricated patterns were investigated using AFM, and it was found that the pattern fabricated by applying a current value of 50 picoamperes (pA) has a better profile with a 65 nm line depth. The UV transmittance of the 160 nm thick film was measured to be 70-86%. The hardness and modulus of the BN was measured to be 12 and 150 GPa, respectively. The water contact angle of the stamp surface was measured at 75 0 . The stamp was applied to UV-NIL without coating with an anti-adhesion layer. Successful imprinting was proved via scanning electron microscope (SEM) images of the imprinted resin

  18. Chirality Relay in 2,2'-Substituted 1,1'-Binaphthyl: Access to Propeller Chirality of the Tricoordinate Boron Center.

    Science.gov (United States)

    Wang, Chen; Sun, Zuo-Bang; Xu, Qing-Wen; Zhao, Cui-Hua

    2016-11-14

    It is a challenging issue to achieve propeller chirality for triarylboranes owing to the low transition barrier between the P and M forms of the boron center. Herein, we report a new strategy to achieve propeller chirality of triarylboranes. It was found that the chirality relay from axially chiral 1,1'-binaphthyl to propeller chirality of the trivalent boron center can be realized when a Me 2 N and a Mes 2 B group (Mes=mesityl) are introduced at the 2,2'-positions of the 1,1'-binaphthyl skeleton (BN-BNaph) owing to the strong π-π interaction between the Me 2 N-bonded naphthyl ring and the phenyl ring of one adjacent Mes group, which not only exerts great steric hindrance on the rotation of the two Mes groups but also gives unequal stability to the two configurations of the boron center for a given configuration of the binaphthyl moiety. The stereostructures of the boron center were fully characterized through 1 H NMR spectroscopy, X-ray crystal analyses, and theoretical calculations. Detailed comparisons with the analog BN-Ph-BNaph, in which the Mes 2 B group is separated from 1,1'-binaphthyl by a para-phenylene spacer, confirmed the essential role of π-π interaction for the successful chirality relay in BN-BNaph. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Investigation on the neutron beam characteristics for boron neutron capture therapy with 3D and 2D transport calculations

    International Nuclear Information System (INIS)

    Kodeli, I.; Diop, C.M.; Nimal, J.C.

    1994-01-01

    In the framework of future Boron Neutron Capture Therapy (BNCT) experiments, where cells and animals irradiations are planned at the research reactor of Strasbourg University, the feasibility to obtain a suitable epithermal neutron beam is investigated. The neutron fluence and spectra calculations in the reactor are performed using the 3D Monte Carlo code TRIPOLI-3 and the 2D SN code TWODANT. The preliminary analysis of Al 2 O 3 and Al-Al 2 O 3 filters configurations are carried out in an attempt to optimize the flux characteristics in the beam tube facility. 7 figs., 7 refs

  20. Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams

    Science.gov (United States)

    Poppinga, D.; Halbur, J.; Lemmer, S.; Delfs, B.; Harder, D.; Looe, H. K.; Poppe, B.

    2017-09-01

    The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm-3) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm  ×  10 cm field size agreed with the results of ionization chamber measurements within  ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.

  1. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    International Nuclear Information System (INIS)

    Burlon, Alejandro A.; Valda, Alejandro A.; Girola, Santiago; Minsky, Daniel M.; Kreiner, Andres J.

    2010-01-01

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7 Li(p, n) 7 Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  2. Intraoperative boron neutron capture therapy for malignant gliomas. First clinical results of Tsukuba phase I/II trial using JAERI mixed thermal-epithermal beam

    International Nuclear Information System (INIS)

    Matsumura, A.; Yamamoto, T.; Shibata, Y.

    2000-01-01

    Since October 1999, a clinical trial of intraoperative boron neutron capture therapy (IOBNCT) is in progress at JRR-4 (Japan Research Reactor-4) in Japan Atomic Energy Research Institute (JAERI) using mixed thermal-epithermal beam (thermal neutron beam I: TNB-I). Compared to pure thermal beam (thermal neutron beam II: TNB-II), TNB-I has an improved neutron delivery into the deep region than TNB-II. The clinical protocol and the preliminary results will be discussed. (author)

  3. PEMODELAN KOLIMATOR DI RADIAL BEAM PORT REAKTOR KARTINI UNTUK BORON NEUTRON CAPTURE THERAPY

    Directory of Open Access Journals (Sweden)

    Bemby Yulio Vallenry

    2015-03-01

    Full Text Available Salah satu metode terapi kanker adalah Boron Neutron Capture Therapy (BNCT. BNCT memanfaatkan tangkapan neutron oleh 10B yang terendapkan pada sel kanker. Keunggulan BNCT dibandingkan dengan terapi radiasi lainnya adalah tingkat selektivitas yang tinggi karena tingkatannya adalah sel. Pada penelitian ini dilakukan pemodelan kolimator di radial beamport reaktor Kartini sebagai dasar pemilihan material dan manufature kolimator sebagai sumber neutron untuk BNCT. Pemodelan ini dilakukan dengan simulasi menggunakan perangkat lunak Monte Carlo N-Particle versi 5 (MCNP 5. MCNP 5 adalah suatu paket program untuk memodelkan sekaligus menghitung masalah transpor partikel dengan mengikuti sejarah hidup neutron semenjak lahir, bertranspor pada bahan hingga akhirnya hilang karena mengalami reaksi penyerapan atau keluar dari sistem. Pemodelan ini menggunakan variasi material dan ukurannya agar menghasilkan nilai dari tiap parameter-parameter yang sesuai dengan rekomendasi I International Atomic Energy Agency (IAEA untuk BNCT, yaitu fluks neutron epitermal (Фepi > 9 n.cm-2.s-1, rasio antara laju dosis neutron cepat dan fluks neutron epitermal (Ḋf/Фepi 0,7. Berdasarkan hasil optimasi dari pemodelan ini, material dan ukuran penyusun kolimator yang didapatkan yaitu 0,75 cm Ni sebagai dinding kolimator, 22 cm Al sebagai moderator dan 4,5 cm Bi sebagai perisai gamma. Keluaran berkas radiasi yang dihasilkan dari pemodelan kolimator radial beamport yaitu Фepi = 5,25 x 106 n.cm-2s-1, Ḋf/Фepi =1,17 x 10-13 Gy.cm2.n-1, Ḋγ/Фepi = 1,70 x 10-12 Gy.cm2.n-1, Фth/Фepi = 1,51 dan J/Фepi = 0,731. Berdasarkan penelitian ini, hasil optimasi 5 parameter sebagai persyaratan kolimator untuk BNCT yang keluar dari radial beam port tidak sepenuhnya memenuhi kriteria yang direkomendasikan oleh IAEA sehingga perlu dilakukan penelitian lebih lanjut agar tercapainya persyaratan IAEA. Kata kunci: BNCT, radial beamport, MCNP 5, kolimator   One of the cancer therapy methods is

  4. OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.

    2002-08-18

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  5. Crossed Molecular Beams Investigations on the Dynamics and Energetics of Elementary Boron Reactions with Unsaturated Hydrocarbons

    National Research Council Canada - National Science Library

    Kaiser, Ralf I

    2006-01-01

    ...). It should be recalled that the AFOSR Grant FA9550-05-1-0124 under which the experiments have been conducted was intended as a starter grant to get the experimental setup complete, the boron source...

  6. Boron neutron capture therapy (BNCT). Recent aspect, a change from thermal neutron to epithermal neutron beam and a new protocol

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu

    1999-01-01

    Since 1968, One-hundred seventy three patients with glioblastoma (n=81), anaplastic astrocytoma (n=44), low grade astrocytoma (n=16) or other types of tumor (n=32) were treated by boron-neutron capture therapy (BNCT) using a combination of thermal neutron and BSH in 5 reactors (HTR n=13, JRR-3 n=1, MuITR n=98, KUR n=28, JRR-2 n=33). Out of 101 patients with glioma treated by BNCT under the recent protocol, 33 (10 glioblastoma, 14 anaplastic astrocytoma, 9 low grade astrocytoma) patients lived or have lived longer than 3 years. Nine of these 33 lived or have lived longer than 10 years. According to the retrospective analysis, the important factors related to the clinical results were tumor dose radiation dose and maximum radiation dose in thermal brain cortex. The result was not satisfied as it was expected. Then, we decided to introduce mixed beams which contain thermal neutron and epithermal neutron beams. KUR was reconstructed in 1996 and developed to be available to use mixed beams. Following the shutdown of the JRR-2, JRR-4 was renewed for medical use in 1998. Both reactors have capacity to yield thermal neutron beam, epithermal neutron beam and mixed beams. The development of the neutron source lead us to make a new protocol. (author)

  7. Dosimetric comparative analysis between 10 MV Megavoltage unidirectional beam and boron neutron capture therapy for brain tumors treatment

    International Nuclear Information System (INIS)

    Brandao, Samia F.; Campos, Tarcisio P.R.

    2011-01-01

    This paper present a comparative dosimetric analysis between boron neutron capture therapy and 10 MV megavoltage employed in brain tumor treatments, limited to a unidirectional beam. A computational phantom of a human head was developed to be used in computational simulations of the two protocols, conducted in MCNP5 code. This phantom represents several head's structures, mainly, the central nervous system and a tumor that represents a Glioblastoma Multiform - one of the most malignant and aggressive brain tumors. Absorbed and biological weighted dose rates and neutron fluency in the computational phantom were evaluated from the MCNP5 code. The biologically weighted dose rate to 10 MV megavoltage beam presented no specificity in deposited dose in tumor. The average total biologically weighted dose rate in tumor was 9.93E-04 RBE.Gy.h"-"1/Mp.s"-"1 while in healthy tissue it was 8.67E-04 RBE.Gy.h"-"1/Mp.s"-1. On the BNCT simulations the boron concentration was particularly relevant since the largest dose deposition happened in borate tissues. The average total biologically weighted dose rate in tumor was 3.66E-02 RBE.Gy.h"-"1/Mp.s"-"1 while in healthy tissue it was 1.39E-03 RBE.Gy.h"-"1/Mp.s"-"1. In comparison to the 10 MV megavoltage beam, BNCT showed clearly a largest dose deposition in the tumor, on average, 37 times larger than in the megavoltage beam, while in healthy tissue that average was only 1,6 time larger in BNCT. (author)

  8. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Thatar Vento, V.; Bergueiro, J.; Cartelli, D.; Valda, A.A.; Kreiner, A.J.

    2011-01-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  9. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for Boron Neutron Capture Therapy

    NARCIS (Netherlands)

    Nievaart, V.A.; Legrady, D.; Moss, R.L.; Kloosterman, J.L.; Van der Hagen, T.H.; Van Dam, H.

    2007-01-01

    This paper deals with the application of the adjoint transport theory in order to optimize Monte Carlo based radiotherapy treatment planning. The technique is applied to Boron Neutron Capture Therapy where most often mixed beams of neutrons and gammas are involved. In normal forward Monte Carlo

  10. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, A

    2007-10-15

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  11. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    International Nuclear Information System (INIS)

    Zobelli, A.

    2007-10-01

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  12. Molecular Beam Epitaxial Growth and Characterization of Graphene and Hexagonal Boron Nitride Two-Dimensional Layers

    Science.gov (United States)

    Zheng, Renjing

    Van der Waals (vdW) materials (also called as two-dimensional (2D) material in some literature) systems have received extensive attention recently due to their potential applications in next-generation electronics platform. Exciting properties have been discovered in this field, however, the performance and properties of the systems rely on the materials' quality and interface significantly, leading to the urgent need for scalable synthesis of high-quality vdW crystals and heterostructures. Toward this direction, this dissertation is devoted on the study of Molecular Beam Epitaxy (MBE) growth and various characterization of vdW materials and heterostructures, especially graphene and hexagonal boron nitride (h-BN). The goal is to achieve high-quality vdW materials and related heterostructures. There are mainly four projects discussed in this dissertation. The first project (Chapter 2) is about MBE growth of large-area h-BN on copper foil. After the growth, the film was transferred onto SiO2 substrate for characterization. It is observed that as-grown film gives evident h-BN Raman spectrum; what's more, h-BN peak intensity and position is dependent on film thickness. N-1s and B-1s XPS peaks further suggest the formation of h-BN. AFM and SEM images show the film is flat and continuous over large area. Our synthesis method shows it's possible to use MBE to achieve h-BN growth and could also pave a way for some unique structure, such as h-BN/graphene heterostructures and doped h-BN films by MBE. The second project (Chapter 3) is focused on establishment of grapehene/h-BN heterostructure on cobalt (Co) film. In-situ epitaxial growth of graphene/h-BN heterostructures on Co film substrate was achieved by using plasma-assisted MBE. The direct graphene/h-BN vertical stacking structures were demonstrated and further confirmed by various characterizations, such as Raman spectroscopy, SEM, XPS and TEM. Large area heterostructures consisting of single- /bilayer graphene and

  13. Design of collimator in the radial piercing beam port of Kartini reactor for boron neutron capture therapy

    International Nuclear Information System (INIS)

    M Ilma Muslih A; Andang Widiharto; Yohannes Sardjono

    2014-01-01

    Studies were carried out to design a collimator which results in epithermal neutron beam for in vivo experiment of Boron Neutron Capture Therapy (BNCT) at the Kartini Research Reactor by means of Monte Carlo N-Particle (MCNP) codes. Reactor within 100 kW of thermal power was used as the neutron source. All materials used were varied in size, according to the value of mean free path for each material. MCNP simulations indicated that by using 5 cm thick of Ni (95%) as collimator wall, 15 cm thick of Al as moderator, 1 cm thick of Pb as γ-ray shielding, 1.5 cm thick of Boral as additional material, with 2 cm aperture diameter, epithermal neutron beam with maximum flux of 5.03 x 10 8 n.cm -2 .s -1 could be produced. The beam has minimum fast neutron and γ-ray components of, respectively, 2.17 x 10 -13 Gy.cm 2 .n -1 and 1.16 x 10 -13 Gy.cm 2 .n -l , minimum thermal neutron per epithermal neutron ratio of 0.12, and maximum directionality of 0.835 . It did not fully pass the IAEA's criteria, since the epithermal neutron flux was below the recommended value, 1.0 x 10 9 n.cm -2 .s -l . Nonetheless, it was still usable with epithermal neutron flux exceeding 5.0 x 10 8 n.cm -2 .s -1 and fast neutron flux close to 2 x 10 -13 Gy.cm 2 .n -1 it is still feasible for BNCT in vivo experiment. (author)

  14. Synthesis of the new boron hydride nido-undecaborane(15), B11H15, and the x-ray structure of its conjugate base tetradecahydroundecaborate(1-), [B11H14]-

    International Nuclear Information System (INIS)

    Getman, T.D.; Krause, J.A.; Shore, S.G.

    1988-01-01

    The preparation of nido-undecaborane, B 11 H 15 , from the protonation of K[B 11 H 14 ] and the subsequent deprotonation of B 11 H 15 by P(CH 3 ) 3 to give [P(CH 3 ) 3 H][B 11 H 14 ] is described. The structure of [P(CH 3 ) 3 H][B 11 H 14 ] has been determined from single-crystal x-ray data. The spectral data indicate that the boron framework of B 11 H 15 is similar to that of [B 11 H 14 ] - . 11 references, 1 figure

  15. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. White-Beam X-ray Diffraction and Radiography Studies on High-Boron Containing Borosilicate Glass at High Pressures

    Science.gov (United States)

    Ham, Kathryn; Vohra, Yogesh; Kono, Yoshio; Wereszczak, Andrew; Patel, Parimal

    Multi-angle energy-dispersive x-ray diffraction studies and white-beam x-ray radiography were conducted with a cylindrically shaped (1 mm diameter and 0.7 mm high) high-boron content borosilicate glass sample (17.6% B2O3) to a pressure of 13.7 GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q = 19 Å-1, is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed an overall uniaxial compression of 22.5 % at 13.7 GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si-O, O-O, and Si-Si bond distances were measured as a function of pressure. Raman spectroscopy of pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and B3O6 boroxol rings. US Army Research Office under Grant No. W911NF-15-1-0614.

  17. Direct growth of hexagonal boron nitride/graphene heterostructures on cobalt foil substrates by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhongguang; Khanaki, Alireza; Tian, Hao; Zheng, Renjing; Suja, Mohammad; Liu, Jianlin, E-mail: jianlin@ece.ucr.edu [Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521 (United States); Zheng, Jian-Guo [Irvine Materials Research Institute, University of California, Irvine, California 92697-2800 (United States)

    2016-07-25

    Graphene/hexagonal boron nitride (G/h-BN) heterostructures have attracted a great deal of attention because of their exceptional properties and wide variety of potential applications in nanoelectronics. However, direct growth of large-area, high-quality, and stacked structures in a controllable and scalable way remains challenging. In this work, we demonstrate the synthesis of h-BN/graphene (h-BN/G) heterostructures on cobalt (Co) foil by sequential deposition of graphene and h-BN layers using plasma-assisted molecular beam epitaxy. It is found that the coverage of h-BN layers can be readily controlled on the epitaxial graphene by growth time. Large-area, uniform-quality, and multi-layer h-BN films on thin graphite layers were achieved. Based on an h-BN (5–6 nm)/G (26–27 nm) heterostructure, capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration were fabricated to evaluate the dielectric properties of h-BN. The measured breakdown electric field showed a high value of ∼2.5–3.2 MV/cm. Both I-V and C-V characteristics indicate that the epitaxial h-BN film has good insulating characteristics.

  18. Beams `96. Proceedings of the 11th international conference on high power particle beams. Vol. II

    Energy Technology Data Exchange (ETDEWEB)

    Jungwirth, K.; Ullschmied, J. [eds.

    1997-12-31

    The scientific programme of the conference carved the physics and technology of intense beams of charged particles, from basic experimental and theoretical problems of beam generation, transport and interaction with various media, up to beam and pulsed power applications in science and in industry. The breakdown of the papers by main topical groups is as follows: radiation sources, Z-pinches, accelerate related topics, astrophysics, ICF, ION Beam Physics, ION DIODES, ION RINGS, Beam plasma systems, diagnostic and others. This volumes contains 160 contributions, out which 133 have been input to INIS.

  19. Beams '96. Proceedings of the 11th international conference on high power particle beams. Vol. II

    International Nuclear Information System (INIS)

    Jungwirth, K.; Ullschmied, J.

    1996-01-01

    The scientific programme of the conference carved the physics and technology of intense beams of charged particles, from basic experimental and theoretical problems of beam generation, transport and interaction with various media, up to beam and pulsed power applications in science and in industry. The breakdown of the papers by main topical groups is as follows: radiation sources, Z-pinches, accelerate related topics, astrophysics, ICF, ION Beam Physics, ION DIODES, ION RINGS, Beam plasma systems, diagnostic and others. This volumes contains 160 contributions, out which 133 have been input to INIS

  20. Beams '96. Proceedings of the 11th international conference on high power particle beams. Vol. I

    International Nuclear Information System (INIS)

    Jungwirth, K.; Ullschmied, J.

    1996-01-01

    The Proceedings contain the full texts of 60 orals and 243 poster papers presented at the Conference. The scientific programme of the conference covered the physics and technology of intense beams of charged particles, from basic experimental and theoretical problems of beam generation, transport and interaction with various media, up to beam and pulsed power applications in science and in industry. The breakdown of the papers by main topical groups is as follows: electron beams, beam-plasma systems, high-power microwaves (62), imploding liners, z-pinches, plasma foci (53), pulsed power technology and its applications (53), ion beams and ICF (41), industrial applications of electron and ion beams (36), radiation sources (23), diagnostics (14), and others (21). (J.U.)

  1. Beams `96. Proceedings of the 11th international conference on high power particle beams. Vol. I

    Energy Technology Data Exchange (ETDEWEB)

    Jungwirth, K.; Ullschmied, J. [eds.

    1997-12-31

    The Proceedings contain the full texts of 60 orals and 243 poster papers presented at the Conference. The scientific programme of the conference covered the physics and technology of intense beams of charged particles, from basic experimental and theoretical problems of beam generation, transport and interaction with various media, up to beam and pulsed power applications in science and in industry. The breakdown of the papers by main topical groups is as follows: electron beams, beam-plasma systems, high-power microwaves (62), imploding liners, z-pinches, plasma foci (53), pulsed power technology and its applications (53), ion beams and ICF (41), industrial applications of electron and ion beams (36), radiation sources (23), diagnostics (14), and others (21). (J.U.).

  2. Design of experiment existing parameter physics for supporting of Boron Neutron Capture Therapy (BNCT) method a t the piercing radial beam port of Kartini research reactor

    International Nuclear Information System (INIS)

    Indry Septiana Novitasari; Yosaphat Sumardi; Widarto

    2014-01-01

    The experiment existing parameters physics for supporting of in vivo and in vitro test facility of Boron Neutron Capture Therapy (BNCT) preliminary study at the piercing radial beam port has been done. The existing experiments is needed for determining that the parameter physics is fulfill the BNCT method requirement. To realize the existing experiment have been done by design analysis, methodology, calculation method and some procedure related with radiation safety analysis and environment. Preparation for existing experiment physics such as foil detector of Gold (Au) should be irradiated for 30 minute, irradiation instrument and procedure related with the experiment for radiation safety. (author)

  3. Effect of Hypoeutectic Boron Additions on the Grain Size and Mechanical Properties of Ti-6Al-4V Manufactured with Powder Bed Electron Beam Additive Manufacturing

    Science.gov (United States)

    Mahbooba, Zaynab; West, Harvey; Harrysson, Ola; Wojcieszynski, Andrzej; Dehoff, Ryan; Nandwana, Peeyush; Horn, Timothy

    2017-03-01

    In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricated Ti-6Al-4V + B indicate that the addition of 0.25-1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.

  4. One-step synthesis of an {sup 18}F-labeled boron-derived methionine analog. A substitute for {sup 11}C-methionine?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen; Lan, Xiaoli [Huazhong University of Science and Technology, Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Wuhan (China); Huazhong University of Science and Technology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Wuhan (China); Ehlerding, Emily B. [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); Cai, Weibo [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin - Madison, Carbone Cancer Center, Madison, WI (United States)

    2018-04-15

    Amino acid-based tracers have been extensively investigated for positron emission tomography (PET) imaging of brain tumors, and {sup 11}C-methionine ({sup 11}C-MET) is one of the most extensively investigated. However, widespread clinical use of {sup 11}C-MET is challenging due to the short half-life of {sup 11}C and low radiolabeling yield. In this issue of the European Journal of Nuclear Medicine and Molecular Imaging, Yang and colleagues report an {sup 18}F-labeled boron-derived methionine analog, {sup 18}F-B-MET, as a potential substitute for {sup 11}C-MET in PET imaging of glioma. The push-button synthesis, highly efficient radiolabeling, and good imaging performance in glioma models make this tracer a promising candidate for future clinical translation. (orig.)

  5. Boron neutron capture therapy (BNCT) for glioblastoma multiforme (GBM), using the epithermal neutron beam at the Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Chadha, Manjeet; Capala, Jacek; Coderre, Jeffrey A.; Elowitz, Eric H.; Joel, Darrel D.; Hungyuan, B. Liu; Slatkin, Daniel N.; Chanana, Arjun D.

    1996-01-01

    Objective: BNCT is a binary treatment modality based on the nuclear reactions that occur when boron ( 10 B) is exposed to thermal neutrons. Preclinical studies have demonstrated the therapeutic efficacy of p-boronophenylalanine (BPA)-based BNCT. The objective of the Phase I/II trial was to evaluate BPA-fructose (BPA-F) as a boron delivery agent for GBM and to study the feasibility and safety of a single-fraction of BNCT. Materials and Methods: The trial design required i) a BPA-F biodistribution study performed at the time of craniotomy; and ii) BNCT within 4 weeks of the craniotomy. From September 94 to July 95, 10 patients with biopsy proven GBM were treated. All but 1 patient underwent a biodistribution study receiving IV BPA-F at the time of craniotomy. Multiple tissue samples and concurrent blood and urine samples were collected for evaluation of the boron concentration and clearance kinetics. For BNCT all patients received 250 mg/kgm of BPA-F (IV infusion over 2 hrs) followed by neutron irradiation. The blood 10 B concentration during irradiation was used to calculate the time of neutron exposure. The 3D treatment planning was done using the BNCT treatment planning software developed at the Idaho National Engineering Laboratory. The BNCT dose is expressed as the sum of the physical dose components corrected for both the RBE and the 10 B localization factor with the unit Gy-Eq. The photon-equivalent dose, where the thermal neutron fluence reaches a maximum, is the peak-dose equivalent. A single-fraction of BNCT was delivered prescribing 10.5 Gy-Eq (9 patients) and 13.8 Gy-Eq (1 patient) as the peak dose-equivalent to the normal brain. The peak dose rate was kept below 27 cGy-Eq/min. Results: Biodistribution data: The maximum blood 10 B concentration was observed at the end of the infusion and scaled as a linear function of the administered dose. The 10 B concentration in the scalp and in the GBM tissue was higher than in blood by 1.5 x and at least 3.5 x

  6. SU-F-T-140: Assessment of the Proton Boron Fusion Reaction for Practical Radiation Therapy Applications Using MCNP6

    Energy Technology Data Exchange (ETDEWEB)

    Adam, D; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: The proton boron fusion reaction is a reaction that describes the creation of three alpha particles as the result of the interaction of a proton incident upon a 11B target. Theoretically, the proton boron fusion reaction is a desirable reaction for radiation therapy applications in that, with the appropriate boron delivery agent, it could potentially combine the localized dose delivery protons exhibit (Bragg peak) and the local deposition of high LET alpha particles in cancerous sites. Previous efforts have shown significant dose enhancement using the proton boron fusion reaction; the overarching purpose of this work is an attempt to validate previous Monte Carlo results of the proton boron fusion reaction. Methods: The proton boron fusion reaction, 11B(p, 3α), is investigated using MCNP6 to assess the viability for potential use in radiation therapy. Simple simulations of a proton pencil beam incident upon both a water phantom and a water phantom with an axial region containing 100ppm boron were modeled using MCNP6 in order to determine the extent of the impact boron had upon the calculated energy deposition. Results: The maximum dose increase calculated was 0.026% for the incident 250 MeV proton beam scenario. The MCNP simulations performed demonstrated that the proton boron fusion reaction rate at clinically relevant boron concentrations was too small in order to have any measurable impact on the absorbed dose. Conclusion: For all MCNP6 simulations conducted, the increase of absorbed dose of a simple water phantom due to the 11B(p, 3α) reaction was found to be inconsequential. In addition, it was determined that there are no good evaluations of the 11B(p, 3α) reaction for use in MCNPX/6 and further work should be conducted in cross section evaluations in order to definitively evaluate the feasibility of the proton boron fusion reaction for use in radiation therapy applications.

  7. Application of in situ current normalized PIGE method for determination of total boron and its isotopic composition

    International Nuclear Information System (INIS)

    Chhillar, Sumit; Acharya, R.; Sodaye, S.; Pujari, P.K.

    2014-01-01

    A particle induced gamma-ray emission (PIGE) method using proton beam has been standardized for determination of isotopic composition of natural boron and enriched boron samples. Target pellets of boron standard and samples were prepared in cellulose matrix. The prompt gamma rays of 429 keV, 718 keV and 2125 keV were measured from 10 B(p,αγ) 7 Be, 10 B(p, p'γ) 10 B and 11 B(p, p'γ) 11 B nuclear reactions, respectively. For normalizing the beam current variations in situ current normalization method was used. Validation of method was carried out using synthetic samples of boron carbide, borax, borazine and lithium metaborate in cellulose matrix. (author)

  8. Boron neutron capture therapy using mixed epithermal and thermal neutron beams in patients with malignant glioma-correlation between radiation dose and radiation injury and clinical outcome

    International Nuclear Information System (INIS)

    Kageji, Teruyoshi; Nagahiro, Shinji; Matsuzaki, Kazuhito; Mizobuchi, Yoshifumi; Toi, Hiroyuki; Nakagawa, Yoshinobu; Kumada, Hiroaki

    2006-01-01

    Purpose: To clarify the correlation between the radiation dose and clinical outcome of sodium borocaptate-based intraoperative boron neutron capture therapy in patients with malignant glioma. Methods and Materials: The first protocol (P1998, n = 8) prescribed a maximal gross tumor volume (GTV) dose of 15 Gy. In 2001, a dose-escalated protocol was introduced (P2001, n 11), which prescribed a maximal vascular volume dose of 15 Gy or, alternatively, a clinical target volume (CTV) dose of 18 Gy. Results: The GTV and CTV doses in P2001 were 1.1-1.3 times greater than those in P1998. The maximal vascular volume dose of those with acute radiation injury was 15.8 Gy. The mean GTV and CTV dose in long-term survivors with glioblastoma was 26.4 and 16.5 Gy, respectively. A statistically significant correlation between the GTV dose and median survival time was found. In the 11 glioblastoma patients in P2001, the median survival time was 19.5 months and 1- and 2-year survival rate was 60.6% and 37.9%, respectively. Conclusion: Dose escalation contributed to the improvement in clinical outcome. To avoid radiation injury, the maximal vascular volume dose should be <12 Gy. For long-term survival in patients with glioblastoma after boron neutron capture therapy, the optimal mean dose of the GTV and CTV was 26 and 16 Gy, respectively

  9. CERN Accelerator School: Intensity Limitations in Particle Beams | 2-11 November

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s specialised course on Intensity Limitations in Particle Beams, to be held at CERN between 2 and 11 November 2015.   This course will mainly be of interest to staff in accelerator laboratories, university departments and companies manufacturing accelerator equipment. Many accelerators and storage rings, whether intended for particle physics experiments, synchrotron light sources or industrial applications, require beams of high brightness and the highest possible intensities. A good understanding of the possible limitations is required to achieve the desired performance. The programme for this course will cover the interaction of beams with their surroundings, with other beams and further collective effects. Lectures on the effects and possible mitigations will be complemented by tutorials. Further information can be found at: http://cas.web.cern.ch/cas/Intensity-Limitations-2015/IL-advert.html   http:/...

  10. Optical propagation of the HE11 mode and Gaussian beams in hollow circular waveguides

    International Nuclear Information System (INIS)

    Crenn, J.P.

    1993-05-01

    The propagation of the HE 11 mode and Gaussian beams in hollow oversized circular waveguides is analyzed using optical theories. Different types of waveguides are considered: hollow dielectric or conducting waveguides, dielectric-lined waveguides, corrugated waveguides. General formulas are derived which give the power transmission through these different guides. The best wall materials and structures are determined from a comparison of the waveguide transmissions, at the infrared and millimeter wavelengths. The question of the coupling between the HE 11 mode and Gaussian beams is discussed and from a review of coupling coefficients derived before, an optimum value is pointed out. The problem of matching a Gaussian beam into circular waveguides in order to achieve the maximum power transmission is analyzed

  11. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Capala, J.; Diaz, A.Z.; Chadha, M.

    1997-01-01

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains

  12. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  13. Testing the YerPhI Transimpedance Preamplifier with PPC by the T11 PS Beam

    CERN Document Server

    Parlakian, L K; CERN. Geneva; Martmianov, A N

    1997-01-01

    We report on the test of the preamplifier, described in [1], by the 3 GeV/c positive particle T11 beam of PS/CERN. We have measured the amplitude and time of flight spectrum, the time resolution and detection efficiency. The preamplifier has shown a stable work and hardness to the chamber discharge. The test results are presented.

  14. Design of neutron beams at the Argonne Continuous Wave Linac (ACWL) for boron neutron capture therapy and neutron radiography

    International Nuclear Information System (INIS)

    Zhou, X.L.; McMichael, G.E.

    1994-01-01

    Neutron beams are designed for capture therapy based on p-Li and p-Sc reactions using the Argonne Continuous Wave Linac (ACWL). The p-Li beam will provide a 2.5 x 10 9 n/cm 2 s epithermal flux with 7 x 10 5 γ/cm 2 s contamination. On a human brain phantom, this beam allows an advantage depth (AD) of 10 cm, an advantage depth dose rate (ADDR) of 78 cGy/min and an advantage ratio (AR) of 3.2. The p-Sc beam offers 5.9 x 10 7 n/cm 2 s and a dose performance of AD = 8 cm and AR = 3.5, suggesting the potential of near-threshold (p,n) reactions such as the p-Li reaction at E p = 1.92 MeV. A thermal radiography beam could also be obtained from ACWL

  15. Boron reclamation

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-07-01

    A process to recover high purity 10 B enriched crystalline boron powder from a polymeric matrix was developed on a laboratory basis and ultimately scaled up to production capacity. The process is based on controlled pyrolysis of boron-filled scrap followed by an acid leach and dry sieving operation to return the powder to the required purity and particle size specifications. Typically, the recovery rate of the crystalline powder is in excess of 98.5 percent, and some of the remaining boron is recovered in the form of boric acid. The minimum purity requirement of the recovered product is 98.6 percent total boron

  16. Nuclear reactions with 11C and 14O radioactive ion beams

    International Nuclear Information System (INIS)

    Guo, Fanqing

    2004-01-01

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F were fitted with an R-matrix calculation. Spins and parities were assigned to the two observed resonances. This new measurement of the 15F ground state supports the disappearance of the Z = 8

  17. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Nievaart, V. A.; Legrady, D.; Moss, R. L.; Kloosterman, J. L.; Hagen, T. H. J. J. van der; Dam, H. van

    2007-01-01

    This paper deals with the application of the adjoint transport theory in order to optimize Monte Carlo based radiotherapy treatment planning. The technique is applied to Boron Neutron Capture Therapy where most often mixed beams of neutrons and gammas are involved. In normal forward Monte Carlo simulations the particles start at a source and lose energy as they travel towards the region of interest, i.e., the designated point of detection. Conversely, with adjoint Monte Carlo simulations, the so-called adjoint particles start at the region of interest and gain energy as they travel towards the source where they are detected. In this respect, the particles travel backwards and the real source and real detector become the adjoint detector and adjoint source, respectively. At the adjoint detector, an adjoint function is obtained with which numerically the same result, e.g., dose or flux in the tumor, can be derived as with forward Monte Carlo. In many cases, the adjoint method is more efficient and by that is much quicker when, for example, the response in the tumor or organ at risk for many locations and orientations of the treatment beam around the patient is required. However, a problem occurs when the treatment beam is mono-directional as the probability of detecting adjoint Monte Carlo particles traversing the beam exit (detector plane in adjoint mode) in the negative direction of the incident beam is zero. This problem is addressed here and solved first with the use of next event estimators and second with the application of a Legendre expansion technique of the angular adjoint function. In the first approach, adjoint particles are tracked deterministically through a tube to a (adjoint) point detector far away from the geometric model. The adjoint particles will traverse the disk shaped entrance of this tube (the beam exit in the actual geometry) perpendicularly. This method is slow whenever many events are involved that are not contributing to the point

  18. New developments of 11C post-accelerated beams for hadron therapy and imaging

    Science.gov (United States)

    Augusto, R. S.; Mendonca, T. M.; Wenander, F.; Penescu, L.; Orecchia, R.; Parodi, K.; Ferrari, A.; Stora, T.

    2016-06-01

    Hadron therapy was first proposed in 1946 and is by now widespread throughout the world, as witnessed with the design and construction of the CNAO, HIT, PROSCAN and MedAustron treatment centres, among others. The clinical interest in hadron therapy lies in the fact that it delivers precision treatment of tumours, exploiting the characteristic shape (the Bragg peak) of the energy deposition in the tissues for charged hadrons. In particular, carbon ion therapy is found to be biologically more effective, with respect to protons, on certain types of tumours. Following an approach tested at NIRS in Japan [1], carbon ion therapy treatments based on 12C could be combined or fully replaced with 11C PET radioactive ions post-accelerated to the same energy. This approach allows providing a beam for treatment and, at the same time, to collect information on the 3D distributions of the implanted ions by PET imaging. The production of 11C ion beams can be performed using two methods. A first one is based on the production using compact PET cyclotrons with 10-20 MeV protons via 14N(p,α)11C reactions following an approach developed at the Lawrence Berkeley National Laboratory [2]. A second route exploits spallation reactions 19F(p,X)11C and 23Na(p,X)11C on a molten fluoride salt target using the ISOL (isotope separation on-line) technique [3]. This approach can be seriously envisaged at CERN-ISOLDE following recent progresses made on 11C+ production [4] and proven post-acceleration of pure 10C3/6+ beams in the REX-ISOLDE linac [5]. Part of the required components is operational in radioactive ion beam facilities or commercial medical PET cyclotrons. The driver could be a 70 MeV, 1.2 mA proton commercial cyclotron, which would lead to 8.1 × 10711C6+ per spill. This intensity is appropriate using 11C ions alone for both imaging and treatment. Here we report on the ongoing feasibility studies of such approach, using the Monte Carlo particle transport code FLUKA [6,7] to simulate

  19. New developments of {sup 11}C post-accelerated beams for hadron therapy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, R.S., E-mail: r.s.augusto@cern.ch [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); Ludwig Maximilians – University of Munich, Munich (Germany); Mendonca, T.M.; Wenander, F. [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); Penescu, L. [MedAustron GmbH, Wiener Neustadt (Austria); Orecchia, R. [CNAO – Centro Nazionale di Adroterapia Oncologica per il trattamento dei tumori, Pavia (Italy); Parodi, K. [Ludwig Maximilians – University of Munich, Munich (Germany); Ferrari, A.; Stora, T. [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland)

    2016-06-01

    Hadron therapy was first proposed in 1946 and is by now widespread throughout the world, as witnessed with the design and construction of the CNAO, HIT, PROSCAN and MedAustron treatment centres, among others. The clinical interest in hadron therapy lies in the fact that it delivers precision treatment of tumours, exploiting the characteristic shape (the Bragg peak) of the energy deposition in the tissues for charged hadrons. In particular, carbon ion therapy is found to be biologically more effective, with respect to protons, on certain types of tumours. Following an approach tested at NIRS in Japan [1], carbon ion therapy treatments based on {sup 12}C could be combined or fully replaced with {sup 11}C PET radioactive ions post-accelerated to the same energy. This approach allows providing a beam for treatment and, at the same time, to collect information on the 3D distributions of the implanted ions by PET imaging. The production of {sup 11}C ion beams can be performed using two methods. A first one is based on the production using compact PET cyclotrons with 10–20 MeV protons via {sup 14}N(p,α){sup 11}C reactions following an approach developed at the Lawrence Berkeley National Laboratory [2]. A second route exploits spallation reactions {sup 19}F(p,X){sup 11}C and {sup 23}Na(p,X){sup 11}C on a molten fluoride salt target using the ISOL (isotope separation on-line) technique [3]. This approach can be seriously envisaged at CERN-ISOLDE following recent progresses made on {sup 11}C{sup +} production [4] and proven post-acceleration of pure {sup 10}C{sup 3/6+} beams in the REX-ISOLDE linac [5]. Part of the required components is operational in radioactive ion beam facilities or commercial medical PET cyclotrons. The driver could be a 70 MeV, 1.2 mA proton commercial cyclotron, which would lead to 8.1 × 10{sup 711}C{sup 6+} per spill. This intensity is appropriate using {sup 11}C ions alone for both imaging and treatment. Here we report on the ongoing feasibility

  20. Boron Toxicity Tolerance in Barley through Reduced Expression of the Multifunctional Aquaporin HvNIP2;11[W

    Science.gov (United States)

    Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A.; Tyerman, Stephen D.; Langridge, Peter; Sutton, Tim

    2010-01-01

    Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley. PMID:20581256

  1. Radio response of human lymphocytes pretreated with boron and gadoliniums assessed by the, comet assay

    International Nuclear Information System (INIS)

    Kim, J. K.; Park, T. W.; Cebulska-Wasiewska, A.; Nili, M.

    2009-01-01

    Boron and gadolinium are among the nuclides that hold a unique property of being a neutron capture therapy agent. Neutron beams have often a considerable portion of gamma rays with fast neutrons. Gamma rays, as beam contaminants, can cause considerable damage to normal tissues even if such tissues do contain high boron concentrations. Materials and Methods: The modification of radio response in human lymphocytes pretreated with boron or gadolinium compound was studied by assessing the DNA damage using single cell gel electrophoresis, the comet assay. The lymphocytes from the human peripheral blood were irradiated with 0, 1, 2 and 4 Gy of gamma rays from a 60 Co isotopic source with or without pretreatment of boron or gadolinium compound for 10 minutes at 4 d egree C . Post-irradiation procedures included slide preparation, cell-lysing, unwinding and electrophoresis, neutralization, staining, and analytic steps, gel electrophoresis. Results: The results indicate that pretreatment with boron compound (50 n M or 250 n M of 10 B) is effective in reducing the radiosensitivity of the lymphocyte DNA. Conversely, pretreatment with gadolinium compound (50 n M) led to a dose-dependent increase in the radiosensitivity, most prominently with a dose of 4 Gy (P<0.001). Furthermore, when the lymphocytes were pretreated with a Combined mixture (1:1) of boron (250 n M) and gadolinium (50 n M) compounds, the reduced radiosensitivity was also observed.

  2. SU-F-T-183: Design of a Beam Shaping Assembly of a Compact DD-Based Boron Neutron Capture Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, M; Liu, Y; Nie, L [Purdue University, West Lafayette, Indiana (United States)

    2016-06-15

    Purpose: To design a beam shaping assembly (BSA) to shape the 2.45-MeV neutrons produced by a deuterium-deuterium (DD) neutron generator and to optimize the beam output for boron neutron capture therapy of brain tumors Methods: MCNP is used for this simulation study. The simulation model consists of a neutron surface source that resembles an actual DD source and is surrounded by a BSA. The neutron source emits 2.45-MeV neutrons isotropically. The BSA is composed of a moderator, reflector, collimator and filter. Various types of materials and geometries are tested for each component to optimize the neutron output. Neutron characteristics are measured with an 2×2×2-cm{sup 3} air-equivalent cylinder at the beam exit. The ideal BSA is determined by evaluating the in-air parameters, which include epithermal neutron per source neutron, fast neutron dose per epithermal neutron, and photon dose per epithermal neutron. The parameter values are compared to those recommended by the IAEA. Results: The ideal materials for reflector and thermal neutron filter were lead and cadmium, respectively. The thickness for reflector was 43 cm and for filter was 0.5 mm. At present, the best-performing moderator has 25 cm of AlF{sub 3} and 5 cm of MgF{sub 2}. This layout creates a neutron spectrum that has a peak at approximately 10 keV and produces 1.35E-4 epithermal neutrons per source neutron per cm{sup 2}. Additional neutron characteristics, fast neutrons per epithermal neutron and photon per epithermal neutron, are still under investigation. Conclusion: Working is ongoing to optimize the final layout of the BSA. The neutron spectrum at the beam exit window of the final configuration will have the maximum number of epithermal neutrons and limited photon and fast neutron contaminations within the recommended values by IAEA. Future studies will also include phantom experiments to validate the simulation results.

  3. Boron atom reactions

    International Nuclear Information System (INIS)

    Estes, R.; Tabacco, M.B.; Digiuseppe, T.G.; Davidovits, P.

    1982-01-01

    The reaction rates of atomic boron with various epoxides have been measured in a flow tube apparatus. The bimolecular rate constants, in units of cm 3 molecule -1 s -1 , are: 1,2-epoxypropane (8.6 x 10 -11 ), 1,2-epoxybutane (8.8 x 10 -11 ), 1,2,3,4-diepoxybutane (5.5 x 10 -11 ), 1-chloro-2,3-epoxypropane (5.7 x 10 -11 ), and 1,2-epoxy-3,3,3-trichloropropane (1.5 x 10 -11 ). (orig.)

  4. Compact D-D Neutron Source-Driven Subcritical Multiplier and Beam-Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Ganda, Francesco; Vujic, Jasmina; Greenspan, Ehud; Leung, Ka-Ngo

    2010-01-01

    This work assesses the feasibility of using a small, safe, and inexpensive keff 0.98 subcritical fission assembly [subcritical neutron multiplier (SCM)] to amplify the treatment neutron beam intensity attainable from a compact deuterium-deuterium (D-D) fusion neutron source delivering [approximately]1012 n/s. The objective is to reduce the treatment time for deep-seated brain tumors to [approximately]1 h. The paper describes the optimal SCM design and two optimal beam-shaping assemblies (BSAs) - one designed to maximize the dose rate and the other designed to maximize the total dose that can be delivered to a deep-seated tumor. The neutron beam intensity amplification achieved with the optimized SCM and BSA results in an increase in the treatment dose rate by a factor of 18: from 0.56 Gy/h without the SCM to 10.1 Gy/h. The entire SCM is encased in an aluminum structure. The total amount of 20% enriched uranium required for the SCM is 8.5 kg, and the cost (not including fabrication) is estimated to be less than $60,000. The SCM power level is estimated at 400 W when driven by a 1012 n/s D-D neutron source. This translates into consumption of only [approximately]0.6% of the initially loaded 235U atoms during 50 years of continuous operation and implies that the SCM could operate continuously for the entire lifetime of the facility without refueling. Cooling the SCM does not pose a challenge; it may be accomplished by natural circulation as the maximum heat flux is only 0.034 W/cm2.

  5. Study of filtration of reactor beam of neutrons with cadmium in a multilayer shielding containing boron carbide

    International Nuclear Information System (INIS)

    Megahid, R.M.; El-Kall, E.H.

    1986-01-01

    Experimental measurements were carried out to study the effect of cadmium on the distribution and attenuation of reactor thermal neutrons emitted from a reactor core and the new thermal neutrons produced in a heterogeneous shield of water, iron, iron + B 4 C and ordinary concrete. The measurements were made using a reactor beam of neutrons filtered with cadmium emitted from one of the horizontal channels of ET-RR-1. It is found that the presence of cadmium sheet at channel exit causes a marked decrease in the thickness of the shield required to attenuate the thermal neutron flux by a certain factor. 12 refs., 5 figures. (author)

  6. Study of gamma-ray emission by proton beam interaction with injected Boron atoms for future medical imaging applications

    Czech Academy of Sciences Publication Activity Database

    Petringa, G.; Cirrone, G.A.P.; Caliri, C.; Cuttone, G.; Giuffrida, Lorenzo; Larosa, G.; Manna, R.; Manti, L.; Marchese, V.; Marchetta, C.; Margarone, Daniele; Milluzzo, G.; Picciotto, A.; Romano, F.; Romano, F.P.; Russo, A.D.; Russo, G.; Santonocito, D.; Scuderi, Valentina

    2017-01-01

    Roč. 12, Mar (2017), s. 1-10, č. článku C03049. ISSN 1748-0221 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : Instrumentation for particle-beam therapy * spallation source targets * radioisotope production * neutrino and muon sources Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.220, year: 2016

  7. Low electron density of states at the boron site of TMB{sub 2} (TM = Ti, Zr, Hf, and Nb): a {sup 11}B NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, S.; Zogal, O.J.; Peshev, P

    2004-11-30

    The local density of states at the boron site in TMB{sub 2} (TM=Ti, Zr, Hf, and Nb) has been examined using the solid-state {sup 11}B NMR technique. The magic angle spinning (MAS) NMR spectra at room temperature and the spin-lattice relaxation rates have been measured as functions of temperature (30-293 K). The resonance line shifts are small and become more negative in the direction from 3d- to 5d-elements. The relaxation rates follow a linear law characteristic of hyperfine magnetic interaction with conduction electrons. With borides of IV group metals the data can be understood in terms of a very low s-electron density of states and absence of a p-character of the conduction electron wave function at the Fermi level while in the case of NbB{sub 2} a small partial p-electron density of states is assumed. Then, the results are in good agreement with the earlier theoretical prediction.

  8. Beneficial effect of boron in layered sodium-ion cathode materials - The example of Na2/3B0.11Mn0.89O2

    Science.gov (United States)

    Vaalma, Christoph; Buchholz, Daniel; Passerini, Stefano

    2017-10-01

    Sodium-ion batteries are regarded as a complementary drop-in technology to lithium-ion batteries because they promise lower cost and a higher degree of environmental friendliness. Among other reasons, these benefits come from the use of manganese-based materials, whose stabilization via cation substitution is intensively studied to improve the electrochemical performance. Although multiple elements have been considered as substituent, surprisingly, boron has not been reported for layered sodium-ion cathode materials up to date. Our investigation of layered Na2/3B0.11Mn0.89O2 reveals an unexpectedly good electrochemical performance, with charge and discharge capacities of more than 175 mAh g-1 at 10 mA g-1 and 135 mAh g-1 at 500 mA g-1. The measured capacities are among the highest ever reported for sodium-based layered oxides in the potential range of 4.0-2.0 V vs. Na/Na+.

  9. New developments of 11C post-accelerated beams for hadron therapy and imaging

    CERN Document Server

    Augusto, R S; Wenander, F; Penescu, L; Orecchia, R; Parodi, K; Ferrari, A; Stora, T

    2016-01-01

    Hadron therapy was first proposed in 1946 and is by now widespread throughout the world, as witnessed with the design and construction of the CNAO, HIT, PROSCAN and MedAustron treatment centres, among others. The clinical interest in hadron therapy lies in the fact that it delivers precision treatment of tumours, exploiting the characteristic shape (the Bragg peak) of the energy deposition in the tissues for charged hadrons. In particular, carbon ion therapy is found to be biologically more effective, with respect to protons, on certain types of tumours. Following an approach tested at NIRS in Japan [1], carbon ion therapy treatments based on 12C could be combined or fully replaced with 11C PET radioactive ions post-accelerated to the same energy. This approach allows providing a beam for treatment and, at the same time, to collect information on the 3D distributions of the implanted ions by PET imaging. The production of 11C ion beams can be performed using two methods. A first one is based on the production...

  10. Effective source size, radial, angular and energy spread of therapeutic 11C positron emitter beams produced by 12C fragmentation

    Science.gov (United States)

    Lazzeroni, Marta; Brahme, Anders

    2014-02-01

    The use of positron emitter light ion beams in combination with PET (Positron Emission Tomography) and PET-CT (Computed Tomography) imaging could significantly improve treatment verification and dose delivery imaging during radiation therapy. The present study is dedicated to the analysis of the beam quality in terms of the effective source size, as well as radial, angular and energy spread of the 11C ion beam produced by projectile fragmentation of a primary point monodirectional and monoenergetic 12C ion beam in a dedicated range shifter of different materials. This study was performed combining analytical methods describing the transport of particles in matter and the Monte Carlo code SHIELD-HIT+. A high brilliance and production yield of 11C fragments with a small effective source size and emittance is best achieved with a decelerator made of two media: a first liquid hydrogen section of about 20 cm followed by a hydrogen rich section of variable length. The calculated intensity of the produced 11C ion beam ranges from about 5% to 8% of the primary 12C beam intensity depending on the exit energy and the acceptance of the beam transport system. The angular spread is lower than 1 degree for all the materials studied, but the brilliance of the beam is the highest with the proposed mixed decelerator.

  11. A large animal model for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Gavin, P.R.; Kraft, S.L.; DeHaan, C.E.; Moore, M.P.; Griebenow, M.L.

    1992-01-01

    An epithermal neutron beam is needed to treat relatively deep seated tumors. The scattering characteristics of neutrons in this energy range dictate that in vivo experiments be conducted in a large animal to prevent unacceptable total body irradiation. The canine species has proven an excellent model to evaluate the various problems of boron neutron capture utilizing an epithermal neutron beam. This paper discusses three major components of the authors study: (1) the pharmacokinetics of borocaptate sodium (NA 2 B 12 H 11 SH or BSH) in dogs with spontaneously occurring brain tumors, (2) the radiation tolerance of normal tissues in the dog using an epithermal beam alone and in combination with borocaptate sodium, and (3) initial treatment of dogs with spontaneously occurring brain tumors utilizing borocaptate sodium and an epithermal neutron beam

  12. SU-F-BRE-11: Neutron Measurements Around the Varian TrueBeam Linac

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, R; Seuntjens, J; Kildea, J [McGill University, Montreal, QC (Canada); Liang, L; DeBlois, F [Jewish General Hospital, Montreal, QC (Canada); Evans, M [Montreal General Hospital, Montreal, QC (Canada); Licea, A [Canadian Nuclear Safety Comission, Ottawa, Ontario (Canada); Dubeau, J; Witharana, S [Detec, Gatineau, QC (Canada)

    2014-06-15

    Purpose: With the emergence of flattening filter free (FFF) photon beams, several authors have noted many advantages to their use. One such advantage is the decrease in neutron production by photonuclear reactions in the linac head. In the present work we investigate the reduction in neutrons from a Varian TrueBeam linac using the Nested Neutron Spectrometer (NNS, Detec). The neutron spectrum, total fluence and source strength were measured and compared for 10 MV with and without flattening filter and the effect of moderation by the room and maze was studied for the 15 MV beam. Methods: The NNS, similar to traditional Bonner sphere detectors but operated in current mode, was used to measure the neutron fluence and spectrum. The NNS was validated for use in high dose rate environments using Monte Carlo simulations and calibrated at NIST and NRC Canada. Measurements were performed at several positions within the treatment room and maze with the linac jaws closed to maximize neutron production. Results: The measurements showed a total fluence reduction between 35-40% in the room and maze when the flattening filter was removed. The neutron source strength Qn was calculated from in-room fluence measurements and was found to be 0.042 × 10{sup 2} n/Gy, 0.026 × 10{sup 2} n/Gy and 0.59 × 101{sup 2} n/Gy for the 10 MV, the 10 MV FFF and 15 MV beams, respectively. We measured ambient equivalent doses of 11 mSv/hr, 7 mSv/hr and 218 mSv/hr for the 10 MV, 10 MV FFF and 15 MV by the head. Conclusion: Our measurements revealed a decrease in total fluence, neutron source strength and equivalent dose of approximately 35-40% across the treatment room for the FFF compared to FF modes. This demonstrates, as expected, that the flattening filter is a major component of the neutron production for the TrueBeam. The authors greatly acknowledge support form the Canadian Nuclear Commission and the Natural Sciences and Engineering Research Council of Canada through the CREATE program. Co

  13. Boron dose determination for BNCT using Fricke and EPR dosimetry

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ciesielski, B.

    1995-01-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to α and 7 Li charged particles resulting from a neutron capture by 10 B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient's dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here

  14. Si(001):B gas-source molecular-beam epitaxy: Boron surface segregation and its effect on film growth kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.; Glass, G.; Spila, T.; Taylor, N.; Park, S.Y.; Abelson, J.R.; Greene, J.E. [Department of Materials Science, Coordinated Science Laboratory, and Materials Research Laboratory, University of Illinois, 1101 West Springfield, Urbana, Illinois 61801 (United States)

    1997-09-01

    B-doped Si(001) films, with concentrations C{sub B} up to 1.7{times}10{sup 22}cm{sup {minus}3}, were grown by gas-source molecular-beam epitaxy from Si{sub 2}H{sub 6} and B{sub 2}H{sub 6} at T{sub s}=500{endash}800{degree}C. D{sub 2} temperature-programed desorption (TPD) spectra were then used to determine B coverages {theta}{sub B} as a function of C{sub B} and T{sub s}. In these measurements, as-deposited films were flash heated to desorb surface hydrogen, cooled, and exposed to atomic deuterium until saturation coverage. Strong B surface segregation was observed with surface-to-bulk B concentration ratios ranging up to 1200. TPD spectra exhibited {beta}{sub 2} and {beta}{sub 1} peaks associated with dideuteride and monodeuteride desorption as well as lower-temperature B-induced peaks {beta}{sub 2}{sup {asterisk}} and {beta}{sub 1}{sup {asterisk}}. Increasing {theta}{sub B} increased the area under {beta}{sub 2}{sup {asterisk}} and {beta}{sub 1}{sup {asterisk}} at the expense of {beta}{sub 2} and {beta}{sub 1} and decreased the total D coverage {theta}{sub D}. The TPD results were used to determine the B segregation enthalpy, {minus}0.53eV, and to explain and model the effects of high B coverages on Si(001) growth kinetics. Film deposition rates R increase by {ge}50{percent} with increasing C{sub B}{tilde {gt}}1{times}10{sup 19}cm{sup {minus}3} at T{sub s}{le}550{degree}C, due primarily to increased H desorption rates from B-backbonded Si adatoms, and decrease by corresponding amounts at T{sub s}{ge}600{degree}C due to decreased adsorption site densities. At T{sub s}{ge}700{degree}C, high B coverages also induce {l_brace}113{r_brace} facetting. {copyright} {ital 1997 American Institute of Physics.}

  15. Effect of boron implantation on the electrical and photoelectrical properties of e-beam deposited Ag-In-Se thin films

    International Nuclear Information System (INIS)

    Colakoglu, T; Parlak, M; Kulakci, M; Turan, R

    2008-01-01

    In this study, e-beam evaporated Ag-In-Se (AIS) thin films were doped by the implantation of boron (B) ions at 75 keV with a dose of 1 x 10 15 ions cm -2 and a subsequent annealing process was applied to the doped AIS films at different temperatures under nitrogen atmosphere. The effects of implantation and annealing on the electrical and photoelectrical properties of AIS thin films were investigated through temperature dependent conductivity, spectral photoresponse and photoconductivity measurements under different illumination intensities. The electrical conductivity measurements showed that the room temperature conductivity values were determined as 2.4 x 10 -7 (Ω cm) -1 , 1.7 x 10 -6 (Ω cm) -1 and 8.9 x 10 -5 (Ω cm) -1 for B-doped films (B0), B-doped and annealed films at 200 deg. C (B2) and at 300 deg. C (B3), respectively. It was observed that the electrical conductivity improved as the annealing temperature increased up to 400 deg. C at which the AIS thin films showed degenerate semiconductor behaviour. The spectral distribution of the photoresponse curves indicated three local maxima located at 1.63, 1.79 and 2.01 eV for B0 type films, 1.65, 1.87 and 2.07 eV for B2 type films and 1.73, 2.02 and 2.32 eV for B3 type films at room temperature. These three different energy values were ascribed to the splitting of the valence band due to spin-orbit interaction and crystalline lattice field effects. The first energy values of each set were determined to be energy band gaps of the AIS thin films. The photoconductivity measurements as a function of temperature and illumination intensity were performed on the B-doped AIS thin films in order to determine the nature of recombination processes in the films. The photoconductivity values were found to be thermally quenched for all types of thin films and the variation of photocurrent as a function of illumination intensity showed that the dependence of photocurrent on the intensity was supralinear. The two

  16. Designing an Epithermal Neutron Beam for Boron Neutron Capture Therapy for the Fusion Reactions 2H(d,n)3He and 3H(d,n)4He1

    International Nuclear Information System (INIS)

    Verbeke, J.M.; Costes, S.V.; Bleuel, D.; Vujic, J.; Leung, K.N.

    1998-01-01

    A beam shaping assembly has been designed to moderate high energy neutrons from the fusion reactions 2 H(d,N) 3 He and 3 H(d,n) 4 He for use fin boron neutron capture therapy. The low neutron yield of the 2 H(d,n) 3 He reaction led to unacceptably long treatment times. However, a 160 mA deuteron beam of energy 400 keV led to a treatment time of 120 minutes with the reaction 3 H(d,n) 4 He. Equivalent doses of 9.6 Gy-Eq and 21.9 Gy-Eq to the skin and to a 8 cm deep tumor respectively have been computed

  17. Developments in boron magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Schweizer, M.

    1995-01-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain

  18. Medical aspects of boron-slow neutron capture therapy

    International Nuclear Information System (INIS)

    Sweet, W.H.

    1986-01-01

    Earlier radiations of patients with cerebral tumors disclosed the need: (1) to find a carrier of the boron compound which would leave the blood and concentrate in the tumor, (2) to use a more penetrating neutron beam, and (3) to develop a much faster method for assaying boron in blood and tissue. To some extent number1 has been accomplished in the form of Na 2 B 12 H 11 SH, number2 has yet to be achieved, and number3 has been solved by the measurement of the 478-keV gamma ray when the 10 B atom disintegrates following its capture of a slow neutron. The hitherto unreported data in this paper describe through the courtesy of Professor Hiroshi Hatanaka his studies on the pharmacokinetics and quality control of Na 2 B 12 H 11 SH based on 96 boron infusions in 86 patients. Simultaneous blood and tumor data are plotted here for 30 patients with glioblastomas (Grade III-IV gliomas), illustrating remarkable variability. Detailed autopsy findings on 18 patients with BNCT showed radiation injury in only 1. Clinical results in 12 of the most favorably situated glioblastomas reveal that 5 are still alive with a 5-year survival rate of 58% and the excellent Karnofsky performance rating of 87%. For the first time evidence is presented that slow-growing astrocytomas may benefit from BNCT. 10 references, 8 figures, 5 tables

  19. Large animal normal tissue tolerance with boron neutron capture.

    Science.gov (United States)

    Gavin, P R; Kraft, S L; DeHaan, C E; Swartz, C D; Griebenow, M L

    1994-03-30

    Normal tissue tolerance of boron neutron capture irradiation using borocaptate sodium (NA2B12H11SH) in an epithermal neutron beam was studied. Large retriever-type dogs were used and the irradiations were performed by single dose, 5 x 10 dorsal portal. Fourteen dogs were irradiated with the epithermal neutron beam alone and 35 dogs were irradiated following intravenous administration of borocaptate sodium. Total body irradiation effect could be seen from the decreased leukocytes and platelets following irradiation. Most values returned to normal within 40 days postirradiation. Severe dermal necrosis occurred in animals given 15 Gy epithermal neutrons alone and in animals irradiated to a total peak physical dose greater than 64 Gy in animals following borocaptate sodium infusion. Lethal brain necrosis was seen in animals receiving between 27 and 39 Gy. Lethal brain necrosis occurred at 22-36 weeks postirradiation. A total peak physical dose of approximately 27 Gy and blood-boron concentrations of 25-50 ppm resulted in abnormal magnetic resonance imaging results in 6 months postexamination. Seven of eight of these animals remained normal and the lesions were not detected at the 12-month postirradiation examination. The bimodal therapy presents a complex challenge in attempting to achieve dose response assays. The resultant total radiation dose is a composite of low and high LET components. The short track length of the boron fission fragments and the geometric effect of the vessels causes much of the intravascular dose to miss the presumed critical target of the endothelial cells. The results indicate a large dose-sparing effect from the boron capture reactions within the blood.

  20. Large animal normal tissue tolerance with boron neutron capture

    International Nuclear Information System (INIS)

    Gavin, P.R.; Swartz, C.D.; Kraft, S.L.; Briebenow, M.L.; DeHaan, C.E.

    1994-01-01

    Normal tissue tolerance of boron neutron capture irradiation using borocaptate sodium (NA 2 B 12 H 11 SH) in an epithermal neutron beam was studied. Large retriever-type dogs were used and the irradiations were performed by single dose, 5 x 10 dorsal portal. Fourteen dogs were irradiated with the epithermal neutron beam alone and 35 dogs were irradiated following intravenous administration of borocaptate sodium. Total body irradiation effect could be seen from the decreased leukocytes and platelets following irradiation. Most values returned to normal within 40 days postirradiation. Severe dermal necrosis occurred in animals given 15 Gy epithermal neutrons alone and in animals irradiated to a total peak physical dose greater than 64 Gy in animals following borocaptate sodium infusion. Lethal brain necrosis was seen in animals receiving between 27 and 39 Gy. Lethal brain necrosis occurred at 22-36 weeks postirradiation. A total peak physical dose of approximately 27 Gy and blood-boron concentrations of 25-50 ppm resulted in abnormal magnetic resonance imaging results in 6 months postexamination. Seven of eight of these animals remained normal and the lesions were not detected at the 12-month postirradiation examination. The bimodal therapy presents a complex challenge in attempting to achieve dose response assays. The resultant total radiation dose is a composite of low and high LET components. The short track length of the boron fission fragments and the geometric effect of the vessels causes much of the intravascular dose to miss the presumed critical target of the endothelial cells. The results indicate a large dose-sparing effect from the boron capture reactions within the blood. 23 refs., 6 figs., 2 tabs

  1. SU-F-J-11: Radiobiologically Optimized Patient Localization During Prostate External Beam Localization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y; Gardner, S; Liu, C; Zhao, B; Wen, N; Brown, S; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: To present a novel positioning strategy which optimizes radiation delivery with radiobiological response knowledge, and to evaluate its application during prostate external beam radiotherapy. Methods: Ten patients with low or intermediate risk prostate cancer were evaluated retrospectively in this IRB-approved study. For each patient, a VMAT plan was generated on the planning CT (PCT) to deliver 78 Gy in 39 fractions with PTV = prostate + 7 mm margin, except for 5mm in the posterior direction. Five representative pretreatment CBCT images were selected for each patient, and prostate, rectum, and bladder were delineated on all CBCT images. Each CBCT was auto-registered to the corresponding PCT. Starting from this auto-matched position (AM-position), a search for optimal treatment position was performed utilizing a score function based on radiobiological and dosimetric indices (D98-DTV, NTCP-rectum, and NTCP-bladder) for the daily target volume (DTV), rectum, and bladder. DTV was defined as prostate + 4 mm margin to account for intra-fraction motion as well as contouring variability on CBCT. We termed the optimal treatment position the radiobiologically optimized couch shift position (ROCS-position). Results: The indices, averaged over the 10 patients’ treatment plans, were (mean±SD): 77.7±0.2 Gy (D98-PTV), 12.3±2.7% (NTCP-rectum), and 53.2±11.2% (NTCP-bladder). The corresponding values calculated on all 50 CBCT images at the AM-positions were 72.9±11.3 Gy (D98-DTV), 15.8±6.4% (NTCP-rectum), and 53.0±21.1% (NTCP-bladder), respectively. In comparison, calculated on CBCT at the ROCS-positions, the indices were 77.0±2.1 Gy (D98-DTV), 12.1±5.7% (NTCP-rectum), and 60.7±16.4% (NTCP-bladder). Compared to autoregistration, ROCS-optimization recovered dose coverage to target volume and lowered the risk to rectum. Moreover, NTCPrectum for one patient remained high after ROCS-optimization and therefore could potentially benefit from adaptive planning

  2. Structure and distribution of cross-links in boron-modified phenol-formaldehyde resins designed for soft magnetic composites: a multiple-quantum 11B-11B MAS NMR correlation spectroscopy study

    Czech Academy of Sciences Publication Activity Database

    Kobera, Libor; Czernek, Jiří; Strečková, M.; Urbanová, Martina; Abbrent, Sabina; Brus, Jiří

    2015-01-01

    Roč. 48, č. 14 (2015), s. 4874-4881 ISSN 0024-9297 R&D Projects: GA MŠk(CZ) LD14010 Grant - others:European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:61389013 Keywords : phenol-formaldehyde polymers * boron crosslinks * soft magnetic composites Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.554, year: 2015

  3. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  4. Boron steel. I Part. Preparation

    International Nuclear Information System (INIS)

    Jaraiz Franco, E.; Esteban Hernandez, J. A.

    1960-01-01

    With the advent of the first nuclear reactors arise the need for control rods and shielding duties for some types of radiations. One of the materials used for this purpose has been the high boron steel. This paper describes the melting and casting procedures employed for the production, at laboratory scale, of steels with Boron content ranging from 1 to 4 per cent, as well as the metallographic and X-Ray techniques used for the identification of the present phases. The electrolytic technique employed for the isolation of the Fe 2 B phase and its subsequent X-Ray identification has proved to be satisfactory. (Author) 11 refs

  5. Imaging with 11B of intact tissues using magnetic resonance gradient echoes

    International Nuclear Information System (INIS)

    Richards, T.L.; Bradshaw, K.M.; Freeman, D.M.; Sotak, C.H.; Gavin, P.R.

    1988-01-01

    Boron neutron capture therapy (BNCT) is a proposed method of treating Glioblastoma Multiforme. BNCT is based on 10 B intake by the tumor and in-situ activation by neutron beam. It is estimated that to have successful BNCT, a 10 B delivery mechanism must deposit 20 ppM or more of 10 B within the tumor. To study and understand this delivery mechanism, 11 B can be used instead of 10 B. The pharmacokinetics of any compound using 11 B will be the same as 10 B. The advantage of using 11 B over 10 B is its greater nuclear magnetic resonance sensitivity for both spectroscopy and imaging. The use of 11 B imaging to detect and quantitate boron uptake non-invasively in animal tumor modes will facilitate continued work with 10 B. Preliminary work has shown that 11 B nuclear magnetic resonance (NMR) spectroscopy (nonlocalized) can detect 11 B in intact mouse tissues and the area under the boron peak correlates with the total boron content (correlation coefficient of 0.997). Once the ability to non-invasively measure the boron compound is established using magnetic resonance imaging (MRI) combined with spectroscopy, we will be able to address the following questions: (1) what is the optimum method of boron administration for maximum tumor selective uptake, (2) at what time is peak tumor boron concentration after infusion, and (3) what is the dose distribution in the head (based on neutron radiation and boron concentration)? The purpose of this study was to test the feasibility of imaging 11 B in intact tissues using magnetic resonance

  6. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    Mohapatra, K.K.; Bose, Arun

    2014-01-01

    10 B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10 B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH) 4 - ) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10 B and 11 B

  7. Boron-isotope fractionation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Marentes, E [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada); Vanderpool, R A [USDA/ARS Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota (United States); Shelp, B J [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada)

    1997-10-15

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, {sup 11}B and {sup 10}B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in {sup 11}B relative to the nutrient solution, and the leaves were enriched in {sup 10}B and the stem in {sup 11}B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  8. Boron-isotope fractionation in plants

    International Nuclear Information System (INIS)

    Marentes, E.; Vanderpool, R.A.; Shelp, B.J.

    1997-01-01

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, 11 B and 10 B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in 11 B relative to the nutrient solution, and the leaves were enriched in 10 B and the stem in 11 B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  9. One-nucleon transfer reactions induced by secondary beam of 11Be: study of the nuclear structure of the exotic nuclei 11Be and 10Li

    International Nuclear Information System (INIS)

    Pita, S.

    2000-09-01

    The structure of the neutron rich light nuclei 11 Be and 10 Li has been investigated by means of one nucleon transfer reactions. The experiments have been carried out at GANIL in inverse kinematics using 11 Be secondary beams. The 11 Be(p,d) 10 Be reaction bas been studied at 35.3 MeV/u. The 10 Be ejectiles were analyzed by the spectrometer SPEG, and coincident deuterons were detected in the position sensitive silicon detector CHARISSA. Transfer cross sections to 0 + 1 and 2 + 1 , states in 10 Be were measured up to θ CM = 16 deg. and compared to DWBA and CRC predictions. The effects of neutron-cure couplings on reaction form factors have been studied by solving coupled equations in the framework of a vibrational model. It is shown that the rate of core excitation 10 Be 2+ in the 11 Be gs wave function is overestimated by a standard analysis with form factors given by the usual Separation Energy prescription. The former model predicts a rate of core excitation of 16% and leads to theoretical cross sections which are in good agreement with the experimental data. The aim of the 11 Be(d, 3 He) 10 Li experiment, realized at 37 MeV/u, was to measure the distribution of the 2s neutron strength in the unbound nucleus 10 Li. The energy spectrum was deduced from the 3 He energy and angle measured by the silicon strip detector array MUST. An asymmetric peak is clearly observed near the threshold, with a maximum at -S n = 130 keV. This constitutes a direct proof of the inversion of 2s and 1p 1/2 shells in 10 Li, which was until now a controversial question in spite of many experimental efforts. On the other band the analysis of the 11 Be(d,t) 10 Be reaction studied in the same experiment confirms the results obtained in the 11 Be(p,d) 10 Be reaction concerning the 11 Be gs structure. This work shows the interest and feasibility of studies of the shell properties of exotic nuclei using transfer reactions induced by radioactive beams and constitutes the beginning of a program

  10. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. © 2013 Elsevier Ltd. All rights reserved.

  11. Field performance of timber bridges. 11, Spearfish Creek stress-laminated box-beam bridge

    Science.gov (United States)

    J. P. Wacker; M. A. Ritter; K. Stanfill-McMillan

    The Spearfish Creek bridge was constructed in 1992 in Spearfish, South Dakota. It is a single-span, stress-laminated, box-beam superstructure. Performance of the bridge is being monitored for 5 years, beginning at installation. This report summarizes results for the first 3-1/2 years of monitoring and includes information on the design, construction, and field...

  12. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    Science.gov (United States)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  13. Aspects of the chemistry of boron

    International Nuclear Information System (INIS)

    Moellinger, H.

    1976-01-01

    Crystal phases of elementary boron are reviewed as well as boron-sulphur, boron-selenum, boron-tellurium, and boron-nitrogen compounds, carboranes, and boron-carbohydrate complexes. A boron cadastre of rivers and lakes serves to illustrate the role of boron in environmental protection. Technically relevant boron compounds and their uses are mentioned. (orig.) 891 HK/orig. 892 MB [de

  14. Isotope separation of relativistic projectile fragments as well as cross section measurements on 8,9,11Li secondary beams

    International Nuclear Information System (INIS)

    Blank, B.

    1991-06-01

    In the framework of this thesis the method of the 'momentum-loss achromate' was for the first time tested at relativistic energies. This experiment is presented in chapter 2 of the thesis. In a second experiment the method was then used, in order to make secondary beams of 8,9,11 Li available. With these secondary beams cross section measurements were performed, from which beside information on the nuclear radii of these nuclei also further information on the internal structure of the lithium isotopes can be derived. This experiment is described in chapter 3 of the thesis. In the framework of these two experiments for the applied heavy ions energy-loss measurements were performed. The results of these measurements are presented in chapter 4. (orig.) [de

  15. 11

    African Journals Online (AJOL)

    a routine working week. Special ... day of the working week and retested after finishing work on ... 4. 3. Med. 11,8. 12. -ye. 0. 5. 5. Med. 27,3. 107. -ye. 2. 6. 6. Med. 17,1. 80. -Ye. 0. 7. 3 .... present hours after first exposure (e.g. at night), it is also.

  16. Laser-induced photochemical enrichment of boron isotopes

    International Nuclear Information System (INIS)

    Freund, S.M.; Ritter, J.J.

    1976-01-01

    A boron trichloride starting material containing both boron-10 isotopes and boron-11 isotopes is selectively enriched in one or the other of these isotopes by a laser-induced photochemical method involving the reaction of laser-excited boron trichloride with either H 2 S or D 2 S. The method is carried out by subjecting a low pressure gaseous mixture of boron trichloride starting material and the sulfide to infrared radiation from a carbon dioxide TE laser. The wave length of the radiation is selected so as to selectively excite one or the other of boron-10 BCl 3 molecules or boron-11 BCl 3 molecules, thereby making them preferentially more reactive with the sulfide. The laser-induced reaction produces both a boron-containing solid phase reaction product and a gaseous phase containing mostly unreacted BCl 3 and small amounts of sulfhydroboranes. Pure boron trichloride selectively enriched in one of the isotopes is recovered as the primary product of the method from the gaseous phase by a multi-step recovery procedure. Pure boron trichloride enriched in the other isotope is recovered as a secondary product of the method by the subsequent chlorination of the solid phase reaction product followed by separation of BCl 3 from the mixture of gaseous products resulting from the chlorination

  17. Nuclear reactions with 11C and 14O radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Fanqing [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F

  18. The study of high-boron steel and high-boron cast iron used for shield

    International Nuclear Information System (INIS)

    Pan Xuerong; Lu Jixin; Wen Yaozeng; Wang Zhaishu; Cheng Jiantin; Cheng Wen; Shun Danqi; Yu Jinmu

    1996-12-01

    The smelting, forging, heat-treatment technology and the mechanical properties of three kinds of high-boron steels (type 1: 0.5% boron; type 2: 0.5% boron and 4% or 2% nickel; type 3: 0.5% boron, 0.5% nickel and 0.5% molybdenum) were studied. The test results show that the technology for smelting, forging and heat-treatment (1050 degree C/0.5 h water cooled + 810 degree C/1 h oil cooled) in laboratory is feasible. Being sensitive to notch, the impact toughness of high-boron steel type 1 is not steady and can not meet the technology requirements on mechanical properties. The mechanical properties of both high-boron steel type 2 and type 3 can meet the technological requirements. The smelting technology of high-boron casting iron containing 0.5% boron was researched. The tests show that this casting iron can be smelted in laboratory and its properties can basically satisfy the technology requirements. (10 refs., 6 figs., 11 tab.)

  19. Quantitative neutron capture radiography for studying the biodistribution of tumor-seeking boron-containing compounds

    International Nuclear Information System (INIS)

    Gabel, D.; Holstein, H.; Larsson, B.; Gille, L.; Ericson, G.; Sacker, D.; Som, P.; Fairchild, R.G.

    1987-01-01

    Biodistribution of two compounds presently considered for use in neutron capture therapy has been studied in mice carrying a transplantable Harding-Passey melanoma. A method is described by which quantitative assessment can be made of the boron distribution in whole-body sections of such animals. An alpha-particle-sensitive film is placed in close contact with a freeze-dried section of an animal and exposed to neutrons. The tracks visible after etching are analyzed optoelectronically in fields of 0.6 X 0.6 mm2 and compared to standards of boron homogeneously distributed in liver homogenates. The dynamic range of this method is about two orders of magnitude in concentration, with a lower detection limit of 0.1 to 0.01 ppm 10 B, depending on the rate of induction of spurious tracks by fast neutrons present in the neutron beam chosen. In a transplantable Harding-Passey melanoma in mice, it was found that the sulfhydryl boron hydride Na2B12H11SH presently used for therapy of glioblastoma clears blood, muscle, and brain very rapidly. Its accumulation in tumors was persistent for more than three days. A higher tumor accumulation was observed with its disulfide, which has been suggested for neutron capture therapy. For both compounds, a marked heterogeneity of boron distribution within one tumor was found

  20. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    Science.gov (United States)

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  1. P-type doping of semipolar GaN(11 anti 22) by plasma-assisted molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Das, A.; Lahourcade, L. [Equipe Mixte CEA-CNRS, Nanophysique et Semiconducteurs, CEA-Grenoble, INAC/SP2M, Grenoble (France); Pernot, J. [Institut Neel, CNRS et Universite Joseph Fourier, Grenoble (France); Valdueza-Felip, S. [Equipe Mixte CEA-CNRS, Nanophysique et Semiconducteurs, CEA-Grenoble, INAC/SP2M, Grenoble (France); Dept. Electronica, Escuela Politecnica, Universidad de Alcala, Alcala de Henares, Madrid (Spain); Ruterana, P. [CIMAP, UMR6252, CNRS-ENSICAEN-CEA-UCBN, Caen (France); Laufer, A.; Eickhoff, M. [I. Physikalisches Institut, Justus-Liebig-Universitaet Giessen (Germany); Monroy, E.

    2010-07-15

    We report the effect of Mg doping on the growth kinetics of semipolar GaN(11-22) synthesized by plasma-assisted molecular-beam epitaxy. Mg tends to segregate on the surface, inhibiting the formation of the self-regulated Ga film which is used as a surfactant for the growth of undoped and Si-doped GaN(11-22). As a result, the growth widow is reduced for Mg doped layers, and we observe a certain deterioration of the surface morphology. In spite of this difficulties, homogenous Mg incorporation is achieved and layers display p -type conductivity for Mg atomic concentration higher than 7 x 10{sup 18} cm{sup -3}. Microscopy studies show no evidence of the pyramidal defects or polarity inversion domains found in Mg-doped GaN(0001). (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Proton linacs for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1993-08-01

    Recent advances in the ability to deliver boron-containing drugs to brain tumors have generated interest in ∼4 MeV linacs as sources of epithermal neutrons for radiation therapy. In addition, fast neutron therapy facilities have been studying methods to moderate their beams to take advantage of the high cross section for epithermal neutrons on boron-10. This paper describes the technical issues involved in each approach and presents the motivation for undertaking such studies using the Fermilab linac. the problems which must be solved before therapy can begin are outlined. Status of preparatory work and results of preliminary measurements are presented

  3. Titanium reinforced boron-polyimide composite

    Science.gov (United States)

    Clark, G. A.; Clayton, K. I.

    1969-01-01

    Processing techniques for boron polyimide prepreg were developed whereby composites could be molded under vacuum bag pressure only. A post-cure cycle was developed which resulted in no loss in room temperature mechanical properties of the composite at any time during up to 16 hours at 650 F. A design utilizing laminated titanium foil was developed to achieve a smooth transition of load from the titanium attachment points into the boron-reinforced body of the structure. The box beam test article was subjected to combined bending and torsional loads while exposed to 650 F. Loads were applied incrementally until failure occurred at 83% design limit load.

  4. Analytical dosimetry for spontaneous tumor dogs receiving boron neutron capture therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Atkinson, C.A.; Gavin, P.R.

    1992-01-01

    The dog irradiation project of the Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program is administered by Washington State University (WSU) with analytical and physical dosimetry provided by the Idaho National Engineering Laboratory (INEL). One subtask of this project includes BNCT safety studies for dogs with spontaneously-occurring brain tumors. The boron compound (Na 2 B 12 H 11 SH or BSH) was administered and single irradiations performed using the epithermal-neutron beam at the Brookhaven Medical Research Reactor (BMRR). The main goal of the study was not to provide therapy, but to determine tumorcidal effect while administering a subtolerance dose to healthy tissue. Irradiation times were based on delivery of 19 Gy peak physical dose to the blood

  5. ISOBORDAT: An Online Data Base on Boron Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Pennisi, M.; Adorni-Braccesi, A.; Andreani, D.; Gori, L.; Gonfiantini, R. [Istituto di Geoscienze e Georisorse, CNR, Pisa (Italy); Sciuto, P. F. [Servizio Geologico, Sismico e dei Suoli, D.G. Ambiente e Difesa del Suolo e della Costa, Regione Emilia Romagna, Bologna (Italy)

    2013-07-15

    From 1986, boron isotope data in natural substances increased sharply in scientific publications. Analytical difficulties derived from complex geochemical matrices have been faced and interlaboratory calibrations reported in the boron literature. Boron isotopes are nowdays applied to investigate boron origin and migration in natural waters, sources of boron contamination, water-rock interactions and also contribute to water resource management. This is especially important in those areas where boron content exceeds the local regulations for drinking water supply and boron sources need to be identified. ISOBORDAT, an interactive database on boron isotope composition and content in natural waters is presented to the wider community of boron isotope users. The database's structure, scope and applications are reported, along with a discussion on {delta}{sup 11}B values obtained in Italian waters. In the database boron data are structured in the following categories: rainwater, rivers, lakes, groundwater and potential contaminants. New categories (medium and high enthalpy fluids from volcanic and geothermal areas) are anticipated. ISOBORDAT aims to be as interactive as possible and will be developed taking into account information and suggestions received. The database is continually undergoing revision to keep pace with continuous data publication. Indications of data that are missing at present are greatly appreciated. (author)

  6. Development of cancer therapy facility of HANARO and medical research in BNCT; development of the technique for boron concentration analysis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Dong; Byun, Soo Hyun; Sun, Gwang Min; Kim, Suk Kwon; Kim, In Jung; Park, Chang Su [Seoul National University, Seoul (Korea)

    2002-03-01

    Objective and Necessity of the Project- Development of a boron concentration analysis facility used for BNCT. - Development of the technique for boron concentration analysis. Contents and Scopes of the Project - Construction of the boron concentration analysis facility based on PGAA. Estimation of the neutron beam characteristics. -Establishment of the technique for the boron concentration analysis. - Estimation of the reliability for the boron analysis. Results of the Project -Installation of the boron concentration analysis facility at Hanaro. - Neutron beam characteristics are the sample position (neutron flux : 7.9 x 10{sup 7} n/cm{sup 2}s, Cd-ratio : 266) Technique for the boron concentration analysis. - Boron detection sensitivity and limit (detection sensitivity : 2, 131 cps/mg-B, detection limit : 67 ng for 10,000 sec). 63 refs., 37 figs., 13 tabs. (Author)

  7. Plasma-assisted molecular beam epitaxy of (11-22)-oriented 3-nitrides

    International Nuclear Information System (INIS)

    Lahourcade, L.

    2009-10-01

    This work reports on the molecular-beam epitaxial growth of (1122)-oriented semi-polar nitride semiconductors using m-sapphire substrates. The (1122) crystallographic orientation is predefined by AlN deposition on m-sapphire under N excess. On top of this AlN buffer layer, undoped or Si-doped two-dimensional GaN(1122) films are formed under Ga-rich conditions, with a stabilized Ga-excess ad-layer of about 1.05±0.10 ML. In contrast, Mg tends to segregate on the GaN surface, inhibiting the self-regulated Ga excess film. Nevertheless, uniform Mg incorporation can be obtained, and p-type conductivity was achieved. GaN/AlN quantum wells are synthesized by deposition of the binary compounds under the above-described conditions. In the case of GaN/AlN quantum dots, the three-dimensional transition is induced by a growth interruption under vacuum. The reduction of the internal electric field in GaN/AlN nano-structures is confirmed by the blue shift of the photoluminescence spectrum and by the short photoluminescence decay times measured at low temperature. These results are consistent with theoretical calculations of the electronic structure. (author)

  8. In-beam test of the Boron-10 Multi-Grid neutron detector at the IN6 time-of-flight spectrometer at the ILL

    Energy Technology Data Exchange (ETDEWEB)

    Birch, J; Hultman, L; Höglund, C [Linköping University, Thin Film Physics Division, IFM, SE-581 83 Linköping (Sweden); Buffet, J-C; Clergeau, J-F; Correa, J; Van Esch, P; Ferraton, M; Guerard, B; Halbwachs, J; Khaplanov, A; Koza, M; Piscitelli, F; Zbiri, M [Institute Laue Langevin, Rue Jules Horowitz, FR-38000 Grenoble (France); Hall-Wilton, R [European Spallation Source ESS AB, P.O Box 176, SE-221 00 Lund (Sweden)

    2014-07-24

    A neutron detector concept based on solid layers of boron carbide enriched in {sup 10}B has been in development for the last few years as an alternative for {sup 3}He by collaboration between the ILL, ESS and Linköping University. This Multi-Grid detector uses layers of aluminum substrates coated with {sup 10}B{sub 4}C on both sides that are traversed by the incoming neutrons. Detection is achieved using a gas counter readout principle. By segmenting the substrate and using multiple anode wires, the detector is made inherently position sensitive. This development is aimed primarily at neutron scattering instruments with large detector areas, such as time-of-flight chopper spectrometers. The most recent prototype has been built to be interchangeable with the {sup 3}He detectors of IN6 at ILL. The {sup 10}B detector has an active area of 32 x 48cm{sup 2}. It was installed at the IN6 instrument and operated for several weeks, collecting data in parallel with the regularly scheduled experiments, thus providing the first side-by-side comparison with the conventional {sup 3}He detectors. Results include an efficiency comparison, assessment of the in-detector scattering contribution, sensitivity to gamma-rays and the signal-to-noise ratio in time-of-flight spectra. The good expected performance has been confirmed with the exception of an unexpected background count rate. This has been identified as natural alpha activity in aluminum. New convertor substrates are under study to eliminate this source of background.

  9. Nothing Boring About Boron

    Science.gov (United States)

    Pizzorno, Lara

    2015-01-01

    The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and as recent research suggests, possibly for the evolution of life on Earth. As the current article shows, boron has been proven to be an important trace mineral because it (1) is essential for the growth and maintenance of bone; (2) greatly improves wound healing; (3) beneficially impacts the body’s use of estrogen, testosterone, and vitamin D; (4) boosts magnesium absorption; (5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α); (6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase; (7) protects against pesticide-induced oxidative stress and heavy-metal toxicity; (8) improves the brains electrical activity, cognitive performance, and short-term memory for elders; (9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD+); (10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin’s lymphoma; and (11) may help ameliorate the adverse effects of traditional chemotherapeutic agents. In none of the numerous studies conducted to date, however, do boron’s beneficial effects appear at intakes > 3 mg/d. No estimated average requirements (EARs) or dietary reference intakes (DRIs) have been set for boron—only an upper intake level (UL) of 20 mg/d for individuals aged ≥ 18 y. The absence of studies showing harm in conjunction with the substantial number of articles showing benefits support the consideration of boron supplementation of 3 mg/d for any individual who is consuming a diet lacking in fruits and vegetables or who is at risk for or has osteopenia; osteoporosis

  10. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Camillo, M.A.P.; Tomac Junior, U.

    1990-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na 2 10 B 12 H 11 SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author) [pt

  11. A colorimetric determination of boron in biological sample for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Camilo, M.A.P.; Tomac Junior, U.

    1989-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of gliomas and glioblastomas grade III and IV than other therapies. During the treatment of levels of Na 2 10 B 12 H 11 S H must be known in several compartments of the organism and with this purpose the method of colorimetric determination of boron using curcumin was established. This method is simples, reproducible and has adequate sensitivity for this control. (author). 7 refs, 3 figs, 1 tab

  12. Boronization in TEXTOR

    International Nuclear Information System (INIS)

    Winter, J.; Esser, H.G.; Koenen, L.; Reimer, H.; Seggern, J. v.; Schlueter, J.; Waelbroeck, F.; Wienhold, P.; Veprek, S.

    1989-01-01

    The liner and limiters of TEXTOR have been coated in situ with a boron containing carbon film using a RG discharge in a throughflow of 0.8 He + 0.1 B 2 H 6 + 0.1 CH 4 . The average film thickness was 30-50 nm, the ratio of boron and carbon in the layer was about 1:1 according to Auger Electron Spectroscopy. Subsequent tokamak discharges are characterized by a small fraction of radiated power ( eff lower than 1.2 are derived from conductivity measurements. The most prominent change in the impurity concentration compared to good conditions in a carbonized surrounding is measured for oxygen. The value OVI/anti n e of the OVI intensity normalized to the averaged plasma density anti n e decreases by more than a factor of four. The decrease in the oxygen content manifests itself also as a reduction of the CO and CO 2 partial pressures measured during and after the discharge with a sniffer probe. The carbon levels are reduced by a factor of about two as measured by the normalized intensity CII/anti n e of the CII line and via the ratio of the C fluxes and deuterium fluxed measured at the limiter (CI/D α ). The wall shows a pronounced sorption of hydrogen from the plasma, easing the density control and the establishment of low recycling conditions. The beneficial conditions did not show a significant deterioration during more than 200 discharges, including numerous shots at ICRH power levels >2 MW. (orig.)

  13. Determination of boron in ceramic reference materials by prompt gamma activation analysis using focused neutron guided beam of JRR-3M

    International Nuclear Information System (INIS)

    Miura, T.; Kuroiwa, T.; Chiba, K.; Matsue, H.

    2008-01-01

    Prompt gamma activation analysis using a focused thermal neutron guided beam at JAEA JRR-3M was applied to the determination of B in ceramic certified reference materials (BAM CRM S-003 Silicon Carbide Powder and NMIJ CRM 8004-a Silicon Nitride Powder). Cl and Si were used as internal standards to obtain linear calibration curves of B. The analytical result of B in BAM CRM S-003 was in good agreement with the certified value. The relative expanded measurement uncertainties (k = 2) were 4.8% for BAM CRM S-003 and 4.9% for NMIJ CRM 8004-a. (author)

  14. Design and construction of prompt-gamma spectroscopy facility applied to the boron determination

    International Nuclear Information System (INIS)

    Poblete, Victor; Henriquez, Carlos; Klein, Juan; Navarro, Gustavo

    1996-01-01

    A prompt-gamma spectroscopy facility was developed using the south tangential neutron beam of the RECH-1 research reactor for boron determination. The implementation of a thermal neutron beam was performed considering different aspects such as biological protection of working area and the beam collimation for a Ge detector, design and sample holder selection, standards and sample preparation. One ppm of Boron in different samples with counting-rate of 20 minutes and a good accuracy were determined. (author)

  15. Boron neutron capture therapy in cancer: past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Pisarev, Mario A.; Dagrosa, Maria Alejandra; Juvenal, Guilermo J. [National Atomic Energy Commission, Buenos Aires (Argentina). Div. of Nuclear Biochemistry; University of Buenos Aires (Argentina). School of Medicine. Dept. of Human Biochemistry

    2007-07-15

    Undifferentiated thyroid cancer (UTC) is a very aggressive tumor with no effective treatment, since it lacks iodine uptake and does not respond to radio or chemotherapy. The prognosis of these patients is bad, due to the rapid growth of the tumor and the early development of metastasis. Boron neutron capture therapy (BNCT) is based on the selective uptake of certain boron non-radioactive compounds by a tumor, and the subsequent irradiation of the area with an appropriate neutron beam. {sup 10}B is then activated to {sup 11}B, which will immediately decay releasing alpha particles and {sup 7}Li, of high linear energy transfer (LET) and limited reach. Clinical trials are being performed in patients with glioblastoma multiform and melanoma. We have explored its possible application to UTC. Our results demonstrated that a cell line of human UTC has a selective uptake of borophenylalanine (BPA) both in vitro and after transplantation to nude mice. Treatment of mice by BNCT led to a complete control of growth and cure of 100% of the animals. Moreover dogs with spontaneous UTC also have a selective uptake of BPA. At the present we are studying the biodistribution of BPA in patients with UTC before its application in humans. (author)

  16. Nuclear magnetic resonance spectroscopy of boron compounds containing two-, three- and four-coordinate boron

    International Nuclear Information System (INIS)

    Wrackmeyer, B.

    1988-01-01

    The influence of boron chemistry on various areas of research in inorganic, organic and theoretical chemistry is well documented. In fact, many models presently employed to describe chemical bonding in general can be traced to attempts to understand bonding in boranes. The confirmation of many theoretical predictions in boron chemistry relies on direct and indirect structural information provided by various physical methods that - fortunately - became available almost at the same rate as that with which the interest in boron compounds was growing. Clearly, there has always been a strong link between the interest in synthesis and the application of physical methods. As in many other areas of chemistry, developments in boron chemistry have been greatly accelerated by NMR. 11 B NMR has been at the center of interest from the beginning, accompanied by routine 1 H NMR measurements, and occasional 14 N, 19 F and 31 P NMR work. In the last 12 years, we have seen an increasing number of 13 C NMR studies of boron compounds. The availability of multinuclear facilities for PFT NMR spectrometers stimulates the measurement of the NMR spectra of other nuclei, like 29 Si, 119 Sn or other metals, in order to obtain additional information. This paper is intended to serve several purposes: to update previous reviews on 11 B NMR of boron compounds, to demonstrate some applications of multinuclear NMR to boron chemistry; to attempt to incorporate new NMR parameters into the known data set; and to summarize the experimental facts required for obtaining the maximum information from NMR studies on boron compounds

  17. Production of radioactive molecular beams for CERN-ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Seiffert, Christoph

    2015-06-15

    ISOLDE, the Isotope Separation On-Line facility, at CERN is a leading facility for the production of beams of exotic radioactive isotopes. Currently over 1000 different isotopes with half lives down to milliseconds can be extracted with beam intensities of up to 10{sup 11} ions per second. However, due to the reactive target environment not all isotopes are extractable in sufficient amounts. In this work the extraction of short lived carbon and boron isotopes is investigated. Therefore a variety of experimental and computational techniques have been used.

  18. Production of radioactive molecular beams for CERN-ISOLDE

    CERN Document Server

    AUTHOR|(SzGeCERN)703149; Kröll, Thorsten

    SOLDE, the Isotope Separation On-Line facility, at CERN is a leading facility for the production of beams of exotic radioactive isotopes. Currently over 1000 different isotopes with half lives down to milliseconds can be extracted with beam intensities of up to 10^11 ions per second. However, due to the reactive target environment not all isotopes are extractable in sufficient amounts. In this work the extraction of short lived carbon and boron isotopes is investigated. Therefore a variety of experimental and computanional techniques have been used.

  19. Neutron dosimetry in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na 2 B 12 H 11 SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with 10 B in boron containing cells through the 10 B(n,α) 7 Li reaction producing charged particles with a maximum range of approx. 10μm in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize 6 Li and 10 B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the 14 N(n,p) 14 C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils

  20. Impact of impregnation with boron compounds on combustion ...

    African Journals Online (AJOL)

    user

    2011-04-11

    Apr 11, 2011 ... 2Gazi University, Industrial Arts Education Faculty, Department of ... security. Key words: Combustion, flame retardance, coatings, boron compounds, varnish. ..... attack in wood deterioration and its prevention by preservative.

  1. Variations in the microstructure of nickel-based alloy coatings with the metalloids boron and silicon as a function of deposition parameters in a dual beam ion system

    International Nuclear Information System (INIS)

    Panitz, J.K.G.

    1986-01-01

    We have deposited coatings using a dual beam ion source system with two different targets as sputtering sources; (i) a predominantly amorphous Ni/sub 63.5/Cr/sub 12.3/Fe/sub 3.5/Si/sub 7.9/B/sub 12.8/ foil and (ii) a crystalline Ni/sub 55.3/Cr/sub 16.9/Si/sub 7.2/B/sub 21.6/ slab from a casting. Amorphous coatings were produced by the foil for all conditions studied. The coatings that were deposited from the slab target that were less than 400 nm in thickness which were deposited at rates from 8--50 nm/min appeared to be amorphous. The thicker (>400 nm) coatings and the extremely low deposition rate (2 nm/min) coatings produced by the slab comprised both partially polycrystalline and amorphous material. All of the coatings studied exhibited inferior wear and erosion resistance properties compared to iron-based amorphous metal coatings containing Ti, C, or N, which have been studied by other groups. However, the corrosion resistance to 4 N HCl is good, ranging from less than 0.01 to 0.22 mm/yr as a function of deposition rate, concurrent ion bombardment conditions, and coating thickness

  2. Pulverization of boron element and proportions of boron carbide in boron

    International Nuclear Information System (INIS)

    Lang, F.M.; Finck, C.

    1956-01-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 μ. Grain sizes smaller than 1μ are required for applying thin layers of such boron. (author) [fr

  3. Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models

    Directory of Open Access Journals (Sweden)

    Charles A Maitz

    2017-08-01

    Full Text Available Boron neutron capture therapy (BNCT was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. Mice were implanted with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH3(CH215–7,8-C2B9H11] in the lipid bilayer and encapsulated Na3[1-(2`-B10H9-2-NH3B10H8] within the liposomal core. Mice were irradiated 30 hours after the second injection in a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. Despite relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.

  4. Boron tolerance in NS wheat lines

    Directory of Open Access Journals (Sweden)

    Brdar Milka

    2006-01-01

    Full Text Available Boron is an essential micronutrient for higher plants. Present in excessive amounts boron becomes toxic and can limit plant growth and yield. Suppression of root growth is one of the symptoms of boron toxicity in wheat. This study was undertaken to investigate the response of 10 perspective NS lines of wheat to high concentrations of boron. Analysis of root growth was done on young plants, germinated and grown in the presence of different concentrations of boric acid (0, 50,100 and 150 mg/1. Significant differences occurred between analyzed genotypes and treatments regarding root length. Average suppression of root growth was between 11,6 and 34,2%, for line NS 252/02 are even noted 61,4% longer roots at treatments in relation to the control. Lines with mean suppression of root growth less than 20% (NS 101/02, NS 138/01, NS 53/03 and NS 73/02 may be considered as boron tolerant. Spearmans coefficients showed high level of agreement regarding rang of root length for genotypes treated with 100 and 150 mg H3BO3/l.

  5. An overview the boron dilution issue in PWRs

    International Nuclear Information System (INIS)

    Hyvaerinen, J.

    1994-01-01

    The presentation is an overview of boron (boric acid) dilution in pressurized water reactors (PWRs). Boric acid has been widely used in PWRs as a dissolved poison, as one of the main reactivity controlling means, for a long time, from nearly but not quite from the beginning of the design, construction and operation of PWRs in the present-day sense. The specific safety issue, namely the risk of uncontrolled reactivity insertion due to inadvertent boron dilution, is discussed first, followed by a brief look on the history of boron usage in PWRs. A discussion of boron dilution phenomenology is presented next in general terms. Some particular concerns that boron dilution phenomena arouse in the minds of a regulator will also be presented before concluding with a brief look on the future of dissolved poisons. (11 refs.)

  6. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma

    International Nuclear Information System (INIS)

    Labaune, C.; Baccou, C.; Loisel, G.; Yahia, V.; Depierreux, S.; Goyon, C.; Rafelski, J.

    2013-01-01

    The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments. (authors)

  7. Effect of Boronization on Ohmic Plasmas in NSTX

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Maingi, R.; Wampler, W.R.; Blanchard, W.; Bell, M.; Bell, R.; LeBlanc, B.; Gates, D.; Kaye, S.; LaMarche, P.; Menard, J.; Mueller, D.; Na, H.K.; Nishino, N.; Paul, S.; Sabbagh, S.; Soukhanovskii, V.

    2001-01-01

    Boronization of the National Spherical Torus Experiment (NSTX) has enabled access to higher density, higher confinement plasmas. A glow discharge with 4 mTorr helium and 10% deuterated trimethyl boron deposited 1.7 g of boron on the plasma facing surfaces. Ion beam analysis of witness coupons showed a B+C areal density of 10 to the 18 (B+C) cm to the -2 corresponding to a film thickness of 100 nm. Subsequent ohmic discharges showed oxygen emission lines reduced by x15, carbon emission reduced by two and copper reduced to undetectable levels. After boronization, the plasma current flattop time increased by 70% enabling access to higher density, higher confinement plasmas

  8. Chemoradiotherapy of cancer using boronated monoclonal antibodies. Comprehensive progress report, April 1, 1982-October 31, 1984

    International Nuclear Information System (INIS)

    1984-01-01

    Research to develop boron neutron capture for radiotherapy applications is summarized. Work is reported in the following areas: (1) chemical and biochemical research with B 12 H 11 SH 2- ; (2) chemical and protein-binding studies with B 12 H 11 NCO 2- and (CH 3 ) 3 NB 10 H 8 NCO 1- ; (3) effects of neutron irradiation and capture on phytomitogen stimulated lymphocyte blastogenesis; (4) production and characterization of monoclonal antibodies directed against the murine B16 melanoma; (5) reactor description and determination of flux profile; (6) determination of neutron profile; (7) improvement of the neutron beam by the bismuth scatterer method; and (8) in vitro sensitivity of B16 melanoma cells to thermal neutrons and 10 B(n,α) capture. 11 references

  9. Quantitative SIMS measurement of high concentration of boron in silicon (up to 20 at.%) using an isotopic comparative method

    International Nuclear Information System (INIS)

    Dubois, Christiane; Prudon, Gilles; Gautier, Brice; Dupuy, Jean-Claude

    2008-01-01

    Highly boron doped (up to 20 at.%) silicon samples have been analysed by SIMS with the aim of quantifying the boron concentration in a range where the dilute regime may not be valid any more. An original method is used based on the simultaneous analysis of two different isotopes, namely 10 B and 11 B, in order that the known concentration of the first isotope (initially present with a far lower, constant concentration) is the basis of the quantification of the concentration of the second, present with a very high dose. Argon and oxygen beams have been used and conclusions are drawn about the presence of matrix effects in the case of the analysis of highly doped samples. It appears that only the use of a 8 keV O 2 + beam leads to a significant matrix effect, whereas it is nearly absent in the case of an analysis under 8 keV Ar + beam. The proposed method may be applied to any element showing at least two isotopes in any binary alloys under any primary beam

  10. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  11. Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region Eγ=1.1 -2.3 GeV

    Science.gov (United States)

    Zachariou, N.; Ilieva, Y.; Berman, B. L.; Ivanov, N. Ya.; Sargsian, M. M.; Avakian, R.; Feldman, G.; Nadel-Turonski, P.; Adhikari, K. P.; Adikaram, D.; Anderson, M. D.; Pereira, S. Anefalos; Avakian, H.; Badui, R. A.; Baltzell, N. A.; Battaglieri, M.; Baturin, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P. T.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeeev, V. I.; Montgomery, R. A.; Moutarde, H.; Camacho, C. Munoz; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-05-01

    The beam-spin asymmetry, Σ , for the reaction γ d →p n has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, θc .m ., between 25∘ and 160∘. These are the first measurements of beam-spin asymmetries at θc .m .=90∘ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than θc .m .=90∘ . The angular and energy dependence of Σ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  12. A core laboratory offering full evaluation of new boron compounds. A service to the BNCT community

    International Nuclear Information System (INIS)

    Zamenhof, R.G.; Patel, H.; Palmer, M.R.; Lin, H.C.; Busse, P.M.; Harling, O.; Binns, P.J.; Riley, K.J.; Bernard, J.

    2000-01-01

    A joint project by the Beth Israel Deaconess Medical Center at Harvard Medical School and The Nuclear Reactor Laboratory of the Massachusetts Institute of Technology is proposed which would provide a core laboratory for the evaluation of new boron compounds. Federal agency funding has been applied for to support such a facility. The facility's evaluation of candidate boron compounds will include: quantitative cellular boron uptake; cell survival curve analysis (using a thermal neutron beam); small or large animal pharmacokinetic analysis; macro- and micro boron distribution analysis using high-resolution autoradiography, prompt gamma analysis and ICP-AES; small or large animal in vivo tumor control studies (using thermal or epithermal neutron beams); and pharmacological in vivo toxicity evaluation. The laboratory will include small and large animal surgical facilities and resources for additional boron compound chemistry as required by the evaluation procedure. This facility will be open to the BNCT research community. (author)

  13. Boronated liposome development and evaluation

    International Nuclear Information System (INIS)

    Hawthorne, M.F.

    1995-01-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues

  14. Dose distribution and clinical response of glioblastoma treated with boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)], E-mail: mhide-m@gk9.so-net.ne.jp; Yamamoto, T. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Kumada, H. [Japan Atomic Energy Agency, Shirakatashirane 2-4, Tokai (Japan); Nakai, K.; Shirakawa, M.; Tsurubuchi, T.; Matsumura, A. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)

    2009-07-15

    The dose distribution and failure pattern after treatment with the external beam boron neutron capture therapy (BNCT) protocol were retrospectively analyzed. BSH (5 g/body) and BPA (250 mg/kg) based BNCT was performed in eight patients with newly diagnosed glioblastoma. The gross tumor volume (GTV) and clinical target volume (CTV)-1 were defined as the residual gadolinium-enhancing volume. CTV-2 and CTV-3 were defined as GTV plus a margin of 2 and 3 cm, respectively. As additional photon irradiation, a total X-ray dose of 30 Gy was given to the T2 high intensity area on MRI. Five of the eight patients were alive at analysis for a mean follow-up time of 20.3 months. The post-operative median survival time of the eight patients was 27.9 months (95% CI=21.0-34.8). The minimum tumor dose of GTV, CTV-2, and CTV-3 averaged 29.8{+-}9.9, 15.1{+-}5.4, and 12.4{+-}2.9 Gy, respectively. The minimum tumor non-boron dose of GTV, CTV-2, and CTV-3 averaged 2.0{+-}0.5, 1.3{+-}0.3, and 1.1{+-}0.2 Gy, respectively. The maximum normal brain dose, skin dose, and average brain dose were 11.4{+-}1.5, 9.6{+-}1.4, and 3.1{+-}0.4 Gy, respectively. The mean minimum dose at the failure site in cases of in-field recurrence (IR) and out-field recurrence (OR) was 26.3{+-}16.7 and 14.9 GyEq, respectively. The calculated doses at the failure site were at least equal to the tumor control doses which were previously reported. We speculate that the failure pattern was related to an inadequate distribution of boron-10. Further improvement of the microdistribution of boron compounds is expected, and may improve the tumor control by BNCT.

  15. Implantation of boron in silicon

    International Nuclear Information System (INIS)

    Hofker, W.K.

    1975-01-01

    The distribution versus depth of boron implanted in silicon and the corresponding electrical activity obtained after annealing are studied. The boron distributions are measured by secondary-ion mass spectrometry. Boron distributions implanted at energies in the range from 30 keV to 800 keV in amorphous and polycrystalline silicon are analysed. Moments of these distributions are determined by a curve-fitting programme and compared with moments calculated by Winterbon. Boron distributions obtained by implantations along a dense crystallographic direction in monocrystalline silicon are found to have penetrating tails. After investigation of some possible mechanisms of tail formation it is concluded that the tails are due to channelling. It was found that the behaviour of boron during annealing is determined by the properties of three boron fractions consisting of precipitated boron, interstitial boron and substitutional boron. The electrical activity of the boron versus depth is found to be consistent with the three boron fractions. A peculiar redistribution of boron is found which is induced by the implantation of a high dose of heavy ions and subsequent annealing. Different mechanisms which may cause the observed effects, such as thermal diffusion which is influenced by lattice strain and damage, are discussed. (Auth.)

  16. Design, synthesis and structure of new potential electrochemically active boronic acid-based glucose sensors

    DEFF Research Database (Denmark)

    Norrild, Jens Chr.; Søtofte, Inger

    2002-01-01

    In the course of our investigations on new boronic acid based carbohydrate sensors three new boronic acids 3, 7 and 11 containing a ferrocene moiety were synthesised. Their design includes an intramolecular B-N bonding motif in order to facilitate binding at physiological pH. We report the synthe......In the course of our investigations on new boronic acid based carbohydrate sensors three new boronic acids 3, 7 and 11 containing a ferrocene moiety were synthesised. Their design includes an intramolecular B-N bonding motif in order to facilitate binding at physiological pH. We report...

  17. Chemical erosion of sintered boron carbide due to H+ impact

    International Nuclear Information System (INIS)

    Davis, J.W.; Haasz, A.A.

    1990-06-01

    The production of hydrocarbons and boron hydrides due to H + bombardment of sintered B 4 C has been investigated as a function of sample temperature and incident ion energy. While hydrocarbon production was observed, the yields were approximately two orders of magnitude smaller than observed for graphite. There was no evidence to indicate the production of any volatile boron-containing compounds. (3 figs., 11 refs.)

  18. Structure and single-phase regime of boron carbides

    International Nuclear Information System (INIS)

    Emin, D.

    1988-01-01

    The boron carbides are composed of twelve-atom icosahedral clusters which are linked by direct covalent bonds and through three-atom intericosahedral chains. The boron carbides are known to exist as a single phase with carbon concentrations from about 8 to about 20 at. %. This range of carbon concentrations is made possible by the substitution of boron and carbon atoms for one another within both the icosahedra and intericosahedral chains. The most widely accepted structural model for B 4 C (the boron carbide with nominally 20% carbon) has B/sub 11/C icosahedra with C-B-C intericosahedral chains. Here, the free energy of the boron carbides is studied as a function of carbon concentration by considering the effects of replacing carbon atoms within B 4 C with boron atoms. It is concluded that entropic and energetic considerations both favor the replacement of carbon atoms with boron atoms within the intericosahedral chains, C-B-C→C-B-B. Once the carbon concentration is so low that the vast majority of the chains are C-B-B chains, near B/sub 13/C 2 , subsequent substitutions of carbon atoms with boron atoms occur within the icosahedra, B/sub 11/C→B/sub 12/. Maxima of the free energy occur at the most ordered compositions: B 4 C,B/sub 13/C 2 ,B/sub 14/C. This structural model, determined by studying the free energy, agrees with that previously suggested by analysis of electronic and thermal transport data. These considerations also provide an explanation for the wide single-phase regime found for boron carbides

  19. Enrichment of boron 10

    International Nuclear Information System (INIS)

    Coutinho, C.M.M.; Rodrigues Filho, J.S.R.; Umeda, K.; Echternacht, M.V.

    1990-01-01

    A isotopic separation pilot plant with five ion exchange columns interconnected in series were designed and built in the IEN. The columns are charged with a strong anionic resin in its alkaline form. The boric acid solution is introduced in the separation columns until it reaches a absorbing zone length which is sufficient to obtain the desired boron-10 isotopic concentration. The boric acid absorbing zone movement is provided by the injection of a diluted hydrochloric acid solution, which replace the boric acid throughout the columns. The absorbing zone equilibrium length is proportional to its total length. The enriched boron-10 and the depleted boron are located in the final boundary and in the initial position of the absorbing zones, respectively. (author)

  20. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Qingcai Xu

    2015-01-01

    Full Text Available Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from -19.45‰ to +28.13‰ (total range: 47.58‰ with a mean value of 2.61±11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems.

  1. Effect of Dissolved Silica on Immobilization of Boron by Magnesium Oxide

    Directory of Open Access Journals (Sweden)

    Shoko Nozawa

    2018-02-01

    Full Text Available The effect of silica on the immobilization reaction of boron by magnesium oxide was investigated by laboratory experiments. In the absence of silica, due to dissolution of the magnesium oxide, boron was removed from solutions by the precipitation of multiple magnesium borates. In the presence of silica, magnesium silica hydrate (M-S-H was formed as a secondary mineral, which takes up boron. Here 11B magic-angle spinning nuclear magnetic resonance (MAS-NMR and Fourier transform infrared spectrometer (FT-IR data show that a part of the boron would be incorporated into M-S-H structures by isomorphic substitution of silicon. Another experiment where magnesium oxide and amorphous silica were reacted beforehand and boron was added later showed that the shorter the reaction time of the preceding reaction, the higher the sorption ratio of boron. That is, boron was incorporated into the M-S-H mainly by coprecipitation. The experiments in the study here show that the sorption of boron in the presence of silica is mainly due to the incorporation of boron during the formation of the M-S-H structure, which suggests that boron would not readily leach out, and that stable immobilization of boron can be expected.

  2. Dose prescription in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Gupta, N.M.S.; Gahbauer, R.A.; Blue, T.E.; Wambersie, A.

    1994-01-01

    The purpose of this paper is to address some aspects of the many considerations that need to go into a dose prescription in boron neutron capture therapy (BNCT) for brain tumors; and to describe some methods to incorporate knowledge from animal studies and other experiments into the process of dose prescription. Previously, an algorithm to estimate the normal tissue tolerance to mixed high and low linear energy transfer radiations in BNCT was proposed. The authors have developed mathematical formulations and computational methods to represent this algorithm. Generalized models to fit the central axis dose rate components for an epithermal neutron field were also developed. These formulations and beam fitting models were programmed into spreadsheets to simulate two treatment techniques which are expected to be used in BNCT: a two-field bilateral scheme and a single-field treatment scheme. Parameters in these spreadsheets can be varied to represent the fractionation scheme used, the 10 B microdistribution in normal tissue, and the ratio of 10 B in tumor to normal tissue. Most of these factors have to be determined for a given neutron field and 10 B compound combination from large animal studies. The spreadsheets have been programmed to integrate all of the treatment-related information and calculate the location along the central axis where the normal tissue tolerance is exceeded first. This information is then used to compute the maximum treatment time allowable and the maximum tumor dose that may be delivered for a given BNCT treatment. The effect of different treatment variables on the treatment time and tumor dose has been shown to be very significant. It has also been shown that the location of D max shifts significantly, depending on some of the treatment variables-mainly the fractionation scheme used. These results further emphasize the fact that dose prescription in BNCT is very complicated and nonintuitive. 11 refs., 6 figs., 3 tabs

  3. Thermoelectric properties of boron and boron phosphide CVD wafers

    Energy Technology Data Exchange (ETDEWEB)

    Kumashiro, Y.; Yokoyama, T.; Sato, A.; Ando, Y. [Yokohama National Univ. (Japan)

    1997-10-01

    Electrical and thermal conductivities and thermoelectric power of p-type boron and n-type boron phosphide wafers with amorphous and polycrystalline structures were measured up to high temperatures. The electrical conductivity of amorphous boron wafers is compatible to that of polycrystals at high temperatures and obeys Mott`s T{sup -{1/4}} rule. The thermoelectric power of polycrystalline boron decreases with increasing temperature, while that of amorphous boron is almost constant in a wide temperature range. The weak temperature dependence of the thermal conductivity of BP polycrystalline wafers reflects phonon scattering by grain boundaries. Thermal conductivity of an amorphous boron wafer is almost constant in a wide temperature range, showing a characteristic of a glass. The figure of merit of polycrystalline BP wafers is 10{sup -7}/K at high temperatures while that of amorphous boron is 10{sup -5}/K.

  4. Ion implantation of boron in germanium

    International Nuclear Information System (INIS)

    Jones, K.S.

    1985-05-01

    Ion implantation of 11 B + into room temperature Ge samples leads to a p-type layer prior to any post implant annealing steps. Variable temperature Hall measurements and deep level transient spectroscopy experiments indicate that room temperature implantation of 11 B + into Ge results in 100% of the boron ions being electrically active as shallow acceptor, over the entire dose range (5 x 10 11 /cm 2 to 1 x 10 14 /cm 2 ) and energy range (25 keV to 100 keV) investigated, without any post implant annealing. The concentration of damage related acceptor centers is only 10% of the boron related, shallow acceptor center concentration for low energy implants (25 keV), but becomes dominant at high energies (100 keV) and low doses ( 12 /cm 2 ). Three damage related hole traps are produced by ion implantation of 11 B + . Two of these hole traps have also been observed in γ-irradiated Ge and may be oxygen-vacancy related defects, while the third trap may be divacancy related. All three traps anneal out at low temperatures ( 0 C). Boron, from room temperature implantation of BF 2 + into Ge, is not substitutionally active prior to a post implant annealing step of 250 0 C for 30 minutes. After annealing additional shallow acceptors are observed in BF 2 + implanted samples which may be due to fluorine or flourine related complexes which are electrically active

  5. New Carbonate Standard Reference Materials for Boron Isotope Geochemistry

    Science.gov (United States)

    Stewart, J.; Christopher, S. J.; Day, R. D.

    2015-12-01

    The isotopic composition of boron11B) in marine carbonates is well established as a proxy for past ocean pH. Yet, before palaeoceanographic interpretation can be made, rigorous assessment of analytical uncertainty of δ11B data is required; particularly in light of recent interlaboratory comparison studies that reported significant measurement disagreement between laboratories [1]. Well characterised boron standard reference materials (SRMs) in a carbonate matrix are needed to assess the accuracy and precision of carbonate δ11B measurements throughout the entire procedural chemistry; from sample cleaning, to ionic separation of boron from the carbonate matrix, and final δ11B measurement by multi-collector inductively coupled plasma mass spectrometry. To date only two carbonate reference materials exist that have been value-assigned by the boron isotope measurement community [2]; JCp-1 (porites coral) and JCt-1 (Giant Clam) [3]. The National Institute of Standards and Technology (NIST) will supplement these existing standards with new solution based inorganic carbonate boron SRMs that replicate typical foraminiferal and coral B/Ca ratios and δ11B values. These new SRMs will not only ensure quality control of full procedural chemistry between laboratories, but have the added benefits of being both in abundant supply and free from any restrictions associated with shipment of biogenic samples derived from protected species. Here we present in-house δ11B measurements of these new boron carbonate SRM solutions. These preliminary data will feed into an interlaboratory comparison study to establish certified values for these new NIST SRMs. 1. Foster, G.L., et al., Chemical Geology, 2013. 358(0): p. 1-14. 2. Gutjahr, M., et al., Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses. Geophysical Research Abstracts, EGU General Assembly 2014, 2014. 16(EGU2014-5028-1). 3. Inoue, M., et al., Geostandards and

  6. Ion beam studies

    International Nuclear Information System (INIS)

    Freeman, J.H.; Chivers, D.J.; Gard, G.A.; Temple, W.

    1977-04-01

    A description of techniques for the production of intense beams of heavy ions is given. A table of recommended operational procedures for most elements is included. The ionisation of boron is considered in some detail because of its particular importance as a dopant for ion implantation. (author)

  7. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    Directory of Open Access Journals (Sweden)

    Barth Rolf F

    2012-08-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH. In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger

  8. Microdosimetry for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Maughan, R.L.; Kota, C.

    2000-01-01

    The specific aims of the research proposal were as follows: (1) To design and construct small volume tissue equivalent proportional counters for the dosimetry and microdosimetry of high intensity thermal and epithermal neutron beams used in BNCT, and of modified fast neutron beams designed for boron neutron capture enhanced fast neutron therapy (BNCEFNT). (2) To develop analytical methods for estimating the biological effectiveness of the absorbed dose in BNCT and BNCEFNT based on the measured microdosimetric spectra. (3) To develop an analytical framework for comparing the biological effectiveness of different epithermal neutron beams used in BNCT and BNCEFNT, based on correlated sets of measured microdosimetric spectra and radiobiological data. Specific aims (1) and (2) were achieved in their entirety and are comprehensively documented in Jay Burmeister's Ph.D. dissertation entitled ''Specification of physical and biologically effective absorbed dose in radiation therapies utilizing the boron neutron capture reaction'' (Wayne State University, 1999). Specific aim (3) proved difficult to accomplish because of a lack of sufficient radiobiological data

  9. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  10. Feasibility of boron neutron capture therapy for malignant spinal tumors

    International Nuclear Information System (INIS)

    Nakai, Kei; Kumada, Hiroaki; Yamamoto, Tetsuya; Tsurubuchi, Takao; Zaboronok, Alexander; Matsumura, Akira

    2009-01-01

    Treatment of malignant spinal cord tumors is currently ineffective. The characteristics of the spine are its seriality, small volume, and vulnerability: severe QOL impairment can be brought about by small neuronal damage. The present study aimed to investigate the feasibility of BNCT as a tumor-selective charged particle therapy for spinal cord tumors from the viewpoint of protecting the normal spine. A previous report suggested the tolerance dose of the spinal cord was 13.8 Gy-Eq for radiation myelopathy; a dose as high as 11 Gy-Eq demonstrated no spinal cord damage in an experimental animal model. We calculated the tumor dose and the normal spinal cord dose on a virtual model of a spinal cord tumor patient with a JAEA computational dosimetry system (JCDS) treatment planning system. The present study made use of boronophenylalanine (BPA). In these calculations, conditions were set as follows: tumor/normal (T/N) ratio of 3.5, blood boron concentration of 12 ppm, tumor boron concentration of 42 ppm, and relative biological effectiveness (RBE) values for tumor and normal spinal cord of 3.8 and 1.35, respectively. We examined how to optimize neutron irradiation by changing the beam direction and number. In our theoretical example, simple opposed two-field irradiation achieved 28.0 Gy-Eq as a minimum tumor dose and 7.3 Gy-Eq as a maximum normal spinal dose. The BNCT for the spinal cord tumor was therefore feasible when a sufficient T/N ratio could be achieved. The use of F-BPA PET imaging for spinal tumor patients is supported by this study.

  11. Considerations for boron neutron capture therapy studies

    International Nuclear Information System (INIS)

    Faria Gaspar, P. de.

    1994-01-01

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps

  12. Medical and biological requirements for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Gahbauer, R.; Goodman, J.H.; Kanellitsas, C.; Clendenon, N.; Blue, J.

    1986-01-01

    In conventional radiation therapy, tumor doses applied to most solid tumors are limited by the tolerance of normal tissues. The promise of Boron Neutron Capture Therapy lies in its potential to deposit high doses of radiation very specifically to tumor tissue. Theoretically ratios of tumor to normal tissue doses can be achieved significantly higher than conventional radiotherapeutic techniques would allow. Effective dose distributions obtainable are a complex function of the neutron beam characteristics and the macro and micro distributions of boron in tumor and normal tissues. Effective RBE doses are calculated in tumors and normal tissue for thermal, epithermal and 2 keV neutrons

  13. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar

    2007-01-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0mA/cm 2 , initial boron concentration 100mg/L and solution temperature 293K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following;[ECB]=7.6x10 6 x[OH] 0.11 x[CD] 0.62 x[IBC] -0.57 x[DSE] -0.04 x[T] -2.98 x[t] Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  14. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0mA/cm{sup 2}, initial boron concentration 100mg/L and solution temperature 293K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following;[ECB]=7.6x10{sup 6}x[OH]{sup 0.11}x[CD]{sup 0.62}x[IBC]{sup -0.57}x[DSE]{sup -0.}= {sup 04}x[T]{sup -2.98}x[t] Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  15. Boron exposure assessment using drinking water and urine in the North of Chile

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, S., E-mail: scortes@med.puc.cl [Departamento de Salud Publica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Reynaga-Delgado, E. [Centro de Investigaciones Biologicas del Noroeste, La Paz B.C.S. (Mexico); Sancha, A.M. [Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago (Chile); Ferreccio, C. [Departamento de Salud Publica, Pontificia Universidad Catolica de Chile, Santiago (Chile)

    2011-12-01

    Boron is an essential trace element for plants and humans however it is still an open question what levels of boron are actually safe for humans. This study, conducted between 2006 and 2010, measured exposure levels of boron in drinking water and urine of volunteers in Arica, an area in the North of Chile with high levels of naturally occurring boron. Samples were taken of tap and bottled water (173 and 22, respectively), as well as urine from 22 volunteers, and subsequently analyzed by inductively coupled plasma spectroscopy (ICP-OES). Boron varied in public tap water from 0.22 to 11.3 mg L{sup -1}, with a median value of 2.9 mg L{sup -1}, while concentrations of boron in bottled water varied from 0.01 to 12.2 mg L{sup -1}. Neither tap nor bottled water samples had concentrations of boron within WHO recommended limits. The concentration of boron in urine varied between 0.45 and 17.4 mg L{sup -1}, with a median of 4.28 mg L{sup -1} and was found to be correlated with tap water sampled from the homes of the volunteers (r = 0.64). Authors highly recommend that in northern Chile - where levels of boron are naturally high - that the tap and bottled water supplies be monitored in order to protect public health and that regulatory standards also be established for boron in drinking water in order to limit exposure.

  16. Oxytetracycline as a new analytical reagent for the spectrophotometric determination of boron

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, G L

    1984-05-01

    Oxytetracycline hydrochloride, Terramycin, is introduced as a new reagent for the spectrophotometric determination of trace quantities of boron in concentrated sulphuric acid medium. The reagent has an absorption maximum at 430 nm, and that of the boron complex at 520 nm. The colored system conformed to Beer's law between 2 and 10 ..mu..g of boron at 520 nm. The molar absorptivity calculated on the basis of boron is 10,800 1 mol/sup -1/ cm/sup -1/. The composition of the complex has been shown to be 1:1 both by the slope ratio and molar ratio methods. 16 references.

  17. Oxytetracycline as a new analytical reagent for the spectrophotometric determination of boron

    International Nuclear Information System (INIS)

    Narayana, G.L.

    1984-01-01

    Oxytetracycline hydrochloride, Terramycin, is introduced as a new reagent for the spectrophotometric determination of trace quantities of boron in concentrated sulphuric acid medium. The reagent has an absorption maximum at 430 nm, and that of the boron complex at 520 nm. The coloured system conformed to Beer's law between 2 and 10 μg of boron at 520 nm. The molar absorptivity calculated on the basis of boron is 10,800 1 mol -1 cm -1 . The composition of the complex has been shown to be 1:1 both by the slope ratio and molar ratio methods. (author)

  18. A New Boron Analysis Method

    Energy Technology Data Exchange (ETDEWEB)

    Weitman, J; Daaverhoeg, N; Farvolden, S

    1970-07-01

    In connection with fast neutron (n, {alpha}) cross section measurements a novel boron analysis method has been developed. The boron concentration is inferred from the mass spectrometrically determined number of helium atoms produced in the thermal and epithermal B-10 (n, {alpha}) reaction. The relation between helium amount and boron concentration is given, including corrections for self shielding effects and background levels. Direct and diffusion losses of helium are calculated and losses due to gettering, adsorption and HF-ionization in the release stage are discussed. A series of boron determinations is described and the results are compared with those obtained by other methods, showing excellent agreement. The lower limit of boron concentration which can be measured varies with type of sample. In e.g. steel, concentrations below 10-5 % boron in samples of 0.1-1 gram may be determined.

  19. Investigations on boron isotopic geochemistry of salt lakes in Qaidam basin, Qinghai

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y; Shirodkar, P.V.; Liu, W.G.; Wang, Y; Jin, L.

    of brine and are related to boron origin, the corrosion of salt and to certain chemical constituents. The distribution of boron isotopes in Quidam Basin showed a regional feature: salt lake brines in the west and northwest basin have the highest d11B values...

  20. Boron chemistry in relation to its variations in eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Singbal, S.Y.S.

    in the offshore waters. Percent addition and removal of boron computEd. by taking into consideration the world average B/Cl of 0.232 indicated an addition up to 16% and removal up to 11.65% resulting in a net addition of boron to the coastal waters. At few...

  1. Separation of boron isotopes by infrared laser

    International Nuclear Information System (INIS)

    Suzuki, Kazuya

    1995-01-01

    Vibrationally excited chemical reaction of boron tribromide (BBr 3 ) with oxygen (O 2 ) is utilized to separate 10 B and 11 B. Infrared absorption of 10 BBr 3 is at 11.68μ and that of 11 BBr 3 is at 12.18μ. The wavelengths of ammonia laser made in the laboratory were mainly 11.71μ, 12.08μ and 12.26μ. Irradiation was done by focussing the laser with ZnSe lens on the sample gas (mixture of 1.5 torr of natural BBr 3 and 4.5 torr of O 2 ) in the reaction cell. Depletions of 10 BBr 3 and 11 BBr 3 due to chemical reaction of BBr 3 with O 2 was measured with infrared spectrometer. The maximum separation factor β( 10 B/ 11 B) obtained was about 4.5 (author)

  2. Mg-doping experiment and electrical transport measurement of boron nanobelts

    International Nuclear Information System (INIS)

    Kirihara, K.; Hyodo, H.; Fujihisa, H.; Wang, Z.; Kawaguchi, K.; Shimizu, Y.; Sasaki, T.; Koshizaki, N.; Soga, K.; Kimura, K.

    2006-01-01

    We measured electrical conductance of single crystalline boron nanobelts having α-tetragonal crystalline structure. The doping experiment of Mg was carried out by vapor diffusion method. The pure boron nanobelt is a p-type semiconductor and its electrical conductivity was estimated to be on the order of 10 -3 (Ω cm) -1 at room temperature. The carrier mobility of pure boron nanobelt was measured to be on the order of 10 -3 (cm 2 Vs -1 ) at room temperature and has an activation energy of ∼0.19 eV. The Mg-doped boron nanobelts have the same α-tetragonal crystalline structure as the pristine nanobelts. After Mg vapor diffusion, the nanobelts were still semiconductor, while the electrical conductance increased by a factor of 100-500. Transition to metal or superconductor by doping was not observed. - Graphical abstract: SEM micrographs of boron nanobelt after Ni/Au electrode fabrication by electron beam lithography. Display Omitted

  3. One-nucleon transfer reactions induced by secondary beam of {sup 11}Be: study of the nuclear structure of the exotic nuclei {sup 11}Be and {sup 10}Li; Reactions de transfert d'un nucleon induites par un faisceau secondaire de {sup 11}Be: etude de la structure des noyaux exotiques {sup 11}Be et {sup 10}Li

    Energy Technology Data Exchange (ETDEWEB)

    Pita, S

    2000-09-01

    The structure of the neutron rich light nuclei {sup 11}Be and {sup 10}Li has been investigated by means of one nucleon transfer reactions. The experiments have been carried out at GANIL in inverse kinematics using {sup 11}Be secondary beams. The {sup 11}Be(p,d){sup 10}Be reaction bas been studied at 35.3 MeV/u. The {sup 10}Be ejectiles were analyzed by the spectrometer SPEG, and coincident deuterons were detected in the position sensitive silicon detector CHARISSA. Transfer cross sections to 0{sup +}{sub 1} and 2{sup +}{sub 1}, states in {sup 10}Be were measured up to {theta}{sub CM} = 16 deg. and compared to DWBA and CRC predictions. The effects of neutron-cure couplings on reaction form factors have been studied by solving coupled equations in the framework of a vibrational model. It is shown that the rate of core excitation {sup 10}Be{sub 2+} in the {sup 11}Be{sub gs} wave function is overestimated by a standard analysis with form factors given by the usual Separation Energy prescription. The former model predicts a rate of core excitation of 16% and leads to theoretical cross sections which are in good agreement with the experimental data. The aim of the {sup 11}Be(d,{sup 3}He){sup 10}Li experiment, realized at 37 MeV/u, was to measure the distribution of the 2s neutron strength in the unbound nucleus {sup 10}Li. The energy spectrum was deduced from the {sup 3}He energy and angle measured by the silicon strip detector array MUST. An asymmetric peak is clearly observed near the threshold, with a maximum at -S{sub n} = 130 keV. This constitutes a direct proof of the inversion of 2s and 1p{sub 1/2} shells in {sup 10}Li, which was until now a controversial question in spite of many experimental efforts. On the other band the analysis of the {sup 11}Be(d,t){sup 10}Be reaction studied in the same experiment confirms the results obtained in the {sup 11}Be(p,d){sup 10}Be reaction concerning the {sup 11}Be{sub gs} structure. This work shows the interest and feasibility

  4. Synthesis of boron-containing heterocyclic compounds

    International Nuclear Information System (INIS)

    Azev, Yuri; Slepukhina, Irina; Gabel, Detlef

    2004-01-01

    The synthesis of boron-containing 1,3,5-triazines and 1,2,4-triazines is described. Derivatives of 1,3,5-triazine containing the o-carborane cluster have been obtained by reacting the corresponding propargyl derivatives with B 10 H 14 . Derivatives of 1,2,4-triazine containing the B 12 H 12 2- cluster have been obtained by nucleophilic substitution of ethylsulfone derivatives with B 12 H 11 SH 2- . They have been isolated in their ring-protonated form. Reaction of RNH 2 -B 8 H 11 NH-R with stericly demanding heterocycles failed, either for steric or for solubility reasons

  5. Hydrolytic Stability of Boronate Ester-Linked Covalent Organic Frameworks

    KAUST Repository

    Li, Huifang

    2018-01-30

    The stability of covalent organic frameworks (COFs) is essential to their applications. However, the common boronate ester-linked COFs are susceptible to attack by nucleophiles (such as water molecules) at the electron-deficient boron sites. To provide an understanding of the hydrolytic stability of the representative boronate ester-linked COF-5 and of the associated hydrolysis mechanisms, density functional theory (DFT) calculations were performed to characterize the hydrolysis reactions of the molecule formed by the condensation of 1,4-phenylenebis(boronic acid) (PBBA) and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) monomers; two cases were considered, one dealing with the freestanding molecule and the other with the molecule interacting with COF layers. It was found that the boronate ester (B–O) bond dissociation, which requires one H2O molecule, has a relatively high energy barrier of 22.3 kcal mol−1. However, the presence of an additional H2O molecule significantly accelerates hydrolysis by reducing the energy barrier by a factor of 3. Importantly, the hydrolysis of boronate ester bonds situated in a COF environment follows reaction pathways that are different and have increased energy barriers. These results point to an enhanced hydrolytic stability of COF-5 crystals.

  6. Investigation of Hard Boron Rich Solids: Osmium Diboride and β-Rhombohedral Boron

    Science.gov (United States)

    Hebbache, M.; Živković, D.

    Recently, we succeeded in synthesizing three osmium borides, i.e., OsB1.1, Os2B3 and OsB2. Up to date, almost nothing is known about the physical properties of these materials. Microhardness measurements show that OsB2 is extremely hard. Ab initio calculations show that it is due to formation of covalent bonds between boron atoms. OsB2 is also a low compressibility material. It can be used for hard coatings. The β-rhombohedral polymorph of boron is the second hardest elemental crystal (H ≈ 33 GPa). It is also very light and a p-type semiconductor. In early 1970s, it has been shown that the doping of boron with 3d transition elements enhances its hardness by about 25%. We predict that, in general, heavily doped samples MBx, with x ≤ 31 or equivalently a dopant concentration larger than 3.2 at.%, should be ultrahard, i.e., H > 43 GPa. The relevant dopants M are Al, Cu, Sc, Mn, Mg and Li. In addition to these properties, boron-rich materials have a very low volatility, a high chemical inertness and high melting point. They are suitable for applications under extreme conditions and thermoelectric equipment.

  7. Boron Neutron Capture Therapy (BCNT) for the Treatment of Liver Metastases: Biodistribution Studies of Boron Compounds in an Experimental Model

    Energy Technology Data Exchange (ETDEWEB)

    Marcela A. Garabalino; Andrea Monti Hughes; Ana J. Molinari; Elisa M. Heber; Emiliano C. C. Pozzi; Maria E. Itoiz; Veronica A. Trivillin; Amanda E. Schwint; Jorge E. Cardoso; Lucas L. Colombo; Susana Nievas; David W. Nigg; Romina F. Aromando

    2011-03-01

    Abstract We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of 10B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na210B10H10), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3.

  8. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    International Nuclear Information System (INIS)

    Zhang, L.L.; Yang, Q.; Tang, Y.; Yang, L.; Zhang, C.; Hu, Y.; Cui, X.

    2015-01-01

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B 4 C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B 4 C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp 3 bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp 3 bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp 3 bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films

  9. Boron supplementation in broiler diets

    Directory of Open Access Journals (Sweden)

    EJ Fassani

    2004-12-01

    Full Text Available Boron supplementation in broiler feed is not a routine practice. However, some reports suggest a positive effect of boron on performance. This study assessed the effects of boron supplementation on broiler performance. Diets were based on maize and soybean meal, using boric acid P.A. as boron source. Six supplementation levels (0, 30, 60, 90, 120 and 150 ppm were evaluated using 1,440 one-day old males housed at a density of 30 chickens in each of 48 experimental plots of 3m². A completely randomized block design was used with 8 replicates. Feed intake, weight gain and feed conversion were assessed in the periods from 1 to 7 days, 1 to 21 days and 1 to 42 days of age, and viability was evaluated for the total 42-day rearing period. No performance variable was affected by boron supplementation (p>0.05 in the period from 1 to 7 days. The regression analysis indicated an ideal level of 37.4 ppm of boron for weight gain from 1 to 21 days (p0.05, although feed intake was reduced linearly with increased boron levels (p0.05. Ash and calcium percentages in the tibias of broilers and viability in the total rearing period were not affected by boron supplementation (p>0.05.

  10. Isotopic evidence of boron in precipitation originating from coal burning in Asian continent

    International Nuclear Information System (INIS)

    Sakata, Masahiro; Natsumi, Masahiro; Tani, Yukinori

    2010-01-01

    The boron concentration and isotopic composition (δ 11 B) of precipitation collected from December 2002 to March 2006 at three sites on the Japan Sea coast were measured. Those sites have been considerably affected by the long-range transport of air pollutants from the Asian continent during winter and spring when the airflows from the Asian continent are predominant. The boron concentration in the precipitation increased primarily during winter whereas the δ 11 B decreased during winter or spring. It is assumed that this decrease in δ 11 B is not associated with a Rayleigh distillation process, because the previous δD values of the precipitation collected at a site on the Japan Sea coast did not decrease in the same manner. A weak correlation (r 2 =0.13-0.24, P 11 B and the nonsea-salt sulfate (nss-SO 4 2- )/B ratio at each site, suggesting that boron in the precipitation originate primarily from two sources. The first source, which is characterized by high δ 11 B and nss-SO 4 2- /B=0, is seawater. At the northern site, the enrichment factor for boron in the precipitation relative to seawater approached unity during winter. This implies that much of the boron in the precipitation is derived from unfractionated sea salts rather than gaseous boron evaporated from seawater. The second source is characterized by low δ 11 B and high nss-SO 4 2- /B ratio. Most of the nss-SO 4 2- in the precipitation originates from anthropogenic combustion activities in the Asian continent based on the previous model calculations. Coal accounts for a major portion of the total primary energy supply in China. Moreover, coal enriches boron and represents generally negative δ 11 B values. Hence, we propose that the emission of boron from coal burning is the most likely second source. Thus, boron isotopes may be useful as tracers of coal-burning plumes from the Asian continent. (author)

  11. Standard specification for boron-Based neutron absorbing material systems for use in nuclear spent fuel storage racks

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This specification defines criteria for boron-based neutron absorbing material systems used in racks in a pool environment for storage of nuclear light water reactor (LWR) spent-fuel assemblies or disassembled components to maintain sub-criticality in the storage rack system. 1.2 Boron-based neutron absorbing material systems normally consist of metallic boron or a chemical compound containing boron (for example, boron carbide, B4C) supported by a matrix of aluminum, steel, or other materials. 1.3 In a boron-based absorber, neutron absorption occurs primarily by the boron-10 isotope that is present in natural boron to the extent of 18.3 ± 0.2 % by weight (depending upon the geological origin of the boron). Boron, enriched in boron-10 could also be used. 1.4 The materials systems described herein shall be functional – that is always be capable to maintain a B10 areal density such that subcriticality Keff <0.95 or Keff <0.98 or Keff < 1.0 depending on the design specification for the service...

  12. Irradiation Effects in Fortiweld Steel Containing Different Boron Isotopes

    International Nuclear Information System (INIS)

    Grounes, M.

    1967-07-01

    Tensile specimens and miniature impact specimens of the low alloyed pressure vessel steel Fortiweld have been irradiated at 265 deg C in R2 to two neutron doses, 6.5 x 10 18 n/cm 2 (> 1 MeV) and 4 x 10 19 n/cm 2 (thermal) and also 9.0 x 10 18 n/cm 2 (> 1 MeV) and 6 x 10 19 n/cm 2 (thermal). Material from three laboratory melts, in which the boron consisted of 10 B, 11 B and natural boron respectively, were investigated. The results both of tensile tests and impact tests with miniature impact specimens show that the 10 B-alloyed material was changed more and the 11 B-alloyed material was changed less than the material containing natural boron. At the higher neutron dose the increase in yield strength (0.2 % offset yield strength) was 11 kg/mm in the 10 B containing material compared to 5 kg/mm in the 11 B-containing material. The decrease in total elongation was 5 and 0 percentage units respectively. The transition temperature was increased 190 deg C at the higher neutron dose in the 10 B-alloyed material, 40 deg C in the 11 B-alloyed material and 80 deg C in the material containing natural boron

  13. Irradiation Effects in Fortiweld Steel Containing Different Boron Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M

    1967-07-15

    Tensile specimens and miniature impact specimens of the low alloyed pressure vessel steel Fortiweld have been irradiated at 265 deg C in R2 to two neutron doses, 6.5 x 10{sup 18} n/cm{sup 2} (> 1 MeV) and 4 x 10{sup 19} n/cm{sup 2} (thermal) and also 9.0 x 10{sup 18} n/cm{sup 2} (> 1 MeV) and 6 x 10{sup 19} n/cm{sup 2} (thermal). Material from three laboratory melts, in which the boron consisted of {sup 10}B, {sup 11}B and natural boron respectively, were investigated. The results both of tensile tests and impact tests with miniature impact specimens show that the {sup 10}B-alloyed material was changed more and the {sup 11}B-alloyed material was changed less than the material containing natural boron. At the higher neutron dose the increase in yield strength (0.2 % offset yield strength) was 11 kg/mm in the {sup 10}B containing material compared to 5 kg/mm in the {sup 11}B-containing material. The decrease in total elongation was 5 and 0 percentage units respectively. The transition temperature was increased 190 deg C at the higher neutron dose in the {sup 10}B-alloyed material, 40 deg C in the {sup 11}B-alloyed material and 80 deg C in the material containing natural boron.

  14. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet.

    Science.gov (United States)

    Hakki, Sema S; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Kerimoglu, Ulku; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H

    2013-04-01

    An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. Boron isotopes at the catchment scale, a new potential tool to infer critical zone processes.

    Science.gov (United States)

    Gaillardet, J.; Noireaux, J.; Braun, J. J.; Riotte, J.; Louvat, P.; Bouchez, J.; Lemarchand, D.; Muddu, S.; Mohan Kumar, M.; Candaudap, F.

    2017-12-01

    Boron is a mid-mass element that has two isotopes, 10B and 11B. These isotopes are largely fractioned by a number of chemical, biological and physical processes. Boron as a great affinity for clays and is useful for life, making it a double tracer of critical zone processes. This study focuses on the Mule Hole Critical Zone Observatory in South India. This is part of the French Research Infrastructure OZCAR and has benefited from the fruitful Indo-French collaboration (Indo-French Cell for Water Sciences) for more that 15 years. Boron and its isotopes were measured in the different compartment of the CZ in Mule Hole, vegetation, atmosphere, throughfall, soil, soil water, river water and compared to the behavior of other elements. The well constrained hydrology in Mule Hole allowed us to calculate the main fluxes affecting boron in the Critical Zone and came to the first order conclusion that the recycling of boron by vegetation is by far the most important flux within the system, reaching 15-20 times the catchment outlet flux. From an isotopic point of view, the total range of variation is measured between -3 ‰ and 77‰, with a bedrock value at 10‰ in classical delta unit, making boron a well suited tracer for constraining CZ processes. The flux of boron most enriched in heavy boron is the throughfall, showing the importance of biological processes in controlling the boron isotopic composition of the stream. Boron in soils in depleted in the heavy isotope but is enriched in boron compared to the bedrock, a surprising situation that we interpret as the legacy of a previous stage of transient weathering. These results indicate a strong decoupling between the behaviors of boron at the surface of the CZ and at depth.

  16. The effect of the boron source composition ratio on the adsorption performance of hexagonal boron nitride without a template

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail: zhangning5832@163.com; Zhang, Tong; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Cui, Xingyu

    2015-08-01

    An inexpensive boric acid (H{sub 3}BO{sub 3}) and borax (Na{sub 2}B{sub 4}O{sub 7}·10H{sub 2}O) mix was used as a source of boron with different composition ratios, and urea was used as a nitrogen source, in flowing ammonia atmosphere, for the preparation of hexagonal boron nitride (h-BN) with different micro-morphologies. Under a certain synthesis process, the effects of the molar ratio of borax and boric acid (or simply the boron source composition ratio for short) on the phase composition of the sample were studied; the work also explored the effect of boron source composition ratio on the micro-morphology, adsorption desorption isotherm and specific surface area of the h-BN powder. The main purpose of this work was to determine the optimum composition ratio of preparing spherical mesoporous h-BN and ensure that the micro-mechanism underpinning the formation of spherical mesoporous h-BN was understood. The results showed that at the optimum boron source composition ratio of 1:1, globular mesoporous spheres with a diameter of approximately 600–800 nm could be obtained with the highest pore volume and specific surface area (230.2 m{sup 2}/g). - Graphical abstract: Display Omitted - Highlights: • Spherical h-BN was synthesized by controlling the boron source composition ratio. • Without extra spherical template, solid Na{sub 2}O was equal to a spherical template. • At boron source composition ratio of 1:1, h-BN had best adsorption performance.

  17. Molecular medicine: Synthesis and in-vivo detection of agents for use in boron neutron capture therapy. Final report, May 1, 1993--April 30, 1996

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1997-08-01

    During the early stages of this project, the author developed the first whole-body boron MRI technique. They found that, for the first time, information concerning both the location and the quantity of boron present in living tissues could be obtained through the use of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) respectively. However, it was also discovered that boron MRI was not without problems. Both naturally occurring isotopes of boron (boron-10 and boron-11) possess magnetic moments, making them amenable to MR detection. The author found that there are difficulties in obtaining boron MRI images which are a consequence of the inherently poor magnetic resonance characteristics of the boron nucleus. The magnetogyric ratios of both boron-10 and boron-11 are smaller than those of hydrogen, which makes boron much less sensitive to magnetic resonance detection. In addition, both isotopes of boron posses nuclear electric quadrupole moments which serve to shorten their magnetization relaxation times; this causes the MR signal to broaden and decay rapidly, often before the receiver coils can collect the MR information. The rapid rate of signal decay is enhanced in biological systems which leads to further signal loss and a decrease in the signal to noise ratio (SNR)

  18. Boron thermal/epithermal neutron capture therapy

    International Nuclear Information System (INIS)

    Fairchild, R.G.

    1982-01-01

    The development of various particle beams for radiotherapy represents an attempt to improve dose distribution, and to provide high LET radiations which are less sensitive to ambient physical and radiobiological factors such as oxygen tension, cell cycle, and dose rate. In general, a compromise is necessary as effective RBE is reduced in order to spread the dose distribution over the anticipated tumor volume. The approach of delivering stable non-toxic isotopes to tumor, and then activating these atoms subsequently via an external radiation beam has mator advantages; problems associated with high uptake of these isotopes in competing cell pools are obviated, and the general tumor volume can be included in the treatment field of the activating beam. As long as the normal tissues supporting tumor show a low uptake of the isotope to be activated, and as long as the range of the reaction products is short, dose will be restricted to tumor, with a consequent high therapeutic ratio. Neutron Capture Therapy (NCT) is generally carried out by activating boron-10 with low energy neutrons. The range of the high LET, low OER particles from the 10 B(n, α) 7 Li reaction is approx. 10μ, or one cell diameter, a situation that is optimal for cell killing. Significant advantages may be gained by using the NCT procedure in conjunction with improved tissue penetration provided with epithermal or filtered beams, and new compounds showing physiological binding to tumor

  19. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  20. Boron isotope fractionation in magma via crustal carbonate dissolution

    Science.gov (United States)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to -41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  1. Study of induced reactions by a secondary beam of 11Be in Be, Ti and Au targets

    International Nuclear Information System (INIS)

    Dogny, S.

    1992-01-01

    In the last decade, new phenomena arised from nuclear reaction studies of neutron-rich light nuclei produced by projectile fragmentation. In this work, first we will recall briefly some aspects of these studies, in particular the two-neutron halo for nuclei whose binding energy of the two last neutrons is low. Secondly, we will describe the experiment which aims to study 11 Be reactions on Be, Ti and Be targets. The results of this experiment show the presence of a one-neutron halo, corresponding to a high dissociation cross-section for the three targets. We will show that three mechanisms, Coulomb dissociation for heavy targets, diffraction-and absorption-dissociation for light targets, account satisfactorily for reactions leading to 10 Be

  2. 18 F-FDG PET/CT for planning external beam radiotherapy alters therapy in 11% of 581 patients.

    Science.gov (United States)

    Birk Christensen, Charlotte; Loft-Jakobsen, Annika; Munck Af Rosenschöld, Per; Højgaard, Liselotte; Roed, Henrik; Berthelsen, Anne K

    2018-03-01

    18 F-FDG PET/CT (FDG PET/CT) used in radiotherapy planning for extra-cerebral malignancy may reveal metastases to distant sites that may affect the choice of therapy. To investigate the role of FDG PET/CT on treatment strategy changes induced by the use of PET/CT as part of the radiotherapy planning. 'A major change of treatment strategy' was defined as either including more lesions in the gross tumour volume (GTV) distant from the primary tumour or a change in treatment modalities. The study includes 581 consecutive patients who underwent an FDG PET/CT scan for radiotherapy planning in our institution in the year 2008. All PET/CT scans were performed with the patient in treatment position with the use of immobilization devices according to the intended radiotherapy treatment. All scans were evaluated by a nuclear medicine physician together with a radiologist to delineate PET-positive GTV (GTV-PET). For 63 of the patients (11%), the PET/CT simulation scans resulted in a major change in treatment strategy because of the additional diagnostic information. Changes were most frequently observed in patients with lung cancer (20%) or upper gastrointestinal cancer (12%). In 65% of the patients for whom the PET/CT simulation scan revealed unexpected dissemination, radiotherapy was given - changed (n = 38) or unchanged (n = 13) according to the findings on the FDG PET/CT. Unexpected dissemination on the FDG PET/CT scanning performed for radiotherapy planning caused a change in treatment strategy in 11% of 581 patients. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  3. Separation process for boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, S D

    1975-06-12

    The method according to the invention is characterized by the steps of preparing a gaseous mixture of BCl/sub 3/ containing the isotopes of boron and oxygen as the extractor, irradiating that mixture in the tube of the separator device by means of P- or R-lines of a CO/sub 2/ laser for exciting the molecules containing a given isotope of boron, simultaneously irradiating the mixture with UV for photodissociating the excited BCl/sub 3/ molecules and separating BCl/sub 3/ from the reaction products of photodissociation and from oxygen. Such method is suitable for preparing boron used in nuclear reactors.

  4. Boronate esters: Synthesis, characterization and molecular base receptor analysis

    Science.gov (United States)

    Gómez-Jaimes, Gelen; Barba, Victor

    2014-10-01

    The synthesis of three boronate esters obtained by reacting 4-fluorophenylboronic (1), 4-iodophenylboronic (2) and 3,4-chlorophenylboronic (3) acids with 2,4,5-trihidroxybenzaldehyde is reported. The structural characterization was determined by spectroscopic and spectrometric techniques. The boron atom was evaluated to acts as Lewis acid center in the reaction with pyridine (Py), triethylamine (TEA) and fluoride anion (F-). The titration method was followed by UV-Vis and 11B NMR spectroscopy; results indicate the good interaction with the fluoride ion but poor coordination towards pyridine in solution.

  5. Separation of boron isotopes using NMG type anion exchange resin

    International Nuclear Information System (INIS)

    Itagaki, Takaharu; Kosuge, Masao; Fukuda, Junji; Fujii, Yasuhiko.

    1992-01-01

    Ion exchange separation of boron isotopes (B-10 and B-11) has been studied by using a special boron selective ion exchange resin; NMG (n-methyl glucamine)-type anion exchange resin. The resin has shown a large isotope separation coefficient of 1.02 at the experimental conditions of temperature, 80degC, and boric acid concentration, 0.2 M (mole/dm 3 ). Enriched B-10 (92%) was obtained after the migration of 1149 m by a recyclic operation of ion exchange columns in a merry-go-round method. (author)

  6. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    Vast, N.

    1999-01-01

    The atomic structure and the lattice dynamics of α boron and of B 4 C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B 4 C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  7. Beam-Beam Effects

    International Nuclear Information System (INIS)

    Herr, W; Pieloni, T

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities

  8. Thermoelectric properties of β-boron and some boron compounds. Final report, August 1981-September 1984

    International Nuclear Information System (INIS)

    Slack, G.A.; Rosolowski, J.H.; Miller, M.L.; Huseby, I.C.

    1984-12-01

    The thermoelectric properties, that is the Seebeck coefficient, and electrical and thermal conductivity, of doped β-boron have been measured from 300 to 1600 K. Most of the useful doping elements are transition metals and occupy interstitial sites in the lattice. The highest figure of merit so far achieved at 1000 K is ZT = 0.11 for P-type, polycrystalline, hot-pressed β-boron doped with copper. Higher values may be achievable once a better P-type dopant is found. Some experiments on B 68 Y, α-B 12 Al, B 4 C, and B 6 Si are described. Transition metals appear to be effective dopants for B 68 Y and B 4 C

  9. Application of 1013 ohm Faraday cup current amplifiers for boron isotopic analyses by solution mode and laser ablation multicollector inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Lloyd, Nicholas S; Sadekov, Aleksey Yu; Misra, Sambuddha

    2018-01-15

    Boron isotope ratios (δ 11 B values) are used as a proxy for seawater paleo-pH, amongst several other applications. The analytical precision can be limited by the detection of low intensity ion beams from limited sample amounts. High-gain amplifiers offer improvements in signal/noise ratio and can be used to increase measurement precision and reduce sample amounts. 10 13 ohm amplifier technology has previously been applied to several radiogenic systems, but has thus far not been applied to non-traditional stable isotopes. Here we apply 10 13 ohm amplifier technology for the measurement of boron isotope ratios using solution mode MC-ICP-MS and laser ablation mode (LA-)MC-ICP-MS techniques. Precision is shown for reference materials as well as for low-volume foraminifera samples. The baseline uncertainty for a 0.1 pA 10 B + ion beam is reduced to ohm amplifier technology is demonstrated to offer advantages for the determination of δ 11 B values by both MC-ICP-MS and LA-MC-ICP-MS for small samples of biogenic carbonates, such as foraminifera shells. 10 13 ohm amplifier technology will also be of benefit to other non-traditional stable isotope measurements. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Note on boron toxicity in oats

    Energy Technology Data Exchange (ETDEWEB)

    Langille, W M; Mahoney, J F

    1959-01-01

    Boron was applied at the rate of 35 pounds per acre of borax to a field of oats. With the first noticeable growth there appeared a definite chlorotic condition of the oat seedlings on plots receiving boron treatments. Analysis of chlorotic tissue at 3 weeks after seeding indicated 110 ppm boron, while apparently healthy tissue contained 6.1 ppm boron at the same stage of growth. There was a rapid decline in the boron content of the oat tissue as the crop grew older. At maturity the oat tissue from the boron-treated plots contained an average of 14.15 ppm boron as compared with 4.10 boron from untreated areas. Boron toxicity had no harmful effect so far as yields were concerned, under the conditions of this experiment. 3 references.

  11. Method for producing polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Alexeevskii, V.P.; Bochko, A.V.; Dzhamarov, S.S.; Karpinos, D.M.; Karyuk, G.G.; Kolomiets, I.P.; Kurdyumov, A.V.; Pivovarov, M.S.; Frantsevich, I.N.; Yarosh, V.V.

    1975-01-01

    A mixture containing less than 50 percent of graphite-like boron nitride treated by a shock wave and highly defective wurtzite-like boron nitride obtained by a shock-wave method is compressed and heated at pressure and temperature values corresponding to the region of the phase diagram for boron nitride defined by the graphite-like compact modifications of boron nitride equilibrium line and the cubic wurtzite-like boron nitride equilibrium line. The resulting crystals of boron nitride exhibit a structure of wurtzite-like boron nitride or of both wurtzite-like and cubic boron nitride. The resulting material exhibits higher plasticity as compared with polycrystalline cubic boron nitride. Tools made of this compact polycrystalline material have a longer service life under impact loads in machining hardened steel and chilled iron. (U.S.)

  12. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  13. Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon

    International Nuclear Information System (INIS)

    Ma, Fa-Jun; Duttagupta, Shubham; Shetty, Kishan Devappa; Meng, Lei; Hoex, Bram; Peters, Ian Marius; Samudra, Ganesh S.

    2014-01-01

    Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boron diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed

  14. Beam Angular Divergence Effects in Ion Implantation

    International Nuclear Information System (INIS)

    Horsky, T. N.; Hahto, S. K.; Bilbrough, D. G.; Jacobson, D. C.; Krull, W. A.; Goldberg, R. D.; Current, M. I.; Hamamoto, N.; Umisedo, S.

    2008-01-01

    An important difference between monomer ion beams and heavy molecular beams is a significant reduction in beam angular divergence and increased on-wafer angular accuracy for molecular beams. This advantage in beam quality stems from a reduction in space-charge effects within the beam. Such improved angular accuracy has been shown to have a significant impact on the quality and yield of transistor devices [1,12]. In this study, B 18 H x + beam current and angular divergence data collected on a hybrid scanned beam line that magnetically scans the beam across the wafer is presented. Angular divergence is kept below 0.5 deg from an effective boron energy of 200 eV to 3000 eV. Under these conditions, the beam current is shown analytically to be limited by space charge below about 1 keV, but by the matching of the beam emittance to the acceptance of the beam line above 1 keV. In addition, results of a beam transport model which includes variable space charge compensation are presented, in which a drift mode B 18 H x + beam is compared to an otherwise identical boron beam after deceleration. Deceleration is shown to introduce significant space-charge blow up resulting in a large on-wafer angular divergence. The divergence effects introduced by wafer charging are also discussed.

  15. In vitro biological efficacy of boronated low density lipoproteins for NCT

    International Nuclear Information System (INIS)

    Kahl, S.B.; Pate, D.; Laster, B.H.; Popenoe, E.A.; Fairchild, R.G.

    1992-01-01

    Low Density Lipoproteins (LDLs) are known to be internalized within the cell by receptor-mediated mechanisms. There is evidence that LDLs may be taken up avidly by tumor cells to provide cholesterol for the synthesis of cell membrane. Thus, the possibility exists that LDLs may provide an ideal vehicle for the transport of boron to tumor cells for Neutron Capture Therapy (NCT). A boronated analog of LDL has recently been synthesized for possible application in NCT. The analog was tested in cell culture for uptake and biological efficacy in the thermal neutron beam at the Brookhaven Medical Research Reactor (BMRR). It was found that boron concentrations ten times higher than that required for NCT were easily obtained, and that uptake data were constant with a receptor mediated binding mechanism. The measured intracellular concentration of ∼240 μg 10 B/g cells is significantly higher than that obtained with any other boron compound previously evaluated for possible clinical application

  16. A novel method for boron determination in rock thin sections : first results from Ngawha

    International Nuclear Information System (INIS)

    Vickridge, I.C.

    1994-01-01

    Previous studies of boron in New Zealand rock have relied on whole rock analyses. In order to gain more detailed knowledge of the sources of boron in rocks, we have developed a nuclear probe technique based on the 1 1B(p,α) nuclear reaction. The technique performs well on powdered USGS standards down to below 10 wt. ppm, and we have applied it with a proton beam focused down to 25 x 25 micrometre on a hydrothermally unaltered greywacke from Puketona, near Ngawha, Northland. There appears to be little variation in the boron concentrations in the sedimentary groundmass, but in the veins the boron appears to be more concentrated in the prehnite than in the quartz. (author). 2 tabs., 5 figs., 14 refs

  17. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  18. Analysis and separation of boron isotopes; Analyse et separation des isotopes du bore

    Energy Technology Data Exchange (ETDEWEB)

    Perie, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-11-01

    The nuclear applications of boron-10 justify the study of a method of measurement of its isotopic abundance as well as of very small traces of boron in different materials. A systematic study of thermionic emission of BO{sub 2}Na{sub 2}{sup +} has been carried out. In the presence of a slight excess of alkalis, the thermionic emission is considerably reduced. On the other hand, the addition of a mixture of sodium hydroxide-glycerol (or mannitol) to borax permits to obtain an intense and stable beam. These results have permitted to establish an operative method for the analysis of traces of boron by isotopic dilution. In other respects, the needs of boron-10 in nuclear industry Justify the study of procedures of separation of isotopes of boron. A considerable isotopic effect has been exhibited in the chemical exchange reaction between methyl borate and borate salt in solution. In the case of exchange between methyl borate and sodium borate, the elementary separation factor {alpha} is: {alpha}=(({sup 11}B/{sup 10}B)vap.)/(({sup 11}B/{sup 10}B)liq.)=1.03{sub 3}. The high value of this elementary effect has been multiplied in a distillation column in which the problem of regeneration of the reactive has been resolved. An alternative procedure replacing the alkali borate by a borate of volatile base, for example diethylamine, has also been studied ({alpha}=1,02{sub 5} in medium hydro-methanolic with 2,2 per cent water). (author) [French] Les applications nucleaires du bore 10 justifient l'etude d'une methode de mesure de son abondance isotopique dans divers materiaux ainsi que le dosage de tres faibles traces de bore. Une etude systematique de l'emission thermoionique de BO{sub 2} Na{sub 2}{sup +} a ete effectuee. En presence d'un leger exces d'alcalins, l'emission thermoionique est considerablement reduite. Par contre l'addition au borax d'un melange soude-glycerol (ou mannitol) permet d'obtenir un faisceau stable et intense. Ces resultats ont permis d'etablir un mode

  19. Solid-state nuclear magnetic resonance studies of phosphorus and boron in coals and combustion residues

    Energy Technology Data Exchange (ETDEWEB)

    Burchill, P.; Howarth, O.W.; Richards, D.G.; Sword, B.J. (British Coal Corporation, Stoke Orchard (UK). Coal Research Establishment)

    1990-04-01

    Solid-state nuclear magnetic resonance spectroscopy with magic angle spinning (MAS-n.m.r.) was used to study the occurrence of phosphorus and boron in coal, and their fate on combustion. These elements are only minor components of coal, but may significantly influence the utilization properties. {sup 31} P MAS-n.m.r. spectroscopy has confirmed that phosphorus is present in coal predominantly as apatite. This mineral is thermally stable under oxidizing conditions, and survives largely unaltered in high temperature ashes. However, under the semi-reducing bed conditions of certain stoker-fired boilers, it may be decomposed, volatilizing the phosphorus. The {sup 31}P MAS-n.m.r. spectra of bonded deposits show phosphorus in a markedly different coordination environment to that in apatite, the chemical shift suggesting aluminium phosphate or boron phosphate. {sup 11}B MAS-n.m.r. spectra of coals exhibit resonances due to both trigonal and tetrahedrally coordinated boron. Trigonal boron is probably present as tourmaline, but the nature of the tetrahedral boron is less certain; it may be held in tetrahedral sites within certain clay minerals. In common with phosphorus, boron may be volatilized during combustion. The {sup 11}B MAS-n.m.r. spectra of bonded deposits show a tetrahedral resonance with a chemical shift quite consistent with that of boron phosphate. 39 refs., 9 figs., 5 tabs.

  20. Physical vapor deposition of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Kester, D.J.

    1991-01-01

    Cubic boron nitride was successfully deposited using physical vapor-deposition methods. RF-sputtering, magnetron sputtering, dual-ion-beam deposition, and ion-beam-assisted evaporation were all used. The ion-assisted evaporation, using boron evaporation and bombardment by nitrogen and argon ions, led to successful cubic boron nitride growth over the widest and most controllable range of conditions. It was found that two factors were important for c-BN growth: bombardment of the growing film and the presence of argon. A systematic study of the deposition conditions was carried out. It was found that the value of momentum transferred into the growing from by the bombarding ions was critical. There was a very narrow transition range in which mixed cubic and hexagonal phase films were prepared. Momentum-per-atom value took into account all the variables involved in ion-assisted deposition: deposition rate, ion energy, ion flux, and ion species. No other factor led to the same control of the process. The role of temperature was also studied; it was found that at low temperatures only mixed cubic and hexagonal material are deposited

  1. Response of the oral mucosa to porphyrin mediated boron neutron capture therapy

    International Nuclear Information System (INIS)

    Morris, G.M.

    2003-01-01

    Pre-clinical studies are now in progress to develop boron neutron capture therapy (BNCT) modalities for the treatment of head and neck carcinomas. BNCT is a bimodal therapy which involves the administration of a boron-10 enriched compound, that accumulates preferentially in tumours, prior to irradiation with low energy neutrons. These neutrons are captured by boron-10 atoms to produce a highly localised radiation exposure. More recently, it has been demonstrated that various boronated porphyrins can target a variety of tumours. Of the porphyrins evaluated to date, copper tetracarboranylphenyl porphyrin (CuTCPH) is a strong candidate for potential clinical evaluation. It has extremely high specificity for a variety of tumour models. Therapeutic efficacy of CuTCPH mediated BNCT has been demonstrated in pre-clinical studies using the murine EMT-6 carcinoma model. In the present investigation the response of the oral mucosa to CuTCPH mediated boron neutron capture (BNC) irradiation was assessed using a standard rat model (ventral tongue). Single exposure irradiation was carried out on the thermal neutron beam at the Brookhaven Medical Research Reactor, at 3 days after the final injection of the boronated porphyrin. The impact of CuTCPH mediated BNC irradiation on oral mucosa at therapeutically effective exposure times, assessed using the ventral tongue model, was minimal. This was primarily due to the fact that blood boron levels (from CuTCPH) were very low at the time of irradiation. Analysis of the dose-effect data for CuTCPH gave a compound biological effectiveness (CBE) factor of 2.5. It can be concluded that, although, the CBE factor (calculated using blood boron concentrations) was relatively high, CuTCPH mediated BNC irradiation should not cause significant damage at clinically relevant radiation doses. This is because blood boron levels would be very low at the time of irradiation

  2. Possible application of boron neutron capture therapy to canine osteosarcoma

    International Nuclear Information System (INIS)

    Takeuchi, Akira

    1985-01-01

    Possibility for successful treatment of canine osteosarcoma by boron neutron capture therapy (BNCT) was demonstrated based upon an uptake study of the boron compound and an experimental treatment by BNCT. In the up take study following intravenous administration of Na 2 B 12 H 11 SH, satisfactorily higher boron concentration with some variation between tumors is likely to be obtained 12 hours after the administration, together with significantly lower boron levels in blood and bone. Based upon these results, osteosarcoma of a mongrel dog was successfully treated by BNCT. The tumor received approximately 3800 rads with single neutron irradiation (approximately 1.4 x 10 13 n./cm 2 ) about 12 hours after intravenous infusion of Na 2 B 12 H 11 SH of 96 % enriched 10 B in the ratio of 50 mg 10 B/kg. Clinical and radiographical improvements were remarkable and no neoplastic cell was found in any part of the original neoplastic lesion and its surrounding tissue at the time of autopsy after 30 days. (author)

  3. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Yilmaz, M. Tolga; Kocakerim, M. Muhtar

    2005-01-01

    In this study, boron removal from boron-containing wastewaters prepared synthetically was investigated. The experiments in which Amberlite IRA 743, boron specific resin was used were carried out in a column reactor. The bed volume of resin, boron concentration, flow rate and temperature were selected as experimental parameters. The experimental results showed that percent of boron removal increased with increasing amount of resin and with decreasing boron concentration in the solution. Boron removal decreased with increasing of flow rate and the effect of temperature on the percent of total boron removal increased the boron removal rate. As a result, it was seen that about 99% of boron in the wastewater could be removed at optimum conditions

  4. Boron exposure assessment using drinking water and urine in the North of Chile.

    Science.gov (United States)

    Cortes, S; Reynaga-Delgado, E; Sancha, A M; Ferreccio, C

    2011-12-01

    Boron is an essential trace element for plants and humans however it is still an open question what levels of boron are actually safe for humans. This study, conducted between 2006 and 2010, measured exposure levels of boron in drinking water and urine of volunteers in Arica, an area in the North of Chile with high levels of naturally occurring boron. Samples were taken of tap and bottled water (173 and 22, respectively), as well as urine from 22 volunteers, and subsequently analyzed by inductively coupled plasma spectroscopy (ICP-OES). Boron varied in public tap water from 0.22 to 11.3mgL(-1), with a median value of 2.9mgL(-1), while concentrations of boron in bottled water varied from 0.01 to 12.2mgL(-1). Neither tap nor bottled water samples had concentrations of boron within WHO recommended limits. The concentration of boron in urine varied between 0.45 and 17.4mgL(-1), with a median of 4.28mgL(-1) and was found to be correlated with tap water sampled from the homes of the volunteers (r=0.64). Authors highly recommend that in northern Chile - where levels of boron are naturally high - that the tap and bottled water supplies be monitored in order to protect public health and that regulatory standards also be established for boron in drinking water in order to limit exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Study of boron detection limit using the in-air PIGE set-up at LAMFI-USP

    Energy Technology Data Exchange (ETDEWEB)

    Moro, M. V.; Silva, T. F.; Trindade, G. F.; Added, N.; Tabacniks, M. H. [Institute of Physics, University of São Paulo, SP (Brazil)

    2014-11-11

    The quantification of small amounts of boron in materials is of extreme importance in different areas of materials science. Boron is an important contaminant and also a silicon dopant in the semiconductor industry. Boron is also extensively used in nuclear power plants, either for neutron shielding or for safety control and boron is an essential nutrient for life, either vegetable or animal. The production of silicon solar cells, by refining metallurgical-grade silicon (MG-Si) requires the control and reduction of several silicon contaminants to very low concentration levels. Boron is one of the contaminants of solar-grade silicon (SG-Si) that must be controlled and quantified at sub-ppm levels. In the metallurgical purification, boron quantification is usually made by Inductive Coupled Plasma Mass Spectrometry, (ICP-MS) but the results need to be verified by an independent analytical method. In this work we present the results of the analysis of silicon samples by Particle Induced Gamma-Ray Emission (PIGE) aiming the quantification of low concentrations of boron. PIGE analysis was carried out using the in-air external beam line of the Laboratory for Materials Analysis with Ion Beams (LAMFI-USP) by the {sup 10}B(p,αγ({sup 7}Be nuclear reaction, and measuring the 429 keV γ-ray. The in-air PIGE measurements at LAMFI have a quantification limit of the order of 10{sup 16} at/cm{sup 2}.

  6. Study of boron detection limit using the in-air PIGE set-up at LAMFI-USP

    International Nuclear Information System (INIS)

    Moro, M. V.; Silva, T. F.; Trindade, G. F.; Added, N.; Tabacniks, M. H.

    2014-01-01

    The quantification of small amounts of boron in materials is of extreme importance in different areas of materials science. Boron is an important contaminant and also a silicon dopant in the semiconductor industry. Boron is also extensively used in nuclear power plants, either for neutron shielding or for safety control and boron is an essential nutrient for life, either vegetable or animal. The production of silicon solar cells, by refining metallurgical-grade silicon (MG-Si) requires the control and reduction of several silicon contaminants to very low concentration levels. Boron is one of the contaminants of solar-grade silicon (SG-Si) that must be controlled and quantified at sub-ppm levels. In the metallurgical purification, boron quantification is usually made by Inductive Coupled Plasma Mass Spectrometry, (ICP-MS) but the results need to be verified by an independent analytical method. In this work we present the results of the analysis of silicon samples by Particle Induced Gamma-Ray Emission (PIGE) aiming the quantification of low concentrations of boron. PIGE analysis was carried out using the in-air external beam line of the Laboratory for Materials Analysis with Ion Beams (LAMFI-USP) by the 10 B(p,αγ( 7 Be nuclear reaction, and measuring the 429 keV γ-ray. The in-air PIGE measurements at LAMFI have a quantification limit of the order of 10 16 at/cm 2

  7. Lattice vibrations in α-boron

    International Nuclear Information System (INIS)

    Richter, W.

    1976-01-01

    α-rhombohedral boron is the simplest boron modification, with only 12 atoms per unit cell. The boron atoms are arranged in B 12 icosahedra, which are centered at the lattice points of a primitive rhombohedral lattice. The icosahedra are slightly deformed, as the five-fold symmetry of the ideal icosahedron is incompatible with any crystal structure. The lattice dynamics of α-boron are discussed in terms of the model developed by Weber and Thorpe. (Auth.)

  8. Evaluation of plasma disruption simulating short pulse laser irradiation experiments on boronated graphites and CFCs [carbon fibre composites

    International Nuclear Information System (INIS)

    Stad, R.C.L. van der; Klippel, H.T.; Kraaij, G.J.

    1992-12-01

    New experimental and numerical results from disruption heat flux simulations in the millisecond range with laser beams are discussed. For a number of graphites, boronated graphites and carbon fibre composites, the effective enthalpy of ablation is determined as 30 ± 3 MJ/kg, using laser pulses of about -.3 ms. The numerical results predict the experimental results rather well. No effect of boron doping on the ablation enthalpy is found. (author). 9 refs., 4 figs., 1 tab

  9. Evaluation of selective boron absorption in liver tumors

    International Nuclear Information System (INIS)

    Chiaraviglio, D.; Grazia, F. De; Zonta, A.; Altieri, S.; Pedroni, P.; Braghieri, B.; Fossati, F.; Pinelli, T.; Perotti, A.; Specchiarello, S.; Perlini, G.; Rief, H.

    1988-01-01

    The first step was a pharmacokinetic study to identify substances which are good boron transporters and are therefore able to provide a high concentration of the nuclide with respect to the healthy hepatic tissue in the MHN. For this purpose the tumor M5076/73 (M5), which matastasizes spontaneously in liver, was inoculated subcutaneously in a group of C57B1/6 mice. Thirty days after the inoculation, when 90% of the liver was invaded by metastases, a boric acid 0.3 M solution enriched to 96% 10 B was injected into the caudal vein. The mice were sacrificed and the liver was frozen for measurements. Boron concentration in the various samples was achieved by measuring the energy distribution of α particles produced in the nuclear reaction 10 B(n, α) 7 Li induced by a thermal neutron beam extracted from the Triga Mark II reactor,

  10. Design and construction of prompt-gamma spectroscopy facility applied to the boron determination; Diseno y construccion de una facilidad de espectrometria prompt-gamma aplicada a la determinacion de boro

    Energy Technology Data Exchange (ETDEWEB)

    Poblete, Victor; Henriquez, Carlos; Klein, Juan; Navarro, Gustavo [Comision Chilena de Energia Nuclear, Santiago (Chile). Centro de Estudios Nucleares La Reina, Comision Chis Nucleares La Reina, Comision Chi Reina

    1997-12-31

    A prompt-gamma spectroscopy facility was developed using the south tangential neutron beam of the RECH-1 research reactor for boron determination. The implementation of a thermal neutron beam was performed considering different aspects such as biological protection of working area and the beam collimation for a Ge detector, design and sample holder selection, standards and sample preparation. One ppm of Boron in different samples with counting-rate of 20 minutes and a good accuracy were determined. (author). 5 refs.

  11. Substitution of yttrium for boron in the structure of YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Dwelk, H.; Herrmann, R.; Pruss, N.; Freude, D.; Pfeifer, H.

    1989-01-01

    The influence of boron on superconducting properties of Y 1-x B x Ba 2 Cu 3 O 7-δ with x = 0 to 0.4 is studied. The analysis of 11 B NMR spectra and measurements of electric conductivity as a function of temperature show that boron is not incorporated into the YBa 2 Cu 3 O 7-δ framework on yttrium positions. (author)

  12. Axial channeling of boron ions into silicon

    International Nuclear Information System (INIS)

    La Ferla, A.; Galvagno, G.; Raineri, V.; Setola, R.; Rimini, E.; Carnera, A.; Gasparotto, A.

    1992-01-01

    Channeling boron implants were performed into (100) and (110) silicon substrates in the energy range 80-700 keV. The dose ranged between 3.5x10 11 and 1x10 15 atoms/cm 2 . The axial channeling concentration profiles of implanted B + were compared with that obtained for incidence along the random direction of the crystal and with that obtained by implantation in amorphous silicon. The electrical and chemical boron distributions were obtained by spreading resistance and secondary ion mass spectrometry measurements, respectively. The inelastic stopping power, S c , was extracted from the experimental maximum ranges for the [100] and [110] axis. The energy dependence of the electronic stopping power is given by S e = KE p with p [100] = 0.469±0.010 and p [110] = 0.554±0.004. Simulations obtained by the MARLOWE code, using the Oen-Robinson impact parameter dependent formula, for the electronic energy loss reproduce quite well the experimental depth profiles. (orig.)

  13. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.

  14. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D.

    1996-01-01

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope 10 B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/ 10 B reactions ( 10 B(n,α) 7 Li) resulting in the production of localized high LET radiation from alpha and 7 Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams

  15. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  16. Chemical separation of boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF/sub 3/ gas and the liquid molecular addition compounds of BF/sub 3/. Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF/sub 3/ solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references.

  17. Chemical separation of boron isotopes

    International Nuclear Information System (INIS)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF 3 gas and the liquid molecular addition compounds of BF 3 . Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF 3 solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references

  18. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    Science.gov (United States)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  19. Alpha shift correlation (ASC) method. Sensitivity of B-11 NMR shifts to halogen substitution in the ten-vertex nido and arachno series of boron clusters. Linear behavior of NMR effects

    Czech Academy of Sciences Publication Activity Database

    Štíbr, Bohumil

    2018-01-01

    Roč. 471, FEB (2018), s. 615-619 ISSN 0020-1693 R&D Projects: GA ČR(CZ) GA16-01618S Institutional support: RVO:61388980 Keywords : Boranes * Dicarbaboranes * NMR shifts- B NMR correlation 11 * Sensitivity factors * Substitution effects Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 2.002, year: 2016

  20. Two-channel neutron boron meter

    International Nuclear Information System (INIS)

    Chen Yongqing; Yin Guowei; Chai Songshan; Deng Zhaoping; Zhou Bin

    1993-09-01

    The two-channel neutron boron meter is a continuous on-line measuring device to measure boron concentration of primary cooling liquid of reactors. The neutron-leakage-compensation method is taken in the measuring mechanism. In the primary measuring configuration, the mini-boron-water annulus and two-channel and central calibration loop are adopted. The calibration ring and constant-temperature of boron-water can be remotely controlled by secondary instruments. With the microcomputer data processing system the boron concentration is automatically measured and calibrated in on-line mode. The meter has many advantages such as high accuracy, fast response, multi-applications, high reliability and convenience

  1. Magnetostriction of the polycrystalline Fe80Al20 alloy doped with boron

    International Nuclear Information System (INIS)

    Bormio-Nunes, Cristina; Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus; Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael

    2012-01-01

    Highlights: ► Fe 80 Al 20 polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. ► B stabilizes α-FeAl phase and a coexistence of α-FeAl + Fe 3 Al improves magnetostriction. ► Presence of Fe 2 B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe 80 Al 20 polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic α-FeAl and/or Fe 3 Al and Fe 2 B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of α-FeAl and a correspondent decrease of the Fe 3 Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe 2 B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe 80 Al 20 alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the α-FeAl and Fe 3 Al phases could be reached.

  2. The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach

    International Nuclear Information System (INIS)

    Sabirianov, Ildar F.; Brand, Jennifer I.; Fairchild, Robert W.

    2008-01-01

    Boron carbide diode detectors, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theoretical expectations. The performance of the all boron carbide neutron detector differs, as expected, from devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector). Diodes were fabricated from natural abundance boron (20% 10 B and 80% 11 B.) directly on the metal substrates and metal contacts applied to the films as grown. The total boron depth was on the order of 2 microns. This is clearly not a conversion-layer configuration. The diodes were exposed to thermal neutrons generated from a paraffin moderated plutonium-beryllium source in moderated and un-moderated, as well as shielded and unshielded experimental configurations, where the expected energy peaks at at 2.31 MeV and 2.8 MeV were clearly observed, albeit with some incomplete charge collection typical of thinner diode structures. The results are compared with other boron based thin film detectors and literature models. (authors)

  3. Boron-enhanced diffusion of boron from ultralow-energy boron implantation

    International Nuclear Information System (INIS)

    Agarwal, A.; Eaglesham, D.J.; Gossmann, H.J.; Pelaz, L.; Herner, S.B.; Jacobson, D.C.

    1998-01-01

    The authors have investigated the diffusion enhancement mechanism of BED (boron enhanced diffusion), wherein the boron diffusivity is enhanced three to four times over the equilibrium diffusivity at 1,050 C in the proximity of a silicon layer containing a high boron concentration. It is shown that BED is associated with the formation of a fine-grain polycrystalline silicon boride phase within an initially amorphous Si layer having a high B concentration. For 0.5 keV B + , the threshold implantation dose which leads to BED lies between 3 x 10 14 and of 1 x 10 15 /cm -2 . Formation of the shallowest possible junctions by 0.5 keV B + requires that the implant dose be kept lower than this threshold

  4. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction ...

  5. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  6. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    high temperature reaction between elemental boron and car- bon to form B4C is .... cible was used as the container for the electrolyte and also acted as an anode. ... chosen as cathode due to its availability, low cost, ease of fabrication and ...

  7. Effects of boron on experimental dental caries activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.T.Y.; Lin, H.S.

    1974-01-01

    Drinking water supplemented with 1, 10, 30, 50, 100 or 283 ppM of boron or 10 or 25 ppM of fluoride individually or in combination was supplied to weanling rats which were fed a cariogenic diet. Results showed that B did not exert a cariostatic effect nor did it synergize the F in reducing dental caries activity. 11 references, 4 figures, 3 tables.

  8. Biological effects of accelerated boron, carbon, and neon ions

    International Nuclear Information System (INIS)

    Grigoryev, Yu.G.; Ryzhov, N.I.; Popov, V.I.

    1975-01-01

    The biological effects of accelerated boron, carbon, and neon ions on various biological materials were determined. The accelerated ions included 10 B, 11 B, 12 C, 20 Ne, 22 Ne, and 40 Ar. Gamma radiation and x radiation were used as references in the experiments. Among the biological materials used were mammalian cells and tissues, yeasts, unicellular algae (chlorella), and hydrogen bacteria. The results of the investigation are given and the biophysical aspects of the problem are discussed

  9. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  10. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  11. Defects in boron carbide: First-principles calculations and CALPHAD modeling

    International Nuclear Information System (INIS)

    Saengdeejing, Arkapol; Saal, James E.; Manga, Venkateswara Rao; Liu Zikui

    2012-01-01

    The energetics of defects in B 4+x C boron carbide and β-boron are studied through first-principles calculations, the supercell phonon approach and the Debye–Grüneisen model. It is found that suitable sublattice models for β-boron and B 4+x C are B 101 (B,C) 4 and B 11 (B,C) (B,C,Va) (B,Va) (B,C,Va), respectively. The thermodynamic properties of B 4+x C, β-boron, liquid and graphite are modeled using the CALPHAD approach based on the thermochemical data from first-principles calculations and experimental phase equilibrium data in the literature. The concentrations of various defects are then predicted as a function of carbon composition and temperature.

  12. Model for the boron-doping dependence of the critical temperature of superconducting boron-doped diamond

    Czech Academy of Sciences Publication Activity Database

    Šopík, Břetislav

    2009-01-01

    Roč. 11, č. 10 (2009), 103026/1-103026/10 ISSN 1367-2630 R&D Projects: GA AV ČR IAA100100712 Grant - others:GAČR(CZ) GA202/07/0597 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * boron-doped diamond Subject RIV: BE - Theoretical Physics Impact factor: 3.312, year: 2009

  13. Design, synthesis and structure of new potential electrochemically active boronic acid-based glucose sensors

    DEFF Research Database (Denmark)

    Norrild, Jens Chr.; Søtofte, Inger

    2002-01-01

    In the course of our investigations on new boronic acid based carbohydrate sensors three new boronic acids 3, 7 and 11 containing a ferrocene moiety were synthesised. Their design includes an intramolecular B-N bonding motif in order to facilitate binding at physiological pH. We report the synthe......In the course of our investigations on new boronic acid based carbohydrate sensors three new boronic acids 3, 7 and 11 containing a ferrocene moiety were synthesised. Their design includes an intramolecular B-N bonding motif in order to facilitate binding at physiological pH. We report...... the synthesis of the compounds and our investigations on glucose complexation as studied by C-13 NMR spectroscopy. The crystal structure of 2,4,6-tris[2-(N-ferrocenylmethyl-N-methylaminomethyl) phenyl] boroxin (13) (boroxin of boronic acid 3) (boroxin = cyclotriboroxane) was obtained and compared...... with structures obtained of 2,4,6-tris[2-(N,N-dimethylaminomethyl)phenyl]boroxin (14) and 2,2-dimethyl-1,3-diyl[2-(N,N-dimethylaminomethyl)phenyl]boronate (15). The structure of 13 shows the existence of intramolecular B-N bonds in the solid phase....

  14. Boron uptake measurements in metastatic tumours in rat lung

    International Nuclear Information System (INIS)

    Bortolussi, S.; Altieri, S.; Bruschi, P.

    2006-01-01

    Lung carcinoma is the leading cause of cancer mortality worldwide; despite the introduction over the last few years of new therapeutic agents, very little progress has been made in terms of survival, and the overall prognosis for these patients remains poor. For these reasons any efforts to find and validate new effective therapeutic procedures for lung cancer are very timely and essential. To study the possibility to apply BNCT in the cure of diffuse pulmonary tumours, we created a BNCT Lung Project in Pavia, supported by Ministry of Education, University and Research (MIUR), in which Physicists, Medical Doctors and Biologists are involved. The first steps were; 1. development of an animal model for Boron uptake measurements in healthy and tumour lung tissues; 2. evaluation of the possibility to treat patients with epithermal neutron beams (See S. Altieri et al., this Conference); 3. in-vitro study of BNCT efficacy (see A. Zonta et al.). Spatial Boron distribution by neutron radiography in lung metastases from Colon Adenocarcinoma is reported; furthermore we present preliminary results of Boron concentration measures in rat lung tissues. The measures were performed using alpha spectrometry in thin tissue samples. (author)

  15. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao; Shen Ji

    2011-01-01

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  16. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China); Shen Ji, E-mail: shenji@ustc.edu.c [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China)

    2011-02-15

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  17. Mechanical and thermal measurements on a 11 m long beam screen in the LHC Magnet Test String during RUN 3A

    CERN Document Server

    Artoos, K; Kos, N

    1999-01-01

    Two eleven meter long beam screens were installed in the third dipole of the LHC Magnet Test String. Instrumentation was used to measure the mechanical and thermal behaviour of the screens during thermal transients and quenches. The horizontal deformation, angular displacement, heating of the screen as a result of the quench induced eddy currents and relative longitudinal displacement between beam screen and magnet end were measured.

  18. Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages

    Directory of Open Access Journals (Sweden)

    F.M.F. Abdel-Motagally

    2018-04-01

    Full Text Available Two field experiments were conducted to determine the effect of boron foliar application and water stress on yield of wheat plant grown in calcareous soil during 2013/2014 and 2014/2015 seasons. The highest mean values obtained against boron application time were potential contributor to total grains mass by improving the plant height (99.42 and 98.32 cm, spike length (11.86 and 11.72 cm, number of spikelets m−2 (332.65 and 324.35, grain yield plant−1 (21.56 and 20.26 g, 1000-grain weight (35.2 and 37.4 g and grain yield (1.87 and 1.85 ton fed.−1, which were recorded at normal irrigation level (100% from the amount of water consumption for wheat with boron spraying at booting stage (B1 in the first and second seasons, respectively. Furthermore, boron application significantly enhanced all studied growth traits under water stress levels (50% from the amount of water consumption for wheat compared to B-untreated plants. Boron spraying at booting stage enhances also plant pigments contents recording its highest mean values under normal water level (100% from the amount of water consumption for wheat. The reduction in stress markers (proline and H2O2 and the enhancement of plant pigments content under water stress levels (50% from the amount of water consumption for wheat by B spraying suggests an alleviating effect of boron foliar application to water stress in the test plant. This alleviating effect was more pronounced when B applied at booting stage. Therefore, booting stage was found to be the best time for boron application to get higher grains production and consequently, better economic returns of wheat. Keywords: Wheat, Growth stages, Boron application time, Water stress, Crop yield, Plant pigments, Proline, H2O2

  19. Modelling, Design, Growth and Characterization of Strain Balanced Quantum Cascade Lasers (3-11mum), grown by Gas Source Molecular Beam Epitaxy

    Science.gov (United States)

    Bandyopadhyay, Neelanjan

    Quantum Cascade Laser (QCL) is a compact room temperature (RT) source of mid-infrared radiation, which can be used for spectroscopic detection of trace amount of chemicals. The mid-infrared spectral range between (3-11 microm), has a dense array of absorption lines of numerous molecules, due to the presence of fundamental vibrational modes. The goal of this thesis can be subdivided into two parts. Firstly, short wavelength QCLs, emitting below 4microm, perform poorly at RT, due to inter-valley Gamma --- L carrier scattering, carrier escape to the continuum, heat removal from the core region at high power density corresponding to short wavelength operation, and large interface scattering due to highly strained materials. Secondly, it is desirable to have a single QCL based source emitting between 6-10microm, which be used to detect multiple molecules having their peak absorptions far apart, inside this spectral range. However, gain bandwidth of a single core QCL is relatively small, so laser emission cannot be tuned over a wide spectral range. This thesis describes the working principle of a QCL based on superlattice transport, rate equations, scattering mechanism, and waveguide design. The choice of the material system for this work and the fundamentals of band structure engineering has been derived. Gas source molecular beam epitaxy - growth optimization and characterization is one of the most important features of this work, especially for short wavelength QCLs, and has been explained in depth. Different strategies for design of active region design of short wavelength QCL and heterogeneous broadband QCL has been explored. The major milestones, of this research was the world's first watt level continuous wave (CW), RT demonstration at 3.76 microm, which was followed by another milestone of the first CW, RT demonstration at 3.39microm and 3.55microm, and finally the elusive result of QCL emitting at CW, RT at a wavelength as short as lambda ~3microm, a record. In

  20. Application of the boron neutron capture therapy to undifferentiated thyroid cancer using two boron compounds (BPA and BOPP)

    International Nuclear Information System (INIS)

    Viaggi, Mabel; Dagrosa, Maria A.; Juvenal, Guillermo J.; Pisarev, Mario A.; Longhino, Juan M.; Blaumann, Hernan R.; Calzetta Larrieu, Osvaldo A.; Kahl, Stephen B.

    2004-01-01

    We have shown the selective uptake of boronophenylalanine (BPA) by undifferentiated thyroid cancer (UTC) human cell line ARO, both in vitro and in vivo. Moreover, a 50% histologic cure of mice bearing the tumor was observed when the complete boron neutron capture therapy was applied. More recently we have analyzed the biodistribution of BOPP (tetrakis-carborane carboxylate ester of 2,4-bis-(ba-dihydroxyethyl)-deutero-porphyrin IX) and showed that when BOPP was injected 5 days before BPA, and the animals were sacrificed 60 min after the ip injection of BPA, a significant increase in boron uptake by the tumor was found (38-45ppm with both compounds Vs. 20 ppm with BPA alone). Five days post the ip BOPP injection and 1 hr after BPA, the ratios were: tumor/blood 3,75; tumor /distal skin 2. Other important ratios were tumor/thyroid 6,65 and tumor/lung 3,8. The present studies were performed in mice transplanted with ARO cells and injected with BOPP and BPA. Only in mice treated with the neutron beam and injected with the boronated compounds we observed a 100% control of tumor growth. Two groups of mice received different total absorbed doses: 3.00 and 6.01 Gy, but no further improvement in the outcome was found compared to the previous results using BPA alone (4.3 Gy). (author)

  1. Study of boron detection limit using the in-air PIGE set-up at LAMFI-USP

    Science.gov (United States)

    Moro, M. V.; Silva, T. F.; Trindade, G. F.; Added, N.; Tabacniks, M. H.

    2014-11-01

    The quantification of small amounts of boron in materials is of extreme importance in different areas of materials science. Boron is an important contaminant and also a silicon dopant in the semiconductor industry. Boron is also extensively used in nuclear power plants, either for neutron shielding or for safety control and boron is an essential nutrient for life, either vegetable or animal. The production of silicon solar cells, by refining metallurgical-grade silicon (MG-Si) requires the control and reduction of several silicon contaminants to very low concentration levels. Boron is one of the contaminants of solar-grade silicon (SG-Si) that must be controlled and quantified at sub-ppm levels. In the metallurgical purification, boron quantification is usually made by Inductive Coupled Plasma Mass Spectrometry, (ICP-MS) but the results need to be verified by an independent analytical method. In this work we present the results of the analysis of silicon samples by Particle Induced Gamma-Ray Emission (PIGE) aiming the quantification of low concentrations of boron. PIGE analysis was carried out using the in-air external beam line of the Laboratory for Materials Analysis with Ion Beans (LAMFI-USP) by the 10B ( p ,αγ(7Be nuclear reaction, and measuring the 429 keV γ-ray. The in-air PIGE measurements at LAMFI have a quantification limit of the order of 1016 at/cm2.

  2. Biodistribution of Boron compounds in an experimental model of liver metastases for Boron Neutron Capture (BNCT) Studies

    International Nuclear Information System (INIS)

    Garabalino, Marcela A.; Monti Hughes, Andrea; Molinari, Ana J.; Heber, Elisa M.; Pozzi, Emiliano C.C.; Itoiz, Maria E.; Trivillin, Veronica A.; Schwint, Amanda E.; Nievas, Susana; Aromando, Romina F.

    2009-01-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10 B carriers in tumors followed by irradiation with thermal or epithermal neutrons. The high linear energy transfer alpha particles and recoiling 7 Li nuclei emitted during the capture of a thermal neutron by a 10 B nucleus have a short range and a high biological effectiveness. Thus, BNCT would potentially target neoplastic tissue selectively. In previous studies we demonstrated the therapeutic efficacy of different BNCT protocols in an experimental model of oral cancer. More recently we performed experimental studies in normal rat liver that evidenced the feasibility of treating liver metastases employing a novel BNCT protocol proposed by JEC based on ex-situ treatment and partial liver auto-transplant. The aim of the present study was to perform biodistribution studies with different boron compounds and different administration protocols to determine the protocols that would be therapeutically useful in 'in vivo' BNCT studies at the RA-3 Nuclear Reactor in an experimental model of liver metastases in rats. Materials and Methods. A total of 70 BDIX rats (Charles River Lab., MA, USA) were inoculated in the liver with syngeneic colon cancer cells DH/DK12/TRb (ECACC, UK) to induce the development of subcapsular metastatic nodules. 15 days post-inoculation the animals were used for biodistribution studies. A total of 11 protocols were evaluated employing the boron compounds boronophenylalanine (BPA) and GB-10 (Na 2 10 B 1 -0H 10 ), alone or combined employing different doses and administration routes. Tumor, normal tissue and blood samples were processed for boron measurement by ICP-OES. Results. Several protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue, i.e. BPA 15.5 mg 10 B/kg iv + GB-10 50 mg 10 B/kg iv; BPA 46.5 mg 10 B/kg ip; BPA 46.5 mg 10 B/kg ip

  3. Helium diffusion in irradiated boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.

    1981-03-01

    Boron carbide has been internationally adopted as the neutron absorber material in the control and safety rods of large fast breeder reactors. Its relatively large neutron capture cross section at high neutron energies provides sufficient reactivity worth with a minimum of core space. In addition, the commercial availability of boron carbide makes it attractive from a fabrication standpoint. Instrumented irradiation experiments in EBR-II have provided continuous helium release data on boron carbide at a variety of operating temperatures. Although some microstructural and compositional variations were examined in these experiments most of the boron carbide was prototypic of that used in the Fast Flux Test Facility. The density of the boron carbide pellets was approximately 92% of theoretical. The boron carbide pellets were approximately 1.0 cm in diameter and possessed average grain sizes that varied from 8 to 30 μm. Pellet centerline temperatures were continually measured during the irradiation experiments

  4. Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats

    International Nuclear Information System (INIS)

    Trivillin, V.A.; Garabalino, M.A.; Colombo, L.L.

    2013-01-01

    Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats Introduction: Boron Neutron Capture Therapy (BNCT) is based on selective tumor uptake of boron compounds, followed by neutron irradiation. BNCT was proposed for the treatment of unresectable, diffuse lung metastases. The aim of the present study was to perform BNCT studies in an experimental model of lung metastases. Materials and Methods: 3 x 106/0.5 ml colon carcinoma cells (DHD/K12/TRb) were injected iv in syngeneic BDIX rats. Three weeks post-inoculation, rats with diffuse lung metastases were used for in vivo BNCT studies in the RA-3 Nuclear Reactor. Based on previous biodistribution studies and computational dosimetry with Monte Carlo simulation, 2 doses were prescribed, i.e. 4 Gy and 8 Gy minimum absorbed dose to tumor. The animals were assigned to 5 experimental groups (n= 4 to 8) at each dose level: T0 (euthanized pre-treatment), BPA-BNCT, Comb-BNCT (BPA+GB-10), Beam only (background dose) and Sham (same manipulation, no treatment). Boron concentration was measured in a blood sample taken pre-irradiation to verify that the value was in the range established in previous biodistribution studies. The animals were followed clinically for 2 weeks after neutron irradiation and then euthanized to assess the response of tumor and normal lung, macroscopically and histologically. To date we have evaluated the end-point weight of lung (normal lung + metastases) and % lung weight/body weight as an indicator of tumor growth. Results: The statistical analysis (ANOVA) of % lung weight/body weight showed statistically significant differences (p<0.05) between groups T0 (0.79 ± 0.38) and Sham (1.87 ± 0.91). No statistically significant differences were observed between the Beam only groups (at both dose levels) and Sham. Similar and statistically significant tumor control was induced in the groups BPA-BNCT Low dose (LD) (0.56 ± 0.11), BPA-BNCT High dose (HD) (0.80 ± 0.16), Comb

  5. Primary system boron dilution analysis

    International Nuclear Information System (INIS)

    Crump, R.J.; Naretto, C.J.; Borgen, R.A.; Rockhold, H.C.

    1978-01-01

    The results are presented for an analysis conducted to determine the potential paths through which nonborated water or water with insufficient boron concentration might enter the LOFT primary coolant piping system or reactor vessel to cause dilution of the borated primary coolant water. No attempt was made in the course of this analysis to identify possible design modifications nor to suggest changes in administrative procedures or controls

  6. Biomedical irradiation system for boron neutron capture therapy at the Kyoto University Reactor

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kanda, K.; Ujeno, Y.; Ishida, M.R.

    1990-01-01

    Physics studies related to radiation source, spectroscopy, beam quality, dosimetry, and biomedical applications using the Kyoto University Reactor Heavy Water Facility are described. Also, described are a Nickel Mirror Neutron Guide Tube and a Super Mirror Neutron Guide Tube that are used both for the measurement of boron concentration in phantom and living tissue and for precise measurements of neutron flux in phantom in the presence of both light and heavy water. Discussed are: (1) spectrum measurements using the time of flight technique, (2) the elimination of gamma rays and fast neutrons from a thermal neutron irradiation field, (3) neutron collimation without producing secondary gamma rays, (4) precise neutron flux measurements, dose estimation, and the measurement of boron concentration in tumor and its periphery using guide tubes, (5) the dose estimation of boron-10 for the first melanoma patient, and (6) special-purpose biological irradiation equipment. Other related subjects are also described

  7. Biomedical irradiation system for boron neutron capture therapy at the Kyoto University reactor

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kanda, K.; Ujeno, Y.; Ishida, M.R.

    1990-01-01

    Physics studies related to radiation source, spectroscopy, beam quality, dosimetry, and biomedical applications using the Kyoto University Reactor Heavy Water Facility are described. Also, described are a Nickel Mirror Neutron Guide Tube and a Super Mirror Neutron Guide Tube that are used both for the measurement of boron concentration in phantom and living tissue and for precise measurements of neutron flux in phantom in the presence of both light and heavy water. Discussed are: (1) spectrum measurements using the time of flight technique, (2) the elimination of gamma rays and fast neutrons from a thermal neutron irradiation field, (3) neutron collimation without producing secondary gamma rays, (4) precise neutron flux measurements, dose estimation, and the measurement of boron concentration in tumor and its periphery using guide tubes, (5) the dose estimation of boron-10 for the first melanoma patient, and (6) special-purpose biological irradiation equipment. Other related subjects are also described

  8. Computer modeling the boron compound factor in normal brain tissue

    International Nuclear Information System (INIS)

    Gavin, P.R.; Huiskamp, R.; Wheeler, F.J.; Griebenow, M.L.

    1993-01-01

    The macroscopic distribution of borocaptate sodium (Na 2 B 12 H 11 SH or BSH) in normal tissues has been determined and can be accurately predicted from the blood concentration. The compound para-borono-phenylalanine (p-BPA) has also been studied in dogs and normal tissue distribution has been determined. The total physical dose required to reach a biological isoeffect appears to increase directly as the proportion of boron capture dose increases. This effect, together with knowledge of the macrodistribution, led to estimates of the influence of the microdistribution of the BSH compound. This paper reports a computer model that was used to predict the compound factor for BSH and p-BPA and, hence, the equivalent radiation in normal tissues. The compound factor would need to be calculated for other compounds with different distributions. This information is needed to design appropriate normal tissue tolerance studies for different organ systems and/or different boron compounds

  9. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  10. Boron removal from geothermal waters by electrocoagulation

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar; Yilmaz, M. Tolga; Paluluoglu, Cihan

    2008-01-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm 2 , but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%

  11. Removal of boron (B) from waste liquors.

    Science.gov (United States)

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  12. Quantum beams

    International Nuclear Information System (INIS)

    Uesaka, Mitsuru

    2003-01-01

    Present state and future prospect are described on quantum beams for medical use. Efforts for compactness of linac for advanced cancer therapy have brought about the production of machines like Accuray's CyberKnife and TOMOTHERAPY (Tomo Therapy Inc.) where the acceleration frequency of X-band (9-11 GHz) is used. For cervical vein angiography by the X-band linac, a compact hard X-ray source is developed which is based on the (reverse) Compton scattering through laser-electron collision. More intense beam and laser are necessary at present. A compact machine generating the particle beam of 10 MeV-1 GeV (laser-plasma accelerator) for cancer therapy is also developed using the recent compression technique (chirped-pulse amplification) to generate laser of >10 TW. Tokyo University is studying for the electron beam with energy of GeV order, for the laser-based synchrotron X-ray, and for imaging by the short pulse ion beam. Development of advanced compact accelerators is globally attempted. In Japan, a virtual laboratory by National Institute of Radiological Sciences (NIRS), a working group of universities and research facilities through the Ministry of Education, Culture, Sports, Science and Technology, started in 2001 for practical manufacturing of the above-mentioned machines for cancer therapy and for angiography. Virtual Factory (Inc.), a business venture, is to be stood in future. (N.I.)

  13. Comparative study of two boron compounds (BPA and BOPP) for the application of BNCT to an animal model of undifferentiated thyroid cancer

    International Nuclear Information System (INIS)

    Dagrosa, Maria A.; Viaggi, Mabel; Juvenal, Guillermo; Pisarev, Mario A.

    2003-01-01

    Boron neutron capture therapy (BNCT) is based on the selective uptake of certain boron compounds by tumors. Once the uptake, relative to normal tissues, is equal of greater than 3, the tumoral area is irradiated with an appropriate neutron beam. The 10 B is then converted into 11 B and this decays releasing an atom of Li, gamma rays and alpha particles. These latter have a high linear energy transfer (LET) and will cause local damage, eventually killing the tumoral cells. At the present time several clinical trials are being conducted in different countries to treat patients with glioblastoma multiform and melanomas. So far the results obtained, specially with this last disease, are quite encouraging. Undifferentiated thyroid cancer (UTC) is a very aggressive tumor which does not respond to the therapies available at the present. Usually it has a very bad prognosis with a very short survival period. We have previously shown that the human UTC cell line ARO has an uptake of borophenylanine (BPA) significantly greater than normal thyroid or than human follicular adenoma cells in culture. Moreover, an animal model for UTC was developed in our laboratory by transplanting the human ARO cells into nude mice. This model closely resembles the evolution of human disease and even produces lung metastasis, like the human. In the present studies we have compared the uptake of two boron compounds: BPA and boronated porphyrin (BOPP). BPA was administered via ip in a dose of 600 mg/kg body weight, while BOPP was given either ip or iv, in doses of 10 and 100 mg/kg body weight. The animals were sacrificed at different times after the injection: up to 150 min for BPA and after 24 h with BOPP. The concentration of boron was determined by ICP-AES. The results obtained showed that the uptake of BPA was significantly greater in the tumoral area and in the infiltrated surrounding skin than in the other organs examined (liver, kidney, lung, mice thyroid, blood, spleen and distal skin

  14. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  15. TU-E-BRA-11: Volume of Interest Cone Beam CT with a Low-Z Linear Accelerator Target: Proof-of-Concept.

    Science.gov (United States)

    Robar, J; Parsons, D; Berman, A; MacDonald, A

    2012-06-01

    This study demonstrates feasibility and advantages of volume of interest (VOI) cone beam CT (CBCT) imaging performed with an x-ray beam generated from 2.35 MeV electrons incident on a carbon linear accelerator target. The electron beam energy was reduced to 2.35 MeV in a Varian 21EX linear accelerator containing a 7.6 mm thick carbon x-ray target. Arbitrary imaging volumes were defined in the planning system to produce dynamic MLC sequences capable of tracking off-axis VOIs in phantoms. To reduce truncation artefacts, missing data in projection images were completed using a priori DRR information from the planning CT set. The feasibility of the approach was shown through imaging of an anthropomorphic phantom and the head-and-neck section of a lamb. TLD800 and EBT2 radiochromic film measurements were used to compare the VOI dose distributions with those for full-field techniques. CNR was measured for VOIs ranging from 4 to 15 cm diameter. The 2.35 MV/Carbon beam provides favorable CNR characteristics, although marked boundary and cupping artefacts arise due to truncation of projection data. These artefacts are largely eliminated using the DRR filling technique. Imaging dose was reduced by 5-10% and 75% inside and outside of the VOI, respectively, compared to full-field imaging for a cranial VOI. For the 2.35 MV/Carbon beam, CNR was shown to be approximately invariant with VOI dimension for bone and lung objects. This indicates that the advantage of the VOI approach with the low-Z target beam is substantial imaging dose reduction, not improvement of image quality. VOI CBCT using a 2.35 MV/Carbon beam is a feasible technique whereby a chosen imaging volume can be defined in the planning system and tracked during acquisition. The novel x-ray beam affords good CNR characteristics while imaging dose is localized to the chosen VOI. Funding for this project has been received from Varian Medical, Incorporated. © 2012 American Association of Physicists in Medicine.

  16. The Swedish facility for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Skoeld, K.; Capala, J. [Studsvik Medical AB (Sweden); Kierkegaard, J.; Haakansson, R. [Studsvik Nuclear AB (Sweden); Gudowska, I. [Karolinska Institute (Sweden)

    2000-10-01

    A BNCT (Boron Neutron Capture Therapy) facility has been constructed at the R2-0 reactor at Studsvik, Sweden. R2-0 is a 1 MW, open core, pool reactor. The reactor core is suspended on a movable tower and can be positioned anywhere in the pool. The BNCT facility includes two adjacent, parallel filter/moderator configurations and the reactor core is positioned in front of any of them as appropriate. One of the resulting neutron beams has been optimized for clinical irradiations with a filter/moderator system that allows easy variation of the neutron spectrum from the thermal to the epithermal energy range and with an extended collimator for convenient patient positioning. The other beam has been designed for radiobiological research and is equipped with a heavy water moderator and a large irradiation cavity with a uniform field of thermal neutrons. (author)

  17. Frequency mixing in boron carbide laser ablation plasmas

    Science.gov (United States)

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; de Nalda, R.; Castillejo, M.

    2015-05-01

    Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B4C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  18. The Swedish facility for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Skoeld, K.; Capala, J.; Kierkegaard, J.; Haakansson, R.; Gudowska, I.

    2000-01-01

    A BNCT (Boron Neutron Capture Therapy) facility has been constructed at the R2-0 reactor at Studsvik, Sweden. R2-0 is a 1 MW, open core, pool reactor. The reactor core is suspended on a movable tower and can be positioned anywhere in the pool. The BNCT facility includes two adjacent, parallel filter/moderator configurations and the reactor core is positioned in front of any of them as appropriate. One of the resulting neutron beams has been optimized for clinical irradiations with a filter/moderator system that allows easy variation of the neutron spectrum from the thermal to the epithermal energy range and with an extended collimator for convenient patient positioning. The other beam has been designed for radiobiological research and is equipped with a heavy water moderator and a large irradiation cavity with a uniform field of thermal neutrons. (author)

  19. The hot working characteristics of a boron bearing and a conventional low carbon steel

    International Nuclear Information System (INIS)

    Stumpf, Waldo; Banks, Kevin

    2006-01-01

    Constitutive hot working constants were determined for an 11 ppm boron low carbon strip steel and compared from 875 to 1140 deg. C and strain rates of 0.001-2.5 s -1 to a high nitrogen low carbon strip steel. The boron steel showed a different hot working behaviour than the conventional steel with the steady state flow stress about 50-60% higher, the peak strain more than 50% higher and the eventual ferrite grain size about 40% smaller, if compared at the same temperature compensated strain rates or Z values. This difference persisted where the soaking temperature before compression was varied between 1140 and 1250 deg. C, proving that undissolved AlN in the boron-bearing steel was not responsible. With systematically varied linear cooling rates after hot working, the final ferrite grain size in the boron steel is finer and is independent of the two Z values applied during hot working. Retarded softening by dynamic recrystallisation during hot working in the boron containing steel is probably caused by boron solute drag of moving grain boundaries

  20. The second advanced ICFA [International Committee for Future Accelerators] beam dynamics workshop, Lugano, Switzerland, April 11-16, 1988: Foreign trip report

    International Nuclear Information System (INIS)

    Ohnuma, Shoroku.

    1988-01-01

    This paper summarizes the trip made by Shoroku Ohnuma to the Second Advanced ICFA Beam Dynamics Workshop in Switzerland. Discussed are the experimental and theoretical studies conducted on aperture- related limitations of storage ring performance. Lepton and hadron storage ring machines are mainly mentioned

  1. Boron ion irradiation induced structural and surface modification of glassy carbon

    International Nuclear Information System (INIS)

    Kalijadis, Ana; Jovanović, Zoran; Cvijović-Alagić, Ivana; Laušević, Zoran

    2013-01-01

    The incorporation of boron into glassy carbon was achieved by irradiating two different types of targets: glassy carbon polymer precursor and carbonized glassy carbon. Targets were irradiated with a 45 keV B 3+ ion beam in the fluence range of 5 × 10 15 –5 × 10 16 ions cm −2 . For both types of targets, the implanted boron was located in a narrow region under the surface. Following irradiation, the polymer was carbonized under the same condition as the glassy carbon samples (at 1273 K) and examined by Raman spectroscopy, temperature programmed desorption, hardness and cyclic voltammetry measurements. Structural analysis showed that during the carbonization process of the irradiated polymers, boron is substitutionally incorporated into the glassy carbon structure, while for irradiated carbonized glassy carbon samples, boron irradiation caused an increase of the sp 3 carbon fraction, which is most pronounced for the highest fluence irradiation. Further analyses showed that different nature of boron incorporation, and thus changed structural parameters, are crucial for obtaining glassy carbon samples with modified mechanical, chemical and electrochemical properties over a wide range

  2. Equations of state and melting curve of boron carbide in the high-pressure range of shock compression

    Energy Technology Data Exchange (ETDEWEB)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Shakhrai, D. V. [Russian Academy of Sciences, Institute for Problems in Chemical Physics (Russian Federation)

    2017-03-15

    We have constructed the equations of state for crystalline boron carbide B{sub 11}C (C–B–C) and its melt under high dynamic and static pressures. A kink on the shock adiabat for boron carbide has been revealed in the pressure range near 100 GPa, and the melting curve with negative curvature in the pressure range 0–120 GPa has been calculated. The results have been used for interpreting the kinks on the shock adiabat for boron carbide in the pressure range of 0–400 GPa.

  3. Optimal timing of neutron irradiation for boron neutron capture therapy after intravenous infusion of sodium borocaptate in patients with glioblastoma

    International Nuclear Information System (INIS)

    Kageji, Teruyoshi; Nagahiro, Shinji; Kitamura, Katsushi; Nakagawa, Yoshinobu; Hatanaka, Hiroshi; Haritz, Dietrich; Grochulla, Frank; Haselsberger, Klaus; Gabel, Detlef

    2001-01-01

    Purpose: A cooperative study in Europe and Japan was conducted to determine the pharmacokinetics and boron uptake of sodium borocaptate (BSH: Na 2 B 12 H 11 SH), which has been introduced clinically as a boron carrier for boron neutron capture therapy in patients with glioblastoma. Methods and Materials: Data from 56 patients with glioblastoma who received BSH intravenous infusion were retrospectively reviewed. The pharmacokinetics were evaluated in 50 patients, and boron uptake was investigated in 47 patients. Patients received BSH doses between 12 and 100 mg/kg of body weight. For the evaluation, the infused boron dose was scaled linearly to 100 mg/kg BSH. Results: In BSH pharmacokinetics, the average value for total body clearance, distribution volume of steady state, and mean residence time was 3.6±1.5 L/h, 223.3±160.7 L, and 68.0±52.5 h, respectively. The average values of the boron concentration in tumor adjusted to 100 mg/kg BSH, the boron concentration in blood adjusted to 100 mg/kg BSH, and the tumor/blood boron concentration ratio were 37.1±35.8 ppm, 35.2±41.8 ppm, and 1.53±1.43, respectively. A good correlation was found between the logarithmic value of T adj and the interval from BSH infusion to tumor tissue sampling. About 12-19 h after infusion, the actual values for T adj and tumor/blood boron concentration ratio were 46.2±36.0 ppm and 1.70±1.06, respectively. The dose ratio between tumor and healthy tissue peaked in the same interval. Conclusion: For boron neutron capture therapy using BSH administered by intravenous infusion, this work confirms that neutron irradiation is optimal around 12-19 h after the infusion is started

  4. A comparative study of two digestion methods employed for the determination boron in ferroboron used as an advanced shielding material

    International Nuclear Information System (INIS)

    Kamble, Granthali S.; Manisha, V.; Venkatesh, K.

    2015-01-01

    Shielding of nuclear reactor core is an important requirement of fast reactors. An important objective of future Fast Breeder Reactors (FBRs) is to reduce the volume of shields. A large number of materials have been considered for use to reduce the neutron flux to acceptable levels. A shield material which brings down the energy of neutrons by elastic and inelastic scattering along with absorption will be more effective. Ferro boron is identified as one of the advanced shielding materials considered for use in future FBRs, planned to be constructed in India. Ferroboron is an economical and indigenously available material which qualifies as a promising shield material through literature survey and scoping calculations. Experiments have been conducted in KAMINI reactor to understand the effectiveness of prospective shield material Ferro-boron as an in-core shield material for future FBRs. The Ferro boron used in these experiments contained 11.8% and 15% of boron. Precise determination of boron content in these ferro boron samples is very important to determine its effectiveness as a shield material. In this work a comparative study was carried out to determine the boron content in ferro boron samples. In the first method the sample was treated with incremental amounts of nitric acid under reflux (to prevent rigorous reaction and volatalisation of boron). The solution was gradually heated and the solution was filtered through a Whatman Filter paper no. 41. The undissolved ferro boron residue collected in the filter paper after filtration, is transferred to a platinum crucible; mixed with sodium carbonate and is ashed. The crucible is placed over a burner for 1 h to fuse the contents. The fused mass is leached in dilute hydrochloric acid, added to the nitric acid filtrate and made up to pre-determined volume

  5. A technique to prepare boronated B72.3 monoclonal antibody for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Ranadive, G.N.; Rosenzweig, H.S.; Epperly, M.W.

    1993-01-01

    B72.3 monoclonal antibody has been successfully boronated using mercaptoundecahydro-closo-dodecaborate (boron cage compound). The reagent was incorporated by first reacting the lysine residues of the antibody with m-maleimidobenzoyl succinimide ester (MBS), followed by Michael addition to the maleimido group by the mercapto boron cage compound to form a physiologically stable thioether linkage. Boron content of the antibody was determined by atomic absorption spectroscopy. For biodistribution studies, boronated antibody was radioiodinated with iodogen. 125 I-labeled and boronated B72.3 monoclonal antibody demonstrated clear tumor localization when administered via tail vein injections to athymic nude mice bearing LS174-T tumor xenografts. Boronated antibody was calculated to deliver 10 6 boron atoms per tumor cell. Although this falls short of the specific boron content originally proposed as necessary for boron neutron capture therapy (BNCT), recent calculations suggest that far fewer atoms of 10 B per tumor cell would be necessary to effect successful BNCT when the boron is targeted to the tumor cell membrane. (author)

  6. Progress in neutron beam development at the HFR Petten (feasibility study for a BNCT facility)

    International Nuclear Information System (INIS)

    Constantine, G.; Moss, R.L.; Watkins, P.R.D.; Perks, C.A.; Delafield, H.J.; Ross, D.; Voorbraak, W.P.; Paardekooper, A.; Freudenreich, W.E.; Stecher-Rasmussen, F.

    1990-08-01

    Boron Neutron Capture Therapy, using intermediate energy neutrons to achieve the deep penetration essential for treating brain tumours, can be implemented with a filtered reactor neutron beam. This is designed to minimize the mean energy of the neutrons to keep proton recoil damage to the scalp within normal tissue tolerance limits whilst delivering the required thermal neutron fluence to the tumour over a reasonably short period. This can only be realized in conjunction with a high power density reactor. At the Joint Research Centre Petten an optimized neutron filter is currently being built for installation into the HB11 beam tube of the High Flux Reactor HFR. Part of the development leading to this design has been an extensive study of broad spectrum, filtered beam performance on the HB7 beam tube facility. A wide range of calculations was performed using the Monte Carlo code, MCPN, supported by validation experiments in which several filter configuration incorporating aluminium, sulphur, liquid argon, titanium and cadmium were installed for low power measurements of the neutron fluence rate, neutron spectra and beam gamma-ray contamination. The measurements were carried out within a successful European collaboration. Evaluations were made of the reactor core edge and unfiltered beam spectra, for comparison with MCNP calculations. Multi-foil activation methods and also gamma dose determination in the filtered beam using thermo-luminescent detectors were performed by the ECN. The Harwell/ Birmingham University collaborators undertook the neutron spectrum measurements in the filtered beam. proton recoil spectrometry was used above 30 keV, combined with a multi-sphere and BF 3 chamber response modification technique. Subsequent spectrum adjustment was carried out with the SENSAK code. The agreement between the calculated and measured spectra has given confidence in the reactor and filter modelling methods used to design the HB11 therapy facility. (author). 12 refs

  7. Boron carbide synthesis by carbothermic reduction of boron oxide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Paschoal, J.O.A.

    1988-01-01

    Boron carbide (B 4 C) is a ceramic material of technological applications due to its extreme hardness and high chemical as well as thermal stability. Some parameters of the process for obtaining B 4 C by carbothermic reduction of B 2 O 3 have been determined. The starting powders and the final products have been analysed by chemical, spectrographic and X-ray diffraction methods. The results show that the B 4 C obtained by the carbothermic reduction process is suitable for applications with a definite determination of the free carbon content. (author) [pt

  8. Radiological analysis of plutonium glass batches with natural/enriched boron

    International Nuclear Information System (INIS)

    Rainisch, R.

    2000-01-01

    The disposition of surplus plutonium inventories by the US Department of Energy (DOE) includes the immobilization of certain plutonium materials in a borosilicate glass matrix, also referred to as vitrification. This paper addresses source terms of plutonium masses immobilized in a borosilicate glass matrix where the glass components include both natural boron and enriched boron. The calculated source terms pertain to neutron and gamma source strength (particles per second), and source spectrum changes. The calculated source terms corresponding to natural boron and enriched boron are compared to determine the benefits (decrease in radiation source terms) for to the use of enriched boron. The analysis of plutonium glass source terms shows that a large component of the neutron source terms is due to (a, n) reactions. The Americium-241 and plutonium present in the glass emit alpha particles (a). These alpha particles interact with low-Z nuclides like B-11, B-10, and O-17 in the glass to produce neutrons. The low-Z nuclides are referred to as target particles. The reference glass contains 9.4 wt percent B 2 O 3 . Boron-11 was found to strongly support the (a, n) reactions in the glass matrix. B-11 has a natural abundance of over 80 percent. The (a, n) reaction rates for B-10 are lower than for B-11 and the analysis shows that the plutonium glass neutron source terms can be reduced by artificially enriching natural boron with B-10. The natural abundance of B-10 is 19.9 percent. Boron enriched to 96-wt percent B-10 or above can be obtained commercially. Since lower source terms imply lower dose rates to radiation workers handling the plutonium glass materials, it is important to know the achievable decrease in source terms as a result of boron enrichment. Plutonium materials are normally handled in glove boxes with shielded glass windows and the work entails both extremity and whole-body exposures. Lowering the source terms of the plutonium batches will make the handling

  9. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Fitzsimmons, M.; Pynn, R.

    1997-01-01

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  10. New techniques for producing thin boron films

    International Nuclear Information System (INIS)

    Thomas, G.E.

    1988-01-01

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs

  11. Boron rates for triticale and wheat crops

    Directory of Open Access Journals (Sweden)

    Corrêa Juliano Corulli

    2005-01-01

    Full Text Available No reports are registered on responses to boron fertilization nutrient deficiency and toxicity in triticale crops. The aim of this study was to evaluate triticale response to different rates of boron in comparison to wheat in an hapludox with initial boron level at 0.08 mg dm-3 4 4 factorial design trial completely randomized blocks design (n = 4. Boron rates were 0; 0.62; 1.24 and 1.86 mg dm-3; triticale cultivars were IAC 3, BR 4 and BR 53 and IAPAR 38 wheat crop was used for comparison. The wheat (IAPAR 38 crop presented the highest boron absorption level of all. Among triticale cultivars, the most responsive was IAC 53, presenting similar characteristics to wheat, followed by BR 4; these two crops are considered tolerant to higher boron rates in soil. Regarding to BR 53, no absorption effect was observed, and the cultivars was sensitive to boron toxicity. Absorption responses differed for each genotype. That makes it possible to choose and use the best-adapted plants to soils with different boron rates.

  12. Hot flow behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; El-Wahabi, M.; Cabrera, J.M.

    2008-01-01

    This research work studies the effect of boron contents on the hot flow behavior of boron microalloyed steels. For this purpose, uniaxial hot-compression tests were carried out in a low carbon steel microalloyed with four different amounts of boron over a wide range of temperatures (950, 1000, 1050 and 1100 deg. C) and constant true strain rates (10 -3 , 10 -2 and 10 -1 s -1 ). Experimental results revealed that both peak stress and peak strain tend to decrease as boron content increases, which indicates that boron additions have a solid solution softening effect. Likewise, the flow curves show a delaying effect on the kinetics of dynamic recrystallization (DRX) when increasing boron content. Deformed microstructures show a finer austenitic grain size in the steel with higher boron content (grain refinement effect). Results are discussed in terms of boron segregation towards austenitic grain boundaries during plastic deformation, which increases the movement of dislocations, enhances the grain boundary cohesion and modificates the grain boundary structure

  13. Elastic modulus and fracture of boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Walther, G.

    1978-12-01

    The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C

  14. Defect and dopant depth profiles in boron-implanted silicon studied with channeling and nuclear reaction analysis

    NARCIS (Netherlands)

    Vos, M.; Boerma, D.O.; Smulders, P.J.M.; Oosterhoff, S.

    1986-01-01

    Single crystals of silicon were implanted at RT with 1 MeV boron ions to a dose of 1 × 1015 ions/cm2. The depth profile of the boron was measured using the 2060-keV resonance of the 11B(α, n)14N nuclear reaction. The distribution of the lattice disorder as a function of depth was determined from

  15. Implantation annealing by scanning electron beam

    International Nuclear Information System (INIS)

    Jaussaud, C.; Biasse, B.; Cartier, A.M.; Bontemps, A.

    1983-11-01

    Samples of ion implanted silicon (BF 2 , 30keV, 10 15 ions x cm -2 ) have been annealed with a multiple scan electron beam, at temperatures ranging from 1000 to 1200 0 C. The curves of sheet resistance versus time show a minimum. Nuclear reaction measurements of the amount of boron remaining after annealing show that the increase in sheet resistance is due to a loss of boron. The increase in junction depths, measured by spreading resistance on bevels is between a few hundred A and 1000 A [fr

  16. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H J; Nesper, R [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  17. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zajtsev, A.M.

    1985-01-01

    Three optically active defects are detected in mono- and polycrystal cubic boron nitride (β-BN). Analysis of intensity of temperature dependences, halfwidth and energy shift of 1.76 eV narrow phononless line (center GC-1) makes it possible to interprete the observed cathodoluminescence spectra an optical analog of the Moessbaner effect. Comparison of the obtained results with the known data for diamond monocrystals makes it possible to suggest that the detected center GC-1 is a nitrogen vacancy . The conclusion, concerning the Moessbauer optical spectra application, is made to analyze structural perfection of β-BN crystal lattice

  18. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  19. TU-AB-BRC-11: Moving a GPU-OpenCL-Based Monte Carlo (MC) Dose Engine Towards Routine Clinical Use: Automatic Beam Commissioning and Efficient Source Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Folkerts, M; Jiang, S; Jia, X [UT Southwestern Medical Ctr, Dallas, TX (United States); Li, Y [Beihang University, Beijing (China)

    2016-06-15

    Purpose: We have previously developed a GPU-OpenCL-based MC dose engine named goMC with built-in analytical linac beam model. To move goMC towards routine clinical use, we have developed an automatic beam-commissioning method, and an efficient source sampling strategy to facilitate dose calculations for real treatment plans. Methods: Our commissioning method is to automatically adjust the relative weights among the sub-sources, through an optimization process minimizing the discrepancies between calculated dose and measurements. Six models built for Varian Truebeam linac photon beams (6MV, 10MV, 15MV, 18MV, 6MVFFF, 10MVFFF) were commissioned using measurement data acquired at our institution. To facilitate dose calculations for real treatment plans, we employed inverse sampling method to efficiently incorporate MLC leaf-sequencing into source sampling. Specifically, instead of sampling source particles control-point by control-point and rejecting the particles blocked by MLC, we assigned a control-point index to each sampled source particle, according to MLC leaf-open duration of each control-point at the pixel where the particle intersects the iso-center plane. Results: Our auto-commissioning method decreased distance-to-agreement (DTA) of depth dose at build-up regions by 36.2% averagely, making it within 1mm. Lateral profiles were better matched for all beams, with biggest improvement found at 15MV for which root-mean-square difference was reduced from 1.44% to 0.50%. Maximum differences of output factors were reduced to less than 0.7% for all beams, with largest decrease being from1.70% to 0.37% found at 10FFF. Our new sampling strategy was tested on a Head&Neck VMAT patient case. Achieving clinically acceptable accuracy, the new strategy could reduce the required history number by a factor of ∼2.8 given a statistical uncertainty level and hence achieve a similar speed-up factor. Conclusion: Our studies have demonstrated the feasibility and effectiveness of

  20. Chemistry and technology of boron and its compounds

    International Nuclear Information System (INIS)

    Zhigach, A.F.; Parfenov, B.P.; Svitsyn, R.A.

    1995-01-01

    The results of research dealing with development of technologies of boron trichloride, boron hydride, aminoderivative boron hydrides, metal borohydrides, carboranes, carborane-containing polymers, carried out at the institute of organoelemental compounds, are presented. Physicochemical properties of the compounds have been studied and analytical methods have been developed. Data on toxicity and fire hazard of boron compounds are provided

  1. Analysis of boron nitride by flame spectrometry methods

    International Nuclear Information System (INIS)

    Telegin, G.F.; Chapysheva, G.Ya.; Shilkina, N.N.

    1989-01-01

    A rapid method has been developed for determination of free and total boron contents as well as trace impurities in boron nitride by using autoclave sample decomposition followed by atomic emission and atomic absorption determination. The relative standard deviation is not greater than 0.03 in the determination of free boron 0.012 in the determination of total boron content

  2. A DMS kinetic study of the boron oxides vapor in the combustion front of SHS system Mo + B

    International Nuclear Information System (INIS)

    Kashireninov, O.E.; Yuranov, I.A.

    1994-01-01

    The distribution of the boron oxides vapor in the combustion wave of the SHS system Mo + B has been studied by the dynamic mass spectrometry technique (DMS) to test the thermodynamically based hypothesis for the key role of gas-phase transport in solid-state combustion. The molecular beam sampling of the gases over the burning tablet was performed by a stationary probe cone from the moving combustion wave. Ion currents of boron oxides were recorded at 10--20 ms intervals that afforded spatial resolution of 0.1--0.2 mm. It has been found that the distribution of the boron oxides vapor pressure along the combustion wave corresponds to the known zones of preheating, reaction, and postcombustion. The rapid increase of B 2 O 2 pressure takes place in the preheating zone as a result of the reaction B(s) + B 2 O 3 (g) = B 2 O 2 (g). Boron oxides are not observed over the reaction zone because of their complete decay in the reaction with Mo(s) to form molybdenum boride(s). The appearance The appearance of boron oxide vapors over the postcombustion zone is due to the evaporation of B 2 O 3 (l). The effective kinetic parameters are estimated from the data obtained. The results show that solid-state combustion of the Mo + B system proceeds predominantly through formation of gas-phase boron oxides

  3. Study of ceramic mixed boron element as a neutron shielding

    International Nuclear Information System (INIS)

    Ismail Mustapha; Mohd Reusmaazran Yusof; Md Fakarudin Ab Rahman; Nor Paiza Mohamad Hasan; Samihah Mustaffha; Yusof Abdullah; Mohamad Rabaie Shari; Airwan Affandi Mahmood; Nurliyana Abdullah; Hearie Hassan

    2012-01-01

    Shielding upon radiation should not be underestimated as it can causes hazard to health. Precautions on the released of radioactive materials should be well concerned and considered. Therefore, the combination of ceramic and boron make them very useful for shielding purpose in areas of low and intermediate neutron. A six grades of ceramic tile have been produced namely IMN05 - 5 % boron, IMN06 - 6 % boron, IMN07 - 7 % boron, IMN08 - 8 % boron, IMN09 - 9 % boron, IMN10 - 10 % boron from mixing, press and sintered process. Boron is a material that capable of absorbing and capturing neutron, so that neutron and gamma test were conducted to analyze the effectiveness of boron material in combination with ceramic as shielding. From the finding, percent reduction number of count per minute shows the ceramic tiles are capable to capture neutron. Apart from all the percentage of boron used, 10 % is the most effective shields since the percent reduction indicating greater neutron captured increased. (author)

  4. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  5. Density separation of boron particles. Final report

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-04-01

    A density distribution much broader than expected was observed in lots of natural boron powder supplied by two different sources. The material in both lots was found to have a rhombohedral crystal structure, and the only other parameters which seemed to account for such a distribution were impurities within the crystal structure and varying isotopic ratios. A separation technique was established to isolate boron particles in narrow densty ranges. The isolated fractions were subsequently analyzed for B 10 and total boron content in an effort to determine whether selective isotopic enrichment and nonhomogeneous impurity distribution were the causes for the broad density distribution of the boron powders. It was found that although the B 10 content remained nearly constant around 18%, the total boron content varied from 37.5 to 98.7%. One of the lots also was found to contain an apparently high level of alpha rhombohedral boron which broadened the density distribution considerably. During this work, a capability for removing boron particles containing gross amounts of impurities and, thereby, improving the overall purity of the remaining material was developed. In addition, the separation technique used in this study apparently isolated particles with alpha and beta rhombohedral crystal structures, although the only supporting evidence is density data

  6. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry

    Science.gov (United States)

    Kaczmarek, K.; Langer, G.; Nehrke, G.; Horn, I.; Misra, S.; Janse, M.; Bijma, J.

    2015-03-01

    A number of studies have shown that the boron isotopic composition (δ11B) and the B / Ca ratio of biogenic carbonates (mostly foraminifers) can serve as proxies for two parameters of the ocean's carbonate chemistry, rendering it possible to calculate the entire carbonate system. However, the B incorporation mechanism into marine carbonates is still not fully understood and analyses of field samples show species-specific and hydrographic effects on the B proxies complicating their application. Identifying the carbonate system parameter influencing boron incorporation is difficult due to the co-variation of pH, CO32- and B(OH)4-. To shed light on the question which parameter of the carbonate system is related to the boron incorporation, we performed culture experiments with the benthic symbiont-bearing foraminifer Amphistegina lessonii using a decoupled pH-CO32- chemistry. The determination of the δ11B and B / Ca ratios was performed simultaneously by means of a new in situ technique combining optical emission spectroscopy and laser ablation MC-ICP-MS. The boron isotopic composition in the tests gets heavier with increasing pH and B / Ca increases with increasing B(OH)4- / HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH)4- and HCO3-. Furthermore, the simultaneous determination of B / Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B / Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.

  7. HIBP primary beam detector

    International Nuclear Information System (INIS)

    Schmidt, T.W.

    1979-01-01

    A position measuring detector was fabricated for the Heavy Ion Beam Probe. The 11 cm by 50 cm detector was a combination of 15 detector wires in one direction and 63 copper bars - .635 cm by 10 cm to measure along an orthogonal axis by means of a current divider circuit. High transmission tungsten meshes provide entrance windows and suppress secondary electrons. The detector dimensions were chosen to resolve the beam position to within one beam diameter

  8. High purity radioactive beams at the bevalac

    International Nuclear Information System (INIS)

    Alonso, J.R.; Chatterjee, A.; Tobias, C.A.

    1979-03-01

    Peripheral nuclear fragmentation reactions of primary Bevalac heavy ion beams are used to produce secondary beams of radioactive nuclei. The large cross section and small deflection of the projectile fragments lead to high production and delivery efficiency for these beams. Dispersive beam transport allows good separation and purification of the desired secondary beams. 11 C and 19 Ne beams of high purity and good intensity (almost 0.2% of the primary beam current) are presently being used for biomedical experiments

  9. Cell cycle dependence of boron uptake in various boron compounds used for neutron capture therapy

    International Nuclear Information System (INIS)

    Yoshida, F.; Matsumura, A.; Shibata, Y.; Yamamoto, T.; Nose, T.; Okumura, M.

    2000-01-01

    In neutron capture therapy, it is important that the tumor take boron in selectively. Furthermore, it is ideal when the uptake is equal in each tumor cell. Some indirect proof of differences in boron uptake among neoplastic cell cycles has been documented. However, no investigation has yet measured boron uptake directly. Using flow cytometry, in the present study cells were sorted by G0/G1 phase and G2/M phase, and the boron concentration of each fraction was measured with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results were that BSH (sodiumborocaptate) and BPA (p-boronophenylalanine) had higher rates of boron uptake in the G2/M group than in the G0/G1 group. However, in BPA the difference was more prominent, which revealed a 2.2-3.3 times higher uptake of boron in the G2/M group than in the G0/G1 group. (author)

  10. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    Crossley, D.; Wood, A.J.; McInnes, C.A.J.; Jones, I.G.

    1978-09-01

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 300 0 C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 1050 0 C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  11. Beam-beam phenomenology

    International Nuclear Information System (INIS)

    Teng, L.C.

    1980-01-01

    In colliding beam storage rings the beam collision regions are generally so short that the beam-beam interaction can be considered as a series of evenly spaced non-linear kicks superimposed on otherwise stable linear oscillations. Most of the numerical studies on computers were carried out in just this manner. But for some reason this model has not been extensively employed in analytical studies. This is perhaps because all analytical work has so far been done by mathematicians pursuing general transcendental features of non-linear mechanics for whom this specific model of the specific system of colliding beams is too parochial and too repugnantly physical. Be that as it may, this model is of direct interest to accelerator physicists and is amenable to (1) further simplification, (2) physical approximation, and (3) solution by analogy to known phenomena

  12. Some thoughts on tolerance, dose, and fractionation in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Gahbauer, R.; Goodman, J.; Blue, T.

    1988-01-01

    Unique to boron neutron capture therapy, the tolerance very strongly depends on the boron concentration in normal brain, skin and blood. If one first considers the ideal situation of a 2 KeV beam and a compound clearing from normal tissues and blood, the tolerance dose to epithermal beams relates to the maximum tolerated capture gamma dose and capture high LET dose, H (n,gamma)D and N(n,p) 14 C. The authors can relate this gamma and high LET dose to known clinical experience. Assuming gamma and high LET dose ratios as given by Fairchild and Bond, one may first choose a clearly safe high LET whole brain dose and calculate the unavoidably resulting gamma dose. To a first approximation 500 cGy of high LET dose results in 3,000 cGy gamma dose. One can speculate that this approximates the tolerance of whole brain to the 2 KeV beam with no contributing boron dose if the radiation is fractionated. It would clearly be beyond tolerance in a single fraction where most therapists would be uncomfortable to deliver even one third of the above doses

  13. The radiation biology of Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Coderre, J.A.

    2003-01-01

    Boron Neutron Capture Therapy (BNCT) produces a complex mixture of high and low-LET radiations in tissue. Using data on the biological effectiveness of these various dose components, derived primarily in small animals irradiated with thermal neutrons, it has been possible to express clinical BNCT doses in photon-equivalent units. The accuracy of these calculated doses in normal tissue and tumor will be reviewed. Clinical trials are underway at a number of centers. There are differences in the neutron beams at these centers, and differences in the details of the clinical protocols. Ideally, data from all centers using similar boron compounds and treatment protocols should be compared and combined, if appropriate, in a multi-institutional study in order to strengthen statistical analysis. An international dosimetry exchange is underway that will allow the physical doses from the various treatment centers to be quantitatively compared. As a first step towards the comparison of the clinical data, the normal brain tolerance data from the patients treated in the initial Brookhaven National Laboratory and the Harvard/MIT BNCT clinical trials have been compared. The data provide a good estimate of the normal brain tolerance for a somnolence syndrome endpoint, and provide guidance for setting normal brain tolerance limits in ongoing and future clinical trials. Escalation of the dose in BNCT can be accomplished by increasing the amount of the boron compound administered, increasing the duration of the neutron exposure, or both. The dose escalations that have been carried out to date at the various treatment centers will be compared and contrasted. Possible future clinical trials using BNCT in combination with other modalities will be discussed

  14. Raman spectra of hot-pressed boron suboxide

    CSIR Research Space (South Africa)

    Machaka, R

    2011-01-01

    Full Text Available on in- situ/online measurements (such as GIXRD, Raman Spectroscopy, FIB- Electron Microscopy) during (i) ion implantation, (ii) PLD growth of nanoparticles SW/MW-CNTs, oxide semiconductor multi-layer, metal/Si and metal/metal systems. Moreover, He...], aluminium magnesium boride ? AlMgB14 [8], and the newly synthesized boron subnitride ? B13N2 [9, 10]. With hardness values reported between 24 GPa and 45 GPa [7, 11, 12], B6O is sometimes considered to be the third hardest material only after diamond...

  15. Indirect Measurements for (p,α) Reactions Involving Boron Isotopes

    International Nuclear Information System (INIS)

    Lamia, L.; Spitaleri, C.; Romano, S.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Pizzone, R. G.; Puglia, S. M. R.; Sergi, M. L.; Tudisco, S.; Tumino, A.; Carlin, N.; Szanto, M. G. del; Liguori Neto, R.; Moura, M. M. de; Munhoz, M. G.; Souza, F. A.; Suaide, A. A. P.; Szanto, E.

    2008-01-01

    Light elements lithium, beryllium and boron (LiBeB) were used in the last years as 'possible probe' for a deeper understanding of some extra-mixing phenomena occurring in young Main-Sequence stars. They are mainly destroyed by (p,α) reactions and cross section measurements for such channels are then needed. The Trojan Horse Method (THM) allows one to extract the astrophysical S(E)-factor without the experience of tunneling through the Coulomb barrier. In this work a resume of the recent results about the 11 B(p,α 0 ) 8 Be and 10 B(p,α) 7 Be reactions is shown

  16. Kerma factors in interaction of neutrons with boron carbide

    International Nuclear Information System (INIS)

    Bondarenko, I.M.

    1979-01-01

    Heat generation in neutron interactions with boron carbide B 10 ; B 11 and 12 C is calculated. Kerma-factors (kerma-kinetic energy released in materials) were calculated for neutron energies between 10 -4 eV and 15 MeV. No major simplifying assumptions are introduced, and the accuracy of the calculated kerma-factors depends only on availability and accuracy of the basic nuclear data. The ENDF/B-4 data and recent experimental information are used for the calculation of kerma-factors. Plots of these kerma-factors are presented in units of eVxb/atom and wtxsec/(cmxn) as a function of neutron energy

  17. Magnetostriction of the polycrystalline Fe{sub 80}Al{sub 20} alloy doped with boron

    Energy Technology Data Exchange (ETDEWEB)

    Bormio-Nunes, Cristina, E-mail: cristina@demar.eel.usp.br [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael [Institut fuer Festkoerperphysik, TU Dresden, D-01062 Dresden (Germany)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer Fe{sub 80}Al{sub 20} polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. Black-Right-Pointing-Pointer B stabilizes {alpha}-FeAl phase and a coexistence of {alpha}-FeAl + Fe{sub 3}Al improves magnetostriction. Black-Right-Pointing-Pointer Presence of Fe{sub 2}B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe{sub 80}Al{sub 20} polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic {alpha}-FeAl and/or Fe{sub 3}Al and Fe{sub 2}B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of {alpha}-FeAl and a correspondent decrease of the Fe{sub 3}Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe{sub 2}B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe{sub 80}Al{sub 20} alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the {alpha}-FeAl and Fe{sub 3}Al phases could be reached.

  18. Application of drug delivery system to boron neutron capture therapy for cancer.

    Science.gov (United States)

    Yanagië, Hironobu; Ogata, Aya; Sugiyama, Hirotaka; Eriguchi, Masazumi; Takamoto, Shinichi; Takahashi, Hiroyuki

    2008-04-01

    Tumor cell destruction in boron neutron capture therapy (BNCT) is due to the nuclear reaction between (10)B and thermal neutrons ((10)B + (1)n --> (7)Li + (4)He (alpha) + 2.31 MeV (93.7 %)/2.79 MeV (6.3 %)). The resulting lithium ions and alphaparticles are high linear energy transfer (LET) particles which give a high biological effect. Their short range in tissue (5 - 9 mum) restricts radiation damage to those cells in which boron atoms are located at the time of neutron irradiation. BNCT has been applied clinically for the treatment of malignant brain tumors, malignant melanoma, head and neck cancer and hepatoma. Sodium mercaptoundecahydro-dodecaborate (Na(2)(10)B(12)H(11)SH: BSH) and borono-phenylalanine ((10)BPA) are currently being used in clinical treatments. These low molecule compounds are easily cleared from cancer cells and blood, so high accumulation and selective delivery of boron compounds into tumor tissues and cancer cells are most important to achieve effective BNCT and to avoid damage to adjacent healthy cells. In order to achieve the selective delivery of boron atoms to cancer cells, a drug delivery system (DDS) is an attractive intelligent technology for targeting and controlled release of drugs. We performed literature searches related to boron delivery systems in vitro and in vivo. We describe several DDS technologies for boron delivery to cancer tissues and cancer cells from the past to current status. We are convinced that it will be possible to use liposomes, monoclonal antibodies and WOW emulsions as boron delivery systems for BNCT clinically in accordance with the preparation of good commercial product (GCP) grade materials.

  19. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation

    International Nuclear Information System (INIS)

    Mrotchek, I.

    2007-01-01

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and ∼5.10 17 ions/cm 2 fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co 3 W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load

  20. Defects in boron ion implanted silicon

    International Nuclear Information System (INIS)

    Wu, W.K.

    1975-05-01

    The crystal defects formed after post-implantation annealing of B-ion-implanted Si irradiated at 100 keV to a moderate dose (2 x 10 14 /cm 2 ) were studied by transmission electron microscopy. Contrast analysis and annealing kinetics show at least two different kinds of linear rod-like defects along broken bracket 110 broken bracket directions. One kind either shrinks steadily remaining on broken bracket 110 broken bracket at high temperatures (greater than 850 0 C), or transforms into a perfect dislocation loop which rotates toward broken bracket 112 broken bracket perpendicular to its Burgers vector. The other kind shrinks steadily at moderate temperatures (approximately 800 0 C). The activation energy for shrinkage of the latter (3.5 +- 0.1 eV) is the same as that for B diffusion in Si, suggesting that this linear defect is a boron precipitate. There also exist a large number of perfect dislocation loops with Burgers vector a/2broken bracket 110 broken bracket. The depth distribution of all these defects was determined by stereomicroscopy. The B precipitates lying parallel to the foil surfaces are shown to be at a depth of about 3500 +- 600 A. The loops are also at the same depth, but with a broader spread, +-1100 A. Si samples containing B and samples containing no B (P-doped) were irradiated in the 650-kV electron microscope. Irradiation at 620 0 C resulted in the growth of very long linear defects in the B-doped samples but not in the others, suggesting that at 620 0 C Si interstitials produced by the electron beam replace substitutional B some of which precipitates in the form of long rods along broken bracket 110 broken bracket. (DLC)

  1. Viability study on using calcium carbonate for the boron adsorption process in waste waters

    International Nuclear Information System (INIS)

    Rodriguez Guerreiro, M. J.; Munoz Camacho, E.; Bernal Pita da Veiga, M. B.

    2009-01-01

    This study evaluates how viable it is to employ calcium carbonate for the boron adsorption process in waters that could be contaminated by this element. A residue form mussel shells-abundant in Galicia, northwestern Spain, was used. The data gathered from the experiments show that the performance of the boron adsorption within the sample is below 2%. Despite the inferior data obtained, the general aim was reached. An attempt was made to find solutions to the environmental problem caused by the residues mentioned above. (Author) 11 refs.

  2. Boron steel. I Part. Preparation; Aceros al Boro Parte I. Preparacion

    Energy Technology Data Exchange (ETDEWEB)

    Jaraiz Franco, E; Esteban Hernandez, J A

    1960-07-01

    With the advent of the first nuclear reactors arise the need for control rods and shielding duties for some types of radiations. One of the materials used for this purpose has been the high boron steel. This paper describes the melting and casting procedures employed for the production, at laboratory scale, of steels with Boron content ranging from 1 to 4 per cent, as well as the metallographic and X-Ray techniques used for the identification of the present phases. The electrolytic technique employed for the isolation of the Fe{sub 2}B phase and its subsequent X-Ray identification has proved to be satisfactory. (Author) 11 refs.

  3. Synthesis and characterizaton of some new coordination compounds of boron with mixed azines

    Directory of Open Access Journals (Sweden)

    MANISH GODARA

    2007-04-01

    Full Text Available Some new boron complexes have been synthesized by the reaction of triisopropohxyborane with the mixed azines, prepared by the condensation of salicylaldehyde and hydrazine with aldehydes/ketones in a 1:1:1 mole ratio to give a new series of (OPri2B(NO type of complexes. Their structures were confirmed on the basis of elemental analyses, ultraviolet, infrared, 1H-NMR and 11B-NMR spectral studies. The ligands and their boron complexes were also screened for their antifungal activity. Several of these complexes were found to be quite active in this respect.

  4. Against Drought Stress Effect of Antioxidant Enzymes of Boron

    Directory of Open Access Journals (Sweden)

    Mahmut Doğan

    2013-04-01

    Full Text Available In this study, soybean seeds (Glycine max. L., cv., “A3935 were grown under controlled conditions (25±2 C composed of different boron compounds. In the experiment, 5 groups were determined respectively as potassium tetraborate tetrahydrate (1 mg/1, ammonium tetraborate tetrahydrate (1 mg/1, sodium boron hydride (1 mg/1, lithium tetraborate tetrahydrate (100 mg/1, and sodium tetraborate decahydrate (100 mg/1. The doses used in this study were determined according to the results of a preliminary study. Soybean seeds were exposed to different amounts of drought stress based on time (control, 3, 6, 9, 12, 15, and 18 days. Activities of antioxidant enzymes superoxide dismutase (SOD: EC 1.15.1.1, glutathione reductase (GR: EC 1.6.4.2, ascorbate peroxidase (APX: EC 1.11.1.11 and catalase (CAT: EC 1.11.1.6 measured. According to the results stress+potassium tetraborate tetrahydrate environment has increased the amount of CAT, decreased the amount GR, APX and SOD. Potassium tetraborate 0.1 mg / l dose administration is the most appropriate critical value, and the most important indicator of drought CAT enzyme found to give the best results.

  5. Ground-water pollution determined by boron isotope systematics

    International Nuclear Information System (INIS)

    Vengosh, A.; Kolodny, Y.; Spivack, A.J.

    1998-01-01

    Boron isotopic systematics as related to ground-water pollution is reviewed. We report isotopic results of contaminated ground water from the coastal aquifers of the Mediterranean in Israel, Cornia River in north-western Italy, and Salinas Valley, California. In addition, the B isotopic composition of synthetic B compounds used for detergents and fertilizers was investigated. Isotopic analyses were carried out by negative thermal ionization mass spectrometry. The investigated ground water revealed different contamination sources; underlying saline water of a marine origin in saline plumes in the Mediterranean coastal aquifer of Israel (δ 11 B=31.7 per mille to 49.9 per mille, B/Cl ratio ∼1.5x10 -3 ), mixing of fresh and sea water (25 per mille to 38 per mille, B/Cl∼7x10 -3 ) in saline water associated with salt-water intrusion to Salinas Valley, California, and a hydrothermal contribution (high B/Cl of ∼0.03, δ 11 B=2.4 per mille to 9.3 per mille) in ground water from Cornia River, Italy. The δ 11 B values of synthetic Na-borate products (-0.4 per mille to 7.5 per mille) overlap with those of natural Na-borate minerals (-0.9 per mille to 10.2 per mille). In contrast, the δ 11 B values of synthetic Ca-borate and Na/Ca borate products are significantly lower (-15 per mille to -12.1 per mille) and overlap with those of the natural Ca-borate minerals. We suggest that the original isotopic signature of the natural borate minerals is not modified during the manufacturing process of the synthetic products, and it is controlled by the crystal chemistry of borate minerals. The B concentrations in pristine ground-waters are generally low ( 11 B=39 per mille), salt-water intrusion and marine-derived brines (40 per mille to 60 per mille) are sharply different from hydrothermal fluids (δ 11 B=10 per mille to 10 per mille) and anthropogenic sources (sewage effluent: δ 11 B=0 per mille to 10 per mille; boron-fertilizer: δ 11 B=-15 per mille to 7 per mille). some

  6. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  7. Investigation of boron extraction process with aid magnesium hydroxide from mother liquor of boron production

    International Nuclear Information System (INIS)

    Balapanova, B.S.; Zhajmina, R.E.; Serazetdinov, D.Z.

    1988-01-01

    Conditions of boron - magnesium concentrate preparation from mother liquor by coprecipitation of borate - ions by magnesium hydroxide are investigated. It is shown that boron - magnesium concentrate and products of its heat treatment at 100 - 500 deg C in water are dissolved partially, and in ammonium citrate - practically completely. Suppositions are made on the composition of the product prepared, on the the structure of its crystal lattice and the processes taking place in it during heat treatment. The conclusion is made on the perspectiveness of processing of mother liquor of boron industry for boron - magnesium concentrate

  8. Hydrogen-boron complexes in heavily boron-doped silicon treated with high concentration of hydrogen atoms

    International Nuclear Information System (INIS)

    Fukata, N.; Fukuda, S.; Sato, S.; Ishioka, K.; Kitajima, M.; Hishita, S.; Murakami, K.

    2006-01-01

    The formation of hydrogen (H)-related complexes was investigated in boron (B)-doped Si treated with high concentration of H. The isotope shifts of H-related Raman peaks by replacement of H to deuterium and 1 B to 11 B clearly showed the formation of the B-H complexes in which H directly bonds to B in Si. The results of the resistivity measurements suggested that the B acceptors are passivated via the formation of the B-H complexes, as well as the well-known passivation center in B-doped Si, namely, H-B passivation center

  9. The Boron Isotopic Composition of Elephant Dung: Inputs to the Global Boron Budget

    Science.gov (United States)

    Williams, L. B.; Hervig, R. L.

    2011-12-01

    A survey of boron in kerogen showed isotopically light δ11B values (0 to -50%) that are distinctly different from most mineral and natural water B reservoirs. Diagenesis releases this isotopically light B into pore fluids when hydrocarbons are generated, thus enriching oilfield brines in 10B. This observation suggests that borated biomolecules (BM) are primarily tetrahedral favoring 10B, whereas 11B is preferred in trigonal coordination. Plants, with optimal concentrations up to 100ppm, contribute more B than animal remains to sediment. Elephants are one of the largest herbivores on earth, consuming 200 - 250 kg of plant material/day and producing 50 kg of manure/day. They are inefficient at digestion, thus the manure contains >50% undigested plant material. Dung samples are therefore ideal for studying the δ11B of both the food input and digested output of a significant B supply to sedimentary systems. Horse and rabbit manure were studied for comparison to evaluate B isotope variations in the food supply and potential vital effects on the output. B-content and isotopic composition of dung plant material and digested fractions were measured in the solid state by secondary ion mass spectrometry. The digests were rinsed in 1.8% mannitol, a B-complexing agent, to remove surface adsorbed-B, then air dried and Au-coated for charge compensation. Results showed that the elephant diet contains 3-13 ppm B, with an average δ11B of -20 ± 0.8% (1σ), while rabbit food had 88 ppm B with a δ11B of -50 ± 1.3 %. The digested fraction of the elephant dung contains 4-10ppm B with average δ11B values of -12 ± 1.2%. In comparison, horse manure with 11-21 ppm B has a δ11B of -10.7 ± 0.5% and rabbit manure contains 2-3 ppm B with a δ11B of -8.8 ± 1%. Boron isotope compositions of these manures are indistinguishable (within error). Clearly plant material is a major contributor of isotopically light B to sediments. The herbivores studied fractionate their total B intake in

  10. Recombination methods for boron neutron capture therapy dosimetry

    International Nuclear Information System (INIS)

    Golnik, N.; Tulik, P.; Zielczynski, M.

    2003-01-01

    The radiation effects of boron neutron capture therapy (BNCT) are associated with four-dose-compartment radiation field - boron dose (from 10 B(n,α) 7 Li) reaction), proton dose from 14 N(n,p) 14 C reaction, neutron dose (mainly fast and epithermal neutrons) and gamma-ray dose (external and from capture reaction 1 H(n,γ) 2 D). Because of this the relation between the absorbed dose and the biological effects is very complex and all the above mentioned absorbed dose components should be determined. From this point of view, the recombination chambers can be very useful instruments for characterization of the BNCT beams. They can be used for determination of gamma and high-LET dose components for the characterization of radiation quality of mixed radiation fields by recombination microdosimetric method (RMM). In present work, a graphite high-pressure recombination chamber filled with nitrogen, 10 BF 3 and tissue equivalent gas was used for studies on application of RMM for BNCT dosimetry. The use of these gases or their mixtures opens a possibility to design a recombination chamber for determination of the dose fractions due to gamma radiation, fast neutrons, neutron capture on nitrogen and high LET particles from (n, 10 B) reaction in simulated tissue with different content of 10 B. (author)

  11. A new target concept for proton accelerator driven boron neutron capture therapy applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1998-01-01

    A new target concept termed Discs Incorporating Sector Configured Orbiting Sources (DISCOS), is proposed for spallation applications, including BNCT (Boron Neutron Capture Therapy). In the BNCT application a proton beam impacts a sequence of ultra thin lithium DISCOS targets to generate neutrons by the 7 Li(p,n) 7 Be reaction. The proton beam loses only a few keV of its ∼MeV energy as it passes through a given target, and is re-accelerated to its initial energy, by a DC electric field between the targets

  12. Trichlorosilane and silicon tetrachloride sample preparation for determination of boron, phosphorus and arsenic microelements

    International Nuclear Information System (INIS)

    Stolyarova, I.V.; Orlova, V.A.

    1995-01-01

    The conditions of sample preparation ensuring virtually complete elimination of boron, phosphorus, and arsenic losses are elaborated. Analysis procedures are proposed that involve hydrolysis in an autoclave for exothermic reactions and/or in an open reaction reservoir on frozen twice-distilled water with complexing-agent and oxidant solutionsd applied layer-by-layer, with the possible subsequent atomic-emission, extraction-spectrophotometric, or extraction-colorimetric determination of boron, phosphorus, and arsenic. The procedures improve the accuracy and precision of the results and reduce the duration of chemical preparation due to the quantitative preconcentration of boron, phosphorus, and arsenic; they almost completely eliminate the possibility of the formation of volatile fluoride forms of these elements. 11 refs.; 3 tabs

  13. The application of FEL-EXPERT system in the interpretation of boron compounds toxicity

    International Nuclear Information System (INIS)

    Strouf, O.; Marik, V.

    1990-01-01

    The effect of substructural features of boron compounds on their toxicity (LD 50 , mice, i.p.) was studied using the FEL-EXPERT system developed by the Czech Technical University of Prague. A set of 108 compounds containing one or two boron atoms in their molecule was arbitrarily divided into three classes: compounds with high toxicity (LD 50 50 50 ≥1000 mg/kg). The compounds were represented by 70 substructural fragments, 27 of them being ''central substructures'' containing boron atom(s). The inference net consisted of 118 nodes (74 of the Bayesian type), 362 production rules and 74 context links. The total classification correctness was 98%. As a case-study, the classification of p-tolylboronic acid (LD 50 =520 mg/kg) and 4-carboxyphenylboronic acid (LD 50 =3838 mg/kg) was discussed. 4 figs., 2 tabs., 11 refs

  14. The irradiation behaviour of boron carbide/graphite between 800 and 1,1000C

    International Nuclear Information System (INIS)

    Hattenbach, K.; Hilgendorff, W.; Weiler, K.; Zimmermann, H.U.

    1975-01-01

    64 samples of boron carbide/graphite, a material used as burnable poison in high temperature reactors, were irradiated at temperatures between 800 and 1,100 0 C up to a fluence of 1-2 x 10 20 nvt. The following post-investigations were extended to dimensional measurements to determime a possible swelling or shrinking of the pellet, corrosion tests in completely desalinated water at 300 0 C, preparation of metallographic microsections to check for crack formation, determination of the helium hold back power and the thus involved gas chromatic analysis, as well as burn-up determinations by determining the boron 10/boron 11 ratio and the lithium concentration. (orig./LN) [de

  15. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide powder and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Total Carbon by Combustion and Gravimetry 7-17 Total Boron by Titrimetry 18-28 Isotopic Composition by Mass Spectrometry 29-38 Chloride and Fluoride Separation by Pyrohydrolysis 39-45 Chloride by Constant-Current Coulometry 46-54 Fluoride by Ion-Selective Electrode 55-63 Water by Constant-Voltage Coulometry 64-72 Impurities by Spectrochemical Analysis 73-81 Soluble Boron by Titrimetry 82-95 Soluble Carbon by a Manometric Measurement 96-105 Metallic Impurities by a Direct Reader Spectrometric Method 106-114

  16. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zaitsev, A.M.

    1985-01-01

    Three types of optically active defect were observed in single-crystal and polycrystalline cubic boron nitride (β-BN). An analysis of the temperature dependences of the intensity, half-width, and energy shift of a narrow zero-phonon line at 1.76 eV (GC-1 center) made it possible to interpret the observed cathodoluminescence spectra as an optical analog of the Moessbauer effect. A comparison of the results obtained in the present study with the available data on diamond single crystals made it possible to identify the observed GC-1 center as a nitrogen vacancy. It was concluded that optical Moessbauer-type spectra can be used to analyze structure defects in the crystal lattice of β-BN

  17. Behaviour of boron in Mandovi estuary (Goa)

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Anand, S.P.

    and alkalinity gave positive correlations with a linear variation. Though the overall behavioural pattern of boron indicated non-conservative nature, it showed a quasi-conservative character during premonsoon and a non-conservative during rest of the seasons...

  18. Internal stress control of boron thin film

    International Nuclear Information System (INIS)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M.

    1998-01-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s -1 and substrate temperature of 300 C. (orig.)

  19. Internal stress control of boron thin film

    Energy Technology Data Exchange (ETDEWEB)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M. [Osaka Univ., Suita (Japan). Graduate Sch. of Eng.

    1998-09-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s{sup -1} and substrate temperature of 300 C. (orig.) 12 refs.

  20. Determination of boron in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grazhulene, S.S.; Grossman, O.V.; Kuntscher, K.K.; Malygina, L.I.; Muller, E.N.; Telegin, G.F.

    1985-10-01

    In the determination of boron in amorphous alloys containingFe, Co, B, Si, Ni, and P having unusal magnetic and electrical properties, precise analysis and rapid analysis are necessary. To improve the metrological properties of the existing procedure, to find a rapid determination of boron in amorphous alloys, and to verify the accuracy of the results, in the present work the optimization of the photometric determination after extraction of the BF/sup -//sub 4/ ion pair with methylene blue has been studied, and a boron determination by flame photometry using selective methylation has been developed. The determination of boron by the flame photometric and spectrophotometric methods is shown. When a highly precise determination is needed, the spectrophotometric procedure can be used. This procedure is distinguished by its labor intensity and duration. When the need for reproducibility is less severe, the rapid flame photometric procedure is best.

  1. Boron adsorption on hematite and clinoptilolite

    International Nuclear Information System (INIS)

    Gainer, G.M.

    1993-01-01

    This thesis describes experiments performed to determine the suitability of boron as a potential reactive tracer for use in saturated-zone C-well reactive tracer studies for the Yucca Mountain Project (YMP). Experiments were performed to identify the prevalent sorption mechanism of boron and to determine adsorption of boron on hematite and clinoptilolite as a function of pH. These minerals are present in the Yucca Mountain tuff in which the C-well studies will be conducted. Evaluation of this sorption mechanism was done by determining the equilibration time of boron-mineral suspensions, by measuring changes in equilibrium to titrations, and by measuring electrophoretic mobility. Experiments were performed with the minerals suspended in NaCl electrolytes of concentrations ranging from 0.1 N NaCl to 0.001 N NaCl. Experimentalconditions included pH values between 3 and 12 and temperature of about 38 degrees C

  2. Superplastic boronizing of duplex stainless steel under dual compression method

    International Nuclear Information System (INIS)

    Jauhari, I.; Yusof, H.A.M.; Saidan, R.

    2011-01-01

    Highlights: → Superplastic boronizing. → Dual compression method has been developed. → Hard boride layer. → Bulk deformation was significantly thicker the boronized layer. → New data on boronizing could be expanded the application of DSS in industries. - Abstract: In this work, SPB of duplex stainless steel (DSS) under compression method is studied with the objective to produce ultra hard and thick boronized layer using minimal amount of boron powder and at a much faster boronizing time as compared to the conventional process. SPB is conducted under dual compression methods. In the first method DSS is boronized using a minimal amount of boron powder under a fix pre-strained compression condition throughout the process. The compression strain is controlled in such a way that plastic deformation is restricted at the surface asperities of the substrate in contact with the boron powder. In the second method, the boronized specimen taken from the first mode is compressed superplastically up to a certain compressive strain under a certain strain rate condition. The process in the second method is conducted without the present of boron powder. As compared with the conventional boronizing process, through this SPB under dual compression methods, a much harder and thicker boronized layer thickness is able to be produced using a minimal amount of boron powder.

  3. Superplastic boronizing of duplex stainless steel under dual compression method

    Energy Technology Data Exchange (ETDEWEB)

    Jauhari, I., E-mail: iswadi@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yusof, H.A.M.; Saidan, R. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-10-25

    Highlights: {yields} Superplastic boronizing. {yields} Dual compression method has been developed. {yields} Hard boride layer. {yields} Bulk deformation was significantly thicker the boronized layer. {yields} New data on boronizing could be expanded the application of DSS in industries. - Abstract: In this work, SPB of duplex stainless steel (DSS) under compression method is studied with the objective to produce ultra hard and thick boronized layer using minimal amount of boron powder and at a much faster boronizing time as compared to the conventional process. SPB is conducted under dual compression methods. In the first method DSS is boronized using a minimal amount of boron powder under a fix pre-strained compression condition throughout the process. The compression strain is controlled in such a way that plastic deformation is restricted at the surface asperities of the substrate in contact with the boron powder. In the second method, the boronized specimen taken from the first mode is compressed superplastically up to a certain compressive strain under a certain strain rate condition. The process in the second method is conducted without the present of boron powder. As compared with the conventional boronizing process, through this SPB under dual compression methods, a much harder and thicker boronized layer thickness is able to be produced using a minimal amount of boron powder.

  4. Boron-rich oligomers for BNCT

    International Nuclear Information System (INIS)

    Gula, M.; Perleberg, O.; Gabel, D.

    2000-01-01

    The synthesis of two BSH derivatives is described, which can be used for oligomerization in DNA-synthesizers. Synthesis pathways lead to final products in five and six steps, respectively. Because of chirality interesting results were expected. NMR-measurements confirm this expectation. Possible oligomers with high concentrations of boron can be attached to biomolecules. These oligomers can be explored with several imaging methods (EELS, PEM) to determine the lower detection limit of boron with these methods. (author)

  5. Rare earth-iron-boron premanent magnets

    International Nuclear Information System (INIS)

    Ghendehari, M.H.

    1988-01-01

    This patent describes a method for producing rare earth-iron-boron permanent magnets containing added rare earth oxide, comprising the steps of: (a) mixing a particulate alloy containing at least one rare earth metal, iron, and boron with at least one particulate rare earth oxide; (b) aligning magnetic domains of the mixture in a magnetic field; (c) compacting the aligned mixture to form a shape; and (d) sintering the compacted shape

  6. Quantitative analysis of boron by neutron radiography

    International Nuclear Information System (INIS)

    Bayuelken, A.; Boeck, H.; Schachner, H.; Buchberger, T.

    1990-01-01

    The quantitative determination of boron in ores is a long process with chemical analysis techniques. As nuclear techniques like X-ray fluorescence and activation analysis are not applicable for boron, only the neutron radiography technique, using the high neutron absorption cross section of this element, can be applied for quantitative determinations. This paper describes preliminary tests and calibration experiments carried out at a 250 kW TRIGA reactor. (orig.) [de

  7. WE-DE-207B-11: Implementation of Size-Specific 3D Beam Modulation Filters On a Dedicated Breast CT Platform Using Breast Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A [Department of Radiology, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, CA (United States); Boone, J [Departments of Radiology and Biomedical Engineering, University of California Davis, Sacramento, CA (United States)

    2016-06-15

    Purpose: To implement a 3D beam modulation filter (3D-BMF) in dedicated breast CT (bCT) and develop a method for conforming the patient’s breast to a pre-defined shape, optimizing the effects of the filter. This work expands on previous work reporting the methodology for designing a 3D-BMF that can spare unnecessary dose and improve signal equalization at the detector by preferentially filtering the beam in the thinner anterior and peripheral breast regions. Methods: Effective diameter profiles were measured for 219 segmented bCT images, grouped into volume quintiles, and averaged within each group to represent the range of breast sizes found clinically. These profiles were then used to generate five size-specific computational phantoms and fabricate five size-specific UHMW phantoms. Each computational phantom was utilized for designing a size-specific 3D-BMF using previously reported methods. Glandular dose values and projection images were simulated in MCNP6 with and without the 3DBMF using the system specifications of our prototype bCT scanner “Doheny”. Lastly, thermoplastic was molded around each of the five phantom sizes and used to produce a series of breast immobilizers for use in conforming the patient’s breast during bCT acquisition. Results: After incorporating the 3D-BMF, MC simulations estimated an 80% average reduction in the detector dynamic range requirements across all phantom sizes. The glandular dose was reduced on average 57% after normalizing by the number of quanta reaching the detector under the thickest region of the breast. Conclusion: A series of bCT-derived breast phantoms were used to design size-specific 3D-BMFs and breast immobilizers that can be used on the bCT platform to conform the patient’s breast and therefore optimally exploit the benefits of the 3D-BMF. Current efforts are focused on fabricating several prototype 3D-BMFs and performing phantom scans on Doheny for MC simulation validation and image quality analysis

  8. WE-DE-207B-11: Implementation of Size-Specific 3D Beam Modulation Filters On a Dedicated Breast CT Platform Using Breast Immobilization

    International Nuclear Information System (INIS)

    Hernandez, A; Boone, J

    2016-01-01

    Purpose: To implement a 3D beam modulation filter (3D-BMF) in dedicated breast CT (bCT) and develop a method for conforming the patient’s breast to a pre-defined shape, optimizing the effects of the filter. This work expands on previous work reporting the methodology for designing a 3D-BMF that can spare unnecessary dose and improve signal equalization at the detector by preferentially filtering the beam in the thinner anterior and peripheral breast regions. Methods: Effective diameter profiles were measured for 219 segmented bCT images, grouped into volume quintiles, and averaged within each group to represent the range of breast sizes found clinically. These profiles were then used to generate five size-specific computational phantoms and fabricate five size-specific UHMW phantoms. Each computational phantom was utilized for designing a size-specific 3D-BMF using previously reported methods. Glandular dose values and projection images were simulated in MCNP6 with and without the 3DBMF using the system specifications of our prototype bCT scanner “Doheny”. Lastly, thermoplastic was molded around each of the five phantom sizes and used to produce a series of breast immobilizers for use in conforming the patient’s breast during bCT acquisition. Results: After incorporating the 3D-BMF, MC simulations estimated an 80% average reduction in the detector dynamic range requirements across all phantom sizes. The glandular dose was reduced on average 57% after normalizing by the number of quanta reaching the detector under the thickest region of the breast. Conclusion: A series of bCT-derived breast phantoms were used to design size-specific 3D-BMFs and breast immobilizers that can be used on the bCT platform to conform the patient’s breast and therefore optimally exploit the benefits of the 3D-BMF. Current efforts are focused on fabricating several prototype 3D-BMFs and performing phantom scans on Doheny for MC simulation validation and image quality analysis

  9. Fluorescent converter and neutron absorber being made of boron nitride

    International Nuclear Information System (INIS)

    Matsumoto, G.; Teramura, M.; Sato, J.; Maeda, M.

    1983-01-01

    To improve the sensitivity of fluorescent converter is essential to the neutron radiography (NRG) which utilizes portable, not so strong, neutron sources. The fluorescent converter made of boron nitride (BN) is fabricated and tested. The sensitivity is about 1/20 of the NE426, but the homogeneity may be better. If 10 BN is utilized, the sensitivity will be five times as much as that of natural BN. Using the neutron beam of the Kyoto University Research Reactor, the flux of which is about 10 6 n/cm 2 sec, a good neutron television image was gained by X-ray television camera. As a bi-product of this converter, a flexible absorber was fabricated. (Auth.)

  10. Destruction of C60 films by boron ion bombardment

    International Nuclear Information System (INIS)

    Ren Zhongmin; Du Yuancheng; Ying Zhifeng; Xiong Xiaxing; Li Fuming

    1995-01-01

    C 60 films are bombarded by 100 keV boron ion beams at doses ranging from 3x10 14 to 1x10 16 /cm 2 . The bombarded films are analyzed using Fourier transform infrared spectroscopy (FTIR), Raman spectra and X-ray diffraction (XRD) measurements. Most C 60 soccer-balls in the implanted region in the films are found to be broken at a dose over 1x10 15 /cm 2 , while at a dose less than 6x10 14 /cm 2 a few C 60 molecules remain undestroyed and maintain some crystal structure. The results of the analyses suggest a complete disintegration of a C 60 molecule under B + bombardment. ((orig.))

  11. Discharge cleaning on TFTR after boronization

    International Nuclear Information System (INIS)

    Mueller, D.; Dylla, H.F.; LaMarche, P.H.; Bell, M.G.; Blanchard, W.; Bush, C.E.; Gentile, C.; Hawryluk, R.J.; HIll, K.W.; Janos, A.C.; Jobes, F.C; Owens, D.K.; Pearson, G.; Schivell, J.; Ulrickson, M.A.; Vannoy, C.; Wong, K.L.

    1991-05-01

    At the beginning of the 1990 TFTR experimental run, after replacement of POCO-AXF-5Q graphite tiles on the midplane of the bumper limiter by carbon fiber composite (CFC) tiles and prior to any Pulse Discharge Cleaning (PDC), boronization was performed. Boronization is the deposition of a layer of boron and carbon on the vacuum vessel inner surface by a glow discharge in a diborane, methane and helium mixture. The amount of discharge cleaning required after boronization was substantially reduced compared to that which was needed after previous openings when boronization was not done. Previously, after a major shutdown, about 10 5 low current (∼20 kA) Taylor Discharge Cleaning (TDC) pulses were required before high current (∼400 kA) aggressive Pulse Discharge Cleaning (PDC) pulses could be performed successfully. Aggressive PDC is used to heat the limiters from the vessel bakeout temperature of 150 degrees C to 250 degrees C for a period of several hours. Heating the limiters is important to increase the rate at which water is removed from the carbon limiter tiles. After boronization, the number of required TDC pulses was reduced to <5000. The number of aggressive PDC pulses required was approximately unchanged. 14 refs., 1 tab

  12. Boronization on NSTX using Deuterated Trimethylboron

    International Nuclear Information System (INIS)

    Blanchard, W.R.; Gernhardt, R.C.; Kugel, H.W.; LaMarche, P.H.

    2002-01-01

    Boronization on the National Spherical Torus Experiment (NSTX) has proved to be quite beneficial with increases in confinement and density, and decreases in impurities observed in the plasma. The boron has been applied to the interior surfaces of NSTX, about every 2 to 3 weeks of plasma operation, by producing a glow discharge in the vacuum vessel using deuterated trimethylboron (TMB) in a 10% mixture with helium. Special NSTX requirements restricted the selection of the candidate boronization method to the use of deuterated boron compounds. Deuterated TMB met these requirements, but is a hazardous gas and special care in the execution of the boronization process is required. This paper describes the existing GDC, Gas Injection, and Torus Vacuum Pumping System hardware used for this process, the glow discharge process, and the automated control system that allows for remote operation to maximize both the safety and efficacy of applying the boron coating. The administrative requirements and the detailed procedure for the setup, operation and shutdown of the process are also described

  13. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  14. Test beam results of the GE1/1 prototype for a future upgrade of the CMS high-$\\eta$ muon system

    CERN Document Server

    Abbaneo, D; Armagnaud, C; Aspell, P; Ban, Y; Bally, S; Benussi, L; Berzano, U; Bianco, S; Bos, J; Bunkowski, K; Cai, J; Chatelain, J P; Christiansen, J; Colafranceschi, S; Colaleo, A; Conde Garcia, A; David, E; de Robertis, G; De Oliveira, R; Duarte Pinto, S; Ferry, S; Formenti, F; Franconi, L; Gnanvo, K; Gutierrez, A; Hohlmann, M; Karchin, P E; Loddo, F; Magazzú, G; Maggi, M; Marchioro, A; Marinov, A; Mehta, K; Merlin, J; Mohapatra, A; Moulik, T; Nemallapudi, M V; Nuzzo, S; Oliveri, E; Piccolo, D; Postema, H; Raffone, G; Rodrigues, A; Ropelewski, L; Saviano, G; Sharma, A; Staib, M J; Teng, H; Tytgat, M; Tupputi, S A; Turini, N; Smilkjovic, N; Villa, M; Zaganidis, N; Zientek, M

    2011-01-01

    Gas Electron Multipliers (GEM) are an interesting technology under consideration for the future upgrade of the forward region of the CMS muon system, specifically in the $1.6<| \\eta |<2.4$ endcap region. With a sufficiently fine segmentation GEMs can provide precision tracking as well as fast trigger information. The main objective is to contribute to the improvement of the CMS muon trigger. The construction of large-area GEM detectors is challenging both from the technological and production aspects. In view of the CMS upgrade we have designed and built the largest full-size Triple-GEM muon detector, which is able to meet the stringent requirements given the hostile environment at the high-luminosity LHC. Measurements were performed during several test beam campaigns at the CERN SPS in 2010 and 2011. The main issues under study are efficiency, spatial resolution and timing performance with different inter-electrode gap configurations and gas mixtures. In this paper results of the performance of the pro...

  15. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P.

    2015-12-17

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  16. Development of magnetic resonance technology for noninvasive boron quantification

    International Nuclear Information System (INIS)

    Bradshaw, K.M.

    1990-11-01

    Boron magnetic resonance imaging (MRI) and spectroscopy (MRS) were developed in support of the noninvasive boron quantification task of the Idaho National Engineering Laboratory (INEL) Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) program. The hardware and software described in this report are modifications specific to a GE Signa trademark MRI system, release 3.X and are necessary for boron magnetic resonance operation. The technology developed in this task has been applied to obtaining animal pharmacokinetic data of boron compounds (drug time response) and the in-vivo localization of boron in animal tissue noninvasively. 9 refs., 21 figs

  17. Alternative Process for Manufacturing of Thin Layers of Boron for Neutron Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Auge, Gregoire; Partyka, Stanislas [Onet Technologies (France); Guerard, Bruno; Buffet, Jean-Claude [Institut Laue Langevin - ILL, Grenoble (France)

    2015-07-01

    detection characteristics, between 0,5 to 5 μm (equivalent to 0,25 to 2.5 massive layer). The thickness is homogenous within a ±20% range. The layer is an almost pure {sup 10}B layer (90%). The ratio of the amount of deposed boron 10 to the amount of raw boron 10 used is more than 80%. Hence, another advantage of this technique is that Boron 10 will be deposited on the cathodes only, without loss of this expensive material. 2 grids of a Multi-Grid detector have been coated with pure Boron by using this technique. The film structure has been analysed with a microscope and the detector has been tested on a monochromatic neutron beam line. Preliminary results will be shown. (authors)

  18. The effect of boron deficiency on gene expression and boron compartmentalization in sugarbeet

    Science.gov (United States)

    NIP5, BOR1, NIP6, and WRKY6 genes were investigated for their role in boron deficiency in sugar beet, each with a proposed role in boron use in model plant species. All genes showed evidence of polymorphism in fragment size and gene expression in the target genomic DNA and cDNA libraries, with no co...

  19. Research of boron conversion coating in neutron detector with boron deposited GEM

    International Nuclear Information System (INIS)

    Ye Di; Sun Zhijia; Zhou Jianrong; Wang Yanfeng; Yang Guian; Xu Hong; Chen Yuanbai; Xiao Yu; Diao Xungang

    2014-01-01

    GEM is a flourishing new gas detector and nowadays its technology become more mature. It has outstanding properties, such as excellent position resolution, high counting rate, radiation resistance, simple and flexible signal readout, can be large-area detector, wide application range. Detector with boron deposited GEM uses multilayer GEM with deposited boron film as neutron conversion carrier which reads out the information of neutron shot from the readout electrode with gas amplification from every GEM layer. The detector is high performance which can meet the demands of neutron detector of a new generation. Boron deposited neutron conversion electrode with boron deposited cathode and GEM included is the core part of the detector. As boron is a high-melting-point metalloid (> 2 000 ℃), electroplating and thermal evaporation are inappropriate ways. So finding a way to deposit boron on electrode which can meet the demands become a key technology in the development of neutron detector with boron deposited GEM. Compared with evaporation, sputtering has features such as low deposition temperature, high film purity, nice adhesive, thus is appropriate for our research. Magnetron sputtering is a improved way of sputtering which can get lower sputtering air pressure and higher target voltage, so that we can get better films. Through deposit process, the research uses magnetron sputtering to deposit pure boron film on copper electrode and GEM film. This method can get high quality, nice adhere, high purity, controllable uniformity, low cost film with high speed film formation. (authors)

  20. Real-time boronization in PBX-M using erosion of solid boronized targets

    International Nuclear Information System (INIS)

    Kugel, H.W.; Timberlake, J.; Bell, R.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Tighe, W.; Hirooka, Y.

    1994-11-01

    Thirty one real-time boronizations were applied to PBX-M using the plasma erosion of solid target probes. More than 17 g of boron were deposited in PBX-M using this technique. The probes were positioned at the edge plasma to optimize vaporization and minimize spallation. Auger depth profile analysis of poloidal and toroidal deposition sample coupon arrays indicate that boron was transported by the plasma around the torus and deep into the divertors. During discharges with continuous real-time boronization, low-Z and high-Z impurities decreased rapidly as plasma surfaces were covered during the first 20-30 discharges. After boronization, a short-term improvement in plasma conditions persisted prior to significant boron erosion from plasma surfaces, and a longer term, but less significant improvement persisted as boron farther from the edge continued gettering. Real-time solid target boronization has been found to be very effective for accelerating conditioning to new regimes and maintaining high performance plasma conditions

  1. MCNP speed advances for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Goorley, J.T.; McKinney, G.; Adams, K.; Estes, G.

    1998-04-01

    The Boron Neutron Capture Therapy (BNCT) treatment planning process of the Beth Israel Deaconess Medical Center-M.I.T team relies on MCNP to determine dose rates in the subject's head for various beam orientations. In this time consuming computational process, four or five potential beams are investigated. Of these, one or two final beams are selected and thoroughly evaluated. Recent advances greatly decreased the time needed to do these MCNP calculations. Two modifications to the new MCNP4B source code, lattice tally and tracking enhancements, reduced the wall-clock run times of a typical one million source neutrons run to one hour twenty five minutes on a 200 MHz Pentium Pro computer running Linux and using the GNU FORTRAN compiler. Previously these jobs used a special version of MCNP4AB created by Everett Redmond, which completed in two hours two minutes. In addition to this 30% speedup, the MCNP4B version was adapted for use with Parallel Virtual Machine (PVM) on personal computers running the Linux operating system. MCNP, using PVM, can be run on multiple computers simultaneously, offering a factor of speedup roughly the same as the number of computers used. With two 200 MHz Pentium Pro machines, the run time was reduced to forty five minutes, a 1.9 factor of improvement over the single Linux computer. While the time of a single run was greatly reduced, the advantages associated with PVM derive from using computational power not already used. Four possible beams, currently requiring four separate runs, could be run faster when each is individually run on a single machine under Windows NT, rather than using Linux and PVM to run one after another with each multiprocessed across four computers. It would be advantageous, however, to use PVM to distribute the final two beam orientations over four computers

  2. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential

    International Nuclear Information System (INIS)

    Nigg, David W.

    2012-01-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K(nido-7-CH3(CH2)15-7,8-C2B9H11) in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K(nido-7-CH3(CH2)15-7,8-C2B9H11) in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 (ae-B20H17NH3), administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 ± 16.1 ppm at 48 h and to 43.9 ± 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  3. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg

    2012-05-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 [ae-B20H17NH3], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 {+-} 16.1 ppm at 48 h and to 43.9 {+-} 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  4. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  5. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar

    2007-01-01

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively

  6. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  7. Biodistribution, toxicity and efficacy of a boronated porphyrin for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Miura, Michiko; Micca, P.; Fairchild, R.; Slatkin, D.; Gabel, D.

    1992-01-01

    Boron-containing porphyrins may be useful for boron neutron capture therapy (BNCT) in the treatment of brain tumors. Porphyrins have been shown to accumulate in tumor tissue and to be essentially excluded from normal brain. However, problems of toxicity may prevent some boron-containing porphyrins from being considered for BNCT. The authors have synthesized the boronated porphyrin 2,4-bis-vinyl-o-nidocarboranyl-deuteroporphyrin IX (VCDP). Preliminary studies in tumor-bearing mice showed considerable uptake of boron at a total dose of 150 μg/gbw with low mortality. They now report that a total dose to mice of ∼ 275 μg VCDP/gbw administered in multiple intraperitoneal (ip) injections can provide 40-50μg B per gram of tumor with acceptable toxicity. Toxicity experiments and a preliminary trial of BNCT in mice given such doses are also reported

  8. Redistribution of boron in leaves reduces boron toxicity.

    Science.gov (United States)

    Reid, Robert J; Fitzpatrick, Kate L

    2009-11-01

    High soil boron (B) concentrations lead to the accumulation of B in leaves, causing the development of necrotic regions in leaf tips and margins, gradually extending back along the leaf. Plants vary considerably in their tolerance to B toxicity, and it was recently discovered that one of the tolerance mechanisms involved extrusion of B from the root. Expression of a gene encoding a root B efflux transporter was shown to be much higher in tolerant cultivars. In our current research we have shown that the same gene is also upregulated in leaves. However, unlike in the root, the increased activity of the B efflux transporter in the leaves cannot reduce the tissue B concentration. Instead, we have shown that in tolerant cultivars, these transporters redistribute B from the intracellular phase where it is toxic, into the apoplast which is much less sensitive to B. These results provide an explanation of why different cultivars with the same leaf B concentrations can show markedly different toxicity symptoms. We have also shown that rain can remove a large proportion of leaf B, leading to significant improvements of growth of both leaves and roots.

  9. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    Science.gov (United States)

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  10. Boron-containing thioureas for neutron capture therapy

    International Nuclear Information System (INIS)

    Ketz, H.

    1993-01-01

    Melanin is produced in large amounts in malignant melanotic melanomas. Because thiourea compounds are covalently incorporated into melanin during its biosynthesis, the preparation of boronated thiourea-derivatives is of particular interest for the BNCT (Boron Neutron Capture Therapy). Accumulation of boron in tumors by means of boronated thiourea-derivatives may therefore provide levels of 10 B which are useful for BNCT. In BNCT the tumor containing the boron compound is irradiated with epithermal neutrons to generate He- and Li-nuclei from the 10 B which can then destroy the tumor cells. Because of the short ranges of these particles (approximately one cell diameter) the damage will be almost exclusively confined to the tumor leaving normal tissue unharmed. High accumulation of 2-mercapto-1-methylimidazole (methimazole) in melanotic melanomas has been described in the literature. Boronated derivatives of methimazole were therefore synthesized. Boron was in the form of a boronic acid, a nido-carbonate and a mercaptoundeca hydro-closo-dodecaborate (BSH). The synthesis of the boron cluster derivatives of methimazole (nido-carborate- and BSH-derivatives) with 9 resp. 12 boron atoms in the molecule were expected to achieve higher concentrations of boron in the tumor than in the case of the boronic acid compound with its single boron atom. (orig.) [de

  11. Measurement of activity yields for 12C(#betta#, n)11C, 14N(#betta#, n)13N, and 16O(#betta#, n)15O reactions as a function of electron beam energy and angle from the electron beam using thick target produced bremsstrahlung

    International Nuclear Information System (INIS)

    Piltingsrud, H.V.

    1983-01-01

    The calculation of activity yields from practical photonuclear target systems designed to produce short-lived positron emitting radionuclides for nuclear medicine purposes requires certain basic information. These include a knowledge of the photon source (bremsstrahlung energy spectrum and intensity as a function of angle from the electron beam) and the #betta#, n activation cross section of the secondary target element. A lack of adequate information concerning these parameters motivated the present study in which activity yields for the reactions 12 C(#betta#, n) 11 C, 14 N(#betta#, n) 13 N, and 16 O(#betta#, n) 15 O were measured as a function of energy of and angle from the electron beam between 16 and 30 MeV and 0 0 and 30.5 0 , respectively. The data indicate highly complex relationships between the activity yield and the experimental variables. Also indicated are possible applications of the data to indicate the energy of an electron beam producing a given bremsstrahlung field in which activation measurements are made

  12. Boronated monoclonal antibody 225.28S for potential use in neutron capture therapy of malignant melanoma

    International Nuclear Information System (INIS)

    Tamat, S.R.; Moore, D.E.; Patwardhan, A.; Hersey, P.

    1989-01-01

    The concept of conjugating boron cluster compounds to monoclonal antibodies has been examined by several groups of research workers in boron neutron capture therapy (BNCT). The procedures reported to date for boronation of monoclonal antibodies resulted in either an inadequate level of boron incorporation, the precipitation of the conjugates, or a loss of immunological activity. The present report describes the conjugation of dicesium-mercapto-undecahydrododecaborate (Cs2B12H11SH) to 225.28S monoclonal antibody directed against high molecular weight melanoma-associated antigens (HMW-MAA), using poly-L-ornithine as a bridge to increase the carrying capacity of the antibody and to minimize change in the conformational structure of antibody. The method produces a boron content of 1,300 to 1,700 B atoms per molecule 225.28S while retaining the immunoreactivity. Characterization in terms of the homogeneity of the conjugation of the boron-monoclonal antibody conjugates has been studied by gel electrophoresis and ion-exchange HPLC

  13. A Simulation Study for Radiation Treatment Planning Based on the Atomic Physics of the Proton-Boron Fusion Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunmi; Yoon, Do-Kun; Shin, Han-Back; Jung, Joo-Young; Kim, Moo-Sub; Kim, Kyeong-Hyeon; Jang, Hong-Seok; Suh, Tae Suk [the Catholic University of Korea, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this research is to demonstrate, based on a Monte Carlo simulation code, the procedure of radiation treatment planning for proton-boron fusion therapy (PBFT). A discrete proton beam (60 - 120 MeV) relevant to the Bragg peak was simulated using a Monte Carlo particle extended (MCNPX, Ver. 2.6.0, National Laboratory, Los Alamos NM, USA) simulation code. After computed tomography (CT) scanning of a virtual water phantom including air cavities, the acquired CT images were converted using the simulation source code. We set the boron uptake regions (BURs) in the simulated water phantom to achieve the proton-boron fusion reaction. Proton sources irradiated the BUR, in the phantom. The acquired dose maps were overlapped with the original CT image of the phantom to analyze the dose volume histogram (DVH). We successfully confirmed amplifications of the proton doses (average: 130%) at the target regions. From the DVH result for each simulation, we acquired a relatively accurate dose map for the treatment. A simulation was conducted to characterize the dose distribution and verify the feasibility of proton boron fusion therapy (PBFT). We observed a variation in proton range and developed a tumor targeting technique for treatment that was more accurate and powerful than both conventional proton therapy and boron-neutron capture therapy.

  14. The development and preliminary testing of new boronated agents for BNCT based on PET derived data

    International Nuclear Information System (INIS)

    Nichols, T.; Kabalka, G.; Kahn, M.; Das, B.; Das, S.; Bao, W.; Miller, L.

    2000-01-01

    Positron emission tomography (PET) has been utilized at the University of Tennessee for evaluating a variety of tumors including glioblastoma multiforme (GBM) and metastatic malignant melanoma (MM). Studies have been carried out utilizing fluorine-18 labeled p-boronophenylalanine ( 18 F-BPA) and other unnatural amino acids. A comparison of PET studies obtained using 18 F-BPA and a carbon-11 labeled cyclobutane-based amino acid ( 11 C-ACBC) revealed that 11 C-ACBC localized effectively in GBM tumors. Based on these results, we have prepared a series of boronated, aminocyclobutanecarboxylic acids. Preliminary uptake and cell toxicity studies have been carried out and show that many of the agents are not toxic. In one instance, a biodistribution study carried out using nude mice implanted with a human glioblastoma tumor, the tumor to normal tissue uptake of boron exceeds that observed for BPA. (author)

  15. Boron removal in radioactive liquid waste by forward osmosis membrane

    Energy Technology Data Exchange (ETDEWEB)

    Doo Seong Hwang; Hei Min Choi; Kune Woo Lee; Jei Kwon Moon [KAERI, Daejeon (Korea, Republic of)

    2013-07-01

    This study investigated the treatment of boric acid contained in liquid radioactive waste using a forward osmosis membrane. The boron permeation through the membrane depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7 and increases with an increase of the osmotic driving force. The boron flux decreases slightly with the salt concentration, but is not heavily influenced by a low salt concentration. The boron flux increases linearly with the concentration of boron. No element except for boron was permeated through the FO membrane in the multi-component system. The maximum boron flux is obtained in an active layer facing a draw solution orientation of the CTA-ES membrane under conditions of less than pH 7 and high osmotic pressure. (authors)

  16. 15th International Conference on Boron Chemistry (IMEBORON XV)

    Czech Academy of Sciences Publication Activity Database

    Grüner, Bohumír; Štíbr, Bohumil

    2015-01-01

    Roč. 87, č. 2 (2015), s. 121 ISSN 0033-4545 Institutional support: RVO:61388980 Keywords : boranes * boron * boron materials * carboranes * IMEBORON XV * medicinal chemistry Subject RIV: CA - Inorganic Chemistry

  17. Structure prediction of boron-doped graphene by machine learning

    Science.gov (United States)

    M. Dieb, Thaer; Hou, Zhufeng; Tsuda, Koji

    2018-06-01

    Heteroatom doping has endowed graphene with manifold aspects of material properties and boosted its applications. The atomic structure determination of doped graphene is vital to understand its material properties. Motivated by the recently synthesized boron-doped graphene with relatively high concentration, here we employ machine learning methods to search the most stable structures of doped boron atoms in graphene, in conjunction with the atomistic simulations. From the determined stable structures, we find that in the free-standing pristine graphene, the doped boron atoms energetically prefer to substitute for the carbon atoms at different sublattice sites and that the para configuration of boron-boron pair is dominant in the cases of high boron concentrations. The boron doping can increase the work function of graphene by 0.7 eV for a boron content higher than 3.1%.

  18. Boron: out of the sky and onto the ground

    International Nuclear Information System (INIS)

    Kuehl, D.K.

    1975-01-01

    Now an accepted, engineered material for aerospace applications, boron is taking its place on the ground. Both current production applications, prototype (development) applications, and speculative applications abound. In the leisure product market, boron epoxy or boron aluminum has been used or tried in golf clubs (in combination with graphite epoxy or to reinforce aluminum or steel), in tennis racquets, in bicycles, racing shells, skis and skipoles, bows and arrows, and others. In the industrial area, boron has been used to reduce fatigue, increase stiffness, or for its abrasive properties. Textile machinery, honing tools, and cut off wheels or saws are among the applications. In the medical field, prosthetics and orthotic braces, wheel chairs, canes, and crutches are all good applications for boron. Applications for boron in transportation, construction, and heavy industry are also possible. The volume of boron used in these applications could have a major impact on prices, making boron composite parts cost competitive with conventional materials. (U.S.)

  19. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.; Drouiche, Nadjib; Lounici, Hakim; Mameri, Nabil; Ghaffour, NorEddine

    2013-01-01

    , this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous

  20. Application of drug delivery system for boron neutron capture therapy. Basic research toward clinical application

    International Nuclear Information System (INIS)

    Yanagie, Hironobu; Takahashi, Hiroyuki

    2010-01-01

    Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between 10 B and thermal neutrons ( 10 B+ 1 n → 7 Li+ 4 He (α) +2.31 MeV (93.7%)/2.79 MeV (6.3%)). The resulting lithium ions and αparticles are high linear energy transfer (LET) particles which give high biological effect. Their short range in tissue (5-9 μm) restricts radiation damage to those cells in which boron atoms are located at the time of neutron irradiation. BNCT has been applied clinically for the treatment of malignant brain tumors, malignant melanoma, head and neck cancer and hepatoma etc, recently. Sodium borocaptate (Na 2 10 B 12 H 11 SH; BSH) and borono-phenylalanine ( 10 BPA) are currently being used in clinical treatments. To achieve the selective delivery of boron atoms to cancer cells, drug delivery system (DDS) becomes an attractive intelligent technology as targeting and controlled release of drugs. We have firstly reported that 10 B atoms delivered by immunoliposomes are cytotoxic to human pancreatic carcinoma cells (AsPC-1) after thermal neutron irradiation in vitro. The intra-tumoural injection of boronated immunoliposomes can increase the retention of 10 B atoms in tumour cells, causing suppression of tumour growth in vivo following thermal neutron irradiation. We prepared polyethylene-glycol binding liposomes (PEG-liposomes) as an effective 10 B carrier to obviate phagocytosis by reticuloendotherial systems. We had prepared 10 BSH entrapped Water-in-Oil-in-Water (WOW) emulsion. The 10 B concentration in VX-2 tumour after intra-arterial injection of 10 BSH entrapped WOW emulsion was superior to the groups of 10 BSH entrapped conventional Lipiodol mix emulsion. 10 Boron entrapped WOW emulsion is one of the most useful for intra-arterial boron delivery carrier on BNCT to hepatocellular carcinoma. (author)

  1. In-beam γ-ray spectroscopy of N=84 nuclei above Gd and the impact of the (πh11/2νh9/2)1+ attraction on their yrast lines

    International Nuclear Information System (INIS)

    Zhang Chengteng.

    1993-12-01

    In in-beam experiments using the γ-spectrometers Nordball at the Niels Bohr Institute and Osiris at the Hahn-Meitner Institute we populated the four N = 84 isotones 151 Ho, 152 Er, 153 Tm and 154 Yb through compound evaporation reactions induced with medium HI beams of masses ranging from 28 to 56. All observed γ-transitions with intensities above 1% (5% in 154 Yb) of the respective exit channel were placed in the level schemes, with spins established up to 10 MeV (8 MeV for 154 Yb) and parties up to between 5 and 7 MeV. We have found that in these N = 84 nuclei the multi-valence particle configurations πh n 11/2 νf 2 7/2 and πh n 11/2 νf 7/2 h 9/2 are strongly populated in the yrast cascades, and we have observed them up to their maximum spins of 43/2 - in Ho (at 4.8 MeV), 24 + in Er (7.5 MeV), 51/2 - in Tm (6.9 MeV), and only up to 24 + in Yb, 0.5 MeV below the fully aligned 26 + state expected at 9.1 MeV. The πh n νf 2 configuration forms smooth sections of the yrast line, while the more irregular yrast line of the πh n νfh character reflects the strong (νfh)8 + two-body attraction which gives rise to pronounced yrast line dips. We have also carried out full shell model calculations of these yrast lines, which are in excellent agreement with the experimental data. Since we take all dynamic input values, i.e. the two-body matrix elements and the single particle energies, from experiment, the calculations are free of any adjusted parameter. An interesting new result is the systematic identification in the πh n 11/2 νfh configuration of yrast states formed by specific proton couplings, where the strongly attractive (πh 11/2 νh 9/2 )1 + interaction is activated. As a consequence these states drop down to the yrast lines and in energy below the maximum aligned state of the next lower proton seniority. These seniority inverted yrast states were systematically identified in the four N = 84 nuclei, including two such states in 153 T, the first N 84

  2. Geochemical and isotopic evidences for a severe anthropogenic boron contamination: A case study from Castelluccio (Arezzo, central Italy)

    International Nuclear Information System (INIS)

    Venturi, Stefania; Vaselli, Orlando; Tassi, Franco; Nisi, Barbara; Pennisi, Maddalena; Cabassi, Jacopo; Bicocchi, Gabriele; Rossato, Luca

    2015-01-01

    In 2009 a deterioration of garden plants watered with domestic wells was related to high boron concentrations (up to 57 mg/L) measured in the shallow aquifer from the industrial area of Castelluccio (Tuscany, Italy), where several factories are or were using boron compounds for their industrial processes. Since 2012 a geochemical and isotopic survey of stream, ground and waste waters, and sediment samples was performed. In addition, monthly geochemical surveys were carried out from January to September 2013, during which concentrations of boron up to 139 mg/L were measured. The geochemical dataset also included raw (borax and sodium boron-hydride) and anthropogenic materials (B-rich slags and muds stored in one of the local factories), the latter being, to the best of our knowledge, analyzed for the first time in this work for bulk and leachate boron concentration and isotopic ratios. The results highlighted that the high concentrations of boron found in the local shallow aquifer had unequivocally an anthropogenic source. It was suggested that prolonged interaction between industrial (presently stored at ground level or buried) by-products and waste and meteoric waters was likely the main process responsible of the groundwater contamination as supported by the analysis of the major solutes. The dispersion of the contaminant could not clearly be observed downward the shallow hydrogeological circuit. Consequently, the presence of other sources of boron in the industrial area of Castelluccio cannot be excluded. This would also explain the reason why no univocal results were obtained by the "1"1B/"1"0B isotopic ratios measured in water, sediment and (bulk and leachate) anthropogenic samples. To minimize the boron contamination a hydraulic barrier should be constructed where the highest concentrations of boron were measured. - Highlights: • High boron concentrations were measured in a groundwater system near Arezzo (Italy). • Several factories in the local

  3. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  4. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hannah E. [Georgia Inst. of Technology, Atlanta, GA (United States)

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies.

  5. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10 7 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF 3 composite and a stacked Al/Teflon design) at various incident electron energies

  6. Hot ductility behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; Cabrera, J.M.

    2007-01-01

    The current study analyses the influence of boron contents (between 29 and 105 ppm) on the hot ductility of boron microalloyed steels. For this purpose, hot tensile tests were carried out at different temperatures (700, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s -1 . In general, results revealed an improvement of the hot ductility of steels at increasing boron content. At 700, 900 and 1000 deg. C the ductility is higher than at 800 deg. C, where boron microalloyed steels exhibit a region of ductility loss (trough region). Likewise, dynamic recrystallization only occurred at 900 and 1000 deg. C. The fracture surfaces of the tested steels at temperatures giving the high temperature ductility regime show that the fracture mode is a result of ductile failure, whereas it is ductile-brittle failure in the trough region. Results are discussed in terms of dynamic recrystallization and boron segregation towards austenite grain boundaries, which may retard the formation of pro-eutectoid ferrite and increase grain boundary cohesion

  7. Technology of boron-containing polyphosphate fertilizer 'Phosphobor'

    International Nuclear Information System (INIS)

    Aldabergenov, M.K.; Balakaeva, T.G.

    1995-01-01

    A technology is developed for producing 'Phosphobor' fertilizer based on the rock phosphate weal (17-18% P 2 O 5 ) with additions of boron-magnesium compound. Boron is part of polyphosphate fertilizer in the form of polymeric compounds of phosphorus and boron. Phosphorus and boron copolymers -boratophosphates - are easily formed in the process of polyphosphate fertilizers production, since borates undergo a mutual polycondensation reaction with phosphates. 8 refs., 1 fig

  8. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  9. Design of a boron neutron capture enhanced fast neutron therapy assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonglu [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-12-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm2 collimator. Five 1.0-cm thick 20x20 cm2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The

  10. Boron neutron capture therapy for malignant brain tumor and future potential

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Hatanaka, Hiroshi.

    1994-01-01

    This paper presents therapeutic experience with boron neutron capture therapy (BNCT) for malignant brain tumors. Nine patients who survived for 10 years or more as of 1986 are given in a table. A review of the 9 patients concluded that physical dose of 15 Gy is required. In addition, the following factors are defined to be the most important: (1) to determine tumor size and depth as accurately as possible, (2) to measure neutron doses in the deepest site of the tumor during irradiation, (3) to measure the content of boron within the tumor, and to deliver neutron beams as deeply as possible. Finally, the importance of knowing RBE of alpha particles for tumor cells of the human brain is emphasized. (N.K.)

  11. Coherent beam-beam effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1992-01-01

    There are two physical pictures that describe the beam-beam interaction in a storage ring collider: The weak-strong and the strong-strong pictures. Both pictures play a role in determining the beam-beam behavior. This review addresses only the strong-strong picture. The corresponding beam dynamical effects are referred to as the coherent beam-beam effects. Some basic knowledge of the weak-strong picture is assumed. To be specific, two beams of opposite charges are considered. (orig.)

  12. Boron isotopic compositions in growing corals from the South China Sea

    Science.gov (United States)

    Xiao, Jun; Xiao, Yingkai; Jin, Zhangdong; Liu, Congqiang; He, Maoyong

    2013-01-01

    In order to determine incorporation of boron species, boron isotopic fractionation, and influence of trace elements on isotopic compositions of boron in corals (δ11Bcoral), concentrations of Mg, Sr, Na, B and δ11Bcoral in growing corals from the South China Sea were measured. Relative to seawater, Sr enriched while Mg depleted in corals in the South China Sea. Although the δ11Bcoral values were different from various species and were not closely correlated with the element concentrations in corals in the South China Sea, Mg(OH)2 existed in corals can result in high δ11Bcoral. Thus, it is necessary to examine the existence of Mg(OH)2 and to choose the same species when δ11Bcoral is used in the δ11B-pH proxy. Based on the measured δ11B values of corals and coexisting seawater as well as the seawater pH in the South China Sea, a new isotopic fractionation factor a4-3 between B(OH)4- and B(OH)3 was determined to be 0.979. Besides B(OH)4- into corals, our results showed that B(OH)3 may also be incorporated into corals with variable proportions. The incorporation of B(OH)3 into corals may challenge the hypothesis of δ11Bcoral = δ11B4, resulting in increasing uncertainty to the calculated seawater pH values to the δ11B-pH proxy. We suggested that a best-fit empirical equation between δ11B of bio-carbonates and seawater pH needs to be established by the precipitation experiments of inorganic carbonates or culture experiments of corals or foraminifera.

  13. Screening of Wheat Genotypes for Boron Efficiency in Bangladesh

    Science.gov (United States)

    A number of Bangladeshi wheat genotypes (varieties and advanced lines) have been tested for boron efficiency through sand culture experiments over two years (2007-08 & 2008-09) against two Thai check varieties ‘Fang 60’ (boron efficient) and ‘SW41’ (boron inefficient). Performances of the genotypes ...

  14. The effects of boron management on soil microbial population and ...

    African Journals Online (AJOL)

    Soil microorganisms directly influence boron content of soil as maximum boron release corresponds with the highest microbial activity. The objective of this study is to determine the effects of different levels of boron fertilizer on microbial population, microbial respiration and soil enzyme activities in different soil depths in ...

  15. Evaluating the complexation behavior and regeneration of boron selective glucaminium-based ionic liquids when used as extraction solvents

    International Nuclear Information System (INIS)

    Joshi, Manishkumar D.; Steyer, Daniel J.; Anderson, Jared L.

    2012-01-01

    Highlights: ► Glucaminium-based ILs exhibit high selectivity for boron species using DLLME. ► The concentration of glucaminium-based IL affects type of boron complex formed. ► Use of 0.1 M HCl allows for regeneration of the IL solvent following extraction. ► Selectivity of the glucaminium-based ILs for boron species in seawater is similar to Milli-Q water. - Abstract: Glucaminium-based ionic liquids are a new class of solvents capable of extracting boron-species from water with high efficiency. The complexation behavior of these ILs with borate was thoroughly studied using 11 B NMR. Two different complexes, namely, monochelate complex and bischelate complex, were observed. 11 B NMR was used extensively to determine the formation constants for monochelate and bischelate complexes. The IL concentration was observed to have a significant effect on the IL–borate complexes. Using an in situ dispersive liquid–liquid microextraction (in situ DLLME) method, the extraction efficiency for boron species was increased dramatically when lithium bis[(trifluoromethyl)sulfonyl]imide (LiNTf 2 ) was used as the metathesis salt in an aqueous solution containing 0.1 M sodium chloride. IL regeneration after extraction was achieved using 0.1 M hydrochloric acid. The extraction efficiency of boron species was consistent when the IL was employed after three regeneration cycles. The selectivity of the IL for boron species in synthetic seawater samples was similar to performing the same extraction from Milli-Q water samples.

  16. Oxidation of boron carbide at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, Martin

    2005-01-01

    The oxidation kinetics of various types of boron carbides (pellets, powder) were investigated in the temperature range between 1073 and 1873 K. Oxidation rates were measured in transient and isothermal tests by means of mass spectrometric gas analysis. Oxidation of boron carbide is controlled by the formation of superficial liquid boron oxide and its loss due to the reaction with surplus steam to volatile boric acids and/or direct evaporation at temperatures above 1770 K. The overall reaction kinetics is paralinear. Linear oxidation kinetics established soon after the initiation of oxidation under the test conditions described in this report. Oxidation is strongly influenced by the thermohydraulic boundary conditions and in particular by the steam partial pressure and flow rate. On the other hand, the microstructure of the B 4 C samples has a limited influence on oxidation. Very low amounts of methane were produced in these tests

  17. The ternary system nickel-boron-silicon

    International Nuclear Information System (INIS)

    Lugscheider, E.; Reimann, H.; Knotek, O.

    1975-01-01

    The ternary system Nickel-Boron-Silicon was established at 850 0 C by means of X-ray diffraction, metallographic and micro-hardness examinations. The well known binary nickel borides and silicides resp. were confirmed. In the boron-silicon system two binary phases, SiBsub(4-x) with x approximately 0.7 and SiB 6 were found the latter in equilibrium with the β-rhombohedral boron. Confirming the two ternary silicon borides a greater homogeneity range was found for Ni 6 Si 2 B, the phase Nisub(4,6)Si 2 B published by Uraz and Rundqvist can better be described by the formula Nisub(4.29)Si 2 Bsub(1.43). In relation to further investigations we measured melting temperatures in ternary Ni-10 B-Si alloys by differential thermoanalysis. (author)

  18. Depth resolved investigations of boron implanted silicon

    Science.gov (United States)

    Sztucki, M.; Metzger, T. H.; Milita, S.; Berberich, F.; Schell, N.; Rouvière, J. L.; Patel, J.

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6×10 15 ions/cm -2 at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {1 1 1} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  19. Radiation hardening of MOS devices by boron

    International Nuclear Information System (INIS)

    Danchenko, V.

    1975-01-01

    A novel technique is disclosed for radiation hardening of MOS devices and specifically for stabilizing the gate threshold potential at room temperature of a radiation subjected MOS field-effect device of the type having a semiconductor substrate, an insulating layer of oxide on the substrate, and a gate electrode disposed on the insulating layer. In the preferred embodiment, the novel inventive technique contemplates the introduction of boron into the insulating oxide, the boron being introduced within a layer of the oxide of about 100A to 300A thickness immediately adjacent the semiconductor-insulator interface. The concentration of boron in the oxide layer is preferably maintained on the order of 10 atoms/ cm 3 . The novel technique serves to reduce and substantially annihilate radiation induced positive gate charge accumulations, which accumulations, if not eliminated, would cause shifting of the gate threshold potential of a radiation subjected MOS device, and thus render the device unstable and/or inoperative. (auth)

  20. BC-454 boron-loaded plastic scintillator

    International Nuclear Information System (INIS)

    Bellian, J.G.

    1984-01-01

    Prototype samples of plastic scintillators containing up to 10% by weight of natural boron have been produced. The maximum size scintillators made to date are 28 mm dia. x 100 mm long. Rods containing up to 2% boron are now made routinely and work is progressing on higher concentrations. The plastics are clear and emit the same blue fluorescence as other common plastic scintillators. It is expected that rods up to 3'' dia. containing 5% boron will be produced during the next few months. BC-454 is particularly useful in neutron research, materials studies, some types of neutron dosimetry, and monitoring of medium to high energy neutrons in the presence of other types radiation. It combines attractive features that enhance its usefulness to the physics community

  1. On the Mechanism of Boron Ignition

    Science.gov (United States)

    Keil, D. G.; Dreizin, E. L.; Felder, W.; Vicenzi, E. P.

    1997-01-01

    Boron filaments were electrically heated in air and argon/oxygen mixtures while their resistance, temperature, and radiation at the wavelengths of BO and BO2 bands were monitored. The filaments 'burned' in two distinct stages. Samples of the filaments were quenched at different times before and during the burning and analyzed using electron microscopy. The beginning of the first stage combustion characterized by a local resistance minimum, a sharp spike in boron oxide radiation emission, and a rapid rise in temperature, occurred at 1500 +/- 70 deg. C, independent of pre-heating history and oxygen content (540%) in the gas environment. The data suggest that a phase transition occurs in the filaments at this temperature that triggers stage one combustion. Significant amounts of oxygen were found inside quenched filaments. Large spherical voids formed in the boron filaments during their second stage combustion which is interpreted to indicate a crucial role for the gas dissolution processes in the combustion scenario.

  2. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Hodapp, T.R.; Jackson, G.L.; Phillips, J.; Holtrop, K.L.; Peterson, P.L.; Winters, J.

    1992-01-01

    A system has been added to the DIII-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose f the boron film is to reduce the levels of impurity atoms in the DIII-D plasmas. Experiments following the application of the boron film in DIII-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime

  3. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Hodapp, T.R.; Jackson, G.L.; Phillips, J.; Holtrop, K.L.; Petersen, P.I.; Winter, J.

    1991-09-01

    A system has been added to the D3-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose of the boron film is to reduce the levels of impurity atoms in the D3-D plasmas. Experiments following the application of the boron film in D3-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime. 9 refs., 1 fig

  4. Short-term coral bleaching is not recorded by skeletal boron isotopes.

    Science.gov (United States)

    Schoepf, Verena; McCulloch, Malcolm T; Warner, Mark E; Levas, Stephen J; Matsui, Yohei; Aschaffenburg, Matthew D; Grottoli, Andréa G

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  5. NMR investigation of boron impurities in refined metallurgical grade silicon

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, Hans-Joachim; Loeser, Wolfgang; Schmitz, Steffen; Sakaliyska, Miroslava [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Institute for Solid State Physics, Technische Universitaet Dresden (Germany); Eisert, Stefan; Reichenbach, Birk; Mueller, Tim [Adensis GmbH, Dresden (Germany); Acker, Joerg; Rietig, Anja; Ducke, Jana [Department of Chemistry, Faculty for Natural Sciences, Brandenburg Technical University Cottbus-Senftenberg, Senftenberg (Germany)

    2015-09-15

    The nuclear magnetic resonance (NMR) method was applied for tracking boron impurities in the refining process of metallurgical grade (MG) silicon. From the NMR signal of the {sup 11}B isotope at an operating temperature 4.2 K, the boron concentration can be estimated down to the order of 1-10 wppm B. After melting and resolidification of MG-Si alloyed with Ca and Ti, a major fraction of B impurities remains in the Si solid solution as inferred from the characteristic NMR frequency. The alloying element Ti does not form substantial fractions of TiB{sub 2}. Acid leaching of crushed powders of MG-Si alloyed with Ca and Ti can diminish the initial impurity content of B suggesting its accumulation in the grain boundary phases. NMR signals of TiB{sub 2} at 4.2 K and room temperature (RT), and of poly-Si with different B doping at 4.2 K. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Boron removal by electrocoagulation and recovery.

    Science.gov (United States)

    Isa, Mohamed Hasnain; Ezechi, Ezerie Henry; Ahmed, Zubair; Magram, Saleh Faraj; Kutty, Shamsul Rahman Mohamed

    2014-03-15

    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-09-22

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  8. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  9. Nanodefects in ultrahard crystalline cubic boron nitride

    International Nuclear Information System (INIS)

    Nistor, S. V.; Stefan, M.; Goovaerts, E.; Schoemaker, D.

    2002-01-01

    Cubic boron nitride (cBN), the second hardest known material after diamond, exhibits high thermal conductivity and an excellent ability to be n or p doped, which makes it a strong candidate for the next generation of high-temperature micro optical and micro electronic devices. According to recent studies, cBN exhibits a better resistance to radiation damage than diamond, which suggests potential applications in extreme radiation environments. Crystalline cBN powders of up to 0.5 mm linear size is obtained in a similar way as diamond, by catalytic conversion of hexagonal BN (hBN) to cBN at even higher pressures (> 5GPa) and temperatures (∼ 1900 K). Considering the essential role played by the nanodefects (point defects and impurities) in determining its physical properties, it is surprising how limited is the amount of published data concerning the properties of nanodefects in this material, especially by Electron Paramagnetic Resonance (EPR) spectroscopy, the most powerful method for identification and characterization of nanodefects in both insulators and semiconductors. This seems to be due mainly to the absence of natural cBN gems and the extreme difficulties in producing even mm 3 sized synthetic crystals. We shall present our recent EPR studies on cBN crystalline powders, performed in a broad temperature range from room temperature (RT) down to 1.2 K on several sorts of large size cBN powder grits of yellow and amber color for industrial applications. Previous multifrequency (9.3 GHz and 95 GHz) EPR studies of brown to black cBN crystallites prepared with excess of boron, resulted in the discovery of two new types of paramagnetic point defects with different spectral properties, called the D1 and D2 centers. Our X(9.3 GHz)-band EPR investigations resulted in the observation in amber cBN crystalline powders of a spectrum with a strong temperature dependence of the lineshape. It was found that for high and low temperatures, respectively, the numerical

  10. Reactive sputter deposition of boron nitride

    International Nuclear Information System (INIS)

    Jankowski, A.F.; Hayes, J.P.; McKernan, M.A.; Makowiecki, D.M.

    1995-10-01

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied -300 V dc bias

  11. Designing your boron-charging system

    International Nuclear Information System (INIS)

    Miller, J.

    1979-01-01

    High-pressure positive-displacement pumps used in the boron-charging setups of pressurized-water (PWR) nuclear plants because of their inherently high efficiencies over a wide range of pressures and speeds are described. Hydrogen-saturated water containing 4-12% boric acid is fed to the pump from a volume-control tank under a gas blanket. Complicated piping and the pulsation difficulties associated with reciprocating pumps make hydrogen-saturated boron-charging systems a challenge to the designer. The article describes the unusual hydraulics of the systems to help assure a trouble-free design

  12. Current status of accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Kreiner, A. J.; Bergueiro, J.; Di Paolo, H.; Castell, W.; Vento, V. Thatar; Cartelli, D.; Kesque, J.M.; Valda, A.A.; Ilardo, J.C.; Baldo, M.; Erhardt, J.; Debray, M.E.; Somacal, H.R.; Estrada, L.; Sandin, J.C. Suarez; Igarzabal, M.; Huck, H.; Padulo, J.; Minsky, D.M.

    2011-01-01

    The direct use of proton and heavy ion beams for radiotherapy is a well established cancer treatment modality, which is becoming increasingly widespread due to its clear advantages over conventional photon-based treatments. This strategy is suitable when the tumor is spatially well localized. Also the use of neutrons has a long tradition. Here Boron Neutron Capture Therapy (BNCT) stands out, though on a much smaller scale, being a second-generation promising alternative for tumors which are diffuse and infiltrating. On this sector, so far only nuclear reactors have been used as neutron sources. In this paper we describe the current situation worldwide as far as the use of accelerator-based neutron sources for BNCT is concerned (so-called Accelerator-Based (AB)-BNCT). In particular we discuss the present status of an ongoing project to develop a folded Tandem-ElectroStatic-Quadrupole (TESQ) accelerator at the Atomic Energy Commission of Argentina. The project goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams to perform BNCT for deep-seated tumors in less than an hour. (author)

  13. Neutron spectrum for neutron capture therapy in boron

    International Nuclear Information System (INIS)

    Medina C, D.; Soto B, T. G.; Baltazar R, A.; Vega C, H. R.

    2016-10-01

    Glioblastoma multiforme is the most common and aggressive of brain tumors and is difficult to treat by surgery, chemotherapy or conventional radiation therapy. One treatment alternative is the Neutron Capture Therapy in Boron, which requires a beam modulated in neutron energy and a drug with 10 B able to be fixed in the tumor. When the patients head is exposed to the neutron beam, they are captured by the 10 B and produce a nucleus of 7 Li and an alpha particle whose energy is deposited in the cancer cells causing it to be destroyed without damaging the normal tissue. One of the problems associated with this therapy is to have an epithermal neutrons flux of the order of 10 9 n/cm 2 -sec, whereby irradiation channels of a nuclear research reactor are used. In this work using Monte Carlo methods, the neutron spectra obtained in the radial irradiation channel of the TRIGA Mark III reactor are calculated when inserting filters whose position and thickness have been modified. From the arrangements studied, we found that the Fe-Cd-Al-Cd polyethylene filter yielded a ratio between thermal and epithermal neutron fluxes of 0.006 that exceeded the recommended value (<0.05), and the dose due to the capture gamma rays is lower than the dose obtained with the other arrangements studied. (Author)

  14. Boron neutron capture therapy for malignant brain tumor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yoshinobu [National Kagawa Children`s Hospital, Takamatsu, Kagawa (Japan)

    1998-03-01

    Since 1968, we have treated 149 patients and performed boron-neutron capture therapy (BNCT) on 164 occasions using 5 reactors in Japan. There were 64 patients with glioblastoma, 39 patients with anaplastic astrocytoma and 17 patients with low grade astrocytoma (grade 1 or 2). There were 30 patients with other types of tumor. The overall response rate in the glioma patients was 64%. Seven patients (12%) of glioblastoma, 22 patients (56%) of anaplastic astrocytoma and 8 patients (62%) of low grade astrocytoma lived more than 2 years Median survival time of glioblastoma was 640 days. Median survival times of patients with anaplastic astrocytoma was 1811 days, and 1669 days in low grade astrocytoma. Six patients (5 glioblastoma and one anaplastic astrocytoma) died within 90 days after BNCT. Six patients lived more than 10 years. Histological grading, age of the patients, neutron fluence at the target point and target depth or size of the tumor were proved to be important factors. BNCT is an effective treatment for malignant brain tumors. We are now became able to radiate the tumor more correctly with a high enough dose of neutron beam even if we use thermal neutron beam. (author)

  15. Model for calculating the boron concentration in PWR type reactors

    International Nuclear Information System (INIS)

    Reis Martins Junior, L.L. dos; Vanni, E.A.

    1986-01-01

    A PWR boron concentration model has been developed for use with RETRAN code. The concentration model calculates the boron mass balance in the primary circuit as the injected boron mixes and is transported through the same circuit. RETRAN control blocks are used to calculate the boron concentration in fluid volumes during steady-state and transient conditions. The boron reactivity worth is obtained from the core concentration and used in RETRAN point kinetics model. A FSAR type analysis of a Steam Line Break Accident in Angra I plant was selected to test the model and the results obtained indicate a sucessfull performance. (Author) [pt

  16. Secondary beams at GANIL

    International Nuclear Information System (INIS)

    Doubre, H.

    1992-01-01

    GANIL, a user's facility since 1983, can deliver a broad spectrum of heavy-ion beams, from He to U, to well-equipped experimental areas. Their very large intensities are to be exploited to produce secondary beams, either using the fragmentation method (beams at energy per nucleon larger than 30 MeV/u), or the ISOL method. With the latter one, these ions have to be re-accelerated. The project of a cyclotron as a post-accelerator is described. (author) 11 refs.; 7 figs.; 3 tabs

  17. Room-temperature near-infrared electroluminescence from boron-diffused silicon pn junction diodes

    Directory of Open Access Journals (Sweden)

    Si eLi

    2015-02-01

    Full Text Available Silicon pn junction diodes with different doping concentrations were prepared by boron diffusion into Czochralski (CZ n-type silicon substrate. Their room-temperature near-infrared electroluminescence (EL was measured. In the EL spectra of the heavily boron doped diode, a luminescence peak at ~1.6 m (0.78 eV was observed besides the band-to-band line (~1.1eV under the condition of high current injection, while in that of the lightly boron doped diode only the band-to-band line was observed. The intensity of peak at 0.78 eV increases exponentially with current injection with no observable saturation at room temperature. Furthermore, no dislocations were found in the cross-sectional transmission electron microscopy image, and no dislocation-related luminescence was observed in the low-temperature photoluminescence spectra. We deduce the 0.78 eV emission originates from the irradiative recombination in the strain region of diodes caused by the diffusion of large number of boron atoms into silicon crystal lattice.

  18. Effect of concentrated light on morphology and vibrational properties of boron and tantalum mixtures

    Directory of Open Access Journals (Sweden)

    Lina Sartinska

    2018-03-01

    Full Text Available Heating a mixture of boron (impurities: carbon ∼ B50C2, boric acid – H3BO3 and tantalum (Ta powders in nitrogen flow in a xenon high-flux optical furnace was performed. As-received powder composed of h-BN, H3BO3, TaB2, B9H11 and a number of other phases including β-rhombohedral boron, apparently, heavily doped with Ta. FT–IR examination of any sample of the material reveals the complicated vibration spectrum containing, in particular, an absorption band near 2260 cm−1. The shapes of these bands are different for samples because powders were synthesized at different temperatures. Known, that in β-rhombohedral boron lattice, there are nano-sized voids of different types, which allow an accommodation of single atoms or small groups of atoms. Theoretical calculations performed by the method of quasi-classical type yields the same value, 2260 cm−1, for the vibrations frequency of Ta atoms in D-type crystallographic voids in β-rhombohedral boron lattice. Since, Ta atoms are known to prefer accommodation just in D-voids the experimentally detected bands can be identified with localized vibrations of Ta atoms. Keywords: Condensed matter physics, Materials science, Nanotechnology

  19. The effect of carbon and boron on the accumulation of vacancy-oxygen complexes in silicon

    International Nuclear Information System (INIS)

    Akhmetov, V.D.; Bolotov, V.V.

    1980-01-01

    By means of IR-absorption measurements the dose dependencies of the concentrations of vacancy-oxygen complexes (VO), interstitial oxygen atoms (Osub(I)), substitutional carbon atoms (Csub(S)) and interstitial carbon-oxygen complexes (Csub(I)Osub(I)) in n- and p-type silicon irradiated with 1.1 MeV electrons have been investigated. The observed increase of the production rate of VO-complexes with the rise of carbon and boron atoms concentrations (these impurities act as sinks for silicon interstitial atoms) has been explained in terms of annihilation of the vacancies and interstitials on the oxygen atoms. The results obtained show that boron atoms are more effective sinks than carbon atoms for the interstitial silicon atoms. That seems to be connected not only with the higher probability of boron injection into interstitial position but also with the further capture of interstitial silicon atoms on the interstitial boron, i.e. with the interstitial cluster formation. (author)

  20. Insights into the Mechanisms Underlying Boron Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Akira Yoshinari

    2017-11-01

    Full Text Available Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed.

  1. Application of ICPMS for performance evaluation of boron enrichment plant at HWP, Manuguru

    International Nuclear Information System (INIS)

    Murthy, P.K.; Mohapatra, C.; Vithal, G.K.

    2011-01-01

    10 B enriched compounds are used in neutron control rod in Fast Breeder Reactors (FBR), Neutron Detector, Neutron Capture Therapy, and Neutron Shielding. Heavy Water Board (HWB) is given a mandate to produce enriched elemental boron which is being produced using Ion exchange chromatography and BF 3 - ether complex distillation methods. Ion Exchange Chromatography based Boron Enrichment Plant is operating at HWP, Manuguru. Ion Exchange Chromatography based process depends, besides other process parameters, on column run time and movement of band length. For effective process and quality control, it is necessary to analyze 10 B/ 11 B ratio in feed, process stream, waste and the product. 10 B/ 11 B ratio measurements are possible by Thermal Ionization Mass Spectrometer (TIMS) and Inductively Coupled Plasma Mass Spectrometer (ICPMS), the former offers better accuracy but takes longer analysis time whereas the later offers quick analysis of isotopic ratios and as well as trace metal impurities in the Boric acid

  2. Boron uptake measurements in a rat model for Boron Neutron Capture Therapy of lung tumours

    Energy Technology Data Exchange (ETDEWEB)

    Bortolussi, S., E-mail: silva.bortolussi@pv.infn.i [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Bakeine, J.G. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); Ballarini, F. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); Gadan, M.A. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Protti, N.; Stella, S. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Clerici, A.; Ferrari, C.; Cansolino, L.; Zonta, C.; Zonta, A. [Department of Surgery, University of Pavia, via Ferrata 27100 Pavia (Italy); Nano, R. [Department of Animal Biology, University of Pavia, via Ferrata 27100 Pavia (Italy); Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6, 27100 Pavia (Italy)

    2011-02-15

    Lung carcinoma is the leading cause of cancer mortality in the Western countries. Despite the introduction over the last few years of new therapeutic agents, survival from lung cancer has shown no discernible improvement in the last 20 years. For these reasons any efforts to find and validate new effective therapeutic procedures for lung cancer are very timely. The selective boron uptake in the tumour with respect to healthy tissues makes Boron Neutron Capture Therapy a potentially advantageous option in the treatment of tumours that affect whole vital organs, and that are surgically inoperable. To study the possibility of applying BNCT to the treatment of diffuse pulmonary tumours, an animal model for boron uptake measurements in lung metastases was developed. Both healthy and tumour-bearing rats were infused with Boronophenylalanine (BPA) and sacrificed at different time intervals after drug administration. The lungs were extracted, and prepared for boron analysis by neutron autoradiography and {alpha}-spectroscopy. The boron concentrations in tumour and normal lung were plotted as a function of the time elapsed after BPA administration. The concentration in tumour is almost constant within the error bars for all the time intervals of the experiment (1-8 h), while the curve in normal lung decreases after 4 h from BPA infusion. At 4 h, the ratio of boron concentration in tumour to boron concentration in healthy lung is higher than 3, and it stays above this level up to 8 h. Also the images of boron distribution in the samples, obtained by neutron autoradiography, show a selective absorption in the metastases.

  3. CB11Me11 boronium ylides: Carba-closo-dodecaboranes with a naked boron vertex

    Czech Academy of Sciences Publication Activity Database

    Zharov, I.; Havlas, Zdeněk; Orendt, A. M.; Barich, D. H.; Grant, D. M.; Fete, M. G.; Michl, J.

    2006-01-01

    Roč. 128, č. 18 (2006), s. 6089-6100 ISSN 0002-7863 R&D Projects: GA MŠk ME 857 Grant - others:NSF(US) CHE-0446688; NSF(US) OISE-0418568; DE(US) FG02-04ER15536 Institutional research plan: CEZ:AV0Z40550506 Keywords : carborane * ylide * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.696, year: 2006

  4. Boron isotope ratios of surface waters in Guadeloupe, Lesser Antilles

    Energy Technology Data Exchange (ETDEWEB)

    Louvat, Pascale, E-mail: louvat@ipgp.fr [Geochimie et Cosmochimie, IPGP, Universite Paris Diderot, Sorbonne Paris Cite, UMR 7154 CNRS, 75005 Paris (France); Gaillardet, Jerome; Paris, Guillaume; Dessert, Celine [Geochimie et Cosmochimie, IPGP, Universite Paris Diderot, Sorbonne Paris Cite, UMR 7154 CNRS, 75005 Paris (France)

    2011-06-15

    Highlights: > Rivers outer of hydrothermal areas have d11B around 40 per mille and [B] of 10-31 {mu}g/L. > Thermal springs have d11B of 8-15 per mille and [B] between 250 and 1000 {mu}g/L. > With Na, SO{sub 4} and Cl, boron shows mixing of rain, low and high-T weathering inputs. > Guadeloupe rivers and thermal springs have d11B 20-40 per mille higher than the local rocks. > Solid-solution fractionation during weathering pathways may explain this gap of d11B. - Abstract: Large variations are reported in the B concentrations and isotopic ratios of river and thermal spring waters in Guadeloupe, Lesser Antilles. Rivers have {delta}{sup 11}B values around 40 per mille and B concentrations lower than 30 {mu}g/L, while thermal springs have {delta}{sup 11}B of 8-15 per mille and B concentrations of 250-1000 {mu}g/L. River samples strongly impacted by hydrothermal inputs have intermediate {delta}{sup 11}B and B contents. None of these surface water samples have {delta}{sup 11}B comparable to the local unweathered volcanic rocks (around 0 per mille), implying that a huge isotopic fractionation of 40 per mille takes place during rock weathering, which could be explained by preferential incorporation of {sup 10}B during secondary mineral formation and adsorption on clays, during rock weathering or in the soils. The soil-vegetation B cycle could also be a cause for such a fractionation. Atmospheric B with {delta}{sup 11}B of 45 per mille represents 25-95% of the river B content. The variety of the thermal spring chemical composition renders the understanding of B behavior in Guadeloupe hydrothermal system quite difficult. Complementary geochemical tracers would be helpful.

  5. Boron isotope ratios of surface waters in Guadeloupe, Lesser Antilles

    International Nuclear Information System (INIS)

    Louvat, Pascale; Gaillardet, Jerome; Paris, Guillaume; Dessert, Celine

    2011-01-01

    Highlights: → Rivers outer of hydrothermal areas have d11B around 40 per mille and [B] of 10-31 μg/L. → Thermal springs have d11B of 8-15 per mille and [B] between 250 and 1000 μg/L. → With Na, SO 4 and Cl, boron shows mixing of rain, low and high-T weathering inputs. → Guadeloupe rivers and thermal springs have d11B 20-40 per mille higher than the local rocks. → Solid-solution fractionation during weathering pathways may explain this gap of d11B. - Abstract: Large variations are reported in the B concentrations and isotopic ratios of river and thermal spring waters in Guadeloupe, Lesser Antilles. Rivers have δ 11 B values around 40 per mille and B concentrations lower than 30 μg/L, while thermal springs have δ 11 B of 8-15 per mille and B concentrations of 250-1000 μg/L. River samples strongly impacted by hydrothermal inputs have intermediate δ 11 B and B contents. None of these surface water samples have δ 11 B comparable to the local unweathered volcanic rocks (around 0 per mille), implying that a huge isotopic fractionation of 40 per mille takes place during rock weathering, which could be explained by preferential incorporation of 10 B during secondary mineral formation and adsorption on clays, during rock weathering or in the soils. The soil-vegetation B cycle could also be a cause for such a fractionation. Atmospheric B with δ 11 B of 45 per mille represents 25-95% of the river B content. The variety of the thermal spring chemical composition renders the understanding of B behavior in Guadeloupe hydrothermal system quite difficult. Complementary geochemical tracers would be helpful.

  6. ICP-MS determination of boron: method optimization during preparation of graphite reference material for boron

    International Nuclear Information System (INIS)

    Granthali, S.K.; Shailaja, P.P.; Mainsha, V.; Venkatesh, K.; Kallola, K.S.; Sanjukta, A.K.

    2017-01-01

    Graphite finds widespread use in nuclear reactors as moderator, reflector, and fuel fabricating components because of its thermal stability and integrity. The manufacturing process consists of various mixing, moulding and baking operations followed by heat-treatment between 2500 °C and 3000 °C. The high temperature treatment is required to drive the amorphous carbon-to-graphite phase transformation. Since synthetic graphite is processed at high temperature, impurity concentrations in the precursor carbon get significantly reduced due to volatilization. However boron may might partly gets converted into boron carbide at high temperatures in the carbon environment of graphite and remains stable (B_4C: boiling point 3500 °C) in the matrix. Literature survey reveals the use of various methods for determination of boron. Previously we have developed a method for determination of boron in graphite electrodes using inductively coupled plasma mass spectrometry (ICP-MS). The method involves removal of graphite matrix by ignition of the sample at 800°C in presence of saturated barium hydroxide solution to prevent the loss of boron. Here we are reporting a modification in the method by using calcium carbonate in place of barium hydroxide and using beryllium (Be) as an internal standard, which resulted in a better precession. The method was validated by spike recovery experiments as well as using another technique viz. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The modified method was applied in evaluation of boron concentration in the graphite reference material prepared

  7. Intermolecular Formation of Two C−C Bonds across Olefins Enabled by Boron-Based Relay Strategies

    Czech Academy of Sciences Publication Activity Database

    Hidasová, Denisa; Jahn, Ullrich

    2017-01-01

    Roč. 56, č. 33 (2017), s. 9656-9658 ISSN 1433-7851 Institutional support: RVO:61388963 Keywords : 1,2- metal ate rearrangement * C−C bond formation * radical reactions * transition metal catalysis * vinyl boronates Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 11.994, year: 2016

  8. Boron exposure through drinking water during pregnancy and birth size.

    Science.gov (United States)

    Igra, Annachiara Malin; Harari, Florencia; Lu, Ying; Casimiro, Esperanza; Vahter, Marie

    2016-10-01

    Boron is a metalloid found at highly varying concentrations in soil and water. Experimental data indicate that boron is a developmental toxicant, but the few human toxicity data available concern mostly male reproduction. To evaluate potential effects of boron exposure through drinking water on pregnancy outcomes. In a mother-child cohort in northern Argentina (n=194), 1-3 samples of serum, whole blood and urine were collected per woman during pregnancy and analyzed for boron and other elements to which exposure occurred, using inductively coupled plasma mass spectrometry. Infant weight, length and head circumference were measured at birth. Drinking water boron ranged 377-10,929μg/L. The serum boron concentrations during pregnancy ranged 0.73-605μg/L (median 133μg/L) and correlated strongly with whole-blood and urinary boron, and, to a lesser extent, with water boron. In multivariable-adjusted linear spline regression analysis (non-linear association), we found that serum boron concentrations above 80μg/L were inversely associated with birth length (B-0.69cm, 95% CI -1.4; -0.024, p=0.043, per 100μg/L increase in serum boron). The impact of boron appeared stronger when we restricted the exposure to the third trimester, when the serum boron concentrations were the highest (0.73-447μg/L). An increase in serum boron of 100μg/L in the third trimester corresponded to 0.9cm shorter and 120g lighter newborns (p=0.001 and 0.021, respectively). Considering that elevated boron concentrations in drinking water are common in many areas of the world, although more screening is warranted, our novel findings warrant additional research on early-life exposure in other populations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Boron nitride nanosheets reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Saggar, Richa; Porwal, H.; Tatarko, P.; Dlouhý, Ivo; Reece, M. J.

    2015-01-01

    Roč. 114, SEP (2015), S26-S32 ISSN 1743-6753 R&D Projects: GA MŠk(CZ) 7AMB14SK155 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Boron nitride nanosheets * Borosilicate glass * Mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.162, year: 2015

  10. Boron-doped manganese dioxide for supercapacitors.

    Science.gov (United States)

    Chi, Hong Zhong; Li, Yuwei; Xin, Yingxu; Qin, Haiying

    2014-11-11

    The addition of boron as a dopant during the reaction between carbon fiber and permanganate led to significant enhancement of the growth-rate and formation of the porous framework. The doped MnO2 was superior to the pristine sample as electrode materials for supercapacitors in terms of the specific capacitance and rate capability.

  11. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Yushen [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Deng, Xiaohui [Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008 (China); Zhang, G. P. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States)

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  12. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  13. NEW ADVANCES IN BORON SOIL CHEMISTRY - Paper

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  14. NEW ADVANCES IN BORON SOIL CHEMISTRY

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  15. New insight into pecan boron nutrition

    Science.gov (United States)

    Alternate bearing by individual pecan [Carya illinoinensis (Wangenh.) K. Koch] trees is problematic for nut producers and processors. There are many unknowns regarding alternate bearing physiology, such as the relationship between boron and fruit set, nutmeat quality, and kernel maladies. Evidence...

  16. Joining of boron carbide using nickel interlayer

    International Nuclear Information System (INIS)

    Vosughi, A.; Hadian, A. M.

    2008-01-01

    Carbide ceramics such as boron carbide due to their unique properties such as low density, high refractoriness, and high strength to weight ratio have many applications in different industries. This study focuses on direct bonding of boron carbide for high temperature applications using nickel interlayer. The process variables such as bonding time, temperature, and pressure have been investigated. The microstructure of the joint area was studied using electron scanning microscope technique. At all the bonding temperatures ranging from 1150 to 1300 d eg C a reaction layer formed across the ceramic/metal interface. The thickness of the reaction layer increased by increasing temperature. The strength of the bonded samples was measured using shear testing method. The highest strength value obtained was about 100 MPa and belonged to the samples bonded at 1250 for 75 min bonding time. The strength of the joints decreased by increasing the bonding temperature above 1250 d eg C . The results of this study showed that direct bonding technique along with nickel interlayer can be successfully utilized for bonding boron carbide ceramic to itself. This method may be used for bonding boron carbide to metals as well.

  17. Influence of pollution of boron chlorinity ratio

    Digital Repository Service at National Institute of Oceanography (India)

    Narvekar, P.V.; Zingde, M.D.

    Presence of boron in domestic wastewater has resulted in high B/CI ratio at some locations in the coastal water around Bombay. A widest range (0.215-0.281) of B/CI was observed at a location with high influence of wastewater release. The mean B...

  18. Bandgap engineered graphene and hexagonal boron nitride

    Indian Academy of Sciences (India)

    In this article a double-barrier resonant tunnelling diode (DBRTD) has been modelled by taking advantage of single-layer hexagonal lattice of graphene and hexagonal boron nitride (h-BN). The DBRTD performance and operation are explored by means of a self-consistent solution inside the non-equilibrium Green's ...

  19. Reaction of boron carbide with molybdenum disilicide

    International Nuclear Information System (INIS)

    Novikov, A.V.; Melekhin, V.F.; Pegov, V.S.

    1989-01-01

    The investigation results of interaction in the B 4 C-MoSi 2 system during sintering in vacuum are presented. Sintering of boron carbide with molybdenum disilicide is shown to lead to the formation of MoB 2 , SiC, Mo 5 Si 3 compounds, the presence of carbon-containing covering plays an important role in sintering

  20. Crystal structure of isomeric boron difluoride acetylnaphtholates

    International Nuclear Information System (INIS)

    Bukvetskij, B.V.; Fedorenko, E.V.; Mirochnik, A.G.; Karasev, V.E.

    2006-01-01

    Crystal structures of luminescent isomeric acetylnaphtholates of boron difluoride are investigated. Full X-ray structural analysis is done at 293 K. Coordinated of atoms, bond angles, bond lengths, interatomic distances are determined. Results of comparative evaluations of the isomers are represented [ru

  1. Radiobiology of boron neutron capture therapy

    International Nuclear Information System (INIS)

    Bond, V.P.

    1986-01-01

    The author addresses the question of single session versus protracted therapy in the application of boron neutron therapy to tumors. As background he discusses the reasoning behind the current use of fractionated therapy with conventional low-LET radiations and difference which may obtain for neutron therapy. Several aspects of dose rates and dose levels are then addressed

  2. BCM6: New Generation of Boron Meter

    International Nuclear Information System (INIS)

    Pirat, P.

    2010-01-01

    Full text of publication follows: Rolls-Royce has developed a new generation of boron meter, based on more than 30 years of experience. The Rolls-Royce BCM6 boron meter provides Nuclear Power Plant (NPP) operators with the boron concentration of the primary circuit. The meter provides continuous and safe measurements with no manual sampling and no human contact. In this paper, technical features, advantages and customer benefits of the use of the new generation of Rolls-Royce BCM6 boron meter will be detailed. Values and associated alarms are provides over different media: 4-20 mA outputs, relays, displays in the main control room and in the chemical lab, and digital links. A special alarm avoids unexpected homogeneous dilution of the primary circuit, which is a critical operational parameter. The Rolls-Royce BCM6 boron meter is fully configurable over a set of parameters allowing adaptation to customer needs. It has a differential capability, thus eliminating neutronic noise and keeping measurements accurate, even in the case of fuel clad rupture. Measurements are accurate, reliable, and have a quick response time. Equipment meets state-of-the-art qualification requests. Designed in 2008, the BCM6 boron meter is the newest equipment of Rolls-Royce boron meters product line. It has been chosen to equip the French EPR NPP and complies with the state-of-the-art of the technology. Rolls-Royce has more than 30 years of experience in Instrumentation and Controls with more than 75 NPP units operating worldwide. All of this experience return has been put in this new generation of equipment to provide the customer with the best operation. About Rolls-Royce Rolls-Royce is a global business providing integrated power systems for use on land, at sea and in the air. The Group has a balanced business portfolio with leading market positions. Rolls-Royce has a broad range of civil nuclear expertise, including work related to licensing and safety reviews, engineering design

  3. Dosimetry boron neutron capture therapy in liver cancer (hepatocellular carcinoma) by means of MCNP-code with neutron source from thermal column

    International Nuclear Information System (INIS)

    Irhas; Andang Widi Harto; Yohannes Sardjono

    2014-01-01

    Boron Neutron Capture Therapy (BNCT) using physics principle when B 10 (Boron-10) irradiated by low energy neutron (thermal neutron). Boron and thermal neutron reaction produced B 11m (Boron-11m) (t 1/2 =10 -2 s). B 11m decay emitted alpha, Li 7 (Lithium-7) particle and gamma ray. Irradiated time needed to ensure cancer dose enough. Liver cancer was primary malignant who located in liver (Hepatocellular carcinoma). Malignant in liver were different to metastatic from Breast, Colon Cancer, and the other. This condition was Metastatic Liver Cancer. Monte Carlo method used by Monte Carlo N-Particle (MCNP) Software. Probabilistic approach used for probability of interaction occurred and record refers to characteristic of particle and material. In this case, thermal neutron produced by model of Collimated Thermal Column Kartini Research Nuclear Reactor, Yogyakarta. Modelling organ and source used liver organ that contain of cancer tissue and research reactor. Variation of boron concentration was 20, 25, 30, 35, 40, 45, and 47 µg/g cancers. Output of MCNP calculation were neutron scattering dose, gamma ray dose and neutron flux from reactor. Neutron flux used to calculate alpha, proton and gamma ray dose from interaction of tissue material and thermal neutron. Variation of boron concentration result dose rate to every variation were 0,059; 0,072; 0,084; 0,098; 0.108; 0,12; 0,125 Gy/sec. Irradiation time who need to every concentration were 841,5 see (14 min 1 sec); 696,07 sec(11 min 36 sec); 593.11 sec (9 min 53 sec); 461,35 sec (8 min 30 sec); 461,238 sec (7 min 41 sec); 414,23 sec (6 min 54 sec); 398,38 sec (6 min 38 sec). Irradiating time could shortly when boron concentration more high. (author)

  4. Isotopic analysis of boron by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kakazu, M.H.; Sarkis, J.E.S.; Souza, I.M.S.

    1991-07-01

    This paper presents a methodology for isotopic analysis of boron by thermal ionization mass spectrometry technique through the ion intensity measurement of Na 2 BO + 2 in H 3 BO 3 , B o and B 4 C. The samples were loaded on single tantalum filaments by different methods. In the case of H 3 BO 3 , the method of neutralization with NaOH was used. For B 4 C the alcaline fusion with Na 2 CO 3 and for B o dissolution with 1:1 nitric sulfuric acid mixture followed by neutralization with NaOH was used. The isotopic ratio measurements were obtained by the use of s Faraday cup detector with external precision of ±0,4% and accuracy of ±0,1%, relative to H 3 BO 3 isotopic standard NBS 951. The effects of isotopic fractionation was studied in function of the time during the analyses and the different chemical forms of deposition. (author)

  5. Kerma factors in interaction of neutrons with boron carbide

    International Nuclear Information System (INIS)

    Bondarenko, I.M.

    1986-03-01

    Heat generation in neutron interactions with boron carbide B 10 ; B 11 and 12 C is calculated. Kerma-factors (kerma-kinetic energy released in materials) were calculated for neutron energies between 10 -4 eV and 15 MeV. No major simplifying assumptions are introduced, and the accuracy of the calculated kerma-factors depends only on availability and accuracy of the basic nuclear data. The ENDF/B-4 data and recent experimental information are used for the calculation of kerma-factors. Plots of these kerma-factors are presented in units of eVxb/atom and wtxsec/(cmxn) as a function of neutron energy [fr

  6. Beam loading

    OpenAIRE

    Boussard, Daniel

    1987-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superco...

  7. Molecular beams

    International Nuclear Information System (INIS)

    Pendelbury, J.M.; Smith, K.F.

    1987-01-01

    Studies with directed collision-free beams of particles continue to play an important role in the development of modern physics and chemistry. The deflections suffered by such beams as they pass through electric and magnetic fields or laser radiation provide some of the most direct information about the individual constituents of the beam; the scattering observed when two beams intersect yields important data about the intermolecular forces responsible for the scattering. (author)

  8. A shielding design for an accelerator-based neutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, A.E.; Blue, T.E. E-mail: blue.1@osu.edu; Woollard, J.E

    2004-11-01

    Research in boron neutron capture therapy (BNCT) at The Ohio State University Nuclear Engineering Department has been primarily focused on delivering a high quality neutron field for use in BNCT using an accelerator-based neutron source (ABNS). An ABNS for BNCT is composed of a proton accelerator, a high-energy beam transport system, a {sup 7}Li target, a target heat removal system (HRS), a moderator assembly, and a treatment room. The intent of this paper is to demonstrate the advantages of a shielded moderator assembly design, in terms of material requirements necessary to adequately protect radiation personnel located outside a treatment room for BNCT, over an unshielded moderator assembly design.

  9. Diamond anvil cells using boron-doped diamond electrodes covered with undoped diamond insulating layer

    Science.gov (United States)

    Matsumoto, Ryo; Yamashita, Aichi; Hara, Hiroshi; Irifune, Tetsuo; Adachi, Shintaro; Takeya, Hiroyuki; Takano, Yoshihiko

    2018-05-01

    Diamond anvil cells using boron-doped metallic diamond electrodes covered with undoped diamond insulating layers have been developed for electrical transport measurements under high pressure. These designed diamonds were grown on a bottom diamond anvil via a nanofabrication process combining microwave plasma-assisted chemical vapor deposition and electron beam lithography. The resistance measurements of a high-quality FeSe superconducting single crystal under high pressure were successfully demonstrated by just putting the sample and gasket on the bottom diamond anvil directly. The superconducting transition temperature of the FeSe single crystal was increased to up to 43 K by applying uniaxial-like pressure.

  10. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    OpenAIRE

    Wang, Peng; Zhen, Haining; Jiang, Xinbiao; Zhang, Wei; Cheng, Xin; Guo, Geng; Mao, Xinggang; Zhang, Xiang

    2010-01-01

    Abstract Background Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical Un...

  11. Boron profiles in doped amorphous-silicon solar cells formed by plasma ion deposition

    International Nuclear Information System (INIS)

    Stoddart, C.T.H.; Hunt, C.P.; Coleman, J.H.

    1979-01-01

    Amorphous silicon p-n junction solar cells of large area (100 cm 2 ) and having a quantum efficiency approaching 100% in the blue region have been prepared by plasma ion-plating, the p layer being formed from diborane and silane gases in a cathode glow-discharge. Surface secondary ion mass spectrometry combined with ion beam etching was found to be a very sensitive method with high in-depth resolution for obtaining the initial boron-silicon profile of the solar cell p-n junction. (author)

  12. Mechanical and Structural Properties of Fluorine-Ion-Implanted Boron Suboxide

    OpenAIRE

    Machaka, Ronald; Mwakikunga, Bonex W.; Manikandan, Elayaperumal; Derry, Trevor E.; Sigalas, Iakovos; Herrmann, Mathias

    2012-01-01

    Results on a systematic study on the effects of ion implantation on the near-surface mechanical and structural properties of boron suboxide (B 6O) prepared by uniaxial hot pressing are reviewed. 150keV fluorine ions at fluences of up to 5.0 × 10 16ions/cm 2 were implanted into the ultrahard ceramic material at room temperature and characterized using Raman spectroscopy, atomic force microscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. Evidence of ion-beam-as...

  13. Effect of elemental composition of ion beam on the phase formation and surface strengthening of structural materials

    International Nuclear Information System (INIS)

    Avdienko, K.I.; Avdienko, A.A.; Kovalenko, I.A.

    2001-01-01

    The investigation results are reported on the influence of ion beam element composition on phase formation, wear resistance and microhardness of surface layers of titanium alloys VT-4 and VT-16 as well as stainless steel 12Kh18N10T implanted with nitrogen, oxygen and boron. It is stated that ion implantation into structural materials results in surface hardening and is directly dependent on element composition of implanted ion beam. The presence of oxygen in boron or nitrogen ion beams prevents the formation of boride and nitride phases thus decreasing a hardening effect [ru

  14. Monte Carlo simulation of boron-ion implantation into single-crystal silicon

    International Nuclear Information System (INIS)

    Klein, K.M.

    1991-01-01

    A physically based Monte Carlo boron implantation model developed comprehends previously neglected but important implant parameters such as native oxide layers, wafer temperature, beam divergence, tilt angle, rotation (twist) angle, and dose, in addition to energy. This model uses as its foundation the MARLOWE Monte Carlo simulation code developed at Oak Ridge National Laboratory for the analysis of radiation effects in materials. This code was carefully adapted for the simulation of ion implantation, and a number of significant improvements have been made, including the addition of atomic pair specific interatomic potentials, the implementation of a newly developed local electron concentration dependent electronic stopping model, and the implementation of a newly developed cumulative damage model. This improved version of the code, known as UT-MARLOWE, allows boron implantation profiles to be accurately predicted as a function of energy, tilt angle, rotation angle, and dose. This code has also been used in the development and implementation of an accurate and efficient two-dimensional boron implantation model

  15. Microstructure and spectroscopy studies on cubic boron nitride synthesized under high-pressure conditions

    International Nuclear Information System (INIS)

    Nistor, L C; Nistor, S V; Dinca, G; Georgeoni, P; Landuyt, J van; Manfredotti, C; Vittone, E

    2002-01-01

    High-resolution electron microscopy (HREM) studies of the microstructure and specific defects in hexagonal boron nitride (h-BN) precursors and cubic boron nitride (c-BN) crystals made under high-pressure high-temperature conditions revealed the presence of half-nanotubes at the edges of the h-BN particles. Their sp 3 bonding tendency could strongly influence the nucleation rates of c-BN. The atomic resolution at extended dislocations was insufficient to allow us to determine the stacking fault energy in the c-BN crystals. Its mean value of 191 pm, 15 mJ m -2 is of the same order of magnitude as that of diamond. High-frequency (94 GHz) electron paramagnetic resonance studies on c-BN single crystals have produced new data on the D1 centres associated with the boron species. Ion-beam-induced luminescence measurements have indicated that c-BN is a very interesting luminescent material, which is characterized by four luminescence bands and exhibits a better resistance to ionizing radiation than CVD diamond

  16. Microstructure and spectroscopy studies on cubic boron nitride synthesized under high-pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nistor, L C [National Institute for Materials Physics, Bucharest (Romania); Nistor, S V [National Institute for Materials Physics, Bucharest (Romania); Dinca, G [Dacia Synthetic Diamonds Factory, Bucharest (Romania); Georgeoni, P [Dacia Synthetic Diamonds Factory, Bucharest (Romania); Landuyt, J van [University of Antwerpen - RUCA, EMAT, Antwerpen (Belgium); Manfredotti, C [Experimental Physics Department, University of Turin, Turin (Italy); Vittone, E [Experimental Physics Department, University of Turin, Turin (Italy)

    2002-11-11

    High-resolution electron microscopy (HREM) studies of the microstructure and specific defects in hexagonal boron nitride (h-BN) precursors and cubic boron nitride (c-BN) crystals made under high-pressure high-temperature conditions revealed the presence of half-nanotubes at the edges of the h-BN particles. Their sp{sup 3} bonding tendency could strongly influence the nucleation rates of c-BN. The atomic resolution at extended dislocations was insufficient to allow us to determine the stacking fault energy in the c-BN crystals. Its mean value of 191 pm, 15 mJ m{sup -2} is of the same order of magnitude as that of diamond. High-frequency (94 GHz) electron paramagnetic resonance studies on c-BN single crystals have produced new data on the D1 centres associated with the boron species. Ion-beam-induced luminescence measurements have indicated that c-BN is a very interesting luminescent material, which is characterized by four luminescence bands and exhibits a better resistance to ionizing radiation than CVD diamond.

  17. A neutron dynamic therapy with a boron tracedrug UTX-51 using a compact neutron generator.

    Science.gov (United States)

    Hori, Hitoshi; Tada, Ryu; Uto, Yoshihiro; Nakata, Eiji; Morii, Takashi; Masuda, Kai

    2014-08-01

    We are developing a neutron dynamic therapy (NDT) with boron tracedrugs for a new mechanical-clearance treatment of pathotoxic misfolded, aggregated, and self-propagating prion-associated disease proteins. We present a compact neutron generator-based NDT using a boron tracedrug UTX-51. Our NDT is based on the weak thermal neutron-bombarded destructive action of UTX-51 on bovine serum albumin (BSA) using the neutron beams produced from a compact inertial electrostatic confinement fusion (IECF) neutron generator. BSA as an NDT molecular target was subjected to thermal neutron irradiation for eight hours using a compact neutron generator. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern showed no protein band when 2 nmoles of BSA were irradiated with more than 100 nmoles of UTX-51, while BSA was not affected when irradiated without UTX-51. For the first time, we have succeeded in the molecular destruction of a prion-disease model protein, BSA, by NDT with a boron tracedrug, UTX-51, using a compact neutron generator. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene

    Science.gov (United States)

    Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J. M. J.

    2018-04-01

    Van der Waals heterostructures comprising of hexagonal boron nitride and graphene are promising building blocks for novel two-dimensional devices such as atomically thin transistors or capacitors. However, demonstrators of those devices have been so far mostly fabricated by mechanical assembly, a non-scalable and time-consuming method, where transfer processes can contaminate the surfaces. Here, we investigate a direct growth process for the fabrication of insulating hexagonal boron nitride on high quality epitaxial graphene using plasma assisted molecular beam epitaxy. Samples were grown at varying temperatures and times and studied using atomic force microscopy, revealing a growth process limited by desorption at high temperatures. Nucleation was mostly commencing from morphological defects in epitaxial graphene, such as step edges or wrinkles. Raman spectroscopy combined with x-ray photoelectron measurements confirm the formation of hexagonal boron nitride and prove the resilience of graphene against the nitrogen plasma used during the growth process. The electrical properties and defects in the heterostructures were studied with high lateral resolution by tunneling current and Kelvin probe force measurements. This correlated approach revealed a nucleation apart from morphological defects in epitaxial graphene, which is mediated by point defects. The presented results help understanding the nucleation and growth behavior during van der Waals epitaxy of 2D materials, and point out a route for a scalable production of van der Waals heterostructures.

  19. SBNCT plan: A 3-dimensional treatment planning system for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Reinstein, L.E.; Ramsay, E.B.; Gajewski, J.; Ramamoorthy, S.; Meek, A.G.

    1993-01-01

    The need for accurate and comprehensive 3-dimensional treatment planning for boron neutron capture therapy (BNCT) has been debated for the past several years. Although many argue against the need for elaborate and expensive treatment planning programs which mimic conventional radiotherapy planning systems, it is clear that in order to realize significant gains over conventional fractionated radiation therapy, patients must be treated to the edge of normal tissue tolerance. Just how close to this edge is dictated by the uncertainties in dosimetry. Hence the focus of BNCT planning is the determination of dose distribution throughout normal tissue volumes. Although precise geometric manipulation of the epithermal neutron beam is not achievable, the following variables play an important role in BNCT optimization: patient orientation, dose fractionation, number of fields, megawatt-minutes per fraction, use of surface bolus, and use of collimation. Other variables which are not as easily adjustable and would not, therefore, be part of treatment planning optimization, include external patient contour, internal patient heterogeneities, boron compound distributions, and RBE's. The boron neutron capture therapy planning system developed at SUNY Stony Brook (SBNCT-Plan) was designed as an interactive graphic tool to assist the radiation oncologist in generating the optimum plan for a neutron capture treatment

  20. Nominal effective radiation doses delivered during clinical trials of boron neutron capture therapy

    International Nuclear Information System (INIS)

    Capala, J.; Diaz, A.Z.; Chanana, A.D.

    1997-01-01

    Boron neutron capture therapy (BNCT) is a binary system that, in theory, should selectively deliver lethal, high linear energy transfer (LET) radiation to tumor cells dispersed within normal tissues. It is based on the nuclear reaction 10-B(n, α)7-Li, which occurs when the stable nucleus of boron-10 captures a thermal neutron. Due to the relatively high cross-section of the 10-B nucleus for thermal neutron capture and short ranges of the products of this reaction, tumor cells in the volume exposed to thermal neutrons and containing sufficiently high concentration of 10-B would receive a much higher radiation dose than the normal cells contained within the exposed volume. Nevertheless, radiation dose deposited in normal tissue by gamma and fast neutron contamination of the neutron beam, as well as neutron capture in nitrogen, 14-N(n,p)14-C, hydrogen, 1-H(n,γ)2-H, and in boron present in blood and normal cells, limits the dose that can be delivered to tumor cells. It is, therefore, imperative for the success of the BNCT the dosed delivered to normal tissues be accurately determined in order to optimize the irradiation geometry and to limit the volume of normal tissue exposed to thermal neutrons. These are the major objectives of BNCT treatment planning

  1. In-phantom dosimetry using the 13C(d,n)14N reaction for BNCT (boron neutron capture therapy)

    International Nuclear Information System (INIS)

    Burlon, Alejandro; Kreiner, Andres J.; White, S.; Blackburn, B.; Gierga, David; Yanch, Jacquelyn C.

    2000-01-01

    The use of the 13 C(d,n) 14 N reaction at E d =1.5 MeV for accelerator-based boron neutron capture therapy is investigated. The 13 C(d,n) 14 N reaction presents the advantages of carbon as a target material and its large cross section. The deuteron beam was produced by a tandem accelerator at MIT's Laboratory for Accelerator Beam Applications. The resulting neutron spectra were evaluated in terms of RBE-dose rates at different depths inside a water-filled brain phantom using a heavy water moderator and lead reflector assembly. All results were simulated using the code MCNP. (author)

  2. Attenuation of Neutron and Gamma Radiation by a Composite Material Based on Modified Titanium Hydride with a Varied Boron Content

    Science.gov (United States)

    Yastrebinskii, R. N.

    2018-04-01

    The investigations on estimating the attenuation of capture gamma radiation by a composite neutron-shielding material based on modified titanium hydride and Portland cement with a varied amount of boron carbide are performed. The results of calculations demonstrate that an introduction of boron into this material enables significantly decreasing the thermal neutron flux density and hence the levels of capture gamma radiation. In particular, after introducing 1- 5 wt.% boron carbide into the material, the thermal neutron flux density on a 10 cm-thick layer is reduced by 11 to 176 factors, and the capture gamma dose rate - from 4 to 9 times, respectively. The difference in the degree of reduction in these functionals is attributed to the presence of capture gamma radiation in the epithermal region of the neutron spectrum.

  3. Raman spectroscopy of boron-doped single-layer graphene.

    Science.gov (United States)

    Kim, Yoong Ahm; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Endo, Morinobu; Fujimori, Toshihiko; Kaneko, Katsumi; Terrones, Mauricio; Behrends, Jan; Eckmann, Axel; Casiraghi, Cinzia; Novoselov, Kostya S; Saito, Riichiro; Dresselhaus, Mildred S

    2012-07-24

    The introduction of foreign atoms, such as nitrogen, into the hexagonal network of an sp(2)-hybridized carbon atom monolayer has been demonstrated and constitutes an effective tool for tailoring the intrinsic properties of graphene. Here, we report that boron atoms can be efficiently substituted for carbon in graphene. Single-layer graphene substitutionally doped with boron was prepared by the mechanical exfoliation of boron-doped graphite. X-ray photoelectron spectroscopy demonstrated that the amount of substitutional boron in graphite was ~0.22 atom %. Raman spectroscopy demonstrated that the boron atoms were spaced 4.76 nm apart in single-layer graphene. The 7-fold higher intensity of the D-band when compared to the G-band was explained by the elastically scattered photoexcited electrons by boron atoms before emitting a phonon. The frequency of the G-band in single-layer substitutionally boron-doped graphene was unchanged, which could be explained by the p-type boron doping (stiffening) counteracting the tensile strain effect of the larger carbon-boron bond length (softening). Boron-doped graphene appears to be a useful tool for engineering the physical and chemical properties of graphene.

  4. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo; Li, Zhenyu; Sarp, Sarper; Park, Y. G.; Amy, Gary L.; Vrouwenvelder, Johannes S.

    2014-01-01

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  5. Synthesis and characterization of ammonium phosphate fertilizers with boron

    Directory of Open Access Journals (Sweden)

    ANGELA MAGDA

    2010-07-01

    Full Text Available The concentration of boron, an essential micronutrient for plants, presents a narrow range between deficiency and toxicity. In order to provide the boron requirement for plants, and to avoid toxicity problems, boron compounds are mixed with basic fertilizers. Sodium borate pentahydrate was used as a boron source. Ammonium orthophosphates fertilizers with boron were prepared by neutralizing phosphoric acid with ammonia and addition of variable amounts of sodium tetraborate pentahydrate to the reaction mixture at a NH3:H3PO4 molar ratio of 1.5. The fertilizers obtained with boron contents ranging from 0.05 to 1 % (w/w were fully characterized by chemical analysis, thermal analysis, X-ray diffraction and infrared spectrophotometry. The studies showed that up to 500 °C, regardless of the boron content, no significant changes concerning thermal stability and nutritional properties occurred. Above 500 °C, an increase of thermal stability with an increase of the boron content was observed. X-Ray diffraction of a heat-treated sample containing 5 % (w/w boron indicated the appearance of boron orthophosphate, BPO4, as a new crystalline phase, and the disappearance of the previous structures above 500 °C, which explains the increase in thermal stability.

  6. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-07-17

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  7. Reviews and syntheses: Revisiting the boron systematics of aragonite and their application to coral calcification

    Science.gov (United States)

    DeCarlo, Thomas M.; Holcomb, Michael; McCulloch, Malcolm T.

    2018-05-01

    The isotopic and elemental systematics of boron in aragonitic coral skeletons have recently been developed as a proxy for the carbonate chemistry of the coral extracellular calcifying fluid. With knowledge of the boron isotopic fractionation in seawater and the B/Ca partition coefficient (KD) between aragonite and seawater, measurements of coral skeleton δ11B and B/Ca can potentially constrain the full carbonate system. Two sets of abiogenic aragonite precipitation experiments designed to quantify KD have recently made possible the application of this proxy system. However, while different KD formulations have been proposed, there has not yet been a comprehensive analysis that considers both experimental datasets and explores the implications for interpreting coral skeletons. Here, we evaluate four potential KD formulations: three previously presented in the literature and one newly developed. We assess how well each formulation reconstructs the known fluid carbonate chemistry from the abiogenic experiments, and we evaluate the implications for deriving the carbonate chemistry of coral calcifying fluid. Three of the KD formulations performed similarly when applied to abiogenic aragonites precipitated from seawater and to coral skeletons. Critically, we find that some uncertainty remains in understanding the mechanism of boron elemental partitioning between aragonite and seawater, and addressing this question should be a target of additional abiogenic precipitation experiments. Despite this, boron systematics can already be applied to quantify the coral calcifying fluid carbonate system, although uncertainties associated with the proxy system should be carefully considered for each application. Finally, we present a user-friendly computer code that calculates coral calcifying fluid carbonate chemistry, including propagation of uncertainties, given inputs of boron systematics measured in coral skeleton.

  8. A review on the determination of isotope ratios of boron with mass spectrometry.

    Science.gov (United States)

    Aggarwal, Suresh Kumar; You, Chen-Feng

    2017-07-01

    The present review discusses different mass spectrometric techniques-viz, thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and secondary ion mass spectrometry (SIMS)-used to determine 11 B/ 10 B isotope ratio, and concentration of boron required for various applications in earth sciences, marine geochemistry, nuclear technology, environmental, and agriculture sciences, etc. The details of the techniques-P-TIMS, which uses Cs 2 BO 2 + , N-TIMS, which uses BO 2 - , and MC-ICPMS, which uses B + ions for bulk analysis or B - and B + ions for in situ micro-analysis with SIMS-are highlighted. The capabilities, advantages, limitations, and problems in each mass spectrometric technique are summarized. The results of international interlaboratory comparison experiments conducted at different times are summarized. The certified isotopic reference materials available for boron are also listed. Recent developments in laser ablation (LA) ICPMS and QQQ-ICPMS for solids analysis and MS/MS analysis, respectively, are included. The different aspects of sample preparation and analytical chemistry of boron are summarized. Finally, the future requirements of boron isotope ratios for future applications are also given. Presently, MC-ICPMS provides the best precision and accuracy (0.2-0.4‰) on isotope ratio measurements, whereas N-TIMS holds the potential to analyze smallest amount of boron, but has the issue of bias (+2‰ to 4‰) which needs further investigations. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:499-519, 2017. © 2016 Wiley Periodicals, Inc.

  9. Boron-Doped Carbon Nano-/Microballs from Orthoboric Acid-Starch: Preparation, Characterization, and Lithium Ion Storage Properties

    Directory of Open Access Journals (Sweden)

    Xinhua Lu

    2018-01-01

    Full Text Available A boron-doped carbon nano-/microballs (BC was successfully obtained via a two-step procedure including hydrothermal reaction (180°C and carbonization (800°C with cheap starch and H3BO3 as the carbon and boron source. As a new kind of boron-doped carbon, BC contained 2.03 at% B-content and presented the morphology as almost perfect nano-/microballs with different sizes ranging from 500 nm to 5 μm. Besides that, due to the electron deficient boron, BC was explored as anode material and presented good lithium storage performance. At a current density of 0.2 C, the first reversible specific discharge capacity of BC electrode reached as high as 964.2 mAh g–1 and kept at 699 mAh g–1 till the 11th cycle. BC also exhibited good cycle ability with a specific capacity of 356 mAh g–1 after 79 cycles at a current density of 0.5 C. This work proved to be an effective approach for boron-doped carbon nanostructures which has potential usage for lithium storage material.

  10. Low energy implantation of boron with decaborane ions

    Science.gov (United States)

    Albano, Maria Angela

    The goal of this dissertation was to determine the feasibility of a novel approach to forming ultra shallow p-type junctions (tens of nm) needed for future generations of Si MOS devices. In the new approach, B dopant atoms are implanted by cluster ions obtained by ionization of decaborane (B 10H14) vapor. An experimental ion implanter with an electron impact ion source and magnetic mass separation was built at the Ion Beam and Thin Film Research Laboratory at NJIT. Beams of B10Hx+ ions with currents of a few microamperes and energies of 1 to 12 keV were obtained and used for implantation experiments. Profiles of B and H atoms implanted in Si were measured by Secondary Ion Mass Spectroscopy (SIMS) before and after rapid thermal annealing (RTA). From the profiles, the junction depth of 57 nm (at 1018 cm-3 B concentration) was obtained with 12 keV decaborane ions followed by RTA. The dose of B atoms that can be implanted at low energy into Si is limited by sputtering as the ion beam sputters both the matrix and the implanted atoms. As the number of sputtered B atoms increases with the implanted dose and approaches the number of the implanted atoms, equilibrium of B in Si is established. This effect was investigated by comparison of the B dose calculated from the ion beam integration with B content in the sample measured by Nuclear Reaction Analysis (NRA). Maximum (equilibrium) doses of 1.35 x 1016 B cm -2 and 2.67 x 1016 B cm-2 were obtained at the beam energies of 5 and 12 keV, respectively. The problem of forming shallow p-type junctions in Si is related not only to implantation depth, but also to transient enhanced diffusion (TED). TED in Si implanted with B10Hx+ was measured on boron doping superlattice (B-DSL) marker layers. It was found that TED, following decaborane implantation, is the same as with monomer B+ ion implantation of equivalent energy and that it decreases with the decreasing ion energy. (Abstract shortened by UMI.)

  11. Design of an irradiation facility with thermal, epithermal and fast neutron beams

    International Nuclear Information System (INIS)

    Pfister, G.; Bernnat, W.; Seidel, R.; Schatz, A.K.; Wagner, F.M.; Waschkowski, W.; Schraube, H.

    1992-01-01

    The main features of a neutron irradiation facility to be installed at the planned research reactor FRM-II are presented. In addition to the operational possibilities of the existing facility at the reactor FRM-I, the new facility will produce quasi-monoenergetic neutron fields and a neutron beam in the keV region whose spectrum can be modified by application of suitable filters and scatterers. For this beam, which is well suited for boron capture therapy, calculated boron reaction rates inside a phantom and an experimental verification of the calculations at the existing facility are presented. (orig.) [de

  12. Beam diagnostics

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-01-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the open-quotes Boosterclose quotes and open-quotes ATLASclose quotes linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates

  13. Application of semiconductor MOSFET and pin diode dosimeters to epithermal neutron beam dose distribution measurements in phantoms

    International Nuclear Information System (INIS)

    Carolan, M.G.; Wallace, S.A.; Allen, B.J.; Rosenfeld, A.B.; Mathur, J.N.

    1996-01-01

    For any clinical application of Boron Neutron Capture Therapy (BNCT) fast and accurate dose calculations will be required for treatment planning. Such calculations are also necessary for the planning and interpretation of results from pre-clinical and clinical trials where the speed of calculation is not so critical. A dose calculation system based on the MCNP Monte Carlo Neutron transport code has been developed by Wallace. This system takes image data from CT scans and constructs a voxel based geometrical model for input into MCNP. To validate the calculations, a number of phantoms were constructed and exposed in the HB11 epithermal neutron beam at the HFR of the CEC Joint Research Centre in Petten. The doses recorded by arrays of PIN diode neutron dosimeters and MOSFET gamma dosimeters in these phantoms were compared with the calculated results from the MCNP dose planning system. Initial results have been reported elsewhere. Poster 197. (author)

  14. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore. 11 refs., 4 figs

  15. Instability of compensated beam-beam collisions

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Autin, B.; Chen, Pisin.

    1989-01-01

    The beam-beam disruption phenomena in linear colliders are increasingly seen as a source of serious problems for these machines. A plasma compensation scheme, in which the motion of the plasma electrons in the presence of the colliding beams provides neutralizing charge and current densities, has been proposed and studied. But natural alternative to this scheme is to consider the overlapping of nearly identical high energy e + and e/sup /minus// bunches, and the collision of two such pairs - in other words, collision of two opposing relativistic positronium plasmas. It should be noticed that while the luminosity for all collisions is increased by a factor of four in this scheme, the event rate for e + e/sup /minus// collisions is only increased by a factor of two. The other factor of two corresponds to the addition of e + e + and e/sup /minus//e/sup /minus// collisions to the interaction point. This beam compensation scheme, which has been examined through computer simulation by Balakin and Solyak in the Soviet Union, promises full neutralization of beam charges and currents. These numerical investigations have shown that plasma instabilities exist in this nominally neutral system. Although the implementation of this idea seems technically daunting, the potential benefits (beamstrahlung and disruption suppression, relaxation of final focus system constraints) are such that we should consider the physics of these collisions further. In the remainder of this paper, we theoretically analyze the issues of stability and bunch parameter tolerances in this scheme. 11 refs

  16. Boron autoradiography method applied to the study of steels

    International Nuclear Information System (INIS)

    Gugelmeier, R.; Barcelo, G.N.; Boado, J.H.; Fernandez, C.

    1986-01-01

    The boron state, contained in the steel microestructure, is determined. The autoradiography by neutrons is used, permiting to obtain boron distribution images by means of additional information which is difficult to acquire by other methods. The application of the method is described, based on the neutronic irradiation of a polished steel sample, over which a celulose nitrate sheet or other appropriate material is fixed to constitute the detector. The particles generated by the neutron-boron interaction affect the detector sheet, which is subsequently revealed with a chemical treatment and can be observed at the optical microscope. In the case of materials used for the construction of nuclear reactors, special attention must be given to the presence of boron, since owing to the exceptionaly high capacity of neutron absorption, lowest quantities of boron acquire importance. The adaption of the method to metallurgical problems allows the obtainment of a correlation between the boron distribution images and the material's microstructure. (M.E.L.) [es

  17. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  18. Influence of dopants, particularly carbon, on β-rhombohedral boron

    Science.gov (United States)

    Werheit, H.; Flachbart, K.; Pristáš, G.; Lotnyk, D.; Filipov, V.; Kuhlmann, U.; Shitsevalova, N.; Lundström, T.

    2017-09-01

    Due to the high affinity of carbon to boron, the preparation of carbon-free boron is problematic. Even high-purity (6 N) β-rhombohedral boron contains 30-60 ppm of C. Hence, carbon affects the boron physical properties published so far more or less significantly. We studied well-defined carbon-doped boron samples based on pure starting material carefully annealed with up to about 1% C, thus assuring homogeneity. We present and discuss their electrical conductivity, optical absorption, luminescence and phonon spectra. Earlier attempts of other authors to determine the conductivity of C-doped boron are revised. Our results allow estimating the effects of oxygen and iron doping on the electrical conductivity using results taken from literature. Discontinuities at low T impair the electronic properties.

  19. Pulverization of boron element and proportions of boron carbide in boron; Broyage de bore element et dosage de carbure de bore dans le bore

    Energy Technology Data Exchange (ETDEWEB)

    Lang, F M; Finck, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 {mu}. Grain sizes smaller than 1{mu} are required for applying thin layers of such boron. (author) [French] Il est possible de pulveriser finement du bore element au moyen de mortier et pilon en carbure de bore fritte, le taux de carbure de bore introduit etant inferieur a 1 pour cent. Le bore element dont nous disposons est constitue de petits grains brun fonce, a aretes vives, de dimension moyenne superieure a 5 {mu}. L'application de ce bore en couches minces demande des grains de dimensions inferieures a 1 {mu}. (aute0008.

  20. Boron neutron capture therapy of intracerebral rat gliosarcomas

    International Nuclear Information System (INIS)

    Joel, D.D.; Fairchild, R.G.; Laissue, J.A.; Saraf, S.K.; Kalef-Ezra, J.A.; Slatkin, D.N.

    1990-01-01

    The efficacy of boron neutron capture therapy (BNCT) for the treatment of intracerebrally implanted rat gliosarcomas was tested. Preferential accumulation of 10B in tumors was achieved by continuous infusion of the sulfhydryl borane dimer, Na4(10)B24H22S2, at a rate of 45-50 micrograms of 10B per g of body weight per day from day 11 to day 14 after tumor initiation (day 0). This infusion schedule resulted in average blood 10B concentrations of 35 micrograms/ml in a group of 12 gliosarcoma-bearing rats and 45 micrograms/ml in a group of 10 similar gliosarcoma-bearing rats treated by BNCT. Estimated tumor 10B levels in these two groups were 26 and 34 micrograms/g, respectively. On day 14, boron-treated and non-boron-treated rats were exposed to 5.0 or 7.5 MW.min of radiation from the Brookhaven Medical Research Reactor that yielded thermal neutron fluences of approximately 2.0 x 10(12) or approximately 3.0 x 10(12) n/cm2, respectively, in the tumors. Untreated rats had a median postinitiation survival time of 21 days. Reactor radiation alone increased median postinitiation survival time to 26 (5.0 MW.min) or 28 (7.5 MW.min) days. The 12 rats that received 5 MW.min of BNCT had a median postinitiation survival time of 60 days. Two of these animals survived greater than 15 months. In the 7.5 MW.min group, the median survival time is not calculable since 6 of the 10 animals remain alive greater than 10 months after BNCT. The estimated radiation doses to tumors in the two BNCT groups were 14.2 and 25.6 Gy equivalents, respectively. Similar gliosarcoma-bearing rats treated with 15.0 or 22.5 Gy of 250-kilovolt peak x-rays had median survival times of only 26 or 31 days, respectively, after tumor initiation

  1. Characterization of boron doped nanocrystalline diamonds

    International Nuclear Information System (INIS)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V

    2008-01-01

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/μm range

  2. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; hide

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  3. CVD mechanism of pyrolytic boron nitride

    International Nuclear Information System (INIS)

    Tanji, H.; Monden, K.; Ide, M.

    1987-01-01

    Pyrolytic boron nitride (P-BN) has become a essential material for III-V compound semiconductor manufacturing process. As the demand from electronics industry for larger single crystals increases, the demand for larger and more economical P-BN components is growing rapidly. P-BN is manufactured by low pressure CVD using boron-trihalides and ammonia as the reactants. In spite that P-BN has been in the market for quite a long time, limited number of fundamental studies regarding the kinetics and the formation mechanism of P-BN have been reported. As it has been demonstrated in CVD of Si, knowledge and both theoretical and empirical modeling of CVD process can be applied to improve the deposition technology and to give more uniform deposition with higher efficiency, and it should also apply to the deposition of P-BN

  4. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  5. Microadditions of boron and vanadium in ADI

    Directory of Open Access Journals (Sweden)

    Rzychoń T.

    2007-01-01

    Full Text Available In the second part of the study, describing the role of vanadium and boron microadditions in the process of structure formation in heavy-walled castings made from ADI, the results of own investigations were presented. Within this study two series of melts of the ductile iron were made, introducing microadditions of the above mentioned elements to both unalloyed ductile iron and the ductile iron containing high levels of nickel and copper (the composition typical of ADI. Melts were conducted with iron-nickel-magnesium master alloy. Thermal analysis of the solidification process of the cast keel blocks was conducted, the heat treatment of the alloys was carried out, and then the effect of the introduced additions of boron and vanadium on the hardenability of the investigated cast iron was examined and evaluated.

  6. Boron nitride encapsulated graphene infrared emitters

    International Nuclear Information System (INIS)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R.

    2016-01-01

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.

  7. Boron nitride encapsulated graphene infrared emitters

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R., E-mail: g.r.nash@exeter.ac.uk [College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2016-03-28

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.

  8. The spectrophotometric determination of boron in tourmalines

    Directory of Open Access Journals (Sweden)

    LJILJANA JAKSIC

    2005-02-01

    Full Text Available A procedure for the spectrophotometric determination of macro amounts of boron in tourmaline with azomethine H is described. The used tourmaline concentrate was obtained by magnetic separation and heavy-liquids purification of the schorl zone of pegmatite or granite aplite. The samples of tourmaline were decomposed by fusion with anhydrous sodium carbonate and taken up in dilute hydrochloric acid. The interfering effects of iron and aluminium were eliminated by masking with an EDTA – NTA solution. After pH adjustment, the boron was reacted with azomethine H and the absorbance of the obtained coloured complex was measured at 415 nm. The results are compared with those obtained by other procedures. The relative error of the determination was less than 3 %.

  9. Determination of microdistribution of boron in metals

    Energy Technology Data Exchange (ETDEWEB)

    Illic, R; Najzer, M; Rant, J [J. Stefan Institute, Ljubljana (Yugoslavia)

    1976-07-01

    A neutron induced autoradiographic technique was used for the determination of the boron microdistribution in metals. The specimens, which were in close contact with a LR 115 SSTD, were irradiated in the exposure room of the TRIGA Mark II reactor in Ljubljana. The spatial resolution of the autoradiographic image recorded by the LR 115 detector was found to be influenced mainly by the size of the reaction product tracks. The track diameter of a normally etched detector was about 7 {mu}m. An appreciable reduction of track size was achieved by pre-etching the detector foil before neutron irradiation. By this procedure it was possible to obtain a track diameter as small as 1 {mu}m and correspondingly to improve the spatial resolution of the autoradiographs of type EC 80 steel and Al Mg 3 alloy which contain 30 and 2 ppm of boron respectively. (author)

  10. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    Ferreira, T.H.; Sousa, E.M.B.

    2010-01-01

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  11. Preparação e caracterização espectroscópica de complexos de boro: uma proposta para uma prática integrada de química inorgânica Preparation and spectroscopic characterization of boron complexes: a proposal for an integrated inorganic laboratory

    Directory of Open Access Journals (Sweden)

    Karl Eberhard Bessler

    2010-01-01

    Full Text Available As a proposal for an undergraduate second or third year inorganic laboratory course, the present paper describes the preparation of three representative boron complexes: potassium tetrafluoroborate, pyridoxin boron complex and potassium bis(oxalatoborate. The complexes are characterised by infrared and multinuclear magnetic resonance spectroscopy (¹H, 11B and 19F where isotopic effects are demonstrated.

  12. Grain refinement of cast titanium alloys via trace boron addition

    International Nuclear Information System (INIS)

    Tamirisakandala, S.; Bhat, R.B.; Tiley, J.S.; Miracle, D.B.

    2005-01-01

    The grain size of as-cast Ti-6Al-4V is reduced by about an order of magnitude from 1700 to 200 μm with an addition of 0.1 wt.% boron. A much weaker dependence of reduction in grain size is obtained for boron additions from >0.1% to 1.0%. Similar trends were observed in boron-modified as-cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si

  13. The irradiation induced creep of graphite under accelerated damage produced by boron doping

    International Nuclear Information System (INIS)

    Brocklehurst, J.E.

    1975-01-01

    The presence of boron enhances fast neutron irradiation damage in graphite by providing nucleation sites for interstitial loop formation. Doping with 11 B casues an increase in the irradiation induced macroscopic dimensional changes, which have been shown to result from an acceleration in the differential crystal growth rate for a given carbon atom displacement rate. Models of irradiation induced creep in graphite have centred around those in which creep is induced by internal stresses due to the anisotopic crystal growth, and those in which creep is activated by atomic displacements. A creep test on boron doped graphite has been performed in an attempt to establish which of these mechanisms is the determining factor. An isotropic nuclear graphite was doped to a 11 B concentration of 0.27 wt.%. The irradiation induced volume shrinkage rate at 750 0 C increased by a factor of 3 over that of the virgin graphite, in agreement with predictions from the earlier work, but the total creep strains were comparable in both doped and virgin samples. This observation supports the view that irradiation induced creep is dependent only on the carbon atom displacement rate and not on the internal stress level determined by the differential crystal growth rate. The implications of this result on the irradiation behaviour of graphite containing significant concentrations of boron are briefly discussed. (author)

  14. On melting of boron phosphide under pressure

    OpenAIRE

    Solozhenko, Vladimir; Mukhanov, V. A.

    2015-01-01

    Melting of cubic boron phosphide, BP, has been studied at pressures to 9 GPa using synchrotron X-ray diffraction and electrical resistivity measurements. It has been found that above 2.6 GPa BP melts congruently, and the melting curve exhibits negative slope (–60 ± 7 K/GPa), which is indicative of a higher density of the melt as compared to the solid phase.

  15. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  16. Contributions to the chemistry of Boron, 112

    International Nuclear Information System (INIS)

    Goetze, R.; Noeth, H.

    1980-01-01

    Several methods were used to prepare a series of boron substituted 1, 3, 2-dithiaborols. The NMR data of this new class of compounds indicate in comparison to 1, 3, 2-dithiaborolanes, that the heterocycle can be looked at as a 6 π-electron system. A high degree of analogy in the mass spectrometric fragmentation of dithiaborolanes and dithiaborols exists, however, the parent ion of 2-methyl dithiaborol is more stable than that of the saturated analogon. (orig.)

  17. Hot rolling of chromium - nickel - manganese stainless steel containing nitrogen and boron

    International Nuclear Information System (INIS)

    Khorosh, V.A.; Bulat, S.I.; Mukhina, M.A.; Sorokina, N.A.; Yushchenko, K.A.; Tsentral'nyj Nauchno-Issledovatel'skij Inst. Chernoj Metallurgii, Moscow; AN Ukrainskoj SSR, Kiev. Inst. Ehlektrosvarki)

    1976-01-01

    The strength of stainless steel of the 03Kh2ON16AG6 type increases perceptibly with an increase in the nitrogen content from 0.11 to 0.37%. At the same time, however, its ductility in the region of hot deformation temperatures (red brittleness range of 800 to 1,000 deg C) decreases. Microalloying with boron (0.002 to 0.005% by calculation) permits enhancing the hot ductility to an acceptable level without adversely affecting the working properties. The mechaniusm of boron effect is analyzed. The temperature at which ingots are heated prior to rolling to achieve the desired effect must be sufficiently low. Optimum condition for two stage heating of 6.2-ton ingots are recommeded

  18. Molecular Dynamics Modeling of Piezoelectric Boron Nirtride Nanotubes

    Data.gov (United States)

    National Aeronautics and Space Administration — Conduct a systematic computational study on the physical and electro-mechanical properties of Boron Nitride Nanotubes (BNNTs) to evaluate their functional...

  19. Combustion Performance of a Staged Hybrid Rocket with Boron addition

    Science.gov (United States)

    Lee, D.; Lee, C.

    2018-04-01

    In this paper, the effect of boron on overall system specific impulse was investigated. Additionally, a series of combustion tests was carried out to analyze and evaluate the effect of boron addition on O/F variation and radial temperature profiles. To maintain the hybrid rocket engine advantages, upper limit of boron contents in solid fuel was set to be 10 wt%. The results also suggested that, when adding boron to solid fuel, it helped to provide more uniform radial temperature distribution and also to increase specific impulse by 3.2%.

  20. Deuterated-decaborane using boronization on JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Yagyu, Jun-ichi; Arai, Takashi; Kaminaga, Atsushi; Miyata, Katsuyuki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Arai, Masaru [Kaihatsu Denki Co., Ltd., Tokyo (Japan)

    2001-03-01

    In JT-60U, boronization using hydride-decaborane (B{sub 10}H{sub 14}) vaporization has been conducted for the first wall conditioning. Compared to other discharge cleaning (DC), boronization is claimed to be efficient in reduction of oxygen impurities and hydrogen recycling in plasma. However, there are some problems in reduction of hydrogen included in boron film and stabilization of DC glow discharge during the boronization. To solve these problems, a new boronization method using deuterated-decaborane (B{sub 10}D{sub 14}) was adopted instead of the conventional hydride-decaborane. As a result, hydrogen content in the boron film decreased clearly and discharge conditioning shots, for decreasing hydrogen content in plasmas, after the boronization were reduced to 1/10 in comparison to the conventional process. Furthermore, DC glow discharge became stable, with only helium carrier gas, and it was possible to save 30 hours in maximum of the time necessary to boronization. It is shown that the boronization using deuterated-decaborane is very efficient and effective method for the first wall conditioning. (author)

  1. Graphite and boron carbide composites made by hot-pressing

    International Nuclear Information System (INIS)

    Miyazaki, K.; Hagio, T.; Kobayashi, K.

    1981-01-01

    Composites consisting of graphite and boron carbide were made by hot-pressing mixed powders of coke carbon and boron carbide. The change of relative density, mechanical strength and electrical resistivity of the composites and the X-ray parameters of coke carbon were investigated with increase of boron carbide content and hot-pressing temperature. From these experiments, it was found that boron carbide powder has a remarkable effect on sintering and graphitization of coke carbon powder above the hot-pressing temperature of 2000 0 C. At 2200 0 C, electrical resistivity of the composite and d(002) spacing of coke carbon once showed minimum values at about 5 to 10 wt% boron carbide and then increased. The strength of the composite increased with increase of boron carbide content. It was considered that some boron from boron carbide began to diffuse substitutionally into the graphite structure above 2000 0 C and densification and graphitization were promoted with the diffusion of boron. Improvements could be made to the mechanical strength, density, oxidation resistance and manufacturing methods by comparing with the properties and processes of conventional graphites. (author)

  2. Dependence of boron cluster dissolution on the annealing ambient

    International Nuclear Information System (INIS)

    Radic, Ljubo; Lilak, Aaron D.; Law, Mark E.

    2002-01-01

    Boron is introduced into silicon via implantation to form p-type layers. This process creates damage in the crystal that upon annealing causes enhanced diffusion and clustering of the boron layer. Reactivation of the boron is not a well-understood process. In this letter we experimentally investigate the effect of the annealing ambient on boron reactivation kinetics. An oxidizing ambient which injects silicon interstitials is compared to an inert ambient. Contrary to published theory, an excess of interstitials does not accelerate the reactivation process

  3. Advances in boronization on NSTX-Upgrade

    Directory of Open Access Journals (Sweden)

    C. H Skinner

    2017-08-01

    Full Text Available Boronization has been effective in reducing plasma impurities and enabling access to higher density, higher confinement plasmas in many magnetic fusion devices. The National Spherical Torus eXperiment, NSTX, has recently undergone a major upgrade to NSTX-U in order to develop the physics basis for a ST-based Fusion Nuclear Science Facility (FNSF with capability for double the toroidal field, plasma current, and NBI heating power and increased pulse duration from 1–1.5s to 5–8s. A new deuterated tri-methyl boron conditioning system was implemented together with a novel surface analysis diagnostic. We report on the spatial distribution of the boron deposition versus discharge pressure, gas injection and electrode location. The oxygen concentration of the plasma facing surface was measured by in-vacuo XPS and increased both with plasma exposure and with exposure to trace residual gases. This increase correlated with the rise of oxygen emission from the plasma.

  4. Boron determination in U3O8

    International Nuclear Information System (INIS)

    Ogura, Nadia S.; Sarkis, Jorge E.S.; Rosa, Daniele S.; Ulrich, Joao C.

    2009-01-01

    There exist specifications of the concentration as far the limit of impurities in the used uranium compounds is concerned. Among those impurities the boron element is detached. that in the uranium compounds acts as neutron absorber in nuclear reactions. Therefore, the determination of this element in uranium compounds, it is fundamental for the quality and performance of the nuclear fuels. However, the determination of this element is many times prejudiced by the presence of the uranium. For solving this problem, it is performed a chemical separation of the uranium (matrix) out of the interest. The most used methods to accomplish that separation are the solvent extraction and the ion exchange. In this work, the boron concentration will be done through the ion exchange technique, using polypropylene columns and Dowex AG 50W - X8 100-200 mesh cation resin in chloricide medium 0.25 M. The boron concentration will be determined through high resolution inductive coupling plasma mass spectrometry (HRICP-MS)

  5. Stable boron nitride diamondoids as nanoscale materials

    International Nuclear Information System (INIS)

    Fyta, Maria

    2014-01-01

    We predict the stability of diamondoids made up of boron and nitrogen instead of carbon atoms. The results are based on quantum-mechanical calculations within density functional theory (DFT) and show some very distinct features compared to the regular carbon-based diamondoids. These features are evaluated with respect to the energetics and electronic properties of the boron nitride diamondoids as compared to the respective properties of the carbon-based diamondoids. We find that BN-diamondoids are overall more stable than their respective C-diamondoid counterparts. The electronic band-gaps (E g ) of the former are overall lower than those for the latter nanostructures but do not show a very distinct trend with their size. Contrary to the lower C-diamondoids, the BN-diamondoids are semiconducting and show a depletion of charge on the nitrogen site. Their differences in the distribution of the molecular orbitals, compared to their carbon-based counterparts, offer additional bonding and functionalization possibilities. These tiny BN-based nanostructures could potentially be used as nanobuilding blocks complementing or substituting the C-diamondoids, based on the desired properties. An experimental realization of boron nitride diamondoids remains to show their feasibility. (paper)

  6. UNUSUAL ENERGY-DEPENDENCE OF THE TOTAL NUCLEAR-REACTION CROSS-SECTION FOR A SECONDARY ISOMERIC NUCLEAR BEAM (F-18(M), J(PI)=5(+), E(X)=1.1 MEV)

    NARCIS (Netherlands)

    ROBERTS, DA; BECCHETTI, FD; BROWN, JA; JANECKE, J; PHAM, K; ODONNELL, TW; WARNER, RE; RONNINGEN, RM; WILSCHUT, HW

    1995-01-01

    A primary O-17 beam has been used to produce a 22.3 MeV/nucleon F-18(m) isomeric secondary beam via a single nucleon transfer reaction on a carbon target. The total nuclear reaction cross sections for F-18(m) and F-18(g.s.) in silicon were measured in a stack of seven silicon solid-state detectors.

  7. The search for molecular effects in range corrections: boron determination by proton bombardment

    International Nuclear Information System (INIS)

    Olivier, C.; Peisach, M.

    1985-01-01

    Three different nuclear reactions viz. 10 B(p,αγ) 7 Be, 10 B(p,p,'γ) 10 B, and 11 B(p,p'γ) 11 B were used to analyse 21 pure boron compounds and mixtures of known composition by prompt gamma-ray spectrometry under proton bombardment. Elemental stopping powers were calculated from tables and used to compute the stopping power of the target matrices by Bragg's Law. Apparent discrepancies in the measured yield could point to deviations from Bragg's Law and hence to molecular effects. The maximum value for any molecular effect was found to be < 8,3%

  8. A critical assessment of boron target compounds for boron neutron capture therapy.

    Science.gov (United States)

    Hawthorne, M Frederick; Lee, Mark W

    2003-01-01

    Boron neutron capture therapy (BNCT) has undergone dramatic developments since its inception by Locher in 1936 and the development of nuclear energy during World War II. The ensuing Cold War spawned the entirely new field of polyhedral borane chemistry, rapid advances in nuclear reactor technology and a corresponding increase in the number to reactors potentially available for BNCT. This effort has been largely oriented toward the eradication of glioblastoma multiforme (GBM) and melanoma with reduced interest in other types of malignancies. The design and synthesis of boron-10 target compounds needed for BNCT was not channeled to those types of compounds specifically required for GBM or melanoma. Consequently, a number of potentially useful boron agents are known which have not been biologically evaluated beyond a cursory examination and only three boron-10 enriched target species are approved for human use following their Investigational New Drug classification by the US Food and Drug Administration; BSH, BPA and GB-10. All ongoing clinical trials with GBM and melanoma are necessarily conducted with one of these three species and most often with BPA. The further development of BNCT is presently stalled by the absence of strong support for advanced compound evaluation and compound discovery driven by recent advances in biology and chemistry. A rigorous demonstration of BNCT efficacy surpassing that of currently available protocols has yet to be achieved. This article discusses the past history of compound development, contemporary problems such as compound classification and those problems which impede future advances. The latter include means for biological evaluation of new (and existing) boron target candidates at all stages of their development and the large-scale synthesis of boron target species for clinical trials and beyond. The future of BNCT is bright if latitude is given to the choice of clinical disease to be treated and if a recognized study

  9. Use of the Power Burst Facility for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Crocker, J.G.; Griebenow, M.L.; Leatham, J.

    1990-01-01

    A program is under development at the Idaho National Engineering Laboratory (INEL) that involves using the Power Burst Facility (PBF) for research into boron neutron capture therapy (BNCT). BNCT utilizes the ionizing energy from boron-neutron capture to stop reproduction of or destroy cells in cancerous tissue in a two-step process. The first step is to selectively concentrate a boron isotope within the tumor cell, that when activated by neutron capture emits highly ionizing, short range particles. The second step involves activation of the isotope only in the vicinity of the tumor with a narrow neutron beam. The ( 10 B[n, 4 He] 7 Li) reaction with thermal neutrons produces fission products with track lengths approximately equal to a cell diameter. The INEL program includes the modification of the PBF by the addition of a filter and treatment area. The filter will down-scatter high energy neutrons into the epithermal range and remove thermal neutrons and excessively damaging gamma components. The intense source of epithermal neutrons from PBF is considered necessary to achieve optimum therapy for deep-seated tumors with minimum damage to surface tissue. THe neutron filter conceptualized for PBF utilizes aluminum and heavy water to down-scatter neutrons into the proper energy range. Bismuth will be used for gamma shielding and cadmium will remove the thermal neutron contaminant from the beam. The INEL program leads to human clinical trials at PBF which are intended to prove that brain tumors can be successfully treated through noninvasive techniques. Further research into BNCT at PBF for other cancer types is also anticipated

  10. Determination of isotopic composition of boron in boron carbide by TIMS and PIGE: an inter-comparison study

    International Nuclear Information System (INIS)

    Sasibhushan, K.; Rao, R.M.; Parab, A.R.; Alamelu, D.; Aggarwal, S.K.; Acharya, R.; Chhillar, S.; Pujari, P.K.

    2015-01-01

    The paper reports a comparison of results on the determination of isotopic composition of boron in boron carbide (B 4 C) samples by Thermal Ionisation Mass Spectrometry (TIMS) and Particle Induced Gamma ray Spectrometry (PIGE). B 4 C samples having varying boron isotopic composition (natural, enriched with respect to 10 B) and their synthetic mixtures) have been analysed by both the techniques. The 10 B atom% was found to be in the range of 20-67%. (author)

  11. Boron neutron capture therapy. Synthesis of boronated amines- and DNA intercalating agents for potential use in cancer therapy

    International Nuclear Information System (INIS)

    Ghaneolhosseini, H.

    1998-01-01

    Boron Neutron Capture Therapy is a binary cancer treatment modality, involving the delivery of a suitable boron compound to tumour cells followed by irradiation of the tumour by thermal neutrons. Boronated agents can selectively be delivered to tumour cells either directly with tumour-specific boron compounds, or by use of targeting strategies. However, the efficacy of this method would increase if the boron agents are localised in the cell nucleus rather than in the cell cytoplasm when neutron irradiation takes place. With these considerations in mind, some boronated DNA intercalating/interacting agents such as phenanthridine- acridine- spermidine- and naphthalimide derivatives were synthesised. Aminoalkyl-o-carboranes were synthesised in order to be used both for coupling to macromolecules and also for halogenation of their corresponding nido-derivatives. The amino groups were introduced using the Gabriel reagent N, N-dibenzyl iminodicarboxylate to provide 1-(aminomethyl)- and 1-(2-aminoethyl)-o-carboranes. The first attempt to achieve the possibility to accumulate a higher concentration of boron atoms in the cell nucleus was to synthesize carboranyl phenanthridinium analogues by reacting a p- or o-carboranyl moiety with phenanthridine, a chromophore with a planar aromatic ring system as DNA intercalator. Boronated acridine-spermidine, boronated diacridine, and boronated dispermidine were obtained in order to increase water solubility to avoid the interaction of these agents with non-DNA sides of the cell, especially membranes; and to enhance the feasibility of a higher DNA-binding constant and also decrease the DNA-drug dissociation rate. Finally, the synthesis of a boronated naphthalimide derivative was carried out by nucleophilic reaction of a primary aminoalkyl-p-carborane with naphthalic anhydride. Biological evaluations on DNA-binding, toxicity, and cellular binding with carboranyl phenanthridinium analogues, boronated acridine- and spermidine are described

  12. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  13. Beam loading

    International Nuclear Information System (INIS)

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed. (author)

  14. Determination of boron in graphite, boron carbide and glass by ICP-MS, ICP-OES and conventional wet chemical methods

    International Nuclear Information System (INIS)

    Venkatesh, K.; Kamble, Granthali S.; Venkatesh, Manisha; Kumar, Sanjukta A.; Reddy, A.V.R.

    2014-01-01

    Boron is an important element of interest in nuclear reactor materials due to its high neutron absorption cross section (σ 0 =3837 barns for 10 B). In the present paper, R and D work and routinely used methods have been described for the analysis of case samples (1) Graphite where boron is present at trace levels, (2) Boron Carbide having boron concentration of about 80% and (3) Glass containing 4-6 % boron. (author)

  15. Progress in study of a medical reactor for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Sasaki, Makoto; Hirota, Jitsuya; Tamao, Shigeo; Kanda, Keiji; Mishima, Yutaka.

    1993-01-01

    A design study of a medical reactor for Boron Neutron Capture Therapy has made progress. Main specifications of the reactor are as follows; thermal power of 2 MW, water cooling by natural convection, semitight core of hexagonal lattice, UO 2 fuel rod of 9.5 mm diameter and no refueling in the reactor-life. Three horizontal and one vertical neutron beam holes are to be provided for simultaneous treatments by thermal and epithermal neutrons and for further biomedical research. The design objectives for the beam holes are to deliver the therapeutic doses in a modest time (30 to 60 min) with minimal fast neutron and gamma contaminants. The n-γ coupling Sn transport calculations have been carried out using n-21 and γ-9 group cross sections on 2-dim. practical models. The calculated results indicate that the design objectives will be achievable even if the thermal power of the reactor is reduced to 1 MW. (author)

  16. Synovectomy by neutron capture in boron

    International Nuclear Information System (INIS)

    Vega C, H.R.

    2002-01-01

    The rheumatoid arthritis is an illness which affect approximately at 3% of the World population. This illness is characterized by the inflammation of the joints which reduces the quality of life and the productivity of the patients. Since, it is an autoimmune illness, the inflammation is due to the overproduction of synovial liquid by the increase in the quantity of synoviocytes. The rheumatoid arthritis does not have a definitive recovery and the patients have three options of treatment: the use of drugs, the surgery and the radio synovectomy. The synovectomy by neutron capture in Boron is a novel proposal of treatment of the rheumatoid arthritis that consists in using a charged compound with Boron 10 that is preferently incorporated in the synoviocytes and to a less extent in the rest of surrounding tissues of the joint. Then, the joint is exposed to a thermal neutron field that induces the reaction (n, α) in the 10 B. the products of this reaction place their energy inside synoviocytes producing their reduction and therefore the reduction of the joint inflammation. Since it is a novel procedure, the synovectomy by neutron capture in boron has two problems: the source design and the design of the adequate drug. In this work it has been realized a Monte Carlo study with the purpose to design a moderating medium that with a 239 Pu Be source in its center, produces a thermal neutron field. With the produced neutron spectra, the neutrons spectra and neutron doses were calculated in different sites inside a model of knee joint. In Monte Carlo studies it is necessary to know the elemental composition of all the joint components, for the case of synovia and the synovial liquid this information does not exist in such way that it is supposed that its composition is equal than the water. In this work also it has been calculated the kerma factors by neutrons of synovia and the synovial liquid supposing that their elemental composition are similar to the blood tissue

  17. Hardness and wear properties of boron-implanted poly(ether-ether-ketone) and poly-ether-imide

    International Nuclear Information System (INIS)

    Lee Youngchul; Lee, E.H.; Mansur, L.K.

    1992-01-01

    The effects of boron beam irradiation on the hardness, friction, and wear of polymer surfaces were investigated. Typical high-performance thermoplastics, poly(ether-ether-ketone) (PEEK) and a poly-ether-imide (Ultem) were studied after 200 keV boron ion beam treatment at ambient temperature to doses of 2.3x10 14 , 6.8x10 14 , and 2.2x10 15 ions cm -2 . The hardnesses of pristine and boron-implanted materials were characterized by a conventional Knoop method and a load-depth sensing nanoindentation technique. Both measurements showed a significant increase in hardness with increasing dose. The increase in hardness was also found to depend on the penetration depth of the diamond indenter. Wear and friction properties were characterized by a reciprocating sliding friction tester with an SAE 52100 high-carbon, chrome steel ball at 0.5 and 1 N normal loads. Wear and frictional properties varied in a complex fashion with polymer type and dose, but not much with normal load. A substantial reduction in friction coefficient was observed for PEEK at the highest dose but no reduction was observed for Ultem. The wear damage was substantially reduced at the highest dose for both Ultem and PEEK. For the system studied, the highest dose, 2.2x10 15 ions cm -2 , appears to be optimum in improving wear resistance for both PEEK and Ultem. (orig.)

  18. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation.

    Science.gov (United States)

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  19. Source of boron in the Palokas gold deposit, northern Finland: evidence from boron isotopes and major element composition of tourmaline

    Science.gov (United States)

    Ranta, Jukka-Pekka; Hanski, Eero; Cook, Nick; Lahaye, Yann

    2017-06-01

    The recently discovered Palokas gold deposit is part of the larger Rompas-Rajapalot gold-mineralized system located in the Paleoproterozoic Peräpohja Belt, northern Finland. Tourmaline is an important gangue mineral in the Palokas gold mineralization. It occurs as tourmalinite veins and as tourmaline crystals in sulfide-rich metasomatized gold-bearing rocks. In order to understand the origin of tourmaline in the gold-mineralized rocks, we have investigated the major element chemistry and boron isotope composition of tourmaline from three areas: (1) the Palokas gold mineralization, (2) a pegmatitic tourmaline granite, and (3) the evaporitic Petäjäskoski Formation. Based on textural evidence, tourmaline in gold mineralization is divided into two different types. Type 1 is located within the host rock and is cut by rock-forming anthophyllite crystals. Type 2 occurs in late veins and/or breccia zones consisting of approximately 80% tourmaline and 20% sulfides, commonly adjacent to quartz veins. All the studied tourmaline samples belong to the alkali-group tourmaline and can be classified as dravite and schorl. The δ11B values of the three localities lie in the same range, from 0 to -4‰. Tourmaline from the Au mineralization and from the Petäjäskoski Formation has similar compositional trends. Mg is the major substituent for Al; inferred low Fe3+/Fe2+ ratios and Na values (molybdenite related to the tourmaline-sulfide-quartz veins, we propose that the tourmaline-forming process is a result of a single magmatic-hydrothermal event related to the extensive granite magmatism at around 1.79-1.77 Ga. Tourmaline was crystallized throughout the hydrothermal process, which resulted in the paragenetic variation between type 1 and type 2. The close association of tourmaline and gold suggests that the gold precipitated from the same boron-rich source as tourmaline.

  20. Structural models of increasing complexity for icosahedral boron carbide with compositions throughout the single-phase region from first principles

    Science.gov (United States)

    Ektarawong, A.; Simak, S. I.; Alling, B.

    2018-05-01

    We perform first-principles calculations to investigate the phase stability of boron carbide, concentrating on the recently proposed alternative structural models composed not only of the regularly studied B11Cp (CBC) and B12(CBC), but also of B12(CBCB) and B12( B4 ). We find that a combination of the four structural motifs can result in low-energy electron precise configurations of boron carbide. Among several considered configurations within the composition range of B10.5C and B4C , we identify in addition to the regularly studied B11Cp (CBC) at the composition of B4C two low-energy configurations, resulting in a new view of the B-C convex hull. Those are [B12 (CBC)]0.67[B12(B4)] 0.33 and [B12 (CBC)]0.67[ B12 (CBCB)]0.33, corresponding to compositions of B10.5C and B6.67C , respectively. As a consequence, B12(CBC) at the composition of B6.5C , previously suggested in the literature as a stable configuration of boron carbide, is no longer part of the B -C convex hull. By inspecting the electronic density of states as well as the elastic moduli, we find that the alternative models of boron carbide can provide a reasonably good description for electronic and elastic properties of the material in comparison with the experiments, highlighting the importance of considering B12(CBCB) and B12( B4 ), together with the previously proposed B11Cp (CBC) and B12(CBC), as the crucial ingredients for modeling boron carbide with compositions throughout the single-phase region.