WorldWideScience

Sample records for boreal peatland buffer

  1. Post-fire ecohydrological conditions at peatland margins in different hydrogeological settings of the Boreal Plain

    Science.gov (United States)

    Lukenbach, M. C.; Hokanson, K. J.; Devito, K. J.; Kettridge, N.; Petrone, R. M.; Mendoza, C. A.; Granath, G.; Waddington, J. M.

    2017-05-01

    In the Boreal Plain of Canada, the margins of peatland ecosystems that regulate solute and nutrient fluxes between peatlands and adjacent mineral uplands are prone to deep peat burning. Whether post-fire carbon accumulation is able to offset large carbon losses associated with the deep burning at peatland margins is unknown. For this reason, we examined how post-fire hydrological conditions (i.e. water table depth and periodicity, soil tension, and surface moisture content) and depth of burn were associated with moss recolonization at the peatland margins of three sites. We then interpreted these findings using a hydrogeological systems approach, given the importance of groundwater in determining conditions in the soil-plant-atmosphere continuum in peatlands. Peatland margins dominated by local groundwater flow from adjacent peatland middles were characterized by dynamic hydrological conditions that, when coupled with lowered peatland margin surface elevations due to deep burning, produced two common hydrological states: 1) flooding during wet periods and 2) rapid water table declines during dry periods. These dynamic hydrological states were unfavorable to peatland moss recolonization and bryophytes typical of post-fire recovery in mineral uplands became established. In contrast, at a peatland margin where post-fire hydrological conditions were moderated by larger-scale groundwater flow, flooding and rapid water table declines were infrequent and, subsequently, greater peatland-dwelling moss recolonization was observed. We argue that peatland margins poorly connected to larger-scale groundwater flow are not only prone to deep burning but also lags in post-fire moss recovery. Consequently, an associated reduction in post-fire peat accumulation may occur and negatively affect the net carbon sink status and ecohydrological and biogeochemical function of these peatlands.

  2. Assessing Wildfire Effects in North American Boreal Peatlands through Field and Remote Sensing Analysis

    Science.gov (United States)

    Bourgeau-Chavez, L. L.; French, N. H. F.; Endres, S.; Kane, E. S.; Jenkins, L. K.; Hanes, C.; Battaglia, M., Jr.; de Groot, W.

    2017-12-01

    Wildfire is a natural disturbance factor in high northern latitude (HNL) ecosystems occurring primarily through lightning ignitions. However, there is evidence that frequency of wildfire in both boreal and arctic landscapes is increasing with climate change. Higher temperatures and reduced precipitation is leading to widespread seasonal drying in some HNL landscapes, thereby increasing wildfire frequency and severity. In 2014, Northwest Territories (NWT) Canada had a record breaking year of wildfire, burning over 3.4 million hectares of upland forests, peatlands, and even emergent wetlands. Fire activity occurred across seasons (spring, summer, and fall) in the Taiga Shield and Boreal Plains ecozones. Similar large fire years have occurred in boreal Alaska in 2004 and 2015. Under NASA ABoVE, boreal peatlands of Alberta and NWT Canada are the focus of both field and remote sensing studies to better understand their vulnerability and resiliency to wildfire. Landsat and radar satellite imagery are being used to develop remote sensing algorithms specific to peatlands to map and monitor not only burn severity but also organic soil moisture, peatland type (e.g. bog vs. fen) and biomass form (herbaceous, shrub, forest dominated). Field data analysis of tree recruitment, in situ moisture, burn severity, fuel loading and other biophysical parameters are currently being synthesized from three field seasons. The field and remote sensing data are being integrated with CanFIRE (a carbon emissions and fire effects model) to better understand the wildfire effects to peatlands. The spatial information allows for better quantification of the landscape heterogeneity of peatlands, thus providing new insights to landscape scale changes and allowing improved understanding of the implications of increasing wildfire in HNL ecosystems.

  3. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest.

    Science.gov (United States)

    Sun, Hui; Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O

    2016-05-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (Pstructure (Psoil nutrients (Ca [P= 0.002], Fe [P= 0.003], and P [P= 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P< 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Characterizing Early Succession Following Wildfires at Different Severities in Boreal Bog and Fen Peatlands

    Science.gov (United States)

    Ernst, E. J.; Bourgeau-Chavez, L. L.; Kane, E. S.; Wagenbrenner, J. W.; Endres, S.

    2016-12-01

    The Arctic-boreal region is experiencing changes in climate, trending toward warmer summers, resulting in a greater occurrence of wildfires with longer burning periods and higher intensities. Drought-like conditions have dried surface fuels, leading to a higher probability of ignition, even in lowland peatlands. Previous work has been done to characterize post-fire succession rates in Arctic-boreal upland sites, but much less is known of fire effects and early successional dynamics in lowlands. Wildland fires are the number one disturbance in Canada's Northwest Territories (NWT), which characteristically burn at high intensities with large flame fronts, and result in some of the biggest wildfires in the world. Areas surrounding the Great Slave Lake, NWT—including parts of the Taiga Plains, Taiga Shield, and Boreal Plains ecozones—experienced exceptional wildfire activity in 2014 and 2015. We characterized burn severity of the bog and fen peat surface and canopy layers at several burned sites. To determine if the severe ground or crown wildfires were stand-replacing events, we characterized post-fire vegetation in peatlands in 2015 and 2016 based on seedling regeneration. We stratified sites according to estimated water residence times across the three ecozones and made comparisons between data collected at the same sites across years. This work adds much needed context for post-fire succession in boreal peatland ecosystems, as the susceptibility of these systems to burning will continue to increase with a warming climate.

  5. Trade-Offs in Resource Allocation Among Moss Species Control Decomposition in Boreal Peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Turetsky, M. R.; Crow, S. E.; Evans, R. J.; Vitt, D. H.; Wieder, R. K.

    2008-01-01

    We separated the effects of plant species controls on decomposition rates from environmental controls in northern peatlands using a full factorial, reciprocal transplant experiment of eight dominant bryophytes in four distinct peatland types in boreal Alberta, Canada. Standard fractionation techniques as well as compound-specific pyrolysis molecular beam mass spectrometry were used to identify a biochemical mechanism underlying any interspecific differences in decomposition rates. We found that over a 3-year field incubation, individual moss species and not micro-environmental conditions controlled early stages of decomposition. Across species, Sphagnum mosses exhibited a trade-off in resource partitioning into metabolic and structural carbohydrates, a pattern that served as a strong predictor of litter decomposition. Decomposition rates showed a negative co-variation between species and their microtopographic position, as species that live in hummocks decomposed slowly but hummock microhabitats themselves corresponded to rapid decomposition rates. By forming litter that degrades slowly, hummock mosses appear to promote the maintenance of macropore structure in surface peat hummocks that aid in water retention. Many northern regions are experiencing rapid climate warming that is expected to accelerate the decomposition of large soil carbon pools stored within peatlands. However, our results suggest that some common peatland moss species form tissue that resists decomposition across a range of peatland environments, suggesting that moss resource allocation could stabilize peatland carbon losses under a changing climate.

  6. Ozone effects on Sphagnum mosses, carbon dioxide exchange and methane emission in boreal peatland microcosms

    International Nuclear Information System (INIS)

    Niemi, Riikka; Holopainen, Toini; Martikainen, Pertti J.; Silvola, Jouko

    2002-01-01

    Microcosms of a boreal peatland originating from an oligotrophic fen in Eastern Finland were fumigated under four ozone concentrations (0, 50, 100 and 150 ppb O 3 ) in laboratory growth chambers during two separate experiments (autumn and summer) for 4 and 6 weeks, respectively. Ozone effects on Sphagnum mosses and the fluxes of carbon dioxide and methane were evaluated. In both experiments, the three Sphagnum species studied showed only a few significant responses to ozone. In the autumn experiment, membrane permeability of S. angustifolium, measured as conductivity and magnesium leakage, was significantly higher under ozone fumigation (P=0.005 and 2 exchange during the 6-week-long summer experiment, but dark ecosystem respiration was transiently increased by ozone concentration of 100 ppb after 14 days of exposure (P<0.05). Fumigation with 100 ppb of ozone, however, more than doubled (P<0.05) methane emission from the peatland monoliths. Our results suggest that increasing tropospheric ozone concentration may cause substantial changes in the carbon gas cycling of boreal peatlands, even though these changes are not closely associated with the changes in Sphagnum vegetation

  7. Peat properties and water retention in boreal forested peatlands subject to wildfire

    Science.gov (United States)

    Thompson, Dan K.; Waddington, James M.

    2013-06-01

    Peat cores from a recently burned peatland and one over 75 years since fire in Alberta, Canada were analyzed for physical properties and water retention. Wildfire exposed denser peat at the peat surface, more so in hollow than hummock microforms. Water retention in peat has implications for postfire Sphagnum regeneration, as this more dense peat requires smaller volumes of water loss before a critical growth-inhibiting pore-water pressure of -100 mb is reached. Simulations of water retention after fire showed that hollow microforms are at a higher risk of losing low-density surface peat, which moderates water table (WT) declines via high specific yield. Exposure of dense peat to the surface after fire increases surface moisture under a constant WT. The net effect of decreasing specific yield and increasing water retention at the surface has implications on hydrologic stability and resilience of boreal peatlands to future wildfire risk under a changing climate. Earth system models incorporating wildfire disturbance in boreal peatlands would benefit from the inclusion of these hydrological feedbacks in this globally significant carbon reservoir.

  8. A high-resolution record of carbon accumulation rates during boreal peatland initiation

    Directory of Open Access Journals (Sweden)

    I. F. Pendea

    2012-07-01

    Full Text Available Boreal peatlands are a major global C sink, thus having important feedbacks to climate. A decreased concentration in atmospheric CO2 7000–10 000 yr ago has been linked to variations in peatland C accumulation rates attributed to a warm climate and increased productivity. Yet, this period also corresponds to early stages of peatland development (as peatland was expanding following retreat of ice sheets and increases in C storage could be associated with wetland evolution via lake filling or following marine shoreline emergence. Unravelling past links amongst peatland dynamics, C storage, and climate will help us assess potential feedbacks from future changes in these systems, but most studies are hampered by low temporal resolution. Here we provide a decadal scale C accumulation record for a fen that has begun transformation from salt marsh within the last 70 yr on the isostatically rebounding coast of James Bay, Québec. We determined time frames for wetland stages using palynological analyses to reconstruct ecological change and 210Pb and 137Cs to date the deposit. The average short-term C accumulation rates during the low and high tidal marsh and incipient fen stage (42, 87 and 182 g C m−2 yr−1, respectively were as much as six times higher than the global long-term (millennial average for northern peatlands. We suggest that the atmospheric CO2 flux during the early Holocene could be attributed, in part, to wetland evolution associated with isostatic rebound, which makes land for new wetland formation. Future climate warming will increase eustatic sea level, decrease rates of land emergence and formation of new coastal wetlands, ultimately decreasing rates of C storage of wetlands on rebounding coastlines.

  9. Contribution of vegetation and water table on isoprene emission from boreal peatland microcosms

    DEFF Research Database (Denmark)

    Tiiva, Päivi; Faubert, Patrick; Räty, Sanna

    2009-01-01

    hollows with intact vegetation, 45 ± 6 µg m-2 h-1, was decreased by 25% under water table drawdown. However, water table drawdown reduced net ecosystem carbon dioxide (CO2) exchange more dramatically than isoprene emission. Isoprene emission strongly correlated with both CO2 exchange and methane emission...... emission in these naturally wet ecosystems, although water table is predicted to decline due to climate warming. We studied the relative contribution of mosses vs. vascular plants to isoprene emission in boreal peatland microcosms in growth chambers by removing either vascular vegetation or both vascular...... by over 90% with removal of vascular plants or all vegetation. Thus, our results indicate that vascular plants, in contrast to mosses, were the main source of isoprene in the studied peatland ecosystem. Water table drawdown also significantly decreased the emissions; the mean isoprene emission from...

  10. The subcatchment- and catchment-scale hydrology of a boreal headwater peatland complex with sporadic permafrost.

    Science.gov (United States)

    Sonnentag, O.; Helbig, M.; Connon, R.; Hould Gosselin, G.; Ryu, Y.; Karoline, W.; Hanisch, J.; Moore, T. R.; Quinton, W. L.

    2017-12-01

    The permafrost region of the Northern Hemisphere has been experiencing twice the rate of climate warming compared to the rest of the Earth, resulting in the degradation of the cryosphere. A large portion of the high-latitude boreal forests of northwestern Canada grows on low-lying organic-rich lands with relative warm and thin isolated, sporadic and discontinuous permafrost. Along this southern limit of permafrost, increasingly warmer temperatures have caused widespread permafrost thaw leading to land cover changes at unprecedented rates. A prominent change includes wetland expansion at the expense of Picea mariana (black spruce)-dominated forest due to ground surface subsidence caused by the thawing of ice-rich permafrost leading to collapsing peat plateaus. Recent conceptual advances have provided important new insights into high-latitude boreal forest hydrology. However, refined quantitative understanding of the mechanisms behind water storage and movement at subcatchment and catchment scales is needed from a water resources management perspective. Here we combine multi-year daily runoff measurements with spatially explicit estimates of evapotranspiration, modelled with the Breathing Earth System Simulator, to characterize the monthly growing season catchment scale ( 150 km2) hydrological response of a boreal headwater peatland complex with sporadic permafrost in the southern Northwest Territories. The corresponding water budget components at subcatchment scale ( 0.1 km2) were obtained from concurrent cutthroat flume runoff and eddy covariance evapotranspiration measurements. The highly significant linear relationships for runoff (r2=0.64) and evapotranspiration (r2=0.75) between subcatchment and catchment scales suggest that the mineral upland-dominated downstream portion of the catchment acts hydrologically similar to the headwater portion dominated by boreal peatland complexes. Breakpoint analysis in combination with moving window statistics on multi

  11. Microbial production of nitrous oxide and nitric oxide in boreal peatlands

    International Nuclear Information System (INIS)

    Regina, K.

    1998-01-01

    Soils are an important source of nitrous oxide (N 2 O) and nitric oxide (NO). N 2 O is a greenhouse gas participating in both warming of the climate and the destruction of ozone, and NO is active in tropospheric chemistry. The fluxes and formation mechanisms of these gases in boreal Finnish peatlands were studied by both laboratory and field techniques. Special attention was paid to factors regulating their production, e.g. height of the water table, pH, temperature, nutrient level and nitrification activity. Both N 2 O and NO fluxes were detected in the peatlands, some of which were sources of these trace gases and some sinks. The flux rates of N 2 O ranged from negative values to several milligrammes per square metre per day. Natural peatlands were the lowest sources of N 2 O, often showing negative fluxes, whereas sites drained for forestry some decades ago had markedly higher fluxes. A site drained for agriculture (grassland) was the highest source found. NO fluxes were observed on the two drained sites studied, a forested fen and the same field of grass, but not on a natural fen with a high water table. NO fluxes amounted to 16-30 % of the N 2 O flux rates. The importance of the water table in regulating N 2 0 fluxes was demonstrated in field and laboratory studies. It was shown in the laboratory that even a short lowering of the water table, for 14 weeks at 20 deg C, induced N 2 0 fluxes from the fens that normally acted as sinks or only low sources. Raising the water table in peat monoliths from drained sites reduced the flux of N 2 O. Nutrient-rich peatlands had much higher capacities for N 2 O and NO production than poorer ones. The addition of KNO 3 , NH 4 Cl or urea to minerotrophic peat further increased the fluxes of N 2 O and NO, and also nitrogen mineralisation. There was a clear connection between the fluxes of N 2 0 and NO and nitrification activity measured as the numbers of nitrite-oxidising bacteria, nitrification potential or in situ net

  12. Microbial production of nitrous oxide and nitric oxide in boreal peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Regina, K.

    1998-12-31

    Soils are an important source of nitrous oxide (N{sub 2}O) and nitric oxide (NO). N{sub 2}O is a greenhouse gas participating in both warming of the climate and the destruction of ozone, and NO is active in tropospheric chemistry. The fluxes and formation mechanisms of these gases in boreal Finnish peatlands were studied by both laboratory and field techniques. Special attention was paid to factors regulating their production, e.g. height of the water table, pH, temperature, nutrient level and nitrification activity. Both N{sub 2}O and NO fluxes were detected in the peatlands, some of which were sources of these trace gases and some sinks. The flux rates of N{sub 2}O ranged from negative values to several milligrammes per square metre per day. Natural peatlands were the lowest sources of N{sub 2}O, often showing negative fluxes, whereas sites drained for forestry some decades ago had markedly higher fluxes. A site drained for agriculture (grassland) was the highest source found. NO fluxes were observed on the two drained sites studied, a forested fen and the same field of grass, but not on a natural fen with a high water table. NO fluxes amounted to 16-30 % of the N{sub 2}O flux rates. The importance of the water table in regulating N{sub 2}0 fluxes was demonstrated in field and laboratory studies. It was shown in the laboratory that even a short lowering of the water table, for 14 weeks at 20 deg C, induced N{sub 2}0 fluxes from the fens that normally acted as sinks or only low sources. Raising the water table in peat monoliths from drained sites reduced the flux of N{sub 2}O. Nutrient-rich peatlands had much higher capacities for N{sub 2}O and NO production than poorer ones. The addition of KNO{sub 3}, NH{sub 4}Cl or urea to minerotrophic peat further increased the fluxes of N{sub 2}O and NO, and also nitrogen mineralisation. There was a clear connection between the fluxes of N{sub 2}0 and NO and nitrification activity measured as the numbers of nitrite

  13. CO2 and CH4 fluxes and carbon balance in the atmospheric interaction of boreal peatlands

    International Nuclear Information System (INIS)

    Alm, J.

    1997-01-01

    Release of CO 2 from peat was studied using IR analyzer in a range of boreal peatlands under varying nutrient status and moisture conditions. Root associated CO 2 efflux was separated from the total release by experiments both in the field and in a greenhouse. Emissions of CO 2 and CH 4 (the latter by gas chromatography) were measured during the snow-covered period and their contribution to the annual fluxes of these gases was inspected. Ecosystem exchange of CO 2 under varying irradiation, temperature and moisture conditions was measured at different microsites at two peatland sites with different nutrient ecology. One site represented minerotrophic conditions during a wet growing season and the other site ombrotrophic conditions during an exceptionally dry growing season. Annual carbon balances were compiled for the two sites, and the role of the microsites in the annual carbon balance and CH 4 release was studied. The Holocene history of CO 2 sequestration and CH 4 emission dynamics in a raised mire were simulated using lateral and vertical growth rates derived from radiocarbon ages of peat samples from mire bottom and vertical cores. The model was formulated for a geographic information system (GIS). Artificial or natural lowering of water table increased CO 2 release from peat. A drought lasting from late May to July caused a 90 g C m 2 net loss in the annual C balance of a natural ombrotrophic bog. In drained forested sites the increase in peat CO 2 release could be even 100 %, but the development of the tree layer at least partially compensated for these losses. Wet conditions induced a net accumulation of 67 g C m -2 a -1 in the minerotrophic fen site, while the long term average accumulation rate is estimated to be only 15 g C m -2 a -1 for Finnish fens. Carbon balance in boreal peatlands is thus extremely sensitive to year-to-year climatic variations. Root activity of vascular plants contributed to the total peat CO 2 efflux by 10-40 % as root respiration

  14. Peatland use and transport of particulate organic matter in boreal headwater catchments

    Science.gov (United States)

    Marttila, Hannu; Karjalainen, Satu-Maaria; Nieminen, Mika; Kløve, Bjørn

    2014-05-01

    Peatland use can cause increased transport of particulate organic matter (POM) causing deteriorated water quality and especially siltation of stream beds. Even though topic has gained major attention among stakeholders it has received only minor efforts to solve the main sources and properties of transported particles. The development of effective management practices and evaluation of purification efficiency demands understanding of the sources of particulate matter in peat dominated catchments with various land uses and hydrological conditions. The objectives of this study were: (1) to determinate physical properties of POM in headwater brooks affected by different peatland uses, and; (2) to identity the sources of transported material by using sediment fingerprinting methods. For this purpose, two headwater catchments under peat extraction and peatland forestry land uses with 8 sampling points were monitored for 2 years using time integrated suspended sediment samplers. Data was completed by gap samples from 50 other headwater locations with different upstream land uses: pristine, peatland forestry and peat extraction. For the sources analysis, disturbed topsoil, stream bed sediment, banks of ditches and brooks, algae and various vegetation types were identified as the potential sediment sources. Stable isotopes (δ13C, δ15N) and C/N ratio were analyzed to discriminate between the possible sources. Results are further scaled against different land uses, landscape elements and seasonal hydrological conditions in headwaters. This paper presents the preliminary results from a two year study aiming to show various patterns in transport of POM in boreal headwater catchments. Due to strong land-water relationship in headwaters, further information on the properties of particles is needed to assess the downstream impacts of land use.

  15. Evapotranspiration dynamics in a boreal peatland and its impact on the water and energy balance

    Science.gov (United States)

    Wu, Jiabing; Kutzbach, Lars; Jager, Daniel; Wille, Christian; Wilmking, Martin

    2010-12-01

    Hydrological conditions play a key role in the carbon cycle of northern peatlands. This study examines the evapotranspiration (ET) dynamics and its impact on the water and energy balance in response to differing meteorological conditions during the exceptionally dry year 2006 and the normal wet year 2007 at a boreal peatland in Finland. Energy and water vapor fluxes were determined continuously using the eddy covariance approach. Daily ET rates varied considerably during the growing season and averaged 2.23 ± 0.15 mm d-1 and 1.59 ± 0.07 mm d-1 in the dry and wet year, respectively. Synoptic weather conditions as reflected by incoming radiation and water vapor pressure deficit (VPD) were the key factors controlling ET. Differences in the precipitation patterns and summer temperature also accounted for some of the observed differences in ET between the 2 years. No evidence was found for a relationship between ET rates and water table level, probably due to the relatively high water table level even in the dry year. Latent heat flux dominated the energy balance, particularly in the dry year 2006 with 60% of cumulative precipitation returned to the atmosphere through ET. In the wet year 2007, runoff dominated the water loss, and only 36% of the cumulative precipitation was returned to the atmosphere through ET. While the annual water balance regime of the peatland was mainly regulated by the precipitation pattern, daily measured ET was closely related to potential evaporation, and latent heat flux could be well modeled by the Penman-Monteith approach, suggesting two feasible schemes for ET prediction in peatlands under well watered conditions.

  16. Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities.

    Science.gov (United States)

    Asemaninejad, Asma; Thorn, R Greg; Lindo, Zoë

    2017-04-01

    Peatlands play an important role in global climate change through sequestration of atmospheric CO 2 . Climate-driven changes in the structure of fungal communities in boreal peatlands that favor saprotrophic fungi can substantially impact carbon dynamics and nutrient cycling in these crucial ecosystems. In a mesocosm study using a full factorial design, 100 intact peat monoliths, complete with living Sphagnum and above-ground vascular vegetation, were subjected to three climate change variables (increased temperature, reduced water table, and elevated CO 2 concentrations). Peat litterbags were placed in mesocosms, and fungal communities in litterbags were monitored over 12 months to assess the impacts of climate change variables on peat-inhabiting fungi. Changes in fungal richness, diversity, and community composition were assessed using Illumina MiSeq sequencing of ribosomal DNA (rDNA). While general fungal richness reduced under warming conditions, Ascomycota exhibited higher diversity under increased temperature treatments over the course of the experiment. Both increased temperature and lowered water table position drove shifts in fungal community composition with a strong positive effect on endophytic and mycorrhizal fungi (including one operational taxonomic unit (OTU) tentatively identified as Barrenia panicia) and different groups of saprotrophs identified as Mortierella, Galerina, and Mycena. These shifts were observed during a predicted degradative succession in the decomposer community as different carbon substrates became available. Since fungi play a central role in peatland communities, increased abundances of saprotrophic fungi under warming conditions, at the expense of reduced fungal richness overall, may increase decomposition rates under future climate scenarios and could potentially aggravate the impacts of climate change.

  17. Proceedings of a symposium on the reclamation and restoration of boreal peatland and forest ecosystems : towards a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, J. [Natural Resources Canada, Ottawa, ON (Canada); Foote, L.; Moran, S. [Alberta Univ., Edmonton, AB (Canada); Nadeau, L. [Northern Alberta Inst. of Technology, Edmonton, AB (Canada); Rochefort, L. [Laval Univ., Quebec City, PQ (Canada); Short, P. [Canadian Sphagnum Peat Moss Association, St. Albert, AB (Canada); Vitt, D.H. [Southern Illinois Univ., Carbondale, IL (United States); Wieder, K. [Villanova Univ., Villanova, PA (United States)] (comps.)

    2010-07-01

    Disturbances in Canada's boreal forest occur in both upland forests and in peatlands. These disturbances originate from both anthropogenic and natural causes, particularly fire. Techniques for the restoration, as well as the reclamation of peatlands and forests impacted by agriculture, urban development, or oil and gas activities, have made significant advancement over the last decade and these techniques need to be incorporated into the regulation and management of peatland and forest ecosystems. This symposium addressed the issue of how this research is affected by climate change. The sessions were entitled: (1) reclaiming forest and forest soils impacted by oil and gas production, (2) influence of oil sands development on forest communities, (3) understanding the importance of peatland and forest carbon in the twenty-first century, (4) reclaiming wetlands on mined oil sands tailing, (5) disturbance in peatlands and its relevance to minimizing disturbance footprints and informing reclamation efforts, and (6) restoration and management of harvested peatlands. The symposium featured 37 presentations, of which 6 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  18. Non-methane biogenic volatile organic compound emissions from boreal peatland microcosms under warming and water table drawdown

    DEFF Research Database (Denmark)

    Faubert, P; Tiiva, P; Nakam, TA

    2011-01-01

    Abstract Boreal peatlands have significant emissions of non-methane biogenic volatile organic compounds (BVOCs). Climate warming is expected to affect these ecosystems both directly, with increasing temperature, and indirectly, through water table drawdown following increased evapotranspiration. We...... assessed the combined effect of warming and water table drawdown on the BVOC emissions from boreal peatland microcosms. We also assessed the treatment effects on the BVOC emissions from the peat soil after the 7-week long experiment. Emissions of isoprene, monoterpenes, sesquiterpenes, other reactive VOCs...... and other VOCs were sampled using a conventional chamber technique, collected on adsorbent and analyzed by GC–MS. Carbon emitted as BVOCs was less than 1% of the CO2 uptake and up to 3% of CH4 emission. Water table drawdown surpassed the direct warming effect and significantly decreased the emissions of all...

  19. Comparative study of elemental mercury flux measurement techniques over a Fennoscandian boreal peatland

    Science.gov (United States)

    Osterwalder, S.; Sommar, J.; Åkerblom, S.; Jocher, G.; Fritsche, J.; Nilsson, M. B.; Bishop, K.; Alewell, C.

    2018-01-01

    Quantitative estimates of the land-atmosphere exchange of gaseous elemental mercury (GEM) are biased by the measurement technique employed, because no standard method or scale in space and time are agreed upon. Here we present concurrent GEM exchange measurements over a boreal peatland using a novel relaxed eddy accumulation (REA) system, a rectangular Teflon® dynamic flux chamber (DFC) and a DFC designed according to aerodynamic considerations (Aero-DFC). During four consecutive days the DFCs were placed alternately on two measurement plots in every cardinal direction around the REA sampling mast. Spatial heterogeneity in peat surface characteristics (0-34 cm) was identified by measuring total mercury in eight peat cores (57 ± 8 ng g-1, average ± SE), vascular plant coverage (32-52%), water table level (4.5-14.1 cm) and dissolved gaseous elemental mercury concentrations (28-51 pg L-1) in the peat water. The GEM fluxes measured by the DFCs showed a distinct diel pattern, but no spatial difference in the average fluxes was detected (ANOVA, α = 0.05). Even though the correlation between the Teflon® DFC and Aero-DFC was significant (r = 0.76, p scale features, such as experimentally manipulated plots or small scale spatial heterogeneity.

  20. Transient peat properties in two pond-peatland complexes in the sub-humid Western Boreal Plain, Canada

    Directory of Open Access Journals (Sweden)

    R.M. Petrone

    2008-03-01

    Full Text Available In the Canadian Western Boreal Plain (WBP, wetlands (ponds and peatlands comprise up to 50% of the landscape and represent unique habitat where summer precipitation is often outpaced by evapotranspiration and hillslope groundwater position does not follow topography. In this sub-humid location, groundwater fluxes and stores in riparian peatlands influence pond water levels and root zone moisture sources for forested uplands. To accurately describe the transport and retention of water in peat, it is important to consider peat subsidence. This paper quantifies the amount and effect of seasonal subsidence in a riparian peatland in the Utikuma Lake region in north-central Alberta, Canada. Results demonstrate that the deep and poorly decomposed peat deposits are resistant to compression, and that thick (and persistent ground frost hinders pore collapse (shrinkage above the water table until late summer when the ground has thawed. Even then, subsidence is still limited to the top 50 cm and is not closely related to changes in peatland water table or pond water level. Thus the water balance of these ponds and riparian areas appears to be less sensitive to peat volume changes than it is to the persistence of a substantial frost layer well into the snow-free period.

  1. Climatic sensitivity of hydrology and carbon exchanges in boreal peatland ecosystems, with implications on sustainable management of reed canary grass (Phalaris arundinacea, L.) on cutaway peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Gong Jinnan

    2013-11-01

    The aim of the study was to investigate the effects of climate change on soil hydrology and carbon (C) fluxes in boreal peatland ecosystems, with implications for the feasibility of cultivating reed canary grass (Phalaris arundinacea, L; RCG) as a way to restore the C sink in cutaway peatlands under Finnish conditions. First, hydrological models were developed for pristine peatland ecosystems and the cutaway peatlands under RCG cultivation. Concurrently, the hydrological responses to varying climatic forcing and mire types were investigated for these ecosystems. Thereafter, process-based models for estimating the seasonal and annual C exchanges were developed for the pristine mires and cutaway peatlands. The C models incorporated the hydrological models for corresponding ecosystems. Model simulations based on the climate scenarios (ACCLIM, developed by the Finnish Meteorological Institute, FMI) were further carried out to study the impacts of climate change on the C exchanges in the peatland ecosystems during the 21st century. The simulation showed that the water table (WT) in the pristine Finnish mires would draw down slightly during the 21st century. Such a chance in WT would be related to a decrease in the CO{sub 2} sink but an increase in the CH{sub 4} source at the country scale, as driven mainly by the rising temperature (Ta) and increasing precipitation (P). These changes in CO{sub 2}/ CH{sub 4} fluxes would decrease the total C-greenhouse gas (GHG) sink (CO{sub 2} equilibrium) by 68% at the country scale, and the changes would be more pronounced toward the end of the century. The majority of pristine fens in southern and western Finland and the pristine bogs near the coastal areas would become centurial CO{sub 2} sources under the changing climate. On the other hand, the major distribution of fens in northern Finland would act to increase the CH{sub 4} source at the country scale, whereas the CH{sub 4} emission would tend to decrease with WT in the southern

  2. Greenhouse gas balances in low-productive drained boreal peatlands - is climate-friendly management possible?

    Science.gov (United States)

    Ojanen, Paavo; Minkkinen, Kari; Heikkinen, Tiina; Penttilä, Timo

    2016-04-01

    Five million hectares of peatland has been drained for forestry in Finland. About 20% of that, i.e. one million hectares, has been estimated to be so low-productive that the profitability of keeping them in forestry is questionable. At the same time, drainage has introduced changes in the ecosystem functions of these peatlands, including fluxes of greenhouse gases. Options to manage such peatlands include for example 1) no measures, i.e. leaving the drained peatlands as they are 2) increasing intensity by e.g. repetitive fertilisations and 3) restoration back to functional peatlands. Here we estimate the greenhouse gas impacts of these three management options. We collected GHG and organic carbon flux data from 50 low-productive peatlands under these management options over two years 2014-2015. Gas fluxes (CO2, CH4, N2O) were measured with closed chambers. Litter production rates of different plants above and below ground were estimated using litter traps (trees), biomass sampling (roots), through-grow nets (mosses), allometric biomass models (other vasculars) and published turnover rates (roots, other vasculars). Characteristics for estimating tree stand biomass increment were measured at each site from circular sample plots. In this presentation we will estimate the GHG impacts for the different management options, and aim to find the most climate-friendly options for the management of low-productive peatlands in the short and long term. This work was funded by Life+ LIFE12/ENV/FI/150.

  3. Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils.

    Science.gov (United States)

    Briones, María Jesús I; McNamara, Niall P; Poskitt, Jan; Crow, Susan E; Ostle, Nicholas J

    2014-09-01

    Partially decomposed plant and animal remains have been accumulating in organic soils (i.e. >40% C content) for millennia, making them the largest terrestrial carbon store. There is growing concern that, in a warming world, soil biotic processing will accelerate and release greenhouse gases that further exacerbate climate change. However, the magnitude of this response remains uncertain as the constraints are abiotic, biotic and interactive. Here, we examined the influence of resource quality and biological activity on the temperature sensitivity of soil respiration under different soil moisture regimes. Organic soils were sampled from 13 boreal and peatland ecosystems located in the United Kingdom, Ireland, Spain, Finland and Sweden, representing a natural resource quality range of C, N and P. They were incubated at four temperatures (4, 10, 15 and 20 °C) at either 60% or 100% water holding capacity (WHC). Our results showed that chemical and biological properties play an important role in determining soil respiration responses to temperature and moisture changes. High soil C : P and C : N ratios were symptomatic of slow C turnover and long-term C accumulation. In boreal soils, low bacterial to fungal ratios were related to greater temperature sensitivity of respiration, which was amplified in drier conditions. This contrasted with peatland soils which were dominated by bacterial communities and enchytraeid grazing, resulting in a more rapid C turnover under warmer and wetter conditions. The unexpected acceleration of C mineralization under high moisture contents was possibly linked to the primarily role of fermented organic matter, instead of oxygen, in mediating microbial decomposition. We conclude that to improve C model simulations of soil respiration, a better resolution of the interactions occurring between climate, resource quality and the decomposer community will be required. © 2014 John Wiley & Sons Ltd.

  4. The effect of wood ash fertilization on soil respiration and tree stand growth in boreal peatland forests

    Science.gov (United States)

    Liimatainen, Maarit; Maljanen, Marja; Hytönen, Jyrki

    2017-04-01

    Out of Finland's original 10 million hectares of peatlands over half has been drained for forestry. Natural peatlands act as a sink for carbon but when peatland is drained, increased oxygen concentration in the peat accelerates the aerobic decomposition of the old organic matter of the peat leading to carbon dioxide (CO2) emissions to atmosphere. Increasing use of bioenergy increases also the amount of ash produced as a byproduct in power plants. Wood ash contains all essential nutrients for trees to grow except nitrogen. Therefore, wood ash is ideal fertilizer for nitrogen rich peatland forests where lack of phosphorus or potassium may restrict tree growth. At the moment, wood ash is the only available PK-fertilizer for peatland forests in Finland and areas of peatland forests fertilized with ash are increasing annually. The effects of wood ash on vegetation, soil properties and tree growth are rather well known although most of the studies have been made using fine ash whereas nowadays mostly stabilized ash (e.g. granulated) is used. Transporting and spreading of stabilized ash is easier than that of dusty fine ash. Also, slower leaching rate of nutrients is environmentally beneficial and prolongs the fertilizer effect. The knowledge on the impact of granulated wood ash on greenhouse gas emissions is still very limited. The aim of this study was to examine the effects of granulated wood ash on CO2 emissions from peat and tree stand growth. Field measurements were done in two boreal peatland forests in 2011 and 2012. One of the sites is more nutrient rich with soil carbon to nitrogen ratio (C/N) of 18 whereas the other site is nutrient poor with C/N ratio of 82. Both sites were fertilized with granulated wood ash in 2003 (5000 kg ha-1). The effect of fertilization was followed with tree stand measurements conducted 0, 5 and 10 years after the fertilization. The CO2 emissions of the decomposing peat (heterotrophic respiration) were measured from study plots where

  5. CO{sub 2} and CH{sub 4} fluxes and carbon balance in the atmospheric interaction of boreal peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Alm, J.

    1997-12-31

    Release of CO{sub 2} from peat was studied using IR analyzer in a range of boreal peatlands under varying nutrient status and moisture conditions. Root associated CO{sub 2} efflux was separated from the total release by experiments both in the field and in a greenhouse. Emissions of CO{sub 2} and CH{sub 4} (the latter by gas chromatography) were measured during the snow-covered period and their contribution to the annual fluxes of these gases was inspected. Ecosystem exchange of CO{sub 2} under varying irradiation, temperature and moisture conditions was measured at different microsites at two peatland sites with different nutrient ecology. One site represented minerotrophic conditions during a wet growing season and the other site ombrotrophic conditions during an exceptionally dry growing season. Annual carbon balances were compiled for the two sites, and the role of the microsites in the annual carbon balance and CH{sub 4} release was studied. The Holocene history of CO{sub 2} sequestration and CH{sub 4} emission dynamics in a raised mire were simulated using lateral and vertical growth rates derived from radiocarbon ages of peat samples from mire bottom and vertical cores. The model was formulated for a geographic information system (GIS). Artificial or natural lowering of water table increased CO{sub 2} release from peat. A drought lasting from late May to July caused a 90 g C m{sup 2} net loss in the annual C balance of a natural ombrotrophic bog. In drained forested sites the increase in peat CO{sub 2} release could be even 100 %, but the development of the tree layer at least partially compensated for these losses. Wet conditions induced a net accumulation of 67 g C m{sup -2}a{sup -1} in the minerotrophic fen site, while the long term average accumulation rate is estimated to be only 15 g C m{sup -2}a{sup -1} for Finnish fens. Carbon balance in boreal peatlands is thus extremely sensitive to year-to-year climatic variations. Root activity of vascular plants

  6. Growing season methane emission from a boreal peatland in the continuous permafrost zone of Northeast China: effects of active layer depth and vegetation

    Directory of Open Access Journals (Sweden)

    Y. Miao

    2012-11-01

    Full Text Available Boreal peatlands are significant natural sources of methane and especially vulnerable to abrupt climate change. However, the controlling factors of CH4 emission in boreal peatlands are still unclear. In this study, we investigated CH4 fluxes and abiotic factors (temperature, water table depth, active layer depth, and dissolved CH4 concentrations in pore water during the growing seasons in 2010 and 2011 in both shrub-sphagnum- and sedge-dominated plant communities in the continuous permafrost zone of Northeast China. The objective of our study was to examine the effects of vegetation types and abiotic factors on CH4 fluxes from a boreal peatland. In an Eriophorum-dominated community, mean CH4 emissions were 1.02 and 0.80 mg m−2 h−1 in 2010 and 2011, respectively. CH4 fluxes (0.38 mg m−2 h−1 released from the shrub-mosses-dominated community were lower than that from Eriophorum-dominated community. Moreover, in the Eriophorum-dominated community, CH4 fluxes showed a significant temporal pattern with a peak value in late August in both 2010 and 2011. However, no distinct seasonal variation was observed in the CH4 flux in the shrub-mosses-dominated community. Interestingly, in both Eriophorum- and shrub-sphagnum-dominated communities, CH4 fluxes did not show close correlation with air or soil temperature and water table depth, whereas CH4 emissions correlated well to active layer depth and CH4 concentration in soil pore water, especially in the Eriophorum-dominated community. Our results suggest that CH4 released from the thawed CH4-rich permafrost layer may be a key factor controlling CH4 emissions in boreal peatlands, and highlight that CH4 fluxes vary with vegetation type in boreal peatlands. With

  7. Radiocarbon dating of fluvial organic matter reveals land-use impacts in boreal peatlands

    DEFF Research Database (Denmark)

    Hulatt, Chris J.; Kaartokallio, Hermanni; Oinonen, Markku

    2014-01-01

    This study measured the effects of land use on organic matter released to surface waters in a boreal peat catchment using radiocarbon dating of particulate and dissolved organic carbon (POC and DOC), DOC concentration, stable carbon and nitrogen isotope composition, and optical measurements...

  8. Effect of microtopography on isotopic composition of methane in porewater and efflux at a boreal peatland

    Energy Technology Data Exchange (ETDEWEB)

    Dorodnikov, M.; Wilmking, M. [Greifswald Univ. (Georgia). Inst. of Botany and Landscape Ecology; Marushchak, M.; Biasi, C. [Univ. of Eastern Finland, Kuopio (Finland). Dept. of Environmental Science, Bioteknia 2], E-mail: maxim.dorodnikov@uef.fi

    2013-09-01

    The application of stable isotopes is an approach to identify pathways of methanogenesis, methane (CH{sub 4}) oxidation and transport in peatlands. We measured the stable C isotopic characteristics ({delta}C-13) of CH{sub 4} in peat profiles below hummocks, lawns and hollows of a Finnish mire to study the patterns of CH{sub 4} turnover. Porewater CH{sub 4} concentrations ([CH{sub 4}]; at 0.5-2 m) increased with depth below all microforms. Emissions of CH{sub 4} from hummocks were the lowest, and increased with the increasing water-saturated zone, being {approx}10 times higher from hollows. Thus, the microtopography of the peatland did not affect the porewater [CH{sub 4}] in the water-saturated part of the peat profile, but the CH{sub 4} emissions were affected due to differences in the oxidative potential of the microforms. There was a decrease in {delta}C-13-CH{sub 4} with depth below all microforms indicating dominance of CO{sub 2}-reduction over acetate cleavage pathway of methanogenesis at deep peat layers. However, estimated potential portions of transported CH{sub 4} comprised 50%-70% of the {delta}C-13-CH{sub 4} enrichment on microforms at the 0.5-m depth, hereby masking the acetate cleavage pathway of methanogenesis. Stable C composition ({delta}C-13) of CH{sub 4} proved to be a suitable (but not sufficient) tool to differentiate between types of methanogenesis in continuously water-saturated layers below microforms of a peatland. Combined flux-based and multi-isotopic approaches are needed to better understand the CH{sub 4} turnover process. (orig.)

  9. Thermal Acclimation of Photosynthesis and Respiration Differ Across Mature Conifer Species in a Boreal Forest Peatland

    Science.gov (United States)

    Dusenge, M. E.; Stinziano, J. R.; Warren, J.; Ward, E. J.; Wullschleger, S.; Hanson, P. J.; Way, D.

    2017-12-01

    Boreal forests are often assumed to be temperature-limited, and warming is therefore expected to stimulate their carbon uptake. However, much of our information on the ability of boreal conifers to acclimate photosynthesis and respiration to rising temperatures comes from seedlings. We measured net CO2 assimilation rates (A) and dark respiration (R) at 25 °C (A25 and R25) and at prevailing growth temperatures (Ag and Rg) in mature Picea mariana (spruce) and Larix laricina (tamarack) exposed to ambient, +2.25, +4.5, +6.75 and +9 °C warming treatments in open top chambers in the field at the SPRUCE experiment (MN, USA). In spruce, A25 and Ag were similar across plots in May and June. In August, spruce in warmer treatments had higher A25, an effect that was offset by warmer leaf temperatures in the Ag data. In tamarack, A25 was stimulated by warming in both June and August, an effect that was mainly offset by higher leaf temperatures when Ag was assessed in June, while in August, Ag was still slightly higher in the warmest treatments (+6.75 and +9) compared to the ambient plots. In spruce, R25 was enhanced in warm-grown trees in May, but was similar across treatments in June and August, indicating little acclimation of R. Rg slightly increased with warming treatments across the season in spruce. In contrast, R in tamarack thermally acclimated, as R25 decreased with warming. But while this acclimation generated homeostatic Rg in June, Rg in August was still highest in the warmest treatments. Our work suggests that the capacity for thermal acclimation in both photosynthesis and respiration varies among boreal tree species, which may lead to shifts in the performance of these species as the climate warms.

  10. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Science.gov (United States)

    Mezbahuddin, Mohammad; Grant, Robert F.; Flanagan, Lawrence B.

    2017-12-01

    Water table depth (WTD) effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1) oxygen transport, which controls energy yields from microbial and root oxidation-reduction reactions, and (2) vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May-October WTD drawdown of ˜ 0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re) by 0.26 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen) status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP) and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss) GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. Similar increases in GPP and Re caused no significant WTD effects on modeled

  11. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Directory of Open Access Journals (Sweden)

    M. Mezbahuddin

    2017-12-01

    Full Text Available Water table depth (WTD effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1 oxygen transport, which controls energy yields from microbial and root oxidation–reduction reactions, and (2 vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May–October WTD drawdown of  ∼  0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re by 0.26 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. Similar increases in

  12. Emissions and dynamics of N{sub 2}O in a buffer wetland receiving water flows from a forested peatland

    Energy Technology Data Exchange (ETDEWEB)

    Saari, P. [Centre for Economic Development, Jyvaskyla (Finland). Transport and the Environment], Email: paivi.saari@ely-keskus.fi; Saarnio, S. [Univ. of Eastern Finland, Joensuu (Finland). Finnish Environment Inst., Dept. of Biology; Heinonen, J.; Alm, J. [Finnish Forest Research Inst., Joensuu (Finland)

    2013-06-01

    Forestry operations can cause disturbances in nutrient cycling. Protection of watercourses by trapping the leached solids and nutrients in sedimentation ponds and buffer zones may create a new greenhouse gases (GHG) source. We measured in situ nitrous oxide (N{sub 2}O) fluxes in different parts of a spruce swamp buffer zone, N{sub 2}O emissions from intact peat columns after fertilization with different ammonium nitrate (NH{sub 4}NO{sub 3}) levels, and the rate and volume of in vivo N{sub 2}O accumulation. N{sub 2}O-producing micro-organisms existed throughout the buffer zone. The rate of N{sub 2}O formation was highest at depths close to the prevailing water table within the buffer zone. Groundwater level and the vicinity of bypass water flows at the soil surface regulated the spatial and temporal variation in the rate of N{sub 2}O efflux in the field. Nitrogen (N) addition rapidly increased in vivo N{sub 2}O release. Microbial activity in the laboratory incubations under optimal conditions was high, but the in situ N{sub 2}O efflux in the field was low. The actual leaching of mineral N from forestry areas was low and the inorganic N concentration in the buffer zone inflow was no higher than is typical for humic brooks or lakes in Finland. The low N{sub 2}O fluxes indicated that forestry operations in the catchment did not result in significant N enrichment of the buffer zone. This study does not support the postulate that peatland buffer zones may become significant sources of N{sub 2}O. (orig.)

  13. Minor effects of long-term ozone exposure on boreal peatland species Eriophorum vaginatum and Sphagnum papillosum

    DEFF Research Database (Denmark)

    Mörsky, SK; Haapala, JK; Rinnan, Riikka

    2011-01-01

    The effects of long-term ozone fumigation on two common peatland plant species, a sedge Eriophorum vaginatum L. and a moss Sphagnum papillosum Lindb., were studied applying peatland microcosms. The peat cores with intact vegetation were cored from an oligotrophic pine fen and partially embedded...

  14. Benthic macroinvertebrates and the use of stable isotopes (δ13C and δ15N) in the impact assessment of peatland use on boreal stream ecosystems

    Science.gov (United States)

    Nieminen, Mika L.; Daza Secco, Emmanuela; Nykänen, Hannu; Meissner, Kristian

    2013-04-01

    Stable isotope analysis (SIA) can provide insights into carbon flow dynamics and trophic positions of consumers in food webs. SIA is used in this study, where we assess the possible changes in the basal resources of Finnish boreal stream ecosystems and differences in the impact of two forms of peatland use, forestry and peat mining. About 30% of the total land area of Finland is classified as peatland, of which about 55% has been drained for forestry and about 0.6% is in peat production. Unlike forestry, peat production is regionally less scattered and can thus have measurable local impacts although the total area of peat production is small. Three watersheds were used as study areas. Within each watershed, one stream drains a subcatchment affected only by peat mining, whereas the other stream flows through a subcatchment affected by forestry. The two subcatchment streams merge to form a single stream flowing into a lake. Studied watersheds were subject to no other forms of land use. In addition to the impacted sites, we used two pristine natural mire and two natural forest catchments as controls. We analysed the stable isotopes of carbon (δ13C) and nitrogen (δ15N) from benthic macroinvertebrates, stream bank soil, stream sediment, and dissolved organic carbon (DOC) in stream water. Samples for stable isotope analyses were collected in the summer of 2011 and samples for invertebrate community analyses in the autumn of 2011. Upon sampling we measured several physical parameters at each sampling site. In addition, stream water samples collected in summer and autumn 2012 were analysed for CH4 and CO2 gas concentrations and autumn gas samples also for their δ13C values. Our initial SIA results of invertebrates suggest some degree of discrimination between different sources of OM and possible effects on feeding habits, presumably due to the quality of the basal resources. We will explore this result further by examining not only taxonomical structure, but also the

  15. Methane oxidation associated to submerged brown-mosses buffers methane emissions from Siberian polygonal peatlands

    Science.gov (United States)

    Liebner, Susanne; Zeyer, Josef; Knoblauch, Christian

    2010-05-01

    Circumpolar peatlands store roughly 18 % of the globally stored carbon in soils [based on 1, 2]. Also, northern wetlands and tundra are a net source of methane (CH4), an effective greenhouse gas (GHG), with an estimated annual CH4 release of 7.2% [3] or 8.1% [4] of the global total CH4 emission. Although it is definite that Arctic tundra significantly contributes to the global methane emissions in general, regional variations in GHG fluxes are enormous. CH4 fluxes of polygonal tundra within the Siberian Lena Delta, for example, were reported to be low [5, 6], particularly at open water polygonal ponds and small lakes [7] which make up around 10 % of the delta's surface. Low methane emissions from polygonal ponds oppose that Arctic permafrost thaw ponds are generally known to emit large amounts of CH4 [8]. Combining tools of biogeochemistry and molecular microbiology, we identified sinks of CH4 in polygonal ponds from the Lena Delta that were not considered so far in GHG studies from Arctic wetlands. Pore water CH4 profiling in polygonal ponds on Samoylov, a small island in the central part of the Lena Delta, revealed a pronounced zone of CH4 oxidation near the vegetation surface in submerged layers of brown-mosses. Here, potential CH4 oxidation was an order of magnitude higher than in non-submerged mosses and in adjacent bulk soil. We could additionally show that this moss associated methane oxidation (MAMO) is hampered when exposure of light is prevented. Shading of plots with submerged Scorpidium scorpioides inhibited MAMO leading to higher CH4 concentrations and an increase in CH4 fluxes by a factor of ~13. Compared to non-submerged mosses, the submerged mosses also showed significantly lower δ13C values indicating that they use carbon dioxide derived from methane oxidation for photosynthesis. Applying stable isotope probing of DNA, type II methanotrophs were identified to be responsible for the oxidation of CH4 in the submerged Scorpidium scorpioides. Our

  16. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes

    Directory of Open Access Journals (Sweden)

    P. Straková

    2011-09-01

    Full Text Available Peatlands are carbon (C storage ecosystems sustained by a high water table (WT. High WT creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WT drawdown caused by climate and/or land-use change. Aerobic decomposers are directly affected by WT drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WT drawdown on aerobic decomposer activity in plant litter at two stages of decomposition (incubated in the field for 1 or 2 years. We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen (N, phosphorus (P and sulphur. Our study sites represented a three-stage chronosequence from pristine to short-term (years and long-term (decades WT drawdown conditions under two nutrient regimes (bog and fen. The litter types included reflected the prevalent vegetation: Sphagnum mosses, graminoids, shrubs and trees.

    Litter type was the main factor shaping microbial activity patterns and explained about 30 % of the variation in enzyme activities and activity allocation. Overall, enzyme activities were higher in vascular plant litters compared to Sphagnum litters, and the allocation of enzyme activities towards C or nutrient acquisition was related to the initial litter quality (chemical composition. Direct effects of WT regime, site nutrient regime and litter decomposition stage (length of incubation period summed to only about 40 % of the litter type effect. WT regime alone explained about 5 % of the variation in enzyme activities and activity allocation. Generally, enzyme activity increased following the long-term WT drawdown and the activity allocation turned from P

  17. Peatland Woody Plant Growth Responses to Warming and Elevated CO2 in a Southern-boreal Raised Bog Ecosystem

    Science.gov (United States)

    Phillips, J. R.; Hanson, P. J.; Warren, J.; Ward, E. J.; Brice, D. J.; Graham, J.

    2017-12-01

    Spruce and Peatland Responses Under Changing Environments (SPRUCE) is an in situ warming by elevated CO2 manipulation located in a high-carbon, spruce peatland in northern Minnesota. Warming treatments combined a 12-m diameter open topped chamber with internally recirculating warm air and soil deep heating to simulate a broad range of future warming treatments. Deep below ground soil warming rates are 0, +2.25, +4.5, +6.75, and +9 °C. Deep belowground warming was initiated in June 2014 followed by air warming in August 2015. In June 2016, elevated CO2 atmospheres (eCO2 at + 500 ppm) were added to half of the warming treatments in a regression design. Our objective was to track long-term vegetation responses to warming and eCO2. Annual tree growth is based on winter measurement of circumference of all Picea mariana and Larix laricina trees within each 113 m2 plot, automated dendrometers, terrestrial LIDAR scanning of tree heights and canopy volumes, and destructive allometry. Annual shrub growth is measured in late summer by destructive clipping in two 0.25 m2 sub-plots and separation of the current year tissues. During the first year of warming, tree basal area growth was reduced for Picea, but not Larix trees. Growth responses for the woody shrub vegetation remains highly variable with a trend towards increasing growth with warming. Elevated CO2 enhancements of growth are not yet evident in the data. Second-year results will also be reported. Long-term hypotheses for increased woody plant growth under warming include potential enhancements driven by increased nutrient availability from warming induced decomposition of surface peats.

  18. Ecophysiology at SPRUCE: Impacts of whole ecosystem warming and elevated CO2 on leaf-level photosynthesis and respiration of two ericaceous shrubs in a boreal peatland

    Science.gov (United States)

    Ward, E. J.; Dusenge, M. E.; Warren, J.; Murphy, B. K.; Way, D.; King, A. W.; McLennan, D.; Montgomery, R.; Stefanski, A.; Reich, P. B.; Cruz Aguilar, M.; Wullschleger, S.; Bermudez Villanueva, R.; Hanson, P. J.

    2017-12-01

    The Spruce and Peatland Responses Under Changing Environments (SPRUCE) project is a large-scale, long-term experiment investigating the effects of warming and elevated CO2 on an ombrotrophic bog in Minnesota, USA. SPRUCE uses 10 large (12.8-m diameter) enclosures to increase air and soil temperatures to a range of targets (+0 °C, +2.25 °C, +4.5 °C, +6.75 °C, +9 °C) under both ambient and elevated (+500 ppm) CO2 concentrations. Whole-ecosystem-warming treatments began in August 2015 and elevated CO2 treatments began in June 2016. This talk will address the photosynthetic and respiratory responses of vascular plants to the treatments as measured with a variety of in-situ and ex-situ measurements conducted throughout the 2016 and 2017 growing seasons. We will focus on the responses of two dominant ericaceous shrubs (Rhododendron groenlandicum and Chamaedaphne calyculata), which account for more 80% of the understory biomass of this open-canopy forest. Such physiological changes are not only leading indicators of changes in plant growth and community structure, but are crucial to understanding carbon cycling of raised bogs and representing boreal peatlands in global dynamic vegetation models. Pre-treatment data collected at this site indicate that the physiologically active season typically begins in late May and extends into the fall until freezing nighttime temperatures are consistently reached, typically in October. Post-treatment measurements made during seasonal transitions indicate a longer active physiological season in warmer treatments. Results from 2016 measurements show some degree of thermal acclimation of photosynthesis in R. groenlandicum and of respiration in both species in the early growing season, but not late season. Late season measurements show a down-regulation of photosynthesis in both shrub species grown under elevated CO2. Taken as a whole, these results indicate complex interactions between phenological changes and treatment effects on

  19. Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing

    Directory of Open Access Journals (Sweden)

    R. K. Chakrabarty

    2016-03-01

    Full Text Available The surface air warming over the Arctic has been almost twice as much as the global average in recent decades. In this region, unprecedented amounts of smoldering peat fires have been identified as a major emission source of climate-warming agents. While much is known about greenhouse gas emissions from these fires, there is a knowledge gap on the nature of particulate emissions and their potential role in atmospheric warming. Here, we show that aerosols emitted from burning of Alaskan and Siberian peatlands are predominantly brown carbon (BrC – a class of visible light-absorbing organic carbon (OC – with a negligible amount of black carbon content. The mean fuel-based emission factors for OC aerosols ranged from 3.8 to 16.6 g kg−1. Their mass absorption efficiencies were in the range of 0.2–0.8 m2 g−1 at 405 nm (violet and dropped sharply to 0.03–0.07 m2 g−1 at 532 nm (green, characterized by a mean Ångström exponent of  ≈  9. Electron microscopy images of the particles revealed their morphologies to be either single sphere or agglomerated “tar balls”. The shortwave top-of-atmosphere aerosol radiative forcing per unit optical depth under clear-sky conditions was estimated as a function of surface albedo. Only over bright surfaces with albedo greater than 0.6, such as snow cover and low-level clouds, the emitted aerosols could result in a net warming (positive forcing of the atmosphere.

  20. Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing

    Science.gov (United States)

    Chakrabarty, Rajan K.; Gyawali, Madhu; Yatavelli, Reddy L. N.; Pandey, Apoorva; Watts, Adam C.; Knue, Joseph; Chen, Lung-Wen A.; Pattison, Robert R.; Tsibart, Anna; Samburova, Vera; Moosmüller, Hans

    2016-03-01

    The surface air warming over the Arctic has been almost twice as much as the global average in recent decades. In this region, unprecedented amounts of smoldering peat fires have been identified as a major emission source of climate-warming agents. While much is known about greenhouse gas emissions from these fires, there is a knowledge gap on the nature of particulate emissions and their potential role in atmospheric warming. Here, we show that aerosols emitted from burning of Alaskan and Siberian peatlands are predominantly brown carbon (BrC) - a class of visible light-absorbing organic carbon (OC) - with a negligible amount of black carbon content. The mean fuel-based emission factors for OC aerosols ranged from 3.8 to 16.6 g kg-1. Their mass absorption efficiencies were in the range of 0.2-0.8 m2 g-1 at 405 nm (violet) and dropped sharply to 0.03-0.07 m2 g-1 at 532 nm (green), characterized by a mean Ångström exponent of ≈ 9. Electron microscopy images of the particles revealed their morphologies to be either single sphere or agglomerated "tar balls". The shortwave top-of-atmosphere aerosol radiative forcing per unit optical depth under clear-sky conditions was estimated as a function of surface albedo. Only over bright surfaces with albedo greater than 0.6, such as snow cover and low-level clouds, the emitted aerosols could result in a net warming (positive forcing) of the atmosphere.

  1. Decision support system for peatland management in the humid tropics

    NARCIS (Netherlands)

    Ritzema, H.P.; Grobbe, T.; Chong, T.; Wösten, J.H.M.

    2003-01-01

    Large areas of globally important tropical peatland in Southeast Asia are threatened by land clearance, degradation and fire, jeopardising their natural functions as reservoirs of biodiversity, carbon stores and hydrological buffers. Many development projects on tropical peatlands have failed

  2. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing

    DEFF Research Database (Denmark)

    Johansson, T.; Malmer, N.; Crill, P. M.

    2006-01-01

    SUB-ARCTIC MIRE; CLIMATE-CHANGE; BOREAL PEATLANDS; METHANE EMISSIONS; VASCULAR PLANTS; CARBON-DIOXIDE; PERMAFROST THAW; CO2 EXCHANGE; WATER-TABLE......SUB-ARCTIC MIRE; CLIMATE-CHANGE; BOREAL PEATLANDS; METHANE EMISSIONS; VASCULAR PLANTS; CARBON-DIOXIDE; PERMAFROST THAW; CO2 EXCHANGE; WATER-TABLE...

  3. Meeting the challenge of mapping peatlands with remotely sensed data

    Directory of Open Access Journals (Sweden)

    O. N. Krankina

    2008-12-01

    Full Text Available Boreal peatlands play a major role in carbon and water cycling and other global environmental processes but understanding this role is constrained by inconsistent representation of peatlands on, or omission from, many global land cover maps. The comparison of several widely used global and continental-scale databases on peatland distribution with a detailed map for the St. Petersburg region of Russia showed significant under-reporting of peatland area, or even total omission. Analysis of the spatial agreement and disagreement with the detailed regional map indicated that the error of comission (overestimation was significantly lower than the error of omission (underestimation which means, that overall, peatlands were correctly classified as such in coarse resolution datasets but a large proportion (74–99% was overlooked. The coarse map resolution alone caused significant omission of peatlands in the study region. In comparison to categorical maps, continuous field mapping approach utilizing MODIS sensor data showed potential for a greatly improved representation of peatlands on coarse resolution maps. Analysis of spectral signatures of peatlands with different types of surface vegetation suggested that improved mapping of boreal peatlands on categorical maps is feasible. The lower reflectance of treeless peatlands in the near- and shortwave-infrared parts of the electromagnetic spectrum is consistent with the spectral signature of sphagnum mosses. However, when trees are present, the canopy architecture appears to be more important in defining the overall spectral reflectance of peatlands. A research focus on developing remote sensing methods for boreal peatlands is needed for adequate characterization of their global distribution.

  4. Initial response of the nitrogen cycle to soil warming in Northern Minnesota peatlands

    Science.gov (United States)

    Peatlands store 30% of global soil carbon. Many of these peatlands are located in boreal regions which are expected to have the highest temperature increases in response to climate change. As climate warms, peat decomposition may accelerate and release greenhouse gases. Spruce a...

  5. The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental peatland

    Science.gov (United States)

    J.K. Coleman Wasik; D.R. Engstrom; C.P.J. Mitchell; E.B. Swain; B.A. Monson; S.J. Balogh; J.D. Jeremiason; B.A. Branfireun; R.K. Kolka; J.E. Almendinger

    2015-01-01

    A series of severe droughts during the course of a long-term, atmospheric sulfate-deposition experiment in a boreal peatland in northern Minnesota created a unique opportunity to study how methylmercury (MeHg) production responds to drying and rewetting events in peatlands under variable levels of sulfate loading. Peat oxidation during extended dry periods mobilized...

  6. Initial Response of the Nitrogen Cycle to Soil Warming and Elevated CO2 in Northern Minnesota Peatlands

    Science.gov (United States)

    Peatlands store 30% of global soil carbon. Many of these peatlands are located in boreal regions which are expected to have the highest temperature increases in response to climate change. As climate warms, peat decomposition may accelerate and release greenhouse gases. Spruce an...

  7. Sulfate reduction in freshwater peatlands

    International Nuclear Information System (INIS)

    Oequist, M.

    1996-01-01

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO 4 2- concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 μM. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 μM h -1 while in B and C they were 1 and 0.05 μM h -1 , respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 μg d -1 g -1 ) were found 10 cm below the water table, in B (ca. 1.0 μg d -1 g -1 ) in the vicinity of the water table, and in C (0.75 μg d -1 g -1 ) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m -2 d -1 , while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m -2 d -1 , respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination paper. 67 refs, 6 figs, 3 tabs

  8. Possible responses of northern peatlands to climate change in the zone of discontinuous permafrost, Manitoba, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bubier, J.L. [New Hampshire Univ., Durham, NH (United States). Inst. for the Study of Earth, Oceans, and Space; Moore, T.R. [McGill Univ., Montreal (Canada). Geography Dept.

    1996-12-31

    More than half of the world`s peatlands occur in the boreal zone (45 - 60 deg C N. lat), a region which global climate models predict will experience large changes in temperature and precipitation with increasing atmospheric CO{sub 2} concentrations. The northern part of the boreal zone is characterised by discontinuous permafrost, an area that is particularly sensitive to climate change with the possible degradation and thawing of frozen peat. Peatlands are large sources of atmospheric methane (CH{sub 4}), an important greenhouse gas. Yet few measurements of methane have been conducted in discontinuous permafrost environments. As part of the Boreal Ecosystem-Atmosphere Study (BOREAS), CH{sub 4} flux was measured in a diverse peatland complex (bogs, fens, peat plateaus, and collapse scars), representing the complete range of temperature, moisture, and plant community gradients found in northern peatlands. The measurement period May to September 1994 was one of the warmest and driest seasons on record, which provided an opportunity to observe the short-term responses of different parts of the peatland ecosystem to a warmer and drier climate as an analog to predicted climate change in the region. (5 refs.)

  9. Built-up resilience to climate change in peatlands

    Science.gov (United States)

    Wang, H.; Tian, J.; Ho, M.; Flanagan, N. E.; Vilgalys, R.; Richardson, C. J.

    2017-12-01

    Peatlands have stored about 30% of global soil carbon over millennia. Most studies suggest that climate change effects, like drought and warming, may decrease C sequestration and increase C loss in peatlands, thus resulting in a positive feedback on climate change. However, the long-term feedback between plant-microbe mediated carbon processes and climate change still remains highly uncertain. Here, we conducted a series of field and lab experiments in southern shrub and northern Sphagnum peatlands to document how previously unrecognized mechanisms regulate the buildup of anti-microbial phenolics, which protects stored carbon directly by reducing phenol oxidase activity during short-term drought, and indirectly through a shift from low-phenolics Sphagnum/herbs to high-phenolics shrubs after long-term moderate drought. We further showed a symbiosis of slow-growing decomposers concomitant with a shift of high-phenolic plants, which increased peat resistance to disturbance. Our results indicate that shrub expansion induced by climate change in boreal peatlands may be a long-term self-adaptive mechanism not only increasing carbon sequestration, but also potentially protecting soil carbon. Therefore, peatlands are highly resilient ecosystems in which the symbiotic adaption of both plants and microbes, triggered by persistent climate change, likely can acclimate to the stressors and maintain their carbon sequestration function and processes.

  10. N cycling in SPRUCE (Spruce Peatlands Response Under Climatic and Environmental Changes)

    Science.gov (United States)

    Peatlands located in boreal regions make up a third of global wetland area and are expected to have the highest temperature increases in response to climate change. As climate warms, we expect peat decomposition may accelerate, altering the cycling of nitrogen. Alterations in th...

  11. Fire and Microtopography in Peatlands: Feedbacks and Carbon Dynamics

    Science.gov (United States)

    Benscoter, B.; Turetsky, M. R.

    2011-12-01

    Fire is the dominant natural disturbance in peatland ecosystems. Over the past decade, peat fires have emerged as an important issue for global climate change, human health, and economic loss, largely due to the extreme peat fire events in Indonesia and Russia that severely impacted metropolitan areas and social infrastructure. However, the impact and importance of fire in peatland ecosystems are more far-reaching. Combustion of vegetation and soil organic matter releases an average of 2.2 kg C m-2 to the atmosphere, primarily as CO2, as well as a number of potentially harmful emissions such as fine particulate matter and mercury. Additionally, while peatlands are generally considered to be net sinks of atmospheric carbon, the removal of living vegetation by combustion halts primary production following fire resulting in a net loss of ecosystem carbon to the atmosphere for several years. The recovery of carbon sink function is linked to plant community succession and development, which can vary based on combustion severity and the resulting post-fire microhabitat conditions. Microtopography has a strong influence on fire behavior and combustion severity during peatland wildfires. In boreal continental peatlands, combustion severity is typically greatest in low-lying hollows while raised hummocks are often lightly burned or unburned. The cross-scale influence of microtopography on landscape fire behavior is due to differences in plant community composition between microforms. The physiological and ecohydrological differences among plant communities result in spatial patterns in fuel availability and condition, influencing the spread, severity, and type of combustion over local to landscape scales. In addition to heterogeneous combustion loss of soil carbon, this differential fire behavior creates variability in post-fire microhabitat conditions, resulting in differences in post-fire vegetation succession and carbon exchange trajectories. These immediate and legacy

  12. Boreal forests

    Energy Technology Data Exchange (ETDEWEB)

    Essen, P.A.; Ericson, L. [Univ. of Umeaa, Dept. of Ecological Botany, Umeaa (Sweden); Ehnstroem, B. [Swedish Univ., of Agricultural Sciences, Swedish Threatened Species Unit, Uppsala (Sweden); Sjoeberg, K. [Swedish Univ. of Agricultural Sciences, Dept. of Animal Ecology, Umeaa (Sweden)

    1997-10-01

    We review patterns and processes important for biodiversity in the Fennoscandian boreal forest, describe man`s past and present impact and outline a strategy for conservation. Natural disturbances, particularly forest fire and gap formation, create much of the structural and functional diversity in forest ecosystems. Several boreal plants and animals are adapted to fire regimes. In contrast, many organisms (epiphytic lichens, fungi, invertebrates) require stable conditions with long continuity in canopy cover. The highly mechanized and efficient Fennoscandian forest industry has developed during the last century. The result is that most natural forest has been lost and that several hundreds of species, mainly cryptograms and invertebrates, are threatened. The forestry is now in a transition from exploitation to sustainable production and has recently incorporated some measures to protect the environment. Programmes for maintaining biodiversity in the boreal forest should include at least three parts. First, the system of forest reserves must be significantly improved through protection of large representative ecosystems and key biotopes that host threatened species. Second, we must restore ecosystem properties that have been lost or altered. Natural disturbance regimes must be allowed to operate or be imitated, for example by artificial fire management. Stand-level management should particularly increase the amount of coarse woody debris, the number of old deciduous trees and large, old conifers, by using partial cutting. Third, natural variation should also be mimicked at the landscape level, for example, by reducing fragmentation and increasing links between landscape elements. Long-term experiments are required to evaluate the success of different management methods in maintaining biodiversity in the boreal forest. (au) 260 refs.

  13. Boreal forests

    International Nuclear Information System (INIS)

    Essen, P.A.; Ericson, L.; Ehnstroem, B.; Sjoeberg, K.

    1997-01-01

    We review patterns and processes important for biodiversity in the Fennoscandian boreal forest, describe man's past and present impact and outline a strategy for conservation. Natural disturbances, particularly forest fire and gap formation, create much of the structural and functional diversity in forest ecosystems. Several boreal plants and animals are adapted to fire regimes. In contrast, many organisms (epiphytic lichens, fungi, invertebrates) require stable conditions with long continuity in canopy cover. The highly mechanized and efficient Fennoscandian forest industry has developed during the last century. The result is that most natural forest has been lost and that several hundreds of species, mainly cryptograms and invertebrates, are threatened. The forestry is now in a transition from exploitation to sustainable production and has recently incorporated some measures to protect the environment. Programmes for maintaining biodiversity in the boreal forest should include at least three parts. First, the system of forest reserves must be significantly improved through protection of large representative ecosystems and key biotopes that host threatened species. Second, we must restore ecosystem properties that have been lost or altered. Natural disturbance regimes must be allowed to operate or be imitated, for example by artificial fire management. Stand-level management should particularly increase the amount of coarse woody debris, the number of old deciduous trees and large, old conifers, by using partial cutting. Third, natural variation should also be mimicked at the landscape level, for example, by reducing fragmentation and increasing links between landscape elements. Long-term experiments are required to evaluate the success of different management methods in maintaining biodiversity in the boreal forest. (au) 260 refs

  14. Carbon accumulation in high-altitude peatlands of the Central Andes of Peru

    Science.gov (United States)

    Llanos, Romina; Moreira-Turcq, Patricia; Huaman, Yizet; Espinoza, Raul; Apaestegui, James; Turcq, Bruno; Willems, Bram

    2017-04-01

    Despite covering only 6 - 8% of the world's land surface, peatlands contain around one third of the global organic soil carbon (C) and are an important component of the global C cycle. Most studies of peatland C dynamics have been carried out on boreal and subarctic peatlands, but less is known about peatlands at lower latitudes, yet there are significant peatland C stocks in these regions that may be more vulnerable to future climate change because they are closer to the climatic limit of peatland distribution. In South America, peatlands in high altitudes called "bofedales" represent one of the most important water resources and also provide key environmental services that support both Andean mountain biodiversity and the wellbeing of human populations. Nowdays, the need for conservation and wise use of these ecosystems is increasingly being recognized. So, a useable assessment of peatlands in the global C cycle requires accurate estimates of carbon pools and fluxes. In order to understand the impact of different altitudes on the growth, production and carbon accumulation, several short (about 30 cm) peatlands cores were collected in the headwater of the Cachi river basin, in the Central Andes of Peru. Two Distichia muscoides cushion plant-dominated "bofedales" which elevations exceed 4000 m were studied. The sedimentation rates, based on radiocarbon dating of peat samples from the two sites studied, were very variable. Cores from the bofedal located at 4200 m present an age of approximately 55 years, while the site at the highest altitude site has an age of approximately about 450 years. Our results point out very different rates of sedimentation in the two peatlands that may be related to the climatic changes observed during the recent past, with a direct consequence on the carbon accumulation rates. In the determination of the annual growth, we observed that this one presented smaller values in the first centimeters of the peatland with lower elevation, while

  15. Spatially explicit simulation of peatland hydrology and carbon dioxide exchange

    Energy Technology Data Exchange (ETDEWEB)

    Sonnentag, O.

    2008-08-01

    A recent version of the Boreal Ecosystem Productivity Simulator (BEPS) was extended and modified to include northern peatlands. This thesis evaluated the BEPS-TerrainLab using observations made at the Mer Bleue bog located near Ottawa, Ontario, and the Sandhill fen located near Prince Albert, Saskatchewan. The code was revised to represent the multi-layer canopy and processes related to energy, water vapour and carbon dioxide fluxes through remotely-sensed leaf area index (LAI) maps. A quick and reliable method was also developed to determine shrub LAI with the LAI-2000 plant canopy analyzer. A large number of LAI data was collected at the Mer Bleue bog for the development of a new remote sensing-based methodology using multiple end member spectral unmixing to allow for separate tree and shrub LAI mapping in ombrotrophic peatlands. The methodology was also adapted for use in minerotrophic peatlands and their surrounding landscapes. These LAI maps within the BEPS-TerrainLab represented the tree and shrub layers of the Mer Bleue bog and the tree and shrub/sedge layers of the Sandhill fen. The study examined the influence of mesoscale topography (Mer Bleue bog) and macro- and mesoscale topography (Sandhill fen) on wetness, evapotranspiration, and gross primary productivity during the snow-free period of 2004. The results suggested that a peatland type-specific differentiation of macro- and mesoscale topographic effects on hydrology should be included in future peatland ecosystem modelling efforts in order to allow for a more realistic simulation of the soil water balance in peatlands and to reduce uncertainties in carbon dioxide and methane annual fluxes from wetlands.

  16. Tropical Peatland Geomorphology and Hydrology

    Science.gov (United States)

    Cobb, A.; Harvey, C. F.

    2017-12-01

    Tropical peatlands cover many low-lying areas in the tropics. In tropical peatlands, a feedback between hydrology, landscape morphology, and carbon storage causes waterlogged organic matter to accumulate into gently mounded land forms called peat domes over thousands of years. Peat domes have a stable morphology in which peat production is balanced by loss and net precipitation is balanced by lateral flow, creating a link between peatland morphology, rainfall patterns and drainage networks. We show how landscape morphology can be used to make inferences about hydrologic processes in tropical peatlands. In particular, we show that approaches using simple storage-discharge relationships for catchments are especially well suited to tropical peatlands, allowing river forecasting based on peatland morphology in catchments with tropical peatland subcatchments.

  17. Algal community response to experimental and interannual variation in hydrology in an Alaskan boreal fen

    Science.gov (United States)

    A. R. Rober; K. Wyatt; M. Turetsky; R. Stevenson

    2013-01-01

    Floristic studies indicate the abundance of microalgae in northern boreal peatlands, but we know relatively little about their ecology or how they will respond to changes in environmental conditions expected in this region as climate changes. We examined changes in algal community structure at sites exposed to a long-term water-table manipulation, including drought (...

  18. The response of soil organic carbon of a rich fen peatland in interior Alaska to projecte climate change

    Science.gov (United States)

    Zhaosheng Fan; David McGuire; Merritt R. Turetsky; Jennifer W. Harden; James Michael Waddington; Evan S. Kane

    2013-01-01

    It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in...

  19. New insights on ecosystem mercury cycling revealed by stable isotopes of mercury in water flowing from a headwater peatland catchment

    Science.gov (United States)

    Glenn E. Woerndle; Martin Tsz-Ki Tsui; Stephen D. Sebestyen; Joel D. Blum; Xiangping Nie; Randall K. Kolka

    2018-01-01

    Stable isotope compositions of mercury (Hg) were measured in the outlet stream and in soil cores at different landscape positions in a 9.7-ha boreal upland-peatland catchment. An acidic permanganate/persulfate digestion procedure was validated for water samples with high dissolved organic matter (DOM) concentrations through Hg spike addition analysis. We report a...

  20. Global warming considerations in northern Boreal forest ecosystems

    International Nuclear Information System (INIS)

    Slaughter, C.W.

    1993-01-01

    The northern boreal forests of circumpolar lands are of special significance to questions of global climate change. Throughout its range, these forests are characterized by a relatively few tree species, although they may exhibit great spatial heterogeneity. Their ecosystems are simpler than temperate systems, and ecosystem processes are strongly affected by interactions between water, the landscape, and the biota. Northern boreal forest vegetation patterns are strongly influenced by forest fires, and distribution of forest generally coincides with occurrence of permafrost. Boreal forest landscapes are extremely sensitive to thermal disruption; global warming may result in lasting thermal and physical degradation of soils, altered rates and patterns of vegetation succession, and damage to engineered structures. A change in fire severity and frequency is also a significant concern. The total carbon pool of boreal forests and their associated peatlands is significant on a global scale; this carbon may amount to 10-20% of the global carbon pool. A change in latitudinal or elevational treeline has been suggested as a probable consequence of global warming. More subtle aspects of boreal forest ecosystems which may be affected by global warming include the depth of the active soil layer, the hydrologic cycle, and biological attributes of boreal stream systems. 48 refs., 2 figs

  1. Carbon accumulation rates recorded in the last 150years in tropical high mountain peatlands of the Atlantic Rainforest, SE - Brazil.

    Science.gov (United States)

    Lourençato, Lúcio F; Caldeira, Pedro P; Bernardes, Marcelo C; Buch, Andressa C; Teixeira, Daniel C; Silva-Filho, Emmanoel V

    2017-02-01

    Peatlands are environmental matrices that store large amounts of organic carbon (TOC) and work as records of environmental changes. Recent record of organic carbon accumulated were assessed in two Forest National Parks, Itatiaia and Serra dos Órgãos in the Southeastern of Brazil. Based on organic and inorganic characterization, the cores from peatlands presented a predominance of organic material in an advanced stage of decomposition and those soils were classified as typical Haplosaprists Histosols. The combination of favorable topographic and climatic conditions led to rapid C accumulation across coastal mountain in the tropical peatlands studied, presenting an average accumulation rate of C, in the last century, of 194gCm -2 yr -1 about 7 higher times than the rate found in boreal and subarctic peatlands, those higher values may be related to changes in the hydrological cycle occurred since 1950s. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Spatially Explicit Simulation of Mesotopographic Controls on Peatland Hydrology and Carbon Fluxes

    Science.gov (United States)

    Sonnentag, O.; Chen, J. M.; Roulet, N. T.

    2006-12-01

    A number of field carbon flux measurements, paleoecological records, and model simulations have acknowledged the importance of northern peatlands in terrestrial carbon cycling and methane emissions. An important parameter in peatlands that influences both net primary productivity, the net gain of carbon through photosynthesis, and decomposition under aerobic and anaerobic conditions, is the position of the water table. Biological and physical processes involved in peatland carbon dynamics and their hydrological controls operate at different spatial scales. The highly variable hydraulic characteristics of the peat profile and the overall shape of the peat body as defined by its surface topography at the mesoscale (104 m2) are of major importance for peatland water table dynamics. Common types of peatlands include bogs with a slightly domed centre. As a result of the convex profile, their water supply is restricted to atmospheric inputs, and water is mainly shed by shallow subsurface flow. From a modelling perspective the influence of mesotopographic controls on peatland hydrology and thus carbon balance requires that process-oriented models that examine the links between peatland hydrology, ecosystem functioning, and climate must incorporate some form of lateral subsurface flow consideration. Most hydrological and ecological modelling studies in complex terrain explicitly account for the topographic controls on lateral subsurface flow through digital elevation models. However, modelling studies in peatlands often employ simple empirical parameterizations of lateral subsurface flow, neglecting the influence of peatlands low relief mesoscale topography. Our objective is to explicitly simulate the mesotopographic controls on peatland hydrology and carbon fluxes using the Boreal Ecosystem Productivity Simulator (BEPS) adapted to northern peatlands. BEPS is a process-oriented ecosystem model in a remote sensing framework that takes into account peatlands multi

  3. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    Directory of Open Access Journals (Sweden)

    D. K. Hare

    2017-11-01

    Full Text Available Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns

  4. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    Science.gov (United States)

    Hare, Danielle K.; Boutt, David F.; Clement, William P.; Hatch, Christine E.; Davenport, Glorianna; Hackman, Alex

    2017-11-01

    Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns may allow resource

  5. Effect of inundation, oxygen and temperature on carbon mineralization in boreal ecosystems.

    Science.gov (United States)

    Kim, Youngil; Ullah, Sami; Roulet, Nigel T; Moore, Tim R

    2015-04-01

    The inundation of boreal forests and peatlands through the construction of hydroelectric reservoirs can increase carbon dioxide (CO2) and methane (CH4) emission. To establish controls on emission rates, we incubated samples of forest and peat soils, spruce litter, forest litter and peatland litter collected from boreal ecosystems in northern Quebec for 16 weeks and measured CO2 and CH4 production rates under flooded or non-flooded conditions and varying oxygen concentration and temperature. CO2 production under flooded conditions was less than under non-flooded conditions (5-71 vs. 5-85 mg Cg(-1) C), but CH4 production under flooded conditions was larger than under non-flooded conditions (1-8158 vs. 0-86 μg Cg(-1) C). The average CO2 and CH4 production rate factor for flooded:non-flooded conditions was 0.76 and 1.32, respectively. Under flooded conditions, high oxygen concentrations increased CO2 production in peat soils but decreased CH4 production in forest and peat soils and spruce litter. Warmer temperatures (from 4 to 22°C) raised both CO2 production in peat soils and peatland litter, and CH4 production in peat soils and spruce litter. This study shows that the direction and/or strength of CO2 and CH4 fluxes change once boreal forests and peatlands are inundated. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Aquatic export of young dissolved and gaseous carbon from a pristine boreal fen: Implications for peat carbon stock stability.

    Science.gov (United States)

    Campeau, Audrey; Bishop, Kevin H; Billett, Michael F; Garnett, Mark H; Laudon, Hjalmar; Leach, Jason A; Nilsson, Mats B; Öquist, Mats G; Wallin, Marcus B

    2017-12-01

    The stability of northern peatland's carbon (C) store under changing climate is of major concern for the global C cycle. The aquatic export of C from boreal peatlands is recognized as both a critical pathway for the remobilization of peat C stocks as well as a major component of the net ecosystem C balance (NECB). Here, we present a full year characterization of radiocarbon content ( 14 C) of dissolved organic carbon (DOC), carbon dioxide (CO 2 ), and methane (CH 4 ) exported from a boreal peatland catchment coupled with 14 C characterization of the catchment's peat profile of the same C species. The age of aquatic C in runoff varied little throughout the year and appeared to be sustained by recently fixed C from the atmosphere (export to forecasted hydroclimatic changes. © 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  7. Organic matter accumulation and community change at the peatland-upland interface: inferences from 14C and 210Pb dated profiles

    Science.gov (United States)

    Ilka E. Bauer; Jagtar S. Bhatti; Christopher Swanston; R. Kelman Wieder; Caroline M. Perston

    2009-01-01

    Peatland-margin habitats with organic matter accumulation of 40-150 cm make up a significant but poorly quantified portion of Canada's boreal forest region. Spanning the transition between non-wetland forest and fen proper, these ecosystems represent a zone of complex environmental and vegetation change, yet little is known about their ecological function or...

  8. Restoration of peatlands and greenhouse gas balances

    NARCIS (Netherlands)

    Höper, H.; Augustin, J.; Cagampan, J.P.; Drösler, M.; Lundin, L.; Moors, E.J.; Vasander, H.; Waddington, J.M.; Wilson, D.

    2008-01-01

    In this chapter the impact of peatland restoration on greenhouse gas fluxes is discussed based on a literature review. Casestudies are presented covering different peatland types, different regions and different starting conditions.

  9. Anthropogenic and geomorphic controls on peatland dynamics in contrasting floodplain environments during the Holocene and its impact on carbon storage

    Science.gov (United States)

    Verstraeten, Gert; Broothaerts, Nils; Notebaert, Bastiaan

    2016-04-01

    Peatlands are an important store of carbon in terrestrial environments, and scientific interest in peatlands has increased strongly in the light of the recent global climatic changes. Much attention has been paid to peatland dynamics in extensive arctic and boreal wetlands or to blanket peat in temperate regions. Nevertheless, long-term dynamics of peat in alluvial wetlands in temperate regions remains largely underresearched. In this study, data from three contrasting environments were used to provide more insights in the anthropogenic and geomorphic controls on peatland dynamics. The results show a high variability in alluvial peatland dynamics between the different study sites. In the central Belgian Loess Belt, alluvial peatlands developed during the early Holocene but gradually disappeared from the Mid-Holocene onwards due to the gradual intensification of agricultural activities in the catchment and consequent higher sedimentation rates in the floodplain system. The end of peat growth is shown to be diachronous at catchment scale, ranging between 6500 and 500 cal a BP. The disappearance of the alluvial peatlands has important implications since it potentially reduces the storage of locally produced C. Nevertheless, it was shown that this reduced production of local C but was outbalanced by the burial of hillslope derived C. Also within the sandy catchments of the Belgian Campine region alluvial peatlands initiated in the early Holocene but, here, they abruptly disappeared in the Mid-Holocene before the onset of intense agricultural activities in the catchment. This suggests that for the sandy regions, anthropogenic impact on peatland dynamics is less important compared to natural factors. For these regions, the disappearance of alluvial peatland formation resulted in a sharp decline in alluvial carbon storage as there is no compensation through hillslope derived C input. For the upper Dee catchment in NE Scotland, Holocene carbon floodplain storage varies

  10. Total and methyl mercury concentrations and fluxes from small boreal forest catchments in Finland

    International Nuclear Information System (INIS)

    Porvari, Petri; Verta, Matti

    2003-01-01

    Peatlands have higher methyl mercury output than uplands. - Total mercury (TotHg) and methyl mercury (MeHg) concentrations were studied in runoff from eight small (0.02-1.3 km 2 ) boreal forest catchments (mineral soil and peatland) during 1990-1995. Runoff waters were extremely humic (TOC 7-70 mg l -1 ). TotHg concentrations varied between 0.84 and 24 ng l -1 and MeHg between 0.03 and 3.8 ng l -1 . TotHg fluxes from catchments ranged from 0.92 to 1.8 g km -2 a -1 , and MeHg fluxes from 0.03 to 0.33 g km -2 a -1 . TotHg concentrations and output fluxes measured in runoff water from small forest catchments in Finland were comparable with those measured in other boreal regions. By contrast, MeHg concentrations were generally higher. Estimates for MeHg output fluxes in this study were comparable at sites with forests and wetlands in Sweden and North America, but clearly higher than those measured at upland or agricultural sites in other studies. Peatland catchments released more MeHg than pure mineral soil or mineral soil catchments with minor area of peatland

  11. Do Peatlands Hibernate?

    Science.gov (United States)

    Dorrepaal, E.; Signarbieux, C.; Jassey, V.; Mills, R.; Buttler, A.; Robroek, B.

    2014-12-01

    . Altogether, our data indicate that peatlands are active in winter. However, a continuous snow cover is crucial for ecosystem processes both in winter and in the subsequent summer and a reduction of snow thickness or duration due to climate change may impact on peatland ecosystem functioning at various levels.

  12. Fluxes of methane and nitrogen oxides in various boreal mire ecosystems. Effects of land-use activities and environmental changes

    International Nuclear Information System (INIS)

    Martikainen, P.J.; Nykaenen, H.; Regina, K.; Alm, J.; Silvola, J.

    1996-01-01

    Atmospheric impact of peatlands is a sum of their gas fluxes. In contrast to carbon dioxide, peatlands are net sources for methane (CH 4 ). Methane is an end product in the anaerobic decomposition processes and it has greater capacity to absorb infrared radiation than carbon dioxide. Most of the data on the CH 4 release from northern peatlands is from North America. The total amount of methane released from wetlands is calculated to be 110 Tg yr -1 of which 34 percent (38 Tg yr -1 ) is estimated to be emitted from the northern peatlands. Peat with high content of nitrogen is a potential source for gaseous nitrogen oxides, i.e. nitrous oxide (N 2 O) and nitric oxide (NO). However, the importance of peatlands in producing these trace gases is poorly known. Nitrous oxide and nitric oxide are important components in the atmospheric chemistry and N 2 O also is an effective greenhouse gas. Land-use activities and environmental changes can affect the atmospheric impacts of peatlands by modifying their biogeochemistry. This article presents a short summary of the studies whose objectives were: (1) to measure fluxes of CH 4 and N 2 O on wide range of natural mires in Finland, (2) to study the short- and long-term changes in fluxes of CH 4 , N 2 O and NO on boreal peatlands after lowering their water table. Peatlands used for agriculture, forestry and peat mining were included in the studies. The results from mires drained for forestry may reflect the possible changes in the trace gas fluxes if water table will drop in the northern peatlands as a result of drier climate, (3) to study the effects of nitrogen load on the fluxes of CH 4 , N 2 O and NO, (4) to identify the microbiological processes important for the fluxes of N 2 O, NO and CH 4 , and to study the environmental factors regulating these microbial processes

  13. Peatland succession induces a shift in the community composition of Sphagnum-associated active methanotrophs.

    Science.gov (United States)

    Putkinen, Anuliina; Larmola, Tuula; Tuomivirta, Tero; Siljanen, Henri M P; Bodrossy, Levente; Tuittila, Eeva-Stiina; Fritze, Hannu

    2014-06-01

    Sphagnum-associated methanotrophs (SAM) are an important sink for the methane (CH4) formed in boreal peatlands. We aimed to reveal how peatland succession, which entails a directional change in several environmental variables, affects SAM and their activity. Based on the pmoA microarray results, SAM community structure changes when a peatland develops from a minerotrophic fen to an ombrotrophic bog. Methanotroph subtypes Ia, Ib, and II showed slightly contrasting patterns during succession, suggesting differences in their ecological niche adaptation. Although the direct DNA-based analysis revealed a high diversity of type Ib and II methanotrophs throughout the studied peatland chronosequence, stable isotope probing (SIP) of the pmoA gene indicated they were active mainly during the later stages of succession. In contrast, type Ia methanotrophs showed active CH4 consumption in all analyzed samples. SIP-derived (13)C-labeled 16S rRNA gene clone libraries revealed a high diversity of SAM in every succession stage including some putative Methylocella/Methyloferula methanotrophs that are not detectable with the pmoA-based approach. In addition, a high diversity of 16S rRNA gene sequences likely representing cross-labeled nonmethanotrophs was discovered, including a significant proportion of Verrucomicrobia-related sequences. These results help to predict the effects of changing environmental conditions on SAM communities and activity. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Oil sands mining and reclamation cause massive loss of peatland and stored carbon.

    Science.gov (United States)

    Rooney, Rebecca C; Bayley, Suzanne E; Schindler, David W

    2012-03-27

    We quantified the wholesale transformation of the boreal landscape by open-pit oil sands mining in Alberta, Canada to evaluate its effect on carbon storage and sequestration. Contrary to claims made in the media, peatland destroyed by open-pit mining will not be restored. Current plans dictate its replacement with upland forest and tailings storage lakes, amounting to the destruction of over 29,500 ha of peatland habitat. Landscape changes caused by currently approved mines will release between 11.4 and 47.3 million metric tons of stored carbon and will reduce carbon sequestration potential by 5,734-7,241 metric tons C/y. These losses have not previously been quantified, and should be included with the already high estimates of carbon emissions from oil sands mining and bitumen upgrading. A fair evaluation of the costs and benefits of oil sands mining requires a rigorous assessment of impacts on natural capital and ecosystem services.

  15. The peatland map of Europe

    Czech Academy of Sciences Publication Activity Database

    Tannenberger, F.; Tagetmeyer, C.; Busse, S.; Barthelmes, A.; Shumka, S.; Moles Mariné, A.; Jenderedjian, K.; Steiner, G. M.; Essl, F.; Etzold, J.; Mendes, C.; Kozulin, A.; Frankard, P.; Milanović, Ð.; Ganeva, A.; Apostolova, I.; Alegro, A.; Delipetrou, P.; Navrátilová, Jana; Risager, M.; Leivits, A.; Fosaa, A. M.; Tuominen, S.; Muller, F.; Bakuradze, T.; Sommer, M.; Christanis, K.; Szurdoki, E.; Oskarsson, H.; Brink, S. H.; Cannolly, J.; Bragazza, L.; Martinelli, G.; Aleksāns, O.; Priede, A.; Sungaila, D.; Melovski, L.; Belous, T.; Saveljić, D.; de Vries, F.; Moen, A.; Demberk, W.; Mateus, J.; Hanganu, J.; Sirin, A.; Markina, A.; Napreenko, M.; Lazarević, P.; Šefferová Stanová, V.; Skoberne, P.; Heras Peréz, P.; Pontevedra-Pombal, X.; Lonnstad, J.; Küchler, M.; Wüst-Galley, C.; Kirca, S.; Mykytiuk, O.; Lindsay, R.; Joosten, H.

    2017-01-01

    Roč. 19, nov 2017 (2017), č. článku 22. ISSN 1819-754X Institutional support: RVO:67985939 Keywords : peatland * distribution * map Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 1.129, year: 2016

  16. Climatic triggers for peatland initiation

    Science.gov (United States)

    Morris, Paul J.; Swindles, Graeme T.; Valdes, Paul J.; Ivanovic, Ruza F.; Gregoire, Lauren J.; Smith, Mark W.; Tarasov, Lev; Haywood, Alan M.; Bacon, Karen L.

    2017-04-01

    Peatlands are carbon-dense wetlands characterised by waterlogged, organic-rich soils. Modern-day peatlands have formed mainly since the Last Glacial Maximum (LGM), and despite covering only 3 % of the Earth's land surface are thought to store more than a third of all global soil carbon in the form of poorly decomposed plant detritus. Concern exists that this globally important carbon store may be vulnerable to near-future warming and changes in precipitation patterns, although the links between peatland development and climate are contested. The climatic and other environmental conditions that facilitate the initiation of peat are particularly poorly understood. We present the results of a novel, global study into the climate space of peat initiation since the LGM. We compiled a catalogue of radiocarbon dates of peat initiation from 942 sites that span a range of latitudes and biomes. We used the locations and ages of these peatlands to interrogate downscaled climate hindcasts at 500-yr intervals from a coupled atmosphere-ocean-vegetation general circulation model, HadCM3. This powerful combination of modelling and observational data provides a globally-consistent, temporally-extensive estimate of the climate spaces of peat initiation. In particular, it allows us to identify local and regional climatic changes that may have acted as triggers for peat formation. Peatlands in mid- and high-latitudes of both hemispheres, particularly in maritime locations, developed shortly after local increases in the time integral of growing season temperatures, and were seemingly not influenced by rainfall regime. Peat initiation at such sites appears to have been stimulated by temperature-driven increases in plant productivity in cold, postglacial landscapes, and was not water limited. The exception is the large peatland complex of the Western Siberian Lowlands, which was not glaciated during the last glacial period, and which appears to have been prompted instead by a strong

  17. Thresholds for Boreal Biome Transitions

    NARCIS (Netherlands)

    Scheffer, M.; Hirota, M.; Holmgren, M.; Nes, van E.H.; Chapin, F.S.

    2012-01-01

    Although the boreal region is warming twice as fast as the global average, the way in which the vast boreal forests and tundras may respond is poorly understood. Using satellite data, we reveal marked alternative modes in the frequency distributions of boreal tree cover. At the northern end and at

  18. The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change

    Science.gov (United States)

    Fan, Zhaosheng; McGuire, Anthony David; Turetsky, Merritt R.; Harden, Jennifer W.; Waddington, James Michael; Kane, Evan S.

    2013-01-01

    It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process-based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS-TEM), was calibrated with data collected during 2005–2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water-table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios.

  19. Land cover controls the export of terminal electron acceptors from boreal catchments

    Science.gov (United States)

    Palviainen, Marjo; Lehtoranta, Jouni; Ekholm, Petri; Ruoho-Airola, Tuija; Kortelainen, Pirkko

    2015-04-01

    NO3, Mn, Fe and SO4 act as terminal electron acceptors (TEAs) modifying mineralization pathways and coupling biogeochemical cycles. Although single TEA concentrations and fluxes have been intensively studied, the factors regulating the simultaneous fluxes and molar ratios of TEAs are poorly elucidated. We studied the mean concentrations, exports and molar ratios of TEAs from 27 boreal catchments differing in land cover (percentage of agricultural land, peatland, forest and built-up area) in the years 2000-2011. TEA exports and molar ratios were strongly controlled by land cover and only little by atmospheric deposition. There were a great variability of the export of TEAs from different land cover classes. Fields produced the highest export of TEAs, particularly NO3. Peatland was linked to low NO3 and SO4 but high Fe exports. NO3, Mn and Fe exports from forests were low, SO4 having proportionally the highest export. Together, the percentages of field and peatland predicted 93%, 80%, 75% and 67% of the variation in the export of NO3, Mn, Fe and SO4, respectively. Our results showed that the export and molar ratios of TEAs in northern European boreal catchments are predominantly a function of land cover and catchment processes rather than atmospheric deposition. The variable export of TEAs having different availability and physical behavior may create different premises for anaerobic mineralization in downstream systems, which adds a new dimension to the link between terrestrial system, land use and environmental problems such as eutrophication and climate change.

  20. Peatland-GHG emissions in Europe

    Science.gov (United States)

    Droesler, Matthias

    2013-04-01

    Managed peatlands are hot spots for CO2, CH4 and N2O emissions. GHG which have been not fully integrated in past European climate projects. Peatlands contribute to European GHG emissions 10 times more per unit area than other terrestrial ecosystems. Peatland management and exploration by drainage, agricultural use and peat extraction turned pristine peatland GHG sinks into sources. Emissions can reach more than 40 t CO2equiv. ha-1 a-1 in intensively managed peatlands. On the other hand, the restoration of degraded peatlands does normally reduce these emissions significantly towards climate neutral levels, once the restoration work is done wisely. But in some cases the net climate effect do not decrease significantly depending on hydrological regimes, fertilization status of the peatlands, climate and vegetation type. In many European countries with significant peatland cover nationally funded projects were set up to investigate peatland GHG fluxes and their drivers. These scattered data and knowledge are currently being brought together under the coverage of the GHG-Europe project (Grant agreement no.: 244122) within a new synthesis to develop the relevant EF, identify the drivers and develop upscaling options for GHG-emissions. The talk will: (1) show a first cut of new Emission Factors for peatlands in Europe and compare these with IPCC-default values. (2) discuss the developed sensible response functions for GHG-fluxes against natural and anthropogenic drivers such as land use intensity, land management with drainage and climate variability. (3) show case studies from Germany show the applicability of response functions for upscaling of GHG-balances. (4) An outlook is given to the future European peatland GHG-Balance.

  1. Changes in Pore Water Quality After Peatland Restoration: Assessment of a Large-Scale, Replicated Before-After-Control-Impact Study in Finland

    Science.gov (United States)

    Menberu, Meseret Walle; Marttila, Hannu; Tahvanainen, Teemu; Kotiaho, Janne S.; Hokkanen, Reijo; Kløve, Bjørn; Ronkanen, Anna-Kaisa

    2017-10-01

    Drainage is known to affect peatland natural hydrology and water quality, but peatland restoration is considered to ameliorate peatland degradation. Using a replicated BACIPS (Before-After-Control-Impact Paired Series) design, we investigated 24 peatlands, all drained for forestry and subsequently restored, and 19 pristine control boreal peatlands with high temporal and spatial resolution data on hydroclimate and pore water quality. In drained conditions, total nitrogen (Ntot), total phosphorus (Ptot), and dissolved organic carbon (DOC) in pore water were several-fold higher than observed at pristine control sites, highlighting the impacts of long-term drainage on pore water quality. In general, pore water DOC and Ntot decreased after restoration measures but still remained significantly higher than at pristine control sites, indicating long time lags in restoration effects. Different peatland classes and trophic levels (vegetation gradient) responded differently to restoration, primarily due to altered hydrology and varying acidity levels. Sites that were hydrologically overrestored (inundated) showed higher Ptot, Ntot, and DOC than well-restored or insufficiently restored sites, indicating the need to optimize natural-like hydrological regimes when restoring peatlands drained for forestry. Rich fens (median pH 6.2-6.6) showed lower pore water Ptot, Ntot, and DOC than intermediate and poor peats (pH 4.0-4.6) both before and after restoration. Nutrients and DOC in pore water increased in the first year postrestoration but decreased thereafter. The most important variables related to pore water quality were trophic level, peatland class, water table level, and soil and air temperature.

  2. Insights into the effects of patchy ice layers on water balance heterogeneity in peatlands

    Science.gov (United States)

    Dixon, Simon; Kettridge, Nicholas; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2017-04-01

    Peatlands in boreal and sub-arctic settings are characterised by a high degree of seasonality. During winter soils are frozen and snow covers the surface preventing peat moss growth. Conversely, in summer, soils unfreeze and rain and evapotranspiration drive moss productivity. Although advances have been made in understanding growing season water balance and moss dynamics in northern peatlands, there remains a gap in knowledge of inter-seasonal water balance as layers of ice break up during the spring thaw. Understanding the effects of ice layers on spring water balance is important as this coincides with periods of high wildfire risk, such as the devastating Fort McMurrary wildfire of May, 2016. We hypothesise that shallow layers of ice disconnect the growing surface of moss from a falling water table, and prevent water from being supplied from depth. A disconnect between the evaporating surface and deeper water storage will lead to the drying out of the surface layer of moss and a greater risk of severe spring wildfires. We utilise the unsaturated flow model Hydrus 2D to explore water balance in peat layers with an impermeable layer representing ice. Additionally we create models to represent the heterogeneous break up of ice layers observed in Canadian boreal peatlands; these models explore the ability of breaks in an ice layer to connect the evaporating surface to a deeper water table. Results show that peatlands with slower rates of moss growth respond to dry periods by limiting evapotranspiration and thus maintain moist conditions in the sub-surface and a water table above the ice layer. Peatlands which are more productive continue to grow moss and evaporate during dry periods; this results in the near surface mosses drying out and the water table dropping below the level of the ice. Where there are breaks in the ice layer the evaporating surface is able to maintain contact with a falling water table, but connectivity is limited to above the breaks, with

  3. A Soil Service Index: Peatland soils as a case study for quantifying the value, vulnerability, and status of soils

    Science.gov (United States)

    Loisel, J.; Harden, J. W.; Hugelius, G.

    2017-12-01

    What are the most important soil services valued by land stewards and planners? Which soil-data metrics can be used to quantify each soil service? What are the steps required to quantitatively index the baseline value of soil services and their vulnerability under different land-use and climate change scenarios? How do we simulate future soil service pathways (or trajectories) under changing management regimes using process-based ecosystem models? What is the potential cost (economic, social, and other) of soil degradation under these scenarios? How sensitive or resilient are soil services to prescribed management practices, and how does sensitivity vary over space and time? We are bringing together a group of scientists and conservation organizations to answer these questions by launching Soil Banker, an open and flexible tool to quantify soil services that can be used at any scale, and by any stakeholder. Our overarching goals are to develop metrics and indices to quantify peatland soil ecosystem services, monitor change of these services, and guide management. This paper describes our methodology applied to peatlands and presents two case studies (Indonesia and Patagonia) demonstrating how Peatland Soil Banker can be deployed as an accounting tool of peatland stocks, a quantitative measure of peatland health, and as a projection of peatland degradation or enhancement under different land-use cases. Why peatlands? They store about 600 billion tons of carbon that account for ⅓ of the world's soil carbon. Peatlands have dynamic GHG exchanges of CO2, CH4, and NOx with the atmosphere, which plays a role in regulating global climate; studies indicate that peatland degradation releases about 2-3 billion tons of CO2 to the atmosphere annually. These ecosystems also provide local and regional ecosystem services: they constitute important components of the N and P cycles, store about 10% of the world's freshwater and buffer large fluxes of freshwater on an annual basis

  4. Some results on the isotope studies of water exchange in boreal raised bogs

    International Nuclear Information System (INIS)

    Sirin, A.A.; Vlasova, L.S.; Polyakov, V.A.; Trofimova, A.E.

    2002-01-01

    Raised bogs are rather common and one of the most exciting mire types of the boreal zone. They receive water and nutrients from precipitation and pore water stored in their domes (up to 10 m in height) is spaced above levels of regional ground water or streams draining them. Peatland hydrologists have long assumed that fluid flow occurs mainly in a peat layer near to the surface and water transport is negligible in deeper layers. The 'acrotelm/catotelm' paradigm on active and inert horizons for the peat above and below the lowest water level is still widely spread in peatland hydrology. However, recent studies have shown that deep water movement is much more dynamic in raised bogs than was previously thought. Based on geochemical studies and numerical simulations even temporal reverse of the vertical direction of water fluid flow through the peat as connected to climate fluctuations was assumed. Relying on isotope studies we consider only the mounded strata of the raised bogs to have relatively active water exchange. The study included two raised bogs, representing different local hydrological conditions (underlain by outwash sands and moraine clay) at the Zapadnaya Dvina Peatland Field Station of the Forest Research Institute located 400 km west of Moscow. Peatlands, among which raised bogs dominate, constitute >30% of the area, and maximum peat thickness exceeds 7 m

  5. Peatland pines as a proxy for water table fluctuations: disentangling tree growth, hydrology and possible human influence.

    Science.gov (United States)

    Smiljanić, Marko; Seo, Jeong-Wook; Läänelaid, Alar; van der Maaten-Theunissen, Marieke; Stajić, Branko; Wilmking, Martin

    2014-12-01

    Dendrochronological investigations of Scots pine (Pinus sylvestris L.) growing on Männikjärve peatland in central Estonia showed that annual tree growth of peatland pines can be used as a proxy for past variations of water table levels. Reconstruction of past water table levels can help us to better understand the dynamics of various ecological processes in peatlands, e.g. the formation of vegetation patterns or carbon and nitrogen cycling. Männikjärve bog has one of the longest water table records in the boreal zone, continuously monitored since 1956. Common uncertainties encountered while working with peatland trees (e.g. narrow, missing and wedging rings) were in our case exacerbated with difficulties related to the instability of the relationship between tree growth and peatland environment. We hypothesized that the instable relationship was mainly due to a significant change of the limiting factor, i.e. the rise of the water table level due to human activity. To test our hypothesis we had to use several novel methods of tree-ring chronology analysis as well as to test explicitly whether undetected missing rings biased our results. Since the hypothesis that the instable relationship between tree growth and environment was caused by a change in limiting factor could not be rejected, we proceeded to find possible significant changes of past water table levels using structural analysis of the tree-ring chronologies. Our main conclusions were that peatland pines can be proxies to water table levels and that there were several shifting periods of high and low water table levels in the past 200 years. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Newtonian boreal forest ecology

    OpenAIRE

    Hari, Pertti; Aakala, Tuomas; Aalto, Juho; Bäck, Jaana; Hollmén, Jaakko; Jõgiste, Kalev; Koupaei, Kourosh Kabiri; Kähkönen, Mika A.; Korpela, Mikko; Kulmala, Liisa; Nikinmaa, Eero; Pumpanen, Jukka; Salkinoja-Salonen, Mirja; Schiestl-Aalto, Pauliina; Simojoki, Asko

    2017-01-01

    Isaac Newton's approach to developing theories in his book Principia Mathematica proceeds in four steps. First, he defines various concepts, second, he formulates axioms utilising the concepts, third, he mathematically analyses the behaviour of the system defined by the concepts and axioms obtaining predictions and fourth, he tests the predictions with measurements. In this study, we formulated our theory of boreal forest ecosystems, called NewtonForest, following the four steps introduced by...

  7. Buffers Plus

    Science.gov (United States)

    Ramette, Richard W.

    1998-11-01

    In 1989 JCE Software published The Acid-Base Package: A Collection of Useful Programs for Proton Transfer Systems (Ramette, R. W. J. Chem. Educ. Software 1989, 2B No. 2). This DOS program has been fully upgraded by the same author to the world of Windows 95. Buffers Plus takes advantage of a modern user interface and offers many new options not possible in the original version.

  8. The Acid-Base Balance Between Organic Acids and Circumneutral Ground Waters in Large Peatlands

    Science.gov (United States)

    Siegel, D. I.; Glaser, P. H.; So, J.

    2006-05-01

    Organic acids supply most of the acidity in the surface waters of bogs in peatlands. Yet, the fundamental geochemical properties of peatland organic acids are still poorly known. To assess the geochemical properties of typical organic acid assemblages in peatlands, we used a triprotic analog model for peat pore waters and surface waters in the Glacial Lake Agassiz Peatlands, optimizing on charge balance and calibrated to estimates of mole site density in DOC and triprotic acid dissociation constants. Before the calibration process, all bog waters and 76% of fen waters had more than +20% charge imbalance. After calibration, most electrochemically balanced within 20%. In the best calibration, the mole site denisty of bog DOC was estimated as ~0.05 mmol/mmol C., approximately 6 times smaller than that for fen DOC or the DOC in the fen deeper fen peats that underlie bogs. The three modeled de-protonation constants were; pKa1 = ~3.0, pKa2 = ~4.5 and pKa3 = ~7.0 for the bog DOC, and; pKa1 = ~5.2, pKa2 =~ 6.5 and pKa3 = ~7.0 for the fen DOC. Bog DOC, behaves as a strong acid despite its small mole site density. The DOC in bog runoff can therefore theoretically acidify the surface waters in adjacent fens wherever these waters do not receive sufficient buffering alkalinity from active groundwater seepage.

  9. How can we conserve intact tropical peatlands?

    Science.gov (United States)

    Lawson, Ian; Roucoux, Katherine

    2017-04-01

    The scientific community has, for more than three decades, been expressing increasing alarm about the fate of peatlands in parts of Indonesia and Malaysia, where extensive land-use conversion and drainage for rice and oil palm have greatly compromised peatland hydrology, ecology, biological richness, and carbon storage. The discourse in the literature on these peatlands is now moving on from attempts to preserve the last remaining fragments of peat-swamp forest, towards discussion of how best to restore damaged ecosystems, and whether it is possible to manage plantations more 'sustainably'. It is becoming increasingly clear, however, that peatlands occur quite widely in other parts of the lowland tropics, including parts of Amazonia and the Congo Basin, and many of these peatlands can reasonably be described as 'intact': although few if any parts of the tropics are totally unaffected by human actions, the hydrology and functional ecology of these systems appear to be close to a 'natural' state. The question then arises as to what should be done with the knowledge of their existence. Here we analyse the arguments in favour of protecting intact peatlands, and the potential conflicts with other priorities such as economic development and social justice. We evaluate alternative mechanisms for protecting intact peatlands, focusing on the particular issues raised by peatlands as opposed to other kinds of tropical ecosystem. We identify ways in which natural science agendas can help to inform these arguments, using our own contributions in palaeoecology and carbon mapping as examples. Finally, we argue for a radical reconsideration of research agendas in tropical peatlands, highlighting the potential contribution of methodologies borrowed from the social sciences and humanities.

  10. Trace gas fluxes from northern peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Moore, T. [McGill Univ., Montreal (Canada). Geography Dept.

    1996-12-31

    Peatlands cover large areas in northern environments: 1.1, 0.1 and 1.7 x 10{sup 4} km{sup 2} in Canada, Finland and the former Soviet Union, respectively. Interest has been generated into the role these extensive areas of peatlands play in controlling the chemistry of the atmosphere. In particular, it has become established that peatlands can be a source of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), and a sink of carbon dioxide (CO{sub 2}), the latter through the rates of plant production exceeding the rate of decomposition of plant material and peat. In this presentation the recent advances in trace gas flux measurements in northern peatlands are presented. (16 refs.)

  11. Northern peatlands in global climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, R.; Laine, J.; Vasander, H. [eds.] [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    Northern peatlands are important in regulating the global climate. While sequestering carbon dioxide, these peatlands release ca. 24-39 Tg methane annually to the atmosphere. This is 5-20 % of the annual anthropogenic methane emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level draw-down after land-use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Subsequent emissions of methane would decrease, whereas emissions of carbon dioxide and nitrous oxide would increase. Within the Finnish Research Programme on Climate Change (SILMU), the research project `Carbon Balance of Peatlands and Climate Change` (SUOSILMU) has been under progress since 1990. It is a co-operative research project, with research groups from the Universities of Helsinki and Joensuu, the Finnish Forest Research Institute, the National Public Health Institute and the Finnish Environment Agency. The research consortium of this project organised a workshop entitled `Northern Peatlands in Global Climatic Change - Hyytiaelae Revisited` October 8-12, 1995. The main objective of the workshop was to review the state of the art of the carbon cycling research in natural and managed peatlands. The role of peatlands in the greenhouse effect, their response and feedback to the predicted climate change, and the consequences of land-use changes were assessed, and the future research needs were evaluated. The latest information on the role of peatlands in the atmospheric change was given in 50 posters and 4 key lectures. Results of SUOSILMU projects were demonstrated during a 1-day field excursion to one of the intensive study sites, Lakkasuo near Hyytiaelae

  12. Kinetic buffers.

    Science.gov (United States)

    Alibrandi, Giuseppe; Fabbrizzi, Luigi; Licchelli, Maurizio; Puglisi, Antonio

    2015-01-12

    This paper proposes a new type of molecular device that is able to act as an inverse proton sponge to slowly decrease the pH inside a reaction vessel. This makes the automatic monitoring of the concentration of pH-sensitive systems possible. The device is a composite formed of an alkyl chloride, which kinetically produces acidity, and a buffer that thermodynamically modulates the variation in pH value. Profiles of pH versus time (pH-t plots) have been generated under various experimental conditions by computer simulation, and the device has been tested by carrying out automatic spectrophotometric titrations, without using an autoburette. To underline the wide variety of possible applications, this new system has been used to realize and monitor HCl uptake by a di-copper(II) bistren complex in a single run, in a completely automatic experiment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A reconstruction of vegetation and paleohydrologycal changes from peatland in Kansk forest-steppe, Yenisei Siberia

    Science.gov (United States)

    Rodionova, Alexandra

    2016-04-01

    Peatlands are an important natural archive for past climatic changes. Climatic changes throughout the Holocene have been reconstructed from peat using a wide array of biological and other proxies. Many different proxy indicators can be derived from peat cores allowing for a multi-proxy approach to climatic reconstructions. Peat-based climatic and environmental reconstructions are currently available from many sites in Yenisei Siberia, mainly for its northern territories. The purpose of this paper is to study some features of peatland development and environmental reconstructions from the Holocene period in the south part of Yenisei Siberia (Kansk forest-steppe zone). The main method used in this research is macrofossil analysis. It can be used to reconstruct the development of local vegetation and surface wetness on peatlands. The macrofossil analysis in the peat resulted from the study of the vegetation in a particular place over a period of time, and it allowed the reconstruction of environmental changes that have occurred since the Late Glacial. Then we used ecological scales of moisture and reconstructed surface wetness for the entire period of the bog formation. Radiocarbon dating was carried out at Sobolev Institute of Geology and Mineralogy, Russian Academy of Sciences, Novosibirsk . Peatland "Pinchinskoye" was selected for investigation in Kansk forest-steppe. It is located on the right bank of the Yenisei River in the floodplain of Esaulovka River. Peat cores of 350 cm were selected in the southern part of the peatbog, including 225 cm of peat (with loam layers in the range of 90 to 135 cm), 75 cm of organic and mineral sapropel with the inclusion of fossil shells of mollusks and different plant macrofossils and 50 cm of the loam below. The process of peat accumulation dated back 8400 ± 140 years, which is the oldest date for the forest-steppe zone of Yenisei Siberia. The climate of Boreal period of the Holocene was chilly. Under these conditions, in the

  14. Energy potential of Finnish peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, K. (Geological Survey of Finland, Kuopio (Finland)); Valpola, S. (Geological Survey of Finland, Kokkola (Finland)), e-mail: kimmo.virtanen@gtk.fi, e-mail: samu.valpola@gtk.fi

    2011-07-01

    One-third of the Finnish land area is covered by mires and peat. GTK has investigated 2.0 million ha of the 9.3 million ha area covered by mires in Finland. According to the EU Commission, the broadly-based Finnish energy economy, with various energy sources, is the best in the EU. As a fuel, peat fulfils the goals of the EU energy policy in Finland well: it is local, its availability is good and the price is stable. The use of peat also enhances national security. At present, peat is used in around one hundred larger applications that co-generate electricity and heat. In Finland, the development of mires has led to several mire complex types and three main types: raised bogs in Southern Finland, aapa mires in Ostrobothnia and Lapland, and palsa mires in Northern Lapland. Peat layers are deepest in southern Finland and partly in the southern Finnish Lake area, the Region of North Karelia and in the area of central Lapland. The mean depth of geological mires is 1.41 m and the thickest drilled peat is 12.3 m. According to peat investigations, the national peat reserve totals 69.3 billion m3 in situ (peatlands larger than 20 hectares). The dry solids of peat are estimated at 6.3 billion tones. Sphagnum peat accounts for 54% and Carex peat for 45% of feasible peat reserves. Peatlands that are technically suitable for the peat industry cover a total area of 1.2 million ha and contain 29.6 billion m3 of peat in situ. Slightly humified peat suitable for horticultural and environmental use totals 5.9 billion m3 in situ. The energy peat reserve is 23.7 billion m3 in situ and its energy content is 12 800 TWh. (orig.)

  15. Predicting soil respiration from peatlands.

    Science.gov (United States)

    Rowson, J G; Worrall, F; Evans, M G; Dixon, S D

    2013-01-01

    This study considers the relative performance of six different models to predict soil respiration from upland peat. Predicting soil respiration is important for global carbon budgets and gap filling measured data from eddy covariance and closed chamber measurements. Further to models previously published new models are presented using two sub-soil zones and season. Models are tested using data from the Bleaklow plateau, southern Pennines, UK. Presented literature models include ANOVA using logged environmental data, the Arrhenius equation, modified versions of the Arrhenius equation to include soil respiration activation energy and water table depth. New models are proposed including the introduction of two soil zones in the peat profile, and season. The first new model proposes a zone of high CO(2) productivity related to increased soil microbial CO(2) production due to the supply of labile carbon from plant root exudates and root respiration. The second zone is a deeper zone where CO(2) production is lower with less labile carbon. A final model allows the zone of high CO(2) production to become dormant during winter months when plants will senesce and will vary depending upon vegetation type within a fixed location. The final model accounted for, on average, 31.9% of variance in net ecosystem respiration within 11 different restoration sites whilst, using the same data set, the best fitting literature equation only accounted for 18.7% of the total variance. Our results demonstrate that soil respiration models can be improved by explicitly accounting for seasonality and the vertically stratified nature of soil processes. These improved models provide an enhanced basis for calculating the peatland carbon budgets which are essential in understanding the role of peatlands in the global C cycle. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Fluxes of methane and nitrogen oxides in various boreal mire ecosystems. Effects of land-use activities and environmental changes

    Energy Technology Data Exchange (ETDEWEB)

    Martikainen, P.J.; Nykaenen, H.; Regina, K. [National Public Health Inst., Kuopio (Finland). Lab. of Environmental Microbiology; Alm, J.; Silvola, J. [Joensuu Univ. (Finland). Dept. of Biology

    1996-12-31

    Atmospheric impact of peatlands is a sum of their gas fluxes. In contrast to carbon dioxide, peatlands are net sources for methane (CH{sub 4}). Methane is an end product in the anaerobic decomposition processes and it has greater capacity to absorb infrared radiation than carbon dioxide. Most of the data on the CH{sub 4} release from northern peatlands is from North America. The total amount of methane released from wetlands is calculated to be 110 Tg yr{sup -1} of which 34 percent (38 Tg yr{sup -1}) is estimated to be emitted from the northern peatlands. Peat with high content of nitrogen is a potential source for gaseous nitrogen oxides, i.e. nitrous oxide (N{sub 2}O) and nitric oxide (NO). However, the importance of peatlands in producing these trace gases is poorly known. Nitrous oxide and nitric oxide are important components in the atmospheric chemistry and N{sub 2}O also is an effective greenhouse gas. Land-use activities and environmental changes can affect the atmospheric impacts of peatlands by modifying their biogeochemistry. This article presents a short summary of the studies whose objectives were: (1) to measure fluxes of CH{sub 4} and N{sub 2}O on wide range of natural mires in Finland, (2) to study the short- and long-term changes in fluxes of CH{sub 4}, N{sub 2}O and NO on boreal peatlands after lowering their water table. Peatlands used for agriculture, forestry and peat mining were included in the studies. The results from mires drained for forestry may reflect the possible changes in the trace gas fluxes if water table will drop in the northern peatlands as a result of drier climate, (3) to study the effects of nitrogen load on the fluxes of CH{sub 4}, N{sub 2}O and NO, (4) to identify the microbiological processes important for the fluxes of N{sub 2}O, NO and CH{sub 4}, and to study the environmental factors regulating these microbial processes

  17. Peatland and water in the northern Lake States.

    Science.gov (United States)

    Don H. Boelter; Elon S. Verry

    1977-01-01

    The North Central Forest Experiment Station expanded its watershed research program in 1960 to include basic peatland studies. This paper reviews and summarizes basic principles developed from these studies of peatland hydrology, organic soil characteristics, and streamflow chemistry.

  18. Direct human impacts on the peatland carbon sink

    Science.gov (United States)

    Jukka Laine; Kari Minkkinen; Carl Trettin

    2009-01-01

    Northern peatlands occupy over 3 million km2 globally and contain the largest carbon (C) pool (typically >100 kg C m-2) among terrestrial ecosystems. Agriculture, forestry, and peat harvesting are the principal human-induced activities that alter the peatland and hence the distribution and flux of carbon. As a prerequisite to those uses, the peatland is usually...

  19. Modelling blanket peatland hydrology and Holocene peatland development in north-eastern Scotland.

    Science.gov (United States)

    Swinnen, Ward; Verstraeten, Gert; Broothaerts, Nils

    2017-04-01

    To study long-term peatland dynamics, several peatland models have been constructed in recent decades. Most modelling efforts have focussed on peat bogs, but for other peatland types, such as blanket peatlands, modelling studies are limited. Although blanket peatland is a rare ecosystem type on a global scale, 87 percent of the peat cover in the UK is of this type. Hillslope hydrology is fundamental to blanket peatland development and an improved representation and understanding of the relationships between climate, hydrology and peat growth is crucial to better understand the effects of environmental change on peatland evolution and the carbon balance. Here, a new spatially explicit process-based peat growth model is presented for blanket peatlands, which couples a detailed 2.5D-hillslope hydrology model with a peat accumulation and decomposition module. The resultant model allows to study the hillslope hydrology and blanket peatland development along topographically complex hillslopes over a Holocene timescale. Calibration and validation of the model parameters is based on a dataset of more than 250 peat thickness measurements along several hillslope transects and eight radiocarbon dated peat samples in the headwaters of the river Dee (Cairngorms National Park, north-eastern Scotland). The model results show that the topography-driven hillslope hydrology has a strong influence on the resultant peat development along the hillslope, stressing the need for spatial models in studying blanket peatlands. Model simulations for the studied area result in peat growth initiation dates situated mostly in the period 9000 - 7000 a BP, which corresponds largely to basal calibrated radiocarbon dates for peat deposits in central and north-eastern Scotland. The simulated blanket peat growth initiation occurs before the mid-Holocene forest cover decline. These results indicate that, for the studied area, the blanket peatland development is largely driven by the early

  20. Thresholds for boreal biome transitions.

    Science.gov (United States)

    Scheffer, Marten; Hirota, Marina; Holmgren, Milena; Van Nes, Egbert H; Chapin, F Stuart

    2012-12-26

    Although the boreal region is warming twice as fast as the global average, the way in which the vast boreal forests and tundras may respond is poorly understood. Using satellite data, we reveal marked alternative modes in the frequency distributions of boreal tree cover. At the northern end and at the dry continental southern extremes, treeless tundra and steppe, respectively, are the only possible states. However, over a broad intermediate temperature range, these treeless states coexist with boreal forest (∼75% tree cover) and with two more open woodland states (∼20% and ∼45% tree cover). Intermediate tree covers (e.g., ∼10%, ∼30%, and ∼60% tree cover) between these distinct states are relatively rare, suggesting that they may represent unstable states where the system dwells only transiently. Mechanisms for such instabilities remain to be unraveled, but our results have important implications for the anticipated response of these ecosystems to climatic change. The data reveal that boreal forest shows no gradual decline in tree cover toward its limits. Instead, our analysis suggests that it becomes less resilient in the sense that it may more easily shift into a sparse woodland or treeless state. Similarly, the relative scarcity of the intermediate ∼10% tree cover suggests that tundra may shift relatively abruptly to a more abundant tree cover. If our inferences are correct, climate change may invoke massive nonlinear shifts in boreal biomes.

  1. Subsidence in tropical peatlands: Estimating CO2 fluxes from peatlands in Southeast Asia

    Science.gov (United States)

    Hoyt, A.; Harvey, C. F.; Seppalainen, S. S.; Chaussard, E.

    2017-12-01

    Tropical peatlands of Southeast Asia are an important global carbon stock. However, they are being rapidly deforested and drained. Peatland drainage facilitates peat decomposition, releases sequestered peat carbon to the atmosphere as CO2, and leads to subsidence of the peat surface. As a result, subsidence measurements can be used to monitor peatland carbon loss over time. Until now, subsidence measurements have been primarily limited to ground-based point measurements using subsidence poles. Here we demonstrate a powerful method to measure peatland subsidence rates across much larger areas than ever before. Using remotely sensed InSAR data, we map subsidence rates across thousands of square kilometers in Southeast Asia and validate our results against ground-based subsidence measurements. The method allows us to monitor subsidence in remote locations, providing unprecedented spatial information, and the first comprehensive survey of land uses such as degraded peatlands, burnt and open areas, shrub lands, and smallholder farmlands. Strong spatial patterns emerged, with the highest subsidence rates occurring at the centers of peat domes, where the peat is thickest and drainage depths are likely to be largest. Peatland subsidence rates were also strongly dependent on current and historical land use, with typical subsidence rates ranging from 2-4 cm/yr. Finally, we scaled up our results to calculate total annual emissions from peat decomposition in degraded peatlands.

  2. How does whole ecosystem warming of a peatland affect methane production and consumption?

    Science.gov (United States)

    Hopple, A.; Brunik, K.; Keller, J.; Pfeifer-Meister, L.; Woerndle, G.; Zalman, C.; Hanson, P.; Bridgham, S. D.

    2017-12-01

    Peatlands are among Earth's most important terrestrial ecosystems due to their massive soil carbon (C) stores and significant release of methane (CH4) into the atmosphere. Methane has a sustained-flux global warming potential 45-times greater than carbon dioxide (CO2), and the accuracy of Earth system model projections relies on our mechanistic understanding of peatland CH4 cycling in the context of environmental change. The objective of this study was to determine, under in situ conditions, how heating of the peat profile affects ecosystem-level anaerobic C cycling. We assessed the response of CO2 and CH4 production, as well as the anaerobic oxidation of CH4 (AOM), in a boreal peatland following 13 months of deep peat heating (DPH) and 16 months of subsequent whole-ecosystem warming (surface and deep heating; WEW) as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project in northern Minnesota, USA. The study uses a regression-based experimental design including 5 temperature treatments that warmed the entire 2 m peat profile from 0 to +9 °C above ambient temperature. Soil cores were collected at multiple depths (25-200 cm) from each experimental chamber at the SPRUCE site and anaerobically incubated at in situ temperatures for 1-2 weeks. Methane and CO2 production in surface peat were positively correlated with elevated temperature, but no consistent temperature response was found at depth (75-200 cm) following DPH. However, during WEW, we observed significant increases in both surface and deep peat methanogenesis with increasing temperature. Surface peat had greater CH4 production rates than deeper peat, implying that the increased CH4 emissions observed in the field were largely driven by surface peat warming. The CO2:CH4 ratio was inversely correlated with temperature across all depths following 16 months of WEW, indicating that the entire peat profile is becoming more methanogenic with warming. We also observed AOM throughout

  3. Controls on boreal peat combustion and resulting emissions of carbon and mercury

    Science.gov (United States)

    Kohlenberg, Andrew J.; Turetsky, Merritt R.; Thompson, Dan K.; Branfireun, Brian A.; Mitchell, Carl P. J.

    2018-03-01

    Warming in the boreal forest region has already led to changes in the fire regime. This may result in increasing fire frequency or severity in peatlands, which could cause these ecosystems to shift from a net sink of carbon (C) to a net source of C to the atmosphere. Similar to C cycling, peatlands serve as a net sink for mercury (Hg), which binds strongly to organic matter and accumulates in peat over time. This stored Hg is also susceptible to re-release to the atmosphere during peat fires. Here we investigate the physical properties that influence depth of burn in experimental peat columns and the resulting emissions of CO, CO2, CH4, and gaseous and particulate Hg. As expected, bulk density and soil moisture content were important controls on depth of burn, CO2 emissions, and CO emissions. However, our results show that CH4 and Hg emissions are insensitive to combustion temperature or fuel moisture content. Emissions during the burning of peat, across a wide range of moisture conditions, were associated with low particulate Hg and high gaseous Hg release. Due to strong correlations between total Hg and CO emissions and because high Hg emissions occurred despite incomplete combustion of total C, our results suggest that Hg release during peat burning is governed by the thermodynamics of Hg reduction more so than by the release of Hg associated with peat combustion. Our measured emissions ratios, particularly for CH4:CO2, are higher than values typically used in the upscaling of boreal forest or peatland fire emissions. These emission ratios have important implications not only for our understanding of smouldering chemistry, but also for potential influences of peat fires on the Earth’s climate system.

  4. Spatially explicit simulation of peatland hydrology and carbon dioxide exchange: Influence of mesoscale topography

    Science.gov (United States)

    Sonnentag, O.; Chen, J. M.; Roulet, N. T.; Ju, W.; Govind, A.

    2008-06-01

    Carbon dynamics in peatlands are controlled, in large part, by their wetness as defined by water table depth and volumetric liquid soil moisture content. A common type of peatland is raised bogs that typically have a multiple-layer canopy of vascular plants over a Sphagnum moss ground cover. Their convex form restricts water supply to precipitation and water is shed toward the margins, usually by lateral subsurface flow. The hydraulic gradient for lateral subsurface flow is governed by the peat surface topography at the mesoscale (˜200 m to 5 km). To investigate the influence of mesoscale topography on wetness, evapotranspiration (ET), and gross primary productivity (GPP) in a bog during the snow-free period, we compare the outputs of a further developed version of the daily Boreal Ecosystem Productivity Simulator (BEPS) with observations made at the Mer Bleue peatland, located near Ottawa, Canada. Explicitly considering mesoscale topography, simulated total ET and GPP correlate well with measured ET (r = 0.91) and derived gross ecosystem productivity (GEP; r = 0.92). Both measured ET and derived GEP are simulated similarly well when mesoscale topography is neglected, but daily simulated values are systematically underestimated by about 10% and 12% on average, respectively, due to greater wetness resulting from the lack of lateral subsurface flow. Owing to the differences in moss surface conductances of water vapor and carbon dioxide with increasing moss water content, the differences in the spatial patterns of simulated total ET and GPP are controlled by the mesotopographic position of the moss ground cover.

  5. Introducing a boreal wetland model within the Earth System model framework

    Science.gov (United States)

    Getzieh, R. J.; Brovkin, V.; Reick, C.; Kleinen, T.; Raddatz, T.; Raivonen, M.; Sevanto, S.

    2009-04-01

    Wetlands of the northern high latitudes with their low temperatures and waterlogged conditions are prerequisite for peat accumulation. They store at least 25% of the global soil organic carbon and constitute currently the largest natural source of methane. These boreal and subarctic peat carbon pools are sensitive to climate change since the ratio of carbon sequestration and emission is closely dependent on hydrology and temperature. Global biogeochemistry models used for simulations of CO2 dynamics in the past and future climates usually ignore changes in the peat storages. Our approach aims at the evaluation of the boreal wetland feedback to climate through the CO2 and CH4 fluxes on decadal to millennial time scales. A generic model of organic matter accumulation and decay in boreal wetlands is under development in the MPI for Meteorology in cooperation with the University of Helsinki. Our approach is to develop a wetland model which is consistent with the physical and biogeochemical components of the land surface module JSBACH as a part of the Earth System model framework ECHAM5-MPIOM-JSBACH. As prototypes, we use modelling approach by Frolking et al. (2001) for the peat dynamics and the wetland model by Wania (2007) for vegetation cover and plant productivity. An initial distribution of wetlands follows the GLWD-3 map by Lehner and Döll (2004). First results of the modelling approach will be presented. References: Frolking, S. E., N. T. Roulet, T. R. Moore, P. J. H. Richard, M. Lavoie and S. D. Muller (2001): Modeling Northern Peatland Decomposition and Peat Accumulation, Ecosystems, 4, 479-498. Lehner, B., Döll P. (2004): Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296 (1-4), 1-22. Wania, R. (2007): Modelling northern peatland land surface processes, vegetation dynamics and methane emissions. PhD thesis, University of Bristol, 122 pp.

  6. Bioavailability and radiocarbon age of fluvial dissolved organic matter (DOM) from a northern peatland-dominated catchment: effect of land-use change

    DEFF Research Database (Denmark)

    Hulatt, C.J.; Kaartokallio, H.; Asmala, E.

    2014-01-01

    The radiocarbon age and biodegradability of dissolved organic matter (DOM) from a northern peat-dominated river system was studied and the effects of land-use were compared. Samples were obtained from streams and ditches comprising sub-catchments of the Kiiminki River, Northern Finland. Sample...... sites included areas of natural mire, areas subjected to moderate disturbance (ditching to enhance forestry), and areas subjected to serious land use change (agriculture and peat excavation). The study employed a 55 day bioassay that measured the biodegradation potential of surface-water DOM. We....... Bacterial growth efficiency ranged from 0.11 to 0.26 between areas of different land use, and these relatively low values reflect the humic-rich DOM released from boreal peatland. Despite the range of land-use types studied, including intensive peatland excavation areas, there was no detectable relationship...

  7. Stability of peatland carbon to rising temperatures

    Science.gov (United States)

    R. M. Wilson; A. M. Hopple; M. M. Tfaily; S. D. Sebestyen; C. W. Schadt; L. Pfeifer-Meister; C. Medvedeff; K. J. McFarlane; J. E. Kostka; M. Kolton; R.K. Kolka; L. A. Kluber; J. K. Keller; T. P. Guilderson; N. A. Griffiths; J. P. Chanton; S. D. Bridgham; P. J. Hanson

    2016-01-01

    Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. We show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH4 emissions. However,...

  8. Boreal mire Green House Gas exchange in response to global change perturbations

    Science.gov (United States)

    Nilsson, Mats

    2017-04-01

    High latitude boreal peatlands contribute importantly to the land-atmosphere-hydrosphere exchange of carbon and GHG, i.e. carbon dioxide, methane and dissolved organic carbon. High latitude biomes are identified as most vulnerable to changing climate. High latitudes are also characterized by a strong seasonality in incoming solar radiation, weather conditions and thus also in biogeochemical processes. The strong seasonality in incoming solar radiation, not to change in response to a changing climate, constitute firm constraints on how changes in air temperature, evapotranspiration and precipitation will affect biogeochemical processes underlying the land atmosphere and land hydrosphere exchange of green house gases. In this presentation I combine data from long-term monitoring, long-term field manipulations and detailed chemical analysis to understand how changes in atmosphere and weather conditions influence the major carbon fluxes of a boreal mire Net Ecosystem Carbon Balance. The long-term monitoring data contains >12 years of continuous Eddy Covariance CO2 data, growing season chamber CH4 data and continuous measurements of discharge export of DOC, CO2 and CH4. Data from long-term field snow removal manipulations and growing season temperature increase manipulations are used to further understand the impact of climate on mire carbon and GHG fluxes. Finally we uses Nuclear Magnetic Spectroscopy (NMR) to reveal how century scale changes in atmospheric CO2 from 300 to 400 pm CO2 and temperature have influenced the net photosynthetic capacity of Sphagnum mosses, the single most important plant genus for boreal mire carbon sequestration.

  9. Mechanisms influencing changes in lake area in Alaskan boreal forest

    Science.gov (United States)

    Roach, Jennifer K.; Griffith, Brad; Verbyla, David; Jones, Jeremy B.

    2011-01-01

    During the past ∼50 years, the number and area of lakes have declined in several regions in boreal forests. However, there has been substantial finer-scale heterogeneity; some lakes decreased in area, some showed no trend, and others increased. The objective of this study was to identify the primary mechanisms underlying heterogeneous trends in closed-basin lake area. Eight lake characteristics (δ18O, electrical conductivity, surface : volume index, bank slope, floating mat width, peat depth, thaw depth at shoreline, and thaw depth at the forest boundary) were compared for 15 lake pairs in Alaskan boreal forest where one lake had decreased in area since ∼1950, and the other had not. Mean differences in characteristics between paired lakes were used to identify the most likely of nine mechanistic scenarios that combined three potential mechanisms for decreasing lake area (talik drainage, surface water evaporation, and terrestrialization) with three potential mechanisms for nondecreasing lake area (subpermafrost groundwater recharge through an open talik, stable permafrost, and thermokarst). A priori expectations of the direction of mean differences between decreasing and nondecreasing paired lakes were generated for each scenario. Decreasing lakes had significantly greater electrical conductivity, greater surface : volume indices, shallower bank slopes, wider floating mats, greater peat depths, and shallower thaw depths at the forest boundary. These results indicated that the most likely scenario was terrestrialization as the mechanism for lake area reduction combined with thermokarst as the mechanism for nondecreasing lake area. Terrestrialization and thermokarst may have been enhanced by recent warming which has both accelerated permafrost thawing and lengthened the growing season, thereby increasing plant growth, floating mat encroachment, transpiration rates, and the accumulation of organic matter in lake basins. The transition to peatlands associated

  10. The Role of Low-severity Fire and Thermal Alteration of Soil Organic Matter in Carbon Preservation and GHG Flux From Global Peatlands

    Science.gov (United States)

    Flanagan, N. E.; Wang, H.; Hodgkins, S. B.; Richardson, C. J.

    2017-12-01

    Many global peatlands are dominated by fire-adapted plant communities and are subject to frequent wildfires with return intervals ranging between 3 to 100 years. Wildfires in peatlands are typically low-severity events that occur in winter and spring when vegetation is desiccated and soil moisture content is high. As a result, most wildfires consume aboveground fuels in a matter of minutes without igniting the nearly saturated peat. In such fires, surface soil layers are subjected to flash heating with a rapid loss of soil moisture but little loss of soil organic matter (SOM). Such fires have the potential to alter the chemical structure of SOM, even in the absence of combustion, through Maillard's Reaction and similar chemical processes, and through structural changes that protect SOM from decomposition. This study examines the effects of low-intensity surface fires on the recalcitrance of SOM from fire-adapted communities located in subtropical, temperate and sub-boreal peatlands. In addition, soil from a non-fire-adapted Peruvian palm peatland was examined for response to thermal alteration. The timing and temperatures of low-intensity fires were measured in the field during prescribed burns and replicated in simulated fires. The effects of fire on the chemical structure of SOM were examined with FTIR, SEM and XPS. Burned and unburned peat replicates were incubated at three temperatures (5oC, 15oC, 25oC) in controlled chambers for more than six months. Burned replicates initially showed higher CO2, CH4 and NO2 emissions. Yet, within four weeks emissions from the burned replicates dropped below those of unburned replicates and remained significantly lower (10-50%) for the duration of the experiment. In addition, thermal alteration significantly reduced the temperature sensitivity (Q10) of thermally altered peat. After accounting for small initial losses of organic matter (<10 %) during the fire simulations, thermal alteration of SOM resulted in a net long

  11. Do we miss the hot spots? – The use of very high resolution aerial photographs to quantify carbon fluxes in peatlands

    Directory of Open Access Journals (Sweden)

    T. Becker

    2008-10-01

    Full Text Available Accurate determination of carbon balances in heterogeneous ecosystems often requires the extrapolation of point based measurements. The ground resolution (pixel size of the extrapolation base, e.g. a land-cover map, might thus influence the calculated carbon balance, in particular if biogeochemical hot spots are small in size. In this paper, we test the effects of varying ground resolution on the calculated carbon balance of a boreal peatland consisting of hummocks (dry, lawns (intermediate and flarks (wet surfaces. The generalizations in lower resolution imagery led to biased area estimates for individual micro-site types. While areas of lawns and hummocks were stable below a threshold resolution of ~60 cm, the maximum of the flark area was located at resolutions below 25 cm and was then decreasing with coarsening resolution. Using a resolution of 100 cm instead of 6 cm led to an overestimation of total CO2 uptake of the studied peatland area (approximately 14 600 m2 of ~5% and an underestimation of total CH4 emission of ~6%. To accurately determine the surface area of scattered and small-sized micro-site types in heterogeneous ecosystems (e.g. flarks in peatlands, a minimum ground resolution appears necessary. In our case this leads to a recommended resolution of 25 cm, which can be derived by conventional airborne imagery. The usage of high resolution imagery from commercial satellites, e.g. Quickbird, however, is likely to underestimate the surface area of biogeochemical hot spots. It is important to note that the observed resolution effect on the carbon balance estimates can be much stronger for other ecosystems than for the investigated peatland. In the investigated peatland the relative hot spot area of the flarks is very small and their hot spot characteristics with respect to CH4 and CO2 fluxes is rather modest.

  12. Buffer Zone Fact Sheets

    Science.gov (United States)

    New requirements for buffer zones and sign posting contribute to soil fumigant mitigation and protection for workers and bystanders. The buffer provides distance between the pesticide application site and bystanders, reducing exposure risk.

  13. Ecological Sustainability of Birds in Boreal Forests

    Directory of Open Access Journals (Sweden)

    Gerald Niemi

    1998-12-01

    Full Text Available We review characteristics of birds in boreal forests in the context of their ecological sustainability under both natural and anthropogenic disturbances. We identify the underlying ecological factors associated with boreal bird populations and their variability, review the interactions between boreal bird populations and disturbance, and describe some tools on how boreal bird populations may be conserved in the future. The boreal system has historically been an area with extensive disturbance such as fire, insect outbreaks, and wind. In addition, the boreal system is vulnerable to global climate change as well as increasing pressure on forest and water resources. Current knowledge indicates that birds play an important role in boreal forests, and sustaining these populations affords many benefits to the health of boreal forests. Many issues must be approached with caution, including the lack of knowledge on our ability to mimic natural disturbance regimes with management, our lack of understanding on fragmentation due to logging activity, which is different from permanent conversion to other land uses such as agriculture or residential area, and our lack of knowledge on what controls variability in boreal bird populations or the linkage between bird population fluctuations and productivity. The essential role that birds can provide is to clarify important ecological concerns and variables that not only will help to sustain bird populations, but also will contribute to the long-term health of the boreal forest for all species, including humans.

  14. Fine root production at drained peatland sites

    Energy Technology Data Exchange (ETDEWEB)

    Finer, L. [Finnish Forest Research Inst. (Finland). Joensuu Research Station; Laine, J. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The preliminary results of the Finnish project `Carbon balance of peatlands and climate change` show that fine roots play an important role in carbon cycling on peat soils. After drainage the roots of mire species are gradually replaced by the roots of trees and other forest species. Pine fine root biomass reaches a maximum level by the time of crown closure, some 20 years after drainage on pine mire. The aim of this study is to compare the results of the sequential coring method and the ingrowth bag method used for estimating fine root production on three drained peatland sites of different fertility. The results are preliminary and continuation to the work done in the study Pine root production on drained peatlands, which is part of the Finnish project `Carbon cycling on peatlands and climate change`. In this study the fine root biomass was greater on the poor site than on the rich sites. Pine fine root production increased with the decrease in fertility. Root turnover and the production of field layer species were greater on the rich sites than on the poor site. The results suggested that the in growth bag method measured more root activity than the magnitude of production. More than two growing seasons would have been needed to balance the root dynamics in the in growth bags with the surrounding soil. That time would probably have been longer on the poor site than on the rich ones and longer for pine and field layer consisting of dwarf shrubs than for field layer consisting of sedge like species and birch. (11 refs.)

  15. Sequestration of arsenic in ombrotrophic peatlands

    Science.gov (United States)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  16. Plant diversity associated with pools in natural and restored peatlands

    Directory of Open Access Journals (Sweden)

    N. Fontaine

    2007-06-01

    Full Text Available This study describes plant assemblages associated with the edges of peatland pools. We conducted inventories in six natural peatlands in the province of Québec (Canada in order to measure the contribution of pools to species diversity in climatic regions where peatlands are used for peat extraction. We also carried out vegetation surveys in a peatland that has been restored after peat extraction/harvesting to determine whether pool vegetation establishes along the edges of created pools when dry surface restoration techniques only are used. Pools enhanced plant species richness in natural peatlands. Around created pools, species associated with natural pools were still absent, and non-bog species were present, six years after restoration. On this basis, we emphasise the importance of preserving natural peatlands with pools. In order to restore fully the plant diversity associated with peatlands at harvested sites, it may be necessary to modify pool excavation techniques so that created pools resemble more closely those in natural peatlands. Active introduction of the plant species or communities associated with natural pools may also be needed; candidate species for North America include Andromeda glaucophylla, Cladopodiella fluitans, Carex limosa, Eriophorum virginicum, Rhynchospora alba and Sphagnum cuspidatum.

  17. Element cycling in upland/peatland watersheds Chapter 8.

    Science.gov (United States)

    Noel Urban; Elon S. Verry; Steven Eisenreich; David F. Grigal; Stephen D. Sebestyen

    2011-01-01

    Studies at the Marcell Experimental Forest (MEF) have measured the pools, cycling, and transport of a variety of elements in both the upland and peatland components of the landscape. Peatlands are important zones of element retention and biogeochemical reactions that greatly influence the chemistry of surface water. In this chapter, we summarize findings on nitrogen (N...

  18. Human influences on the health of northern peatlands

    International Nuclear Information System (INIS)

    Gorham, E.

    1991-01-01

    The present area of peat is estimated to be 342 million hectares, with an average depth of 2.3 m. Peatlands are of interest for their flora and fauna, as a habitat for wildlife, for their capacity to moderate stream flows, and for their sequestration of nitrogen and sulfur (elements important in stream and lake acidification). Of great biogeochemical significance is the role of northern peatlands in the global carbon cycle. Their total stock of carbon stored as peat is 455 Pg, or 64% of the amount present as atmospheric CO 2 , 55% of total plant biomass, and 30% of the global pool of soil carbon excluding peat. The rate of peatland sequestration of atmospheric carbon is very small compared to current emissions of 5.6 Pg from fossil fuel combustion. On the other hand, northern peatlands emit ca 0.046 gigatonnes of carbon in the form of methane, which is about 20 times as effective as a greenhouse gas than CO 2 . Human disturbances to peatlands come directly from forestry, agriculture, and fuel/horticultural peat extraction, and indirectly from destruction or utilization of surrounding upland ecosystems, deposition of pollutants, and global warming. Approaches to the study of human impacts on peatlands are outlined and suggestions are offered to guide peatland research. Peatland conservation and restoration are also briefly reviewed. 65 refs

  19. Satellite-based peatland mapping: potential of the MODIS sensor.

    Science.gov (United States)

    D. Pflugmacher; O.N. Krankina; W.B. Cohen

    2006-01-01

    Peatlands play a major role in the global carbon cycle but are largely overlooked in current large-scale vegetation mapping efforts. In this study, we investigated the potential of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to capture extent and distribution of peatlands in the St. Petersburg region of Russia.

  20. Inventory and monitoring options of peatlands at regional scale

    DEFF Research Database (Denmark)

    Gardi, Ciro; Sommer, Stefan; Seep, Kalev

    2010-01-01

    on the enhanced integration of existing thematic maps through GIS analysis in combination with remote sensing, has been applied to Estonia, as study case. Existing national maps and field inventory of Estonian peatlands have been used for a GIS based evaluation of peatlands relevant information contained...

  1. Peatlands and carbon flows. Outlook and importance for the Netherlands

    International Nuclear Information System (INIS)

    Verhagen, A.; Van den Akker, J.J.H.; Diemont, W.H.; Schrijver, R.A.M.; Wosten, H.M.; Blok, C.; Joosten, J.H.J.; Schouten, M.A.; Den Uyl, R.M.; Verweij, P.A.

    2010-02-01

    Peatlands are found on all continents, however, uncertainties regarding their size and exact locations are very high. Horticulture is the main user of peat in the Netherlands. Compared to other terrestrial ecosystems, peatlands are the most space-effective carbon stocks. Annual emissions of carbon dioxide from peat import for Dutch horticulture is between 0.2 and 0.3 Mt. Climate change will considerably increase most problems associated with peat soils in the Netherlands. It is difficult to establish a correlation between economic activities within the Netherlands and exploitation of tropical peatland. Of the products imported into the Netherlands palm oil perhaps is the most threatening to tropical peatlands. Given the increasing demand from, for example, India and China, the main challenge is to meet this demand without clearing forests, reclaiming peatland, or exploiting other carbon stocks.

  2. Lateral extension in Sphagnum mires along the southern margin of the boreal region, Western Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Peregon, A; Uchida, M; Yamagata, Y, E-mail: anna.peregon@nies.go.j [Center for Global Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2009-10-15

    Although recent studies have recognized Northern Eurasian ecosystems as an important carbon reservoir, little is known about the forest-peatland interactions in a boreal environment induced by ongoing climatic changes. This study focuses on the evaluation of both the long-term and contemporary trends of land-cover changes and rates of lateral extension of peat-accumulating wetlands toward the adjacent forests, estimated at the southern climatic range of the Sphagnum-dominated mires in Western Siberia. We used the radiocarbon dates and stratigraphy of peat sediments from seven peat cores, analyzed at two types of forest-peatland ecotones, which are located close to each other but differ by topography and composition of their plant communities. The rate of lateral extension was found in a wide range varying from 2.3 to 791.7 cm yr{sup -1}. It was observed to be rapid during the initial stage of mire development, but to have slowed down over the last 2000-3000 yr. Our results, therefore, strongly contradict the concept of progressive peat accumulation throughout the late Holocene and contribute to our knowledge about ongoing land-cover change in the natural ecosystems of the Northern hemisphere.

  3. Lateral extension in Sphagnum mires along the southern margin of the boreal region, Western Siberia

    International Nuclear Information System (INIS)

    Peregon, A; Uchida, M; Yamagata, Y

    2009-01-01

    Although recent studies have recognized Northern Eurasian ecosystems as an important carbon reservoir, little is known about the forest-peatland interactions in a boreal environment induced by ongoing climatic changes. This study focuses on the evaluation of both the long-term and contemporary trends of land-cover changes and rates of lateral extension of peat-accumulating wetlands toward the adjacent forests, estimated at the southern climatic range of the Sphagnum-dominated mires in Western Siberia. We used the radiocarbon dates and stratigraphy of peat sediments from seven peat cores, analyzed at two types of forest-peatland ecotones, which are located close to each other but differ by topography and composition of their plant communities. The rate of lateral extension was found in a wide range varying from 2.3 to 791.7 cm yr -1 . It was observed to be rapid during the initial stage of mire development, but to have slowed down over the last 2000-3000 yr. Our results, therefore, strongly contradict the concept of progressive peat accumulation throughout the late Holocene and contribute to our knowledge about ongoing land-cover change in the natural ecosystems of the Northern hemisphere.

  4. A 30 year study of carbon, groundwater, and climate coupling in a large boreal peat basin

    Science.gov (United States)

    Glaser, P. H.; Siegel, D. I.; Chanton, J. P.; Reeve, A. S.; Slater, L.; Rosenberry, D. O.; Morin, P. J.; Carpenter, M.; Rhoades, J.; Nolan, J.; Parsekian, A.; O'Brien, M.; Sarkar, S.; Corbett, J. E.; D'Andrilli, J.

    2007-12-01

    Scaling biogeochemical processes across complex regional landscapes remains one of the most important challenges for deciphering the global methane cycle. For the past 30 years we have investigated the coupling of climate, groundwater, and methane cycling in the Glacial Lake Agassiz peatlands in northern Minnesota. Periodic droughts perturb the local and regional groundwater flow systems in this region altering the transport of inorganic solutes, organic acids and labile carbon substrates within the thick peat deposits. Two instrument stations at the bog crest and fen water track in the Red Lake peatland showed that large volumes of free-phase gas are trapped under confining layers in the deeper peat that episodically rupture to release large masses of methane bubbles to the atmosphere. These ebullition events are marked by abrupt depressuring cycles at depth and also by significant vertical and horizontal displacements of the peat surface. In the most recent phase of our investigations an integrated set of GPS stations and instrumented piezometers were installed to continuously pinpoint the location and calculate the magnitude of methane ebullition across a 160 square kilometer bog complex. The similarity of the vegetation patterns in this large bog complex to those found in other large peat basins in North America facilitates the transfer of these regional-scale ebullition fluxes to a broad swath of boreal America.

  5. How important are peatlands globally in providing drinking water resources?

    Science.gov (United States)

    Xu, Jiren; Morris, Paul; Holden, Joseph

    2017-04-01

    The potential role of peatlands as water stores and sources of downstream water resources for human use is often cited in publications setting the context for the importance of peatlands, but is rarely backed up with substantive evidence. We sought to determine the global role of peatlands in water resource provision. We developed the Peat Population Index (PPI) that combines the coverage of peat and the local population density to show focused (hotspot) areas where there is a combination of both large areas of peat and large populations who would potentially use water sourced from those peatlands. We also developed a method for estimating the proportion of river water that interacted with contributing peatlands before draining into rivers and reservoirs used as a drinking water resource. The Peat Reservoir Index (PRI) estimates the contribution of peatlands to domestic water use to be 1.64 km3 per year which is 0.35 % of the global total. The results suggest that although peatlands are widespread, the spatial distribution of the high PPI and PRI river basins is concentrated in European middle latitudes particularly around major conurbations in The Netherlands, northern England, Scotland (Glasgow) and Ireland (Dublin), although there were also some important systems in Florida, the Niger Delta and Malaysia. More detailed research into water resource provision in high PPI areas showed that they were not always also high PRI areas as often water resources were delivered to urban centres from non-peat areas, despite a large area of peat within the catchment. However, particularly in the UK and Ireland, there are some high PRI systems where peatlands directly supply water to nearby urban centres. Thus both indices are useful and can be used at a global level while more local refinement enables enhanced use which supports global and local peatland protection measures. We now intend to study the impacts of peatland degradation and climate change on water resource

  6. Threats to intact tropical peatlands and opportunities for their conservation.

    Science.gov (United States)

    Roucoux, K H; Lawson, I T; Baker, T R; Del Castillo Torres, D; Draper, F C; Lähteenoja, O; Gilmore, M P; Honorio Coronado, E N; Kelly, T J; Mitchard, E T A; Vriesendorp, C F

    2017-12-01

    Large, intact areas of tropical peatland are highly threatened at a global scale by the expansion of commercial agriculture and other forms of economic development. Conserving peatlands on a landscape scale, with their hydrology intact, is of international conservation importance to preserve their distinctive biodiversity and ecosystem services and maintain their resilience to future environmental change. We explored threats to and opportunities for conserving remaining intact tropical peatlands; thus, we excluded peatlands of Indonesia and Malaysia, where extensive deforestation, drainage, and conversion to plantations means conservation in this region can protect only small fragments of the original ecosystem. We focused on a case study, the Pastaza-Marañón Foreland Basin (PMFB) in Peru, which is among the largest known intact tropical peatland landscapes in the world and is representative of peatland vulnerability. Maintenance of the hydrological conditions critical for carbon storage and ecosystem function of peatlands is, in the PMFB, primarily threatened by expansion of commercial agriculture linked to new transport infrastructure that is facilitating access to remote areas. There remain opportunities in the PMFB and elsewhere to develop alternative, more sustainable land-use practices. Although some of the peatlands in the PMFB fall within existing legally protected areas, this protection does not include the most carbon-dense (domed pole forest) areas. New carbon-based conservation instruments (e.g., REDD+, Green Climate Fund), developing markets for sustainable peatland products, transferring land title to local communities, and expanding protected areas offer pathways to increased protection for intact tropical peatlands in Amazonia and elsewhere, such as those in New Guinea and Central Africa which remain, for the moment, broadly beyond the frontier of commercial development. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc

  7. Responses of non-methane biogenic volatile organic compound emissions to climate change in boreal and subarctic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Faubert, P.

    2010-07-01

    Non-methane biogenic volatile organic compound emissions (BVOCs) have important roles in the global atmospheric chemistry but their feedbacks to climate change are still unknown. This thesis reports one of the first estimates of BVOC emissions from boreal and subarctic ecosystems. Most importantly, this thesis assesses the BVOC emission responses to four effects of climate change in these ecosystems: (1) the direct effect of warming, and its indirect effects via (2) water table drawdown, (3) change in the vegetation composition, and (4) enhanced UV-B radiation. BVOC emissions were measured using a conventional chamber method in which the compounds were collected on adsorbent and later analyzed by gas chromatography-mass spectrometry. On a subarctic heath, warming by only 1.9-2.5 degC doubled the monoterpene and sesquiterpene emissions. Such a high increase of BVOC emissions under a conservative warming cannot be predicted by the current models, which underlines the importance of a focus on BVOC emissions from the Subarctic under climate change. On a subarctic peatland, enhanced UV-B did not affect the BVOC emissions but the water table level exerted the major effect. The water table drawdown experimentally applied on boreal peatland microcosms decreased the emissions of monoterpenes and other VOCs (BVOCs with a lifetime>1 d) for the hollows (wet microsites) and that of all BVOC groups for the lawns (moderately wet microsites). The warming treatment applied on the lawn microcosms decreased the isoprene emission. The removal of vascular plants in the hummock (dry microsites) microcosms decreased the emissions of monoterpenes while the emissions between the microcosms covered with Sphagnum moss and bare peat were not different. In conclusion, the results presented in this thesis indicate that climate change has complex effects on the BVOC emissions. These results make a significant contribution to improving the modeling of BVOC emissions for a better understanding of

  8. Redox Buffer Strength

    Science.gov (United States)

    de Levie, Robert

    1999-04-01

    The proper functioning of enzymes in bodily fluids requires that the pH be maintained within rather narrow limits. The first line of defense against large pH fluctuations in such fluids is the passive control provided by the presence of pH buffers. The ability of pH buffers to stabilize the pH is indicated by the buffer value b introduced in 1922 by van Slyke. It is equally important for many enzymes that the redox potential is kept within a narrow range. In that case, stability of the potential is most readily achieved with a redox buffer. In this communication we define the redox buffer strength by analogy with acid-base buffer strength.

  9. Genesis and abiotic characteristics of three high-altitude peatlands in the Tien Shan Mountains (Kyrgyzstan, with focus on silty peatland substrates

    Directory of Open Access Journals (Sweden)

    R. Müller

    2016-11-01

    Full Text Available Peatlands are scarce and threatened ecosystems in the semiarid region of Kyrgyzstan. Knowledge about the Kyrgyz peatlands is still poor and, especially, their genesis has hardly been investigated so far. Typically, the peatland substrates are characterised by the admixture of silt-sized particles in various quantities. In this work we report the abiotic properties and genesis of three peatlands within different altitudinal zones in southern Kyrgyzstan. We surveyed the stratification of the peatlands and their water chemistry. In addition, we investigated whether the silt found in the peatland substrates was deposited by wind, rivers or springs. The mineral constituents of the peatland substrates were analysed for particle size distribution and their elemental composition was compared with that of nearby loess, river and spring sediments using the immobile trace element titanium. One peatland shows a high abundance of different peatland substrates, indicating a frequent change of ecological conditions in the past. All three peatlands are fed by groundwater. Overgrazing and trampling by cattle has led to recent degradation of the upper peat layer. The resulting compaction of the peats prevents water from seeping into the substrates of the peatlands and subsequently changes their hydrology. Our results indicate that both wind and rivers have deposited silt in the peatlands, depending on their positions in the relief. Silts may also have been relocated by springs within the peatlands.

  10. Uncertainty of Methane Fluxes in a Northern Peatland under Global Climate Change

    Science.gov (United States)

    MA, S.; Jiang, J.; Huang, Y.; Luo, Y.

    2016-12-01

    Large uncertainty exists in predicting responses of methane fluxes to future climate change. How the uncertainty is related to methane production, oxidation, diffusion, ebullition and plant mediated transportation is still poorly understood, despite of the fact that these processes related to methane emission have been theoretically well represented. At the same time, in methane models many of the parameters are given to an empirical value according to measurements or models decades ago. It is unrealistic to testify all the parameters included in methane modules by actual in situ measurements due to the fact of high temporal and spatial variation. However it would be convincible and feasible to measure in field if models could offer better sampling strategy by telling which parameter is more important for estimation of methane emission, and project a constrained value for key parameters in each process. These feedbacks from field measurements could in turn testify the model accuracy for methane emission projection, as well as the optimization of model structures. We incorporated methane module into an existing process-based Terrestrial ECOsystem model (TECO), to simulate methane emission in a boreal peatland forest, northern Minnesota (Spruce and Peatland Responses Under Climatic and Environmental Change Experiment, SPRUCE). We performed sensitivity test and picked key parameters from the five processes for data assimilation using the Bayesian probability inversion and a Markov Chain Monte Carlo (MCMC) technique. We were able to constrain key parameters related to the five processes in the TECO-SPRUCE Methane model. The constrained model simulated daily methane emission fitted quite well with the data from field measurements. The improvement of more realistic and site-specific parameter values allow for reasonable projections of methane emission under different global changing scenarios, warming and elevated CO2, for instance, given the fact that methane emission

  11. Organellar Calcium Buffers

    Science.gov (United States)

    Prins, Daniel; Michalak, Marek

    2011-01-01

    Ca2+ is an important intracellular messenger affecting many diverse processes. In eukaryotic cells, Ca2+ storage is achieved within specific intracellular organelles, especially the endoplasmic/sarcoplasmic reticulum, in which Ca2+ is buffered by specific proteins known as Ca2+ buffers. Ca2+ buffers are a diverse group of proteins, varying in their affinities and capacities for Ca2+, but they typically also carry out other functions within the cell. The wide range of organelles containing Ca2+ and the evidence supporting cross-talk between these organelles suggest the existence of a dynamic network of organellar Ca2+ signaling, mediated by a variety of organellar Ca2+ buffers. PMID:21421925

  12. Silviculture's role in managing boreal forests

    Science.gov (United States)

    Russell T. Graham; Theresa B. Jain

    1998-01-01

    Boreal forests, which are often undeveloped, are a major source of raw materials for many countries. They are circumpolar in extent and occupy a belt to a width of 1000 km in certain regions. Various conifer and hardwood species ranging from true firs to poplars grow in boreal forests. These species exhibit a wide range of shade tolerance and growth characteristics,...

  13. Peatlands of the Peruvian Puna ecoregion: types, characteristics and disturbance

    Directory of Open Access Journals (Sweden)

    F. Salvador

    2014-05-01

    Full Text Available Peatlands represent one of the most important water resources in the Puna grassland ecoregion, but this fact is not yet widely recognised. Puna peatlands also provide key environmental services such as increasing the regional biodiversity of the Andean Altiplano plateau and contributing to the wellbeing of high-altitude human populations by providing grazing land and cooking fuel. We conducted a study in the Peruvian Puna ecoregion to describe the current condition of peatlands in terms of their vegetation, physical and chemical characteristics and disturbance status. Our results suggest that peat thickness, organic matter and degree of humification are good indicators for identifying peatlands in the Puna ecoregion. In general, the peatland sites that we sampled were dominated by mixtures of cushion and acaulescent rosette forming plants such as Distichia muscoides Nees & Meyen and Plantago tubulosa Decne. These Distichia and Plantago peatland sites were characterised by a mean surface water pH of 6.3, corrected electrical conductivity (K corr. in the range 300–1814 μS cm-1 and presented the following mean exchangeable cation values: Ca2+ 48 mg L-1, Mg2+ 9.6 mg L-1, Na+ 8.2 mg L-1 and K+ 2.1 mg L-1. The most common causes of disturbance we encountered were grazing, peat extraction and roads. Disturbance was most severe in mining sites, where peatlands are especially vulnerable because they are not under legal protection.

  14. Peatland geoengineering: an alternative approach to terrestrial carbon sequestration.

    Science.gov (United States)

    Freeman, Christopher; Fenner, Nathalie; Shirsat, Anil H

    2012-09-13

    Terrestrial and oceanic ecosystems contribute almost equally to the sequestration of ca 50 per cent of anthropogenic CO(2) emissions, and already play a role in minimizing our impact on Earth's climate. On land, the majority of the sequestered carbon enters soil carbon stores. Almost one-third of that soil carbon can be found in peatlands, an area covering just 2-3% of the Earth's landmass. Peatlands are thus well established as powerful agents of carbon capture and storage; the preservation of archaeological artefacts, such as ancient bog bodies, further attest to their exceptional preservative properties. Peatlands have higher carbon storage densities per unit ecosystem area than either the oceans or dry terrestrial systems. However, despite attempts over a number of years at enhancing carbon capture in the oceans or in land-based afforestation schemes, no attempt has yet been made to optimize peatland carbon storage capacity or even to harness peatlands to store externally captured carbon. Recent studies suggest that peatland carbon sequestration is due to the inhibitory effects of phenolic compounds that create an 'enzymic latch' on decomposition. Here, we propose to harness that mechanism in a series of peatland geoengineering strategies whereby molecular, biogeochemical, agronomical and afforestation approaches increase carbon capture and long-term sequestration in peat-forming terrestrial ecosystems.

  15. Peatland Organic Matter Chemistry Trends Over a Global Latitudinal Gradient

    Science.gov (United States)

    Verbeke, B. A.; Hodgkins, S. B.; Carson, M. A.; Lamit, L. J.; Lilleskov, E.; Chanton, J.

    2017-12-01

    Peatlands contain a significant amount of the global soil carbon, and the climate feedback of carbon cycling within these peatland systems is still relatively unknown. Organic matter composition of peatlands plays a major role in determining carbon storage, and while high latitude peatlands seem to be the most sensitive to climate change, a global picture of peat organic matter chemistry is required to improve predictions and models of greenhouse gas emissions fueled by peatland decomposition. The objective of this research is to test the hypothesis that carbohydrate content of peatlands near the equator will be lower than high latitude peatlands, while aromatic content will be higher. As a part of the Global Peatland Microbiome Project (GPMP), around 2000 samples of peat from 10 to 70 cm across a latitudinal gradient of 79 N to 53 S were measured with Fourier transform infrared spectroscopy (FTIR) to examine the organic matter functional groups of peat. Carbohydrate and aromatic content, as determined by FTIR, are useful proxies of decomposition potential and recalcitrance, respectively. We found a highly significant relationship between carbohydrate and aromatic content, latitude, and depth. Carbohydrate content of high latitude sites were significantly greater than at sites near the equator, in contrast to aromatic content which showed the opposite trend. It is also clear that carbohydrate content decreases with depth while aromatic content increases with depth. Higher carbohydrate content at higher latitudes indicates a greater potential for lability and resultant mineralization to form the greenhouse gases, carbon dioxide and methane, whereas the composition of low latitude peatlands is consistent with their apparent stability. We speculate that the combination of low carbohydrates and high aromatics at warmer locations near the equator could foreshadow the organic matter composition of high latitude peat transitioning to a more recalcitrant form with a

  16. Impact of the Little Ice Age cooling and 20th century climate change on peatland vegetation dynamics in central and northern Alberta using a multi-proxy approach and high-resolution peat chronologies

    Science.gov (United States)

    Magnan, Gabriel; van Bellen, Simon; Davies, Lauren; Froese, Duane; Garneau, Michelle; Mullan-Boudreau, Gillian; Zaccone, Claudio; Shotyk, William

    2018-04-01

    Northern boreal peatlands are major terrestrial sinks of organic carbon and these ecosystems, which are highly sensitive to human activities and climate change, act as sensitive archives of past environmental change at various timescales. This study aims at understanding how the climate changes of the last 1000 years have affected peatland vegetation dynamics in the boreal region of Alberta in western Canada. Peat cores were collected from five bogs in the Fort McMurray region (56-57° N), at the southern limit of sporadic permafrost, and two in central Alberta (53° N and 55° N) outside the present-day limit of permafrost peatlands. The past changes in vegetation communities were reconstructed using detailed plant macrofossil analyses combined with high-resolution peat chronologies (14C, atmospheric bomb-pulse 14C, 210Pb and cryptotephras). Peat humification proxies (C/N, H/C, bulk density) and records of pH and ash content were also used to improve the interpretation of climate-related vegetation changes. Our study shows important changes in peatland vegetation and physical and chemical peat properties during the Little Ice Age (LIA) cooling period mainly from around 1700 CE and the subsequent climate warming of the 20th century. In some bogs, the plant macrofossils have recorded periods of permafrost aggradation during the LIA with drier surface conditions, increased peat humification and high abundance of ericaceous shrubs and black spruce (Picea mariana). The subsequent permafrost thaw was characterized by a short-term shift towards wetter conditions (Sphagnum sect. Cuspidata) and a decline in Picea mariana. Finally, a shift to a dominance of Sphagnum sect. Acutifolia (mainly Sphagnum fuscum) occurred in all the bogs during the second half of the 20th century, indicating the establishment of dry ombrotrophic conditions under the recent warmer and drier climate conditions.

  17. Biomass burning drives atmospheric nutrient redistribution within forested peatlands in Borneo

    Science.gov (United States)

    Ponette-González, Alexandra G.; Curran, Lisa M.; Pittman, Alice M.; Carlson, Kimberly M.; Steele, Bethel G.; Ratnasari, Dessy; Mujiman; Weathers, Kathleen C.

    2016-08-01

    Biomass burning plays a critical role not only in atmospheric emissions, but also in the deposition and redistribution of biologically important nutrients within tropical landscapes. We quantified the influence of fire on biogeochemical fluxes of nitrogen (N), phosphorus (P), and sulfur (S) in a 12 ha forested peatland in West Kalimantan, Indonesia. Total (inorganic + organic) N, {{{{NO}}}3}- -N, {{{{NH}}}4}+ -N, total P, {{{{PO}}}4}3- -P, and {{{{SO}}}4}2- -S fluxes were measured in throughfall and bulk rainfall weekly from July 2013 to September 2014. To identify fire events, we used concentrations of particulate matter (PM10) and MODIS Active Fire Product counts within 20 and 100 km radius buffers surrounding the site. Dominant sources of throughfall nutrient deposition were explored using cluster and back-trajectory analysis. Our findings show that this Bornean peatland receives some of the highest P (7.9 kg {{{{PO}}}4}3- -P ha-1yr-1) and S (42 kg {{{{SO}}}4}2- -S ha-1yr-1) deposition reported globally, and that N deposition (8.7 kg inorganic N ha-1yr-1) exceeds critical load limits suggested for tropical forests. Six major dry periods and associated fire events occurred during the study. Seventy-eight percent of fires within 20 km and 40% within 100 km of the site were detected within oil palm plantation leases (industrial agriculture) on peatlands. These fires had a disproportionate impact on below-canopy nutrient fluxes. Post-fire throughfall events contributed >30% of the total inorganic N ({{{{NO}}}3}- -N + {{{{NH}}}4}+ -N) and {{{{PO}}}4}3- -P flux to peatland soils during the study period. Our results indicate that biomass burning associated with agricultural peat fires is a major source of N, P, and S in throughfall and could rival industrial pollution as an input to these systems during major fire years. Given the sheer magnitude of fluxes reported here, fire-related redistribution of nutrients may have significant fertilizing or acidifying effects on

  18. Impacts of peatland management on stream ecosystems

    Science.gov (United States)

    Ramchunder, S. J.; Holden, J.; Brown, L. E.

    2009-04-01

    Scientists have long recognised that human-induced landscape modifications have altered stream systems by changing the hydrology, geomorphology, water quality and biota. Peatlands are important global systems for carbon storage, water resources and biodiversity. Many UK blanket peats are intensively managed through artificial drainage, rotational heather burning and remedial drain blocking. This presentation discusses the impacts of these management types on stream benthic macroinvertebrates across northern England compared with intact peatland systems. At the community level there were no significant differences in total abundance or species richness between management types. However, results for individual species suggest some compensatory effects. For example, drainage and burning had a deleterious effect on Ecdyonurus dispar, Isoperla grammatica and Perlodes microcephala. Conversely, Simuliidae abundance was higher in these catchments, perhaps due to higher concentrations of suspended particulate organic matter serving as a food source. Species abundance and richness in drain-blocked catchments were typically similar to levels in intact systems. This catchment-scale rehabilitation method appears to be a useful method for aiding the rehabilitation of stream ecosystems in UK moorlands.

  19. Geophysical mapping of palsa peatland permafrost

    Science.gov (United States)

    Sjöberg, Y.; Marklund, P.; Pettersson, R.; Lyon, S. W.

    2015-03-01

    Permafrost peatlands are hydrological and biogeochemical hotspots in the discontinuous permafrost zone. Non-intrusive geophysical methods offer a possibility to map current permafrost spatial distributions in these environments. In this study, we estimate the depths to the permafrost table and base across a peatland in northern Sweden, using ground penetrating radar and electrical resistivity tomography. Seasonal thaw frost tables (at ~0.5 m depth), taliks (2.1-6.7 m deep), and the permafrost base (at ~16 m depth) could be detected. Higher occurrences of taliks were discovered at locations with a lower relative height of permafrost landforms, which is indicative of lower ground ice content at these locations. These results highlight the added value of combining geophysical techniques for assessing spatial distributions of permafrost within the rapidly changing sporadic permafrost zone. For example, based on a back-of-the-envelope calculation for the site considered here, we estimated that the permafrost could thaw completely within the next 3 centuries. Thus there is a clear need to benchmark current permafrost distributions and characteristics, particularly in under studied regions of the pan-Arctic.

  20. FRICTION BUFFER STOP DESIGN

    Directory of Open Access Journals (Sweden)

    Petr Guziur

    2017-08-01

    Full Text Available Friction buffer stops are the favoured construction of buffer stop, mainly due to its high resistance and variety of layout. Last but not least is its manner of deceleration induced upon impact and during the braking what makes it smart solution in railway transport safety. The general approach of designing buffer stops is via usage of the kinetic energy and its conversion into work. Paper describes input parameters such as train velocity or buffer stop vicinity which is expressed by the safety coefficient implanted within the calculation. Furthermore, the paper shows the principle of calculation the friction buffer stop work, or to be more precise, the work of its braking jaws and optionally the work of additional braking jaws located behind the buffer stop. Last section of the paper is focused on the examples of designing friction buffer stops, points out the main complications and shows the charts of relation amongst braking distance, kinetic energy and braking force and the charts of relation between deceleration rate and braking distance.

  1. Fire Behavior in Pelalawan Peatland, Riau Province

    Directory of Open Access Journals (Sweden)

    BAMBANG HERO SAHARJO

    2006-01-01

    Full Text Available During dry season it is easily recognized that smoke will emerge at certain place both in Sumatra and Kalimantan that is in peatland. The worst situation occurred when fire burnt buried log in the logged over area where the fire fighter did not have any experience and knowledge on how to work with fire in peatland. Finally it had been found that one of the reasons why firefighter failed to fight fire in peatland is because they do not have any knowledge and experience on it. In order to know the fire behavior characteristics in different level of peat decomposition for fire management and sustainable management of the land for the community, research done in Pelalawan area, Riau Province, Indonesia, during dry season 2001. Three level of peat decomposition named Sapric, Hemic, and Fibric used. To conduct the research, two 400 m2 of plot each was established in every level of the peat decomposition. Burning done three weeks following slashing, cutting and drying at different time using circle method. During burning, flame length, rate of the spread of fire, flame temperature and following burning fuel left and the depth of peat destruction were measured. Results of research shown that in sapric site where sapric 2 has fuel load 9 ton ha-1 less than sapric 1, fire behavior was significantly different while peat destructed was deepest in sapric 2 with 31.87 cm. In hemic site where hemic 2 has fuel load 12.3 ton ha-1 more than hemic 1, fire behavior was significantly different and peat destructed deeper than hemic 1 that was 12.6 cm. In fibric site where fibric 1 has fuel load 3.5 ton ha-1 more than fibric 1, fire behavior was significantly different that has no burnt peat found. This results found that the different fuel characteristics (potency, moisture, bed depth, and type at the same level of peat decomposition will have significantly different fire behavior as it happened also on the depth of peat destruction except fibric. The same condition

  2. A buffer diverter system

    Science.gov (United States)

    Foster, J. C., Jr.

    1985-07-01

    The prevention of sympathetic detonations between donor and acceptor bombs, which are stored lying horizontally lying parallel to each other, is accomplished using a buffer diverter system. One example of a buffer diverter system is a pair of molded concrete bases, each supporting a horizontal bomb and conforming to the shape of its respective bomb up to its horizontal centerline. In the first example, the entire space between the two molded concrete bases and bombs is filled in with a buffer which has sufficient width to attenuate the shock of detonation down pressure levels below a pressure threshold needed to induce an acceptor bomb to sympathetically detonate. In another example of a buffer diverter system, the buffer is replaced with a diverter. The diverter is an I-beam which abuts each bomb at its horizontal centerline and runs the length of the two bombs. The I-beam has the same width as the buffer, but its surface area presented to each bomb is nearly the minimum required to deflect fragments from the silhouette of the acceptor bomb.

  3. Sustaining Aquatic Ecosystems in Boreal Regions

    Directory of Open Access Journals (Sweden)

    David Schindler

    1998-12-01

    Full Text Available Few boreal waters are managed in a sustainable manner, because cumulative effects of a variety of human activities are not considered. Fisheries and water quality have declined in most large water bodies of the southern boreal zone. Some of the reasons are direct, including overexploitation of fisheries, alteration of flow patterns, introductions of non-native species, and discharge of eutrophying nutrients and persistent contaminants. However, improper management of watersheds and airsheds also causes degradation of aquatic ecosystems. Clear-cut logging, climatic warming, acid precipitation, and stratospheric ozone depletion are among the more important of these indirect stressors. There are important interactions among these stressors, requiring that they not be treated in isolation. Ecological sustainability of boreal waters would require that exploitation of all parts of the boreal landscape be much lower than it is at present. Unfortunately, management for sustainability is lagging far behind scientific understanding in most countries.

  4. Insect biodiversity of boreal peat bogs

    Czech Academy of Sciences Publication Activity Database

    Spitzer, Karel; Danks, H. V.

    2006-01-01

    Roč. 51, - (2006), s. 137-161 ISSN 0066-4170 R&D Projects: GA ČR(CZ) GA206/97/0077; GA AV ČR(CZ) IBS5007015 Institutional research plan: CEZ:AV0Z50070508 Keywords : peatlands * tyrphobiontic insect s * conservation Subject RIV: EH - Ecology, Behaviour Impact factor: 8.714, year: 2006

  5. Effect of granulated wood ash fertilization on N2O emissions in boreal peat forests

    Science.gov (United States)

    Liimatainen, Maarit; Martikainen, Pertti J.; Hytönen, Jyrki; Maljanen, Marja

    2016-04-01

    Peatlands cover one third of the land surface area in Finland and over half of that are drained for forestry. Natural peatlands are either small sources of nitrous oxide (N2O) or they can also act as a sinks of N2O. When peatlands are drained, oxygen concentration in the peat increases, organic matter decomposition accelerates and N2O emissions may increase significantly, especially in nutrient rich peat soils. Hence drainage and land-use changes can have a big impact on N2O fluxes in peatlands. The annual consumption of wood chips is to be increased to 13.5 M m3 from the present 8.7 M m3 in Finland. This will also increase the amount of wood ash in the power plants. Wood ash contains considerable amounts of mineral nutrients but lacks nitrogen. Therefore, it has been used as a fertilizer in nitrogen rich peatland forests lacking other nutrients. Recycling of ash would also return the nutrients lost during biomass harvesting back to the forests. We studied the effects of granulated wood ash as a fertilizer in peat soils drained for forestry. Ash is nowadays granulated mainly to facilitate its handling and spreading. Granulation also stabilizes the ash decreasing the solubility of most of the nutrients and minimizing harmful effects of ash spread over the vegetation. Granulated wood ash increases soil pH less than loose ash. Drainage of peatland forests increases microbial activity in the soil which is furthermore intensified with the addition of ash promoting organic matter decomposition and possibly affecting N2O emissions. We studied the effect of granulated wood ash on N2O fluxes in three different peat forests in Finland in both field and laboratory experiments. In the field, N2O emissions were not affected by granulated wood ash fertilization but the soil respiration rate increased. However, in the laboratory studies we observed a clear decrease in N2O production due to wood ash addition, although changes in pH values were only minor. We studied what could

  6. Nutrients and Hydrology Indicate the Driving Mechanisms of Peatland Surface Patterning

    NARCIS (Netherlands)

    Eppinga, M.B.; Ruiter, de P.C.; Wassen, M.J.; Rietkerk, M.

    2009-01-01

    Peatland surface patterning motivates studies that identify underlying structuring mechanisms. Theoretical studies so far suggest that different mechanisms may drive similar types of patterning. The long time span associated with peatland surface pattern formation, however, limits possibilities for

  7. Peatland Carbon Dynamics in Alaska During Past Warm Climates

    Science.gov (United States)

    Yu, Z.; Cleary, K.; Massa, C.; Hunt, S. J.; Klein, E. S.; Loisel, J.

    2013-12-01

    Peatlands represent a large belowground carbon (C) pool in the biosphere. However, how peatland C sequestration capacity varies with changes in climate and climate-induced disturbance is still poorly understood and debated. Here we summarize results from Alaskan peatlands to document how peat C accumulation has responded to past warm climate intervals. We find that the greatest C accumulation rates at sites from the Kenai Peninsula to the North Slope occurred during the Holocene thermal maximum (HTM) in the early Holocene. This time period also corresponds with explosive formation and expansion of new peatlands on the landscape across Alaska. In addition, we note that many peatlands that existed during the earlier Holocene on the North Slope have disappeared and are presently covered by mineral soils under tundra or sandy deposits. During the Medieval Climate Anomaly (MCA) around 1000-500 years ago, several peatlands in Alaska show high rates of C accumulation when compared to the period before the MCA during the Neoglacial or the following Little Ice Age period. Altogether, our results indicate that the Alaskan landscape was very different during the last 10,000 years and that peatlands can rapidly accumulate C under warm climatic conditions. We speculate that warmth-stimulated increase in plant production surpasses increase in peat decomposition during the early Holocene, and potentially also during the MCA. Other factors that might have contributed to rapid peat accumulation during the early Holocene include increased summer sunlight, lowered sea levels, and decreased sea-ice cover/duration. Summer insolation was ca. 8% higher than today during the early Holocene due to orbital variations, which likely promoted plant productivity by increasing growing seasons sunlight. Furthermore, lower sea levels and exposed shallow continental shelves in the Beaufort Sea (Arctic Ocean) would have made the present-day Arctic Coastal Plain more continental, with warmer summers

  8. Nitrogen removal in Northern peatlands treating mine wastewaters

    Science.gov (United States)

    Palmer, Katharina; Karlsson, Teemu; Turunen, Kaisa; Liisa Räisänen, Marja; Backnäs, Soile

    2015-04-01

    Natural peatlands can be used as passive purification systems for mine wastewaters. These treatment peatlands are well-suited for passive water treatment as they delay the flow of water, and provide a large filtration network with many adsorptive surfaces on plant roots or soil particles. They have been shown to remove efficiently harmful metals and metalloids from mine waters due to variety of chemical, physical and biological processes such as adsorption, precipitation, sedimentation, oxidation and reduction reactions, as well as plant uptake. Many factors affect the removal efficiency such as inflow water quality, wetland hydrology, system pH, redox potential and temperature, the nature of the predominating purification processes, and the presence of other components such as salts. However, less attention has been paid to nitrogen (N) removal in peatlands. Thus, this study aimed to assess the efficiency of N removal and seasonal variation in the removal rate in two treatment peatlands treating mine dewatering waters and process effluent waters. Water sampling from treatment peatland inflow and outflow waters as well as pore waters in peatland were conducted multiple times during 2012-2014. Water samples were analysed for total N, nitrate-N and ammonium-N. Additionally, an YSI EXO2 device was used for continuous nitrate monitoring of waters discharged from treatment peatlands to the recipient river during summer 2014. The results showed that the oxic conditions in upper peat layer and microbial activity in treatment peatlands allowed the efficient oxidation of ammonium-N to nitrite-N and further to nitrate-N during summer time. However, the slow denitrification rate restricts the N removal as not all of the nitrate produced during nitrification is denitrified. In summer time, the removal rate of total N varied between 30-99 % being highest in late summer. N removal was clearly higher for treatment peatland treating process effluent waters than for peatland

  9. Carbon balance of rewetted peatland forests in low mountain range areas, Germany

    Science.gov (United States)

    Krüger, Jan Paul; Dotterweich, Markus; Kopf, Christoph; Schüler, Gebhard; Scherzer, Jörg

    2017-04-01

    Peatland soils store a great proportion of the global soil carbon pool and are an important component of the global carbon cycle. Drainage of peatlands, for agricultural or forestry usage, leads to a loss of carbon from the soil to the atmosphere and the former carbon sink becomes a carbon source. Peatland rewetting has become a well applicable management tool to reduce the greenhouse gas emissions from peatland soils. However, the impact of rewetting on the carbon balance of drained peatland forest in low mountain range is rare. The aim of this project is to quantify the carbon balance of rewetted peatlands in the Hunsrück-Hochwald National Park. Worth protecting peatland's with forest called "Brücher" are characteristic of nature in the Hunsrück. Since the 19th century these peatlands have been drained by ditches for spruce forests. The survey of surface area of the peatlands is the first important part of the project. Furthermore, a peatland land register for the national park and adjacent areas will be developed. Based on peatland area and carbon stocks the carbon pools of different degradation stages of these peatland can be investigated. Furthermore, terrestrial laser scan data and geoelectrical measurements will be applied for estimating the carbon pool of the vegetation and the soil. This approach enables us to quantify the whole ecosystem carbon pool. A space-for-time substitution allows for a first estimation of the carbon balance of the rewetted peatlands in the Hunsrück-Hochwald National Park. The main aim of a comprehensive carbon balancing will be achieved based upon the peatland characteristics and upscaling of carbon stocks from peatlands with different restoration/degradation scenarios. Moreover, the obtained data will be used for a long-term carbon balance monitoring of the rewetted peatlands in this region.

  10. Buffer design 2012

    International Nuclear Information System (INIS)

    Juvankoski, M.

    2013-08-01

    Posiva's spent nuclear fuel disposal is based on the KBS-3V concept and on the characteristics of the Olkiluoto site. In this concept single canisters containing spent nuclear fuel surrounded by a bentonite buffer are emplaced in individual vertical boreholes drilled in the floor of deposition tunnels in bedrock at about 420 m depth below ground level. Disk type bentonite blocks are installed at the bottom of the hole and on the top of the disposal canister. Ring type bentonite blocks surround the canisters. This report describes the detailed design of the buffer for a KBS-3V repository. The report presents the design basis, the reference design, and summarises the performance analyses carried out for the design. This report addresses aspects concerning the manufacture, quality control, mechanical strength, chemical resistance, thermal dimensioning, handling of buffer components and material ageing phenomena including the effect of radiation. Interaction of buffer and other engineered barriers are included in the study. The long-term evolution of the repository and its effective drivers are considered if they have an impact on the buffer performance but operational safety aspects are also included because they may affect long-term safety. (orig.)

  11. Representing northern peatland microtopography and hydrology within the Community Land Model

    Science.gov (United States)

    X. Shi; P.E. Thornton; D.M. Ricciuto; P J. Hanson; J. Mao; Stephen Sebestyen; N.A. Griffiths; G. Bisht

    2015-01-01

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth...

  12. Peatlands on National Forests of the Northern Rocky Mountains: Ecology and conservation

    Science.gov (United States)

    Steve W. Chadde; J. Stephen Shelly; Robert J. Bursik; Robert K. Moseley; Angela G. Evenden; Maria Mantas; Fred Rabe; Bonnie Heidel

    1998-01-01

    This overview of peatland ecology and conservation on National Forests in the Northern Rocky Mountains describes physical components, vegetation, vascular and nonvascular flora, and invertebrate fauna on peatlands. Detailed site descriptions for 58 peatlands in Idaho, Montana, and northeastern Washington are included.

  13. Restoration Ecology of Lowland tropical Peatlands in Southeast Asia: Current Knowledge and Future Research Directions

    NARCIS (Netherlands)

    Page, S.; Hoscilo, A.; Wösten, J.H.M.; Jauhiainen, J.; Silvius, M.J.; Rieley, J.; Ritzema, H.P.; Tansey, K.; Graham, L.; Vasander, H.; Limin, S.

    2009-01-01

    Studies of restoration ecology are well established for northern peatlands, but at an early stage for tropical peatlands. Extensive peatland areas in Southeast Asia have been degraded through deforestation, drainage and fire, leading to on- and off-site environmental and socio-economic impacts of

  14. The SVT Hit Buffer

    International Nuclear Information System (INIS)

    Belforte, S.; Dell'Orso, M.; Donati, S.

    1996-01-01

    The Hit Buffer is part of the Silicon Vertex Tracker, a trigger processor dedicated to the reconstruction of particle trajectories in the Silicon Vertex Detector and the Central Tracking Chamber of the Collider Detector at Fermilab. The Hit Buffer is a high speed data-traffic node, where thousands of words are received in arbitrary order and simultaneously organized in an internal structured data base, to be later promptly retrieved and delivered in response to specific requests. The Hit Buffer is capable of processing data at a rate of 25 MHz, thanks to the use of special fast devices like Cache-Tag RAMs and high performance Erasable Programmable Logic Devices from the XILINX XC7300 family

  15. A parallel buffer tree

    DEFF Research Database (Denmark)

    Sitchinava, Nodar; Zeh, Norbert

    2012-01-01

    We present the parallel buffer tree, a parallel external memory (PEM) data structure for batched search problems. This data structure is a non-trivial extension of Arge's sequential buffer tree to a private-cache multiprocessor environment and reduces the number of I/O operations by the number...... of available processor cores compared to its sequential counterpart, thereby taking full advantage of multicore parallelism. The parallel buffer tree is a search tree data structure that supports the batched parallel processing of a sequence of N insertions, deletions, membership queries, and range queries...... in the optimal OhOf(psortN + K/PB) parallel I/O complexity, where K is the size of the output reported in the process and psortN is the parallel I/O complexity of sorting N elements using P processors....

  16. The flux of organic matter through a peatland ecosystem - a molecular budget of C in peatlands

    Science.gov (United States)

    Worrall, Fred; Moody, Catherine; Clay, Gareth

    2017-04-01

    Carbon budgets of peatlands are now common and studies have considered nitrogen, oxygen and energy budgets, but no study has considered the whole composition of the organic matter as it transfers through a peatland. Organic matter samples were taken from each organic matter reservoir and fluvial transfer pathway and analysed the samples by 13C nuclear magnetic resonance (NMR) and thermogravimetric analysis. The samples analysed were: aboveground, belowground, heather, mosses and sedges, litter layer, a peat core, and monthly samples of particulate and dissolved organic matter. All organic matter samples were taken from a 100% peat catchment within Moor House National Nature Reserve in the North Pennines, UK, and collected samples were compared to standards of lignin, cellulose, humic acid and plant protein. Results showed that the thermogravimetric trace of the sampled organic matter were distinctive with the DOM traces being marked out by very low thermal stability relative other organic matter types. The peat profile shows a significant trend with depth from vegetation- to lignin-like composition. A principal component analysis (PCA) of the NMR data shows that the DOM was a mixture of plant and peat compositions reacting to form a highly evolved composition that perhaps represents autochthonous stream processes. When all traces are weighted according to the observed dry matter and carbon budgets for the catchment then it is possible to judge what has been lost in the transition through and into the ecosystem. By plotting this "lost" trace it possible to assess its composition which is either 97% cellulose and 3% humic acid or 92% and 8% lignin. The "lost" composition shows that peatland processes preferentially remove carbohydrates and retaining lignin compounds reflected. Similarly the NMR traces show that while O-alkyl functional groups were selectively lost in the transition while alkyl groups were selectively enriched.

  17. The Elusive Boreal Forest Thaumarchaeota

    Directory of Open Access Journals (Sweden)

    Malin Bomberg

    2016-06-01

    Full Text Available In recent years, Archaea have, with increasing frequency, been found to colonize both agricultural and forest soils in temperate and boreal regions. The as yet uncultured group I.1c of the Thaumarchaeota has been of special interest. These Archaea are widely distributed in mature vegetated acidic soils, but little has been revealed of their physiological and biological characteristics. The I.1c Thaumarchaeota have been recognized as a microbial group influenced by plant roots and mycorrhizal fungi, but appear to have distinct features from their more common soil dwelling counterparts, such as the Nitrosotalea or Nitrososphaera. They appear to be highly dependent on soil pH, thriving in undisturbed vegetated soils with a pH of 5 or below. Research indicate that these Archaea require organic carbon and nitrogen sources for growth and that they may live both aerobically and anaerobically. Nevertheless, pure cultures of these microorganisms have not yet been obtained. This review will focus on what is known to date about the uncultured group I.1c Thaumarchaeota formerly known as the “Finnish Forest Soil” (FFS Archaea.

  18. Preferences of Local People for the Use of Peatlands: the Case of the Richest Peatland Region in Finland

    Directory of Open Access Journals (Sweden)

    Anne Tolvanen

    2013-06-01

    Full Text Available We analyze the potential for socioeconomically sustainable peatland use by investigating conflicting interests, revealing trade-offs that people are willing to accept, and studying whether opinions are dependent on socioeconomic and demographic factors. Opinions toward five forms of peatland use and seven peatland ecosystem services were surveyed in Northern Ostrobothnia in northern Finland in 2011. Choice experiment (CE was used to reveal trade-offs in land use preferences, and groups of respondents were identified using the latent class model (LCM. We identified three classes of respondents in which environmentalists showed a high preference toward the cessation of peat production and increase of peatland restoration, the production-oriented class preferred an increase in timber and peat production areas, and the current use supporters agreed on the present land use policy. However, all respondent classes agreed on the increase of nature protection and the present level of timber production and disagreed on the cessation of restoration. The CE revealed that environmentally minded people who are likely to consider the indirect use values and existence values important are less willing to make trade-offs between ecosystem services than those who emphasize direct use values. Because peatland restoration occurs in commercially unproductive peatlands, it improves both the direct use and existence values without reducing provisioning services of peatlands. Therefore, restoration is commonly accepted by the public, in contrast to management options that involve clear trade-offs between ecosystem services. We conclude that the understanding of preferences and trade-offs can enhance sustainable land use planning. It may be unrealistic, however, to expect a solution that all interest groups would completely accept.

  19. Towards a Global High Resolution Peatland Map in 2020

    Science.gov (United States)

    Barthelmes, Alexandra; Barthelmes, Karen-Doreen; Joosten, Hans; Dommain, Rene; Margalef, Olga

    2015-04-01

    Some 3% of land area on planet Earth (approx. 4 million km2) is covered by peatlands. About 10% (~ 0.3 % of the land area) are drained and responsible for a disproportional 5 % of the global anthropogenic CO2 emissions (Victoria et al., 2012). Additionally, peatland drainage and degradation lead to land subsidence, soil degradation, water pollution, and enhanced susceptibility to fire (Holden et al., 2004; Joosten et al., 2012). The global importance of peatlands for carbon storage and climate change mitigation has currently been recognized in international policy - since 2008 organic soils are subject of discussion in the UN Framework Convention on Climate Change (UNFCCC) (Joosten, 2011). In May 2013 the European Parliament decided that the global post 2020 climate agreement should include the obligation to report emissions and removals from peatland drainage and rewetting. Implementation of such program, however, necessitates the rapid availability of reliable, comprehensive, high resolution, spatially explicit data on the extent and status of peatlands. For many reporting countries this requires an innovation in peatland mapping, i.e. the better and integrative use of novel, but already available methods and technologies. We developed an approach that links various science networks, methodologies and data bases, including those of peatland/landscape ecology for understanding where and how peatlands may occur, those of remote sensing for identifying possible locations, and those of pedology (legacy soil maps) and (palaeo-)ecology for ground truthing. Such integration of old field data, specialized knowledge, and modern RS and GIS technologies enables acquiring a rapid, comprehensive, detailed and rather reliable overview, even on a continental scale. We illustrate this approach with a high resolution overview of peatland distribution, area, status and greenhouse gas fluxes e.g. for the East African countries Rwanda, Burundi, Uganda and Zambia. Furthermore, we

  20. Towards a Global High Resolution Peatland Map in 2020

    Science.gov (United States)

    Barthelmes, Alexandra; Barthelmes, Karen-Doreen; Dommain, Rene; Margalef, Olga; Joosten, Hans

    2014-05-01

    Some 3% of land area on planet Earth (approx. 4 million km2) is covered by peatlands. About 10% (~ 0.3 % of the land area) are drained and responsible for a disproportional 5 % of the global anthropogenic CO2 emissions (Victoria et al., 2012). Additionally, peatland drainage and degradation lead to land subsidence, soil degradation, water pollution, and enhanced susceptibility to fire (Holden et al., 2004; Joosten et al., 2012). The global importance of peatlands for carbon storage and climate change mitigation has only recently been recognized in international policy - only since 2008 organic soils are subject of discussion in the UN Framework Convention on Climate Change (UNFCCC) (Joosten, 2011). In May 2013 the European Parliament decided that the global post 2020 climate agreement should include the obligation to report emissions and removals from peatland drainage and rewetting. Implementation of such program, however, necessitates the rapid availability of reliable, comprehensive, high resolution, spatially explicit data on the extent and status of peatlands. For many reporting countries this requires an innovation in peatland mapping, i.e. the better and integrative use of novel, but already available methods and technologies. We developed an approach that links various science networks, methodologies and data bases, including those of peatland/landscape ecology for understanding where and how peatlands may occur, those of remote sensing for identifying possible locations, and those of pedology (legacy soil maps) and (palaeo-)ecology for ground truthing. Such integration of old field data, specialized knowledge, and modern RS and GIS technologies enables acquiring a rapid, comprehensive, detailed and rather reliable overview, even on a continental scale. We illustrate this approach with a high resolution overview of peatland distribution, area, status and greenhouse gas fluxes for East Africa (including the Horn of Africa, the African Great Lakes region and

  1. Airborne Electromagnetic Mapping of Peatlands: a Case Study in Norway.

    Science.gov (United States)

    Silvestri, S.; Viezzoli, A.; Pfaffhuber, A. A.; Vettore, A.

    2017-12-01

    Peatlands are extraordinary reservoirs of organic carbon that can be found over a wide range of latitudes, in tropical, to temperate, to (sub)polar climates. According to some estimates, the carbon stored in peatlands almost match the atmospheric carbon pool. Peatlands degradation due to natural and anthropogenic factors releases every year large amount of CO2 and other green house gasses into the atmosphere. The conservation of peatlands is therefore a key measure to reduce emissions and to mitigate climate change. An effective plan to prevent peatlands degradation must move from a precise estimate of the volume of peat stored across vast territories around the world. One example are the several bogs that characterize large surfaces in Norway. Our research combines the use of high spatial resolution satellite optical data with Airborne Electromagnetic (AEM) and field measurements in order to map the extension and thickness of peat in Brøttum, Ringsaker province, Norway. The methodology allows us to quantify the volume of peat as well as the organic carbon stock. The variable thickness typical of Norwegian bogs allows us to test the limits of the AEM methodology in resolving near surface peat layers. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 747809. Start date: 1 June 2017. Duration: 24 months

  2. In the line of fire: the peatlands of Southeast Asia.

    Science.gov (United States)

    Page, S E; Hooijer, A

    2016-06-05

    Peatlands are a significant component of the global carbon (C) cycle, yet despite their role as a long-term C sink throughout the Holocene, they are increasingly vulnerable to destabilization. Nowhere is this shift from sink to source happening more rapidly than in Southeast Asia, and nowhere else are the combined pressures of land-use change and fire on peatland ecosystem C dynamics more evident nor the consequences more apparent. This review focuses on the peatlands of this region, tracing the link between deforestation and drainage and accelerating C emissions arising from peat mineralization and fire. It focuses on the implications of the recent increase in fire occurrence for air quality, human health, ecosystem resilience and the global C cycle. The scale and controls on peat-driven C emissions are addressed, noting that although fires cause large, temporary peaks in C flux to the atmosphere, year-round emissions from peat mineralization are of a similar magnitude. The review concludes by advocating land management options to reduce future fire risk as part of wider peatland management strategies, while also proposing that this region's peat fire dynamic could become increasingly relevant to northern peatlands in a warming world.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  3. Buffer Zone Sign Template

    Science.gov (United States)

    The certified pesticide applicator is required to post a comparable sign, designating a buffer zone around the soil fumigant application block in order to control exposure risk. It must include the don't walk symbol, product name, and applicator contact.

  4. Buffer Zone, Nicosia

    OpenAIRE

    Sorensen, Marie Louise

    2010-01-01

    Images of the United Nations Buffer Zone or Green Line which has partitioned Cyprus since 1974 The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement n° 217411.

  5. Boreal mire carbon exchange: sensitivity to climate change and anthropogenic nitrogen and sulfur deposition

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Tobias

    2010-07-01

    Boreal peatlands are important long-term sinks of atmospheric carbon and in the same time the largest natural source of methane to the atmosphere. A changing climate as well as deposition of anthropogenically derived pollutants, such as nitrogen and sulfur, has the potential to affect the processes that control the carbon exchange in peatlands. Many of the biogeochemical responses to changed environmental conditions, such as changed plant community composition, are slow and therefore long-term studies are required. In this thesis I have investigated the long-term effects of nitrogen addition, sulfur addition and greenhouse enclosures on carbon exchange by using a field manipulation experiment in a boreal minerogenic, oligotrophic mire after 10-12 years of treatment. Treatment effects on CH{sub 4} emissions, gross primary production (GPP), ecosystem respiration (Reco) and net ecosystem exchange (NEE) were estimated from 1-2 seasons of chamber flux measurements. Treatment effects on potential CH{sub 4} production and oxidation were estimated in incubations of peat from different depth intervals. The effect of nitrogen deposition on carbon accumulation was evaluated in peat cores at different depth intervals. The long-term nitrogen additions have: shifted plant community composition from being dominated by Sphagnum to being dominated by sedges and dwarf shrubs; changed mire surface microtopography so that mean water table is closer to the surface in plots with high nitrogen; increased CH{sub 4} production and emission; increased Reco slightly but have not affected GPP or NEE; reduced the peat height increment, but increased both peat bulk density and carbon content, leading to an unchanged carbon accumulation. The long-term sulfur additions have not reduced CH{sub 4} emissions, only slightly reduced CH{sub 4} production and did not have any effect on the CO{sub 2} carbon exchange. The greenhouse treatment, manifested in increased air and soil temperatures, reduced

  6. Nitrogen alters carbon dynamics during early succession in boreal forest

    Science.gov (United States)

    Steven D. Allison; Tracy B. Gartner; Michelle C. Mack; Krista McGuire; Kathleen. Treseder

    2010-01-01

    Boreal forests are an important source of wood products, and fertilizers could be used to improve forest yields, especially in nutrient poor regions of the boreal zone. With climate change, fire frequencies may increase, resulting in a larger fraction of the boreal landscape present in early successional stages. Since most fertilization studies have focused on mature...

  7. Environmental and biogeochemical controls on N2 fixation in ombrotrophic peatlands

    Science.gov (United States)

    Zivkovic, T.; Moore, T. R.

    2017-12-01

    Northern peatlands have low atmospheric nitrogen (N) inputs and acquire N mostly via biological, microbially-driven N2-fixation. Little is known about rates and controls on N2-fixation in ombrotrophic bogs. We conducted two studies to test environmental and biogeochemical controls on N2-fixation. First, we used acetylene reduction assay (ARA) calibrated with 15N2 tracer to measure N2-fixation rates in three species of Sphagnum mosses along a hydrological gradient (beaver pond, hollow and hummock in bog margin and in bog) at Mer Bleue bog from June-October 2013 and May - November 2014. We tested the following controls: moisture availability, temperature, and PAR. The largest ARA rates throughout both seasons occurred in the pond in floating Sphagnum cuspidatum mats (50.3 ± 12.9 μmol m-2 d-1 Mean ± SE), which were up to 2.5 times larger than the rates found in the driest hummock site. There was a significant seasonal peak in both years in July and early August that coincided with the peak of the air temperature. In fact, 45% of the variance of N2 fixation rates over the two field seasons was explained by rain events, water table fluctuations and the surface peat temperature (multiple regression analysis, n = 539). Our results highlight the potential impact of climate change, namely negative effects due to potential droughts and positive effect of warming, on N2 fixation patterns in ombrotrophic peatlands. Secondly, we tested stoichiometric controls (Sphagnum tissue N and phosphorous (P) ratio) of N2-fixation. In a controlled environment, we selected eight study sites along a latitudinal gradient from temperate, boreal to subarctic zone in eastern Canada. We found that decreasing N:P ratio corresponded to increasing N2-fixation. N:P explained 65% of the variance in N2-fixation in hollows but only 20% in hummocks. Changes in neither N or P concentration alone explained the increase in N2-fixation better than N:P ratio. We interpret that the difference between

  8. Boreal Forest Fire Cools Climate

    Science.gov (United States)

    Randerson, J. T.; Liu, H.; Flanner, M.; Chambers, S. D.; Harden, J. W.; Hess, P. G.; Jin, Y.; Mack, M. C.; Pfister, G.; Schuur, E. A.; Treseder, K. K.; Welp, L. R.; Zender, C. S.

    2005-12-01

    We report measurements, modeling, and analysis of carbon and energy fluxes from a boreal forest fire that occurred in interior Alaska during 1999. In the first year after the fire, ozone production, atmospheric aerosol loading, greenhouse gas emissions, soot deposition, and decreases in summer albedo contributed to a positive annual radiative forcing (RF). These effects were partly offset by an increase in fall, winter, and spring albedo from reduced canopy cover and increased exposure of snow-covered surfaces. The atmospheric lifetime of aerosols and ozone and are relatively short (days to months). The radiative effects of soot on snow are also attenuated rapidly from the deposition of fresh snow. As a result, a year after the fire, only two classes of RF mechanisms remained: greenhouse gas emissions and post-fire changes in surface albedo. Summer albedo increased rapidly in subsequent years and was substantially higher than unburned control areas (by more than 0.03) after 4 years as a result of grass and shrub establishment. Satellite measurements from MODIS of other interior Alaska burn scars provided evidence that elevated levels of spring and summer albedo (relative to unburned control areas) persisted for at least 4 decades after fire. In parallel, our chamber, eddy covariance, and biomass measurements indicated that the post-fire ecosystems switch from a source to a sink within the first decade. Taken together, the extended period of increased spring and summer albedo and carbon uptake of intermediate-aged stands appears to more than offset the initial warming pulse caused by fire emissions, when compared using the RF concept. This result suggests that management of forests in northern countries to suppress fire and preserve carbon sinks may have the opposite effect on climate as that intended.

  9. Biases in methane chamber measurements in peatlands

    Science.gov (United States)

    Juszczak, R.

    2013-03-01

    The paper presents results of CH4 emission measurements at peatland with the application of the dynamic chamber technique. The measurements were conducted in two types of chambers differing in shape, height, volume and technology used to assure their tightness. The study tested how the following factors: 1) forced chamber headspace mixing or its absence, 2) mistakes of the person conducting measurements, 3) improper application of linear technique for calculating CH4 fluxes, and 4) simulated air sampling typical for static chambers, influence the significance of errors and the underestimation rate of CH4 fluxes measured in situ. It was indicated that chamber headspace mixing allows estimating methane fluxes with a smaller error than in the case of measurements conducted without mixing, and CH4 fluxes in such conditions can be 47 to 58% higher (depending on the chamber type) than in a chamber without fans. Using dynamic chambers and a fast analyzer to measure methane fluxes allows shortening the methane measurement process to a few minutes. On the other hand, using static chambers for methane flux measurements may lead to 70% underestimation of the calculated flux.

  10. Delineation of peatland lagg boundaries from airborne LiDAR

    Science.gov (United States)

    Langlois, Melanie N.; Richardson, Murray C.; Price, Jonathan S.

    2017-09-01

    In Canada, peatlands are the most common type of wetland, but boundary delineation in peatland complexes has received little attention in the scientific literature. Typically, peatland boundaries are mapped as crisp, absolute features, and the transitional lagg zone—the ecotone found between a raised bog and the surrounding mineral land—is often overlooked. In this study, we aim (1) to advance existing approaches for detecting and locating laggs and lagg boundaries using airborne LiDAR surveys and (2) to describe the spatial distribution of laggs around raised bog peatlands. Two contrasting spatial analytical approaches for lagg detection were tested using five LiDAR-derived topographic and vegetation indices: topography, vegetation height, topographic wetness index, the standard deviation of the vegetation's height (as a proxy for the complexity of the vegetation's structure), and local indices of elevation variance. Using a dissimilarity approach (edge-detection, split-moving window analysis), no one variable accurately depicted both the lagg-mineral land and bog-lagg boundaries. Some indicators were better at predicting the bog-lagg boundary (i.e., vegetation height) and others at finding the lagg-mineral land boundary (i.e., topography). Dissimilarity analysis reinforces the usefulness of derived variables (e.g., wetness indices) in locating laggs, especially for those with weak topographic and vegetation gradients. When the lagg was confined between the bog and the adjacent upland, it took a linear form, parallel to the peatland's edge and was easier to predict. When the adjacent mineral land was flat or sloping away from the peatland, the lagg was discontinuous and intermittent and more difficult to predict.

  11. Hydrology and Geostatistics of a Vermont, USA Kettlehole Peatland

    Science.gov (United States)

    Mouser, Paula J.; Hession, W. Cully; Rizzo, Donna M.; Gotelli, Nicholas J.

    2005-01-01

    The ability to predict the response of peatland ecosystems to hydrologic changes is imperative for successful conservation and remediation efforts. We studied a 1.25-ha Vermont kettlehole bog for one year (September 2001-October 2002) to identify hydrologic controls, temporal and spatial variability in flow regimes, and to link hydrologic processes to density of the carnivorous plant ( Sarracenia purpurea), an ombrotrophic bog specialist. Using a spatial array of nested piezometers, we measured surface and subsurface flow in shallow peat and surrounding mineral soil. Our unique sampling array was based on a repeated measures factorial design with: (1) incremental distances from a central kettlehole pond; (2) equal distances between piezometers; and (3) at three depths from the peat surface. Local flow patterns in the peat were controlled by snowpack storage during winter and spring months and by evapotranspiration and pond water elevation during summer and fall months. Hydraulic head values showed a local reversal within the peat during spring months which was reflected in higher chemical constituent concentrations in these wells. On a regional scale, higher permeable soils diverted groundwater beneath the peatland to a nearby wetland complex. Horizontal water gradient magnitudes were larger in zones where the peatland was perched above regional groundwater and smaller in zones where a hydraulic connection existed between the peatland and the regional groundwater. The density of pitcher plants ( S. purpurea) is strongly correlated to the distance from a central pond, [Fe 3+], [Na +], [Cl -], and [SO42-]. The pH, conductivity, and [Ca 2+] had significant effects of depth and time with horizontal distance correlations between 20 and 26 m. The pH samples had temporal correlations between 27 and 79 days. The link between pitcher plants and ion chemistry; significant effects of peatland chemistry on distance, depth, and time; and spatial and temporal correlations are

  12. Effect of peat characteristics on P, N and DOC mobilization from re-wetted peat soils - a laboratory column study for the impacts of restoration on forestry-drained peatlands

    Science.gov (United States)

    Koskinen, Markku; Kaila, Annu; Asam, Zaki; Uusitalo, Risto; Smolander, Aino; Kiikkilä, Oili; Sarkkola, Sakari; Kitunen, Veikko; Fritze, Hannu; Nousiainen, Hannu; Tervahauta, Arja; Xiao, Liwen; Nieminen, Mika

    2016-04-01

    Peatlands are an integral part of the hydrological cycle in the boreal and temperate zones, providing ecosystem services such as water filtering. From the mid to late 1900's, over 15 ha of peatlands and wetlands were drained for forestry in the temperate and boreal zones, causing deterioration of biodiversity and loss of ecosystem services. They are now being restored in order to reverse this development. Restoration of pealands has been found to cause leaching of DOC and nutrients after water level rise and expansion of reducing conditions in the peat. A molar ratio between redox-sensitive Fe and P in the peat of export. The ratio, however, does not predict the level of P release well when the value is export of DOC via consumption of protons during reduction reactions of Fe, which reduces the soil positive charge and makes the DOC molecules more electronegative, which makes them repeal each other. An incubation experiment was conducted to study factors affecting P, N and DOC release from inundated peat from forestry-drained peatlands of several fertility classes. It was discovered that in addition to Fe, a high ratio of Al to P in the peat reduces P export under reducing conditions. High peat Fe content was also found to predict high DOC export, suggesting that minerotrophic sites are susceptible to post-restoration DOC leaching due to the Fe in their peat. Microbial biomass and mineralization potential of the peat were not found to be important for the export of DOC or P. High NO3 content in the peat predicted high export of NH4 under reducing conditions.

  13. Calibration of Rainfall-Runoff Parameters in Peatlands

    Science.gov (United States)

    Walle Menberu, Meseret; Torabi Haghighi, Ali; Kløve, Bjørn

    2013-04-01

    Finland is a country where its possession of peatlands compared to the total surface area of the country puts in the leading categories globally in peatland possession having 33.5% of its total land area covered with peatlands. Recent interest has grown in using peatlands as temporary flood control barriers by taking advantage of the high water holding capacity of peat soils. Water holding capacity of peat soils enables to reduce high rate of runoff and peak flow which might endanger downstream of the flow and in the process of doing that, the rest of the water leaving the peatland areas is less polluted due to the wetlands' potential in purifying polluted water. Therefore, in order to understand how capable enough peatlands are in holding water by reducing the peak flow or slowing down the rate of runoff, this paper analyses the rainfall-runoff phenomena in peatland catchments through important runoff parameters. Among the most important runoff parameters; the initial abstraction, the curve number and lag time are selected for this paper due to their highest impact on rainfall-runoff process. For this study, two peatland catchments of drained and pristine are selected. Managing to explain the initial abstraction and curve number behaviour in the catchments will able to clearly understand and as well predict the rainfall-runoff process in the catchments. In the selected study sites, observed rainfall and runoff data are collected. The study sites are modelled with the help of Arc-GIS and Hec-GeoHMS and from that are exported to HEC-HMS (Hydrologic modelling software) for rainfall-runoff analysis. The two important parameters; the initial abstraction and curve number are used to calibrate the model. And finally, the parameters that have given the best fit between the modelled and observed rainfall-runoff process are suggested for the study sites. Having these parameters estimated eases to understand rainfall-runoff process in the catchments for whatsoever purpose

  14. Northern peatland carbon stocks and dynamics: a review

    Directory of Open Access Journals (Sweden)

    Z. C. Yu

    2012-10-01

    Full Text Available Peatlands contain a large belowground carbon (C stock in the biosphere, and their dynamics have important implications for the global carbon cycle. However, there are still large uncertainties in C stock estimates and poor understanding of C dynamics across timescales. Here I review different approaches and associated uncertainties of C stock estimates in the literature, and on the basis of the literature review my best estimate of C stocks and uncertainty is 500 ± 100 (approximate range gigatons of C (Gt C in northern peatlands. The greatest source of uncertainty for all the approaches is the lack or insufficient representation of data, including depth, bulk density and carbon accumulation data, especially from the world's large peatlands. Several ways to improve estimates of peat carbon stocks are also discussed in this paper, including the estimates of C stocks by regions and further utilizations of widely available basal peat ages.

    Changes in peatland carbon stocks over time, estimated using Sphagnum (peat moss spore data and down-core peat accumulation records, show different patterns during the Holocene, and I argue that spore-based approach underestimates the abundance of peatlands in their early histories. Considering long-term peat decomposition using peat accumulation data allows estimates of net carbon sequestration rates by peatlands, or net (ecosystem carbon balance (NECB, which indicates more than half of peat carbon (> 270 Gt C was sequestrated before 7000 yr ago during the Holocene. Contemporary carbon flux studies at 5 peatland sites show much larger NECB during the last decade (32 ± 7.8 (S.E. g C m−2 yr–1 than during the last 7000 yr (∼ 11 g C m−2 yr–1, as modeled from peat records across northern peatlands. This discrepancy highlights the urgent need for carbon accumulation data and process understanding, especially at decadal and centennial timescales

  15. Microform-related community patterns of methane-cycling microbes in boreal Sphagnum bogs are site specific.

    Science.gov (United States)

    Juottonen, Heli; Kotiaho, Mirkka; Robinson, Devin; Merilä, Päivi; Fritze, Hannu; Tuittila, Eeva-Stiina

    2015-09-01

    Vegetation and water table are important regulators of methane emission in peatlands. Microform variation encompasses these factors in small-scale topographic gradients of dry hummocks, intermediate lawns and wet hollows. We examined methane production and oxidization among microforms in four boreal bogs that showed more variation of vegetation within a bog with microform than between the bogs. Potential methane production was low and differed among bogs but not consistently with microform. Methane oxidation followed water table position with microform, showing higher rates closer to surface in lawns and hollows than in hummocks. Methanogen community, analysed by mcrA terminal restriction fragment length polymorphism and dominated by Methanoregulaceae or 'Methanoflorentaceae', varied strongly with bog. The extent of microform-related variation of methanogens depended on the bog. Methanotrophs identified as Methylocystis spp. in pmoA denaturing gradient gel electrophoresis similarly showed effect of bog, and microform patterns were stronger within individual bogs. Our results suggest that methane-cycling microbes in boreal Sphagnum bogs with seemingly uniform environmental conditions may show strong site-dependent variation. The bog-intrinsic factor may be related to carbon availability but contrary to expectations appears to be unrelated to current surface vegetation, calling attention to the origin of carbon substrates for microbes in bogs. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Workshop on moisture buffer capacity

    DEFF Research Database (Denmark)

    2003-01-01

    Summary report of a Nordtest workshop on moisture buffer capacity held at Copenhagen August 21-22 2003......Summary report of a Nordtest workshop on moisture buffer capacity held at Copenhagen August 21-22 2003...

  17. Parameterisation of aerodynamic roughness over boreal

    NARCIS (Netherlands)

    Nakai, T.; Sumida, A.; Daikoku, K.; Matsumoto, K.; van der Molen, M.K.; Kodama, Y.; Kononov, A.V.; Maximov, T.C.; Dolman, A.J.; Yabuki, H.; Hara, T.; Ohta, T.

    2008-01-01

    Roughness length and zero-plane displacement over boreal, cool- and warm-temperate forests were observed and parameterised using forest structure data. Previous models for roughness length and zero-plane displacement using leaf area index and frontal area index did not describe intersite

  18. Natural glyphosate tolerance in sweetvetch Hedysarum boreale

    Science.gov (United States)

    Sweetvetch (Hedysarum boreale Nutt.) a legume native to the western USA and Canada, is purported to have tolerance to glyphosate {N-(phosphonomethyl) glycine} herbide. Eight rates of glyphosate were tested for their effect on biomass yield (BMY) and survival of seedlings and mature plants. Treatme...

  19. Peatlands as a unique climatic hotspots

    Science.gov (United States)

    Slowinska, S.; Marcisz, K.; Slowinski, M. M.; Blazejczyk, K.; Lamentowicz, M.

    2017-12-01

    Peatlands are unique environments, often acting as microrefugia of various taxa. High groundwater table, organic soils, specific vegetation and topography are important determinants of their local climatic conditions. However, relations between those determinants are not stable. For example, seasonal changes in weather patterns, hydrological dynamics, and local vegetation may alter microclimate. Additionally, long-term changes are important factor, as for example overgrowing due to significant change of microclimate conditions, what in turn changes geochemical and biological processes in the peat layer. We have been investigating interactions between abiotic and biotic factors of a small Sphagnum mire (ca. 6.0 ha) for over ten years now. The mire is located in Poland in transitional temperate climate and is the only place in polish lowlands where glacial relict Betula nana occurs. Identification of local climate of the mire, its microclimatic differentiation and its influence on surroundings were objectives of the study. We recorded water level fluctuations, photosynthetically active radiation (PAR), air temperature and humidity, and peat temperature at five monitoring plots at the mire and observed significant differences between them. We also investigated Sphagnum mosses growth and testate amoeba diversity and community structure to understand biological response of those differences. We observed that local climate of the mire was significantly different from open area reference place, it was much colder especially during nights. The average minimal temperature at the height 30 cm for growing seasons 2010-2012 was 3.7oC lower there and ground frosts occurred even in the summer. The climate of the mire affected the forest directly adjacent to it, and depending on weather conditions the strength and the distance of this interaction was different. Our results show that micro-environmental changes affects on biological processes and should be taken into consideration

  20. Quantification of nitrous oxide (N2O) uptake in boreal forest soils by combining isotopic and microbial approaches

    Science.gov (United States)

    Welti, Nina; Siljanen, Henri; Biasi, Christina; Martikainen, Pertti

    2015-04-01

    The amount of nitrous oxide (N2O) produced during denitrification is highly regulated by the function of the last reductase enzyme (nitrous oxide reductase; nosZ) which is known to be inhibited by oxygen, low pH and low temperature, which are typical characteristics of boreal peatlands and some forest soils. Denitrification can be a sink for N2O, if the last step of the process is very efficient. Generally, the N2O sink potential of soils is poorly constrained; while uptake rates were often observed in field studies, the data was rejected as analytical errors or artifacts. This led to the question: when and by which mechanisms does N2O uptake occur in natural boreal forests? In order to answer this question, we established a 15N2O tracer experiment where the production of 15N2 and consumption of 15N2O were quantified in aerobic and anaerobic conditions followed by abundance analyses of genes and transcripts. The laboratory incubations were complemented with molecular approaches which linked the N2O dynamics with individual microbial species and transcriptomics. The abundance of denitrifying functional genes and gene transcripts reducing nitrous oxide (nosZ) were quantified throughout the experiment with sacrificial sampling in order to solve the role of typical and atypical denitrifying populations on N2O consumption. For this study, a Finnish boreal spruce forest and peatland were selected where previous field measurements have revealed negative N2O fluxes (i.e. N2O uptake). Soil horizons were selected in both the organic layer and uppermost mineral soil layer and in the peat layers 0-10 cm and 10-20 cm, where oxygen is limited and N2O uptake occurs at the field scale. 15N-N2O (99 AT %) was added to an initial N2O concentration of 1.7 ppm. All soils were flushed with 100% helium prior to the N2O addition to ensure that the NO3 stocks were reduced, leaving the added N2O as the sole activator of N2O uptake and primary N source. Aerobic N2O uptake was quantified in

  1. Fire Distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with Special Emphasis on Peatland Fires.

    Science.gov (United States)

    Miettinen, Jukka; Shi, Chenghua; Liew, Soo Chin

    2017-10-01

    In this paper, we analyze the spatio-temporal distribution of vegetation fires in Peninsular Malaysia, Sumatra, and Borneo in the severe El Niño year of 2015, concentrating on the distribution of fires between mineral soils and peatland areas, and between land cover types in peatland areas. The results reveal that 53% of all Moderate Resolution Imaging Spectroradiometer (MODIS) fire detections were recorded in peatlands that cover only 12% of the study area. However, fire occurrence in the peatland areas was highly dependent on land cover type. Pristine peat swamp forests (PSF) experienced only marginal fire activity (30 fire detections per 1000 km 2 ) compared to deforested undeveloped peatlands (831-915 fire detections per 1000 km 2 ). Our results also highlight the extreme fire vulnerability of the southern Sumatran and Bornean peatlands under strong El Niño conditions: 71% of all peatland hotspots were detected in the provinces of South Sumatra and Central Kalimantan, which contain 29% of peatlands in the study area. Degraded PSF and all deforested peatland land cover types, including managed areas, in the two provinces were severely affected, demonstrating how difficult it is to protect even managed drained agricultural areas from unwanted fires during dry periods. Our results thereby advocate rewetting and rehabilitation as the primary management option for highly fire prone degraded undeveloped peatland areas, whenever feasible, as a means to reduce fire risk during future dry episodes.

  2. Modelling Peatland Hydrology: Three cases from Northern Europe

    NARCIS (Netherlands)

    Querner, E.P.; Mioduszewski, W.; Povilaitis, A.; Slesicka, A.

    2010-01-01

    Many of the peatlands that used to extend over large parts of Northern Europe have been reclaimed for agriculture. Human influence continues to have a major impact on the hydrology of those that remain, affecting river flow and groundwater levels. In order to understand this hydrology it is

  3. Geomorphology and landscape organization of a northern peatland complex

    Science.gov (United States)

    Richardson, M. C.

    2012-12-01

    The geomorphic evolution of northern peatlands is governed by complex ecohydrological feedback mechanisms and associated hydro-climatic drivers. For example, prevailing models of bog development (i.e. Ingram's groundwater mounding hypothesis and variants) attempt to explicitly link bog dome characteristics to the regional climate based on analytical and numerical models of lateral groundwater flow and the first-order control of water table position on rates of peat accumulation. In this talk I will present new results from quantitative geomorphic analyses of a northern peatland complex at the De Beers Victor diamond mine site in the Hudson Bay Lowlands of northern Ontario. This work capitalizes on spatially-extensive, high-resolution topographic (LiDAR) data to rigorously test analytical and numerical models of bog dome development in this landscape. The analysis and discussion are then expanded beyond individual bog formations to more broadly consider ecohydrological drivers of landscape organization, with implications for understanding and modeling catchment-scale runoff response. Results show that in this landscape, drainage patterns exhibit relatively well-organized characteristics consistent with observed runoff responses in six gauged research catchments. Interpreted together, the results of these geomorphic and hydrologic analyses help refine our understanding of water balance partitioning among different landcover types within northern peatland complexes. These findings can be used to help guide the development of appropriate numerical model structures for hydrologic prediction in ungauged peatland basins of northern Canada.

  4. Decreased summer water table depth affects peatland vegetation

    NARCIS (Netherlands)

    Breeuwer, A.J.G.; Robroek, B.J.M.; Limpens, J.; Heijmans, M.M.P.D.; Schouten, M.G.C.; Berendse, F.

    2009-01-01

    Climate change can be expected to increase the frequency of summer droughts and associated low water tables in ombrotrophic peatlands. We studied the effects of periodic water table drawdown in a mesocosm experiment. Mesocosms were collected in Southern Sweden, and subsequently brought to an

  5. Vegetation management with fire modifies peatland soil thermal regime.

    Science.gov (United States)

    Brown, Lee E; Palmer, Sheila M; Johnston, Kerrylyn; Holden, Joseph

    2015-05-01

    Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from vegetation management. Compared to plots burned 15 + years previously, plots recently burned (vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime change for carbon processing and release, and hydrological processes, in these peatlands. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Establishing trees on cut-over peatlands in eastern Canada

    Directory of Open Access Journals (Sweden)

    J. Bussières

    2008-12-01

    Full Text Available Four major tree-planting trials on cut-over peatlands in eastern Canada were surveyed in 2002, in order to evaluate the potential use of trees in rehabilitation following horticultural peat extraction. At one of the sites, an experiment to determine the appropriate fertilisation rate for trees planted on cut-over peatlands was also conducted over several years. Tree performance was assessed by measuring survival, total height and annual growth of red maple (Acer rubrum L., tamarack (Larix laricina (Du Roi Koch., black spruce (Picea mariana (Mill. B.S.P., jack pine (Pinus banksiana Lamb. and hybrid poplar (Populus spp.. Establishment and growth of tamarack and black spruce in cut-over peatlands showed good potential when compared to performance in conventional forestry plantations. Red maple and jack pine gave poor productivity but promising survival, whilst hybrid poplar plantings failed. Adding nutrients was essential for growth but dosages above 122.5 g of 3.4N-8.3P-24.2K per tree gave no further improvement. Therefore, several different tree species can be planted to reclaim cut-over peatlands in eastern Canada, so long as the appropriate species are chosen and nutrients are provided.

  7. Beaver Mediated Water Table Dynamics in Mountain Peatlands

    Science.gov (United States)

    Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.

    2016-12-01

    Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.

  8. Assessing Biogenic Methane Content in Various Peatland Landforms Using GPR

    Science.gov (United States)

    Parsekian, A.; Comas, X.; Nolan, J.; Glaser, P.; Chanton, J.; Slater, L.

    2008-12-01

    Northern peatlands are known to be a source of biogenic methane, although efforts to accurately quantify their impact on the global carbon budget are ongoing. An important step towards a better understanding of the dynamics of methane releases to the atmosphere is to identify peatland landforms (i.e. raised bog, fen water track, open pools) where gas is accumulating in the subsurface compared to places where there is little subsurface methane. Additionally, it is important to identify areas of the vertical peat profile where high volumes of free-phase methane are present. In this study, we use ground penetrating radar (GPR) to acquire data on where free-phase gas (FPG) methane may be accumulating within the peat strata, and then make comparisons between various peatland landforms. 1-dimensional GPR common mid-point velocity analysis has been coupled with innovative subsurface gas sampling to identify the areas within northern peatlands that have significant gas trapped below confining layers in the subsurface. Gas samples are evaluated for total recovered volume and total methane concentration in order to support the GPR findings. Traditional 2-dimensional radar profiles were used to identify and estimate the depth at which laterally continuous woody confining layers are present, and therefore zones where gas can be expected to be found. By using 1-D, 2-D and direct sampling methods, it is now possible to identify potential areas of gas accumulation with a higher level of confidence.

  9. Trajectories of ecosystem service change in restored peatlands

    Science.gov (United States)

    Evans, Martin; Shuttleworth, Emma; Pilkington, Mike; Allott, Tim; Walker, Jonathan; Spencer, Tom

    2017-04-01

    Peatlands provide a wide range of ecosystem services but across the world degradation of these systems through a range of human impacts has had a negative effect on the provision of these services. A wide variety of peatland restoration approaches have been developed with the aim of mitigating these impacts. Understanding of trajectories of change in ecosystem structure and function is central to evaluating the efficacy of these restoration methods. This paper considers data on post-restoration trajectories of water table change, vegetation recovery, runoff production and water quality based on extensive data from peatland restoration work in the southern Pennines of the U.K. Data have been compiled from multiple restoration initiatives undertaken across the region, spanning up to 12 years post restoration. The data show variations in the time scale of ecosystem change which are indicative of the process basis of the ecosystem trajectories. Rapid changes in runoff are controlled by physical changes to the peatland surface. These are contrasted with longer term evolution of vegetation and water table behaviour which suggest ongoing recovery as the ecosystem adjusts to the restoration process. In order to assess restoration of ecosystem function, and so of ecosystem services, it is important that the process links between ecosystem structure and function are well understood. Establishing typical restoration trajectories can be of practical use in determining restoration project milestones, and can also provide insight into the nature of these process links.

  10. The peatlands in France: localization, characteristics, use and conservation

    Energy Technology Data Exchange (ETDEWEB)

    Francez, A.J.; Bignon, J.J. (C.E.R.E.M.C.A, Aydad (France)); Mollet, A.M. (Station Biologique, Besse-en-Chandesse (France))

    1992-01-01

    In France there are two main peatland-types: topogenous Carex-fens, in the north and east of the country, and ombrogenous Sphagnum-bogs in the medium montanes. In total, there are about 100 000 ha peatlands, which correspond to a volume of 2.0 billion m3. The amount of extracted peat in France was, in the eighties, 200 000 t (dry matter). Peat is essentially used as fuel or, mixed with German and Soviet peat, as soilless substrates. The fens of the floodplains have long been used for market gardening (tradition of 'hortillonnages' in Amiens or Bourges). Two national surveys were made during energy crises, during the Second World War and at the end of the 1970s following the oil shortage. The law of July 1976 on the preservation of the countryside lists 19 peatlands plant species that are nationally protected. Ten peatlands have been classified as nature reserves and two projects are in preparation.

  11. IMPROVING WATER REGIME IN MLACA TĂTARILOR PEATLAND

    Directory of Open Access Journals (Sweden)

    Ionuţ Cristian Moale

    2017-07-01

    Full Text Available Following the project Restoration strategies of the deteriorated peatland ecosystems from Romania (PeatRo, it has been shown that Romania has 32 peatlands that need hydrological restoration taking into account the increasing of human activities and changes in land use. These peatlands are distributed in the Alpine region (30 and in the Continental region (2. In this paper, we started from the assumption that the evapotranspiration process can be reduced by decreasing the spread of colonizing species Betula pendula and Rhamnus frangula, in order to reduce the evapotranspiration rate. To establish the conditions for hydrology restoration, we used a conceptual model applied to the peatland functioning in order to quantify the water inflows (from runoff and rainfall and outflows (overbank outflows, by evaporation, by colonizing species transpiration. To estimate the rate of evapotranspiration for these species, we used in the model as input data: height and diameter of the individuals, the number of individuals, the leaf area of individual, wind speed, temperature, humidity, the number of sun hours / day, the surface of the water table. Model results show that evapotranspiration process can be reduced after implementation of specific restoration activities, demonstrating a real improvement on water regime.

  12. Browning boreal forests of western North America

    Science.gov (United States)

    Verbyla, David

    2011-12-01

    The GIMMS NDVI dataset has been widely used to document a 'browning trend' in North American boreal forests (Goetz et al 2005, Bunn et al 2007, Beck and Goetz 2011). However, there has been speculation (Alcaraz-Segura et al 2010) that this trend may be an artifact due to processing algorithms rather than an actual decline in vegetation activity. This conclusion was based primarily on the fact that GIMMS NDVI did not capture NDVI recovery within most burned areas in boreal Canada, while another dataset consistently showed post-fire increasing NDVI. I believe that the results of Alcaraz-Segura et al (2010) were due simply to different pixel sizes of the two datasets (64 km2 versus 1 km2 pixels). Similar results have been obtained from tundra areas greening in Alaska, with the results simply due to these pixel size differences (Stow et al 2007). Furthermore, recent studies have documented boreal browning trends based on NDVI from other sensors. Beck and Goetz (2011) have shown the boreal browning trend derived from a different sensor (MODIS) to be very similar to the boreal browning trend derived from the GIMMS NDVI dataset for the circumpolar boreal region. Parent and Verbyla (2010) found similar declining NDVI patterns based on NDVI from Landsat sensors and GIMMS NDVI in boreal Alaska. Zhang et al (2008) found a similar 'browning trend' in boreal North America based on a production efficiency model using an integrated AVHRR and MODIS dataset. The declining NDVI trend in areas of boreal North America is consistent with tree-ring studies (D'Arrigo et al 2004, McGuire et al 2010, Beck et al 2011). The decline in tree growth may be due to temperature-induced drought stress (Barber et al 2000) caused by higher evaporative demands in a warming climate (Lloyd and Fastie 2002). In a circumpolar boreal study, Lloyd and Bunn (2007) found that a negative relationship between temperature and tree-ring growth occurred more frequently in warmer parts of species' ranges

  13. Calculating carbon budgets of wind farms on Scottish peatlands

    Directory of Open Access Journals (Sweden)

    D.R. Nayak

    2010-04-01

    Full Text Available The reliability of calculation methods for the carbon emission savings to be achieved in Scotland by replacing power generated from fossil fuels (and other more conventional sources with that produced by large-scale wind farm developments is a cause for concern, largely in relation to wind farms sited on peatlands. Scottish Government policy is to deliver renewable energy without environmental harm, and to meet biodiversity objectives including the conservation of designated wildlife sites and important habitats such as peatlands. The implications for carbon emissions of developing a wind farm are, therefore, just one aspect of the suite of considerations that the planning system takes into account. This paper presents a simple methodology for prospectively calculating the potential carbon emission savings to be realised by developing wind farms on peatland, forestland or afforested peatland. The total carbon emission savings of an individual wind farm are estimated by accounting emissions from the power source that will be replaced by wind power against: loss of carbon due to production, transportation, erection, operation and dismantling of the wind farm components (the infrastructure overhead; loss of carbon due to backup power generation; loss of carbon stored in peat and forest; loss of carbon-fixing potential of peatland and forest; and carbon savings due to habitat improvement. Most of the carbon losses are determined by national infrastructure, but those from peat soil and plants are influenced by site selection and management practices. The extent of drainage around each constructed element of the wind farm is a major factor for greenhouse gas emissions. Consideration of an example site with a low extent of drainage, where management practices that minimise net carbon losses (e.g. undrained floating roads, habitat improvement and site restoration on decommissioning were used indicates that emissions from the soil and plants may cancel

  14. Annual and monthly range fidelity of female boreal woodland caribou in respons to petroleum development

    Directory of Open Access Journals (Sweden)

    Boyan V. Tracz

    2010-03-01

    Full Text Available Petroleum-sector development in northern Alberta, Canada has been implicated as one factor influencing the decline of boreal woodland caribou (Rangifer tarandus caribou. Previous research showed that caribou are farther from petroleum-sector disturbances within their home range than expected. As petroleum development increases, the distance caribou can selectively place themselves relative to industrial disturbance must decrease, because distances between disturbances decrease. Conceptually, the number of local disturbances becomes so large that caribou either abandon their local avoidance behaviour or leave their traditional home range. We evaluated whether an intense petroleum- development event in northern Alberta was sufficient to result in home range abandonment by female woodland caribou. Using well locations as an index of petroleum development, we found that caribou studied from 1992 to 2000 did not change their annual or monthly range fidelity as a function of development intensity. Caribou remained in peatland complexes containing a large number of petroleum-sector disturbances rather than move to new areas, presumably because the risks of dispersing across upland habitat to reach other suitable habitat are high. Such range fidelity may have fitness consequences for woodland caribou if they suffer greater predation in areas where petroleum development is occurring.

  15. Annual carbon balance of a peatland 10 yr following restoration

    Directory of Open Access Journals (Sweden)

    M. Strack

    2013-05-01

    Full Text Available Undisturbed peatlands represent long-term net sinks of carbon; however, peat extraction converts these systems into large and persistent sources of greenhouse gases. Although rewetting and restoration following peat extraction have taken place over the last several decades, very few studies have investigated the longer term impact of this restoration on peatland carbon balance. We determined the annual carbon balance of a former horticulturally-extracted peatland restored 10 yr prior to the study and compared these values to the carbon balance measured at neighboring unrestored and natural sites. Carbon dioxide (CO2 and methane (CH4 fluxes were measured using the chamber technique biweekly during the growing season from May to October 2010 and three times over the winter period. Dissolved organic carbon (DOC export was measured from remnant ditches in the unrestored and restored sites. During the growing season the restored site had greater uptake of CO2 than the natural site when photon flux density was greater than 1000 μmol m−2 s−1, while the unrestored site remained a source of CO2. Ecosystem respiration was similar between natural and restored sites, which were both significantly lower than the unrestored site. Methane flux remained low at the restored site except from open water pools, created as part of restoration, and remnant ditches. Export of DOC during the growing season was 5.0 and 28.8 g m−2 from the restored and unrestored sites, respectively. Due to dry conditions during the study year all sites acted as net carbon sources with annual balance of the natural, restored and unrestored sites of 250.7, 148.0 and 546.6 g C m−2, respectively. Although hydrological conditions and vegetation community at the restored site remained intermediate between natural and unrestored conditions, peatland restoration resulted in a large reduction in annual carbon loss from the system resulting in a carbon balance more similar to a natural

  16. Greenhouse impact of Finnish peatlands 1900-2100

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Minkkinen, K. [Helsinki Univ. (Finland). Dept. of Ecology; Tolonen, K.; Turunen, J. [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P.; Nykaenen, H. [National Public Health Inst. Kuopio (Finland). Dept. of Environmental Microbiology; Sinisalo, J.; Savolainen, I. [VTT Energy, Espoo (Finland)

    1996-12-31

    Northern peatlands are significant in regulating the global climate. While sequestering carbon dioxide (CO{sub 2}, ca. 100 Tg C a{sup -} {sup 1}), these peatlands release cat 24-39 Tg methane (CH{sub 4}) annually to the atmosphere. This is 5-15 % of the annual anthropogenic and 10-35 % of the annual natural CH4 emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level drawdown after land use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Currently, some 15 million hectares of northern peatlands and other wetlands have been drained for forestry. More than 90 % of this area is found in Scandinavia and the former Soviet Union. The area drained annually has, however, been declining during the last two decades and, in Finland for instance the annual drained area of nearly 300 000 hectares in the late 1960`s has decreased to cat 35 000 hectares in the early 1990`s. Radiative forcing is the change in the radiative energy balance at the tropopause and it is the driving force behind the greenhouse effect. It is a common quantity for most greenhouse gases and takes into account the dynamics of the greenhouse impact. Radiative forcing model was used to compute the greenhouse impact of the drainage of the peatlands, combining the effects of CO{sub 2} and CH4 balances; N{sub 2}O was not included in the calculations because its contribution is minor. (14 refs.)

  17. Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing

    Science.gov (United States)

    Rajan K. Chakrabarty; Madhu Gyawali; Reddy L. N. Yatavelli; Apoorva Pandey; Adam C. Watts; Joseph Knue; Lung-Wen A. Chen; Robert R. Pattison; Anna Tsibart; Vera Samburova; Hans Moosmuller

    2016-01-01

    The surface air warming over the Arctic has been almost twice as much as the global average in recent decades. In this region, unprecedented amounts of smoldering peat fires have been identified as a major emission source of climate-warming agents. While much is known about greenhouse gas emissions from these fires, there is a knowledge gap on the nature of particulate...

  18. Managing erosion, sediment transport and water quality in drained peatland catchments

    OpenAIRE

    Marttila, H. (Hannu)

    2011-01-01

    Abstract Peatland drainage changes catchment conditions and increases the transport of suspended solids (SS) and nutrients. New knowledge and management methods are needed to reduce SS loading from these areas. This thesis examines sediment delivery and erosion processes in a number of peatland drainage areas and catchments in order to determine the effects of drainage on sediment and erosion dynamics and mechanics. Results from studies performed in peat mining, peatland forestry and distu...

  19. Buffer moisture protection system

    International Nuclear Information System (INIS)

    Ritola, J.; Peura, J.

    2013-11-01

    With the present knowledge, bentonite blocks have to be protected from the air relative humidity and from any moisture leakages in the environment that might cause swelling of the bentonite blocks during the 'open' installation phase before backfilling. The purpose of this work was to design the structural reference solution both for the bottom of the deposition hole and for the buffer moisture protection and dewatering system with their integrated equipment needed in the deposition hole. This report describes the Posiva's reference solution for the buffer moisture protection system and the bottom plate on basis of the demands and functional requirements set by long-term safety. The reference solution with structural details has been developed in research work made 2010-2011. The structural solution of the moisture protection system has not yet been tested in practice. On the bottom of the deposition hole a copper plate which protects the lowest bentonite block from the gathered water is installed straight to machined and even rock surface. The moisture protection sheet made of EPDM rubber is attached to the copper plate with an inflatable seal. The upper part of the moisture protection sheet is fixed to the collar structures of the lid which protects the deposition hole in the disposal tunnel. The main function of the moisture protection sheet is to protect bentonite blocks from the leaking water and from the influence of the air humidity at their installation stage. The leaking water is controlled by the dewatering and alarm system which has been integrated into the moisture protection liner. (orig.)

  20. Buffer capacity of biologics--from buffer salts to buffering by antibodies.

    Science.gov (United States)

    Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick

    2013-01-01

    Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. Copyright © 2013 American Institute of Chemical Engineers.

  1. Macroinvertebrate community assembly in pools created during peatland restoration

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Lee E., E-mail: l.brown@leeds.ac.uk; Ramchunder, Sorain J.; Beadle, Jeannie M.; Holden, Joseph

    2016-11-01

    Many degraded ecosystems are subject to restoration attempts, providing new opportunities to unravel the processes of ecological community assembly. Restoration of previously drained northern peatlands, primarily to promote peat and carbon accumulation, has created hundreds of thousands of new open water pools. We assessed the potential benefits of this wetland restoration for aquatic biodiversity, and how communities reassemble, by comparing pool ecosystems in regions of the UK Pennines on intact (never drained) versus restored (blocked drainage-ditches) peatland. We also evaluated the conceptual idea that comparing reference ecosystems in terms of their compositional similarity to null assemblages (and thus the relative importance of stochastic versus deterministic assembly) can guide evaluations of restoration success better than analyses of community composition or diversity. Community composition data highlighted some differences in the macroinvertebrate composition of restored pools compared to undisturbed peatland pools, which could be used to suggest that alternative end-points to restoration were influenced by stochastic processes. However, widely used diversity metrics indicated no differences between undisturbed and restored pools. Novel evaluations of restoration using null models confirmed the similarity of deterministic assembly processes from the national species pool across all pools. Stochastic elements were important drivers of between-pool differences at the regional-scale but the scale of these effects was also similar across most of the pools studied. The amalgamation of assembly theory into ecosystem restoration monitoring allows us to conclude with more certainty that restoration has been successful from an ecological perspective in these systems. Evaluation of these UK findings compared to those from peatlands across Europe and North America further suggests that restoring peatland pools delivers significant benefits for aquatic fauna by

  2. Two-Buffer Simulation Games

    Directory of Open Access Journals (Sweden)

    Milka Hutagalung

    2016-07-01

    Full Text Available We consider simulation games played between Spoiler and Duplicator on two Büchi automata in which the choices made by Spoiler can be buffered by Duplicator in two different buffers before she executes them on her structure. Previous work on such games using a single buffer has shown that they are useful to approximate language inclusion problems. We study the decidability and complexity and show that games with two buffers can be used to approximate corresponding problems on finite transducers, i.e. the inclusion problem for rational relations over infinite words.

  3. Using fractional order method to generalize strengthening generating operator buffer operator and weakening buffer operator

    OpenAIRE

    Wu, L.; Liu, S.; Yang, Yingjie

    2016-01-01

    Traditional integer order buffer operator is extended to fractional order buffer operator, the corresponding relationship between the weakening buffer operator and the strengthening buffer operator is revealed. Fractional order buffer operator not only can generalize the weakening buffer operator and the strengthening buffer operator, but also realize tiny adjustment of buffer effect. The effectiveness of GM(1,1) with the fractional order buffer operator is validated by six cases.

  4. Mechanisms of buffer therapy resistance.

    Science.gov (United States)

    Bailey, Kate M; Wojtkowiak, Jonathan W; Cornnell, Heather H; Ribeiro, Maria C; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J

    2014-04-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  5. Neotropical peatland methane emissions along a vegetation and biogeochemical gradient

    OpenAIRE

    Winton, R. Scott; Flanagan, Neal; Richardson, Curtis J.

    2017-01-01

    Tropical wetlands are thought to be the most important source of interannual variability in atmospheric methane (CH4) concentrations, yet sparse data prevents them from being incorporated into Earth system models. This problem is particularly pronounced in the neotropics where bottom-up models based on water table depth are incongruent with top-down inversion models suggesting unaccounted sinks or sources of CH4. The newly documented vast areas of peatlands in the Amazon basin may account for...

  6. Design of Spillway Structures of Peatland Rewetting systems

    Directory of Open Access Journals (Sweden)

    Sainov Mihail Petrovich

    2014-03-01

    Full Text Available In summer 2010 drought and heat weather cause numerous peat fires. During two months Moscow was shrouded in acid smoke. To prevent such situations government of Moscow region decided to rewet previously drained peatlands. Peatland rewetting systems can be divided into two types. The first type is watering system based on previously used drainage system. The main idea of this method is rising of groundwater levels with the help of special water retaining constructions installed in drainage canals. The design of water receivers allows keeping up water level in canals and draining excesses. There are two types of water receivers: dock-type water receiver and water receiver as a portal to the gate. The choice of one or another type of water receiver depends on the canal depth. If it is less than 1.5 m, we apply portal construction. At the depth of more than 1.5 m the mine water receiver is more suitable. The second way of watering previously drained peatlands is the creation of ponds, dams on streams and small rivers. Special discharge structures increase water level in the river upstream. In downstream water level rises due to the redistribution of the flow. As a result, the groundwater level rises and peat become watered. There are two types of spillway structures: with direct overflow wall and labyrinth overflow wall. Structure with direct overflow wall is applicable on small rivers. In narrow alignments with high consumptions it is better to use another type of weir. As output it is necessary to notice that all constructions used in peatlands watering were designed as simple and reliable as possible. It is so because unpredictable weather conditions can cause beyond the design flows so weirs must have necessary reserve of passing costs.

  7. The Role of Peat Layers on Iron Dynamics in Peatlands

    Directory of Open Access Journals (Sweden)

    Arifin Fahmi

    2010-09-01

    Full Text Available The research aimed to study the effect of peat thickness and humification stage of the peat material on Fe solubility at the peatlands with sulfidic material as substratum. The research was conducted at three conditionals of ombrogen peatlands ie ; deep, moderate and shallow peat. Soil samples were collected by using peat borer according to interlayer (the border layer of peat and mineral layer and conditional of soil horizons. The sample point depth were (cm G.s2 : 25, G.s1 : 50, Int.s : 70, M.s1 : 90 and M.s2 : 100 for shallow peat, G.m2 : 47, G.m1 : 100, Int.m : 120 and M.m1 : 135 for moderate peat and G.d3 : 50, G.d2 : 150, G.d1 : 200, Int.d : 220 and M.d1 : 235 for deep peat respectively. The results showed that most of Fe on the tested soils was found in organic forms. The peat layers above the sulfidic material decreased the Fe2+ solubility at peatlands. Fe2+ concentration in peat layer decreased with its increasing distance from sulfidic material. There was any other processes beside complexation and chelation of Fe2+ by humic material and its processes was reduction of Fe3+ and this conditions was reflected in redox potential values (Eh.

  8. Neotropical peatland methane emissions along a vegetation and biogeochemical gradient.

    Science.gov (United States)

    Winton, R Scott; Flanagan, Neal; Richardson, Curtis J

    2017-01-01

    Tropical wetlands are thought to be the most important source of interannual variability in atmospheric methane (CH4) concentrations, yet sparse data prevents them from being incorporated into Earth system models. This problem is particularly pronounced in the neotropics where bottom-up models based on water table depth are incongruent with top-down inversion models suggesting unaccounted sinks or sources of CH4. The newly documented vast areas of peatlands in the Amazon basin may account for an important unrecognized CH4 source, but the hydrologic and biogeochemical controls of CH4 dynamics from these systems remain poorly understood. We studied three zones of a peatland in Madre de Dios, Peru, to test whether CH4 emissions and pore water concentrations varied with vegetation community, soil chemistry and proximity to groundwater sources. We found that the open-canopy herbaceous zone emitted roughly one-third as much CH4 as the Mauritia flexuosa palm-dominated areas (4.7 ± 0.9 and 14.0 ± 2.4 mg CH4 m-2 h-1, respectively). Emissions decreased with distance from groundwater discharge across the three sampling sites, and tracked changes in soil carbon chemistry, especially increased soil phenolics. Based on all available data, we calculate that neotropical peatlands contribute emissions of 43 ± 11.9 Tg CH4 y-1, however this estimate is subject to geographic bias and will need revision once additional studies are published.

  9. Neotropical peatland methane emissions along a vegetation and biogeochemical gradient.

    Directory of Open Access Journals (Sweden)

    R Scott Winton

    Full Text Available Tropical wetlands are thought to be the most important source of interannual variability in atmospheric methane (CH4 concentrations, yet sparse data prevents them from being incorporated into Earth system models. This problem is particularly pronounced in the neotropics where bottom-up models based on water table depth are incongruent with top-down inversion models suggesting unaccounted sinks or sources of CH4. The newly documented vast areas of peatlands in the Amazon basin may account for an important unrecognized CH4 source, but the hydrologic and biogeochemical controls of CH4 dynamics from these systems remain poorly understood. We studied three zones of a peatland in Madre de Dios, Peru, to test whether CH4 emissions and pore water concentrations varied with vegetation community, soil chemistry and proximity to groundwater sources. We found that the open-canopy herbaceous zone emitted roughly one-third as much CH4 as the Mauritia flexuosa palm-dominated areas (4.7 ± 0.9 and 14.0 ± 2.4 mg CH4 m-2 h-1, respectively. Emissions decreased with distance from groundwater discharge across the three sampling sites, and tracked changes in soil carbon chemistry, especially increased soil phenolics. Based on all available data, we calculate that neotropical peatlands contribute emissions of 43 ± 11.9 Tg CH4 y-1, however this estimate is subject to geographic bias and will need revision once additional studies are published.

  10. Climate-driven enrichment of pollutants in peatlands

    Directory of Open Access Journals (Sweden)

    A. Martínez Cortizas

    2007-10-01

    Full Text Available Peatlands play an important role for global carbon dynamics, acting as a sink or source depending on climate. Such changes imply a series of additional effects because peatlands are also an important reservoir of atmospherically derived pollutants. Using a multiproxy approach (non-pollen-palynomorphs, δ15N, C/N, Se, Br, I, Hg, Ti, we show a relationship between climate (wetter–drier and peat decomposition, which affected element concentrations in a Spanish bog during the last 5500 years. Changes in superficial wetness played a critical role in the cycling of elements coupled to carbon dynamics. Dry phases caused increased peat mineralisation, resulting in a 2–3 times increase in concentrations of the analysed elements independent from atmospheric fluxes. Under the present trend of climate change large areas of northern peatlands are expected to be severely affected; in this context our findings indicate that the increase in carbon release, which leads to an enrichment of elements, may enhance the export of stored contaminants (Hg, organohalogens to the aquatic systems or to the atmosphere.

  11. Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia

    Science.gov (United States)

    J.A. Hribljan; D.J. Cooper; J. Sueltenfuss; E.C. Wolf; K.A. Heckman; Erik Lilleskov; R.A. Chimner

    2015-01-01

    The high-altitude (4,500+ m) Andean mountain range of north-western Bolivia contains many peatlands. Despite heavy grazing pressure and potential damage from climate change, little is known about these peatlands. Our objective was to quantify carbon pools, basal ages and long-term peat accumulation rates in peatlands in two areas of the arid puna ecoregion of Bolivia:...

  12. A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability.

    Science.gov (United States)

    Olefeldt, David; Euskirchen, Eugénie S; Harden, Jennifer; Kane, Evan; McGuire, A David; Waldrop, Mark P; Turetsky, Merritt R

    2017-06-01

    Rich fens are common boreal ecosystems with distinct hydrology, biogeochemistry and ecology that influence their carbon (C) balance. We present growing season soil chamber methane emission (F CH 4 ), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross primary production (GPP) fluxes from a 9-years water table manipulation experiment in an Alaskan rich fen. The study included major flood and drought years, where wetting and drying treatments further modified the severity of droughts. Results support previous findings from peatlands that drought causes reduced magnitude of growing season F CH 4 , GPP and NEE, thus reducing or reversing their C sink function. Experimentally exacerbated droughts further reduced the capacity for the fen to act as a C sink by causing shifts in vegetation and thus reducing magnitude of maximum growing season GPP in subsequent flood years by ~15% compared to control plots. Conversely, water table position had only a weak influence on ER, but dominant contribution to ER switched from autotrophic respiration in wet years to heterotrophic in dry years. Droughts did not cause inter-annual lag effects on ER in this rich fen, as has been observed in several nutrient-poor peatlands. While ER was dependent on soil temperatures at 2 cm depth, F CH 4 was linked to soil temperatures at 25 cm. Inter-annual variability of deep soil temperatures was in turn dependent on wetness rather than air temperature, and higher F CH 4 in flooded years was thus equally due to increased methane production at depth and decreased methane oxidation near the surface. Short-term fluctuations in wetness caused significant lag effects on F CH 4 , but droughts caused no inter-annual lag effects on F CH 4 . Our results show that frequency and severity of droughts and floods can have characteristic effects on the exchange of greenhouse gases, and emphasize the need to project future hydrological regimes in rich fens. © 2017 John Wiley & Sons Ltd.

  13. Spatio-temporal trends of nitrogen deposition and climate effects on Sphagnum productivity in European peatlands

    International Nuclear Information System (INIS)

    Granath, Gustaf; Limpens, Juul; Posch, Maximilian; Mücher, Sander; Vries, Wim de

    2014-01-01

    To quantify potential nitrogen (N) deposition impacts on peatland carbon (C) uptake, we explored temporal and spatial trends in N deposition and climate impacts on the production of the key peat forming functional group (Sphagnum mosses) across European peatlands for the period 1900–2050. Using a modelling approach we estimated that between 1900 and 1950 N deposition impacts remained limited irrespective of geographical position. Between 1950 and 2000 N deposition depressed production between 0 and 25% relative to 1900, particularly in temperate regions. Future scenarios indicate this trend will continue and become more pronounced with climate warming. At the European scale, the consequences for Sphagnum net C-uptake remained small relative to 1900 due to the low peatland cover in high-N areas. The predicted impacts of likely changes in N deposition on Sphagnum productivity appeared to be less than those of climate. Nevertheless, current critical loads for peatlands are likely to hold under a future climate. - Highlights: • We model the effect of N deposition combined with climate on production of Sphagnum between 1900 and 2050. • Spatially explicit projections are indicated on an updated European peatland distribution map. • Results stress the vulnerability of temperate Sphagnum peatlands to current and future N deposition. • Future impacts of N deposition on Sphagnum productivity likely depend more on climate change than on N deposition rate. - Temperate Sphagnum peatlands are vulnerable to current and future N deposition and current critical loads for peatlands are likely to hold under a future climate

  14. Peatland vascular plant functional types affect methane dynamics by altering microbial community structure.

    NARCIS (Netherlands)

    Robroek, B.J.M.|info:eu-repo/dai/nl/314119116; Jassey, Vincent E.J.; Kox, Martine A.R.; Berendsen, R.L.|info:eu-repo/dai/nl/304824151; Mills, RobertT. E.; Meima-Franke, Marion; Puissant, Jérémy; Cécillon, Lauric; Bakker, P.A.H.M.|info:eu-repo/dai/nl/074744623; Bodelier, Paul L.E.

    2015-01-01

    Peatlands are natural sources of atmospheric methane (CH4), an important greenhouse gas. It is established that peatland methane dynamics are controlled by both biotic and abiotic conditions, yet the interactive effect of these drivers is less studied and consequently poorly understood. Climate

  15. Peatland vascular plant functional types affect methane dynamics by altering microbial community structure

    NARCIS (Netherlands)

    Robroek, B.J.M.; Jassey, Vincent E.J.; Kox, Martine A.R.; Berendsen, Roeland L.; Mills, Robert T.E.; Cécillon, Lauric; Puissant, Jérémy; Meima-Franke, M.; Bakker, Peter A.H.M.; Bodelier, Paul

    2015-01-01

    Peatlands are natural sources of atmospheric methane (CH4), an important greenhouse gas. It is established that peatland methane dynamics are controlled by both biotic and abiotic conditions, yet the interactive effect of these drivers is less studied, and consequently poorly understood. Climate

  16. Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland

    Science.gov (United States)

    D.M. Olson; T.J. Griffis; A. Noormets; R. Kolka; J. Chen

    2013-01-01

    Three years (2009-2011) of near-continuous methane (CH4) and carbon dioxide (CO2) fluxes were measured with the eddy covariance (EC) technique at a temperate peatland located within the Marcell Experimental Forest, in northern Minnesota, USA. The peatland was a net source of CH4 and a net sink of CO...

  17. Evaluating the use of testate amoebae for palaeohydrological reconstruction in permafrost peatlands

    DEFF Research Database (Denmark)

    Swindles, Graeme T.; Amesbury, Matthew J.; Turner, T. Edward

    2015-01-01

    The melting of high-latitude permafrost peatlands is a major concern due to a potential positive feedback on global climate change. We examine the ecology of testate amoebae in permafrost peatlands, based on sites in Sweden (similar to 200 km north of the Arctic Circle). Multivariate statistical ...

  18. Temperature of upland and peatland soils in a north central Minnesota forest

    Science.gov (United States)

    Dale S. Nichols

    1998-01-01

    Soil temperature strongly influences physical, chemical, and biological activities in soil. However, soil temperature data for forest landscapes are scarce. For 6 yr, weekly soil temperatures were measured at two upland and four peatland sites in north central Minnesota. One upland site supported mature aspen forest, the other supported short grass. One peatland site...

  19. Methodology for Rewetting Drained Tropical Peatlands. Approved Verified Carbon Standard (VCS) Methodology VM0027

    NARCIS (Netherlands)

    Hoffer, S.; Laer, Y.; Navrátil, R.; Wosten, J.H.M.

    2014-01-01

    The first methodology to address the rewetting of drained peatlands "Methodology for rewetting Drained Tropical Peatlands" has been approved by the Verified Carbon Standard (VCS) Program. As the methodology is the first of its kind, it will provide unique guidance for other projects that aim at

  20. Rock, Paper, Protest: The Fight for the Boreal Forest

    Science.gov (United States)

    Gunz, Sally; Whittaker, Linda

    2016-01-01

    Canada's boreal forests are second only to the Amazon in producing life-giving oxygen and providing a habitat for thousands of species, from the large woodland caribou to the smallest organisms. The boreal forests are the lifeblood of many Aboriginal communities and the thousands of workers, Aboriginal and non-Aboriginal, who harvest and process…

  1. Controls on moss evaporation in a boreal black spruce forest

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Arp, W.J.; Chapin, F.S.

    2004-01-01

    [1] Mosses are an important component of the boreal forest, but little is known about their contribution to ecosystem carbon, water, and energy exchange. We studied the role of mosses in boreal forest evapotranspiration by conducting two experiments in a black spruce forest in Fairbanks, Alaska.

  2. Long-term carbon accumulation in Andes peatlands

    Science.gov (United States)

    Huaman, Yizet; Moreira-turq, Patricia; Willems, Bram; Espinoza, Raul; Turq, Bruno; Apaéstegui, James; Llanos, Romina

    2017-04-01

    High-altitude peatlands of the Andes still remain relatively unexplored since most of the studies on carbon capture in tropical soils have focused on peatlands in low altitude areas, leaving aside the importance of the study of high mountain wetlands, currently called "bofedales" located between 3000 and 5000 masl, covering most of the Andes mountains in South America. These peatlands in turn may also represent important paleoclimatic records. In this study, we investigated three peatland cores (APA-01, APA2-01, and APA2-02) at different altitudes (4210 m, 4420 m and 4432 m, respectively) in high Andean Peatlands of southern Peru. The peatland studied is located at the headwater basin Cachi River, in the town of Ayacucho, Peru. The aim of this study was to evaluate the role played by past climatic changes on the peatlands carbon accumulation. Each core was sectioned centimeter by centimeter and sub samples (n = 31) were collected for radiocarbon dating by AMS (acceleration mass spectrometer) and were used to create a sedimentological model based on the program Clam2.2R. The concentrations of carbon and nitrogen were determined from a C / H / N elemental analyzer and the stable carbon and nitrogen isotopes (δ13C and δ15N) were also analyzed. The bulk density was determined based on the volume occupied by the sediment (g /cm3). Finally, the carbon accumulation rate (gC m-2año-1) was determined. The three cores were characterized by two sedimentary units, the results present in the first sedimentary unit of APA01 an average long-term carbon accumulation rate of 59 gC m-2año-1, APA2-01 with 32 gC m-2año-1 and finally APA2-02 with 24 gC m-2año-1; for the second sedimentary unit we have: APA01 on average 17 gC m-2año-1, APA2-01 with 33 gC m-2año-1 and finally APA2-02 with 49 gC m-2año-1. In conclusion, we can say that the carbon accumulation rate for the first sedimentary unit of the three cores decreases as the altitude increases; on the other hand, we have the

  3. Ecological restoration of peatlands in steppe and forest-steppe areas

    Science.gov (United States)

    Minayeva, Tatiana; Sirin, Andrey; Dugarjav, Chultem

    2016-04-01

    Peatlands in the arid and semi-arid regions of steppe and forest steppe belt of Eurasia have some specific features. That demands the special approach to their management and restoration. The distribution of peatlands under conditions of dry climate is very limited and they are extremely vulnerable. Peatlands in those regions are found in the highlands where temperate conditions still present, in floodplains where they can get water from floods and springs, or in karst areas. Peatlands on watersheds present mainly remains from the more humid climate periods. Water and carbon storage as well as maintenance of the specific biodiversity are the key ecosystem natural functions of peatlands in the steppe and forest steppe. The performance of those functions has strong implications for people wellness and livelihood. Anyhow, peatlands are usually overlooked and poorly represented in the systems of natural protected areas. Land management plans, mitigation and restoration measures for ecosystems under use do not usually include special measures for peatlands. Peatlands'use depends on the traditional practices. Peat extraction is rather limited in subhumid regions but still act as one of the threats to peatlands. The most of peatlands are used as pastures and grasslands. In densely populated areas large part of peatlands are transformed to the arable lands. In many cases peatlands of piedmonts and highlands are affected by industrial developments: road construction, mining of subsoil resources (gold, etc.). Until now, the most of peatlands of steppe and forest steppe region are irreversibly lost, what also effects water regime, lands productivity, biodiversity status. To prevent further dramatic changes the ecological restoration approach should be introduced in the subhumid regions. The feasibility study to assess the potential for introducing ecological restoration techniques for peatlands in the arid and semi-arid conditions had been undertaken in steppe and forest

  4. Lichen conservation in heavily managed boreal forests.

    Science.gov (United States)

    McMullin, Richard Troy; Thompson, Ian D; Newmaster, Steven G

    2013-10-01

    Lichens are an important component of the boreal forest, where they are long lived, tend to accumulate in older stands, and are a major food source for the threatened woodland caribou (Rangifer tarandus caribou). To be fully sustainable, silvicultural practices in the boreal forest must include the conservation of ecological integrity. Dominant forest management practices, however, have short-term negative effects on lichen diversity, particularly the application of herbicides. To better understand the long-term effects of forest management, we examined lichen regeneration in 35 mixed black spruce (Picea mariana) and jack pine (Pinus banksiana) forest stands across northern Ontario to determine recovery following logging and postharvest silvicultural practices. Our forest stands were 25-40 years old and had undergone 3 common sivilcultural treatments that included harvested and planted; harvested, planted, and treated with N-[phosphonomethyl] glycine (glyphosate); and harvested, planted, and treated with 2,4-dichlorophenoxyacetic acid (2,4-D). Forest stands with herbicide treatments had lower lichen biomass and higher beta and gamma diversity than planted stands that were not treated chemically or control stands. In northwestern Ontario, planted stands that were not treated chemically had significantly greater (p < 0.05) alpha diversity than stands treated with herbicides or control stands. Our results show that common silvicultural practices do not emulate natural disturbances caused by wildfires in the boreal forest for the lichen community. We suggest a reduction in the amount of chemical application be considered in areas where lichen biomass is likely to be high and where the recovery of woodland caribou is an objective. © 2013 Society for Conservation Biology.

  5. Greenhouse Gas Emissions Under Different Drainage and Flooding Regimes of Cultivated Peatlands

    Science.gov (United States)

    Hu, Jing; VanZomeren, Christine M.; Inglett, Kanika S.; Wright, Alan L.; Clark, Mark W.; Reddy, K. R.

    2017-11-01

    Globally, approximately 10-20% of peatlands have been drained for agricultural purposes. A strategy to protect peatlands and mitigate carbon dioxide (CO2) emissions, while continuing agricultural production, is the use of intermittent flooding and drainage. A potential drawback of this strategy could be increases in methane (CH4) and nitrous oxide (N2O) emissions. The objective of this study was to compare greenhouse gas (GHG) emissions from peatlands under various flooding-drainage cycles. A laboratory study was performed using intact soil cores subjected to different durations of flooding and drainage for 6 months. Average daily emissions of CO2 and N2O were significantly higher (P accounting for more than 92% of overall global warming potential. Global warming potential was inversely proportional to the flooding period, indicating that prolonging the flooding period of peatlands would help mitigate soil oxidation and GHG emissions and enhance sustainability of these agricultural peatlands.

  6. Creating peatlands in the oil sand region of Alberta : challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Graf, M.; Rochefort, L. [Laval Univ., Quebec City, PQ (Canada). Dept. of Phytologie, Peatland Ecology Research Group; Price, J. [Waterloo Univ., ON (Canada). Dept. of Geography

    2010-07-01

    A research project was launched to study the physiological effects that oil sands process affected water have on peatland plants. Modeling indicates that peatlands can be recreated in post-tar sand mined landscapes, although this is untested. Processing oil sands creates large volumes of tailings, a wet material that contains organic compounds and base cations that have a toxic effect on plants in the region. This toxicity is a significant barrier to peatland creation in post-mined landscapes. The research targets mosses, a keystone species in peatlands. The research focused on determining the contaminant thresholds for typical fen species and identifying the most tolerant species. The conclusions will be useful in addressing the future outcomes of oil sand affected landscapes, allowing reclaimed landscape designs to position peatlands in landscapes according to the tolerable level of contamination.

  7. Electrodialysis operation with buffer solution

    Science.gov (United States)

    Hryn, John N [Naperville, IL; Daniels, Edward J [Orland Park, IL; Krumdick, Greg K [Crete, IL

    2009-12-15

    A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.

  8. The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests.

    Science.gov (United States)

    Achard, Frédéric; Eva, Hugh D; Mollicone, Danilo; Beuchle, René

    2008-07-12

    Over the last few years anomalies in temperature and precipitation in northern Russia have been regarded as manifestations of climate change. During the same period exceptional forest fire seasons have been reported, prompting many authors to suggest that these in turn are due to climate change. In this paper, we examine the number and areal extent of forest fires across boreal Russia for the period 2002-2005 within two forest categories: 'intact forests' and 'non-intact forests'. Results show a far lower density of fire events in intact forests (5-14 times less) and that those events tend to be in the first 10 km buffer zone inside intact forest areas. Results also show that, during exceptional climatic years (2002 and 2003), fire event density is twice that found during normal years (2004 and 2005) and average areal extent of fire events (burned area) in intact forests is 2.5 times larger than normal. These results suggest that a majority of the fire events in boreal Russia are of human origin and a maximum of one-third of their impact (areal extension) can be attributed to climate anomalies alone, the rest being due to the combined effect of human disturbances and climate anomalies.

  9. Rating a Wildfire Mitigation Strategy with an Insurance Premium: A Boreal Forest Case Study

    Directory of Open Access Journals (Sweden)

    Georgina Rodriguez-Baca

    2016-05-01

    Full Text Available Risk analysis entails the systematic use of historical information to determine the frequency, magnitude and effects of unexpected events. Wildfire in boreal North America is a key driver of forest dynamics and may cause very significant economic losses. An actuarial approach to risk analysis based on cumulative probability distributions was developed to reduce the adverse effects of wildfire. To this effect, we developed spatially explicit landscape models to simulate the interactions between harvest, fire and forest succession over time in a boreal forest of eastern Canada. We estimated the amount of reduction of timber harvest necessary to build a buffer stock of sufficient size to cover fire losses and compared it to an insurance premium estimated in units of timber volume from the probability of occurrence and the amount of damage. Overall, the timber harvest reduction we applied was much more costly than the insurance premium even with a zero interest rate. This is due to the fact that the insurance premium is directly related to risk while the timber harvest reduction is not and, as a consequence, is much less efficient. These results, especially the comparison with a standard indicator such as an insurance premium, have useful implications at the time of choosing a mitigation strategy to protect timber supplies against risk without overly diminishing the provision of services from the forest. They are also promoting the use of insurance against disastrous events in forest management planning.

  10. Palaeoecological data as a tool to predict possible future vegetation changes in the boreal forest zone of European Russia: a case study from the Central Forest Biosphere Reserve

    Science.gov (United States)

    Novenko, E. Yu; Tsyganov, A. N.; Olchev, A. V.

    2018-01-01

    New multi-proxy records (pollen, testate amoebae, and charcoal) were applied to reconstruct the vegetation dynamics in the boreal forest area of the southern part of Valdai Hills (the Central Forest Biosphere Reserve) during the Holocene. The reconstructions of the mean annual temperature and precipitation, the climate moisture index (CMI), peatland surface moisture, and fire activity have shown that climate change has a significant impact on the boreal forests of European Russia. Temperature growth and decreased moistening during the warmest phases of the Holocene Thermal Maximum in 7.0-6.2 ka BP and 6.0-5.5 ka BP and in the relatively warm phase in 3.4-2.5 ka BP led to structural changes in plant communities, specifically an increase in the abundance of broadleaf tree species in forest stands and the suppression of Picea. The frequency of forest fires was higher in that period, and it resulted in the replacement of spruce forests by secondary stands with Betula and Pinus. Despite significant changes in the climatic parameters projected for the 21st century using even the optimistic RCP2.6 scenario, the time lag between climate changes and vegetation responses makes any catastrophic vegetation disturbances (due to natural reasons) in the area in the 21st century unlikely.

  11. Buffers and vegetative filter strips

    Science.gov (United States)

    Matthew J. Helmers; Thomas M. Isenhart; Michael G. Dosskey; Seth M. Dabney

    2008-01-01

    This chapter describes the use of buffers and vegetative filter strips relative to water quality. In particular, we primarily discuss the herbaceous components of the following NRCS Conservation Practice Standards.

  12. Heat conductivity of buffer materials

    International Nuclear Information System (INIS)

    Boergesson, L.; Fredrikson, Anders; Johannesson, L.E.

    1994-11-01

    The report deals with the thermal conductivity of bentonite based buffer materials. An improved technique for measuring the thermal conductivity of buffer materials is described. Measurements of FLAC calculations applying this technique have led to a proposal of how standardized tests should be conducted and evaluated. The thermal conductivity of bentonite with different void ratio and degree of water saturation has been determined in the following different ways: * Theoretically according to three different investigations by other researchers. * Laboratory measurements with the proposed method. * Results from back-calculated field tests. Comparison and evaluation showed that these results agreed very well, when the buffer material was almost water saturated. However, the influence of the degree of saturation was not very well predicted with the theoretical methods. Furthermore, the field tests showed that the average thermal conductivity in situ of buffer material (compacted to blocks) with low degree of water saturation was lower than expected from laboratory tests. 12 refs, 29 figs, 11 tabs

  13. Programmable pH buffers

    Science.gov (United States)

    Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.

    2017-01-24

    A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.

  14. Optimal nitrogen fertilization of boreal conifer forest

    Directory of Open Access Journals (Sweden)

    Timo Pukkala

    2017-03-01

    Full Text Available Background Forest fertilization offers a means to increase the production of renewable resources. Nitrogen is the most common fertilizer in boreal upland forests. There is plenty of research on the effect of nitrogen fertilization on volume growth, but less research on the optimal timing of fertilization and optimal management of fertilized stands. Methods This study used simulation and optimization to analyze the profitability of fertilization, optimal management of fertilized stands and the effects of fertilization on cash flows and timber yields. The management of 100 stands representing the most common growing sites of Scots pine and Norway spruce was optimized. Results Fertilization improved profitability in most of the analyzed stands. Profitability improved most in spruce stands growing on mesic site. Improving stem quality increased the economic benefit of fertilization. The timber yields of medium-aged conifer stands can be increased by almost 1 m3ha-1a-1 (15% in sub-xeric pine and mesic spruce sites and about 0.5 m3ha-1a-1 (5% in mesic pine and herb-rich spruce sites when the recommended nitrogen dose (150 kg ha-1 is applied once in 30 years. Conclusions Nitrogen fertilization of boreal conifer forest should be used mainly in spruce-dominated stands growing on medium sites. The gains are the highest in stands where the mean tree diameter is 16–20 cm and stand basal area is 14–20 m2ha-1.

  15. Microbial carbon sources in boreal wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Daly, C.A.; Ciborowski, J.J.H. [Windsor Univ., ON (Canada). Dept. of Biology

    2004-07-01

    The role of heterotrophic microbial producers in decomposing organic matter was discussed along with the source supporting them and their role at the base of the aquatic food chain in boreal wetlands. The importance of diverse sources of carbon to microbial production was evaluated using stable isotope analysis. Carbon sources include wetland detritus, phytoplankton and anthropogenic sources of organic matter. Constructed wetlands have been proposed as a remediation strategy following oil sands processing in the Athabasca oil sands area. This study examined the extent to which residual bitumen in young oil sands-affected wetlands can be used as a carbon source that forms the base of the food chain in naturally formed wetlands. Stable isotope analyses was used to estimate the contribution of different carbon sources to microbial biomass. Planktonic and benthic microbial biomass and production was also estimated along with respiration losses in wetlands of contrasting ages and depositional histories. Although the rate of microbial biomass and production demonstrate how much carbon may be available to higher trophic levels, it is not fully understood how microbial production becomes assigned as detrital material, as a food source for zooplankton and zoobenthic communities, and as carbon respiration loss to the atmosphere. These 3 categories have important implications for boreal wetland reclamation strategies.

  16. Responsible management of tropical peatlands: balancing competing demands on a fragile resource

    Science.gov (United States)

    Page, Susan; Evans, Christopher; Gauci, Vincent

    2017-04-01

    In 2010 the International Peatland Society published a strategy for responsible peatland management, with the following guiding principles: (i) ensure that high conservation value peatlands are identified and conserved, (ii) manage 'utilised' peatlands responsibly, and (iii) rehabilitate or restore drained, degraded or otherwise irreversibly changed peatlands to restore as many ecological and landscape functions as possible. At the time of its publication, the main focus of the strategy was on northern peatlands, although a few partner organisations in SE Asia were involved in the strategy consultation process. Given the rapid rate of peatland development in SE Asia in the last 7 years and the growing interest in tropical peatland rehabilitation and restoration, we believe that it is now timely to review what a strategy for responsible tropical peatland management might look like. SE Asia's peatlands cover 250,000 km2 of the region and store 69 Gt C but they are subject to continuing deforestation, biodiversity loss, land subsidence/flooding, increasing greenhouse gas (GHG) emissions, and health impacts due to air pollution from land-clearing fires, all of which pose huge regional and global challenges. Around 75% of the peatlands have been deforested in the last 20 years, with 35% of cleared land now under industrial plantation, 34% under smallholder cultivation, and 25% unutilised, largely as a result of uncontrolled land-clearing fires. The production intensity (GHG emissions per calorie produced) of crops grown on SE Asian organic soils is among the highest in the world (Carlson et al. 2016). There are clear tensions between reconciling peatland management for conservation goals (of biodiversity, carbon and natural resources) with economic and livelihood development goals. A balance needs to be struck between the absolute value and distribution of short term economic gains vs. peatland management strategies that deliver longer-term, sustainable and shared

  17. Paludiculture on marginal lands - sustainable use of wet peatlands

    Science.gov (United States)

    Oehmke, Claudia; Dahms, Tobias; Wichmann, Sabine; Wichtmann, Wendelin

    2017-04-01

    Peatlands are marginal lands. If they are drained, they show a short initial productive period. Soil degradation due to peat oxidation leads to numerous problems which increasingly restrict agricultural use and cause significant environmental impacts such as greenhouse gas emissions and eutrophication and thereby produce high external costs. Worldwide greenhouse gas emissions from drained peatlands have a significant share ( 10%) in the emissions from agriculture, forestry and other land use (AFOLU) sectors (Smith et al. 2014). In Germany they contribute more than 35% to the total emissions from agriculture (agricultural sector and cropland and grassland management) (UBA 2016). Rewetting drained peatlands can significantly reduce environmental problems caused by peatland drainage. Continuation of agricultural use with adapted crops and machinery, so called paludiculture (Latin ‚palus' = swamp) stops further degradation, maintains the peat body, reduces climate change mitigation and produces renewable fuels and raw materials. Fen and bog soils are suitable for various different paludicultures. The biomass of Sphagnum (sphagnum farming) cultivated on cut-over bogs or degraded bog grasslands can be used as raw material for horticultural growing media. Flood-tolerant and productive plant species like Common Reed, Reed Canary Grass, Cattail, Black Alder and different Sedge species are suitable for paludiculture on fen soils. Biomass utilization ranges from traditional forms, like fodder production or the use of Common Reed as roof thatch, to new utilization options, that includes biomass use for heat generation, co-subtrates for biorefineries or construction and insulation products. The above-ground biomass of one hectare Common Reed (winter yield=8 t DM) equates to an energy content of 3,000 litre heating oil. A district heating plant (800 kW) in NE Germany demonstrates the feasibility of using biomass from wet fen meadows for local heat generation. Moreover, tests

  18. Rates of disturbance vary by data resolution: implications for conservation schedules using the Alberta boreal forest as a case study.

    Science.gov (United States)

    Komers, P E; Stanojevic, Z

    2013-09-01

    Investigations of biophysical changes on earth caused by anthropogenic disturbance provide governments with tools to generate sustainable development policy. Canada currently experiences one of the fastest rates of boreal forest disturbance in the world. Plans to conserve the 330 000 km(2) boreal forest in the province of Alberta exist but conservation targets and schedules must be aligned with rates of forest disturbance. We explore how disturbance rate, and the accuracy with which we detect it, may affect conservation success. We performed a change detection analysis from 1992 to 2008 using Landsat and SPOT satellite image data processing. Canada's recovery strategy for boreal caribou (Rangifer tarandus caribou) states that ≤35% of a caribou range can be either burned or within 500 m of a man-made feature for caribou to recover. Our analyses show that by 2008 78% of the boreal forest was disturbed and that, if the current rate continues, 100% would be disturbed by 2028. Alberta plans to set aside 22% for conservation in a region encompassing oil sands development to balance economic, environmental, and traditional indigenous land-use goals. Contrary to the federal caribou recovery strategy, provincial conservation plans do not consider wildfire a disturbance. Based on analyses used in the provincial plan, we apply a 250 m buffer around anthropogenic footprints. Landsat image analysis indicates that the yearly addition of disturbance is 714 km(2) (0.8%). The higher resolution SPOT images show fine-scale disturbance indicating that actual disturbance was 1.28 times greater than detected by Landsat. If the SPOT image based disturbance rates continue, the 22% threshold may be exceeded within the next decade, up to 20 years earlier than indicated by Landsat-based analysis. Our results show that policies for sustainable development will likely fail if governments do not develop time frames that are grounded by accurate calculations of disturbance rates. © 2013 John

  19. Buffer gas acquisition and storage

    Science.gov (United States)

    Parrish, Clyde F.; Lueck, Dale E.; Jennings, Paul A.

    2001-02-01

    The acquisition and storage of buffer gases (primarily argon and nitrogen) from the Mars atmosphere provides a valuable resource for blanketing and pressurizing fuel tanks and as a buffer gas for breathing air for manned missions. During the acquisition of carbon dioxide (CO2), whether by sorption bed or cryo-freezer, the accompanying buffer gases build up in the carbon dioxide acquisition system, reduce the flow of CO2 to the bed, and lower system efficiency. It is this build up of buffer gases that provide a convenient source, which must be removed, for efficient capture of CO2. Removal of this buffer gas barrier greatly improves the charging rate of the CO2 acquisition bed and, thereby, maintains the fuel production rates required for a successful mission. Consequently, the acquisition, purification, and storage of these buffer gases are important goals of ISRU plans. Purity of the buffer gases is a concern e.g., if the CO2 freezer operates at 140 K, the composition of the inert gas would be approximately 21 percent CO2, 50 percent nitrogen, and 29 percent argon. Although there are several approaches that could be used, this effort focused on a hollow-fiber membrane (HFM) separation method. This study measured the permeation rates of CO2, nitrogen (N2), and argon (Ar) through a multiple-membrane system and the individual membranes from room temperature to 193 K and 10 kPa to 300 kPa. Concentrations were measured with a gas chromatograph. The end result was data necessary to design a system that could separate CO2, N2, and Ar. .

  20. Use of ash in the fertilisation of peatland forests

    International Nuclear Information System (INIS)

    Moilanen, M.; Korpilahti, A.

    2000-01-01

    About 100,000 tonnes of bark and other wood-based ash are produced annually by the forest industries and heating plants in Finland. This amount would be sufficient for fertilising about 25,000 hectares of forest. When applied to peatland forests, this would produce extra forest growth of about 75,000 m 3 per a year. When considering the objectives of forestry, the practical benefits and economic profitability of ash fertilisation are at their peak on peatlands rich in nitrogen. Wood ash induces added tree growth (measured in terms of stemwood) in pine stands on herb- and sedge-rich parklands within 2-3 years of application. On nitrogen-deficient dwarf-shrub and Sphagnum-rich peatlands this growth reaction manifests itself only after 7-8 years have passed and even then at a considerably lower level. The application of mere ash does not result in notable increases in tree growth on upland forest sites. However, ash does change the growth conditions by reducing the acidity of the soil and by accelerating microbial decomposition. The phosphorus contained in ash has not been observed to have been leached into drainage waters on drained sites, at least not during the first two years after application, provided that care has been practised when spreading ash. However, the movement of readily-soluble nutrients has been observed and more so on nutrient-poor sites than on nutrient-rich sites. Although the suitability of ash as fertiliser in peatland forests has been recognised on the basis of long-term ash trials established at the Finnish Forest Research Institute, ash fertilisation has not been carried out made on a practical scale mainly because of the dust problem when spreading it. The purpose of pretreatment with ash is first and foremost to transform the ash into sufficiently dust-free form to enable it to be spread readily. An added advantage is that pelletised ash causes a lesser pH shock to plank than ash in dust form. (orig.)

  1. Development in techniques for studying forest roads on peatlands

    International Nuclear Information System (INIS)

    Saarilahti, M.

    1988-01-01

    A light seismic method, a short-pulse radar and a microwave probe are tested in assessing the properties of a forest road constructed on peatland. The light seismic method gave reliable values for estimating the bearing capacity of the road. It was found that bearing capacity was mostly dependent on embankment thickness, but quality of labric might also have an influence. Embankment thickness and peat depth can be measured on the radargram, and some additional information on road bed and peat obtained. The microwave peat probe permits recording of the continuous moisture profile in situ, which improves accuracy of planning

  2. Holocene Development of Subarctic Permafrost Peatlands in Finnmark, Northern Norway

    Science.gov (United States)

    Sannel, B.; Axelsson, P.; Kjellman, S.; Etzelmuller, B.; Westermann, S.

    2017-12-01

    Subarctic permafrost peatlands have acted as important carbon sinks throughout the Holocene. An improved knowledge of peat properties and sensitivity to past climate changes in these environments can help us better predict future responses under warmer climatic conditions, and associated permafrost carbon feedbacks. In this study analyses of plant macrofossils, bulk density, organic, carbon and nitrogen content, and AMS radiocarbon dating have been performed for four profiles collected from peat plateaus in Finnmark, northern Norway. Preliminary results suggest that peatland development started around 9800-9200 cal yr BP at the two continental sites, Suossjavri and Iskoras. Here, the long-term net carbon accumulation rates are around 12-17 gC m-2 yr-1, and the total carbon storage c. 113-156 kgC m-2. The other two sites, Lakselv and Karlebotn, are located in maritime settings close to the coast where there has been a time lag between deglaciation of the Fennoscandian Ice Sheet and emergence of land by isostatic uplift. At these sites peatland inception begun around 6200-5200 cal yr BP, and the carbon accumulation rates are c. 7-12 gC m-2 yr-1. Because of a shorter time period available for peat accumulation the carbon storage at these sites is lower, around 56-64 kgC m-2. All four peatlands developed as wet fens, and have remained permafrost-free throughout most of the Holocene. Permafrost aggradation, causing frost heave and a shift in the vegetation assemblage from wet fen to dry bog species, probably did not occur until during the onset of the Little Ice Age c. 1000-800 cal yr BP (at Iskoras and Karlebotn) or even later, around 100 cal yr BP (at Suossjavri and Lakselv). If the permafrost thaws in a future warmer climate, the carbon that has been stored in the frozen peat since the Little Ice Age can become available for decomposition and be emitted to the atmosphere either as carbon dioxide from expanding active layers or as methane from thermokarst lakes and

  3. Birds, bogs and forestry: the peatlands of Caithness and Sutherland

    OpenAIRE

    Stroud, D.A.; Reed, T.M.; Pienkowski, M.W.; Lindsay, Richard

    1988-01-01

    NCC’s Upland Bird Survey had surveyed a significant area of the Flow Country between 1979 and 1986, and the 1987 report analysed and published the data from those surveys, together with those obtained from eight sites in Caithness surveyed by RSPB in 1985 using NCC methods. \\ud \\ud The results highlighted losses of up to 19% of the populations of Golden Plover, Greenshank and Dunlin in the Flow Country area as a result of then widespread and rapidly occurring afforestation of the peatlands. N...

  4. Does peatland restoration make a difference to the millennial scale carbon balance?

    Science.gov (United States)

    Quillet, Anne; Roulet, Nigel; Wu, Jianghua

    2017-04-01

    Millennial peatland carbon balance is of crucial importance to assess the past and future forcing of peatlands carbon sequestration on climate. However drainage and exploitation of peatlands over the last and current centuries greatly affect the carbon balance of 25% of the global peatlands (Parish et al. 2008). Moreover, the impact of drainage is likely to remain for unforeseeable time, modifying the hydrology and the ecology of peatlands. The aim of this study is to assess the influence on the long-term carbon balance of restoration practices over abandonment on vacuum-extracted peatlands. We modified the Holocene Peat Model (Frolking et al. 2010) to simulate peat extraction as well as different post-extraction management strategies: abandonment, drainage blocking and restoration. Simulation results enable the comparison of the response of the system to different management strategies. The carbon balance is estimated for the millennia following extraction for different management strategies and different climate conditions. The difference between restoration practices and abandonment allows the assessment of the net carbon gain associated with restoration. Although it is expected that successful restoration practices are beneficial to the carbon budget of the ecosystem, it will take millennia to restore what has been extracted. In cases where the site is left abandoned, it is estimated that peat would degrade within centuries. The management strategies and the duration of the period of latency between extraction and restoration are key factors controlling the magnitude of the future carbon loss or gain of a peatland.

  5. The distribution and amount of carbon in the largest peatland complex in Amazonia

    Science.gov (United States)

    Draper, Frederick C.; Roucoux, Katherine H.; Lawson, Ian T.; Mitchard, Edward T. A.; Honorio Coronado, Euridice N.; Lähteenoja, Outi; Torres Montenegro, Luis; Valderrama Sandoval, Elvis; Zaráte, Ricardo; Baker, Timothy R.

    2014-12-01

    Peatlands in Amazonian Peru are known to store large quantities of carbon, but there is high uncertainty in the spatial extent and total carbon stocks of these ecosystems. Here, we use a multi-sensor (Landsat, ALOS PALSAR and SRTM) remote sensing approach, together with field data including 24 forest census plots and 218 peat thickness measurements, to map the distribution of peatland vegetation types and calculate the combined above- and below-ground carbon stock of peatland ecosystems in the Pastaza-Marañon foreland basin in Peru. We find that peatlands cover 35 600 ± 2133 km2 and contain 3.14 (0.44-8.15) Pg C. Variation in peat thickness and bulk density are the most important sources of uncertainty in these values. One particular ecosystem type, peatland pole forest, is found to be the most carbon-dense ecosystem yet identified in Amazonia (1391 ± 710 Mg C ha-1). The novel approach of combining optical and radar remote sensing with above- and below-ground carbon inventories is recommended for developing regional carbon estimates for tropical peatlands globally. Finally, we suggest that Amazonian peatlands should be a priority for research and conservation before the developing regional infrastructure causes an acceleration in the exploitation and degradation of these ecosystems.

  6. The distribution and amount of carbon in the largest peatland complex in Amazonia

    International Nuclear Information System (INIS)

    Draper, Frederick C; Baker, Timothy R; Roucoux, Katherine H; Lawson, Ian T; Mitchard, Edward T A; Honorio Coronado, Euridice N; Zaráte, Ricardo; Lähteenoja, Outi; Torres Montenegro, Luis; Valderrama Sandoval, Elvis

    2014-01-01

    Peatlands in Amazonian Peru are known to store large quantities of carbon, but there is high uncertainty in the spatial extent and total carbon stocks of these ecosystems. Here, we use a multi-sensor (Landsat, ALOS PALSAR and SRTM) remote sensing approach, together with field data including 24 forest census plots and 218 peat thickness measurements, to map the distribution of peatland vegetation types and calculate the combined above- and below-ground carbon stock of peatland ecosystems in the Pastaza-Marañon foreland basin in Peru. We find that peatlands cover 35 600 ± 2133 km 2 and contain 3.14 (0.44–8.15) Pg C. Variation in peat thickness and bulk density are the most important sources of uncertainty in these values. One particular ecosystem type, peatland pole forest, is found to be the most carbon-dense ecosystem yet identified in Amazonia (1391 ± 710 Mg C ha −1 ). The novel approach of combining optical and radar remote sensing with above- and below-ground carbon inventories is recommended for developing regional carbon estimates for tropical peatlands globally. Finally, we suggest that Amazonian peatlands should be a priority for research and conservation before the developing regional infrastructure causes an acceleration in the exploitation and degradation of these ecosystems. (letter)

  7. Climate-related changes in peatland carbon accumulation during the last millennium

    Directory of Open Access Journals (Sweden)

    D. J. Charman

    2013-02-01

    Full Text Available Peatlands are a major terrestrial carbon store and a persistent natural carbon sink during the Holocene, but there is considerable uncertainty over the fate of peatland carbon in a changing climate. It is generally assumed that higher temperatures will increase peat decay, causing a positive feedback to climate warming and contributing to the global positive carbon cycle feedback. Here we use a new extensive database of peat profiles across northern high latitudes to examine spatial and temporal patterns of carbon accumulation over the past millennium. Opposite to expectations, our results indicate a small negative carbon cycle feedback from past changes in the long-term accumulation rates of northern peatlands. Total carbon accumulated over the last 1000 yr is linearly related to contemporary growing season length and photosynthetically active radiation, suggesting that variability in net primary productivity is more important than decomposition in determining long-term carbon accumulation. Furthermore, northern peatland carbon sequestration rate declined over the climate transition from the Medieval Climate Anomaly (MCA to the Little Ice Age (LIA, probably because of lower LIA temperatures combined with increased cloudiness suppressing net primary productivity. Other factors including changing moisture status, peatland distribution, fire, nitrogen deposition, permafrost thaw and methane emissions will also influence future peatland carbon cycle feedbacks, but our data suggest that the carbon sequestration rate could increase over many areas of northern peatlands in a warmer future.

  8. Temporal and spatial aspects of peatland initiation following deglaciation in North America

    Science.gov (United States)

    Gorham, E.; Lehman, C.; Dyke, A.; Janssens, J.; Dyke, L.

    2007-01-01

    A set of simple ecological models accounts well for the cumulative initiation of peatlands throughout North America in relation to glacial retreat. The most parsimonious form incorporates, first, a delay term to account for the lag during which newly deglaciated land became suitable for peatland initiation and, second, an intrinsic rate of initiation related to the probability of migration and establishment of plant propagules from elsewhere. The goodness of fit of the models, based on 1680 basal-peat dates throughout the continent, allows projection of past trends into the future. Factors contributing to the lag of about 4000 years between deglaciation and peatland initiation are suggested and data on colonization of deglaciated land by beavers (known to initiate peatlands) are presented. The rate of peatland initiation peaked between 7000 and 8000 years ago, but remains appreciable today. A marked depression of peatland initiation (8360-8040 BP) interrupted the peak rate. The time of the interruption matches the 8200 BP cold-dry event recorded in Greenland ice cores, and suggests that this event caused a substantial, continent-wide depression of an important ecosystem function, i.e., carbon sequestration from the atmosphere by peat deposition. Spontaneous initiation of new peatlands is projected to continue for millennia to come. ?? 2006 Elsevier Ltd. All rights reserved.

  9. Accelerated peatland disappearance in the vicinity of the Konin brown coal strip mine

    Directory of Open Access Journals (Sweden)

    Ilnicki Piotr

    2017-12-01

    Full Text Available In the Powidzki Landscape Park, there are 150 peatlands of a total area of 1,250.2 ha. On its edge, brown coal strip mines are in operation, causing deep land drainage that resulted in a drastic (up to 5 m lowering of the water table in lakes and accelerated peatland disappearance. To determine the extent of the process, a comparison was made of the types of surface soil layers and their ash content in 20 peatlands determined in 1957–1965 and in 2017. They are located in the farmland lying the closest to the strip mine, Jóźwin IIB, and in woodland lying further away. The results were compared with those for a peatland in Skulsk, which was not affected by the negative impact of the strip mine. Fen peat, occurring there about 55 years ago has largely turned into grainy moorsh. In the 20–50 cm layer, an ash content has grown almost twofold, while in part of the peatlands organic soils have changed into mineral and organic-mineral ones. The greatest changes have occurred in the farmland. In all Park peatlands, grasslands have contracted threefold, while the area of forests and woodlands has grown fivefold. Today, about 10% of the peatland area is taken up by arable land of which there was none before.

  10. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands.

    Science.gov (United States)

    Cobb, Alexander R; Hoyt, Alison M; Gandois, Laure; Eri, Jangarun; Dommain, René; Abu Salim, Kamariah; Kai, Fuu Ming; Haji Su'ut, Nur Salihah; Harvey, Charles F

    2017-06-27

    Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage.

  11. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands

    Science.gov (United States)

    Hoyt, Alison M.; Gandois, Laure; Eri, Jangarun; Dommain, René; Abu Salim, Kamariah; Kai, Fuu Ming; Haji Su’ut, Nur Salihah; Harvey, Charles F.

    2017-01-01

    Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage. PMID:28607068

  12. Potential for using remote sensing to estimate carbon fluxes across northern peatlands - A review.

    Science.gov (United States)

    Lees, K J; Quaife, T; Artz, R R E; Khomik, M; Clark, J M

    2018-02-15

    Peatlands store large amounts of terrestrial carbon and any changes to their carbon balance could cause large changes in the greenhouse gas (GHG) balance of the Earth's atmosphere. There is still much uncertainty about how the GHG dynamics of peatlands are affected by climate and land use change. Current field-based methods of estimating annual carbon exchange between peatlands and the atmosphere include flux chambers and eddy covariance towers. However, remote sensing has several advantages over these traditional approaches in terms of cost, spatial coverage and accessibility to remote locations. In this paper, we outline the basic principles of using remote sensing to estimate ecosystem carbon fluxes and explain the range of satellite data available for such estimations, considering the indices and models developed to make use of the data. Past studies, which have used remote sensing data in comparison with ground-based calculations of carbon fluxes over Northern peatland landscapes, are discussed, as well as the challenges of working with remote sensing on peatlands. Finally, we suggest areas in need of future work on this topic. We conclude that the application of remote sensing to models of carbon fluxes is a viable research method over Northern peatlands but further work is needed to develop more comprehensive carbon cycle models and to improve the long-term reliability of models, particularly on peatland sites undergoing restoration. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Current and future CO2 emissions from drained peatlands in Southeast Asia

    Directory of Open Access Journals (Sweden)

    H. Wösten

    2010-05-01

    Full Text Available Forested tropical peatlands in Southeast Asia store at least 42 000 Million metric tonnes (Mt of soil carbon. Human activity and climate change threatens the stability of this large pool, which has been decreasing rapidly over the last few decades owing to deforestation, drainage and fire. In this paper we estimate the carbon dioxide (CO2 emissions resulting from drainage of lowland tropical peatland for agricultural and forestry development which dominates the perturbation of the carbon balance in the region. Present and future emissions from drained peatlands are quantified using data on peatland extent and peat thickness, present and projected land use, water management practices and decomposition rates. Of the 27.1 Million hectares (Mha of peatland in Southeast Asia, 12.9 Mha had been deforested and mostly drained by 2006. This latter area is increasing rapidly because of increasing land development pressures. Carbon dioxide (CO2 emission caused by decomposition of drained peatlands was between 355 Mt y−1 and 855 Mt y−1 in 2006 of which 82% came from Indonesia, largely Sumatra and Kalimantan. At a global scale, CO2 emission from peatland drainage in Southeast Asia is contributing the equivalent of 1.3% to 3.1% of current global CO2 emissions from the combustion of fossil fuel. If current peatland development and management practices continue, these emissions are predicted to continue for decades. This warrants inclusion of tropical peatland CO2 emissions in global greenhouse gas emission calculations and climate mitigation policies. Uncertainties in emission calculations are discussed and research needs for improved estimates are identified.

  14. Buffer$--An Economic Analysis Tool

    Science.gov (United States)

    Gary Bentrup

    2007-01-01

    Buffer$ is an economic spreadsheet tool for analyzing the cost-benefits of conservation buffers by resource professionals. Conservation buffers are linear strips of vegetation managed for multiple landowner and societal objectives. The Microsoft Excel based spreadsheet can calculate potential income derived from a buffer, including income from cost-share/incentive...

  15. Greenhouse gas dynamics in degraded and restored tropical peatlands

    Directory of Open Access Journals (Sweden)

    J. Jauhiainen

    2016-06-01

    Full Text Available Agricultural and other land uses on ombrotrophic lowland tropical peat swamps typically lead to reduced vegetation biomass and water table drawdown. We review what is known about greenhouse gas (GHG dynamics in natural and degraded tropical peat systems in south-east Asia, and on this basis consider what can be expected in terms of GHG dynamics under restored conditions. Only limited in situ data are available on the effects of restoration and the consequences for peat carbon (C dynamics. Hydrological restoration seeks to bring the water table closer to the peat surface and thus re-create near-natural water table conditions, in order to reduce wildfire risk and associated fire impacts on the peat C store, as well as to reduce aerobic peat decomposition rates. However, zero emissions are unlikely to be achieved due to the notable potential for carbon dioxide (CO2 production from anaerobic peat decomposition processes. Increased vegetation cover (ideally woody plants resulting from restoration will increase shading and reduce peat surface temperatures, and this may in turn reduce aerobic decomposition rates. An increase in litter deposition rate will compensate for C losses by peat decomposition but also increase the supply of labile C, which may prime decomposition, especially in peat enriched with recalcitrant substrates. The response of tropical peatland GHG emissions to peatland restoration will also vary according to previous land use and land use intensity.

  16. Medium term ecohydrological response of peatland bryophytes to canopy disturbance

    Science.gov (United States)

    Leonard, Rhoswen; Kettridge, Nick; Krause, Stefan; Devito, Kevin; Granath, Gustaf; Petrone, Richard; Mandoza, Carl; Waddington, James Micheal

    2016-04-01

    Canopy disturbance in northern forested peatlands is widespread. Canopy changes impact the ecohydrological function of moss and peat, which provide the principal carbon store within these carbon rich ecosystems. Different mosses have contrasting contributions to carbon and water fluxes (e.g. Sphagnum fuscum and Pleurozium schreberi) and are strongly influenced by canopy cover. As a result, changes in canopy cover lead to long-term shifts in species composition and associated ecohydrological function. Despite this, the medium-term response to such disturbance, the associated lag in this transition to a new ecohydrological and biogeochemical regime, is not understood. Here we investigate this medium term ecohydrological response to canopy removal using a randomised plot design within a north Albertan peatland. We show no significant ecohydrological change in treatment plots four years after canopy removal. Notably, Pleurozium schreberi and Sphagnum fuscum remained within respective plots post treatment and there was no significant difference in plot resistance to evapotranspiration or carbon exchange. Our results show that canopy removal alone has little impact on bryophyte ecohydrology in the short/medium term. This resistance to disturbance contrasts strongly with dramatic short-term changes observed within mineral soils suggesting that concurrent shifts in the large scale hydrology induced within such disturbances are necessary to cause rapid ecohydrological transitions. Understanding this lagged response is critical to determine the decadal response of carbon and water fluxes in response to disturbance and the rate at which important medium term ecohydrological feedbacks are invoked.

  17. Bryophyte spore germinability is inhibited by peatland substrates

    Science.gov (United States)

    Bu, Zhao-Jun; Li, Zhi; Liu, Li-Jie; Sundberg, Sebastian; Feng, Ya-Min; Yang, Yun-He; Liu, Shuang; Song, Xue; Zhang, Xing-Lin

    2017-01-01

    Bryophyte substrates and species may affect spore germination through allelopathy. Polytrichum strictum is currently expanding in peatlands in north-eastern China - is this an effect of its superior spore germinability or do its gametophytes have a stronger allelopathic effect than do Sphagnum? We conducted a spore burial experiment to test the effect of species identity, substrate and water table depth (WTD) on spore germinability and bryophyte allelopathic effect with P. strictum and two Sphagnum species (S. palustre and S. magellanicum). After 5 months of burial during a growing season, the spores were tested for germinability. Allelopathic effect of bryophyte substrates was assessed by the difference between spore germinability after being stored inside or outside the substrates. After burial, more than 90% of the spores lost their germinability across all three species due to ageing and allelopathy. Spore germinability differed among species, where the spores in S. palustre had a higher germination frequency than those in P. strictum. The three bryophytes maintained a higher germinability in Sphagnum than in Polytrichum hummocks, probably due to a stronger allelopathic effect of P. strictum. Water table drawdown by 10 cm increased germinability by more than 60% across the three species. The study indicates that P. strictum does not possess an advantage regarding spore germination but rather its gametophytes have a stronger allelopathic effect. Due to the weaker inhibitive effect of Sphagnum gametophytes, P. strictum may have a potential establishment superiority over Sphagnum in peatlands, in addition to a better drought tolerance, which may explain its current expansion.

  18. ACETIC ACID AND A BUFFER

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent.......The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent....

  19. NPP Boreal Forest: Flakaliden, Sweden, 1986-1996, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains three files (.txt format) for an established 8.25 ha boreal forest dominated by Norway spruce, Picea abies, at Flakaliden (64.12 N 19.45 E) in...

  20. NPP Boreal Forest: Schefferville, Canada, 1974, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains two files (.txt format). One file provides above- and below-ground biomass, soil, and nutrient data for a mature boreal ecosystem (subarctic...

  1. NPP Boreal Forest: Schefferville, Canada, 1974, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains two files (.txt format). One file provides above- and below-ground biomass, soil, and nutrient data for a mature boreal ecosystem...

  2. NPP Boreal Forest: Kuusamo, Finland, 1967-1971, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains three files (.txt format). One file provides stand characteristics, biomass, and production allocation data for an old-growth boreal...

  3. NPP Boreal Forest: Kuusamo, Finland, 1967-1972, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains three files (.txt format). One file provides stand characteristics, biomass, and production allocation data for an old-growth boreal forest...

  4. A sensible climate solution for the boreal forest

    Science.gov (United States)

    Astrup, Rasmus; Bernier, Pierre Y.; Genet, Hélène; Lutz, David A.; Bright, Ryan M.

    2018-01-01

    Climate change could increase fire risk across most of the managed boreal forest. Decreasing this risk by increasing the proportion of broad-leaved tree species is an overlooked mitigation-adaption strategy with multiple benefits.

  5. BOREAS TE-04 Gas Exchange Data from Boreal Tree Species

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains TE-04 data on gas exchange studies of photosynthesis, respiration and stomatal conductance of boreal forest species using the MPH-1000 system.

  6. BOREAS TE-04 Gas Exchange Data from Boreal Tree Species

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Contains TE-04 data on gas exchange studies of photosynthesis, respiration and stomatal conductance of boreal forest species using the MPH-1000 system.

  7. BOREAS TE-04 Branch Bag Data from Boreal Tree Species

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains 1996 TE-04 data of branch bag studies of photosynthesis, respiration and stomatal conductance of boreal forest species using the open MPH-1000 system.

  8. BOREAS TE-04 Branch Bag Data from Boreal Tree Species

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Contains 1996 TE-04 data of branch bag studies of photosynthesis, respiration and stomatal conductance of boreal forest species using the open MPH-1000...

  9. Abrupt vegetation transitions characterise long-term Amazonian peatland development

    Science.gov (United States)

    Roucoux, K. H.; Baker, T. R.; Gosling, W. D.; Honorio Coronado, E.; Jones, T. D.; Lahteenoja, O.; Lawson, I. T.

    2012-04-01

    Recent investigations of wetlands in western Amazonia have revealed the presence of extensive peatlands with peat deposits of up to 8 m-thick developing under a variety of vegetation types (Lähteenoja et al. 2012). Estimated to cover 150,000 km2 (Schulman et al. 1999), these peatlands make a valuable contribution to landscape and biological diversity and represent globally important carbon stores. In order to understand the processes leading to peat formation, and the sensitivity of these environments to future climatic change, it is necessary to understand their long-term history. The extent to which peatland vegetation changes over time, the stability of particular communities, the controls on transitions between vegetation types and how these factors relate to the accumulation of organic matter are not yet known. We report the first attempt to establish the long-term (millennial scale) vegetation history of a recently-described peatland site: Quistococha, a palm swamp, or aguajal, close to Iquitos in northern Peru. The vegetation is dominated by Mauritia flexuosa and Mauritiella armata and occupies a basin which is thought to be an abandoned channel of the River Amazon. We obtained a 4 m-long peat sequence from the deepest part of the basin. AMS-radiocarbon dating yielded a maximum age of 2,212 cal yr BP for the base of the peat, giving an average accumulation rate of 18 cm per century. Below the peat are 2 m of uniform, largely inorganic pale grey clays of lacustrine origin, which are underlain by an unknown thickness of inorganic sandy-silty clay of fluvial origin. Pollen analysis, carried out at c. 88-year intervals, shows the last 2,212 years to be characterised by the development of at least four distinct vegetation communities, with peat accumulating throughout. The main phases were: (1) Formation of Cyperaceae (sedge) fen coincident with peat initiation; (2) A short-lived phase of local Mauritia/Mauritiella development; (3) Development of mixed wet

  10. Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth

    Science.gov (United States)

    van den Elzen, Eva; Kox, Martine A. R.; Harpenslager, Sarah F.; Hensgens, Geert; Fritz, Christian; Jetten, Mike S. M.; Ettwig, Katharina F.; Lamers, Leon P. M.

    2017-03-01

    In pristine Sphagnum-dominated peatlands, (di)nitrogen (N2) fixing (diazotrophic) microbial communities associated with Sphagnum mosses contribute substantially to the total nitrogen input, increasing carbon sequestration. The rates of symbiotic nitrogen fixation reported for Sphagnum peatlands, are, however, highly variable, and experimental work on regulating factors that can mechanistically explain this variation is largely lacking. For two common fen species (Sphagnum palustre and S. squarrosum) from a high nitrogen deposition area (25 kg N ha-1 yr-1), we found that diazotrophic activity (as measured by 15 - 15N2 labeling) was still present at a rate of 40 nmol N gDW-1 h-1. This was surprising, given that nitrogen fixation is a costly process. We tested the effects of phosphorus availability and buffering capacity by bicarbonate-rich water, mimicking a field situation in fens with stronger groundwater or surface water influence, as potential regulators of nitrogen fixation rates and Sphagnum performance. We expected that the addition of phosphorus, being a limiting nutrient, would stimulate both diazotrophic activity and Sphagnum growth. We indeed found that nitrogen fixation rates were doubled. Plant performance, in contrast, did not increase. Raised bicarbonate levels also enhanced nitrogen fixation, but had a strong negative impact on Sphagnum performance. These results explain the higher nitrogen fixation rates reported for minerotrophic and more nutrient-rich peatlands. In addition, nitrogen fixation was found to strongly depend on light, with rates 10 times higher in light conditions suggesting high reliance on phototrophic organisms for carbon. The contrasting effects of phosphorus and bicarbonate on Sphagnum spp. and their diazotrophic communities reveal strong differences in the optimal niche for both partners with respect to conditions and resources. This suggests a trade-off for the symbiosis of nitrogen fixing microorganisms with their Sphagnum

  11. Relationships between aquatic invertebrates, water quality and vegetation in an Andean peatland system

    Directory of Open Access Journals (Sweden)

    E. Oyague Passuni

    2015-12-01

    Full Text Available Peatlands (known as bofedales in the Peruvian Andes provide important social and environmental services in the Peruvian Puna ecoregion, especially as sources of water and forage for domestic livestock. In biological terms, these peatlands are key habitats with their own community structure, dynamics and interactions; and they serve as biodiversity hotspots within the High Andes. In this article we assess the relationships between: (i physical structure, (ii water quality, (iii plant communities and (iv the assemblages of aquatic invertebrates (benthic macroinvertebrates in three peatlands located in Cuzco Region, southern Peru. The results suggest that the benthic macroinvertebrate assemblage is a good indicator of the trophic status of the small pools that are typically present in bofedales. Trophic status is, in turn, primarily related to spatial and seasonal water availability and the types of plant communities present in each peatland.

  12. NACP Peatland Landcover Type and Wildfire Burn Severity Maps, Alberta, Canada

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides landcover maps of (1) peatland type (bog, fen, marsh, swamp) with levels of biomass (open, forested) and (2) Burn Severity Index (BSI)...

  13. Carbon sequestration in Southeast Asian tropical peatlands over the Holocene period: large-scale hydrological controls

    Science.gov (United States)

    Dommain, R.; Couwenberg, J.; Cobb, A.; Gandois, L.; Kai, F.; Su'ut, N.; Abu Salim, K.; Harvey, C. F.; Glaser, P. H.; Joosten, H.

    2012-12-01

    Tropical peatlands are recognized as a significant sink of carbon dioxide and an important source of methane. Low latitude peatlands contain an estimated pool of 90 Pg C, of which ca. 70 Pg C is stored in Southeast Asian peatlands. However, the Holocene development of this carbon reservoir is poorly established. Here we provide a synthesis of carbon uptake rates by tropical peatlands in Southeast Asia across millennial timescales for the past 11,000 years. Our reconstruction of the carbon accumulation history for Borneo, Sumatra and Peninsular Malaysia is based on a synthesis of radiocarbon dated peat profiles, modeling of peatland extent, and a new carbon accumulation record from Brunei (NW-Borneo). During the early Holocene the first peatlands formed in southern Borneo under the influence of a strong monsoon and rapid rise in sea-level. The carbon accumulation rate (CAR) in these peatlands was on average 60 g C m-2 yr-1 at this time. Peatlands started to spread across the coastal lowlands of Borneo, Sumatra and Peninsular Malaysia after 8000 cal BP only when the rate of rising sea-level decreased. The major phase of coastal peatland initiation lasted from 7000 to 4000 cal BP. This period was marked by a Holocene precipitation maximum, suppressed El Niño activity, and the Holocene maximum in sea-level on the Sunda Shelf. The mean CAR of coastal peatlands at this time was 80 g C m-2 yr-1, with a Holocene peak of ~100 g C m-2 yr-1 from 4900 to 4500 cal BP. Significantly, atmospheric CO2 concentrations measured in the Taylor Dome Antarctic ice core indicate a plateau during this period of otherwise rising CO2 concentrations. During the Late Holocene CAR declined both in coastal peatlands (ca. 70 g C m-2 yr-1) and in southern Borneo (ca. 20 g C m-2 yr-1) in response to falling sea-levels and increased El Niño frequency and intensity. In fact, several peatlands in southern Borneo have stopped accumulating peat-carbon under higher El Niño activity. These results

  14. NACP Peatland Land Cover Map of Upper Peninsula, Michigan, 2007-2011

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides a land cover map focused on peatland ecosystems in the upper peninsula of Michigan. The map was produced at 12.5-m resolution using a...

  15. Global Peatland Carbon Balance and Land Use Change CO2 Emissions Through the Holocene

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a time series of global peatland carbon balance and carbon dioxide emissions from land use change throughout the Holocene (the past 11,000...

  16. The long-term fate of permafrost peatlands under rapid climate warming

    DEFF Research Database (Denmark)

    Swindles, Graeme T.; Morris, Paul J.; Mullan, Donal

    2015-01-01

    Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon...... stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological...... approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed...

  17. Contrasting vulnerability of drained tropical and high-latitude peatlands to fluvial loss of stored carbon

    Czech Academy of Sciences Publication Activity Database

    Evans, C. D.; Page, S. E.; Jones, T.; Moore, S.; Gauci, V.; Laiho, R.; Hruška, Jakub; Allott, T. E. H.; Billet, M. F.; Tipping, E.; Freeman, Ch.; Garnett, M. H.

    2014-01-01

    Roč. 28, č. 11 (2014), s. 1215-1234 ISSN 0886-6236 Institutional support: RVO:67179843 Keywords : peatland * drainage * dissolved organic carbon * radiocarbon Subject RIV: EH - Ecology, Behaviour Impact factor: 3.965, year: 2014

  18. Modelling hydrological processes and dissolved organic carbon dynamics in a rehabilitated Sphagnum-dominated peatland

    Science.gov (United States)

    Bernard-Jannin, Léonard; Binet, Stéphane; Gogo, Sébastien; Leroy, Fabien; Perdereau, Laurent; Laggoun-Défarge, Fatima

    2017-04-01

    Sphagnum-dominated peatlands represent a global major stock of carbon (C). Dissolved organic carbon (DOC) exports through runoff and leaching could reduce their potential C sink function and impact downstream water quality. DOC production in peatlands is strongly controlled by the hydrology, especially water table depth (WTD). Therefore, disturbances such as drainage can lead to increase DOC exports by lowering the WTD. Hydrological restoration (e.g. rewetting) can be undertaken to restore peatland functioning with an impact on DOC exports. The objective of this study is to assess the impact of drainage and rewetting on hydrological processes and their interactions with DOC dynamics in a Sphagnum dominated peatland. A hydrological model has been applied to a drained peatland (La Guette, France) which experienced a rewetting action on February 2014 and where WTD has been recorded in four piezometers at a 15 min time step since 2009. In addition, DOC concentrations in the peatland have been measured 6 times a year since 2014. The hydrological model is a WTD dependent reservoir model composed by two reservoirs representing the micro and macro porosity of the peatland (Binet et al., 2013). A DOC production module in both reservoirs was implemented based on temperature and WTD. The model was calibrated against WTD and DOC concentrations for each piezometer. The results show that the WTD in the study area is strongly affected by local meteorological conditions that could hide the effect of the rewetting action. The preliminary results evidenced that an additional source of water, identified as groundwater supply originating from the surrounding sandy layer aquifer, is necessary to maintain the water balance, especially during wet years (NS>0.8). Finally, the DOC module was able to describe DOC concentrations measured in the peatland and could be used to assess the impact of rewetting on DOC dynamics at different locations and to identify the factors of control of DOC

  19. Tropical peatland carbon dynamics simulated for scenarios of disturbance and restoration and climate change

    Science.gov (United States)

    Frolking, S. E.; Warren, M.; Dai, Z.; Kurnianto, S.; Hagen, S. C.

    2015-12-01

    Tropical peatlands contain a globally significant carbon pool. Southeast Asian peatlands are being deforested, drained and burned at very high rates, mostly for conversion to industrial oil palm or pulp and paper plantations. The climate mitigation potential of tropical peatlands has gained increasing attention in recent years as persistent greenhouse gas emissions can be avoided or decreased if peatlands remain intact or are rehabilitated. In addition, peatland conservation or rehabilitation for climate mitigation also includes multiple co-benefits such as maintenance of ecosystem services, biodiversity, and air quality from reduced fire occurrence. Inventory guidelines and methodologies have only recently become available, and are based on few data from a limited number of sites. Few heuristic tools are available to evaluate the impact of management practices on carbon dynamics in tropical peatlands, and the potential climate mitigation benefits of peatland restoration. We used a process based dynamic tropical peatland model to explore the C dynamics of several peatland management trajectories represented by hypothetical scenarios, within the context of simulated 21st century climate change. All scenarios with land use, including those with optimal restoration, simulate C loss over the 21st century, with C losses ranging from 10% to essentially 100% of pre-disturbance values. Fire, either prescribed as part of a crop rotation cycle, or stochastic occurrences in sub-optimally managed degraded land can be the dominant C-loss pathway, particularly in the drier climate scenario we tested. A single 25-year oil palm rotation, with a prescribed initial burn, lost 40-50 kg C/m2, equivalent to accumulation during the previous 500 years, 10-30% of which was restored in 75 years of optimal restoration. Our results indicate that even under the most optimistic scenario of hydrological and forest restoration and the wettest climate regime, only about one-third of the carbon

  20. Methylmercury dynamics at the upland-peatland interface: Topographic and hydrogeochemical controls

    Science.gov (United States)

    Carl P. J. Mitchell; Brian A. Branfireun; Randall K. Kolka

    2009-01-01

    Peatlands are important environments for the transformation of atmospherically deposited inorganic mercury into the bioaccumulative form, methylmercury (MeHg), which may accumulate in downstream aquatic biota, particularly in fish. In recent research, it was suggested that MeHg production and/or accumulation ‘‘hot spots’’ at the upland-peatland interface were the...

  1. Upscaling Our Approach to Peatland Carbon Sequestration: Remote Sensing as a Tool for Carbon Flux Estimation.

    Science.gov (United States)

    Lees, K.; Khomik, M.; Clark, J. M.; Quaife, T. L.; Artz, R.

    2017-12-01

    Peatlands are an important part of the Earth's carbon cycle, comprising approximately a third of the global terrestrial carbon store. However, peatlands are sensitive to climatic change and human mismanagement, and many are now degraded and acting as carbon sources. Restoration work is being undertaken at many sites around the world, but monitoring the success of these schemes can be difficult and costly using traditional methods. A landscape-scale alternative is to use satellite data in order to assess the condition of peatlands and estimate carbon fluxes. This work focuses on study sites in Northern Scotland, where parts of the largest blanket bog in Europe are being restored from forest plantations. A combination of laboratory and fieldwork has been used to assess the Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP) and respiration of peatland sites in different conditions, and the climatic vulnerability of key peat-forming Sphagnum species. The results from these studies have been compared with spectral data in order to evaluate the extent to which remote sensing can function as a source of information for peatland health and carbon flux models. This work considers particularly the effects of scale in calculating peatland carbon flux. Flux data includes chamber and eddy covariance measurements of carbon dioxide, and radiometric observations include both handheld spectroradiometer results and satellite images. Results suggest that despite the small-scale heterogeneity and unique ecosystem factors in blanket bogs, remote sensing can be a useful tool in monitoring peatland health and carbon sequestration. In particular, this study gives unique insights into the relationships between peatland vegetation, carbon flux and spectral reflectance.

  2. Peatland carbon stocks and accumulation rates in the Ecuadorian páramo

    Science.gov (United States)

    John A. Hribljan; Esteban Suarez; Katherine A. Heckman; Erik Lilleskov; Rodney A. Chimner

    2016-01-01

    The páramo is a high altitude tropical Andean ecosystem that contains peatlands with thick horizons of carbon (C) dense soils. Soil C data are sparse for most of the pa´ramo, especially in peatlands, which limits our ability to provide accurate regional and country wide estimates of C storage. Therefore, the objective of our research was to quantify belowground C...

  3. Subsidence and carbon loss in drained tropical peatlands

    Directory of Open Access Journals (Sweden)

    A. Hooijer

    2012-03-01

    Full Text Available Conversion of tropical peatlands to agriculture leads to a release of carbon from previously stable, long-term storage, resulting in land subsidence that can be a surrogate measure of CO2 emissions to the atmosphere. We present an analysis of recent large-scale subsidence monitoring studies in Acacia and oil palm plantations on peatland in SE Asia, and compare the findings with previous studies. Subsidence in the first 5 yr after drainage was found to be 142 cm, of which 75 cm occurred in the first year. After 5 yr, the subsidence rate in both plantation types, at average water table depths of 0.7 m, remained constant at around 5 cm yr−1. The results confirm that primary consolidation contributed substantially to total subsidence only in the first year after drainage, that secondary consolidation was negligible, and that the amount of compaction was also much reduced within 5 yr. Over 5 yr after drainage, 75 % of cumulative subsidence was caused by peat oxidation, and after 18 yr this was 92 %. The average rate of carbon loss over the first 5 yr was 178 t CO2eq ha−1 yr−1, which reduced to 73 t CO2eq ha−1 yr−1 over subsequent years, potentially resulting in an average loss of 100 t CO2eq ha−1 yr−1 over 25 yr. Part of the observed range in subsidence and carbon loss values is explained by differences in water table depth, but vegetation cover and other factors such as addition of fertilizers also influence peat oxidation. A relationship with groundwater table depth shows that subsidence and carbon loss are still considerable even at the highest water levels theoretically possible in plantations. This implies that improved plantation water management will reduce these impacts by 20 % at most, relative to current conditions, and that high rates of carbon loss and land subsidence are

  4. Frozen peatlands: carbon store and the climate change

    Science.gov (United States)

    Ogneva, Olga; Matyshak, George; Tarkhov, Matvey

    2017-04-01

    Peatlands soils in the northern permafrost region store approximately 40% of total Earth's soils carbon. These soils develop under the influence of cryogenic processes especially such as freeze-thaw and cryoturbations. Climate change predictions suggest that the frequency of soil freeze-thaw cycles (FTCs) will increase in cool temperate and other high-latitude regions. This trend may cause a response in organic matter decomposition rate - that will result in significant changes of greenhouse gases emission (CO2, CH4). For further predictions improvement of soils response to global climate changes it is necessary to estimate the impact of FTCs in permafrost soils on organic matter decomposition. We investigated the effects of FTCs on microbial biomass, basal respiration, metabolic quotient and dissolved organic matter (DOM) content (carbon - DOC and nitrogen - DON) in frozen peatlands soils by laboratory modelling experiment. Frozen peatlands from the north of Western Siberia in Nadym area (N65°19', E72°53'), in a zone of discontinuous permafrost were studied. The soil cover of these formations is represented by a complex of Typic Histoturbels (Turbic Cryosol) and Typic Historthels (Cryic Histosols). Peat profiles of both soil types were divided into horizons due to decomposition degree (from 15 to 55-60%), age (from 1000 to 5700 yrs) and botanic composition (oligotrophic, mesotrophic, eutrophic). During the experiment, first group of samples of peat horizons (field moisture content) were subjected for 10 times to 3-day FTCs at the temperature of -10 and +4 ° C. In the second group of peat samples were incubated at +4 ° C (with no freeze-thaw). It was established that all studied microbial properties were inversely proportional with decomposition degree of peat, except metabolic quotient. Our results illustrate that microbial activity, estimated by BR, shows resistance to FTCs and doesn't significantly differ after FTCs an average. Microbial biomass (carbon and

  5. Estimating belowground carbon stocks in peatlands of the Ecuadorian páramo using ground-penetrating radar (GPR)

    Science.gov (United States)

    Xavier Comas; Neil Terry; John A. Hribljan; Erik A. Lilleskov; Esteban Suarez; Rodney A. Chimner; Randy K. Kolka

    2017-01-01

    The páramo ecoregion of Ecuador contains extensive peatlands that are known to contain carbon (C) dense soils capable of long-term C storage. Although high-altitude mountain peatlands are typically small when compared to low-altitude peatlands, they are abundant across the Andean landscape and are likely a key component in regional C cycling. Since efforts to quantify...

  6. Fungal communities in ancient peatlands developed from different periods in the Sanjiang Plain, China.

    Science.gov (United States)

    Zhang, Zhenqing; Zhou, Xue; Tian, Lei; Ma, Lina; Luo, Shasha; Zhang, Jianfeng; Li, Xiujun; Tian, Chunjie

    2017-01-01

    Peatlands in the Sanjiang Plain could be more vulnerable to global warming because they are located at the southernmost boundary of northern peatlands. Unlike bacteria, fungi are often overlooked, even though they play important roles in substance circulation in the peatland ecosystems. Accordingly, it is imperative that we deepen our understanding of fungal community structure and diversity in the peatlands. In this study, high-throughput Illumina sequencing was used to study the fungal communities in three fens in the Sanjiang Plain, located at the southern edge of northern peatlands. Peat soil was collected from the three fens which developed during different periods. A total of 463,198 fungal ITS sequences were obtained, and these sequences were classified into at least six phyla, 21 classes, more than 60 orders and over 200 genera. The fungal community structures were distinct in the three sites and were dominated by Ascomycota and Basidiomycota. However, there were no significant differences between these three fens in any α-diversity index (p > 0.05). Soil age and the carbon (C) accumulation rate, as well as total carbon (TC), total nitrogen (TN), C/N ratio, and bulk density were found to be closely related to the abundance of several dominant fungal taxa. We captured a rich fungal community and confirmed that the dominant taxa were those which were frequently detected in other northern peatlands. Soil age and the C accumulation rate were found to play important roles in shaping the fungal community structure.

  7. Fungal communities in ancient peatlands developed from different periods in the Sanjiang Plain, China.

    Directory of Open Access Journals (Sweden)

    Zhenqing Zhang

    Full Text Available Peatlands in the Sanjiang Plain could be more vulnerable to global warming because they are located at the southernmost boundary of northern peatlands. Unlike bacteria, fungi are often overlooked, even though they play important roles in substance circulation in the peatland ecosystems. Accordingly, it is imperative that we deepen our understanding of fungal community structure and diversity in the peatlands. In this study, high-throughput Illumina sequencing was used to study the fungal communities in three fens in the Sanjiang Plain, located at the southern edge of northern peatlands. Peat soil was collected from the three fens which developed during different periods. A total of 463,198 fungal ITS sequences were obtained, and these sequences were classified into at least six phyla, 21 classes, more than 60 orders and over 200 genera. The fungal community structures were distinct in the three sites and were dominated by Ascomycota and Basidiomycota. However, there were no significant differences between these three fens in any α-diversity index (p > 0.05. Soil age and the carbon (C accumulation rate, as well as total carbon (TC, total nitrogen (TN, C/N ratio, and bulk density were found to be closely related to the abundance of several dominant fungal taxa. We captured a rich fungal community and confirmed that the dominant taxa were those which were frequently detected in other northern peatlands. Soil age and the C accumulation rate were found to play important roles in shaping the fungal community structure.

  8. Net ecosystem CO2 exchange of a cutover peatland rehabilitated with a transplanted acrotelm

    International Nuclear Information System (INIS)

    Cagampan, J.P.; Waddington, J.M.

    2008-01-01

    Peatlands are an important long-term sink for atmospheric carbon dioxide (CO 2 ). The storage function of peatland ecosystems is significantly impacted by drainage and extraction processes, which can result in the release of significant amounts of CO 2 . This paper investigated the net ecosystem CO 2 exchange of a newly developed extraction-restoration technique that preserved the acrotelm and replaced it directly on the cut surface of the peatlands. The technique used a modified block-cut method with a back-hoe to create a drainage ditch. Actrotelm and surface vegetation were removed and placed to one side, and the peat was mechanically removed. The acrotelm was then transplanted over the older and more decomposed catotelm peat to create a trench topography in which the natural peatland was higher than the extracted zone. Air temperatures, water table levels, and volumetric moisture content levels were measured throughout the experiment. Measurements of CO 2 exchange were taken for the duration of a Spring and summer growing season at 12 sampling locations. Results of the experiment showed that the technique was successful in maintaining moisture conditions similar to those observed in the natural peatlands. However, the peatlands where the technique was used were still net emitters of CO 2 . Recommendations for improving the technique included using more care when removing upper peat layers; limiting surface damage; and reducing spaces and gaps between the transplanted acrotelm. 34 refs., 8 figs

  9. Contrasting vulnerability of drained tropical and high-latitude peatlands to fluvial loss of stored carbon

    Science.gov (United States)

    Evans, Chris D.; Page, Susan E.; Jones, Tim; Moore, Sam; Gauci, Vincent; Laiho, Raija; Hruška, Jakub; Allott, Tim E. H.; Billett, Michael F.; Tipping, Ed; Freeman, Chris; Garnett, Mark H.

    2014-11-01

    Carbon sequestration and storage in peatlands rely on consistently high water tables. Anthropogenic pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of peat-forming vegetation and exposure of previously anaerobic peat to aerobic decomposition. This can shift peatlands from net CO2 sinks to large CO2 sources, releasing carbon held for millennia. Peatlands also export significant quantities of carbon via fluvial pathways, mainly as dissolved organic carbon (DOC). We analyzed radiocarbon (14C) levels of DOC in drainage water from multiple peatlands in Europe and Southeast Asia, to infer differences in the age of carbon lost from intact and drained systems. In most cases, drainage led to increased release of older carbon from the peat profile but with marked differences related to peat type. Very low DOC-14C levels in runoff from drained tropical peatlands indicate loss of very old (centuries to millennia) stored peat carbon. High-latitude peatlands appear more resilient to drainage; 14C measurements from UK blanket bogs suggest that exported DOC remains young (air pollution and intensive land management have triggered Sphagnum loss and peat erosion, suggest that additional anthropogenic pressures may trigger fluvial loss of much older (>500 year) carbon in high-latitude systems. Rewetting at least partially offsets drainage effects on DOC age.

  10. Subsidence Rates of Drained Agricultural Peatlands in New Zealand and the Relationship with Time since Drainage.

    Science.gov (United States)

    Pronger, Jack; Schipper, Louis A; Hill, Reece B; Campbell, David I; McLeod, Malcolm

    2014-07-01

    The drainage and conversion of peatlands to productive agro-ecosystems leads to ongoing surface subsidence because of densification (shrinkage and consolidation) and oxidation of the peat substrate. Knowing the ra0te of this surface subsidence is important for future land-use planning, carbon accounting, and economic analysis of drainage and pumping costs. We measured subsidence rates over the past decade at 119 sites across three large, agriculturally managed peatlands in the Waikato region, New Zealand. The average contemporary (2000s-2012) subsidence rate for Waikato peatlands was 19 ± 2 mm yr (± SE) and was significantly less ( = 0.01) than the historic rate of 26 ± 1 mm yr between the 1920s and 2000s. A reduction in the rate of subsidence through time was attributed to the transition from rapid initial consolidation and shrinkage to slower, long-term, ongoing oxidation. These subsidence rates agree well with a literature synthesis of temperate zone subsidence rates reported for similar lengths of time since drainage. A strong nonlinear relationship was found between temperate zone subsidence rates and time since initial peatland drainage: Subsidence (mm yr) = 226 × (years since drained) ( = 0.88). This relationship suggests that time since drainage exerts strong control over the rate of peatland subsidence and that ongoing peatland subsidence rates can be predicted to gradually decline with time in the absence of major land disturbance. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Fungal communities in ancient peatlands developed from different periods in the Sanjiang Plain, China

    Science.gov (United States)

    Tian, Lei; Ma, Lina; Luo, Shasha; Zhang, Jianfeng; Li, Xiujun

    2017-01-01

    Peatlands in the Sanjiang Plain could be more vulnerable to global warming because they are located at the southernmost boundary of northern peatlands. Unlike bacteria, fungi are often overlooked, even though they play important roles in substance circulation in the peatland ecosystems. Accordingly, it is imperative that we deepen our understanding of fungal community structure and diversity in the peatlands. In this study, high-throughput Illumina sequencing was used to study the fungal communities in three fens in the Sanjiang Plain, located at the southern edge of northern peatlands. Peat soil was collected from the three fens which developed during different periods. A total of 463,198 fungal ITS sequences were obtained, and these sequences were classified into at least six phyla, 21 classes, more than 60 orders and over 200 genera. The fungal community structures were distinct in the three sites and were dominated by Ascomycota and Basidiomycota. However, there were no significant differences between these three fens in any α-diversity index (p > 0.05). Soil age and the carbon (C) accumulation rate, as well as total carbon (TC), total nitrogen (TN), C/N ratio, and bulk density were found to be closely related to the abundance of several dominant fungal taxa. We captured a rich fungal community and confirmed that the dominant taxa were those which were frequently detected in other northern peatlands. Soil age and the C accumulation rate were found to play important roles in shaping the fungal community structure. PMID:29236715

  12. A survey of ASEAN instruments relating to peatlands, mangroves and other wetlands: The REDD+ context

    Directory of Open Access Journals (Sweden)

    Kheng-Lian Koh

    2013-07-01

    Full Text Available Since the 13th Association of Southeast Asian Nations (ASEAN Summit in November 2007, held in Singapore, ASEAN has accelerated its response to climate change issues, including REDD+ as a mechanism for climate change mitigation and adaptation, and to enhance conservation and sustainable use of natural resources. There are many wetlands in ASEAN including more than 25 million ha of peatlands spread over Indonesia, Malaysia, Thailand, Brunei, Philippines, Vietnam and Lao PDR. The peatlands account for 60 per cent of global tropical peatland resources. They are of significance for sequestration of carbon. However, degraded wetlands, including peatlands, are also a major source of greenhouse gases contributing to global warming. Of the types of wetlands, ASEAN has focused attention predominantly on peatlands in relation to REDD+, mainly because of the ‘Indonesian Haze’. The Asia-Pacific Centre for Environmental Law (APCEL organised a Workshop titled, REDD+ and Legal Regimes of Mangroves, Peatland and Other Wetlands: ASEAN and the World, in Singapore from 15-16 November 2012. The articles contained in this special themed edition of the International Journal of Rural Law and Policy (IJRLP contains a selection of the papers presented. This editorial will provide a brief background to some aspects of REDD+. Included in this issue of IJRLP is a summary of the proceedings of the workshop as interpreted by the assigned rapporteur and editors of APCEL. These summaries were reviewed and approved by the presenters.

  13. Short-term vegetation change on rehabilitated peatland on Rietvlei Nature Reserve

    Directory of Open Access Journals (Sweden)

    C.E. Venter

    2003-12-01

    Full Text Available Natural peatlands occur on the Rietvlei Nature Reserve. Before the Pretoria City Council acquired the land, these peatlands were mined by private land-owners. Ditches were constructed to drain the area for mining and the peatlands became desicrated. Later the area was proclaimed as a nature reserve and has since then been managed as such. Rehabilitation of the drained peatland on Rietvlei Nature Reserve first started in 2000 as a Working for Water project. The aim of the rehabilitation was to close the ditches and rewet the peatland, to enable possible revival of the peatland. A baseline vegetation survey was undertaken during the summer (March to April of 2001 to determine the nature of the pioneer communities that established on the rehabilitated area. This survey was repeated during the summer (March to April of 2002 to detect changes in the vegetation. The same sample plots were used on both occasions. The initial pioneer vegetation was mostly composed of weedy annuals.

  14. Peatland evolution and associated environmental changes in central China over the past 40,000 years

    Science.gov (United States)

    He, Yuxin; Zhao, Cheng; Zheng, Zhuo; Liu, Zhonghui; Wang, Ning; Li, Jie; Cheddadi, Rachid

    2015-09-01

    Central China has experienced stronger summer monsoon during warm periods such as Marine Isotope Stages (MIS) 1 and 3, and weaker summer monsoon during cool periods such as MIS 2. The evolution history of Dajiuhu subalpine peatland in central China can help investigate how the expansion and shrinkage of peatland were associated with monsoonal strength over the last glacial-interglacial cycle. Here we apply bulk organic carbon and molecular biomarkers (hopane and n-alkane) to reconstruct the evolution history for the Dajiuhu peatland over the past 40,000 yr. The results indicate fluctuations between lacustrine and peat-like deposition during MIS 3, steady lacustrine deposition during MIS 2, and peatland initiation and expansion during MIS 1 in the Dajiuhu peatland. Therefore, at the glacial-interglacial scale, warmer summer and cooler winter conditions in interglacial periods are crucial to trigger peat deposition, whereas reduced evaporation in glacial period instead of decreased monsoonal-driven precipitation would have played a predominant role in the regional effective moisture balance. However, within the Holocene (MIS 1), monsoonal precipitation changes appear to be the main controller on millennial-scale variations of water-table level of the Dajiuhu peatland.

  15. The role of drainage ditches in greenhouse gas emissions and surface leaching losses from a cutaway peatland cultivated with a perennial bioenergy crop

    Energy Technology Data Exchange (ETDEWEB)

    Hyvonen, N.P.; Huttunen, J.T.; Shurpali, N.J.; Lind, S.E.; Marushchak, M.E.; Martikainen, P.J. [University of Eastern Finland, Kuopio (Finland). Dept. of Environmental Science], E-mail: niina.hyvonen@uef.fi; Heitto, L. [Environmental Research of Savo-Karjala Ltd, Kuopio (Finland)

    2013-06-01

    We studied greenhouse gas (GHG) emissions from drainage ditches and leaching losses in a boreal cutaway peatland cultivated with reed canary grass (Phalaris arundinacea) for bioenergy. The objectives of the study were to assess to what extent GHG emissions from drainage ditches and leaching of carbon and nutrients via surface drainage contribute to the total losses of carbon and nitrogen from the site. The emissions of CH{sub 4}, N{sub 2}O and CO{sub 2} were measured with static chamber methods for three years and leaching losses for seven years. On average, the drainage ditches (covering 6% of the study site area) released 10% of the total CH{sub 4} emission (0.33 g m{sup -2} a{sup -1}), and 1% and 5% of the total N{sub 2}O and CO{sub 2} emissions, respectively. Leaching of total nitrogen and phosphorous were 0.31 and 0.03 g m{sup -2} a{sup -1}, respectively. Leaching values were lower than those reported for agricultural catchments in general. (orig.)

  16. Towards a Manitoba Hydro boreal woodland caribou strategy: Outcomes from Manitoba Hydro boreal woodland caribou workshop

    Directory of Open Access Journals (Sweden)

    Fiona E. Scurrah

    2012-03-01

    Full Text Available Manitoba Hydro is responsible for the continued supply of energy to meet the needs of the province and is committed to protecting the environment when planning the construction and operation of its facilities. Corporate policy dictates ongoing improvement of Environmental Management Systems (EMS in order to meet or surpass regulatory requirements. Environmental objectives are reviewed annually and programs are modified when necessary to address improvements in environmental performance. Manitoba Hydro plans and constructs major transmission projects throughout northern Manitoba which includes areas occupied by boreal woodland caribou. In recognition of the potential issues associated with hydro transmission construction in boreal caribou range, Manitoba Hydro hosted an expert workshop on May 8, 2007 to provide objective advice in the development of a draft corporate strategy that effectively directs targeted monitoring and research for environmental assessment and mitigation. The workshop focused on assessing the potential threats to boreal woodland caribou from a transmission line construction and operation perspective, and identifying appropriate approaches in site selection and environmental assessment (SSEA and long-term monitoring and research. A total of nine threat categories were reviewed to determine the degree and magnitude of potential effects that may result from transmission construction and operation; and of the original nine, five final threat categories were delineated. The main elements of the workshop provided strategic approaches for proactive pre-construction monitoring, research on recruitment and mortality for local populations impacted by ROWs and control areas, and various habitat monitoring, management, and mitigation techniques. Research and monitoring priorities have been identified and continued collaboration with Manitoba Conservation and other land users were also identified.

  17. Symbiosis revisited : Phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth

    NARCIS (Netherlands)

    Van Den Elzen, Eva; Kox, Martine A R; Harpenslager, Sarah F.; Hensgens, Geert; Fritz, Christian; Jetten, Mike S M; Ettwig, Katharina F.; Lamers, Leon P M

    2017-01-01

    In pristine Sphagnum-dominated peatlands, (di)nitrogen (N2) fixing (diazotrophic) microbial communities associated with Sphagnum mosses contribute substantially to the total nitrogen input, increasing carbon sequestration. The rates of symbiotic nitrogen fixation reported for Sphagnum peatlands,

  18. The thermodynamic-buffer enzymes.

    Science.gov (United States)

    Stucki, J W

    1980-08-01

    Oxidative phosphorylation operates at optimal efficiency if and only if the condition of conductance matching L33/L11 = square root 1-q2 is fulfilled. In this relation L11 is the phenomenological conductance of phosphorylation, L33 the phenomenological conductance of the load, i.e. the irreversible ATP-utilizing processes in the cell, and q the degree of coupling of oxidative phosphorylation driven by respiration. Since during short time intervals L11 and q are constant whereas L33 fluctuates in the cell, oxidative phosphorylation would only rarely operate at optimal efficiency due to violation of conductance matching. This paper demonstrates that the reversible ATP-utilizing reaction catalyzed by adenylate kinase can effectively compensate deviations from conductance matching in the presence of a fluctuating L33 and hence allows oxidative phosphorylation to operate at optimal efficiency in the cell. Since the adenylate kinase reaction was found to buffer a thermodynamic potential, i.e. the phosphate potential, this finding was generalized to the concept of thermodynamic buffering. The thermodynamic buffering ability of the adenylate kinase reaction was demonstrated by experiments with incubated rat-liver mitochondria. Considerations of changes introduced in the entropy production by the adenylate kinase reaction allowed to establish the theoretical framework for thermodynamic buffering. The ability of thermodynamic buffering to compensate deviations from conductance matching in the presence of fluctuating loads was demonstrated by computer simulations. The possibility of other reversible ATP-utilizing reactions, like the ones catalyzed by creatine kinase and arginine kinase, to contribute to thermodynamic buffering is discussed. Finally, the comparison of the theoretically calculated steady-stae cytosolic adenine nucleotide concentrations with experimental data from perfused livers demonstrated that in livers from fed rats conductance matching is fulfilled on a

  19. Snow and Vegetation Interactions at Boundaries in Alaska's Boreal Forest

    Science.gov (United States)

    Hiemstra, C. A.; Sturm, M.

    2012-12-01

    There has been increased attention on snow-vegetation interactions in Arctic tundra because of rapid climate-driven changes affecting that snow-dominated ecosystem. Yet, far less attention is paid to boreal forest snow-vegetation interactions even though climatic conditions are changing there as well. Further, it is the prevalent terrestrial biome on the planet. The forest is a variable patchwork of trees, shrubs, grasses, and forbs shaped by wind, fire, topography, water drainage, and permafrost. These patches and their boundaries have a corresponding effect on boreal snow distributions; however, measurements characterizing boreal snow are sparse and focus within patches (vs. between patches). Unfortunately, remote sensing approaches in such forested areas frequently fall short due to coarse footprint size and dense canopy cover. Over the last several years we have been examining the characteristics of snow cover within and across boundaries in the boreal forest, seeking to identify gradients in snow depth due to snow-vegetation interactions as well identifying methods whereby boreal forest surveys could be improved. Specifically, we collected end-of-season snow measurements in the Alaska boreal forest during long-distance traverses in the Tanana Basin in 2010 (26 sites) and within the Yukon Flats National Wildlife Refuge in 2011 (26 sites). At each site (all relatively flat), hundreds of snow depths were collected using a GPS-equipped Magnaprobe, which is an automated tool for measuring and locating individual snow depths. Corresponding canopy properties included NDVI determined from high-resolution satellite imagery; canopy properties were variable among the 1ha sites and some areas had recently burned. Among sites, NDVI had the largest correlation with snow depths; elevation was not significant. Vegetation transition zones play important roles in explaining observed snow depth. Similar to treeline work showing nutrient and energy gradients are influenced by

  20. Microbial reduction of iron and porewater biogeochemistry in acidic peatlands

    Directory of Open Access Journals (Sweden)

    K. Küsel

    2008-11-01

    Full Text Available Temporal drying of upper soil layers of acidic methanogenic peatlands might divert the flow of reductants from CH4 formation to other electron-accepting processes due to a renewal of alternative electron acceptors. In this study, we evaluated the in situ relevance of Fe(III-reducing microbial activities in peatlands of a forested catchment that differed in their hydrology. Intermittent seeps reduced sequentially nitrate, Fe(III, and sulfate during periods of water saturation. Due to the acidic soil conditions, released Fe(II was transported with the groundwater flow and accumulated as Fe(III in upper soil layers of a lowland fen apparently due to oxidation. Microbial Fe(III reduction in the upper soil layer accounted for 26.7 and 71.6% of the anaerobic organic carbon mineralization in the intermittent seep and the lowland fen, respectively. In an upland fen not receiving exogenous Fe, Fe(III reduction contributed only to 6.7%. Fe(II and acetate accumulated in deeper porewater of the lowland fen with maximum concentrations of 7 and 3 mM, respectively. Both supplemental glucose and acetate stimulated the reduction of Fe(III indicating that fermentative, incomplete, and complete oxidizers were involved in Fe(II formation in the acidic fen. Amplification of DNA yielded PCR products specific for Acidiphilium-, Geobacter-, and Geothrix-, but not for Shewanella- or Anaeroromyxobacter-related sequences. Porewater biogeochemistry observed during a 3-year-period suggests that increased drought periods and subsequent intensive rainfalls due to global climate change will further favor Fe(III and sulfate as alternative electron acceptors due to the storage and enhanced re-oxidation of their reduced compounds in the soil.

  1. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C.J.; Ilvesniemi, H.; Liski, J.; Mecke, M. [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H.; Helmisaari, H.S.; Pietikaeinen, J.; Smolander, A. [Finnish Forest Research Inst., Vantaa (Finland)

    1996-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  2. How Might New Neurons Buffer Against Stress?

    Science.gov (United States)

    ... Institute Announcements (104 items) How Might New Neurons Buffer Against Stress? Clues Emerging from Studies in New ... better understand how having new neurons appears to buffer against stress effects on behavior, the NIMH researchers ...

  3. Buffer Zone Requirements for Soil Fumigant Applications

    Science.gov (United States)

    Updated pesticide product labels require fumigant users to establish a buffer zone around treated fields to reduce risks to bystanders. Useful information includes tarp testing guidance and a buffer zone calculator.

  4. Deceleration buffer for hydraulic linear motion drive

    International Nuclear Information System (INIS)

    Jamrus, K.J.

    1982-01-01

    Braking of the motion of a fluid-actuated drive is provided by a buffer arrangement which is normally sealed to prevent vaporization of the fluid in a buffer cylinder and which isolates the drive piston rings from braking pressures

  5. The role of lichen on peatland development in the Hudson Bay Lowlands, Canada

    Science.gov (United States)

    Harris, Lorna; Moore, Tim; Roulet, Nigel

    2015-04-01

    Lichen (Cladina stellaris) can be a dominant vegetation cover on bogs within the extensive peatland landscape of the Hudson Bay Lowlands (HBL), northern Ontario, Canada. The unique characteristics of lichens (growth structure and function as a symbiotic organism), their ability to form thick, dense mats across the HBL bogs, and their increased tolerance of extreme environmental conditions, points to their importance as a distinct plant functional type. However, the role of lichen within the peatland ecosystem is poorly understood, particularly ecosystem interactions (vegetation associations) and peatland development (including microtopography) and the resulting carbon sink. Many studies consider the role of different plant functional types on peatland CO2 and CH4 exchange (e.g. Bubier et al., 2003; Strack et al., 2006), and this understanding is included in peatland growth and climate change models. As far as we are aware lichens are currently omitted from these models. We suggest that lichens represent a distinct plant functional type with CO2 exchange characteristics (NEE and respiration) that are quite different to vascular plants and mosses. In this study we measured lichen CO2 exchange in both natural and modified moisture conditions at field sites in the HBL over two field seasons. Our results indicate that lichen productivity is strongly influenced by abiotic factors that affect lichen moisture content, with very dry lichen exhibiting little or no photosynthetic capacity. We suggest that the low productivity of lichen mats results in lower rates of peat accumulation compared to Sphagnum-dominated peatland areas, and that this has consequences for the development of peatland microtopography (hummocks and hollows) and feedback mechanisms. To better understand the role of lichen mats on peat accumulation and to test possible feedback mechanisms we developed a model, the parameters of which are supported by data from field sites in the HBL. This dependence of

  6. PEAT-CO2. Assessment of CO2 emissions from drained peatlands in SE Asia

    International Nuclear Information System (INIS)

    Hooijer, A.; Silvius, M.; Woesten, H.; Page, S.

    2006-12-01

    Forested tropical peatlands in SE Asia store at least 42,000 Megatonnes of soil carbon. This carbon is increasingly released to the atmosphere due to drainage and fires associated with plantation development and logging. Peatlands make up 12% of the SE Asian land area but account for 25% of current deforestation. Out of 27 million hectares of peatland, 12 million hectares (45%) are currently deforested and mostly drained. One important crop in drained peatlands is palm oil, which is increasingly used as a biofuel in Europe. In the PEAT-CO2 project, present and future emissions from drained peatlands were quantified using the latest data on peat extent and depth, present and projected land use and water management practice, decomposition rates and fire emissions. It was found that current likely CO2 emissions caused by decomposition of drained peatlands amounts to 632 Mt/y (between 355 and 874 Mt/y). This emission will increase in coming decades unless land management practices and peatland development plans are changed, and will continue well beyond the 21st century. In addition, over 1997-2006 an estimated average of 1400 Mt/y in CO2 emissions was caused by peatland fires that are also associated with drainage and degradation. The current total peatland CO2 emission of 2000 Mt/y equals almost 8% of global emissions from fossil fuel burning. These emissions have been rapidly increasing since 1985 and will further increase unless action is taken. Over 90% of this emission originates from Indonesia, which puts the country in 3rd place (after the USA and China) in the global CO2 emission ranking. It is concluded that deforested and drained peatlands in SE Asia are a globally significant source of CO2 emissions and a major obstacle to meeting the aim of stabilizing greenhouse gas emissions, as expressed by the international community. It is therefore recommended that international action is taken to help SE Asian countries, especially Indonesia, to better conserve

  7. Land Use Change and Recommendation for Sustainable Development of Peatland for Agriculture: Case Study at Kubu Raya and Pontianak Districts, West Kalimantan

    OpenAIRE

    Wahyunto, Wahyunto; Supriatna, Wahyu; Agus, Fahmuddin

    2010-01-01

    Peatland is an increasingly important land resource for livelihood, economic development, and terrestrial carbon storage. Kubu Raya and Pontianak Districts of West Kalimantan rely their future agricultural development on this environmentally fragile peatland because of the dominance (58% and 16% area, respectively) of this land in the two districts. A study aimed to evaluate land use changes on peatland and to develop strategies for sustainable peatland use and management for agriculture. Tim...

  8. Boreal forests, aerosols and the impacts on clouds and climate.

    Science.gov (United States)

    Spracklen, Dominick V; Bonn, Boris; Carslaw, Kenneth S

    2008-12-28

    Previous studies have concluded that boreal forests warm the climate because the cooling from storage of carbon in vegetation and soils is cancelled out by the warming due to the absorption of the Sun's heat by the dark forest canopy. However, these studies ignored the impacts of forests on atmospheric aerosol. We use a global atmospheric model to show that, through emission of organic vapours and the resulting condensational growth of newly formed particles, boreal forests double regional cloud condensation nuclei concentrations (from approx. 100 to approx. 200 cm(-3)). Using a simple radiative model, we estimate that the resulting change in cloud albedo causes a radiative forcing of between -1.8 and -6.7 W m(-2) of forest. This forcing may be sufficiently large to result in boreal forests having an overall cooling impact on climate. We propose that the combination of climate forcings related to boreal forests may result in an important global homeostasis. In cold climatic conditions, the snow-vegetation albedo effect dominates and boreal forests warm the climate, whereas in warmer climates they may emit sufficiently large amounts of organic vapour modifying cloud albedo and acting to cool climate.

  9. BUFFER CAPACITY IN HETEROGENEOUS MULTICOMPONENT SYSTEMS. REVIEW

    Directory of Open Access Journals (Sweden)

    Oxana Spinu

    2015-12-01

    Full Text Available The quantitative basis of the theory of buffer properties for two-phase acid-base buffer systems and for multicomponent heterogeneous systems has been derived. The analytical equations with respect to all components for diverse multicomponent systems were deduced. It has been established, that the buffer capacities of components are mutually proportional.

  10. Doped LZO buffer layers for laminated conductors

    Science.gov (United States)

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  11. RESEARCH NEEDS IN RIPARIAN BUFFER RESTORATION

    Science.gov (United States)

    Riparian buffer restorations are used as management tools to produce favorable water quality impacts; moreover, the basis for riparian buffers as an instrument of water quality restoration rests on a relatively firm foundation. However, the extent to which buffers can restore rip...

  12. Extrusion analysis of buffer using diffusion model

    International Nuclear Information System (INIS)

    Sugino, H.; Kanno, T.

    1999-11-01

    The buffer material that will be buried as a component of the engineered barriers system swells when saturation by groundwater. As a result of this swelling, buffer material may penetrate into the peripheral rock zone surrounding the buffer through open fractures. If sustained for extremely in long-period of time. The buffer material extrusion could lead to reduction of buffer density, which may in turn degrade the assumed performance assessment properties (e.g., permeability, diffusion coefficient). JNC has been conducted the study of bentonite extrusion into fractures of rock mass as a part of high level waste research. In 1997, JNC has reported the test results concerning buffer material extrusion and buffer material erosion. These tests have been done using test facilities in Geological Isolation Basic Research Facility. After 1997, JNC also conducted analytical study of buffer material extrusion. This report describes the analysis results of this study which are reflected to the H12 report. In this analysis, the diffusion coefficient was derived as a function of the swelling pressure and the viscosity resistance of the buffer materials. Thus, the reduction in density of buffer materials after emplacement in saturated rock was assessed. The assessment was made assuming parallel-plate radial fractures initially filled by water only. Because fractures in natural rock masses inevitably have mineral inclusions inside of them and fractures orientation leads to fractures intersecting other fractures, this analysis gives significantly conservative conditions with respect to long-term extrusion of buffer and possible decrease in buffer density. (author)

  13. Tracing peatland geomorphology: sediment and contaminant movements in eroding and restored systems

    Science.gov (United States)

    Shuttleworth, Emma; Evans, Martin; Hutchinson, Simon; Rothwell, James

    2015-04-01

    Peatlands are an important store of soil carbon, play a vital role in global carbon cycling, and can also act as sinks of atmospherically deposited heavy metals. However, large areas of blanket peat are significantly degraded and actively eroding as a direct result of anthropogenic pressures, which negatively impacts carbon and pollutant storage. The restoration of eroding UK peatlands is a major conservation concern, and over the last decade measures have been taken to control erosion and restore large areas of degraded peat. In severely eroded peatlands, topography is highly variable, and an appreciation of geomorphological form and process is key in understanding the controls on peatland function, and in mitigating the negative impacts of peatland erosion. The blanket peats of the Peak District, Southern Pennines, UK embody many problems and pressures faced by peatlands globally, and are amongst the most heavily eroded and contaminated in the world. The near-surface layer of the peat is contaminated by high concentrations of anthropogenically derived, atmospherically deposited heavy metals which are released into the fluvial system as a consequence of widespread erosion. Whilst not desirable, this legacy of lead pollution and its release offer a unique opportunity to trace peatland sediment movements and thus investigate the controls on sediment and contaminant mobility. A suite of established field, analytical and modelling techniques have been modified and adapted for use in peatland environments and these have been successfully employed in combination to address issues of sediment and contaminant release at a range of scales, including: (i) the development of field portable XRF to assess in situ lead concentrations in wet organic sediments; (ii) adaptation of time integrated mass flux samplers to explore spatial and temporal sediment dynamics in peatland streams; and (iii) the application of sediment source fingerprinting and numerical mixing models to

  14. Detecting peatland drains with Object Based Image Analysis and Geoeye-1 imagery.

    Science.gov (United States)

    Connolly, J; Holden, N M

    2017-12-01

    Peatlands play an important role in the global carbon cycle. They provide important ecosystem services including carbon sequestration and storage. Drainage disturbs peatland ecosystem services. Mapping drains is difficult and expensive and their spatial extent is, in many cases, unknown. An object based image analysis (OBIA) was performed on a very high resolution satellite image (Geoeye-1) to extract information about drain location and extent on a blanket peatland in Ireland. Two accuracy assessment methods: Error matrix and the completeness, correctness and quality (CCQ) were used to assess the extracted data across the peatland and at several sub sites. The cost of the OBIA method was compared with manual digitisation and field survey. The drain maps were also used to assess the costs relating to blocking drains vs. a business-as-usual scenario and estimating the impact of each on carbon fluxes at the study site. The OBIA method performed well at almost all sites. Almost 500 km of drains were detected within the peatland. In the error matrix method, overall accuracy (OA) of detecting the drains was 94% and the kappa statistic was 0.66. The OA for all sub-areas, except one, was 95-97%. The CCQ was 85%, 85% and 71% respectively. The OBIA method was the most cost effective way to map peatland drains and was at least 55% cheaper than either field survey or manual digitisation, respectively. The extracted drain maps were used constrain the study area CO 2 flux which was 19% smaller than the prescribed Peatland Code value for drained peatlands. The OBIA method used in this study showed that it is possible to accurately extract maps of fine scale peatland drains over large areas in a cost effective manner. The development of methods to map the spatial extent of drains is important as they play a critical role in peatland carbon dynamics. The objective of this study was to extract data on the spatial extent of drains on a blanket bog in the west of Ireland. The

  15. Detecting peatland drains with Object Based Image Analysis and Geoeye-1 imagery

    Directory of Open Access Journals (Sweden)

    J. Connolly

    2017-03-01

    Full Text Available Abstract Background Peatlands play an important role in the global carbon cycle. They provide important ecosystem services including carbon sequestration and storage. Drainage disturbs peatland ecosystem services. Mapping drains is difficult and expensive and their spatial extent is, in many cases, unknown. An object based image analysis (OBIA was performed on a very high resolution satellite image (Geoeye-1 to extract information about drain location and extent on a blanket peatland in Ireland. Two accuracy assessment methods: Error matrix and the completeness, correctness and quality (CCQ were used to assess the extracted data across the peatland and at several sub sites. The cost of the OBIA method was compared with manual digitisation and field survey. The drain maps were also used to assess the costs relating to blocking drains vs. a business-as-usual scenario and estimating the impact of each on carbon fluxes at the study site. Results The OBIA method performed well at almost all sites. Almost 500 km of drains were detected within the peatland. In the error matrix method, overall accuracy (OA of detecting the drains was 94% and the kappa statistic was 0.66. The OA for all sub-areas, except one, was 95–97%. The CCQ was 85%, 85% and 71% respectively. The OBIA method was the most cost effective way to map peatland drains and was at least 55% cheaper than either field survey or manual digitisation, respectively. The extracted drain maps were used constrain the study area CO2 flux which was 19% smaller than the prescribed Peatland Code value for drained peatlands. Conclusions The OBIA method used in this study showed that it is possible to accurately extract maps of fine scale peatland drains over large areas in a cost effective manner. The development of methods to map the spatial extent of drains is important as they play a critical role in peatland carbon dynamics. The objective of this study was to extract data on the spatial extent of

  16. Distribution Patterns of Grasshoppers and Their Kin in the Boreal Zone

    OpenAIRE

    Sergeev, Michael G.

    2011-01-01

    The distribution patterns of Orthoptera are described for the boreal zone. The boreal fauna of Eurasia includes more than 81 species. Many of them are widely distributed. The monotypic genus Paracyphoderris Storozhenko and at least 13 species are endemics or subendemics. About 50 species are known from boreal North America. Four endemic species are distributed very locally. Relationships between the faunas of the Eurasian and North American parts of the boreal zone are relatively weak. The b...

  17. The changing effects of Alaska's boreal forest on the climate system

    Science.gov (United States)

    E.S. Euskirchen; A.D. McGuire; F.S. Chapin; T.S. Rupp

    2010-01-01

    In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. We examine the type and magnitude of the climate feedbacks from boreal forests in...

  18. Population structure and genetic diversity in North American Hedysarum boreale Nutt.

    Science.gov (United States)

    Bradley S. Bushman; Steven R. Larson; Michael D. Peel; Michael E. Pfrender

    2007-01-01

    Hedysarum boreale Nutt. is a perennial legume native to western North America, with robust foliage in the late spring season. Due to its wide native range, forage value, and N2 fixation, H. boreale is of interest for rangeland revegetation and production. Seed cost is a major obstacle for utilization of H. boreale, primarily due to seed shattering and unreliable seed...

  19. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands

    Science.gov (United States)

    Merritt R. Turetsky; Evan S. Kane; Jennifer W. Harden; Roger D. Ottmar; Kristen L. Maines; Elizabeth Hoy; Eric S. Kasischke

    2010-01-01

    Climate change has increased the area affected by forest fires each year in boreal North America. Increases in burned area and fire frequency are expected to stimulate boreal carbon losses. However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences the severity of biomass burning has proved difficult...

  20. A THEORETICAL DISCUSSION OF THE ECONOMIC EFFECTS OF BUFFER STOCKS AND BUFFER FUNDS

    OpenAIRE

    Simmons, Phil

    1988-01-01

    It has been established that the absence of risk markets justifies market intervention in principle. The form of intervention that has been discussed most widely in the literature is the buffer stock. This paper points out that other forms of intervention, specifically buffer funds, are likely to perform better. The analysis shows that buffer funds are likely to outperform buffer stocks because they address market failure more directly. A sub-theme developed in this paper is that since buffer...

  1. The impact of boreal forest fire on climate warming.

    Science.gov (United States)

    Randerson, J T; Liu, H; Flanner, M G; Chambers, S D; Jin, Y; Hess, P G; Pfister, G; Mack, M C; Treseder, K K; Welp, L R; Chapin, F S; Harden, J W; Goulden, M L; Lyons, E; Neff, J C; Schuur, E A G; Zender, C S

    2006-11-17

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 +/- 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 +/- 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.

  2. An appraisal of Indonesia's immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion

    Science.gov (United States)

    Matthew Warren; Kristell Hergoualc' h; J. Boone Kauffman; Daniel Murdiyarso; Randall Kolka

    2017-01-01

    Background: A large proportion of the world's tropical peatlands occur in Indonesia where rapid conversion and associated losses of carbon, biodiversity and ecosystem services have brought peatland management to the forefront of Indonesia's climate mitigation efforts. We evaluated peat volume from two commonly referenced maps of peat distribution and depth...

  3. Sphagnum peatland development at their southern climatic range in West Siberia: trends and peat accumulation patterns

    International Nuclear Information System (INIS)

    Peregon, Anna; Uchida, Masao; Shibata, Yasuyuki

    2007-01-01

    A region of western Siberia is vulnerable to the predicted climatic change which may induce an important modification to the carbon balance in wetland ecosystems. This study focuses on the evaluation of both the long-term and contemporary trends of peat (carbon) accumulation and its patterns at the southern climatic range of Sphagnum peatlands in western Siberia. Visible and physical features of peat and detailed reconstructions of successional change (or sediment stratigraphies) were analysed at two types of forest-peatland ecotones, which are situated close to each other but differ by topography and composition of their plant communities. Our results suggest that Siberian peatlands exhibit a general trend towards being a carbon sink rather than a source even at or near the southern limit of their distribution. Furthermore, two types of peat accumulation were detected in the study area, namely persistent and intermittent. As opposed to persistent peat accumulation, the intermittent one is characterized by the recurrent degradation of the upper peat layers at the marginal parts of raised bogs. Persistent peat accumulation is the case for the majority of Sphagnum peatlands under current climatic conditions. It might be assumed that more peat will accumulate under the 'increased precipitation' scenarios of global warming, although intermittent peat accumulation could result in the eventual drying that may change peatlands from carbon sinks to carbon sources

  4. Natural zinc enrichment in peatlands: Biogeochemistry of ZnS formation

    Science.gov (United States)

    Yoon, Soh-joung; Yáñez, Carolina; Bruns, Mary Ann; Martínez-Villegas, Nadia; Martínez, Carmen Enid

    2012-05-01

    Peatlands effectively retain heavy metals and prevent stream and watershed contamination. Sulfate reduction is considered the most significant process of metal immobilization in natural wetlands and microbial sulfate reduction is the presumed mechanism that results in the precipitation of metal sulfides. In this study, we examined the biogeochemical mechanisms involved in zinc retention and accumulation in a metalliferous peatland of western New York. In the reducing conditions of these peatlands zinc sulfides occurred as framboidal aggregates of sphalerite and polytypic wurtzite (2nH, n ⩾ 2) nanocrystallites associated with bacterial cells and organic matter. Bacterial cells were co-located with ZnS inside peat particles where the microenvironment remained anoxic. The peat zinc sulfide was depleted in 34S isotopes relative to the sulfate supplied to the peatland by 18-34 per mill, implicating its biological formation. Extraction of microbial community DNA from peat samples yielded diverse PCR amplicons from dissimilatory sulfite reductase (dsrAB) genes, indicating varied bacterial taxa capable of reducing forms of oxidized sulfur. Nanocrystals with distinct structural features were observed in samples containing contrasting dsrAB sequences. The results of this investigation provide clear evidence that microorganisms can influence the chemical forms of heavy metals in peatland environments. Our findings also provide insight into the conditions necessary to promote the immobilization of chalcophile elements in engineered systems for the treatment of acid mine drainage and wastewater effluents.

  5. Environmental dynamics and carbon accumulation rate of a tropical peatland in Central Sumatra, Indonesia

    Science.gov (United States)

    Hapsari, Kartika Anggi; Biagioni, Siria; Jennerjahn, Tim C.; Reimer, Peter Meyer; Saad, Asmadi; Achnopha, Yudhi; Sabiham, Supiandi; Behling, Hermann

    2017-08-01

    Tropical peatlands are important for the global carbon cycle as they store 18% of the total global peat carbon. As they are vulnerable to changes in temperature and precipitation, a rapidly changing environment endangers peatlands and their carbon storage potential. Understanding the mechanisms of peatland carbon accumulation from studying past developments may, therefore, help to assess the future role of tropical peatlands. Using a multi-proxy palaeoecological approach, a peat core taken from the Sungai Buluh peatland in Central Sumatra has been analyzed for its pollen and spore, macro charcoal and biogeochemical composition. The result suggests that peat and C accumulation rates were driven mainly by sea level change, river water level, climatic variability and anthropogenic activities. It is also suggested that peat C accumulation in Sungai Buluh is correlated to the abundance of Freycinetia, Myrtaceae, Calophyllum, Stemonuraceae, Ficus and Euphorbiaceae. Sungai Buluh has reasonable potential for being a future global tropical peat C sinks. However, considering the impact of rapid global climate change in addition to land-use change following rapid economic growth in Indonesia, such potential may be lost. Taking advantage of available palaeoecological records and advances made in Quaternary studies, some considerations for management practice such as identification of priority taxa and conservation sites are suggested.

  6. Peatland water repellency: Importance of soil water content, moss species, and burn severity

    Science.gov (United States)

    Moore, P. A.; Lukenbach, M. C.; Kettridge, N.; Petrone, R. M.; Devito, K. J.; Waddington, J. M.

    2017-11-01

    Wildfire is the largest disturbance affecting peatlands, with northern peat reserves expected to become more vulnerable to wildfire as climate change enhances the length and severity of the fire season. Recent research suggests that high water table positions after wildfire are critical to limit atmospheric carbon losses and enable the re-establishment of keystone peatland mosses (i.e. Sphagnum). Post-fire recovery of the moss surface in Sphagnum-feathermoss peatlands, however, has been shown to be limited where moss type and burn severity interact to result in a water repellent surface. While in situ measurements of moss water repellency in peatlands have been shown to be greater for feathermoss in both a burned and unburned state in comparison to Sphagnum moss, it is difficult to separate the effect of water content from species. Consequently, we carried out a laboratory based drying experiment where we compared the water repellency of two dominant peatland moss species, Sphagnum and feathermoss, for several burn severity classes including unburned samples. The results suggest that water repellency in moss is primarily controlled by water content, where a sharp threshold exists at gravimetric water contents (GWC) lower than ∼1.4 g g-1. While GWC is shown to be a strong predictor of water repellency, the effect is enhanced by burning. Based on soil water retention curves, we suggest that it is highly unlikely that Sphagnum will exhibit strong hydrophobic conditions under field conditions.

  7. Resilience in heterogeneous landscapes: The effect of topography on resilience of carbon uptake in northern peatlands

    Science.gov (United States)

    Nijp, Jelmer; Temme, Arnaud; van Voorn, George; Teuling, Ryan; Soons, Merel; Kooistra, Lammert

    2016-04-01

    Northern peatlands contain and store enormous amounts of carbon, and therefore represent an important component of the carbon cycle of the earth. In these wetland ecosystems, the quality of the soil added to the soil surface is determined by the type of peat-forming plants, and affects the carbon accumulated in the peat soil later formed and overall ecosystem functioning. Peatland vegetation is frequently organized in alternating dry hummocks with wet hollows. Such patterned vegetation is associated with different soil carbon accumulation rates, and may develop due to various self-regulating processes originating from ecohydrological feedbacks. Simulation models have shown that vegetation patterning may promote the resilience of peatlands to environmental change (climate, land use), hence maintaining their function as carbon sink. Critically, the results of these model studies rely on the fundamental assumption that environmental conditions are spatially homogeneous. Yet, in real landscape settings, catchment topography has a major impact on water flow and nutrient availability, and is expected to alter vegetation patterning. However, whether, where and how topography affects vegetation patterning in peatlands and associated resilience of ecosystem service provision remains unknown. By combining field observations, remote sensing, and dynamic simulation models (used both as 'sandbox' and 'resilience calculator' for given geomorphological settings), we determine how landscape topography affects ecohydrological processes, vegetation patterning, and associated resilience to environmental change in northern peatlands.

  8. Geophysical Evidence for Abiotic Controls on Peatland Patterning at Multiple Scales

    Science.gov (United States)

    Nolan, J.; Slater, L.; Glaser, P.; Comas, X.; O'Brien, M.

    2007-12-01

    The autogenic and allogenic controls on the formation of distinctive and dramatic vegetation patterning found in northern peatlands remain unclear. Groundwater model studies and investigations using point measurements lack intensive data over multiple scales, primarily due to the intensive time required and difficult logistics required to work in these remote ecosystems. We provide geophysical evidence that lithological controls on vegetation patterning exist at multiple scales in ombrotrophic peatlands of northern Minnesota and Maine. Surveys using electrical imaging methods (including resistivity, induced polarization, and ground penetrating radar) at sites in the Red Lake Peatland Complex (160 km2), as well as Kanokolus Bog (1.65 km2) and the Caribou Bog Peatland Complex (22 km2) in Maine reveal sharp vegetation gradients coinciding with changes in the mineral soil lithology. In contrast, large-scale, continuous, patterned zones found in the Red lake Complex coincide with strikingly uniform mineral soil lithology as inferred from the geophysical images. Small-scale (0.3 km2) vegetation patterns observed in Caribou Bog also coincide with small scale lithologic changes in both the mineral and organic deposits. These results provide evidence that the subsurface hydrogeologic framework regulates vegetation patterning in peatlands across multiple scales, presumably by regulating (1) the supply of mineral solutes to the surface vegetation water, and (2) water levels within the organic soil.

  9. Contrasting controls on arsenic and lead budgets for a degraded peatland catchment in Northern England

    International Nuclear Information System (INIS)

    Rothwell, James J.; Taylor, Kevin G.; Evans, Martin G.; Allott, Timothy E.H.

    2011-01-01

    Atmospheric deposition of trace metals and metalloids from anthropogenic sources has led to the contamination of many European peatlands. To assess the fate and behaviour of previously deposited arsenic and lead, we constructed catchment-scale mass budgets for a degraded peatland in Northern England. Our results show a large net export of both lead and arsenic via runoff (282 ± 21.3 gPb ha -1 y -1 and 60.4 ± 10.5 gAs ha -1 y -1 ), but contrasting controls on this release. Suspended particulates account for the majority of lead export, whereas the aqueous phase dominates arsenic export. Lead release is driven by geomorphological processes and is a primary effect of erosion. Arsenic release is driven by the formation of a redox-dynamic zone in the peat associated with water table drawdown, a secondary effect of gully erosion. Degradation of peatland environments by natural and anthropogenic processes has the potential to release the accumulated pool of legacy contaminants to surface waters. - Highlights: → The fluvial outputs of arsenic and lead in the degraded peatland are an order-of-magnitude greater than atmospheric inputs. → The particulate phase dominates fluvial lead export, whereas the aqueous phase dominates fluvial arsenic export. → Lead export is a primary effect of peat erosion, whereas arsenic export is a secondary effect of peat erosion. - Degraded peatlands can be significant sources of previously deposited arsenic and lead

  10. Methods for in situ Mesocosm Water Table Manipulation in Amazon Peatlands

    Science.gov (United States)

    Sarno, B. G.; Guardia, J. R.; Torres, M. G.; Lopez, J. G.; Rios, M. L.; Saquiray, L. M.; Rodriguez, T. C.; Rivera, P. V.; Van Haren, J. L. M.; Cadillo-Quiroz, H.

    2016-12-01

    Rainfall manipulation in tropical Amazon rainforests has previously been used to analyze the effects of rapidly changing drought and flood seasons on canopy dynamics, above-ground ecological function and greenhouse gas cycles. We chose to focus on variance below the rootline due to the greater carbon mass and impact of this region and the variables affecting it. We designed and implemented a system that manipulates above and below ground water exposure to control soil saturation. Isolation of soil sample was collected using a PVC pipe submerged 50 cm into the ground with an overhead watershed and an underground water filter. Similarly, a control sample of the above ground water was collected. Above ground water control was performed, not unlike previous systems, using overhead cover, drainage and rerouting, constructed using 1 inch PVC sections configured to allow 25% shed, 50% shed, and 75% increase. Underground filters were designed using variable clay concentrations to achieve desired permeability and flow rate. We selected kiln-fire pure clay discs, instead of poly-acrylamide discs, to enable a steady flow of 0.83 mL/hr. In addition, we adjusted the concentration of the clay disc with sand buffering and carbon lacing at different mass concentrations to allow direct controls of the flow rate, as high as 12.45 mL/hr. Using pure clay concentrations of 100%, 75%, and 50% by mass, and lacing the filters with carbon fill of 10%, 20%, and 30% by volume, before kiln firing, allows much more desirable flow rates. These significant increases in flow rate allow for better control of both above and below ground water exposure. Such a system will enable a more complete geochemical and microbiological analysis of soil and water within this highly variable region of the rain forest. Construction and installation of the submerged towers has been performed at numerous sites along the Peruvian Amazon River basin. Monitoring soil respiration will be performed on the current

  11. Reducing uncertainty in methane emission estimates from permafrost peatlands

    Science.gov (United States)

    Christensen, Torben R.

    2016-04-01

    Reducing uncertainty in methane emission estimates from permafrost peatlands Torben R. Christensen1,2 and coworkers 1) Department of Physical Geography and Ecosystem Science, Lund University, Sweden 2) Arctic Research Centre, Aarhus University, Denmark Depending on factors including temperature, snow duration and soil moisture conditions, emissions of the greenhouse gas methane from permafrost peatlands can vary by factors of 2-4 between years. This variability is clear in atmospheric measurements of the gas, but a lack of ground-based data is making it hard to locate the methane sources responsible. Methane monitoring in the Arctic is expensive, requiring sophisticated analysis equipment such as power requiring laser spectrometer analysis made in remote places. This also puts demands on the logistics where infrastructures and field stations that offer line-power in the field are in high demand but very rarely found. Research projects therefore typically focus on one site, and run for a year or two. Longer term monitoring programs, which document climate, hydrology, phenology and population dynamics of birds and mammals, rarely include carbon fluxes since it is technically challenging to measure. One that does is the Greenland Ecosystem Monitoring program that started at the Zackenberg research station, which has recorded substantial methane flux variations for almost a decade in North-east Greenland. Such multi-year studies show that, while there is some connection between the amounts of methane released from one year to the next, accurate forecasting is difficult. They also highlight the importance of extending monitoring beyond the growing period into the frozen season, both in spring and autumn. A spatially distributed network of long-term monitoring stations in the Arctic, with consistency between measurements, is badly needed to improve this situation. Productive methane 'hot spots', many sporadic, have also been identified in recent studies. By ventilating

  12. Buffered Electrochemical Polishing of Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tian, Hui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Corcoran, Sean [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2011-03-01

    The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop.' In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature (? 120 °C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. As part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.

  13. Forecasting the development of boreal paludified forests in response to climate change: a case study using Ontario ecosite classification

    Directory of Open Access Journals (Sweden)

    Benoit Lafleur

    2015-01-01

    Full Text Available Background Successional paludification, a dynamic process that leads to the formation of peatlands, is influenced by climatic factors and site features such as surficial deposits and soil texture. In boreal regions, projected climate change and corresponding modifications in natural fire regimes are expected to influence the paludification process and forest development. The objective of this study was to forecast the development of boreal paludified forests in northeastern North America in relation to climate change and modifications in the natural fire regime for the period 2011–2100. Methods A paludification index was built using static (e.g. surficial deposits and soil texture and dynamic (e.g. moisture regime and soil organic layer thickness stand scale factors available from forest maps. The index considered the effects of three temperature increase scenarios (i.e. +1°C, +3°C and +6°C and progressively decreasing fire cycle (from 300 years for 2011–2041, to 200 years for 2071–2100 on peat accumulation rate and soil organic layer (SOL thickness at the stand level, and paludification at the landscape level. Results Our index show that in the context where in the absence of fire the landscape continues to paludify, the negative effect of climate change on peat accumulation resulted in little modification to SOL thickness at the stand level, and no change in the paludification level of the study area between 2011 and 2100. However, including decreasing fire cycle to the index resulted in declines in paludified area. Overall, the index predicts a slight to moderate decrease in the area covered by paludified forests in 2100, with slower rates of paludification. Conclusions Slower paludification rates imply greater forest productivity and a greater potential for forest harvest, but also a gradual loss of open paludified stands, which could impact the carbon balance in paludified landscapes. Nonetheless, as the thick Sphagnum layer

  14. Specific discharge variability in a boreal landscape

    Science.gov (United States)

    Lyon, Steve W.; Nathanson, Marcus; Spans, André; Grabs, Thomas; Laudon, Hjalmar; Temnerud, Johan; Bishop, Kevin H.; Seibert, Jan

    2012-08-01

    Specific discharge variations within a mesoscale catchment were studied on the basis of three synoptic sampling campaigns. These were conducted during stable flow conditions within the Krycklan catchment study area in northern Sweden. During each campaign, about 80 individual locations were measured for discharge draining from catchment areas ranging between 0.12 and 67 km2. These discharge samplings allowed for the comparison between years within a given season (September 2005 versus September 2008) and between seasons within a given year (May 2008 versus September 2008) of specific discharge across this boreal landscape. There was considerable variability in specific discharge across this landscape. The ratio of the interquartile range (IQR) defined as the difference between the 75th and 25th percentiles of the specific discharges to the median of the specific discharges ranged from 37% to 43%. Factor analysis was used to explore potential relations between landscape characteristics and the specific discharge observed for 55 of the individual locations that were measured in all three synoptic sampling campaigns. Percentage wet area (i.e., wetlands, mires, and lakes) and elevation were found to be directly related to the specific discharge during the drier September 2008 sampling while potential annual evaporation was found to be inversely related. There was less of a relationship determined during the wetter post spring flood May 2008 sampling and the late summer rewetted September 2005 sampling. These results indicate the ability of forests to "dry out" parts of the catchment over the summer months while wetlands "keep wet" other parts. To demonstrate the biogeochemical implications of such spatiotemporal variations in specific discharge, we estimate dissolved organic carbon (DOC) exports with available data for the May 2008 and September 2008 samplings using both the spatially variable observed specific discharges and the spatially constant catchment average

  15. Effects of Peat Dome Morphology and Rainfall Patterns on Carbon Storage Stability in Tropical Peatlands

    Science.gov (United States)

    Cobb, A.; Hoyt, A.; Harvey, C. F.

    2017-12-01

    Ombrotrophic tropical peatlands store globally significant amounts of carbon in peat domes, gently mounded landforms kilometers across and ten or more meters high. The mounded shape of peat domes corresponds to a groundwater mound created by the balance between net precipitation and the lateral flow of water through the peatland. Peat domes have a stable morphology in which net precipitation is balanced by lateral flow and peat production is balanced by loss. Because peat is mostly organic carbon, this stable morphology gives a carbon storage capacity for the peat dome. We show how the distinctive hydrological properties of tropical peatlands make it possible to efficiently predict carbon dioxide emissions or sequestration after previously stable peat domes are destabilized by changes in precipitation patterns or drainage networks.

  16. ROLE OF COASTAL SEDIMENT ON SOIL NUTRIENT AVAILABILITY AND OIL PALM YIELD AT PEATLANDS

    Directory of Open Access Journals (Sweden)

    Denah Suswati

    2016-06-01

    Full Text Available Peatlands which is limited in chemical, physical and ecology require appropriate management for oil palm plantation. Coastal sediment as an ameliorant in peatlands increased productivity some crops. This study aims determining the effect of the doses of coastal sediment as ameliorant on peatlands to the availability of N, P, K, Ca, Mg and Na oil palm plantations. This research was performed in the area of oil palm plantation in Kubu Raya district, Borneo, Indonesia. Experimental design employed randomized block design with 4 levels of coastal sediment doses (L, i.e. L0 = 0 t ha-1; L1 = 20 t ha-1; L2 = 40 t ha-1; L3 = 60 t ha-1 with three replication. The results showed that the application of coastal sediment at 40 t ha-1 in oil palm plantations significantly increased soil pH, availability of N, K, Ca and Mg, while P was not significantly different.

  17. Atmospheric fallout radionuclides in peatland from Southern Poland.

    Science.gov (United States)

    Mróz, Tomasz; Łokas, Edyta; Kocurek, Justyna; Gąsiorek, Michał

    2017-09-01

    Two peat profiles were collected in a peat bog located in Southern Poland and their geochronology were determined using 210 Pb, 238,239+240 Pu and 137 Cs radiometric techniques. The 210 Pb chronologies were established using the constant rate of supply model (CRS) and are in good agreement with the Pu isotopes and 137 Cs time markers. Maximum activities of Pu isotopes were found at a depth corresponding to the early 1960s, which is the period characterized by the maximum nuclear weapon tests. The results showed that the 210 Pb method is the most accurate technique for the determination age and accumulation rate of a peat. The next part of this study calculated linear accumulation rates by analyzing 238,239+240 Pu and 137 Cs vertical distributions in the profiles. Activities of fallout isotopes were also measured in plants covering the peatland. The highest activities of 137 Cs and 210 Pb were found in Calluna vulgaris samples, and 239+240 Pu were found only in two samples (C. vulgaris and leaves of Oxycoccus quadripelatus). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Resilience of Alaska’s boreal forest to climatic change

    Science.gov (United States)

    Chapin, F.S.; McGuire, A. David; Ruess, Roger W.; Hollingsworth, Teresa N.; Mack, M.C.; Johnstone, J.F.; Kasischke, E.S.; Euskirchen, E.S.; Jones, J.B.; Jorgenson, M.T.; Kielland, K.; Kofinas, G.; Turetsky, M.R.; Yarie, J.; Lloyd, A.H.; Taylor, D.L.

    2010-01-01

    This paper assesses the resilience of Alaska’s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska’s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social–ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  19. Modeling Alaska boreal forests with a controlled trend surface approach

    Science.gov (United States)

    Mo Zhou; Jingjing Liang

    2012-01-01

    An approach of Controlled Trend Surface was proposed to simultaneously take into consideration large-scale spatial trends and nonspatial effects. A geospatial model of the Alaska boreal forest was developed from 446 permanent sample plots, which addressed large-scale spatial trends in recruitment, diameter growth, and mortality. The model was tested on two sets of...

  20. Resilience of Alaska's Boreal Forest to Climatic Change

    Science.gov (United States)

    Chapin, F. S., III; McGuire, A. D.; Ruess, R. W.; Hollingsworth, T. N.; Mack, M. C.; Johnstone, J. F.; Kasischke, E. S.; Euskirchen, E. S.; Jones, J. B.; Jorgenson, M. T.; hide

    2010-01-01

    This paper assesses the resilience of Alaska s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  1. Regional coherency of boreal forest growth defines Arctic driftwood provenancing

    Czech Academy of Sciences Publication Activity Database

    Hellmann, L.; Agafonov, L.; Churakova (Sidorova), O.; Düthorn, E.; Eggertsson, O.; Esper, J.; Kirdyanov, A. V.; Knorre, A. A.; Moiseev, P.; Myglan, V. S.; Nikolaev, A. N.; Reinig, F.; Schweingruber, F.; Solomina, O.; Tegel, W.; Büntgen, Ulf

    2016-01-01

    Roč. 39, sep (2016), s. 3-9 ISSN 1125-7865 Institutional support: RVO:67179843 Keywords : mackenzie river driftwood * tree-ring data * central siberia * origin * archipelago * holocene * ocean * sea * ice * circulation * Driftwood * Arctic * Dendro-provenancing * Boreal Subject RIV: EF - Botanics Impact factor: 2.259, year: 2016

  2. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey

    2011-01-01

    We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...

  3. Mosaic boreal landscapes with open and forested wetlands

    International Nuclear Information System (INIS)

    Sjoeberg, K.; Ericson, L.

    1997-01-01

    We review patterns and processes important for biodiversity in the Fennoscandian boreal forest, describe man's past and present impact and outline a strategy for conservation. The boreal landscape was earlier characterized by a mosaic of open and forested wetlands and forests. Drainage and felling operation have largely changed that pattern. Several organisms depend upon the landscape mosaic. Natural ecotones between mire and forest provide food resources predictable in space and time contrasting to unpredictable edges in the silvicultured landscape. The mosaic is also a prerequisite for organisms dependent on non-substitutable resources in the landscape. The importance of swamp forests has increased as they function as refugia for earlier more widespread old-growth species. Programmes for maintaining biodiversity in the boreal landscape should include the following points. First, the natural mosaic with open and forested wetlands must be maintained. Second, swamp forests must receive a general protection as they often constitute the only old-growth patches in the landscape. Third, we need to restore earlier disturbance regimes. Present strategy plans for conservation are insufficient, as they imply that a too large proportion of boreal organisms will not be able to survive outside protected areas. Instead, we need to focus more on how to preserve organisms in the man-influenced landscape. As a first step we need to understand how organisms are distributed in landscapes at various spatial scales. We need studies in landscapes where the original mosaic has faced various degrees of fragmentation. (au) 124 refs

  4. Silviculture for restoration of degraded temperate and boreal forests

    Science.gov (United States)

    John A. Stanturf; Palle Madsen; Emile S. Gardiner

    2004-01-01

    Throughout the temperate and boreal zones, human intervention has influenced landscapes and forests for millennia. The degree of human disturbance has only been constrained by the technology and resources available to different cultures and by time since initial habitation. Humans have influenced forests by regulating populations of browsers, clearing for agriculture,...

  5. Resilience of Alaska's boreal forest to climate change

    Science.gov (United States)

    F.S. Chapin; A.D. McGuire; R.W. Ruess; T.N. Hollingsworth; M.C. Mack; J.F. Johnstone; E.S. Kasischke; E.S. Euskirchen; J.B. Jones; M.T. Jorgenson; K. Kielland; G.P. Kofinas; M.R. Turetsky; J. Yarie; A.H. Lloyd; D.L. Taylor

    2010-01-01

    This paper assesses the resilience of Alaska's boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters...

  6. An impact of deforestation by extreme weather events on Sphagnum peatland ecosystem

    Science.gov (United States)

    Slowinski, M. M.; Łuców, D.; Kołaczek, P.; Tjallingii, R.; Lane, C. S.; Slowinska, S.; Tyszkowski, S.; Łokas, E.; Theuerkauf, M.; Brauer, A.; Lamentowicz, M.

    2017-12-01

    An increase in extreme weather phenomena has been observed over the last decades as a result of global climate warming. Terrestrial ecosystems are influenced by different types of disturbances such as e.g. deforestation, land-use, fragmentation, fire, floods or storms. Disturbance triggers may be natural or anthropogenic, but usually we observe negative feedback loops and interconnected causal factors. Here we investigate the effects of a tornado event on the peatland ecosystem of the Tuchola Pinewoods, Northern Poland. Deforestation by tornado events can cause severe perturbations of the hydrology and erosion that, in turn, affects adjacent lakes and peatlands. Martwe peatland provide an exceptional opportunity to study the impact of such extreme events, as it was struck by a tornado in 2012. Our research is focused on lake-peatland ecosystems that were directly affected by this tornado, and we consider the general transformation of the vegetation (mainly forests) over the last 150 years. Extensive clearing of the forest occurred in the nineteenth century due to human activity, and we compare this with the impact of the 2012 tornado. Accurate reconstructions will rely on a broad range of palaeoecological techniques such as pollen, macro-remains and testate amoebae, but also on geochemistry, i.e. μXRF scanning. The chronology of the records is based on 210Pb and radiocarbon dating and will incorporate correlations using (crypto)tephra markers of the Eyjafjöll (2010) and Askja (1875) eruptions. We expect to observe that disturbance (tornado-induced deforestation) affects the short-term changes in peatland productivity and biodiversity, through a cascading "top-down" effect. This research addresses the emerging issue of the impact of extreme phenomena and more general climate changes on peatland ecosystems, which will potentially help to inform adaptations to the environmental consequences of extreme events in the future. This project is funded by the Polish

  7. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export.

    Science.gov (United States)

    Olefeldt, David; Roulet, Nigel T

    2014-10-01

    Permafrost thaw in peatlands has the potential to alter catchment export of dissolved organic carbon (DOC) and thus influence downstream aquatic C cycling. Subarctic peatlands are often mosaics of different peatland types, where permafrost conditions regulate the hydrological setting of each type. We show that hydrological setting is key to observed differences in magnitude, timing, and chemical composition of DOC export between permafrost and nonpermafrost peatland types, and that these differences influence the export of DOC of larger catchments even when peatlands are minor catchment components. In many aspects, DOC export from a studied peatland permafrost plateau was similar to that of a forested upland catchment. Similarities included low annual export (2-3 g C m(-2) ) dominated by the snow melt period (~70%), and how substantial DOC export following storms required wet antecedent conditions. Conversely, nonpermafrost fens had higher DOC export (7 g C m(-2) ), resulting from sustained hydrological connectivity during summer. Chemical composition of catchment DOC export arose from the mixing of highly aromatic DOC from organic soils from permafrost plateau soil water and upland forest surface horizons with nonaromatic DOC from mineral soil groundwater, but was further modulated by fens. Increasing aromaticity from fen inflow to outlet was substantial and depended on both water residence time and water temperature. The role of fens as catchment biogeochemical hotspots was further emphasized by their capacity for sulfate retention. As a result of fen characteristics, a 4% fen cover in a mixed catchment was responsible for 34% higher DOC export, 50% higher DOC concentrations and ~10% higher DOC aromaticity at the catchment outlet during summer compared to a nonpeatland upland catchment. Expansion of fens due to thaw thus has potential to influence landscape C cycling by increasing fen capacity to act as biogeochemical hotspots, amplifying aquatic C cycling, and

  8. Factors limiting the recovery of boreal toads (Bufo b. boreas)

    Science.gov (United States)

    Carey, C.; Corn, P.S.; Jones, M.S.; Livo, L.J.; Muths, E.; Loeffler, C.W.; Lannoo, M.

    2005-01-01

    Boreal toads (Bufo b. boreas) are widely distributed over much of the mountainous western United States. Populations in the Southern Rocky Mountains suffered extensive declines in the late 1970s through early 1980s (Carey, 1993). At the time, these mass mortalities were thought to be associated with a bacterial infection (Carey, 1993). Although the few populations that survived the mass die-offs were not systematically monitored until at least 1993, no mass mortalities had been observed until 1996 when die-offs were observed. A mycotic skin infection associated with a chytrid fungus is now causing mortality of toads in at least two of the populations (M.S. Jones and D.E. Green, unpublished data; Muths et al., 2003). Boreal toads are now absent throughout large areas of their former distribution in Colorado and southern Wyoming and may be extinct in New Mexico (Corn et al., 1989; Carey, 1993; Stuart and Painter, 1994). These toads are classified as “endangered” by Colorado and New Mexico and are designated as a protected non-game species in Wyoming. The U.S. Fish and Wildlife Service has categorized the Southern Rocky Mountain populations for federal listing and is currently reviewing their designation as a “warranted but precluded” species for possible listing in the next few years. For the management of boreal toads and their habitats, a Boreal Toad Recovery Team was formed by the Colorado Division of Wildlife in 1995 as part of a collaborative effort with federal agencies within the United States’ departments of the Interior and Agriculture and with agencies in two adjoining states. To date, conservation agreements have been signed by eight state and federal agencies and by the Colorado Natural Heritage Program. Although boreal toads were considered common throughout their range in Colorado, no comprehensive surveys of the numbers and sizes of their populations were conducted prior to mass die-offs in the 1970s. Surveys completed in the late 1980s to

  9. Modelling of buffer material behaviour

    International Nuclear Information System (INIS)

    Boergesson, L.

    1988-12-01

    Some material models of smectite rich buffer material suited for nuclear waste isolation are accounted for in the report. The application of these models in finite element calculations of some scenarios and performance are also shown. The rock shear scenario has been closely studied with comparisons between calculated and measured results. Sensitivity analyses of the effect of changing the density of the clay and the rate of shear have been performed as well as one calculation using a hollow steel cylinder. Material models and finite element calculations of canister settlement, thermomechanical effects and swelling are also accounted for. The report shows the present state of the work to establish material models and calculation tools which can be used at the final design of the repository. (31 illustrations)

  10. Melatonin: Buffering the Immune System

    Directory of Open Access Journals (Sweden)

    Juan M. Guerrero

    2013-04-01

    Full Text Available Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed.

  11. Melatonin: Buffering the Immune System

    Science.gov (United States)

    Carrillo-Vico, Antonio; Lardone, Patricia J.; Álvarez-Sánchez, Nuria; Rodríguez-Rodríguez, Ana; Guerrero, Juan M.

    2013-01-01

    Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed. PMID:23609496

  12. Stacked Switched Capacitor Energy Buffer Architecture

    OpenAIRE

    Chen, Minjie; Perreault, David J.; Afridi, Khurram

    2012-01-01

    Electrolytic capacitors are often used for energy buffering applications, including buffering between single-phase ac and dc. While these capacitors have high energy density compared to film and ceramic capacitors, their life is limited. This paper presents a stacked switched capacitor (SSC) energy buffer architecture and some of its topological embodiments, which when used with longer life film capacitors overcome this limitation while achieving effective energy densities comparable to elect...

  13. Signature-based store checking buffer

    Science.gov (United States)

    Sridharan, Vilas; Gurumurthi, Sudhanva

    2015-06-02

    A system and method for optimizing redundant output verification, are provided. A hardware-based store fingerprint buffer receives multiple instances of output from multiple instances of computation. The store fingerprint buffer generates a signature from the content included in the multiple instances of output. When a barrier is reached, the store fingerprint buffer uses the signature to verify the content is error-free.

  14. Systemic Risk, Bank's Capital Buffer, and Leverage

    OpenAIRE

    Wibowo, Buddi

    2017-01-01

    This paper measures individual bank's impact on banking systemic risk and examines the effect of individual bank's capital buffer and leverage to bank's systemic risk impact in Indonesia during 2010-2014. Using Merton's distance-to-default to measure systemic risk, the study shows a significant negative relationship between bank's capital buffer and systemic risk. High capital buffer tends to lowering bank's impact on systemic risk. Bank's leverage level also influences its contribution to sy...

  15. A New Appraisal of Northern Peatlands and Global Atmospheric Methane Over the Holocene

    Science.gov (United States)

    MacDonald, G. M.; Holmquist, J. R.; Kremenetski, K.; Loisel, J.

    2015-12-01

    Use of large databases of peat cores to examine linkages between northern peatlands and atmospheric CH4 over the Holocene has been prone to uncertainties regarding 1. comparability of radiocarbon techniques and material dated, 2. appropriate summed probability distributions, 3. spatial representativeness of the sites, particularly in capturing sites south of the subarctic, 4. potential impacts of local lateral peatland expansion versus continental-scale peatland initiation, particularly in the late Holocene, and 5. impacts of changes in the proportion of high methane-producing fens vs Sphagnum bogs. We present a comparison of radiocarbon measurements from conventional counts, atomic mass spectrometry and differing peat materials to demonstrate a general compatibility of the various types of dates. We compare and apply several summed probability distribution methods to minimize any statistical bias in our analysis. We then present our analysis of a new data set of 7571 peatland cores from 4420 sites that extend into the temperate zone. Of these, 3732 cores inform on lateral expansion and 329 dates constrain the timing of fen-bog transition. Based on these data in original and gridded form we show that widespread peat initiation commenced at 16 kcal yr BP and reached a maximum rate at 11-8 kcal yr BP. Most sites began as fens, and peak transition to bogs occurred between 5 and 3 kcal yr BP, with a 1000 year lag between Eurasia and North America. There is no global late Holocene increase in lateral expansion. Based on modeled northern peatland area and ratio of fen/bog sites, CH4 production from northern peatlands increased rapidly from 11 to 9 cal yr BP, followed by slower increase until reaching a maximum at 5 kcal yr BP at 25 Tg per yr. From 4 kcal yr BP to Present, bogs become a dominant feature in the northern peatland landscape and CH4 production decreased to reach modern-day levels at about 20 Tg per yr. Northern peatlands have been a key infleunce on global

  16. Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands - responses to climatic and environmental changes

    DEFF Research Database (Denmark)

    Carter, M.S.; Larsen, Klaus Steenberg; Emmett, B.

    2012-01-01

    degrees C, and in annual precipitation from 300 to 1300 mm yr(-1). The effects of climate change, including temperature increase and prolonged drought, were tested at five shrubland sites. At one peatland site, the long-term (> 30 yr) effect of drainage was assessed, while increased nitrogen deposition...... response, the change in CO2 efflux dominated the response in all treatments (ranging 71-96%), except for NO3- addition where 89% was due to change in CH4 emissions. Thus, in European peatlands and shrublands the effect on global warming induced by the investigated anthropogenic disturbances...

  17. Direct and indirect effects of glaciers on aquatic biodiversity in high Andean peatlands

    DEFF Research Database (Denmark)

    Quenta, Estefania; Molina-Rodriguez, Jorge; Gonzales, Karina

    2016-01-01

    -elevation peatlands (>4500 m above sea level). We sampled 200 pools from 20 peatlands along a glacier gradient in the Cordillera Real of Bolivia. We performed structural equation modeling (SEM) to analyze the potential mechanisms underlying the observed diversity patterns. Intermediate levels of glacial influence (15...... to which there is high α-diversity at intermediate levels of glacial influence due to the high degree of environmental heterogeneity caused by glacier water. This α-diversity pattern generates high levels of between-site aquatic community variation (high β diversity) and increases regional diversity (γ...

  18. Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America

    Science.gov (United States)

    Charman, Dan J.; Amesbury, Matthew J.; Hinchliffe, William; Hughes, Paul D. M.; Mallon, Gunnar; Blake, William H.; Daley, Tim J.; Gallego-Sala, Angela V.; Mauquoy, Dmitri

    2015-08-01

    Peatlands are an important component of the Holocene global carbon (C) cycle and the rate of C sequestration and storage is driven by the balance between net primary productivity and decay. A number of studies now suggest that climate is a key driver of peatland C accumulation at large spatial scales and over long timescales, with warmer conditions associated with higher rates of C accumulation. However, other factors are also likely to play a significant role in determining local carbon accumulation rates and these may modify past, present and future peatland carbon sequestration. Here, we test the importance of climate as a driver of C accumulation, compared with hydrological change, fire, nitrogen content and vegetation type, from records of C accumulation at three sites in northeastern North America, across the N-S climate gradient of raised bog distribution. Radiocarbon age models, bulk density values and %C measurements from each site are used to construct C accumulation histories commencing between 11,200 and 8000 cal. years BP. The relationship between C accumulation and environmental variables (past water table depth, fire, peat forming vegetation and nitrogen content) is assessed with linear and multivariate regression analyses. Differences in long-term rates of carbon accumulation between sites support the contention that a warmer climate with longer growing seasons results in faster rates of long-term carbon accumulation. However, mid-late Holocene accumulation rates show divergent trends, decreasing in the north but rising in the south. We hypothesise that sites close to the moisture threshold for raised bog distribution increased their growth rate in response to a cooler climate with lower evapotranspiration in the late Holocene, but net primary productivity declined over the same period in northern areas causing a decrease in C accumulation. There was no clear relationship between C accumulation and hydrological change, vegetation, nitrogen content

  19. SODR Memory Control Buffer Control ASIC

    Science.gov (United States)

    Hodson, Robert F.

    1994-01-01

    The Spacecraft Optical Disk Recorder (SODR) is a state of the art mass storage system for future NASA missions requiring high transmission rates and a large capacity storage system. This report covers the design and development of an SODR memory buffer control applications specific integrated circuit (ASIC). The memory buffer control ASIC has two primary functions: (1) buffering data to prevent loss of data during disk access times, (2) converting data formats from a high performance parallel interface format to a small computer systems interface format. Ten 144 p in, 50 MHz CMOS ASIC's were designed, fabricated and tested to implement the memory buffer control function.

  20. Modelling Holocene peatland and permafrost dynamics with the LPJ-GUESS dynamic vegetation model

    Science.gov (United States)

    Chaudhary, Nitin; Miller, Paul A.; Smith, Benjamin

    2016-04-01

    Dynamic global vegetation models (DGVMs) are an important platform to study past, present and future vegetation patterns together with associated biogeochemical cycles and climate feedbacks (e.g. Sitch et al. 2008, Smith et al. 2001). However, very few attempts have been made to simulate peatlands using DGVMs (Kleinen et al. 2012, Tang et al. 2015, Wania et al. 2009a). In the present study, we have improved the peatland dynamics in the state-of-the-art dynamic vegetation model (LPJ-GUESS) in order to understand the long-term evolution of northern peatland ecosystems and to assess the effect of changing climate on peatland carbon balance. We combined a dynamic multi-layer approach (Frolking et al. 2010, Hilbert et al. 2000) with soil freezing-thawing functionality (Ekici et al. 2015, Wania et al. 2009a) in LPJ-GUESS. The new model is named LPJ-GUESS Peatland (LPJ-GUESS-P) (Chaudhary et al. in prep). The model was calibrated and tested at the sub-arctic mire in Stordalen, Sweden, and the model was able to capture the reported long-term vegetation dynamics and peat accumulation patterns in the mire (Kokfelt et al. 2010). For evaluation, the model was run at 13 grid points across a north to south transect in Europe. The modelled peat accumulation values were found to be consistent with the published data for each grid point (Loisel et al. 2014). Finally, a series of additional experiments were carried out to investigate the vulnerability of high-latitude peatlands to climate change. We find that the Stordalen mire will sequester more carbon in the future due to milder and wetter climate conditions, longer growing seasons, and the carbon fertilization effect. References: - Chaudhary et al. (in prep.). Modelling Holocene peatland and permafrost dynamics with the LPJ-GUESS dynamic vegetation model - Ekici A, et al. 2015. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes. The Cryosphere 9: 1343

  1. Peatland vulnerability to energy-related developments from climate change policy in Ireland: the case of wind farms

    Directory of Open Access Journals (Sweden)

    F. Renou-Wilson

    2009-05-01

    Full Text Available Ireland enjoys a wet and windy climate which is highly suitable for both peatlands and wind farms. There are currently 73 wind farms in Ireland, 39 of which are located on upland peatland - the oldest one on an industrially extracted blanket bog. The national and local (county level policy in relation to wind farms is to promote renewable energy in order to decrease dependence on imported fossil fuels and to mitigate climate change by reducing carbon emissions from non-renewable energy sources, whilst taking account of statutory obligations for planning and sustainable development. Lessons learned from past developments and ongoing monitoring have been applied in adapting guidelines for planning authorities and environmental impact assessment. However, although the vulnerability of peatland habitats is emphasised in the guideline documents, wind farm proposals for sensitive upland peatland sites continue to appear. Any development that involves drainage and fragmentation of peatlands has irreversible impacts on these ecosystems. Furthermore, the perceived ‘green profile’ of wind farms means that they tend to be viewed in a different light from other developments. It is proposed that any development on the nationally and internationally significant peatland resource of Ireland should undergo rigorous examination and impact assessment, and that degraded peatlands such as the industrial peat extraction areas in the Irish Midlands be selected as alternative locations for wind farm development.

  2. Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia

    Directory of Open Access Journals (Sweden)

    J.A. Hribljan

    2015-11-01

    Full Text Available (1 The high-altitude (4,500+ m Andean mountain range of north-western Bolivia contains many peatlands. Despite heavy grazing pressure and potential damage from climate change, little is known about these peatlands. Our objective was to quantify carbon pools, basal ages and long-term peat accumulation rates in peatlands in two areas of the arid puna ecoregion of Bolivia: near the village of Manasaya in the Sajama National Park (Cordillera Occidentale, and in the Tuni Condoriri National Park (Cordillera Real. (2 We cored to 5 m depth in the Manasaya peatland, whose age at 5 m was ca. 3,675 yr. BP with a LARCA of 47 g m-2 yr-1. However, probing indicated that the maximum depth was 7–10 m with a total estimated (by extrapolation carbon stock of 1,040 Mg ha-1. The Tuni peat body was 5.5 m thick and initiated ca. 2,560 cal. yr. BP. The peatland carbon stock was 572 Mg ha-1 with a long-term rate of carbon accumulation (LARCA of 37 g m-2 yr-1. (3 Despite the dry environment of the Bolivian puna, the region contains numerous peatlands with high carbon stocks and rapid carbon accumulation rates. These peatlands are heavily used for llama and alpaca grazing.

  3. Temperature buffer test. Dismantling operation

    International Nuclear Information System (INIS)

    Aakesson, Mattias

    2010-12-01

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite in the usual way, whereas the upper heater was surrounded by a ring of sand. The test was dismantled and sampled during a period from the end of October 2009 to the end of April 2010, and this report describes this operation. Different types of samples have been obtained during this operation. A large number of diameter 50 mm bentonite cores have been taken for analysis of water content and density. Large pieces, so-called big sectors, have been taken for hydro-mechanical and chemical characterizations. Finally, there has been an interest to obtain different types of interface samples in which bentonite were in contact with sand, iron or concrete. One goal has been to investigate the retrievability of the upper heater, given the possibility to remove the surrounding sand shield, and a retrieval test has therefore been performed. The sand in the shield was first removed with an industrial vacuum cleaner after loosening the material through mechanical means (with hammer drill and core machine). A front loader was subsequently used for applying a sufficient lifting force to release the heater from the bentonite underneath. The experiment has been documented in different aspects: measurements of the coordinate (height or radius) of different interfaces (between bentonite blocks and between bentonite and sand); verification of sensor positions and retrieval of sensors for subsequent

  4. Temperature buffer test. Dismantling operation

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, Mattias [Clay Technology AB, Lund (Sweden)

    2010-12-15

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite in the usual way, whereas the upper heater was surrounded by a ring of sand. The test was dismantled and sampled during a period from the end of October 2009 to the end of April 2010, and this report describes this operation. Different types of samples have been obtained during this operation. A large number of diameter 50 mm bentonite cores have been taken for analysis of water content and density. Large pieces, so-called big sectors, have been taken for hydro-mechanical and chemical characterizations. Finally, there has been an interest to obtain different types of interface samples in which bentonite were in contact with sand, iron or concrete. One goal has been to investigate the retrievability of the upper heater, given the possibility to remove the surrounding sand shield, and a retrieval test has therefore been performed. The sand in the shield was first removed with an industrial vacuum cleaner after loosening the material through mechanical means (with hammer drill and core machine). A front loader was subsequently used for applying a sufficient lifting force to release the heater from the bentonite underneath. The experiment has been documented in different aspects: measurements of the coordinate (height or radius) of different interfaces (between bentonite blocks and between bentonite and sand); verification of sensor positions and retrieval of sensors for subsequent

  5. Nitrogen and 15N in the Mer Bleue peatland

    Science.gov (United States)

    Moore, Tim

    2017-04-01

    Although much of our attention in peatlands has focussed on carbon, as CO2, CH4 and DOC processing and fluxes, N plays an important role in the functioning of these ecosystems. Here, I present information on the distribution of N and 15N in plant and peat tissues and relate them to the cycling of N. N concentration in foliar tissues, ranged from 0.67 to 1.3% in evergreen shrubs and trees and mosses with little seasonal variation, and with a strong seasonal variation from 0.5 to 3.5% in the deciduous forbs, shrubs and trees, with a strong overall relationship to [chlorophyll]. Although the proportion of shrubs and mosses varied with microtopography the spatial foliar mass of N varied little with water table position, resulting in minor spatial variations in photosynthetic potential. Decomposition of plant tissues through litter to peat resulted in a decrease in the C:N ratio from about 50:1 to about 30:1 at the base of the profile, representing peat about 8000 yr old. This marginally larger loss of N through decomposition (mainly as TDN, 0.4 g N m-2 yr-1) compared to C produced a long-term N accumulation rate of 0.9 g N m-2 yr-1, being smaller in the bog phase, 0.6 N m-2 yr-1, and over past 150 yr, 0.8 g N m-2 yr-1. Although N is 'hard won' through N2 fixation, northern peatlands are significant global sinks of N and have limited N availability. del15N in foliar tissues ranged from -4 to -9 ‰ in evergreen and deciduous shrubs and trees, from -4 to -5 ‰ in mosses and from -1 to +1 ‰ in sedges and forbs. This appears to be a function of the mycorhizzal infection of the shrubs and trees, compared to sedges and forbs and the values for mosses may partially reflect the signature of atmospheric N deposition. There was no strong correlation between foliar [N] and del15N. In peat profiles from bog and fen sections of Mer Bleue, del15N values in peat fell from -5 to -2 ‰ in the top 10 cm to values of -1 to +1 ‰ at a depth of 40 cm and remained close to 0 ‰ below

  6. Rapid ecosystem shifts in peatlands: linking plant physiology and succession.

    Science.gov (United States)

    Granath, Gustaf; Strengbom, Joachim; Rydin, Håkan

    2010-10-01

    Stratigraphic records from peatlands suggest that the shift from a rich fen (calcareous fen) to an ombrotrophic bog can occur rapidly. This shift constitutes a switch from a species-rich ecosystem to a species-poor one with greater carbon storage. In this process, the invasion and expansion of acidifying bog species of Sphagnum (peat mosses) play a key role. To test under what conditions an acidifying bog species could invade a rich fen, we conducted three experiments, contrasting the bog species S. fucsum with the rich-fen species S. warnstorfii and S. teres. We first tested the effect of calcareous water by growing the three species at different constant height above the water table (HWT; 2, 7, and 14 cm) in a rich-fen pool and measured maximum photosynthetic rate and production and difference in length growth as an indicator of competition. In none of the species was the photosynthetic capacity negatively affected when placed at low HWT, but S. fuscum was a weaker competitor at low HWT. In our second experiment we transplanted the three species into microhabitats with different and naturally varying HWT in a rich fen. Here, S. fuscum nearly ceased to photosynthesize when transplanted to low HWT (brown moss carpet), while it performed similarly to the two rich-fen species at the intermediate level (S. warnstorfii hummock level). In contrast to S. fuscum, the rich-fen sphagna performed equally well in both habitats. The brown moss carpet was seasonally flooded, and in our third experiment we found that S. fuscum, but not S. teres, was severely damaged when submerged in rich-fen water. Our results suggest two thresholds in HWT affecting the ecosystem switch: one level that reduces the risk of submergence and a higher one that makes bog sphagna competitive against the rich-fen species.

  7. Oxidation of Good's buffers by hydrogen peroxide.

    Science.gov (United States)

    Zhao, Guanghua; Chasteen, N Dennis

    2006-02-15

    Good's zwitterionic buffers are widely used in biological and biochemical research in which hydrogen peroxide is a solution component. This study was undertaken to determine whether Good's buffers exhibit reactivity toward H(2)O(2). It is found that H(2)O(2) oxidizes both morpholine ring-containing buffers (e.g., Mops, Mes) and piperazine ring-containing zwitterionic buffers (e.g., Pipes, Hepes, and Epps) to produce their corresponding N-oxide forms. The percentage of oxidized buffer increases as the concentration of H(2)O(2) increases. However, the rate of oxidation is relatively slow. For example, no oxidized Mops was detected 2h after adding 0.1M H(2)O(2) to 0.1M Mops (pH 7.0), and only 5.7% was oxidized after 24h exposure to H(2)O(2). Thus, although all of these buffers can be oxidized by H(2)O(2), their slow reaction does not significantly perturb levels of H(2)O(2) in the time frame and at the concentrations of most biochemical studies. Therefore, the previously reported rapid loss of H(2)O(2) produced from the ferroxidase reaction of ferritin is unlikely due to reaction of H(2)O(2) with buffer, a conclusion supported by the fact that H(2)O(2) is also lost rapidly when the solution pH of the ferroxidase reaction is controlled by a pH stat apparatus in the absence of buffer.

  8. Buffer Management Simulation in ATM Networks

    Science.gov (United States)

    Yaprak, E.; Xiao, Y.; Chronopoulos, A.; Chow, E.; Anneberg, L.

    1998-01-01

    This paper presents a simulation of a new dynamic buffer allocation management scheme in ATM networks. To achieve this objective, an algorithm that detects congestion and updates the dynamic buffer allocation scheme was developed for the OPNET simulation package via the creation of a new ATM module.

  9. In situ buffer material test, (1)

    International Nuclear Information System (INIS)

    Kumata, Masahiro; Muraoka, Susumu; Shimooka, Kenji; Araki, Kunio; Okamoto, Masamichi.

    1987-10-01

    Buffer materials would be placed between a package and wall rock in a disposal pit in a deep geological formation in the concept for geological disposal of high level radioactive wastes. A bentonite powder produced in our country was compacted in a test hole in-situ into 1.27 kg/cm 3 at 380 m below surface and heated with a electric heater about 882 hours. The value of obtained thermal conductivity of the buffer material was slightly larger than those of the laboratory data. The results of the measurements of the moisture of the buffer material using a Neutron Moisture Meter revealed that the buffer material was dried during the heating and groundwater penetrated from fractures of the wall rock into the buffer material after heating was stopped. (author)

  10. Buffer sizing for multi-hop networks

    KAUST Repository

    Shihada, Basem

    2014-01-28

    A cumulative buffer may be defined for an interference domain in a wireless mesh network and distributed among nodes in the network to maintain or improve capacity utilization of network resources in the interference domain without increasing packet queuing delay times. When an interference domain having communications links sharing resources in a network is identified, a cumulative buffer size is calculated. The cumulative buffer may be distributed among buffers in each node of the interference domain according to a simple division or according to a cost function taking into account a distance of the communications link from the source and destination. The network may be monitored and the cumulative buffer size recalculated and redistributed when the network conditions change.

  11. Optimization of protein buffer cocktails using Thermofluor.

    Science.gov (United States)

    Reinhard, Linda; Mayerhofer, Hubert; Geerlof, Arie; Mueller-Dieckmann, Jochen; Weiss, Manfred S

    2013-02-01

    The stability and homogeneity of a protein sample is strongly influenced by the composition of the buffer that the protein is in. A quick and easy approach to identify a buffer composition which increases the stability and possibly the conformational homogeneity of a protein sample is the fluorescence-based thermal-shift assay (Thermofluor). Here, a novel 96-condition screen for Thermofluor experiments is presented which consists of buffer and additive parts. The buffer screen comprises 23 different buffers and the additive screen includes small-molecule additives such as salts and nucleotide analogues. The utilization of small-molecule components which increase the thermal stability of a protein sample frequently results in a protein preparation of higher quality and quantity and ultimately also increases the chances of the protein crystallizing.

  12. The diversity of microfungi in peatlands originated from the White Sea

    NARCIS (Netherlands)

    Grum-Grzhimaylo, Olga A.; Debets, Fons; Bilanenko, Elena N.

    2016-01-01

    The diversity of culturable filamentous microfungi in peat and sediments of four peatlands at the coastal zone of Kandalaksha Bay of the White Sea (Murmansk region, Russia) was studied by culture methods on standard and selective media. Annually 100 samples were collected from the bogs 2007-2010.

  13. The diversity of microfungi in peatlands originated from the White Sea.

    Science.gov (United States)

    Grum-Grzhimaylo, Olga A; Debets, Alfons J M; Bilanenko, Elena N

    2016-01-01

    The diversity of culturable filamentous microfungi in peat and sediments of four peatlands at the coastal zone of Kandalaksha Bay of the White Sea (Murmansk region, Russia) was studied by culture methods on standard and selective media. Annually 100 samples were collected from the bogs 2007-2010. Based on morphological, molecular markers and cultural features, 211 taxa were identified. Fungal communities observed at the peatlands were influenced mostly by their sea origin. We discovered a large difference between fungal communities from the peat and the sediments of the peatlands. In contrast to the sediments, the fungal community of the peat was found to be consistent throughout sampling sites. Fungi with specific ecophysiology, such as Sphagnum-decomposing species (Oidiodendron griseum, O. tenuissimum. Penicillium spinulosum, P. thomii, Talaromyces funiculosus), psychrotolerant and associated with insects species (Pseudogymnoascus pannorum, Tolypocladium spp.), typical marine species (Acremonium spp.) were found. In addition, different types of sterile mycelia were characteristic for the researched peatlands. © 2016 by The Mycological Society of America.

  14. Spatio-temporal trends of nitrogen deposition and climate effects on Sphagnum productivity in European peatlands.

    Science.gov (United States)

    Granath, Gustaf; Limpens, Juul; Posch, Maximilian; Mücher, Sander; de Vries, Wim

    2014-04-01

    To quantify potential nitrogen (N) deposition impacts on peatland carbon (C) uptake, we explored temporal and spatial trends in N deposition and climate impacts on the production of the key peat forming functional group (Sphagnum mosses) across European peatlands for the period 1900-2050. Using a modelling approach we estimated that between 1900 and 1950 N deposition impacts remained limited irrespective of geographical position. Between 1950 and 2000 N deposition depressed production between 0 and 25% relative to 1900, particularly in temperate regions. Future scenarios indicate this trend will continue and become more pronounced with climate warming. At the European scale, the consequences for Sphagnum net C-uptake remained small relative to 1900 due to the low peatland cover in high-N areas. The predicted impacts of likely changes in N deposition on Sphagnum productivity appeared to be less than those of climate. Nevertheless, current critical loads for peatlands are likely to hold under a future climate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The contribution of mineralization to grassland N uptake on peatland soils with anthropogenic A horizons

    NARCIS (Netherlands)

    Sonneveld, M.P.W.; Lantinga, E.A.

    2011-01-01

    Peatland soils contain large amounts of nitrogen (N) in the soil and mineralization can contribute substantially to the annual mineral N supply of grasslands. We investigated the contribution of N mineralization from peat with respect to the total annual N uptake on grasslands with anthropogenic A

  16. Vegetation and carbon gas dynamics under a changed hydrological regime in central European peatlands

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Z.; Picek, T.; Hájek, Tomáš; Bufková, I.; Tuittila, E. S.

    2012-01-01

    Roč. 5, č. 1 (2012), 89-103 ISSN 1755-0874 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : peatland * carbon balance * restoration Subject RIV: EF - Botanics Impact factor: 0.924, year: 2012

  17. Wind farms on undegraded peatlands are unlikely to reduce future carbon emissions

    International Nuclear Information System (INIS)

    Smith, Jo; Nayak, Dali Rani; Smith, Pete

    2014-01-01

    Onshore wind energy is a key component of the renewable energies used by governments to reduce carbon emissions from electricity production, but will carbon emissions be reduced when wind farms are located on carbon-rich peatands? Wind farms are often located in uplands because most are of low agricultural value, are distant from residential areas, and are windy. Many UK uplands are peatlands, with layers of accumulated peat that represent a large stock of soil carbon. When peatlands are drained for construction there is a higher risk of net carbon loss than for mineral soils. Previous work suggests that wind farms sited on peatlands can reduce net carbon emissions if strictly managed for maximum retention of carbon. Here we show that, whereas in 2010, most sites had potential to provide net carbon savings, by 2040 most sites will not reduce carbon emissions even with careful management. This is due to projected changes in the proportion of fossil fuels used to generate electricity. The results suggest future policy should avoid constructing wind farms on undegraded peatlands unless drainage of peat is minimal and the volume excavated in foundations can be significantly reduced compared to energy output. - Highlights: • Future wind farms located on undegraded peats will not reduce carbon emissions. • This is due to projected changes in fossil fuels used to generate electricity. • Future policy should avoid constructing wind farms on undegraded peats

  18. Mud, muddle and models in the knowledge value-chain to action on tropical peatland conservation

    NARCIS (Netherlands)

    Noordwijk, van M.; Matthews, R.B.; Agus, F.; Farmer, J.; Verchot, L.; Hergoualc’h, K.; Persch, S.; Tata, H.L.; Lusiana, B.; Widayati, A.; Dewi, S.

    2014-01-01

    Tropical peatlands are known not only for their high, area-based, carbon emissions in response to land-use change but also as hot spots of debate about associated data uncertainties. Perspectives are still evolving on factors underlying the variability and uncertainty. Debate includes the ways of

  19. Mercury and Organic Carbon Relationships in Streams Draining Forested Upland/Peatland Watersheds

    Science.gov (United States)

    R. K. Kolka; D. F. Grigal; E. S. Verry; E. A. Nater

    1999-01-01

    We determined the fluxes of total mecury (HgT), total organic carbon (TOC), and dissolved organic carbon (DOC) from five upland/peatland watersheds at the watershed outlet. The difference between TOC and DOC was defined as particulate OC (POC). Concentrations of HgT showed moderate to strong relationships with POC (R2 = 0.77) when all watersheds...

  20. Plant functional types define magnitude of drought response in peatland CO2 exchange

    NARCIS (Netherlands)

    Kuiper, J.J.; Mooij, W.M.; Bragazza, L.; Robroek, B.J.M.

    2014-01-01

    Peatlands are important sinks for atmospheric carbon (C), yet the role of plant functional types (PFTs) for C sequestration under climatic perturbations is still unclear. A plant removal experiment was used to study the importance of vascular PFTs for the net ecosystem CO2 exchange (NEE) during

  1. Can frequent precipitation moderate drought impact on peatmoss carbon uptake in northern peatlands?

    NARCIS (Netherlands)

    Nijp, J.J.; Limpens, J.; Metselaar, K.; Zee, van der S.E.A.T.M.; Berendse, F.; Robroek, B.J.M.

    2015-01-01

    Northern peatlands represent a large global carbon store that potentially can be destabilised by summer water table drawdown. Precipitation can moderate negative impacts of water table drawdown by rewetting peatmoss (Sphagnum spp.), the ecosystems’ key species. Yet, the frequency for such rewetting

  2. Can frequent precipitation moderate the impact of drought on peatmoss carbon uptake in northern peatlands?

    NARCIS (Netherlands)

    Nijp, J.J.; Limpens, J.; Metselaar, K.; Zee, van der S.E.A.T.M.; Berendse, F.; Robroek, B.J.M.

    2014-01-01

    Northern peatlands represent a large global carbon store that can potentially be destabilized by summer water table drawdown. Precipitation can moderate the negative impacts of water table drawdown by rewetting peatmoss (Sphagnum spp.), the ecosystem's key species. Yet, the frequency of such

  3. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation

    NARCIS (Netherlands)

    Loisel, J.; Yu, Z.; Beilman, D.W.; Camill, P.; Alm, J.; Amesbury, M.J.; Anderson, D.; Andersson, S.; Bochicchio, C.; Barber, K.; Belyea, L.R.; Bunbury, J.; Chambers, F.M.; Charman, D.J.; De Vleeschouwer, F.; Fiałkiewicz-Kozieł, B.; Finkelstein, S.A.; Gałka, M.; Garneau, M.; Hammarlund, D; Hinchcliffe, W.; Holmquist, J.; Hughes, P.; Jones, M.C.; Klein, E.S.; Kokfelt, U.; Korhola, A.; Kuhry, P.; Lamarre, A.; Lamentowicz, M.; Large, D.; Lavoie, M.; Macdonald, G.; Magnan, G.; Mäkilä, M.; Mallon, G.; Mathijssen, P.; Mauquoy, D.; McCarroll, J.; Moore, T.R.; Nichols, J.; O'Reilly, B.; Oksanen, P.; Packalen, M.; Peteet, D.; Richard, P.J.H.; Robinson, S.; Ronkainen, T.; Rundgren, M.; Sannel, A.B.K.; Tarnocai, C.; Thom, T.; Tuittila, E.S.; Turetsky, M.; Väliranta, M.; van der Linden, M.; van Geel, B.; van Bellen, S.; Vitt, D.; Zhao, Y.; Zhou, W.

    2014-01-01

    Here, we present results from the most comprehensive compilation of Holocene peat soil properties with associated carbon and nitrogen accumulation rates for northern peatlands. Our database consists of 268 peat cores from 215 sites located north of 45°N. It encompasses regions within which peat

  4. Sphagnum re-introduction in degraded peatlands: the effects of aggregation, species and water table

    NARCIS (Netherlands)

    Robroek, B.J.M.; Ruijven, van J.; Schouten, M.G.C.; Breeuwer, A.J.G.; Crushell, P.H.; Berendse, F.; Limpens, J.

    2009-01-01

    In European peatlands which have been drained and cut-over in the past, re-vegetation often stagnates after the return of a species-poor Sphagnum community. Re-introduction of currently absent species may be a useful tool to restore a typical, and more diverse, Sphagnum vegetation and may ultimately

  5. The role of fire in UK peatland and moorland management: the need for informed, unbiased debate

    Science.gov (United States)

    Davies, G. Matt; Kettridge, Nicholas; Stoof, Cathelijne R.; Gray, Alan; Ascoli, Davide; Fernandes, Paulo M.; Marrs, Rob; Clay, Gareth D.; McMorrow, Julia; Vandvik, Vigdis

    2016-01-01

    Fire has been used for centuries to generate and manage some of the UK's cultural landscapes. Despite its complex role in the ecology of UK peatlands and moorlands, there has been a trend of simplifying the narrative around burning to present it as an only ecologically damaging practice. That fire modifies peatland characteristics at a range of scales is clearly understood. Whether these changes are perceived as positive or negative depends upon how trade-offs are made between ecosystem services and the spatial and temporal scales of concern. Here we explore the complex interactions and trade-offs in peatland fire management, evaluating the benefits and costs of managed fire as they are currently understood. We highlight the need for (i) distinguishing between the impacts of fires occurring with differing severity and frequency, and (ii) improved characterization of ecosystem health that incorporates the response and recovery of peatlands to fire. We also explore how recent research has been contextualized within both scientific publications and the wider media and how this can influence non-specialist perceptions. We emphasize the need for an informed, unbiased debate on fire as an ecological management tool that is separated from other aspects of moorland management and from political and economic opinions. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216512

  6. The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland

    Science.gov (United States)

    Jonathan A. O' Donnell; M.Torre Jorgenson; Jennifer W. Harden; A.David McGuire; Mikhail Z. Kanevskiy; Kimberly P. Wickland

    2012-01-01

    Recent warming at high-latitudes has accelerated permafrost thaw in northern peatlands, and thaw can have profound effects on local hydrology and ecosystem carbon balance. To assess the impact of permafrost thaw on soil organic carbon (OC) dynamics, we measured soil hydrologic and thermal dynamics and soil OC stocks across a collapse-scar bog chronosequence in interior...

  7. Molecular Characterization of Methanogenic Communities in Core Sediments of the Dajiuhu Peatland, Central China

    Science.gov (United States)

    Wang, R.; Wang, H.

    2017-12-01

    Methane (CH4) is an important greenhouse gas with a global warming potential 22 times greater than carbon dioxide. Large amounts of CH4 can be produced and released by methanogenesis in peatland ecosystems, which make peatland ecosystems play an important role in mediating global climate change. Here we report the abundance and distribution of methanogenic communities and their correlation with physicochemical parameters along two sediment cores in the Dajiuhu Peatland via quantitative PCR, clone library construction of functional genes and statistical analysis. Uncultured Group and Fen Cluster were found to be the dominant methanogens at the upper part of the cores, and Rice and Related Rice Cluster became dominant in the bottom of the cores. Quantitative PCR showed that abundances of methanogenic communities ranged from 104 to 106 copies/ng DNA throughout the cores. Canonical Correlation Analysis (CCA) indicated that dissolved oxygen (DO) (P=0.046, F=1.4) was the main factor significantly controlling methanogenic communities. Our results enhance the understanding of the compositions and variations of methanogenic communities vertically and greatly help us to further investigate process of microbial methanogenesis in Dajiuhu Peatland.

  8. Mechanisms for the suppression of methane production in peatland soils by a humic substance analog

    Science.gov (United States)

    Ye, R.; Keller, J. K.; Jin, Q.; Bohannan, B. J. M.; Bridgham, S. D.

    2014-01-01

    Methane (CH4) production is often impeded in many northern peatland soils, although inorganic terminal electron acceptors (TEAs) are usually present in low concentrations in these soils. Recent studies suggest that humic substances in wetland soils can be utilized as organic TEAs for anaerobic respiration and may directly inhibit CH4 production. Here we utilize the humic analog anthraquinone-2, 6-disulfonate (AQDS) to explore the importance of humic substances, and their effects on the temperature sensitivity of anaerobic decomposition, in two peatland soils. In a bog peat, AQDS was not instantly utilized as a TEA, but greatly inhibited the fermentative production of acetate, carbon dioxide (CO2), and hydrogen (H2), as well as CH4 production. When added together with glucose, AQDS was partially reduced after a lag period of 5 to 10 days. In contrast, no inhibitory effect of AQDS on fermentation was found in a fen peat and AQDS was readily reduced as an organic TEA. The addition of glucose and AQDS to both bog and fen peats caused complicated temporal dynamics in the temperature sensitivity of CH4 production, reflecting temporal changes in the temperature responses of other carbon processes with effects on methanogenesis. Our results show that the humic analog AQDS can act both as an inhibitory agent and a TEA in peatland soils. The high concentrations of humic substances in northern peatlands may greatly influence the effect of climate change on soil carbon cycling in these ecosystems.

  9. Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia

    NARCIS (Netherlands)

    Wösten, J.H.M.; Clymans, E.; Page, S.E.; Rieley, J.O.; Limin, S.H.

    2008-01-01

    Interrelationships between peat and water were studied using a hydropedological modelling approach for adjacent relatively intact and degraded peatland in Central Kalimantan, Indonesia. The easy to observe degree of peat humification provided good guidance for the assignment of more difficult to

  10. Tropical Peatland water management modelling of the Air Hitam Laut catchment in Indonesia

    NARCIS (Netherlands)

    Wösten, H.; Hooijer, A.; Siderius, C.; Dira Satriadi Rais,; Aswandi Idris,; Rieley, J.

    2006-01-01

    Human induced land use change and associated fire alter profoundly the hydrology of tropical peatlands and thus affect the functioning of entire river catchments. The hydrological model SIMGRO was used to calculate the effects of drainage on peat water levels, peat surface morphology and river flows

  11. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions

    NARCIS (Netherlands)

    Jaenicke, J.; Wösten, H.; Budiman, A.; Siegert, F.

    2010-01-01

    Extensive degradation of Indonesian peatlands by deforestation, drainage and recurrent fires causes release of huge amounts of peat soil carbon to the atmosphere. Construction of drainage canals is associated with conversion to other land uses, especially plantations of oil palm and pulpwood trees,

  12. Current and future CO2 emissions from drained peatlands in Southeast Asia

    NARCIS (Netherlands)

    Hooijer, A.; Page, S.; Canadell, J.G.; Silvius, M.; Kwadijk, J.; Wösten, H.; Jauhiainen, J.

    2010-01-01

    Forested tropical peatlands in Southeast Asia store at least 42 000 Million metric tonnes (Mt) of soil carbon. Human activity and climate change threatens the stability of this large pool, which has been decreasing rapidly over the last few decades owing to deforestation, drainage and fire. In this

  13. Peatlands as Filters for Polluted Mine Water?—A Case Study from an Uranium-Contaminated Karst System in South Africa—Part I: Hydrogeological Setting and U Fluxes

    Directory of Open Access Journals (Sweden)

    Ewald Erasmus

    2011-03-01

    Full Text Available Located downstream of goldfields of the Witwatersrand basin, the Gerhard Minnebron (GMB Eye—as major water source for downstream community of some 300,000 people—may be impacted on by mining-related water pollution especially with uranium (U. Containing up to 5 m-thick deposits of peat that is frequently reported to act as a filter for U and other heavy metals, this paper is the first part of a series that aims to quantify the ability of the GMB peatland to act as buffer against current and future U pollution. In a first step, this paper outlines the geohydrological conditions and discusses how deep–level gold mining impacted on the dolomitic aquifers. Subsequently, the potential influx of U into the wetland is estimated and associated sources and pathways analyzed. Finally, a model is proposed explaining the significant differences in degree and dynamics of U observed within a single groundwater compartment.

  14. COMBINATIONS OF BUFFER-STOCKS AND BUFFER-FUNDS FOR WOOL PRICE STABILISATION IN AUSTRALIA

    OpenAIRE

    Moir, Brian; Piggott, Roley R.

    1991-01-01

    In this paper a preliminary analysis is presented of a combined buffer-fund and buffer-stock as an alternative to a pure buffer-fund or a pure buffer stock for stabilising wool prices. The alternatives analysed are designed so that each provides the same prices to producers as did the Reserve Price Scheme over the period of analysis. Least-cost combinations of policy instruments are derived. The results show that there is considerable potential for cost savings to be made by combining buffer-...

  15. Temporal variability in methane fluxes from tropical peatlands within the Peruvian Amazon

    Science.gov (United States)

    Murphy, Wayne; Berrio, Juan Carlos; Boom, Arnoud; Page, Sue; Arn Teh, Yit

    2016-04-01

    Tropical peatlands are one of the largest soil carbon (C) reservoirs globally and play a significant role in modulating fluxes of C between the tropical biosphere and atmosphere. These C fluxes are of global importance because tropical wetlands are the single largest natural source of atmospheric methane (CH4); while land-use change and biomass burning also contribute to the growing global atmospheric carbon dioxide (CO2) burden. Amazonian peatlands play a potentially important role in regional and global atmospheric budgets of C because of their large extent. These ecosystems cover an estimated 150,000km2, which is roughly three-quarters the size of Indonesian peatlands; the world's most extensive and well-studied tropical peatlands. Here we report CH4 fluxes from a lowland tropical peatland in the Pastaza-Maranon foreland basin in Peru, one of the largest peatland complexes in the lowland Amazon Basin. Strong prolonged seasonal rainfall events and the annual Amazon River flood-pulse may lead to pronounced temporal variability in biogeochemical cycling and trace gas fluxes, and this study explored how CH4 fluxes varied among wet and dry season periods in a number of key vegetation types in this region. Sampling was concentrated in 3 of the most numerically-dominant vegetation types: Forested Swamp, Mixed Palm Swamp and Mauritia flexuosa-dominated Palm Swamp, with data collection occurring in both wet and dry seasons over a 2 year period from 2012-2014 (4 field campaigns in total). Overall mean CH4 fluxes from the Forested Swamp, Mixed Palm Swamp and Mauritia flexuosa-dominated Palm Swamp for the entire sampling period were 31.06 ± 3.42 mg CH4 - C m-2 d-1, 52.03 ± 16.05 mg CH4 - C m-2 d-1 and 36.68 ± 4.32 mg CH4 - C m-2 d-1. CH4 emissions, when averaged across the entire dataset, did not differ significantly among habitats. However, when CH4 emissions were aggregated by season, the Mixed Palm Swamp showed a significantly different emissions from all other

  16. Source Areas of Water and Nitrate in a Peatland Catchment, Minnesota, USA

    Science.gov (United States)

    Sebestyen, S. D.

    2017-12-01

    In nitrogen polluted forests, stream nitrate concentrations increase and some unprocessed atmospheric nitrate may be transported to streams during stormflow events. This understanding has emerged from forests with upland mineral soils. In contrast, catchments with northern peatlands may have both upland soils and lowlands with deep organic soils, each with unique effects on nitrate transport and processing. While annual budgets show nitrate yields to be relatively lower from peatland than upland-dominated catchments, little is known about particular runoff events when stream nitrate concentrations have been higher (despite long periods with little or no nitrate in outlet streams) or the reasons why. I used site knowledge and expansive/extensive monitoring at the Marcell Experimental Forest in Minnesota, along with a targeted 2-year study to determine landscape areas, water sources, and nitrate sources that affected stream nitrate variation in a peatland catchment. I combined streamflow, upland runoff, snow amount, and frost depth data from long-term monitoring with nitrate concentration, yield, and isotopic data to show that up to 65% of stream nitrate during snowmelt of 2009 and 2010 was unprocessed atmospheric nitrate. Up to 46% of subsurface runoff from upland soils during 2009 was unprocessed atmospheric nitrate, which shows the uplands to be a stream nitrate source during 2009, but not during 2010 when upland runoff concentrations were below the detection limit. Differences are attributable to variations in water and nitrate sources. Little snow (a nitrate source), less upland runoff relative to peatland runoff, and deeper soil frost in the peatland caused a relatively larger input of nitrate from the uplands to the stream during 2009 and the peatland to the stream during 2010. Despite the near-absence of stream nitrate during much of rest of the year, these findings show an important time when nitrate transport affected downstream aquatic ecosystems, reasons

  17. Distribution Patterns of Grasshoppers and Their Kin in the Boreal Zone

    Directory of Open Access Journals (Sweden)

    Michael G. Sergeev

    2011-01-01

    Full Text Available The distribution patterns of Orthoptera are described for the boreal zone. The boreal fauna of Eurasia includes more than 81 species. Many of them are widely distributed. The monotypic genus Paracyphoderris Storozhenko and at least 13 species are endemics or subendemics. About 50 species are known from boreal North America. Four endemic species are distributed very locally. Relationships between the faunas of the Eurasian and North American parts of the boreal zone are relatively weak. The boreal assemblages are usually characterized by the low levels of species diversity and abundance. Grasshoppers and their relatives occupy almost exclusively open habitats, such as different types of meadows, mountain steppes and tundras, clearings, openings, bogs, and stony flood plains. The local endemics and subendemics are found only in some habitats of the eastern part of Eurasia and the north-western part of North America. Retrospective and prospective of the boreal fauna of Orthoptera are also discussed.

  18. The role of fire in the boreal carbon budget

    Science.gov (United States)

    Harden, J.W.; Trumbore, S.E.; Stocks, B.J.; Hirsch, A.; Gower, S.T.; O'Neill, K. P.; Kasischke, E.S.

    2000-01-01

    To reconcile observations of decomposition rates, carbon inventories, and net primary production (NPP), we estimated long-term averages for C exchange in boreal forests near Thompson, Manitoba. Soil drainage as defined by water table, moss cover, and permafrost dynamics, is the dominant control on direct fire emissions. In upland forests, an average of about 10-30% of annual NPP was likely consumed by fire over the past 6500 years since these landforms and ecosystems were established. This long-term, average fire emission is much larger than has been accounted for in global C cycle models and may forecast an increase in fire activity for this region. While over decadal to century times these boreal forests may be acting as slight net sinks for C from the atmosphere to land, periods of drought and severe fire activity may result in net sources of C from these systems.

  19. Boreal Forest Biomass Classification with TanDEM-X

    Science.gov (United States)

    Torano Caicoya, Astor; Kugler, Florian; Hajnsek, Irena; Papathanassiou, Kostas

    2013-08-01

    High spatial resolution X-band interferometric SAR data from TanDEM-X acquired in the operational DEM generation mode are sensitive to forest structure and can therefore be used for thematic boreal forest classification. The interferometric coherence in absence of temporal decorrelation depends strongly on forest height and structure. Due to the rather homogenous structure of boreal forest, forest biomass can be derived from forest height, on the basis of allometric equations with sufficient accuracy and can therefore, be used for thematic classification applications. Two test sites in mid- and southern Sweden are investigated. A maximum of 4 biomass classes, up to 150 Mg/ha, for a single baseline scenario and 5 biomass classes up to 250 Mg/ha for a dual baseline scenario, are achieved.

  20. The Red Lake Peatland Observatory (RLPO): A multi-sensor instrument array for monitoring carbon-water dynamics in a large northern peatland

    Science.gov (United States)

    Glaser, P. H.; Rosenberry, D. O.; Reeve, A. S.; Siegel, D. I.; Chanton, J. P.; Slater, L. D.; Comas, X.; Rhoades, J. M.; Allen, L.; Corbett, J.; D'Andrilli, J.; Tfilany, M. I.; Parsekian, A.; Nolan, J.; Sarkar, M.; Gracz, M.; Morin, P. J.

    2009-12-01

    The 1200 sq km Red Lake peatland in northern Minnesota has been the focus of an ongoing study of carbon-groundwater interactions for over 30 years. This large continuous expanse of peatland contains several major bog complexes, each of which covers over 100 sq. km. Each bog complex has 1) a forested bog crest that grades downslope into 2) gently sloping Sphagnum lawns and 3) fen water tracks that divide the lower flanks of the bog into ovoid-shaped "islands." Building upon past work we installed 20 new instrument stations in the RLII watershed to monitor fluxes of carbon, water, and heat continuously within the 4m-thick peat profile and also the atmospheric boundary layer on scales of meters to kilometers. This integrated array of stations comprise the Red Lake Peatland Observatory (RLPO), which now collects data from a) 14 dual-frequency GPS units arranged in a nested triangular network measuring vertical and lateral deformations of the peat mass caused by changes in water and gas storage, b) 2 eddy covariance units that monitor fluxes in heat, momentum, carbon dioxide, and water vapor across the atmospheric boundary layer, and c) 4 stations equipped with instrumented piezometers and meteorological sensors for measuring changes in water and gas storage within the entire peat profile. All remote stations communicate by radio to a base station and through the internet to a centralized database at the University of Minnesota that automatically downloads and stores sensor data on a daily basis. Large degassing events were previously detected by monitoring sharp depressuring cycles from a zone of overpressure at 2 m below the bog crest site that occurred synchronously with vertical oscillations of the peat surface in excess of 10 cm in hours. These types of measurements have now been extended to much finer sampling intervals across a much broader portion of the peatland. Free--phase gas appears to accumulate throughout the peat profile in winter after the surface

  1. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions.

    Science.gov (United States)

    Jassey, Vincent E J; Chiapusio, Geneviève; Binet, Philippe; Buttler, Alexandre; Laggoun-Défarge, Fatima; Delarue, Frédéric; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Francez, André-Jean; Gilbert, Daniel

    2013-03-01

    Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands. © 2012 Blackwell Publishing Ltd.

  2. Peatland Open-water Pool Biogeochemistry: The Influence of Hydrology and Vegetation

    Science.gov (United States)

    Arsenault, J.; Talbot, J.; Moore, T. R.

    2017-12-01

    Peatland open-water pools are net sources of carbon to the atmosphere. However, their interaction with the surrounding peat remains poorly known. In a previous study, we showed that shallow pools are richer in nutrients than deep pools. While depth was the main driver of biogeochemistry variations across time and space, analyses also showed that pool's adjacent vegetation may have an influence on water chemistry. Our goal is to understand the relationship between the biogeochemistry of open-water pools and their surroundings in a subboreal ombrotrophic peatland of southern Quebec (Canada). To assess the influence of vegetation on pool water chemistry, we compare two areas covered with different types of vegetation: a forested zone dominated by spruce trees and an open area mostly covered by Sphagnum spp. To evaluate the direction of water (in or out of the pools), we installed capacitance water level probes in transects linking pools in the two zones. Wells were also installed next to each probe to collect peat pore water samples. Samples were taken every month during summer 2017 and analyzed for dissolved organic carbon, nitrogen and phosphorus, pH and specific UV absorbance. Preliminary results show differences in peat water chemistry depending on the dominant vegetation. In both zones, water levels fluctuations are disconnected between peat and the pools, suggesting poor horizontal water movement. Pool water chemistry may be mostly influenced by the immediate surrounding vegetation than by the local vegetation pattern. Climate and land-use change may affect the vegetation structure of peatlands, thus affecting pool biogeochemistry. Considering the impact of pools on the overall peatland capacity to accumulate carbon, our results show that more focus must be placed on pools to better understand peatland stability over time.

  3. Rewetting Decreases Carbon Emissions from the Zoige Alpine Peatland on the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Lijuan Cui

    2017-06-01

    Full Text Available Peatlands play an important role in the global carbon cycle and potentially have a significant impact on regional climate change. Restoring and rewetting the degraded peatlands is an urgent task. However, effects of rewetting on the carbon emissions of peatlands remain poorly understood. In this study, the process of rewetting a piece of the degraded Zoige alpine peatland was experimentally simulated and the derived results were compared with those of natural rewetting by monitoring CO2 and CH4 fluxes and other environmental factors before and after rewetting. The natural rewetting results showed that rewetting decreased ecosystem respiration (ER by about 60%. Furthermore, rewetting increased CH4 emissions by 127%, decreased total carbon emissions (TCE from 270 to 157 mg CO2 m−2 h−1, and decreased TCE from the entire ecosystem by 42%. The results of the controlled experiment showed that ER decreased gradually as the degree of rewetting was increased, and CH4 fluxes and changes in water level were significantly and positively correlated: CH4 fluxes increased from 0.3 (water level −20 cm to 2.17 mg CH4 m−2 h−1 (water level 20 cm. After rewetting, the TCE of the whole ecosystem were significantly decreased. Regional observations showed that CO2 fluxes were significantly and negatively correlated to the water level; and the corresponding CO2 equivalent was significantly and positively correlated to the water level, while TCE were significantly and negatively correlated to the water level. Our findings indicate that rewetting can decrease carbon emissions and thus contribute in mitigating the adverse effects of climate change in alpine peatland.

  4. Understanding the structure of Exmoor's peatland ecosystems using laser-scanning technologies

    Science.gov (United States)

    Luscombe, D. J.; Anderson, K.; Wetherelt, A.; Grand-Clement, E.; Le-Feuvre, N.; Smith, D.; Brazier, R. E.

    2012-04-01

    Upland blanket peatlands in the UK are of high conservation value and in an intact state, provide important landscape services, such as carbon sequestration and flood attenuation. The drainage of many such wetlands for agricultural reclamation has resulted in changes to upland blanket mire topography, ecology, hydrological processes and carbon fluxes. There is a need for spatially explicit monitoring approaches at peatland sites in the UK as although there has been a national effort to restore drained peat uplands, baseline and post restoration monitoring of changes to ecosystem structure and function is largely absent. Climate change policy and the emerging carbon markets also necessitate the need for enhanced system understanding to inform carbon targets and understand the impacts of restoration. Exmoor is the focus of this research because many areas of upland peat have, in the past, been extensively drained through government "moorland reclamation" programs. A large restoration project funded by South West Water is currently underway in association with Exmoor National Park, The Environment Agency and Natural England. Exmoor also provides an analogue for other westerly peatlands in the British Isles in terms of its climate, ecology and drainage characteristics. Our approach employed airborne LiDAR data gathered by the Environment Agency Geomatics Group coupled with Terrestrial Laser Scanning (TLS) surveys. LiDAR data were processed to produce digital surface models (DSM) of the peatland surface at a 0.5m resolution. These data were further interrogated to separate vegetation structures and geomorphic features such as man-made drainage channels which have damaged the peatland. Over small extents the LiDAR derived DSM surface was then compared to a TLS derived DSM to examine the ability of these models to describe fine scale vegetation and geomorphic structure, which could then be extrapolated to larger spatial extents. Exploration of the data has shown that

  5. Changes in vascular plant functional types drive carbon cycling in peatlands

    Science.gov (United States)

    Zeh, Lilli; Bragazza, Luca; Erhagen, Björn; Limpens, Juul; Kalbitz, Karsten

    2016-04-01

    Northern peatlands store a large organic carbon (C) pool that is highly exposed to future environmental changes with consequent risk of releasing enormous amounts of C. Biotic changes in plant community structure and species abundance might have an even stronger impact on soil organic C dynamics in peatlands than the direct effects of abiotic changes. Therefore, a sound understanding of the impact of vegetation dynamics on C cycling will help to better predict the response of peatlands to environmental changes. Here, we aimed to assess the role of plant functional types (PFTs) in affecting peat decomposition in relation to climate warming. To this aim, we selected two peatlands at different altitude (i.e. 1300 and 1700 m asl) on the south-eastern Alps of Italy. The two sites represent a contrast in temperature, overall vascular plant biomass and relative ericoids abundance, with the highest biomass and ericoids occurrence at the low latitude. Within the sites we selected 20 plots of similar microtopographical position and general vegetation type (hummocks). All plots contained both graminoids and ericoids and had a 100% cover of Sphagnum mosses. The plots were subjected to four treatments (control, and three clipping treatments) in which we selectively removed aboveground biomass of ericoids, graminoids or both to explore the contribution of the different PFTs for soil respiration (n=5) and peat chemistry. Peat chemical composition was determined by the analysis of C and N and their stable isotopes in association with pyrolysis GC/MS. Soil respiration was measured after clipping with a Licor system. Preliminary findings suggest that peat decomposition pathway and rate depend on plant species composition and particularly on differences in root activity between PFTs. Finally, this study underlines the importance of biotic drivers to predict the effects of future environmental changes on peatland C cycling.

  6. Drivers of soil fungal communities in boreal forests

    OpenAIRE

    Sterkenburg, Erica

    2016-01-01

    Boreal forests harbour diverse fungal communities with decisive roles in decomposition and plant nutrition. Difficulties in studying soil fungi have limited knowledge about how fungal communities are shaped. The objective of this thesis was to study factors influencing soil fungal communities, aiming for increased understanding of their effect on environmental processes. Using next generation sequencing, responses of fungal communities to their physical-chemical environment, and responses...

  7. Effects of flow regulation and fragmentation by dams on riparian flora in boreal rivers

    International Nuclear Information System (INIS)

    Jansson, Roland

    2000-01-01

    The object of this thesis is to evaluate the effects of river regulation on riparian flora in boreal rivers, and to increase the understanding of the processes causing patterns in species diversity. Comparisons of free-flowing and regulated rivers showed that regulated rivers have fewer plant species and less plant cover per 200-m-stretch of river margin. Regulated river-margins were less species-rich compared to free-flowing rivers irrespective of the type of regulated water level regime, except for unimpounded reaches downstream of dams. Species with good dispersal capacity (wind-dispersed or long-floating species) were least affected by regulation, showing that the ability to recolonize after local extinction is an important character. The temporal development of river-margin vegetation in regulated rivers was studied by investigating differently-old reservoirs and impoundments. Plant-species richness along storage reservoirs increased during the first 30-40 years following damming, but declined thereafter. Both species richness and plant cover remained impoverished compared to free-flowing rivers about 70 years after regulation. Along run-of-river impoundments, plant species richness and cover peaked after 10-20 years. In the long run, riparian species richness was lower, but riparian species density did not differ, compared to free-flowing rivers. Dams fragment the riparian flora. Adjacent run-of-river impoundments developed different riparian floras, probably because dams are barriers to the dispersal of species with poor floating ability. This shows that dams disrupt the ecological continuity not only for the river channel, but also for the adjoining riparian corridor. The number of species and genera were similar between river margins along boreal free-flowing rivers in Europe and North America. The riparian floras shared few species but many genera and families. The regional species pools were similar-sized and composed of species with similar traits, and

  8. Effects of boreal forest vegetation on global climate

    Science.gov (United States)

    Bonan, Gordon B.; Pollard, David; Thompson, Starley L.

    1992-10-01

    TERRESTRIAL ecosystems are thought to play an important role in determining regional and global climate1-6 one example of this is in Amazonia, where destruction of the tropical rainforest leads to warmer and drier conditions4-6. Boreal forest ecosystems may also affect climate. As temperatures rise, the amount of continental and oceanic snow and ice is reduced, so the land and ocean surfaces absorb greater amounts of solar radiation, reinforcing the warming in a 'snow/ice/albedo' feedback which results in large climate sensitivity to radiative forcings7-9. This sensitivity is moderated, however, by the presence of trees in northern latitudes, which mask the high reflectance of snow10,11, leading to warmer winter temperatures than if trees were not present12-14. Here we present results from a global climate model which show that the boreal forest warms both winter and summer air temperatures, relative to simulations in which the forest is replaced with bare ground or tundra vegetation. Our results suggest that future redistributions of boreal forest and tundra vegetation (due, for example, to extensive logging, or the influence of global warming) could initiate important climate feedbacks, which could also extend to lower latitudes.

  9. Predicting Climate Change Impacts to the Canadian Boreal Forest

    Directory of Open Access Journals (Sweden)

    Trisalyn A. Nelson

    2014-03-01

    Full Text Available Climate change is expected to alter temperature, precipitation, and seasonality with potentially acute impacts on Canada’s boreal. In this research we predicted future spatial distributions of biodiversity in Canada’s boreal for 2020, 2050, and 2080 using indirect indicators derived from remote sensing and based on vegetation productivity. Vegetation productivity indices, representing annual amounts and variability of greenness, have been shown to relate to tree and wildlife richness in Canada’s boreal. Relationships between historical satellite-derived productivity and climate data were applied to modelled scenarios of future climate to predict and map potential future vegetation productivity for 592 regions across Canada. Results indicated that the pattern of vegetation productivity will become more homogenous, particularly west of Hudson Bay. We expect climate change to impact biodiversity along north/south gradients and by 2080 vegetation distributions will be dominated by processes of seasonality in the north and a combination of cumulative greenness and minimum cover in the south. The Hudson Plains, which host the world’s largest and most contiguous wetland, are predicted to experience less seasonality and more greenness. The spatial distribution of predicted trends in vegetation productivity was emphasized over absolute values, in order to support regional biodiversity assessments and conservation planning.

  10. Ecosystem Responses to Partial Harvesting in Eastern Boreal Mixedwood Stands

    Directory of Open Access Journals (Sweden)

    Brian D. Harvey

    2013-05-01

    Full Text Available Partial harvesting has been proposed as a key aspect to implementing ecosystem management in the Canadian boreal forest. We report on a replicated experiment located in boreal mixedwoods of Northwestern Quebec. In the winter of 2000–2001, two partial harvesting treatments, one using a dispersed pattern, and a second, which created a (400 m2 gap pattern, were applied to a 90-year-old aspen-dominated mixed stand. The design also included a clear cut and a control. Over the course of the following eight years, live tree, coarse woody debris, regeneration and ground beetles were inventoried at variable intervals. Our results indicate that all harvesting treatments created conditions favorable to balsam fir (Abies balsamea sapling growth and trembling aspen (Populus tremuloides sapling recruitment. However, balsam fir and trembling aspen regeneration and ground beetles response to gap cuts were closer to patterns observed in clear cuts than in dispersed harvesting. The underlying reasons for these differing patterns can be linked to factors associated with the contrasting light regimes created by the two partial harvesting treatments. The study confirms that partially harvesting is an ecologically sound approach in boreal mixedwoods and could contribute to maintaining the distribution of stand ages at the landscape level.

  11. Basic characteristics data base of buffer material

    International Nuclear Information System (INIS)

    Kikuchi, Hirohito; Tanai, Kenji

    2004-02-01

    For the buffer material of geological disposal of High-Level radioactive Waste (HLW) in Japan, it is expected to maintain its low water permeability, thermal conductivity, self-sealing, radionuclide sorption and retardation, chemical buffering, overpack support and stress buffering properties over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above functions. Among the kinds of natural clay, bentonite when compacted is superior because (1) it has exceptionally low water permeability and properties to control the movement of water in buffer, (2) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (3) it has ability to exchange cations and to adsorb cationic radioelements. Japan Nuclear Cycle Development Institute has extended the basic characteristics data of buffer material as one of the base information required for safe regulation of a country and HLW disposal project. This report presents the basic characteristics data of the buffer material which JNC acquired by December, 2003 was collected as a collection of data. (author)

  12. On the use of mulching to mitigate permafrost thaw due to linear disturbances in sub-arctic peatlands

    Science.gov (United States)

    The presence or absence of permafrost significantly influences the hydrology and ecology of northern watersheds. Resource exploration activities are currently having noticeable effects on hydrological and ecological processes in sub-arctic peatlands. Disturbances such as seismic cutlines can result ...

  13. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor

    NARCIS (Netherlands)

    Gumbricht, Thomas; Roman-Cuesta, Rosa Maria; Verchot, Louis; Herold, Martin; Wittmann, Florian; Householder, Ethan; Herold, Nadine; Murdiyarso, Daniel

    2017-01-01

    Wetlands are important providers of ecosystem services and key regulators of climate change. They positively contribute to global warming through their greenhouse gas emissions, and negatively through the accumulation of organic material in histosols, particularly in peatlands. Our understanding of

  14. Current state of peatland soils as an effect of long-term drainage – preliminary results of peatland ecosystems investigation in the Grójecka Valley (central Poland

    Directory of Open Access Journals (Sweden)

    Glina Bartłomiej

    2016-03-01

    Full Text Available Understanding the effect of long-term drainage of peatland areas is helpful in future peatland management and regulations of water conditions. The aim of this work was to assess the current state of fen peatland soils in the Grójecka Valley (eastern part of the Wielkopolskie voivodeship, central Poland, affected by long-term agricultural use (pastures, meadows since the 1960s and potentially by lignite open pit mining industry (KWB Konin since 1980s. Field studies were carried out in 2015 in selected fen peatland areas. Soil material for laboratory analysis was collected from genetic horizons from four soil profiles. The surface horizons of studied organic and organo-mineral soils were built with well-developed moorsh material. They were classified as medium moorshiefied – MtII (profile 1, 3 and 4 and strongly moorshiefied – MtIII (profile 2. Obtained results of physical and physico-chemical analysis indicate that long-term peatland utilization connected with potential impact of the lignite mining, transformed mainly the upper horizons of studied organic and organo-mineral soils. However, despite obvious strong human impact on peatlands ecosystems, we cannot exclude the climate variables, what should be confirmed by long-term monitoring program. Furthermore, presented paper indicated that new subtype moorsh-muddy soils (in Polish: gleby murszowo-mułowe within the type of gleyic soils should be implemented in the next version of Polish Soil Classification.

  15. Fire impacts on European Boreal soils: A review

    Science.gov (United States)

    Pereira, Paulo; Oliva, Marc; Cerda, Artemi

    2016-04-01

    Fire is an important natural disturbance in boreal ecosystems, fundamental to understand plant distribution (Ryan, 2002; Wallenius et al., 2004; Granstrom, 2001). Nevertheless, nowadays the intense and successful, fire suppression measures are changing their ecological role (Pereira et al., 2013a,b). This is consequence of the lack of understanding of stakeholders and decision makers about the role of the fire in the ecosystems (Mierasukas and Pereira, 2013; Pereira et al., 2016). This fire suppression measures are increasing the amount of fuel accumulation and the risk of severe wildfires, which can increase of frequency and severity in a context of climate change. Fire is a good tool for landscape management and restoration of degraded ecosystems (Toivanen and Kotiaho, 2007). Fire is considered a soil forming factor (Certini, 2014) and in boreal environments it has been observed that low fire severities, do not change importantly soil properties, mean fire severities induce positive impacts on soil, since add an important amounts of nutrients into soil profile and high severity fires had negative impacts due to the high consumption of organic matter (Vanha-Majamaa et al., 2007; Pereira et al., 2014). References Certini, G., 2014. Fire as a soil-forming factor. Ambio, 43, 191-195 Granstrom A. 2001. Fire management for biodiversity in the European Boreal forest. Scandinavian Journal of Forest Research 3: 62-69. Mierauskas, P., Pereira, P. (2013) Stakeholders perception about prescribed fire use in Lithuania. First results, Flamma, 4(3), 157-161. Pereira, P., Cerdà, A., Jordán, A., Bolutiene, V., Úbeda, X., Pranskevicius, M., Mataix-Solera, J. (2013) Spatio-temporal vegetation recuperation after a grassland fire in Lithuania, Procedia Environmental Sciences, 19:856-864 Pereira, P., Mierauskas, P., Ubeda, X., Mataix-Solera, J.,Cerda, A. (2012) Fire in protected areas - the effect of the protection and importance of fire management, Environmental Research

  16. TALL-HERB BOREAL FORESTS ON NORTH URAL

    Directory of Open Access Journals (Sweden)

    A. A. Aleinikov

    2016-09-01

    Full Text Available Background. One of the pressing aims of today’s natural resource management is its re-orientation to preserving and restoring ecological functions of ecosystems, among which the function of biodiversity maintenance plays an indicator role. The majority of today’s forests have not retained their natural appearance as the result of long-standing human impact. In this connection, refugia studies are becoming particularly interesting, as they give us an insight into the natural appearance of forests. Materials and methods. Studies were performed in dark conifer forests of the Pechora–Ilych reserve, in the lower reaches of the Bol’shaya Porozhnyaya River in 2013 yr. Vegetation data sampling was done at 50 temporary square plots of a fixed size (100 m2 randomly placed within a forest type. A list of plant species with species abundance was made for each forest layer. The overstorey (or tree canopy layer was denoted by the Latin letter A. The understorey layer (indicated by the letter B included tree undergrowth and tall shrubs. Ground vegetation was subdivided into the layers C and D. Layer C (field layer comprised the herbaceous species (herbs, grasses, sedges and dwarf shrubs together with low shrubs, tree and shrub seedlings. The height of the field layer was defined by the maximal height of the herbaceous species, ferns, and dwarf shrubs; the height varied from several cm to more than 200 cm in the ‘tall-herb’ forest types. Layer D (bottom layer included cryptogamic species (bryophytes and lichens. Species abundance in the each layer was usually assessed using the Braun-Blanquet cover scale (Braun-Blanquet 1928. The nomenclature used follows Cherepanov’s (1995 for vascular plants, and Ignatov & Afonina’s (1992. Results. The present article contains descriptions of unique tall-herb boreal forests of European Russia preserved in certain refugia which did not experience prolonged anthropogenic impact or any other catastrophes

  17. Retention of contaminants in northern natural peatlands treating mine waste waters

    Science.gov (United States)

    Palmer, Katharina; Ronkanen, Anna-Kaisa; Klöve, Björn

    2014-05-01

    The mining industry in Finland is growing, leading to an increasing number of working and proposed mine sites. As a consequence, the amount of mine waste waters created is likewise increasing. This poses a great challenge for water management and purification, as these mine waste waters can lead to severe environmental and health consequences when released to receiving water bodies untreated. In the past years, the use of natural peatlands for cost-effective passive waste water treatment has been increasing. In this study, the fate of mine water contaminants in a treatment peatland receiving process waters from the Kittilä gold mine was investigated. Special attention was paid to the fate of potentially harmful substances such as arsenic, antimony or nickel. During the 4 years of operation, the peatland removed contaminants from process waters at varying efficiencies. While arsenic, antimony and nickel were retained at high efficiencies (>80% retention), other contaminants such as zinc, sulfate or iron were not retained or even leaching from the peatland. Soil samples taken in 2013 showed a linear increase of arsenic, antimony and nickel concentration in the peatland as compared to earlier sampling times, in agreement with the good retention efficiencies for those contaminants. Measured concentrations exceeded guideline values for contaminated soils, indicating that the prolonged use of treatment peatlands leads to high soil contamination and restrict further uses of the peatlands without remediation measures. Soil and pore water samples were taken along a transect with varying distance from the process water distribution ditch and analyzed for total and more easily mobile concentrations of contaminants (peat soil) as well as total and dissolved contaminants (water samples). Concentrations of contaminants such as arsenic, manganese or antimony in peat and pore water samples were highest near the distribution ditch and decreased with increasing distance from the

  18. Polarimetric synthetic aperture radar application for tropical peatlands classification: a case study in Siak River Transect, Riau Province, Indonesia

    Science.gov (United States)

    Novresiandi, Dandy Aditya; Nagasawa, Ryota

    2017-01-01

    Mapping spatial distributions of tropical peatlands is important for properly estimating carbon emissions and for providing information that aids in the sustainable management of tropical peatlands, particularly in Indonesia. This study evaluated the performance of phased array type L-band synthetic aperture radar (SAR) (PALSAR) dual-polarization and fully polarimetric data for tropical peatlands classification. The study area was in Siak River Transect, Riau Province, Indonesia, a rapidly developing region, where the peatland has been intensively converted mostly into oil palm plantations over the last two decades. Thus, polarimetric features derived after polarimetric decompositions, backscatter coefficients measurements, and the radar vegetation index were evaluated to classify tropical peatlands using the decision tree classifier. Overall, polarimetric features generated by the combination of dual-polarization and fully polarimetric data yielded an overall accuracy (OA) of 69% and a kappa coefficient (K) of 0.57. The integration of an additional feature, "distance to river," to the algorithm increased the OA to 76% and K to 0.66. These results indicated that the methodology in this study might serve as an efficient tool in tropical peatlands classification, especially when involving the use of L-band SAR dual-polarization and fully polarimetric data.

  19. Impact of mine wastewaters on greenhouse gas emissions from northern peatlands used for mine water treatment

    Science.gov (United States)

    Palmer, Katharina; Ronkanen, Anna-Kaisa; Klöve, Björn; Hynynen, Jenna; Maljanen, Marja

    2015-04-01

    The amount of wastewaters generated during mining operations is increasing along with the increasing number of operation mines, which poses great challenges for mine water management and purification. Mine wastewaters contain high concentrations of nitrogen compounds such as nitrate (NO3-) and ammonium (NH4+) originating from remnant explosives as well as sulfate (SO42-) originating from the oxidation of sulfidic ores. At a mine site in Finnish Lapland, two natural peatlands have been used for cost-effective passive wastewater treatment. One peatland have been used for the treatment of drainage waters (TP 1), while the other has been used for the treatment of process-based wastewaters (TP 4). In this study, the impact of mine water derived nitrogen compounds as well as SO42- on the emission of the potent greenhouse gases methane (CH4) and nitrous oxide (N2O) from those treatment peatlands was investigated. Contaminant concentrations in the input and output waters of the treatment peatlands were monitored which allowed for the calculation of contaminant-specific retention efficiencies. Treatment peatlands showed generally good retention efficiencies for metals and metalloids (e.g. nickel, arsenic, antimony, up to 98% reduction in concentration) with rather low input-concentrations (i.e., in the μg/l-range). On the other hand, retention of contaminants with high input-concentrations (i.e., in mg/l-range) such as NO3-, NH4+ and SO42- was much lower (4-41%, 30-60% and -42-30%, respectively), indicating the limited capability of the treatment peatlands to cope with such high input concentrations. NO3- and NH4+ concentrations were determined in surface and pore water from TP 4 in July 2013 as well as in surface water from TP 1 and TP 4 in October 2013. Up to 720 μM NO3- and up to 600 μM NH4+ were detected in surface water of TP 4 in July 2013. NO3- and NH4+ concentrations in surface waters were highest near the mine wastewater distribution ditch and decreased with

  20. Moisture Buffer Value of Building Materials

    DEFF Research Database (Denmark)

    Rode, Carsten; Peuhkuri, Ruut; Time, Berit

    2007-01-01

    When building materials are in contact with indoor air they have some effect to moderate the variations of indoor humidity in occupied buildings. But so far there has been a lack of a standardized quantity to characterize the moisture buffering capability of materials. It has been the objective...... of a recent Nordic project to define such a quantity, and to declare it in the form of a NORDTEST method. The Moisture Buffer Value is the figure that has been developed in the project as a way to appraise the moisture buffer effect of materials, and the value is described in the paper. Also explained...... is a test protocol which expresses how materials should be tested for determination of their Moisture Buffer Value. Finally, the paper presents some of the results of a Round Robin Test on various typical building materials that has been carried out in the project....

  1. The buffer effect in neutral electrolyte supercapacitors

    DEFF Research Database (Denmark)

    Thrane Vindt, Steffen; Skou, Eivind M.

    2016-01-01

    to a change in the redox potential of water in opposite directions on the two electrodes, resulting in the wider stability window. The magnitude of this effect is suggested to be dependent on the buffer capacity, rather than the intrinsic pH value of the electrolyte. This is confirmed by studying the impact...... of addition of a buffer to such systems. It is shown that a 56 % higher dynamic storage capacity may be achieved, simply by controlling the buffer capacity of the electrolyte. The model system used, is based on a well-known commercial activated carbon (NORIT™ A SUPRA) as the electrode material, aqueous...... potassium nitrate as the electrolyte and potassium phosphates as the buffer system....

  2. Calculating Buffer Zones: A Guide for Applicators

    Science.gov (United States)

    Buffer zones provide distance between the application block (i.e., edge of the treated field) and bystanders, in order to control pesticide exposure risk from soil fumigants. Distance requirements may be reduced by credits such as tarps.

  3. Buffer Strips for Riparian Zone Management

    National Research Council Canada - National Science Library

    1991-01-01

    This study provides a review of technical literature concerning the width of riparian buffer strips needed to protect water quality and maintain other important values provided by riparian ecosystem...

  4. Surface Water Protection by Productive Buffers

    DEFF Research Database (Denmark)

    Christen, Benjamin

    Vegetated riparian buffer zones are a widely recommended best management practice in agriculture for protecting surface and coastal waters from diffuse nutrient pollution. On the background of the EU funded research project NitroEurope (NEU; www.NitroEurope.eu), this study concentrates...... on the mitigation of nitrogen pollution in surface and groundwater, using riparian buffer zones for biomass production. The objectives are to map suitable areas for buffer implementation across the six NEU study landscapes, model tentative N-loss mitigation, calculate biomass production potential and economic...... scenarios are developed and visualized using maps, photography and artwork. The potential effects on the landscape N-cycle are discussed. Nitrogen removal by biomass production using forage or energy grasses, short rotation coppice willow/poplar or short rotation forestry with other tree species in buffers...

  5. Lucas Heights buffer zone: plan of management

    International Nuclear Information System (INIS)

    1986-01-01

    This plan is being used by the Commission as a guide for its management of the Lucas Heights buffer zone, which is essentially a circular area having a 1-6 km radius around the HIFAR reactor. Aspects covered by this plan include past uses, current use, objectives for buffer zone land management, emergency evacuation, resource conservation, archaeology, fire, access, rehabilitation of disturbed areas, resource management and plan implementation

  6. Buffer regulation of calcium puff sequences.

    Science.gov (United States)

    Fraiman, Daniel; Dawson, Silvina Ponce

    2014-02-01

    Puffs are localized Ca(2 +) signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP3). They are the result of the liberation of Ca(2 +) from the endoplasmic reticulum through the coordinated opening of IP3 receptor/channels clustered at a functional release site. The presence of buffers that trap Ca(2 +) provides a mechanism that enriches the spatio-temporal dynamics of cytosolic calcium. The expression of different types of buffers along the cell's life provides a tool with which Ca(2 +) signals and their responses can be modulated. In this paper we extend the stochastic model of a cluster of IP3R-Ca(2 +) channels introduced previously to elucidate the effect of buffers on sequences of puffs at the same release site. We obtain analytically the probability laws of the interpuff time and of the number of channels that participate of the puffs. Furthermore, we show that under typical experimental conditions the effect of buffers can be accounted for in terms of a simple inhibiting function. Hence, by exploring different inhibiting functions we are able to study the effect of a variety of buffers on the puff size and interpuff time distributions. We find the somewhat counter-intuitive result that the addition of a fast Ca(2 +) buffer can increase the average number of channels that participate of a puff.

  7. North Sea coastal peatlands - is a climate-smart revival possible?

    Science.gov (United States)

    van Huissteden, Ko; Lippmann, Tanya; Hendriks, Dimmie; Heijmans, Monique

    2017-04-01

    Coastal peatlands around the southern North Sea basin have been very widespread in the past, but centuries-long drainage and exploitation for agriculture and fuel has decreased the peatland area strongly. It has resulted in severe soil subsidence with adverse effects on flood safety and water quality, and large scale emission of CO2. However, the remedy of rewetting of drained peatlands that is often proposed, has uncertain outcomes as it may reduce CO2 emission, but enhance CH4 emission, in some cases dramatically. We present greenhouse gas balance examples from two peatland restoration experiments in the Netherlands. These are experiments with nature conservation as primary goal. These experiments show that the type of management of vegetation may have a very strong influence on the CH4 emission. A nutrient-rich wetland dominated by Typha sp. showed sustained, high emission of CH4 over many years. By contrast, a site where nutrient-rich topsoil was removed and a mesotrophic fen-like vegetation was established, showed very minor CH4 emission. The high emissions at the Typha site appears to result from a recently deposited peat layer of very labile organic matter. A third control site with lower water table and agricultural grassland showed considerably higher CO2 emission than the two nature conservation sites. The data from this site also shows the potential effects of climate extremes: an exceptionally warm and dry period in September 2016 showed an almost doubling of CO2 emission with respect to normal summer conditions. The future of coastal peatlands is attracting more attention from policy and spatial planning. Besides a return to (semi)natural peatland vegetation, there is a growing interest in agricultural products that allow a high water table (paludiculture). However, the effects of land use change on the peat greenhouse gas balance are very poorly known. This calls for more extensive quantification of the greenhouse gas balance under various management

  8. Changes to the Carbon and Energy fluxes in a Northern Peatland with Thawing Permafrost

    Science.gov (United States)

    Harder, S. R.; Roulet, N. T.; Crill, P. M.; Strachan, I. B.

    2017-12-01

    The maintenance of thaw of high carbon density landscapes in the permafrost region ultimately depends of how the energy balance is partitioned as temperatures and precipitation change, yet there are comparatively few energy balance studies, especially in peatlands that contain permafrost. While permafrost peatlands are currently net sinks of carbon, as Arctic temperatures rise and permafrost thaws, the future of these ecosystems and their capacity for carbon uptake is in question. Since 2012 we have been measuring the spatially integrated CO2, energy and water vapour fluxes from the Stordalen peatland (68°22'N, 19°03'E) using eddy covariance (EC). The Stordalen peatland is a heterogeneous peatland in the discontinuous permafrost zone where permafrost thaw is actively occurring, resulting in large changes to the landscape from year to year. Areas where permafrost is present are elevated by up to 1.5 m compared to the areas where permafrost has thawed causing differences in water table depth, peat temperatures, snow distribution, vegetation community and therefore in the carbon and energy fluxes. Our EC tower is located on the edge of a permafrost peat plateau (or palsa) where one fetch measures fluxes from an area underlain by permafrost and the other fetch sees the portion of the peatland where the permafrost has thawed. Within each sector, we have an array of soil temperature and water content sensors to determine the physical characteristics of each fetch. Extensive vegetation surveys (based on plant functional types or PFTs) have also been conducted to run a footprint analysis on the flux data to complete a comparative analysis of the magnitude and variability of the carbon and energy exchanges from PFT. The footprint analysis allows us to explain the difference in energy and carbon fluxes by examining the ecological, biogeochemical and physical characteristics within each footprint. We see distinctly different energy partitioning between the fetches

  9. Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications.

    Science.gov (United States)

    Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick

    2015-04-01

    Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Summer movements of boreal toads (Bufo boreas boreas) in two western Montana basins

    Science.gov (United States)

    David A. Schmetterling; Michael K. Young

    2008-01-01

    The Boreal Toad (Bufo boreas boreas) is widely distributed in the western United States but has declined in portions of its range. Research directed at conserving Boreal Toads has indicated that their movements are largely terrestrial and often limited after the breeding season. We used a combination of stream-based netting, PIT tagging, and radio...

  11. Chapter 11. Conservation status of boreal owls in the United States

    Science.gov (United States)

    Gregory D. Hayward

    1994-01-01

    Previous chapters outlined the biology and ecology of boreal owls as well as the ecology of important vegetation communities based on literature from North America and Europe. That technical review provides the basis to assess the current conservation status of boreal owls in the United States. By conservation status, we mean the demographic condition of the species as...

  12. The pollination ecology of Hedysarum boreale Nutt. (Fabaceae) and evaluation of its pollinating bees for restoration seed production

    Science.gov (United States)

    Katharine A. Swoboda

    2007-01-01

    Federal land managers desire a consistent and cost-effective source of Hedysarum boreale Nutt. seed for rangeland restoration in the Great Basin and adjacent ecosystems. The breeding biology of H. boreale was assessed via hand pollination experiments at 2 sites in Cache County, Utah, USA in 2003. H. boreale was found to be self-compatible, but did not produce fruit and...

  13. Static mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Suzuki, Hideaki

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of unconfined compression tests, one-dimensional consolidation tests, consolidated-undrained triaxial compression tests and consolidated-undrained triaxial creep tests that aim at getting hold of static mechanical properties. We can get hold of the relationship between the dry density and tensile stress etc. by Brazilian tests, between the dry density and unconfined compressive strength etc. by unconfined compression tests, between the consolidation stress and void ratio etc. by one-dimensional consolidation tests, the stress pass of each effective confining pressure etc. by consolidated-undrained triaxial compression tests and the axial strain rate with time of each axial stress etc. by consolidated-undrained triaxial creep tests. (author)

  14. Experimental warming delays autumn senescence in a boreal spruce bog: Initial results from the SPRUCE experiment

    Science.gov (United States)

    Richardson, Andrew; Furze, Morgan; Aubrecht, Donald; Milliman, Thomas; Nettles, Robert; Krassovski, Misha; Hanson, Paul

    2016-04-01

    Phenology is considered one of the most robust indicators of the biological impacts of global change. In temperate and boreal regions, long-term data show that rising temperatures are advancing spring onset (e.g. budburst and flowering) and delaying autumn senescence (e.g. leaf coloration and leaf fall) in a wide range of ecosystems. While warm and cold temperatures, day length and insolation, precipitation and water availability, and other factors, have all been shown to influence plant phenology, the future response of phenology to rising temperatures and elevated CO2 still remains highly uncertain because of the challenges associated with conducting realistic manipulative experiments to simulate future environmental conditions. At the SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) experiment in the north-central United States, experimental temperature (0 to +9° C above ambient) and CO2 (ambient and elevated) treatments are being applied to mature, and intact, Picea mariana-Sphagnum spp. bog communities in their native habitat through the use of ten large (approximately 12 m wide, 10 m high) open-topped enclosures. We are tracking vegetation green-up and senescence in these chambers, at both the individual and whole-community level, using repeat digital photography. Within each chamber, digital camera images are recorded every 30 minutes and uploaded to the PhenoCam (http://phenocam.sr.unh.edu) project web page, where they are displayed in near-real-time. Image processing is conducted nightly to extract quantitative measures of canopy color, which we characterize using Gcc, the green chromatic coordinate. Data from a camera mounted outside the chambers (since November 2014) indicate strong seasonal variation in Gcc for both evergreen shrubs and trees. Shrub Gcc rises steeply in May and June, and declines steeply in September and October. By comparison, tree Gcc rises gradually from March through June, and declines gradually from

  15. Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition.

    Science.gov (United States)

    Ward, Susan E; Ostle, Nicholas J; Oakley, Simon; Quirk, Helen; Henrys, Peter A; Bardgett, Richard D

    2013-10-01

    Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO2 exchange depended on vegetation composition. The greatest increase in CO2 sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH4 was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change. © 2013 John Wiley & Sons Ltd/CNRS.

  16. In Situ Denitrification and Biological Nitrogen Fixation Under Enhanced Atmospheric Reactive Nitrogen Deposition in UK Peatlands

    Science.gov (United States)

    Ullah, Sami; Saiz Val, Ernesto; Sgouridis, Fotis; Peichl, Matthias; Nilsson, Mats

    2017-04-01

    Dinitrogen (N2) and nitrous oxide (N2O) losses due to denitrification and biological N2 fixation (BNF) are the most uncertain components of the nitrogen (N) cycle in peatlands under enhanced atmospheric reactive nitrogen (Nr) deposition. This uncertainty hampers our ability to assess the contribution of denitrification to the removal of biologically fixed and/or atmospherically deposited Nr in peatlands. This uncertainty emanates from the difficulty in measuring in situ soil N2 and N2O production and consumption in peatlands. In situ denitrification and its contribution to total N2O flux was measured monthly between April 2013 and October 2014 in peatlands in two UK catchments. An adapted 15N-Gas Flux method1 with low level addition of 15N tracer (0.03 ± 0.005 kg 15N ha-1) was used to measure denitrification and its contribution to net N2O production (DN2O/TN2O). BNF was measured in situ through incubation of selected sphagnum species under 15N2 gas tracer. Denitrification2 varied temporally and averaged 8 kg N-N2 ha-1 y-1. The contribution of denitrification was about 48% to total N2O flux3 of 0.05 kg N ha-1 y-1. Soil moisture, temperature, ecosystem respiration, pH and mineral N content mainly regulated the flux of N2 and N2O. Preliminary results showed suppression of BNF, which was 1.8 to 7 times lower in peatland mosses exposed to ˜15 to 20 kg N ha-1 y-1 Nr deposition in the UK than in peatland mosses in northern Sweden with background Nr deposition. Overall, the contribution of denitrification to Nr removal in the selected peatlands was ˜50% of the annual Nr deposition rates, making these ecosystems vulnerable to chronic N saturation. These results point to a need for a more comprehensive annual BNF measurement to more accurately account for total Nr input into peatlands and its atmospheric loss due to denitrification. References Sgouridis F, Stott A & Ullah S, 2016. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to

  17. Arcella peruviana sp. nov. (Amoebozoa: Arcellinida, Arcellidae), a new species from a tropical peatland in Amazonia.

    Science.gov (United States)

    Reczuga, Monika K; Swindles, Graeme T; Grewling, Łukasz; Lamentowicz, Mariusz

    2015-10-01

    There has only been one study on the ecology of testate amoebae from Amazonian peatlands, despite Amazonia being a biodiversity hotspot of global importance. During analysis of litter samples from Aucayacu peatland, western (Peruvian) Amazonia, we discovered a testate amoeba with a distinct morphology unlike any other species reported previously. We describe a new species, Arcella peruviana, based on its distinct morphology, compare it to morphologically similar species and provide information about its ecology. This new species is characterised by a distinct cruciform aperture (diameter ranges between 12 and 17μm) which is slightly invaginated. The test is small (height 43-57μm) and polygonal in cross-section. Our discovery suggests the existence of an unknown diversity of testate amoebae in Amazonia. The absence of the new Arcella species in more intensively-sampled regions supports the view that protists have restricted distributions. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Late Holocene Drought Variability in Eastern North America: Evidence From the Peatland Archive

    Science.gov (United States)

    Booth, R. K.; Jackson, S. T.

    2006-12-01

    Tree-ring based drought chronologies from semi-arid regions of western North America have revealed substantial variability in water balance during the past 1000 years, including episodes of persistent drought more severe than any observed during historical times. Delimitation of regional and continental-scale footprints of these past drought events, including their spatial patterning in humid regions where moisture-sensitive paleoclimate records are scarce, is critical to understanding their dynamics and potential causes. Ombrotrophic peatlands are scattered throughout humid regions of North America at mid-latitudes and represent an underutilized source of multidecadal-scale information on past moisture variations. We are developing a spatial network of peatland-derived paleoclimate and paleoecological records in eastern North America, in an effort to 1) determine whether large, decadal to multidecadal droughts of the past several thousand years were spatially and temporally coherent, 2) assess whether the magnitude of past drought events was sufficient to force ecological change in terrestrial ecosystems, and 3) assess the underlying mechanisms and dynamics of widespread drought in North America. We have completed water-level reconstructions based on testate-amoeba assemblages from two ombrotrophic peatlands in mid-continental North America, Hole in the Bog (NC Minnesota) and Minden Bog (SE Michgian). We also have developed reconstructions from three Sphagnum-dominated kettle peatlands, South Rhody Peatland (NC Michigan), Hornet Peatland (NW Wisconsin), and Irwin Smith Peatland (NE Michigan). Although these kettle peatlands are not truly ombrotrophic, high-magnitude water-table fluctuations should still be attributable to climate variability, and we use these records to supplement our interpretation of regional climate history. Our results indicate that all high-magnitude fluctuations in water balance were spatially extensive, affecting bog-surface moisture

  19. Drainage in Shallow Peatlands of Marginal Upland Landscapes: DOC Losses from High Flow Events

    Science.gov (United States)

    Grand-Clement, E.; Anderson, K.; Luscombe, D.; Gatis, N.; Benaud, P.; Brazier, R.

    2013-12-01

    Peatlands are widely represented in northern Europe, especially in the UK. In the South West of England (i.e. Exmoor, Dartmoor and Bodmin moors), climate change puts their existence under threat: according to recent modelling work, marginal peatlands are highly vulnerable to future temperature and precipitation change and are likely to be the first to disappear from as early as 2050. Additionally, peat cutting and intensive drainage for agricultural reclamation in the 19th and 20th century, have modified the hydrological behaviour of these shallow peatlands and dried out the upper layers, causing oxidation, erosion and vegetation change. Such anthropogenic interventions directly impact on the storage of carbon, but also the provision of other ecosystem services, such as the supply of drinking water, and the support of specific and rare habitats. Large restoration programs involving the blocking of drainage ditches are currently under way throughout the UK but, to date, little is known about the consequences of such management approaches on overall Carbon stocks, and whether the restoration can revert ecosystems back to a state similar to that of undisturbed peatlands. In this context, Exmoor is particularly vulnerable due to its location at the southernmost margin of the UK peatlands' geographical extent, and its dense network of drainage ditches putting pressure on already very shallow peat resources. We hypothesise that monitoring of these peatlands may provide an ';early warning system' for climatic impacts that could affect more northerly sites in years to come, as climates change more significantly. The aim of this study is to look at the current impact of peatland degradation on water quality on Exmoor during rainfall-runoff events. Our experimental approach employs detailed, high resolution monitoring of selected ditches that are representative of damaged conditions on Exmoor, from small- (30 x 30cm ditches) through medium- (50x50cm), large- (1-2m ditches

  20. Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands - responses to climatic and environmental changes

    DEFF Research Database (Denmark)

    Carter, M.S.; Larsen, Klaus Steenberg; Emmett, B.

    2012-01-01

    degrees C, and in annual precipitation from 300 to 1300 mm yr(-1). The effects of climate change, including temperature increase and prolonged drought, were tested at five shrubland sites. At one peatland site, the long-term (> 30 yr) effect of drainage was assessed, while increased nitrogen deposition...... in control plots ranged from 310 to 732 g CO2-Cm-2 yr(-1). Drought and long-term drainage generally reduced the soil CO2 efflux, except at a hydric shrubland where drought tended to increase soil respiration. In terms of fractional importance of each greenhouse gas to the total numerical global warming...... response, the change in CO2 efflux dominated the response in all treatments (ranging 71-96%), except for NO3- addition where 89% was due to change in CH4 emissions. Thus, in European peatlands and shrublands the effect on global warming induced by the investigated anthropogenic disturbances...

  1. Community based ecological restoration of peatland in Central Mongolia for climate change mitigation and adaptation

    Science.gov (United States)

    Minayeva, Tatiana; Chultem, Dugarjav; Grootjans, Ab; Yamkhin, Jambaljav; Sirin, Andrey; Suvorov, Gennady; Batdorj, Oyunbileg; Tsamba, Batdorj

    2017-04-01

    Peatlands cover almost 2 % of Mongolia. They play crucial role in regulation of key natural processes in ecosystems and provide unique resources to maintain traditional way of life and livelihoods of herders. During the last decades, Mongolian peatlands severely degraded both due to the climate related events and due to overgrazing. The peat degradation causes significant losses of carbon store, GHG emissions and is followed by changes in water balance and water composition. The issue arises if such a type of ecosystems as peatlands could be a subject for ecosystem restoration in this arid and subhumid climate. Could it be considered as measure for climate change mitigation and adaptation? With funding opportunities from the Asian Development Bank a pilot project for peatland restoration had been launched in 2016 in Khashaat soum, Arkhangai aimag in Central Mongolia. The pilot aimed to merge local interests of herders with global targets of climate change mitigation. The following questions are addressed: what are the losses of natural functions and ecosystem services of peatland; what are expectations and demands of local communities and incentives for their involvement; how should and could look the target ecosystem; what are the technical solutions in order to achieve the target ecosystem characteristics; and what are the parameters for monitoring to assess the success of the project? The comprehensive baseline study addressed both natural and social aspects. The conclusions are: most of peat in the study area had been mineralised and has turned to organic rich soil with carbon content between 20 to 40 %, the key sources of water - small springs - are partly destroyed by cattle; the permafrost disappeared in this area and could not be the subject for restoration; local herders understand the value of peatland as water source and had carried out some voluntary activities for water storage and regulation such as dam construction; nevertheless there is no

  2. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    Science.gov (United States)

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region. © 2015 John Wiley & Sons Ltd.

  3. Temperature Buffer Test. Measurements of water content and density of the excavated buffer material

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Lars-Erik [Clay Technology AB, Lund (Sweden)

    2010-12-15

    TBT (Temperature Buffer Test) is a joint project between SKB/ANDRA and supported by ENRESA (modeling) and DBE (instrumentation), which aims at understanding and modeling the thermo-hydromechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test was carried out at the - 420 m level in Aespoe HRL in a 8 meters deep and 1.76 m diameter deposition hole, with two heaters (3 m long, 0.6 m diameter), surrounded by a MX-80 bentonite buffer and a confining plug on top anchored with 9 rods. It was installed during spring 2003. The bentonite around upper heater was removed during the period October - December 2009 and the buffer around the lower heater was removed during January - Mars 2010. During dismantling of the buffer, samples were taken on which analyses were made. This report describes the work with the deteroemoeination of the water content and the density of the taken samples. Most of the samples were taken from the buffer by core drilling from the upper surface of each installed bentonite block. The cores had a diameter of about 50 mm and a maximum length equal to the original height of the bentonite blocks (about 500 mm). The water content of the buffer was determined by drying a sample at a temperature of 105 deg C for 24 h and the bulk density was determined by weighing a sample both in the air and immerged in paraffin oil with known density. The water content, dry density, degree of saturation and void ratio of the buffer were then plotted. The plots show that all parts of the buffer had taken up water and the degree of saturation of the buffer varied between 90 - 100%. Large variation in the dry density of the buffer was also observed.

  4. Drained peatlands used for extraction and agriculture: biogeochemical status with special attention to greenhouse gas fluxes and rewetting

    Science.gov (United States)

    Sirin, Andrey; Chistotin, Maxim; Suvorov, Gennady; Glagolev, Mikhail; Kravchenko, Irina; Minaeva, Tatiana

    2010-05-01

    Many peatlands previously drained for peat extraction or utilized for agriculture (directly or after partial cutoff) are left abandoned during last decades in Europe, and especially in its eastern part. In the European part of Russia alone, several million hectares of peatlands have been modified for peat extraction and agriculture by direct water level draw-down and nowadays are not under use by economic reasons. This makes up one of the most serious and urgent problems of wise use and management of peatlands in these regions with serious feedback to people, environment and economy (Quick Scan of Peatlands in Central and Eastern Europe, 2009). Drainage for agriculture leads to peat oxidation resulting in substantial emissions of greenhouse gases (carbon dioxide and sometimes nitrous oxide) to the atmosphere. Together with peat fires this is the most significant negative input of peatland degradation to climate change (Assessment on Peatlands Biodiversity and Climate Change, 2008; Peatlands and Climate Change, 2008). Besides that, dehydrated peatlands often release methane. Starting from 2003, the effect of drainage and subsequent utilization of peatlands on the emissions of carbon dioxide and methane was studied in Tomsk region (West Siberia) during the summer-fall periods (Glagolev et al. 2008). The measurements were conducted by chamber method at peatlands drained for use as croplands (now partly being fallows) and peat cutting (currently abandoned or reclaimed for forest planting, haying, or pasturing), as well as at a wide range of undrained oligotrophic, mesotrophic, and eutrophic mires and burnt mire areas of different regeneration stages. The statistical analysis of data from a large number of study sites indicated a higher release of carbon dioxide from disturbed peatlands compared to undrained ones. At the same time some drained peatlands had considerable methane emission rates, additionally enhanced by the intensive efflux from the surface of drainage

  5. Diverse growth trends and climate responses across Eurasia's boreal forest

    Czech Academy of Sciences Publication Activity Database

    Hellmann, L.; Agafonov, L.; Ljungqvist, F. C.; Churakova (Sidorova), O.; Duethorn, E.; Esper, J.; Hulsmann, L.; Kirdyanov, A. V.; Moiseev, P.; Myglan, V. S.; Nikolaev, A. N.; Reinig, F.; Schweingruber, F. H.; Solomina, O.; Tegel, W.; Büntgen, Ulf

    2016-01-01

    Roč. 11, č. 7 (2016), č. článku 074021. ISSN 1748-9326 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : 20th-century summer warmth * tree-ring chronology * scots pine * 2 millennia * temperature variability * northern-hemisphere * central siberia * worlds forests * white spruce * carbon-cycle * boreal forest * climate variability * dendroecology * Eurasia * forest productivity * global warming * high northern latitudes Subject RIV: EH - Ecology, Behaviour Impact factor: 4.404, year: 2016

  6. SPIRORBID POLYCHAETES AS BOREAL GUESTS IN THE MEDITERRANEAN PLEISTOCENE

    Directory of Open Access Journals (Sweden)

    ROSSANA SANFILIPPO

    1998-07-01

    Full Text Available A first report of Spirorbis spirorbis (Linnaeus, 1758 and Spirorbis corallinae (de Silva & Knight-Jones, 1962 from Early and Middle Pleistocene deposits in Sicily and submerged Late Glacial sediments in the Western Mediterranean is presented. Today both species live on shores and very shallow bottoms in the North Atlantic and are unknown from the Recent Mediterranean. Such differences in their present and past biogeographic distributions suggest that these species were Boreal Guests (BGs in the Mediterranean Pleistocene. Special attention is paid to tube morphology and structure, which bear some diagnostic features for species identification. 

  7. Gamma-ray irradiation of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Guthrie, J.E.; Dugle, J.R.

    1983-01-01

    A long-term radiation ecology research project called Field Irradiator - Gamma (FIG) began at the Whiteshell Nuclear Research Establishment in 1968. The experimental area is in southeastern Manitoba and is located on the western edge of the Precambrian shield. The project studies the ecological effects continuous exposure to a gradient of gamma radiation has on a mixed boreal forest ecosystem. The gradient ranges from 1 to 460,000 times the natural background radiation level. This paper describes the forest, the gamma irradiator and its radiation field, and the research program

  8. Exchange of volatile organic compounds in the boreal forest floor

    Science.gov (United States)

    Aaltonen, Hermanni; Bäck, Jaana; Pumpanen, Jukka; Pihlatie, Mari; Hakola, Hannele; Hellén, Heidi; Aalto, Juho; Heinonsalo, Jussi; Kajos, Maija K.; Kolari, Pasi; Taipale, Risto; Vesala, Timo

    2013-04-01

    Terrestrial ecosystems, mainly plants, emit large amounts of volatile organic compounds (VOCs) into the atmosphere. In addition to plants, VOCs also have less-known sources, such as soil. VOCs are a very diverse group of reactive compounds, including terpenoids, alcohols, aldehydes and ketones. Due to their high reactivity, VOCs take part in formation and growth of secondary organic aerosols in the atmosphere and thus affect also Earth's radiation balance (Kulmala et al. 2004). We have studied boreal soil and forest floor VOC fluxes with chamber and snow gradient techniques we were developed. Spatial and temporal variability in VOC fluxes was studied with year-round measurements in the field and the sources of boreal soil VOCs in the laboratory with fungal isolates. Determination of the compounds was performed mass spectrometrically. Our results reveal that VOCs from soil are mainly emitted by living roots, above- and belowground litter and microbes. The strongest source appears to be litter, in which both plant residuals and decomposers play a role in the emissions. Soil fungi showed high emissions of lighter VOCs, like acetone, acetaldehyde and methanol, from isolates. Temperature and moisture are the most critical physical factors driving VOC fluxes. Since the environment in boreal forests undergoes strong seasonal changes, the VOC flux strength of the forest floor varies markedly during the year, being highest in spring and autumn. The high spatial heterogeneity of the forest floor was also clearly visible in VOC fluxes. The fluxes of other trace gases (CO2, CH4 and N2O) from soil, which are also related to the soil biological activity and physical conditions, did not show correlations with the VOC fluxes. These results indicate that emissions of VOCs from the boreal forest floor account for as much as several tens of percent, depending on the season, of the total forest ecosystem VOC emissions. This emphasises that forest floor compartment should be taken into

  9. The Impact of Boreal Forest Fire on Climate Warming

    OpenAIRE

    Randerson, J. T.; Liu, H.; Flanner, M. G.; Chambers, S. D.; Jin, Y.; Hess, P. G.; Pfister, G.; Mack, M. C.; Treseder, K. K.; Welp, L. R.; Chapin, F. S.; Harden, J. W.; Goulden, M. L.; Lyons, E.; Neff, J. C.

    2006-01-01

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 ± 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (–2.3 ± 2.2 Watts per square meter) because multidecadal increases in surface albedo ha...

  10. Degradation of Malaysian peatlands decreases levels of phenolics in soil and in leaves of Macaranga pruinosa

    Directory of Open Access Journals (Sweden)

    CATHERINE MARY YULE

    2016-04-01

    Full Text Available Indo-Malaysian tropical peat swamp forests (PSF sequester enormous stores of carbon in the form of phenolic compounds, particularly lignin as well as tannins. These phenolic compounds are crucial for ecosystem functioning in PSF through their inter-related roles in peat formation and plant defenses. Disturbance of PSF causes destruction of the peat substrate, but the specific impact of disturbance on phenolic compounds in peat and its associated vegetation has not previously been examined. A scale was developed to score peatland degradation based on the three major human impacts that affect tropical PSF – logging, drainage and fire. The objectives of this study were to compare the amount of phenolic compounds in Macaranga pruinosa, a common PSF tree, and in the peat substrate along a gradient of peatland degradation from pristine peat swamp forest to cleared, drained and burnt peatlands. We examined phenolic compounds in M. pruinosa and in peat and found that levels of total phenolic compounds and total tannins decrease in the leaves of M.pruinosa and also in the surface peat layers with an increase in peatland degradation. We conclude that waterlogged conditions preserve the concentration of phenolic compounds in peat, and that even PSF that has been previously logged but which has recovered a full canopy cover will have high levels of total phenolic content (TPC in peat. High levels of TPC in peat and in the flora are vital for the inhibition of decomposition of organic matter and this is crucial for the accretion of peat and the sequestration of carbon. Thus regional PSF flourish despite the phenolic rich, toxic, waterlogged, nutrient poor, conditions, and reversal of such conditions is a sign of degradation.

  11. Post-dispersal seed removal by ground-feeding rodents in tropical peatlands, Central Kalimantan, Indonesia

    OpenAIRE

    Grace V. Blackham; Richard T. Corlett

    2015-01-01

    Forested tropical peatlands in Southeast Asia are being rapidly converted to agriculture or degraded into non-forest vegetation. Although large areas have been abandoned, there is little evidence for subsequent forest recovery. As part of a study of forest degradation and recovery, we used seed removal experiments and rodent surveys to investigate the potential role of post-dispersal seed predation in limiting the regeneration of woody plants. Two 14-day seed removal trials were done in defor...

  12. Nitrogen additions affect litter quality and soil biochemical properties in a peatland of Northeast China

    Science.gov (United States)

    Song, Yanyu; Song, Changchun; Meng, Henan; Swarzenski, Christopher M.; Wang, Xianwei; Tan, Wenwen

    2017-01-01

    Nitrogen (N) is a limiting nutrient in many peatland ecosystems. Enhanced N deposition, a major component of global climate change, affects ecosystem carbon (C) balance and alters soil C storage by changing plant and soil properties. However, the effects of enhanced N deposition on peatland ecosystems are poorly understood. We conducted a two-year N additions field experiment in a peatland dominated by Eriophorum vaginatum in the Da Xing’an Mountains, Northeast China. Four levels of N treatments were applied: (1) CK (no N added), (2) N1 (6 g N m−2 yr−1), (3) N2 (12 g N m−2 yr−1), and (4) N3 (24 g N m−2  yr−1). Plant and soil material was harvested at the end of the second growing season. N additions increased litter N and phosphorus (P) content, as well as β-glucosidase, invertase, and acid-phosphatase activity, but decreased litter C:N and C:P ratios. Litter carbon content remained unchanged. N additions increased available NH4+–N and NO3−–N as well as total Gram-positive (Gram+), Gram-negative (Gram−), and total bacterial phospholipid fatty acids (PLFA) in shallow soil (0–15 cm depth). An increase in these PLFAs was accompanied by a decrease in soil labile organic C (microbial biomass carbon and dissolved organic carbon), and appeared to accelerate decomposition and reduce the stability of the soil C pool. Invertase and urease activity in shallow soils and acid-phosphatase activity in deep soils (15–30 cm depth) was inhibited by N additions. Together, these findings suggest that an increase in N deposition in peatlands could accelerate litter decomposition and the loss of labile C, as well as alter microbial biomass and function.

  13. Geophysical Characterization of Controls on Biogenic gas realease in the Red Lake Peatland Complex, Northern Minnesota

    Science.gov (United States)

    Nolan, J.; Parsekian, A.; Slater, L.; Glaser, P.; O'Brian, M.

    2008-05-01

    Recently there has been an increased interest in northern peatlands with respect to their role in the global carbon balance, as they are a net sink of carbon dioxide in the biomass, and a net source of biogenic methane. Methane can store heat roughly 25 times more efficiently than carbon dioxide, making characterization of releases to the atmosphere through both diffusion and ebullition events critical to understanding the global carbon budget. The spatial and temporal heterogeneity of ebullition events make this characterization difficult, and traditional sampling schemes are inadequate due to poor spatial sampling scales, destruction of peat fabric during coring, and difficulty of working in remote ecosystems. Observations of zones of hydraulic overpressure related to free phase gas accumulation forming below confining layers in the peat suggest that peat stratigraphy a key factor controlling the spatial heterogeneity of biogenic gas ebullition. We used electrical geophysical methods to characterize the peat stratigraphy and hydrogeological framework of the Red Lake Peatland Complex in Northern Minnesota, one of the largest (140 km2) and most studied peatlands in North America. This mid-continent forested bog complex is comprised of three major peat landforms, each of which was surveyed using ground penetrating radar (GPR), electrical resistivity, and induced polarization (IP): (1) a raised, ombrotrophic, wooded crest; (2) a sphagnum lawn down slope of the bog crest; (3) a spring fen water track where water flows across the peat surface around ovoid wooded islands. GPR measurements show clearly the peat thickness as well as horizontally continuous internal reflections that indicate the presence of confining layers that may allow for over pressuring zones due to the trapping of free phase biogenic gasses. These results also form a novel data set of a well studied bog complex, offering new insights into the peat structure and hydrogeologic framework and have

  14. Vegetation exerts a greater control on litter decomposition than climate warming in peatlands.

    Science.gov (United States)

    Ward, Susan E; Orwin, Kate H; Ostle, Nicholas J; Briones, J I; Thomson, Bruce C; Griffiths, Robert I; Oakley, Simon; Quirk, Helen; Bardget, Richard D

    2015-01-01

    Historically, slow decomposition rates have resulted in the accumulation of large amounts of carbon in northern peatlands. Both climate warming and vegetation change can alter rates of decomposition, and hence affect rates of atmospheric CO2 exchange, with consequences for climate change feedbacks. Although warming and vegetation change are happening concurrently, little is known about their relative and interactive effects on decomposition processes. To test the effects of warming and vegetation change on decomposition rates, we placed litter of three dominant species (Calluna vulgaris, Eriophorum vaginatum, Hypnum jutlandicum) into a peatland field experiment that combined warming.with plant functional group removals, and measured mass loss over two years. To identify potential mechanisms behind effects, we also measured nutrient cycling and soil biota. We found that plant functional group removals exerted a stronger control over short-term litter decomposition than did approximately 1 degrees C warming, and that the plant removal effect depended on litter species identity. Specifically, rates of litter decomposition were faster when shrubs were removed from the plant community, and these effects were strongest for graminoid and bryophyte litter. Plant functional group removals also had strong effects on soil biota and nutrient cycling associated with decomposition, whereby shrub removal had cascading effects on soil fungal community composition, increased enchytraeid abundance, and increased rates of N mineralization. Our findings demonstrate that, in addition to litter quality, changes in vegetation composition play a significant role in regulating short-term litter decomposition and belowground communities in peatland, and that these impacts can be greater than moderate warming effects. Our findings, albeit from a relatively short-term study, highlight the need to consider both vegetation change and its impacts below ground alongside climatic effects when

  15. Scientific Applications Performance Evaluation on Burst Buffer

    KAUST Repository

    Markomanolis, George S.

    2017-10-19

    Parallel I/O is an integral component of modern high performance computing, especially in storing and processing very large datasets, such as the case of seismic imaging, CFD, combustion and weather modeling. The storage hierarchy includes nowadays additional layers, the latest being the usage of SSD-based storage as a Burst Buffer for I/O acceleration. We present an in-depth analysis on how to use Burst Buffer for specific cases and how the internal MPI I/O aggregators operate according to the options that the user provides during his job submission. We analyze the performance of a range of I/O intensive scientific applications, at various scales on a large installation of Lustre parallel file system compared to an SSD-based Burst Buffer. Our results show a performance improvement over Lustre when using Burst Buffer. Moreover, we show results from a data hierarchy library which indicate that the standard I/O approaches are not enough to get the expected performance from this technology. The performance gain on the total execution time of the studied applications is between 1.16 and 3 times compared to Lustre. One of the test cases achieved an impressive I/O throughput of 900 GB/s on Burst Buffer.

  16. Variations in diatom communities at genus and species levels in peatlands (central China) linked to microhabitats and environmental factors.

    Science.gov (United States)

    Chen, Xu; Bu, Zhaojun; Stevenson, Mark A; Cao, Yanmin; Zeng, Linghan; Qin, Bo

    2016-10-15

    Peatlands are a specialized type of organic wetlands, fulfilling essential roles as global carbon sinks, headwaters of rivers and biodiversity hotspots. Despite their importance, peatlands are being lost at an alarming rate due to human disturbance and climatic variability. Both the scientific and regulatory communities have focused considerable attention on developing tools for assessing environmental changes in peatlands. Diatoms are widely used in biomonitoring studies of lakes, rivers and streams as they have high abundance, specific ecological preferences and can respond rapidly to environmental change. However, diatom-based assessment studies in peatlands remain limited. The aims of this study were to identify indicator species and genus for three types of habitats (hummocks, hollows and ditch edges) in peatlands (central China), to examine the effects of physiochemical factors on diatom composition at genus and species levels, and to compare the efficiency of species- and genus-level identification in environmental assessment. Our results revealed that hummocks were characterized by drought-tolerant diatoms, while hollows were dominated by species and genus preferring wet conditions. Ditch edges were characterized by diatoms with different life strategies. Depth to water table, redox potential, conductivity and calcium were significant predictors of both genus- and species-level composition. According to ordination analyses, pH was not correlated with species composition while it was a significant factor associated with genus-level composition. Genus-level composition outperformed species composition in describing the response of diatoms to environmental variables. Our results indicate that diatoms can be useful environmental indicators of peatlands, and show that genus-level taxonomic analysis can be a potential tool for assessing environmental change in peatlands. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The role of climate change in regulating Arctic permafrost peatland hydrological and vegetation change over the last millennium

    Science.gov (United States)

    Zhang, Hui; Piilo, Sanna R.; Amesbury, Matthew J.; Charman, Dan J.; Gallego-Sala, Angela V.; Väliranta, Minna M.

    2018-02-01

    Climate warming has inevitable impacts on the vegetation and hydrological dynamics of high-latitude permafrost peatlands. These impacts in turn determine the role of these peatlands in the global biogeochemical cycle. Here, we used six active layer peat cores from four permafrost peatlands in Northeast European Russia and Finnish Lapland to investigate permafrost peatland dynamics over the last millennium. Testate amoeba and plant macrofossils were used as proxies for hydrological and vegetation changes. Our results show that during the Medieval Climate Anomaly (MCA), Russian sites experienced short-term permafrost thawing and this induced alternating dry-wet habitat changes eventually followed by desiccation. During the Little Ice Age (LIA) both sites generally supported dry-hummock habitats, at least partly driven by permafrost aggradation. However, proxy data suggest that occasionally, MCA habitat conditions were drier than during the LIA, implying that evapotranspiration may create important additional eco-hydrological feedback mechanisms under warm conditions. All sites showed a tendency towards dry conditions as inferred from both proxies starting either from ca. 100 years ago or in the past few decades after slight permafrost thawing, suggesting that recent warming has stimulated surface desiccation rather than deeper permafrost thawing. This study shows links between two important controls over hydrology and vegetation changes in high-latitude peatlands: direct temperature-induced surface layer response and deeper permafrost layer-related dynamics. These data provide important backgrounds for predictions of Arctic permafrost peatlands and related feedback mechanisms. Our results highlight the importance of increased evapotranspiration and thus provide an additional perspective to understanding of peatland-climate feedback mechanisms.

  18. Carbon dioxide and methane fluxes in grazed and undisturbed mountain peatlands in the Ecuadorian Andes

    Directory of Open Access Journals (Sweden)

    M.E. Sánchez

    2017-10-01

    Full Text Available Peatlands are widespread throughout the tropical Andean páramo. Despite the large carbon stocks in these ecosystems, carbon dioxide (CO2 and methane (CH4 flux data are lacking. In addition, cattle grazing is widespread in the páramo and could alter gas fluxes. Therefore, our objectives were to measure CO2 and CH4 fluxes with the static chamber technique in an undisturbed and in an intensively cattle grazed peatland in the mountains of Ecuador. We found that hummocks in the undisturbed site had higher net ecosystem exchange (NEE, gross primary production (GPP, ecosystem respiration (ER, and CH4 fluxes, compared to lawns. In contrast, microtopography at the grazed site did not predict CO2 fluxes, whereas vegetation cover was correlated for all three metrics (NEE, ER, and GPP. At low vegetation cover, NEE was positive (losing carbon. CH4 emissions in the undisturbed site were low (8.1 mg CH4 m-2 d-1. In contrast, CH4 emissions at the grazed site were much greater (132.3 mg CH4 m-2 d-1. This is probably attributable to trampling and nutrient inputs from cattle. In summary, the two peatlands differed greatly in CO2 and CH4 exchange rates, which could be due to the variation in climate and hydrology, or alternatively to intensive grazing by cattle.

  19. Limited contribution of permafrost carbon to methane release from thawing peatlands

    Science.gov (United States)

    Cooper, Mark D. A.; Estop-Aragonés, Cristian; Fisher, James P.; Thierry, Aaron; Garnett, Mark H.; Charman, Dan J.; Murton, Julian B.; Phoenix, Gareth K.; Treharne, Rachael; Kokelj, Steve V.; Wolfe, Stephen A.; Lewkowicz, Antoni G.; Williams, Mathew; Hartley, Iain P.

    2017-07-01

    Models predict that thaw of permafrost soils at northern high latitudes will release tens of billions of tonnes of carbon (C) to the atmosphere by 2100 (refs ,,). The effect on the Earth’s climate depends strongly on the proportion of this C that is released as the more powerful greenhouse gas methane (CH4), rather than carbon dioxide (CO2) (refs ,); even if CH4 emissions represent just 2% of the C release, they would contribute approximately one-quarter of the climate forcing. In northern peatlands, thaw of ice-rich permafrost causes surface subsidence (thermokarst) and water-logging, exposing substantial stores (tens of kilograms of C per square meter, ref. ) of previously frozen organic matter to anaerobic conditions, and generating ideal conditions for permafrost-derived CH4 release. Here we show that, contrary to expectations, although substantial CH4 fluxes (>20 g CH4 m-2 yr-1) were recorded from thawing peatlands in northern Canada, only a small amount was derived from previously frozen C (changes in surface wetness and wetland area, rather than the anaerobic decomposition of previously frozen C, may determine the effect of permafrost thaw on CH4 emissions from northern peatlands.

  20. Effect of forest drainage on the carbon balance and greenhouse impact of Finnish peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Minkkinen, K.; Laiho, R. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The aim of this project is to produce an estimate of the change in the biomass and peat carbon stores arising from the drainage of peatlands for forestry, and of the change of greenhouse impact of these ecosystems. The study shows that the subsidence of mire surfaces due to drainage has been relatively small, on average about 20 cm. The observed increase in bulk density after drainage is caused by the physical compression of peat and the post-drainage input of organic material in the form of litter production from the above and below ground parts of the tree layer. Oxidative decay of organic matter may have further increased the compaction of peat, especially in fertile sites. When the changes in peat and vegetation carbon stores are summed up, it seems that, within the site types studied, the total impact of drainage to the ecosystem carbon store is close to zero on the nutrient rich sites and clearly positive on the poorer types. Water level drawdown in peatlands after drainage for forestry appears to decrease the greenhouse impact at least for a few hundred years. The estimated changes in all three emission components (CH{sub 4} emissions, CO{sub 2} sink from peatland and CO{sub 2} sequestered in trees) reduce the radiative forcing by approximately similar amounts

  1. Plant regulation of greenhouse gas emissions and carbon lability in a Neotropical peatland

    Science.gov (United States)

    Girkin, Nicholas; Vane, Christopher; Turner, Benjamin; Ostle, Nicholas; Sjogersten, Sofie

    2017-04-01

    Tropical peatlands are under significant threat from land use changes but there remains a significant knowledge gap regarding the influences of contrasting plant types on greenhouse gas emissions and belowground carbon dynamics. We investigated differences in surface CO2 and CH4 fluxes and differences in soil organic carbon chemistry under contrasting surface vegetation types, a palm (Raphia taedigera) and a broadleaved evergreen tree (Campnosperma panamensis), in a Neotropical peatland. CO2 and CH4 production differed significantly between species, with higher fluxes measured under R. taedigera. There were significant differences in peat carbon properties under each species as revealed by Rock-Eval pyrolysis. Peat from under each species showed contrasting trends in degradation inside and outside the rooting zone, and strong differences in the presence of the most labile fractions of carbon. These results highlight the strong impacts that surface vegetation can have on surface gas emissions as well as the influences exerted on peat carbon chemistry within a tropical forested peatland, with implications for our understanding of changes in land use type across the tropics.

  2. Genetic diversity of Dyera polyphylla (Miq. Steenis populations used in tropical peatland restoration in Indonesia

    Directory of Open Access Journals (Sweden)

    H.L. Tata

    2018-02-01

    Full Text Available Dyera polyphylla is a native tree species of peat swamp forests in Southeast Asia. Where it has been used in peatland restoration, the trees are of uncertain genetic origin. We analysed the genetic diversity of seven populations of D. polyphylla (9–20 individual trees per population from both natural forests and plantations on peatland farms in the Indonesian provinces of Jambi and Central Kalimantan. Using six selected primers, analysis of amplified fragment length polymorphism (AFLP indicated that 86.5–96.8 % of loci tested (280 in total were polymorphic, with an estimated heterozygosity H ranging from 0.29 to 0.38. The highest genetic variation was within populations, rather than among them. Cluster analysis based on Nei’s distance matrix indicated that the sampled D. polyphylla populations from Jambi and Central Kalimantan were genetically distinct. STRUCTURE analysis indicated that the wild population at Senyerang (Jambi was the most distinct. This site and Tumbang Nusa (Central Kalimantan deserve in situ protection and are recommended as seed sources for peatland restoration in their respective provinces. In the absence of knowledge about specific traits, it is important to retain the high genetic diversity of existing wild and planted populations of D. polyphylla revealed by our work when selecting seed sources for future peat swamp forest rehabilitation programmes.

  3. Financial assessment of oil palm cultivation on peatland in Selangor, Malaysia

    Directory of Open Access Journals (Sweden)

    M.N. Noormahayu

    2009-02-01

    Full Text Available Oil palm plantations on peat soils are generally believed to have greater environmental impacts than those on other soil types. Nonetheless, Malaysia operates substantial incentives to maximise palm oil production, which in practice encourage the establishment of plantations on peatland. This paper explores the social and economic basis of oil palm cultivation on one peatland estate at Sungai Panjang in the state of Selangor, peninsular Malaysia. Data were obtained by conducting a questionnaire survey of 200 farmers who cultivate oil palm on peat soil. Some of the data were cross-tabulated against farmers’ ages in order to identify any age-related trends in education level, the area of land farmed, annual income and knowledge about oil palm cultivation. The Cobb-Douglas production function was used to model the financial output from oil palm in terms of the costs of chemical inputs and labour. The results indicated that cultivation of this crop gives decreasing returns to scale on peatland in Sungai Panjang, and that chemical inputs are more important than labour cost in determining the level of financial output. Finally, the financial viability of oil palm cultivation for farmers was assessed by calculating three financial indicators (NPV, BCR and IRR. This can be a profitable investment so long as growth conditions, costs, selling price and interest rate do not fluctuate substantially. Greater annual returns can be achieved over 20–25 years than over shorter periods, especially of less than 10 years.

  4. Erosion of Northern Hemisphere blanket peatlands under 21st-century climate change

    Science.gov (United States)

    Li, Pengfei; Holden, Joseph; Irvine, Brian; Mu, Xingmin

    2017-04-01

    Peatlands are important terrestrial carbon stores particularly in the Northern Hemisphere. Many peatlands, such as those in the British Isles, Sweden, and Canada, have undergone increased erosion, resulting in degraded water quality and depleted soil carbon stocks. It is unclear how climate change may impact future peat erosion. Here we use a physically based erosion model (Pan-European Soil Erosion Risk Assessment-PEAT), driven by seven different global climate models (GCMs), to predict fluvial blanket peat erosion in the Northern Hemisphere under 21st-century climate change. After an initial decline, total hemispheric blanket peat erosion rates are found to increase during 2070-2099 (2080s) compared with the baseline period (1961-1990) for most of the GCMs. Regional erosion variability is high with changes to baseline ranging between -1.27 and +21.63 t ha-1 yr-1 in the 2080s. These responses are driven by effects of temperature (generally more dominant) and precipitation change on weathering processes. Low-latitude and warm blanket peatlands are at most risk to fluvial erosion under 21st-century climate change.

  5. The Effectiveness of Ameliorant to Increase Carbon Stock of Oilpalm and Rubber Plantation on Peatland

    Directory of Open Access Journals (Sweden)

    Ai Dariah

    2015-05-01

    Full Text Available Application of peatland amelioration can improve soil quality, reduce GHG emissions, and increase carbon sequestration. The research aimed to study the effect of peatland amelioration on oil palm and rubber carbon stock improvement. Research was conducted from August 2013 until June 2014. The researches on oil palm were done in Arang-arang Village, Kumpeh Subdistrict, Muaro Jambi District, and in Lubuk Ogong Village, Bandar Seikijang Sub-district, Pelalawan District. Both sites are in Jambi and Riau Province. The research on rubber was done in Jabiren Village, Jabiren Raya Subdistrict, Pulang Pisau District, Central Kalimantan Province. The study used a Randomized Completely Block Design (RCBD, in four treatments and four replications. The treatments were pugam (peat fertilizer enriched by polyvalent cation, manure; empty fruit bunch compost, and control (no application. The measurement of C stock was performed 10 months after application using nondestructive methods. The results showed that peatland amelioration treatments had no significant effect to improve C stock on oil palm in 6 years old and 7 years old of rubber. After 10 months of amelioration application, the treatments increased C - stock of oil palm and rubber were 2.1-2.4 Mg ha-1 and 5-11 Mg ha-1, respectively. Longer time observation may be needed to study the effect of ameliorant on C-stock of annual crops.

  6. Modeling sediment transport after ditch network maintenance of a forested peatland

    Science.gov (United States)

    Haahti, K.; Marttila, H.; Warsta, L.; Kokkonen, T.; Finér, L.; Koivusalo, H.

    2016-11-01

    Elevated suspended sediment (SS) loads released from peatlands after drainage operations and the resulting negative effect on the ecological status of the receiving water bodies have been widely recognized. Understanding the processes controlling erosion and sediment transport within the ditch network forms a prerequisite for adequate sediment control. While numerous experimental studies have been reported in this field, model based assessments are rare. This study presents a modeling approach to investigate sediment transport in a peatland ditch network. The transport model describes bed erosion, rain-induced bank erosion, floc deposition, and consolidation of the bed. Coupled to a distributed hydrological model, sediment transport was simulated in a 5.2 ha forestry-drained peatland catchment for 2 years after ditch cleaning. Comparing simulation results to measured SS concentrations suggested that the loose peat material, produced during excavation, contributed markedly to elevated SS concentrations immediately after ditch cleaning. Both snowmelt and summer rainstorms contributed critically to annual loads. Springtime peat erosion during snowmelt was driven by ditch flow whereas during summer rainfalls, bank erosion by raindrop impact was identified as an important process. Relating modeling results to observed spatial topographic changes in the ditch network was challenging and the results were difficult to verify. Nevertheless, the model has potential to identify risk areas for erosion. The results demonstrate that modeling is effective in separating the importance of different processes and complements pure experimental approaches. Modeling results can aid planning and designing efficient sediment control measures and guide the focus of experimental studies.

  7. A buffer overflow detection based on inequalities solution

    International Nuclear Information System (INIS)

    Xu Guoai; Zhang Miao; Yang Yixian

    2007-01-01

    A new buffer overflow detection model based on Inequalities Solution was designed, which is based on analyzing disadvantage of the old buffer overflow detection technique and successfully converting buffer overflow detection to Inequalities Solution. The new model can conquer the disadvantage of the old technique and improve efficiency of buffer overflow detection. (authors)

  8. Improved indexes for targeting placement of buffers of Hortonian runoff

    Science.gov (United States)

    M.G. Dosskey; Z. Qiu; M.J. Helmers; D.E. Eisenhauer

    2011-01-01

    Targeting specific locations within agricultural watersheds for installing vegetative buffers has been advocated as a way to enhance the impact of buffers and buffer programs on stream water quality. Existing models for targeting buffers of Hortonian, or infiltration-excess, runoff are not well developed. The objective was to improve on an existing soil survey–based...

  9. Buffer construction technique using granular bentonite

    International Nuclear Information System (INIS)

    Masuda, Ryoichi; Asano, Hidekazu; Toguri, Satohito; Mori, Takuo; Shimura, Tomoyuki; Matsuda, Takeshi; Uyama, Masao; Noda, Masaru

    2007-01-01

    Buffer construction using bentonite pellets as filling material is a promising technology for enhancing the ease of repository operation. In this study, a test of such technology was conducted in a full-scale simulated disposal drift, using a filling system which utilizes a screw conveyor system. The simulated drift, which contained two dummy overpacks, was configured as a half-cross-section model with a height of 2.22 m and a length of 6.0 m. The average dry density of the buffer obtained in the test was 1.29 Mg/m 3 , with an angle of repose of 35 to 40 degrees. These test results indicate that buffer construction using a screw conveyor system for pellet emplacement in a waste disposal drift is a promising technology for repositories for high level radioactive wastes. (author)

  10. Moisture buffer capacity of different insulation materials

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele; Rode, Carsten; Hansen, Kurt Kielsgaard

    2004-01-01

    There is an increasing focus on the possibilities of utilizing the absorptive ability of porous materials to create passive control of humidity variations in the indoor air. These variations result in peaks in the indoor air humidity due to moisture production, or in the exterior building envelope...... lead to more durable constructions. In this paper, a large range of very different thermal insulation materials have been tested in specially constructed laboratory facilities to determine their moisture buffer capacity. Both isothermal and nonisothermal experimental set-ups have been used...... are discussed, and different ways are presented how to determine the moisture buffer capacity of the materials using partly standard material parameters and partly parameters determined from the actual measurements. The results so far show that the determination of moisture buffer capacity is very sensitive...

  11. Liquid growth hormone: preservatives and buffers

    DEFF Research Database (Denmark)

    Kappelgaard, Anne-Marie; Anders, Bojesen; Skydsgaard, Karen

    2004-01-01

    and patients receive daily subcutaneous injections of GH for many years. Patient compliance is therefore of critical importance to ensure treatment benefit. One of the major factors influencing compliance is injection pain. Besides the injection device used, pain perception and local tissue reaction following...... injection are dependent on the preservative used in the formulation and the concentration of GH. Injection pain may also be related to the buffer substance and injection volume. A liquid formulation of GH, Norditropi SimpleXx, has been developed that dispenses with the need for reconstitution before...... administration. The formulation uses phenol (3 mg/ml) as a preservative (to protect product from microbial degradation or contamination) and histidine as a buffer. Alternative preservatives used in other GH formulations include m-cresol (9 mg/ml) and benzyl alcohol (3-9 mg/ml). Buffering agents include citrate...

  12. Labview virtual instruments for calcium buffer calculations.

    Science.gov (United States)

    Reitz, Frederick B; Pollack, Gerald H

    2003-01-01

    Labview VIs based upon the calculator programs of Fabiato and Fabiato (J. Physiol. Paris 75 (1979) 463) are presented. The VIs comprise the necessary computations for the accurate preparation of multiple-metal buffers, for the back-calculation of buffer composition given known free metal concentrations and stability constants used, for the determination of free concentrations from a given buffer composition, and for the determination of apparent stability constants from absolute constants. As implemented, the VIs can concurrently account for up to three divalent metals, two monovalent metals and four ligands thereof, and the modular design of the VIs facilitates further extension of their capacity. As Labview VIs are inherently graphical, these VIs may serve as useful templates for those wishing to adapt this software to other platforms.

  13. Developing suitable buffers to capture transport cycling behavior

    DEFF Research Database (Denmark)

    Madsen, Thomas; Schipperijn, Jasper; Christiansen, Lars Breum

    2014-01-01

    buffers for transport cycling. The percentage of GPS points per square meter was used as indicator of the effectiveness of a series of different buffer types, including home-based network buffers, shortest route to city center buffers, and city center-directed ellipse-shaped buffers. The results show...... that GPS tracks can help us understand where people go and stay during the day, which can help us link built environment with cycling. Analysis showed that the further people live from the city center, the more elongated are their GPS tracks, and the better an ellipse-shaped directional buffer captured...... center-directed ellipse-shaped buffers yielded better results than traditional home-based network buffer types. The ellipse-shaped buffer types could therefore be considered an alternative to more traditional buffers or administrative units in future studies of transport cycling behavior....

  14. Does the temporal mismatch hypothesis match in boreal populations?

    Science.gov (United States)

    Vatka, Emma; Rytkönen, Seppo; Orell, Markku

    2014-10-01

    The temporal mismatch hypothesis suggests that fitness is related to the degree of temporal synchrony between the energetic needs of the offspring and their food supply. The hypothesis has been a basis in studying the influence of climate warming on nature. This study enhances the knowledge on prevalence of temporal mismatches and their consequences in boreal populations, and questions the role of the temporal mismatch hypothesis as the principal explanation for the evolution of timing of breeding. To test this, we examined if synchrony with caterpillar prey or timing of breeding per se better explains reproductive output in North European parid populations. We compared responses of temperate-origin species, the great tit (Parus major) and the blue tit (Cyanistes caeruleus), and a boreal species, the willow tit (Poecile montanus). We found that phenologies of caterpillars and great tits, but not of blue tits, have advanced during the past decades. Phenologies correlated with spring temperatures that may function as cues about the timing of the food peak for great and blue tits. The breeding of great and blue tits and their caterpillar food remained synchronous. Synchrony explained breeding success better than timing of breeding alone. However, the synchrony effect arose only in certain conditions, such as with high caterpillar abundances or high breeding densities. Breeding before good synchrony seems advantageous at high latitudes, especially in the willow tit. Thus, the temporal mismatch hypothesis appears insufficient in explaining the evolution of timing of breeding.

  15. Portrait of a small population of boreal toads (Anaxyrus boreas)

    Science.gov (United States)

    Muths, Erin; Scherer, Rick D.

    2011-01-01

    Much attention has been given to the conservation of small populations, those that are small because of decline, and those that are naturally small. Small populations are of particular interest because ecological theory suggests that they are vulnerable to the deleterious effects of environmental, demographic, and genetic stochasticity as well as natural and human-induced catastrophes. However, testing theory and developing applicable conservation measures for small populations is hampered by sparse data. This lack of information is frequently driven by computational issues with small data sets that can be confounded by the impacts of stressors. We present estimates of demographic parameters from a small population of Boreal Toads (Anaxyrus boreas) that has been surveyed since 2001 by using capture-recapture methods. Estimates of annual adult survival probability are high relative to other Boreal Toad populations, whereas estimates of recruitment rate are low. Despite using simple models, clear patterns emerged from the analyses, suggesting that population size is constrained by low recruitment of adults and is declining slowly. These patterns provide insights that are useful in developing management directions for this small population, and this study serves as an example of the potential for small populations to yield robust and useful information despite sample size constraints.

  16. Importance of boreal rivers in providing iron to marine waters.

    Science.gov (United States)

    Kritzberg, Emma S; Bedmar Villanueva, Ana; Jung, Marco; Reader, Heather E

    2014-01-01

    This study reports increasing iron concentrations in rivers draining into the Baltic Sea. Given the decisive role of iron to the structure and biogeochemical function of aquatic ecosystems, this trend is likely one with far reaching consequences to the receiving system. What those consequences may be depends on the fate of the iron in estuarine mixing. We here assess the stability of riverine iron by mixing water from seven boreal rivers with artificial sea salts. The results show a gradual loss of iron from suspension with increasing salinity. However, the capacity of the different river waters to maintain iron in suspension varied greatly, i.e. between 1 and 54% of iron was in suspension at a salinity of 30. The variability was best explained by iron:organic carbon ratios in the riverine waters--the lower the ratio the more iron remained in suspension. Water with an initially low iron:organic carbon ratio could keep even higher than ambient concentrations of Fe in suspension across the salinity gradient, as shown in experiments with iron amendments. Moreover, there was a positive relationship between the molecular size of the riverine organic matter and the amount of iron in suspension. In all, the results point towards a remarkably high transport capacity of iron from boreal rivers, suggesting that increasing concentrations of iron in river mouths may result in higher concentrations of potentially bioavailable iron in the marine system.

  17. Production and Transport of Ozone From Boreal Forest Fires

    Science.gov (United States)

    Tarasick, David; Liu, Jane; Osman, Mohammed; Sioris, Christopher; Liu, Xiong; Najafabadi, Omid; Parrington, Mark; Palmer, Paul; Strawbridge, Kevin; Duck, Thomas

    2013-04-01

    In the summer of 2010, the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) mission was planned by several universities and government agencies in the United Kingdom, Canada, and USA. Nearly 100 ozone soundings were made at 13 stations through the BORTAS Intensive Sounding Network, although aircraft measurements were unfortunately cancelled due to the volcanic eruption in Iceland. 2010 was actually an exceptional year for Canadian boreal fires. MODIS (Moderate Resolution Imaging Spectroradiometer) fire count data shows large fire events in Saskatchewan on several days in July. High amounts of NO2 close to the large fires are observed from OMI satellite data, indicating that not all NO2 is converted to PAN. Also associated with the fires, large amounts of CO, another precursor of ozone, are observed in MOPITT (Measurements Of Pollution In The Troposphere), AIRS and TES (Tropospheric Emission Spectrometer) satellite data in the middle to upper troposphere. These chemical conditions combined with sunny weather all favour ozone production. Following days with large fire activity, layers of elevated ozone mixing ratio (over 100 ppbv) are observed downwind at several sites. Back-trajectories suggest the elevated ozone in the profile is traceable to the fires in Saskatchewan. Lidar profiles also detect layers of aerosol at the same heights. However, the layers of high ozone are also associated with low humidity, which is not expected from a combustion source, and suggests the possibility of entrainment of stratospheric air.

  18. Importance of boreal rivers in providing iron to marine waters.

    Directory of Open Access Journals (Sweden)

    Emma S Kritzberg

    Full Text Available This study reports increasing iron concentrations in rivers draining into the Baltic Sea. Given the decisive role of iron to the structure and biogeochemical function of aquatic ecosystems, this trend is likely one with far reaching consequences to the receiving system. What those consequences may be depends on the fate of the iron in estuarine mixing. We here assess the stability of riverine iron by mixing water from seven boreal rivers with artificial sea salts. The results show a gradual loss of iron from suspension with increasing salinity. However, the capacity of the different river waters to maintain iron in suspension varied greatly, i.e. between 1 and 54% of iron was in suspension at a salinity of 30. The variability was best explained by iron:organic carbon ratios in the riverine waters--the lower the ratio the more iron remained in suspension. Water with an initially low iron:organic carbon ratio could keep even higher than ambient concentrations of Fe in suspension across the salinity gradient, as shown in experiments with iron amendments. Moreover, there was a positive relationship between the molecular size of the riverine organic matter and the amount of iron in suspension. In all, the results point towards a remarkably high transport capacity of iron from boreal rivers, suggesting that increasing concentrations of iron in river mouths may result in higher concentrations of potentially bioavailable iron in the marine system.

  19. Buffer of Events as a Markovian Process

    Energy Technology Data Exchange (ETDEWEB)

    Berdugo, J.; Casaus, J.; Mana, C.

    2001-07-01

    In Particle and Asro-Particle Physics experiments, the events which get trough the detectors are read and processes on-line before they are stored for a more detailed processing and future Physics analysis. Since the events are read and, usually, processed sequentially, the time involved in these operations can lead to a significant lose of events which is, to some extent, reduced by using buffers. We present an estimate of the optimum buffer size and the fraction of events lost for a simple experimental condition which serves as an introductory example to the use of Markow Chains.(Author)

  20. Buffer of Events as a Markovian Process

    International Nuclear Information System (INIS)

    Berdugo, J.; Casaus, J.; Mana, C.

    2001-01-01

    In Particle and Asro-Particle Physics experiments, the events which get trough the detectors are read and processes on-line before they are stored for a more detailed processing and future Physics analysis. Since the events are read and, usually, processed sequentially, the time involved in these operations can lead to a significant lose of events which is, to some extent, reduced by using buffers. We present an estimate of the optimum buffer size and the fraction of events lost for a simple experimental condition which serves as an introductory example to the use of Markow Chains.(Author)

  1. Grass buffers for playas in agricultural landscapes: An annotated bibliography

    Science.gov (United States)

    Melcher, Cynthia P.; Skagen, Susan K.

    2005-01-01

    This bibliography and associated literature synthesis (Melcher and Skagen, 2005) was developed for the Playa Lakes Joint Venture (PLJV). The PLJV sought compilation and annotation of the literature on grass buffers for protecting playas from runoff containing sediments, nutrients, pesticides, and other contaminants. In addition, PLJV sought information regarding the extent to which buffers may attenuate the precipitation runoff needed to fill playas, and avian use of buffers. We emphasize grass buffers, but we also provide information on other buffer types.

  2. Land use of drained peatlands: Greenhouse gas fluxes, plant production, and economics.

    Science.gov (United States)

    Kasimir, Åsa; He, Hongxing; Coria, Jessica; Nordén, Anna

    2017-10-10

    Drained peatlands are hotspots for greenhouse gas (GHG) emissions, which could be mitigated by rewetting and land use change. We performed an ecological/economic analysis of rewetting drained fertile peatlands in a hemiboreal climate using different land use strategies over 80 years. Vegetation, soil processes, and total GHG emissions were modeled using the CoupModel for four scenarios: (1) business as usual-Norway spruce with average soil water table of -40 cm; (2) willow with groundwater at -20 cm; (3) reed canary grass with groundwater at -10 cm; and (4) a fully rewetted peatland. The predictions were based on previous model calibrations with several high-resolution datasets consisting of water, heat, carbon, and nitrogen cycling. Spruce growth was calibrated by tree-ring data that extended the time period covered. The GHG balance of four scenarios, including vegetation and soil, were 4.7, 7.1, 9.1, and 6.2 Mg CO 2 eq ha -1  year -1 , respectively. The total soil emissions (including litter and peat respiration CO 2 + N 2 O + CH 4 ) were 33.1, 19.3, 15.3, and 11.0 Mg CO 2 eq ha -1  year -1 , respectively, of which the peat loss contributed 35%, 24%, and 7% of the soil emissions for the three drained scenarios, respectively. No peat was lost for the wet peatland. It was also found that draining increases vegetation growth, but not as drastically as peat respiration does. The cost-benefit analysis (CBA) is sensitive to time frame, discount rate, and carbon price. Our results indicate that the net benefit was greater with a somewhat higher soil water table and when the peatland was vegetated with willow and reed canary grass (Scenarios 2 and 3). We conclude that saving peat and avoiding methane release using fairly wet conditions can significantly reduce GHG emissions, and that this strategy should be considered for land use planning and policy-making. © 2017 John Wiley & Sons Ltd.

  3. Multi-year net ecosystem carbon balance at a horticulture-extracted restored peatland

    Science.gov (United States)

    Nugent, Kelly; Strachan, Ian; Strack, Maria

    2017-04-01

    Restoration of previously extracted peatlands is essential to minimize the impact of drainage and peat removal. Best practices restoration methods have been developed that include ditch blocking, site leveling and reintroducing bog vegetation using the moss layer transfer technique. A long term goal of restoration is the return to a peat accumulating ecosystem. Bois-des-Bel is a cool-temperate bog, located in eastern Quebec, Canada, that was vacuum harvested until 1980 and restored in 1999. While several studies have used discrete (chamber) methods to determine the net carbon exchange from rewetted or restored peatlands, ours appears to be the first to have multiple complete years of net ecosystem carbon exchange from a restored northern peatland. An eddy covariance flux tower instrumented with a sonic anemometer and open-path CO2/H2O and CH4 analyzers was operated continuously over three years to produce a robust estimate of net carbon sequestration. Our initial results indicate that this restored peatland was a consistent moderate annual net sink for CO2, a moderate source of CH4 and had low losses of dissolved organic carbon compared to undisturbed northern latitude peatlands. Closed chambers combined with a fast response CO2/H2O/CH4 analyzer were used to investigate ecohydrological controls on net ecosystem exchange of CO2 (NEE) and CH4 flux from the restored fields and remnant ditches at the site. CH4 release was found to be an order of magnitude higher in the ditches compared to the fields, with non-vegetated ditch showing a greater range in flux compared to areas invaded by Typha latifolia. Bubble magnitude and count were highest in the non-vegetated ditch, followed by Typha plots and were undetectable in the restored fields. The latter may be partially attributed to the high cover of Eriophorum vaginatum in the restored fields, plants that have aerenchymous tissue, as well as a much deeper water table level. While the non-vegetated ditch areas were a steady

  4. Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization

    Science.gov (United States)

    X. Comas; N. Terry; M. Warren; R. Kolka; A. Kristiyono; N. Sudiana; D. Nurjaman; T. Darusman

    2015-01-01

    Current estimates of carbon (C) storage in peatland systems worldwide indicate that tropical peatlands comprise about 15% of the global peat carbon pool. Such estimates are uncertain due to data gaps regarding organic peat soil thickness, volume and C content. We combined a set of indirect geophysical methods (ground-penetrating radar, GPR, and electrical resistivity...

  5. Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context

    Science.gov (United States)

    P. J. Hanson; A. L. Gill; X. Xu; J. R. Phillips; D. J. Weston; Randy Kolka; J. S. Riggs; L. A. Hook

    2016-01-01

    Peatland measurements of CO2 and CH4 flux were obtained at scales appropriate to the in situ biological community below the tree layer to demonstrate representativeness of the spruce and peatland responses under climatic and environmental change (SPRUCE) experiment. Surface flux measurements were made using dual open-path...

  6. The influence of slope and peatland vegetation type on riverine dissolved organic carbon and water colour at different scales.

    Science.gov (United States)

    Parry, L E; Chapman, P J; Palmer, S M; Wallage, Z E; Wynne, H; Holden, J

    2015-09-15

    Peatlands are important sources of fluvial carbon. Previous research has shown that riverine dissolved organic carbon (DOC) concentrations are largely controlled by soil type. However, there has been little work to establish the controls of riverine DOC within blanket peatlands that have not undergone major disturbance from drainage or burning. A total of 119 peatland catchments were sampled for riverine DOC and water colour across three drainage basins during six repeated sampling campaigns. The topographic characteristics of each catchment were determined from digital elevation models. The dominant vegetation cover was mapped using 0.5m resolution colour infrared aerial images, with ground-truthed validation revealing 82% accuracy. Forward and backward stepwise regression modelling showed that mean slope was a strong (and negative) determinant of DOC and water colour in blanket peatland river waters. There was a weak role for plant functional type in determining DOC and water colour. At the basin scale, there were major differences between the models depending on the basin. The dominance of topographic predictors of DOC found in our study, combined with a weaker role of vegetation type, paves the way for developing improved planning tools for water companies operating in peatland catchments. Using topographic data and aerial imagery it will be possible to predict which tributaries will typically yield lower DOC concentrations and which are therefore more suitable and cost-effective as raw water intakes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Carbon baseline as limiting factor in managing environmental sound activities in peatland for reducing greenhouse gas emission

    Directory of Open Access Journals (Sweden)

    BAMBANG HERO SAHARJO

    2011-07-01

    Full Text Available Saharjo BH (2011 Carbon baseline as limiting factor in managing environmental sound activities in peatland for reducing greenhouse gas emission. Biodiversitas 12: 182-186. The total carbon stock in Indonesia was estimated to be around 44.5 Gt or about 53.1% of the total carbon stock in tropical areas. Over 1990-2002, it was estimated that around 3.5 Gt of carbon was released in Sumatra and about 0.81-2.56 Gt was released in Central Kalimantan due to the 1997 fire alone. It was recognized that deforestation, high exploitation of peat and peat fire were behind the huge emissions of Greenhouse Gases in Indonesia. Results of a research conducted in Central Kalimantan peatland, showed that the total carbon stock at logged over area was estimated around 413.972 t ha-1 (0-30 cm depth of peat and at burnt area was 411.349 t ha-1 (0-30 cm depth of peat. Meanwhile it had been well recognized that most of opened peatlands had been occupied by Acacia crassicarpa and oil palms. Research carried out in East Kalimantan showed that the carbon stock of 25 years old oil palm planted on mineral soil was about 180 t ha-1, which is less than that of carbon stock produced by peatland clearance. This indicated that although plants occupied peatland, high Greenhouse Gas emissions were still produced, meaning that global climate change would continue and created high risk impacts.

  8. Impact of peatland restoration on nutrient and carbon leaching from contrasting sites in southern Finland

    Science.gov (United States)

    Vasander, Harri; Sallantaus, Tapani; Koskinen, Markku

    2010-05-01

    Impacts of peatland restoration on nutrient and carbon leaching from contrasting sites in southern Finland Tapani Sallantaus1, Markku Koskinen2, Harri Vasander2 1)Finnish Environment Institute, Biodiversity unit, Box 140, FIN-00251 Helsinki, Finland, tapani.sallantaus@ymparisto.fi 2)Department of Forest Sciences, University of Helsinki, Box 27, FIN-00014 University of Helsinki, Finland, markku.koskinen@helsinki.fi, harri.vasander@helsinki.fi Less than 20 % of the original mire area of southern Finland is still in natural state. Even many peatlands in today's nature conservation areas had been partly or totally drained before conservation. Until now, about 15000 ha of peatlands have been restored in conservation areas. Here we present data concerning changes in leaching due to restoration in two contrasting areas in southern Finland. The peatlands in Seitseminen have originally been fairly open, growing stunted pine, and unfertile, either bogs or poor fens. The responses of tree stand to drainage in the 1960s were moderate, and the tree stand before restoration was about 50 m3/ha, on average. The trees were partly harvested before filling in the ditches mainly in the years 1997-1999 . The peatlands of Nuuksio are much more fertile than those in Seitseminen, and had greatly responded to drainage, which took place already in the 1930s and 1950s. The tree stand consisted mainly of spruce and exceeded 300 m3/ha in large part of the area. The ditches were dammed in the autumn 2001 and the tree stand was left standing. Runoff water quality was monitored in three basins in both areas. To obtain the leaching rates, we used simulated runoff data obtained from the Finnish Environment Institute, Hydrological Services Division. The responses in leaching were in the same direction in both cases. However, especially when calculated per restored hectare (Table 1), the responses were much stronger in the more fertile areas of Nuuksio for organic carbon and nitrogen, but not so much

  9. Tropical Peatland Burn Depth and Combustion Heterogeneity Assessed Using UAV Photogrammetry and Airborne LiDAR

    Directory of Open Access Journals (Sweden)

    Jake E. Simpson

    2016-12-01

    Full Text Available We provide the first assessment of tropical peatland depth of burn (DoB using structure from motion (SfM photogrammetry, applied to imagery collected using a low-cost, low-altitude unmanned aerial vehicle (UAV system operated over a 5.2 ha tropical peatland in Jambi Province on Sumatra, Indonesia. Tropical peat soils are the result of thousands of years of dead biomass accumulation, and when burned are globally significant net sources of carbon emissions. The El Niño year of 2015 saw huge areas of Indonesia affected by tropical peatland fires, more so than any year since 1997. However, the Depth of Burn (DoB of these 2015 fires has not been assessed, and indeed has only previously been assessed in few tropical peatland burns in Kalimantan. Therefore, DoB remains arguably the largest uncertainty when undertaking fire emissions calculations in these tropical peatland environments. We apply a SfM photogrammetric methodology to map this DoB metric, and also investigate combustion heterogeneity using orthomosaic photography collected using the UAV system. We supplement this information with pre-burn airborne light detection and ranging (LiDAR data, reducing uncertainty by estimating pre-burn soil height more accurately than from interpolation of adjacent unburned areas alone. Our pre-and post-fire Digital Terrain Models (DTMs show accuracies of 0.04 and 0.05 m (root-mean-square error, RMSE respectively, compared to ground-based global navigation satellite system (GNSS surveys. Our final DoB map of a 5.2 ha degraded peat swamp forest area neighboring Berbak National Park (Sumatra, Indonesia shows burn depths extending from close to zero to over 1 m, with a mean (±1σ DoB of 0.23 ± 0.19 m. This lies well within the range found by the few other studies available (on Kalimantan; none are available on Sumatra. Our combustion heterogeneity analysis suggests the deepest burns, which extend to ~1.3 m, occur around tree roots. We use these DoB data within

  10. Host-pathogen metapopulation dynamics suggest high elevation refugia for boreal toads

    Science.gov (United States)

    Mosher, Brittany A.; Bailey, Larissa L.; Muths, Erin L.; Huyvaert, Kathryn P

    2018-01-01

    Emerging infectious diseases are an increasingly common threat to wildlife. Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease that has been linked to amphibian declines around the world. Few studies exist that explore amphibian-Bd dynamics at the landscape scale, limiting our ability to identify which factors are associated with variation in population susceptibility and to develop effective in situdisease management. Declines of boreal toads (Anaxyrus boreas boreas) in the Southern Rocky Mountains are largely attributed to chytridiomycosis but variation exists in local extinction of boreal toads across this metapopulation. Using a large-scale historic dataset, we explored several potential factors influencing disease dynamics in the boreal toad-Bd system: geographic isolation of populations, amphibian community richness, elevational differences, and habitat permanence. We found evidence that boreal toad extinction risk was lowest at high elevations where temperatures may be sub-optimal for Bd growth and where small boreal toad populations may be below the threshold needed for efficient pathogen transmission. In addition, boreal toads were more likely to recolonize high elevation sites after local extinction, again suggesting that high elevations may provide refuge from disease for boreal toads. We illustrate a modeling framework that will be useful to natural resource managers striving to make decisions in amphibian-Bdsystems. Our data suggest that in the southern Rocky Mountains high elevation sites should be prioritized for conservation initiatives like reintroductions.

  11. National recovery strategy for woodland caribou (Rangifer tarandus caribou, boreal population, in Canada

    Directory of Open Access Journals (Sweden)

    Dave Hervieux

    2007-04-01

    Full Text Available Recovery planning for the boreal population of woodland caribou is a complex task, spanning eight Canadian provinces and territories. To accommodate unique situations across the country, recovery planning for this Species at Risk Act-listed threatened species is occurring at both provincial/ territorial and national levels. The national recovery strategy strives to identify nationally important issues and provide direction for provinces and territories as they plan and implement boreal caribou recovery within their jurisdictions. The national vision is to conserve and recover boreal caribou and their habitat across Canada. Specific goals are to: 1 Prevent extirpation of local boreal caribou populations from all existing caribou ranges; and 2 Maintain or enhance local boreal caribou populations at or to self-sustaining levels within all existing caribou ranges; and 3 Maintain or enhance boreal caribou habitat to support self-sustaining local populations. Nineteen broad national approaches are identified. These approaches include items relating to: habitat planning and management, caribou population monitoring and management, management of human-caused mortality, management of other wildlife species, consideration of government legislation and policy,promotion of stewardship and public outreach, and research. Specific outcomes are provided for each stated recovery approach. For more information on Canada's national recovery strategy for the boreal population of woodland caribou please see www.speciesatrisk.gc.ca/recovery/default_e.cfm