WorldWideScience

Sample records for borate glasses doped

  1. Synthesis and characterization of cadmium doped lead–borate glasses

    Indian Academy of Sciences (India)

    A A Alemi; H Sedghi; A R Mirmohseni; V Golsanamlu

    2006-02-01

    Cadmium doped lead–borate glasses were prepared from the melts in appropriate proportions of PbO2, H3BO3 and (15–40 mol%) CdO mixture in the temperature range 700–950°C. The infrared spectra of the glasses in the range 400–4000 cm-1 show their structures. No boroxol ring formation was observed in the structure of these glasses. Furthermore, doped cadmium atoms were not seen in tetrahedral coordination. But the conversion of three-fold to four-fold coordination of boron atoms in the structure of glasses was observed.

  2. Infrared spectra of zinc doped lead borate glasses

    Indian Academy of Sciences (India)

    S G Motke; S P Yawale; S S Yawale

    2002-02-01

    The infrared spectra of zinc-doped lead borate glasses (10–30 mol% ZnO) were measured over a continuous spectral range (400–4000 cm–1) in an attempt to study their structure systematically. No boroxol ring formation was observed in the structure of these glasses. The formation of Zn in tetrahedral coordination was not observed. The conversion of three-fold to four-fold coordinated boron took place.

  3. Spectroscopic properties of the Ce-doped borate glasses

    Science.gov (United States)

    Kindrat, I. I.; Padlyak, B. V.; Mahlik, S.; Kukliński, B.; Kulyk, Y. O.

    2016-09-01

    The EPR, optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Ce-doped glasses with Li2B4O7, LiKB4O7, CaB4O7, and LiCaBO3 compositions have been investigated and analysed. The borate glasses were obtained from the corresponding polycrystalline compounds in the air atmosphere, using standard glass technology. The EPR signals of the isolated Ce3+ and pair Ce3+-Ce3+ centres, coupled by magnetic dipolar and exchange interactions were registered at liquid helium temperatures. The characteristic for glass host broad bands corresponding to the 4f → 5d transitions of the Ce3+centres have been observed in the optical absorption and photoluminescence (emission and excitation) spectra. The obtained luminescence decay curves can be satisfactory described by exponential function with lifetimes in the 19.8-26.1 ns range, which depend on the basic glass composition. The local structure of Ce3+ centres in the investigated glasses has been considered and discussed.

  4. Luminescence properties of the Sm-doped borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kindrat, I.I. [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland); Padlyak, B.V., E-mail: B.Padlyak@if.uz.zgora.pl [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland); Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79-005 Lviv (Ukraine); Drzewiecki, A. [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland)

    2015-10-15

    The optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Sm-doped glasses with Li{sub 2}B{sub 4}O{sub 7}, LiKB{sub 4}O{sub 7}, CaB{sub 4}O{sub 7}, and LiCaBO{sub 3} compositions were investigated and analysed. The Li{sub 2}B{sub 4}O{sub 7}:Sm, LiKB{sub 4}O{sub 7}:Sm, CaB{sub 4}O{sub 7}:Sm, and LiCaBO{sub 3}:Sm glasses of high optical quality have been obtained from the corresponding polycrystalline compounds in the air atmosphere, using a standard glass technology. On the basis of electron paramagnetic resonance (EPR) and optical spectra analysis it was shown that the samarium impurity is incorporated into the glass network as Sm{sup 3+} (4f{sup 5}, {sup 6}H{sub 5/2}) ions, exclusively. All observed 4f – 4f transitions of the Sm{sup 3+} centres in the optical absorption and luminescence spectra of the investigated glasses are identified. Most intense emission band of the Sm{sup 3+} ions peaked about 598 nm ({sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} transition) is characterised by a single exponential decay with typical lifetime values, which depend on the basic glass composition as well as concentration and local structure of the Sm{sup 3+} luminescence centres. The quantum efficiency has been evaluated for observed transitions of the Sm{sup 3+} centres using obtained experimental lifetimes and radiative lifetimes calculated by Judd–Ofelt theory. The calculated high quantum efficiencies and measured quantum yields of luminescence show that the investigated borate glasses are perspective luminescence materials. Energy transfer from the Ce{sup 3+} non-controlled impurity and intrinsic luminescence centres to the Sm{sup 3+} centres has been observed. Peculiarities of the Sm{sup 3+} local structure in the network of investigated glasses have been discussed based on the obtained spectroscopic results and structural data. - Highlights: • The Sm-doped Li{sub 2}B{sub 4}O{sub 7}, LiKB{sub 4}O{sub 7}, Ca

  5. Structural, optical and glass transition studies on Nd{sup 3+}-doped lead bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, B.; Mohan, S

    2003-07-01

    Nd{sup 3+}-doped lead bismuth borate (PbO-Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3}) glasses were prepared with different concentrations of Nd{sup 3+}. The structural studies were done through FTIR spectral analysis. The glass transition studies were done through differential scanning calorimetry. The optical analysis was done by using Judd-Ofelt theory. The structural study reveals that the glass has [BiO{sub 3}], BO{sub 4}, BO{sub 3} and PbO{sub 4} units as the local structures.

  6. Dopant Concentration and Effective Atomic Number of Copper-Doped Potassium Borate Glasses

    Directory of Open Access Journals (Sweden)

    I. Hossain

    2013-01-01

    Full Text Available Copper-doped (0.5 mol% and undoped potassium borate glasses have been prepared by the composition of (100-xH3BO3 + xK2CO3, where 10 ≤ x ≤ 30 mol % by the traditional melting quenching method. The structural pattern of glasses with different composition has been identified by X-ray diffraction (XRD. The glow curves were analysed to determine various characterizations of the TLDs. Identification of the compositions and concentrations and effective atomic number of undoped and doped potassium borate glass was carried out using scanning electron microscope analysis (SEM. The dopant concentrations are found to be 0.25 mol%, while Zeff are 11.42 and 10.48 for Cu-doped and undoped potassium borate glasses, respectively.

  7. Elastic properties of Li+ doped lead zinc borate glasses

    Science.gov (United States)

    Rajaramakrishna, R.; Lakshmikantha, R.; Anavekar, R. V.

    2014-04-01

    Glasses in the system 0.25PbO-(0.25-x) ZnO-0.5B2O3-xLi2O have been prepared by the melt quenching technique. Elastic properties, DSC studies have been employed to study the role of Li2O in the present glass system. Elastic properties and Debye temperature have been determined using pulsed echo ultrasonic interferometer operating at 10MHz. Sound velocities Vl, Vt and elastic moduli decrease up to 5 mol% and then gradually increase with increase in Li2O concentration. Debye temperature and the glass transition temperature decreases with increase in Li2O. Densities remains almost constant up to 15 mol% Li2O concentration and increases monotonically while the molar volume decreases with the increase of Li2O concentration. The results are discussed in view of the borate structural network and dual role of Zn and Pb in these glasses.

  8. Structural investigation of Zn doped sodium bismuth borate glasses

    Science.gov (United States)

    Bhatia, V.; Kumar, D.; Singh, D.; Singh, S. P.

    2016-05-01

    A series of Bismuth Borate Oxide Glass samples with composition x(ZnO):(15-x)Na2O:15Bi2O3:70B2O3 (variation in x is from 6 to 12 mole %) have been prepared by conventional melt quenching technique. All the chemicals used were of Analytical Grade. In order to verify the amorphous nature of the prepared samples the X-Ray Diffraction (XRD) was done. The physical and structural properties have been explored by using the techniques such as density, molar volume and FTIR in order to understand the effect of alkali and transition metal ions on the structure of these glasses. The results obtained by these techniques are in good agreement to one another and with literature as well. With the increase in the content of ZnO, the increase in density and some variations in structural coordination (ratio of BO3 & BO4 structural units) have been observed.

  9. Fluorescence properties of Eu 3+ ions doped borate and fluoroborate glasses containing lithium, zinc and lead

    Science.gov (United States)

    Venkatramu, V.; Babu, P.; Jayasankar, C. K.

    2006-02-01

    The influence of glass composition on the fluorescence properties of Eu 3+ ions doped borate and fluoroborate glasses modified with Li +, Zn 2+ and Pb 2+ cations have been investigated. The magnitude of splittings of 7F 1 levels are analyzed using crystal-field (CF) analysis. The relative intensities of 5D 0 → 7F 2 to 5D 0 → 7F 1 transitions, crystal-field strength parameters and decay times of the 5D 0 level have been determined and are found to be lower for Pb based glasses than those of Zn/Li based glasses. The lifetimes of 5D 0 level are found to increase when borate glasses are modified with pure fluorides than with oxides and oxyfluorides. The fluorescence decay of 5D 0 level fits perfect single exponential in the Eu 3+:glass systems studied which indicates the absence of energy transfer between Eu 3+ ions in these glasses.

  10. Structural and optical properties of niobium doped silver-lead-borate glasses

    Science.gov (United States)

    Sathish, M.; Eraiah, B.

    2013-06-01

    Nb2O5 doped silver lead borate glasses with the chemical composition (29—x)PbO-1Ag2O-70B2O3-xNb2O5 (where x=0.1mol % and 0.5 mol %) have prepared by conventional melt quenching method. FTIR and UV absorption technique have been used in order to obtain the information concerning network structure. As Nb2O5 concentration increased, the borate glass network is shown to change three coordinated to four coordinated boron system. SEM technique confines glassy nature of the prepared samples. The calculated optical band gap increases with increase Nb2O5 concentration.

  11. Optical properties of Eu2+-doped strontium borate glasses containing F- and Li+ ions

    Institute of Scientific and Technical Information of China (English)

    HUANG Yanlin; JANG Kiwan; WANG Xigang; JIANG Chuanfang

    2008-01-01

    In this experiment, strontium borate glasses were prepared using the conventional quenching method in air atmosphere. Optical absorption, photoluminescence excitation and emission spectra, X-ray excited luminescence (XEL), and luminescence decay curve of the as-prepared glasses were investigated at room temperature. The as-prepared glasses had two kinds of Eu ions, i.e., Eu2+ and Eu3+. Compared with the reported results of strontium borate glasses, Eu2+ luminescence was enhanced in the studied strontium borate glasses coprepared with F- and Li+ ions. The coexisting of Li+ or F- in the borate glasses could create more negative defect VSr″ and stabilize Eu2+ ions, which might act as donor of electrons;For the F- doping, the new center of B(O, F)4 (or BO3F) and BO2F2 units could be considered to be the distorted (BO4), which were needed as a rigid framework to stabilize the divalent rare earth ions.

  12. Spectroscopic study of neodymium doped lead-bismuth-borate glasses

    Science.gov (United States)

    Pasha, Altaf; Dayani, P.; Negalur, Mahesh; Swamy, Manjunatha; Abhiram, J.; Rajaramakrishna, R.

    2016-05-01

    This paper reports on different physical and optical properties of rare earth doped heavy metal oxide glasses. The glass composition of 10Bi2O3-30PbO-60B2O3-xNd2O3 where x = 0, 0.1, 0.2, 0.5 and 1 (in mol %) has been synthesized using melt-quenching technique. Refractive index measurements for these glasses were done and physical parameters were studied. Structural properties of these glasses were analysed through infrared spectra that was recorded between 1600cm-1 and 300cm-1 in transmission mode. The optical absorption spectra were recorded in the wavelength range from 300 to 700 nm. The transitions originated from ground state energy 4I9/2. The energy level analysis has been carried out by considering absorption spectral bands. The results thus obtained are comparable with reports on similar glasses, indicating that the prepared glasses may have potential laser applications.

  13. Effects of varying base glass composition on the optical properties of lead borate glasses doped with rare earth ions

    Science.gov (United States)

    Heidorn, William D.

    Rare Earth (RE) doped lead borate glasses are expected to exhibit a compositional dependence in their optical properties due to the changes induced by variations in the structure of the base glass with increasing lead oxide content. A series of lead borate glasses with the composition xPbO:(99.5 - x)B2O 3 (x = 29.5 to 69.5 in steps of 10 mol%) doped with 0.5 mol% Sm2O3, Er2O3, and Ho2O3 were prepared using the melt quench technique followed by 3 hours of annealing near the glass transition temperature. Optical absorption and fluorescence spectra of these RE doped lead borate glasses were analyzed using Judd-Ofelt theory. The compositional dependence of Judd-Ofelt intensity parameters, O t (t = 2, 4, 6), were determined and were then used to calculate the radiative transition probability of the excited states, the total radiative transition probability, branching ratios, and radiative lifetime of the glasses. From the fluorescence spectra the stimulated emission cross section, and Stark splitting of the excited states were calculated as a function of glass composition. A fourth set of samples with composition xPbO:(99 - x)B2O 3(x = 29 to 69 in steps of 10 mol%) co-doped with 0.5 mol% Er2 O3 and Ho2O3 were also prepared and the effects of co-doping on the absorption and fluorescence were analyzed. In all the glass systems studied, it was found that the optical properties are strongly influenced by structural changes arising from compositional variation. Er3+ transitions exhibit large stimulated cross section suggesting the possible utilization of these materials in laser applications. Keywords: Lead and bismuth borate glasses, fluorescence, optical absorption, Sm3+, Ho3+, Er3+ ions, Judd-Ofelt intensity parameters, stimulated emission cross section.

  14. Dy3+ doped Lithium Sodium Bismuth Borate Glasses for Yellow Luminescent Photonic Applications

    Directory of Open Access Journals (Sweden)

    M. Parandamaiah,

    2015-08-01

    Full Text Available Lithium sodium bismuth borate glasses-doped with trivalent dysprosium (Dy3+ ions (LSBiB have been prepared by conventional melt-quenching technique and characterized by structural, thermal and spectroscopic measurements. XRD pattern of the host glass confirms its amorphous nature. Morphological and elemental analysis has also been carried out for Dy3+doped LSBiB glass matrix. FTIR spectral analysis confirms the glass formation of the host glass. Optical absorption spectral analysis has been carried out for 0.8 mol% Dy3+ doped LSBiB glass sample. Well defined optical absorption bands are assigned with corresponding electronic transitions. Photoluminescence spectra shows two prominent emission bands centered at 482 nm and 575 nm corresponds to the 4 F9/2 → 6H15/2 and 4 F9/2 → 6H13/2 respectively under the excitation of 452 nm. Among all the concentrations of Dy3+ ions, at 0.8 mol% Dy3+ contained glass sample exhibits prominent yellow emission at 575 nm. Lifetime decay dynamics have been systematically analyzed for all the glasses, higher lifetime is found to be 0.47 ms for 0.8 mol% Dy3+ ions doped glass. From the photoluminescence analysis, Dy3+ contained glass samples could be suggested as potential yellow luminescent glass matrix for several photonic device applications.

  15. Optical Properties of Eu3+ Doped Lead Borate Tellurite and Zinc Borate Tellurite Glasses

    Science.gov (United States)

    Shigihalli, N. B.; Rajaramakrishna, R.; Anavekar, R. V.

    2011-07-01

    This paper describes the synthesis and optical absorption studies of the glass system 20PbO-20TeO2-(60-x)B2O3-x Eu2O3 (x = 0,1 mol %) and 20ZnO-20TeO2-(60-x)B2O3-xEu2O3 (x = 0,1 mol %). These glass systems have been successfully prepared by the melt quenching technique. The X-ray diffractograms show broad peaks indicating glasses are amorphous. DSC thermograms show glass transition temperatures around 655K for PbO content and around 675 K for ZnO content glass samples. In the UV-Visible spectra, several absorption lines are observed. The absorption peaks are around 362, 375, 393 and 464 nm for both Eu3+ doped PbO and ZnO content glass systems. These correspond to transitions from ground state of 7F0 to the excited state of 5D4, 5G4, 5L6 and 5D2 respectively for both Eu3+ doped PbO and ZnO content glass systems. These glasses are expected to give interesting applications in the area of optical devices.

  16. Structural studies of lead lithium borate glasses doped with silver oxide

    Science.gov (United States)

    Coelho, João; Freire, Cristina; Hussain, N. Sooraj

    2012-02-01

    Silver oxide doped lead lithium borate (LLB) glasses have been prepared and characterized. Structural and composition characterization were accessed by XRD, FTIR, Raman, SEM and EDS. Results from FTIR and Raman spectra indicate that Ag 2O acts as a network modifier even at small quantities by converting three coordinated to four coordinated boron atoms. Other physical properties, such as density, molar volume and optical basicity are also evaluated. Furthermore, they are also affected by the silver oxide composition.

  17. Erbium-doped oxide and oxyhalide lead borate glasses for near-infrared broadband optical amplifiers

    Science.gov (United States)

    Pisarski, Wojciech A.; Pisarska, Joanna; Lisiecki, Radosław; Grobelny, Łukasz; Dominiak-Dzik, Grażyna; Ryba-Romanowski, Witold

    2009-04-01

    Near-infrared luminescence spectra at 1.53 μm due to main 4I 13/2- 4I 15/2 laser transition of Er 3+ ions in oxide and oxyhalide lead borate glasses were examined. Spectroscopic parameters like spectral linewidth and luminescence lifetime were analyzed with PbX 2 (X = F, Cl or Br) doping. An introduction of lead halide to the borate glass results in the reduction of spectral linewidth and the increase of luminescence lifetime of Er 3+. The luminescence decay from the 4I 13/2 upper state of Er 3+ is longer for glass sample with PbF 2 than PbX 2 (X = Cl or Br).

  18. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2016-01-22

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  19. Synthesis and characterization of holmium oxide doped cadmium lead borate glasses

    Science.gov (United States)

    Alemi, A. A.; Sedghi, H.; Mirmohseni, A. R.; Golsanamlu, V.

    Holmium doped cadmium lead borate glasses were prepared from melting in appropriate proportions of a mixture of CdO, PbO2, H3BO3 and (1-2 mol %) Ho2O3 in the temperature range of 800-850 °C. The density of glass samples was measured using Archimedes Principle. The infrared spectra of the glasses in the range of 400-4000 cm-1 showed their structure systematically. No boroxol ring formation was observed in the structure of these glasses, but the conversion of 3-fold to 4-fold coordination of boron atoms in the structure of glasses was observed. The glass transition studies were done through differential scanning calorimetry. The optical analysis is done by using the Judd-Ofelt theory.

  20. Gamma rays interactions with WO{sub 3}-doped lead borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    ElBatal, H.A. [Glass Research Department, National Research Center, Dokki, Cairo (Egypt); Abdelghany, A.M., E-mail: a.m_abdelghany@yahoo.com [Spectroscopy Department, Physics Division, National Research Center, Dokki, Cairo (Egypt); ElBatal, F.H. [Glass Research Department, National Research Center, Dokki, Cairo (Egypt); EzzElDin, F.M. [National Center for Radiation Research and Technology, Nasr City, Cairo (Egypt)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Some ternary borate glasses of varying compositions were prepared. Black-Right-Pointing-Pointer Effect of successive gamma ray irradiation in prepared glass structure was studied. Black-Right-Pointing-Pointer FTIR, UV measurement before and after successive gamma irradiation were studied. Black-Right-Pointing-Pointer UV spectra reveal some changes with different gamma doses, which are discussed. - Abstract: Optical and FT infrared spectral properties of tungsten ions in a host lead borate glass with composition PbO 55%, B{sub 2}O{sub 3} 45% (wt%) were studied. The same spectral properties were re-measured after subjecting the samples to successive gamma irradiation. The work was undertaken to justify the state of tungsten ions in such glass system by combined spectral investigations. Optical and FTIR spectral studies were confirmed by investigating electron spin resonance (ESR) of the undoped and WO{sub 3}-doped samples before and after gamma irradiation. The optical spectrum of the undoped glass exhibits strong and wide UV absorption bands, which are related to the combined UV spectra of trace iron impurities (Fe{sup 3+} ions) and that from divalent lead (Pb{sup 2+}) ions. Optical studies of WO{sub 3}-doped sample indicate the presence of tungsten ions mostly in the hexavalent W{sup 6+} state. The presence of tungsten ions as structural groups was obtained by comparing the FTIR spectra of the undoped and WO{sub 3}-doped samples. ESR spectra confirm the optical and FTIR spectral studies. The studied host lead borate glass has been found to show obvious shielding behavior towards successive gamma irradiation as revealed by the constancy of optical absorption spectral curves.

  1. Optical and Physical Properties of Bismuth Borate Glasses Doped With Dy3+

    Directory of Open Access Journals (Sweden)

    P. Limsuwan

    2011-01-01

    Full Text Available This study reports on physical and optical properties of Dy3+ doped bismuth borate glass. The glasses containing Dy3+ in (70-xB2O3:30Bi2O3:xDy2O3 (where x = 0.0-2.5 mol% have been prepared by melt-quenching method. In order to understand the role of Dy2O3 in these glasses, the density, molar volume and optical spectra were investigated. The results show that molar volume of the glasses increase with the increasing of Dy2O3 concentration and consequently generating more non-bridging oxygen (NBOs into glass matrix. The absorption spectra of Dy3+ doped in bismuth borate glass correspond with several bands, which are assigned from the ground state, 6H15/2 to 6F3/2(761 nm, 6F5/2(806 nm, 6F7/2(907 nm, (6H7/2, 6F9/2(1099 nm, (6F11/2, 6H9/2 (1283 nm and 6H11/2(1695 nm. Moreover, the optical basicities were also theoretically determined.

  2. Compositional-dependent lead borate based glasses doped with Eu3+ ions: Synthesis and spectroscopic properties

    Science.gov (United States)

    Pisarski, W. A.; Pisarska, J.; Dominiak-Dzik, G.; Mączka, M.; Ryba-Romanowski, W.

    2006-12-01

    New multicomponent lead borate based glasses with various PbO/B2O3 weight ratio were prepared. The glass samples were analyzed in detail by using Raman and IR absorption spectroscopy. Optical properties of Eu3+ ions have been investigated in lead borate based systems, in which PbO/B2O3 weight ratios were changed from 1:2 to 8:1 in glass composition. The values of the phonon energy of the host and 5D0 lifetime of Eu3+ decrease, whereas absorption and emission intensities, as well as bonding parameter increase with increasing PbO concentration. Additionally, spectral lines are shifted in direction to the lower frequency region. Non-monotonic dependence of the fluorescence intensity ratio R (5D0 7F2/5D0 7F1) upon PbO/B2O3 content has been observed in contrast to bonding parameter that is also non-linear but monotonic. Some structural and spectroscopic aspects for Eu-doped lead borate based glasses are presented.

  3. Dosimetric and kinetic parameters of lithium cadmium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    J. Anjaiah

    2014-10-01

    Full Text Available Thermoluminescence (TL characteristics of X-ray irradiated pure and doped with four different rare earth ions (viz., Pr3+, Nd3+, Sm3+ and Eu3+ Li2O–Cdo–B2O3 glasses have been studied in the temperature range 303–573 K; the pure glass has exhibited single TL peak at 466 K. When this glass is doped with different rare earth ions no additional peaks are observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve is found to be maximum for Eu3+ doped glasses. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen's formulae. The possible use of these glasses in radiation dosimetry has been described. The result clearly showed that europium doped cadmium borate glass has a potential to be considered as the thermoluminescence dosimeter.

  4. Infrared luminescence and thermoluminescence of lithium borate glasses doped with Sm3+ ions

    Directory of Open Access Journals (Sweden)

    Anjaiah J.

    2015-03-01

    Full Text Available Thermoluminescence (TL characteristics of X-ray irradiated pure and doped with Sm3+ ions Li2O-MO-B2O3 (where MO=ZnO, CaO, CdO glasses have been studied in the temperature range of 303 to 573 K. All the pure glasses exhibited single TL peaks at 382 K, 424 K and 466 K. When these glasses were doped with Sm3+ ions no additional peaks have been observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve was found to be maximum for Sm3+ doped glasses mixed with cadmium oxide as a modifier. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen’s formulae. The possible use of these glasses in radiation dosimetry has been described. The results clearly showed that samarium doped cadmium borate glass has a potential to be considered as a thermoluminescence dosimeter.

  5. Rare earth-doped lead borate glasses and transparent glass-ceramics: Structure-property relationship

    Science.gov (United States)

    Pisarski, W. A.; Pisarska, J.; Mączka, M.; Lisiecki, R.; Grobelny, Ł.; Goryczka, T.; Dominiak-Dzik, G.; Ryba-Romanowski, W.

    2011-08-01

    Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu 3+ and Er 3+ ions. The observed BO 3 ↔ BO 4 conversion strongly depends on the relative PbO/B 2O 3 ratios in glass composition, giving important contribution to the luminescence intensities associated to 5D 0- 7F 2 and 5D 0- 7F 1 transitions of Eu 3+. The near-infrared luminescence and up-conversion spectra for Er 3+ ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er 3+ ions into the orthorhombic PbF 2 crystalline phase, which was identified using X-ray diffraction analysis.

  6. Rare earth-doped lead borate glasses and transparent glass-ceramics: structure-property relationship.

    Science.gov (United States)

    Pisarski, W A; Pisarska, J; Mączka, M; Lisiecki, R; Grobelny, Ł; Goryczka, T; Dominiak-Dzik, G; Ryba-Romanowski, W

    2011-08-15

    Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu(3+) and Er(3+) ions. The observed BO(3)↔BO(4) conversion strongly depends on the relative PbO/B(2)O(3) ratios in glass composition, giving important contribution to the luminescence intensities associated to (5)D(0)-(7)F(2) and (5)D(0)-(7)F(1) transitions of Eu(3+). The near-infrared luminescence and up-conversion spectra for Er(3+) ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er(3+) ions into the orthorhombic PbF(2) crystalline phase, which was identified using X-ray diffraction analysis.

  7. Energy transfer and luminescence studies of Pr 3+ , Yb 3+ co-doped lead borate glass

    Science.gov (United States)

    Wen, Hongli; Tanner, Peter A.

    2011-09-01

    Lead borate glass samples doped with the tripositive lanthanide ions Pr 3+ and Yb 3+ were synthesized by the conventional melting-quenching method. The luminescence properties and energy transfer process from Pr 3+ to Yb 3+ were investigated. Upon ultraviolet excitation, the room temperature luminescence decay curve of a sample containing only a low concentration of Pr 3+ exhibited monoexponential decay from 1D 2 with the lifetime 37 μs, without emission from 3P 0. The room temperature Pr 3+ emission intensity decreased with the increase of Yb 3+ mole ratio in the glass. Under the excitation of 454.5 nm at 10 K, a broad red emission band centered at 605 nm, and an NIR emission band at 995 nm were observed in the co-doped lead borate glass, originating from Pr 3+ and Yb 3+ ions, respectively. The decay curves of the 1D 2 emission from Pr 3+ with addition of Yb 3+ in lead borate glass show non-monoexponential character, and are best described by a stretched exponential function. The average 1D 2 decay time decreases considerably with the addition of Yb 3+ in the glass. Decay curve fitting using a modified Inokuti-Hirayama expression indicates dipole-dipole energy transfer from Pr 3+ to Yb 3+, which is consistent with the expected cross-relaxation scheme. There is a good agreement of the estimated overall energy transfer efficiency obtained from the integrals under the normalized decay curves, or from the lifetimes fitted by the stretched exponential function, or from the average decay times.

  8. Long Lasting Phosphorescence in Eu2+ and Ce3+ Co-Doped Strontium Borate Glasses

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Long lasting phosphorescence (LLP) was observed in Eu2+, Ce3+ co-doped strontium borate glasses prepared under the reducing atmosphere due to the emission of both Eu2+ and Ce3+. The methods of photoluminescence, thermoluminescence and phosphorescence were used to study the samples, and possible mechanism was suggested. The co-doping of Ce3+ ions poisoned the phosphorescence emission of Eu2+ because of the competition to obtain the trapped electron. The phosphorescence of Ce3+ in the sample decays more quickly than that of Eu2+, which is suggested for the reason that the emission energy of Ce3+ is higher or the distance between Ce3+ and electron traps of the glasses is longer.

  9. Optical characterization of Eu 3+ and Tb 3+ ions doped zinc lead borate glasses

    Science.gov (United States)

    Thulasiramudu, A.; Buddhudu, S.

    2007-02-01

    This paper reports on the spectral analysis of Eu 3+ or Tb 3+ ions (0.5 mol%) doped heavy metal oxide (HMO) based zinc lead borate glasses from the measurement of their absorption, emission spectra and also different physical properties. From the XRD, DSC profiles, the glass nature and glass thermal properties have been studied. The measured emission spectrum of Eu 3+ glass has revealed five transitions ( 5D 0 → 7F 0, 7F 1, 7F 2, 7F 3 and 7F 4) at 578, 591, 613, 654 and 702 nm, respectively, with λexci = 392 nm ( 7F 0 → 5L 6). In the case of Tb 3+:ZLB glass, four emission transitions such as ( 5D 4→ 7F 6, 7F 5, 7F 4 and 7F 3) that are located at 489, 542, 585 and 622 nm, respectively, have been measured with λexci = 374 nm. For all these emission bands decay curves have been plotted to evaluate their lifetimes and the emission processes that arise in the glasses have been explained in terms of energy level schemes.

  10. Spectroscopic Study on Eu3+ Doped Borate Glasses Containing Ag Nanoparticles and Ag Aggregates.

    Science.gov (United States)

    Fu, Shaobo; Zheng, Hui; Zhang, Jinsu; Li, Xiangping; Sun, Jiashi; Hua, Ruinian; Dong, Bin; Xia, Haiping; Chen, Baojiu

    2015-01-01

    Transparent Eu(3+)-doped borate glasses containing Ag nanoparticles and Ag aggregates with composition (40 - x) CaO-59.5B2O3-0.5Eu2O3-xAgNO3 were prepared by a simple one-step melt-quenching technique. The X-ray diffraction (XRD) patterns of the glasses reveal amorphous structural properties and no diffraction peaks belonging to metal Ag particles. Ag particles and Ag aggregates were observed from the absorption spectra. Effective energy transfers from the Ag aggregates to the Eu3+ ions were observed in the excitation spectra from monitoring the intrinsic emission of Eu3+x .5D0 --> 7F2. The glasses with higher Ag content can be effectively excited by light in a wide wavelength region, indicating that these glasses have potential application in the solid state lighting driven by semiconductor light emitting diodes (LEDs). The emission spectra of the samples with higher Ag contents exhibit plenteous spectral components covering the full visible region from violet to red, thus indicating that these glass materials possess an excellent and tunable color rendering index. The color coordinates for all the glass samples were calculated by using the intensity-corrected emission spectra and the standard data issued by the CIE (Commission International de l' Eclairage) in 1931. It was found that the color coordinates for most samples with higher Ag contents fall into the white region in the color space.

  11. Luminescence spectroscopy of rare earth-doped oxychloride lead borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, Wojciech A., E-mail: Wojciech.Pisarski@us.edu.p [University of Silesia, Institute of Chemistry, Szkolna 9, 40-007 Katowice (Poland); Pisarska, Joanna [University of Silesia, Institute of Chemistry, Szkolna 9, 40-007 Katowice (Poland); Lisiecki, RadosLaw [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 WrocLaw (Poland); Grobelny, Lukasz [University of Silesia, Institute of Chemistry, Szkolna 9, 40-007 Katowice (Poland); Dominiak-Dzik, Grazyna; Ryba-Romanowski, Witold [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 WrocLaw (Poland)

    2011-04-15

    Ln-doped oxychloride lead borate glasses were studied using luminescence spectroscopy. Rare earth ions were limited to trivalent Pr{sup 3+}, Tm{sup 3+}, Eu{sup 3+} and Er{sup 3+}. Luminescence spectra were registered, which correspond to {sup 3}P{sub 0}-{sup 3}H{sub 4} and {sup 1}D{sub 2}-{sup 3}H{sub 4} transitions of Pr{sup 3+}, {sup 1}G{sub 4}-{sup 3}H{sub 5} and {sup 1}G{sub 4}-{sup 3}F{sub 4} transitions of Tm{sup 3+}, {sup 5}D{sub 0}-{sup 7}F{sub J} (J=0, 1, 2, 3, 4) transitions of Eu{sup 3+} and {sup 4}S{sub 3/2},{sup 2}H{sub 11/2}-{sup 4}I{sub 15/2} and {sup 4}I{sub 13/2}-{sup 4}I{sub 15/2} transitions of Er{sup 3+}. Luminescence decays from the excited states of Ln{sup 3+} ions were analyzed in detail. The experimental results indicate that relatively high phonon energy of the host gives important contribution to the excited state relaxation of rare earth ions. - Research Highlights: {yields}Lead borate glasses modified by PbCl{sub 2} were synthesized. {yields}Luminescence of Pr{sup 3+}, Tm{sup 3+}, Eu{sup 3+} and Er{sup 3+} ions in multicomponent oxychloride glasses was registered. {yields}From decay curves luminescence lifetimes for the excited states of rare earth ions were determined. {yields}The relatively high phonon energy of the host gives important contribution to the excited state relaxation of rare earth ions.

  12. Tb{sup 3+} doped Zinc Alumino Bismuth Borate glasses for green emitting luminescent devices

    Energy Technology Data Exchange (ETDEWEB)

    Swapna, K.; Mahamuda, Sk. [Department of Physics, K L University, Green Fields, Vaddeswaram, Guntur (Dt), Andhra Pradesh 522502 (India); Rao, A. Srinivasa, E-mail: drsrallam@gmail.com [Department of Physics, K L University, Green Fields, Vaddeswaram, Guntur (Dt), Andhra Pradesh 522502 (India); Department of Applied Physics, Delhi Technological University, Bawana Road, New Delhi 110042 (India); Jayasimhadri, M. [Department of Applied Physics, Delhi Technological University, Bawana Road, New Delhi 110042 (India); Shakya, Suman; Prakash, G. Vijaya [Nanophotonics Laboratory, Department of Physics, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016 (India)

    2014-12-15

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with terbium (Tb{sup 3+}) ions with a chemical composition 20ZnO–10Al{sub 2}O{sub 3}–(10−x)Bi{sub 2}O{sub 3}–60B{sub 2}O{sub 3}−xTb{sub 2}O{sub 3} (x=0.1, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mol%) were prepared by a conventional melt quenching method and studied their optical absorption, photoluminescence and decay spectral properties. The Judd–Ofelt (J–O) parameters evaluated from the experimental oscillator strengths were used to measure the radiative properties for the prominent luminescent transitions of Tb{sup 3+} ions such as {sup 5}D{sub 4}→{sup 7}F{sub 6}, {sup 7}F{sub 5}, {sup 7}F{sub 4} and {sup 7}F{sub 3.} The effect of Tb{sup 3+} ion concentration on the luminescence process observed in the visible region was discussed in detail. The emission spectra recorded for all the ZnAlBiB glasses doped with Tb{sup 3+} ions, show an intense peak in green region at 542 nm. The stimulated emission cross-section, branching ratios and quantum efficiency values evaluated for green emission ({sup 5}D{sub 4}→{sup 7}F{sub 5}) suggests the utility of these glasses for green luminescence applications. It was found that, within the concentration range investigated, 2.5 mol% of Tb{sup 3+} doped ZnAlBiB glass is most suitable for green luminescence applications at 542 nm in principle. - Highlights: • ZnAlBiB glasses doped with Tb{sup 3+} ions were prepared by a conventional melt quenching technique. • Judd–Ofelt and radiative properties are measured from the emission spectra. • Quantum efficiency of the ZnAlBiB glasses is measured by using radiative and measured lifetimes. • CIE Chromaticity co-ordinates are evaluated from emission spectra.

  13. Optical and shielding behavior studies of vanadium-doped lead borate glasses

    Science.gov (United States)

    Abdelghany, A. M.; ElBatal, H. A.; Marei, L. K.

    2012-01-01

    A glass sample of composition PbO 42.1%- B2O3 57.9 mol% B2O3 together with samples of the same composition doped with varying V2O5 contents was prepared via melt annealing technique. X-ray diffraction technique was applied to prove the amorphous nature of the prepared glasses. UV-visible absorption spectra were measured in the range 200-1500 nm before and after successive gamma irradiation, which were applied to evaluate optical properties, including direct and indirect optical energy band gaps before and after gamma irradiation. Undoped glass sample is observed to exhibit strong UV absorption; due to the combined contributions of absorption of both Pb2+ ions and trace iron impurities. The presence of V3+ ions together with the other vanadium valence states (V4+, V5+) was proved by the appearance of extra visible absorption bands. Infrared absorption spectra were measured in the range 4000-400 cm-1 which revealed the presence of both triangular and tetrahedral borate groups besides the sharing of lead ions.

  14. Ho3+-doped strontium-aluminium-bismuth-borate glasses for green light emission.

    Science.gov (United States)

    Rajesh, D; Dhamodhara Naidu, M; Ratnakaram, Y C; Balakrishna, A

    2014-11-01

    Strontium-aluminium-bismuth-borate glasses (SAlBiB) doped with different concentrations of Ho(3+) were prepared using conventional melt quenching technique and their structural and optical properties investigated. X-ray diffraction and scanning electron microscopy analysis were used to study the structural properties. Optical properties were studied by measuring the optical absorption and visible luminescence spectra. The Judd-Ofelt (J-O) theory was applied to evaluate J-O intensity parameters, Ω(λ) (λ = 2, 4 and 6). Using J-O intensity parameters, radiative properties such as spontaneous transition probabilities (A(R)), branching ratios (β(R)) and radiative lifetimes (τ(R)) were determined. From the emission spectra, a strong green emission nearly at 549 nm corresponding to the transition, (5)S2 ((5)F4)→(5)I(8) was observed. Emission peak positions (λ(P)), effective bandwidths (Δλ(eff)) and stimulated emission cross-sections (σ(p)) were calculated for the observed emission transitions, (5)F3 →(5)I(8), (5)S2((5)F4)→(5)I(8) and (5)F5 →(5)I(8) of Ho(3+) in all the glass matrices. Chromaticity color coordinates were calculated using the emission spectra. The experimental results suggest that SAlBiB glass matrix with 1.5 mol% of Ho(3+) has better emission properties.

  15. Shielding behavior of V{sub 2}O{sub 5} doped lead borate glasses towards gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ghoneim, N.A.; ElBatal, H.A. [Glass Research Department, National Research Center, Dokki, Cairo (Egypt); Abdelghany, A.M., E-mail: a.m_abdelghany@yahoo.com [Spectroscopy Department, National Research Center, Dokki, Cairo (Egypt); Ali, I.S. [High Institute for Optics Technology, Dokki, Cairo (Egypt)

    2011-06-16

    Highlights: > Base lead borate glass together with samples of the same composition doped with varying V{sub 2}O{sub 5} contents were prepared. > UV-visible and infrared spectroscopy were measured before and after successive gamma irradiation. > Glass samples are observed to absorb strongly in the UV. > Infrared absorption spectra indicate the presence of both triangular and tetrahedral borate groups besides the sharing of lead ions in network forming and network modifying sites. - Abstract: Undoped lead borate glass of the composition PbO 70%-B{sub 2}O{sub 3} 30% together with samples of the same composition and doped with varying V{sub 2}O{sub 5} contents were prepared. UV-visible absorption spectra were measured out in the range 200-1500 nm before and after successive gamma irradiation. Infrared absorption measurements within the range 4000-400 cm{sup -1} were carried out for the undoped and V{sub 2}O{sub 5} doped samples before gamma irradiation and after being irradiated with a dose of 6 Mrad. All the glass samples are observed to absorb strongly in the UV region due to the combined contributions of absorption due to trace iron impurities and that from the divalent lead Pb{sup 2+} ions. The V{sub 2}O{sub 5}-doped glasses reveal extra visible absorption bands which are attributed to the existence of V{sup 3+} ions in measurable content but not neglecting the other valence states of vanadium ions (V{sup 4+}, V{sup 5+}). Infrared absorption spectra indicate the presence of both triangular and tetrahedral borate groups besides the sharing of lead ions in network forming and network modifying sites.

  16. Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (M = Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Janek, Joanna, E-mail: janek.joanna@gmail.com; Sołtys, Marta; Żur, Lidia; Pietrasik, Ewa; Pisarska, Joanna; Pisarski, Wojciech A.

    2016-09-01

    Series of lead-free borate glasses with different oxide modifiers and lanthanide ions were prepared. The effect of oxide modifiers MO (M = Ca, Sr, Ba) on spectroscopic properties of trivalent Ln{sup 3+} (Ln = Eu, Er, Pr) were systematically investigated. Especially, the luminescence spectra of Ln{sup 3+}-doped lead-free borate glasses are presented and discussed in relation to the impact of selective components (CaO, SrO and BaO). Several spectroscopic parameters, such as the fluorescence intensity ratio R/O (Eu{sup 3+}) and measured luminescence lifetimes for the {sup 5}D{sub 0} (Eu{sup 3+}), {sup 4}I{sub 13/2} (Er{sup 3+}) and {sup 1}D{sub 2} (Pr{sup 3+}) excited states of lanthanide ions were analyzed in details. The research proved that spectroscopic properties of trivalent Ln{sup 3+} depend significantly on kind of presence oxide modifiers MO (M = Ca, Sr, Ba) in glass host matrices. - Highlights: • Luminescence of Ln{sup 3+}-doped borate glasses was presented and discussed. • Effect of glass modifiers on spectroscopic properties of rare earths was studied. • Measured luminescence lifetimes of Ln{sup 3+} (Ln = Eu, Er, Pr) were analyzed. • Luminescence intensity ratios R/O (Eu{sup 3+}) were determined.

  17. Glass composition and excitation wavelength dependence of the luminescence of Eu3+ doped lead borate glass

    Science.gov (United States)

    Wen, Hongli; Duan, Chang-Kui; Jia, Guohua; Tanner, Peter A.; Brik, Mikhail G.

    2011-08-01

    This work explores the relationship between the bandwidth of luminescence spectral features and their relative intensities, using glasses doped with europium, Eu3+, over a wide composition range. Glasses of composition (B2O3)70(PbO)29(0.5Eu2O3)1 and (B2O3)z(PbO)99.6-z(0.5Eu2O3)0.4, (z = 20, 30, 40, 60, 70), were prepared by the melting-quenching technique. Variable-wavelength measurements by the prism-coupling method enabled interpolation of refractive index at selected wavelengths. Diffuse reflectance spectra confirmed the incorporation of Eu3+ into the glass, and scanning electron microscopy displayed that this was in a homogeneous manner. Vibrational spectra showed a change in boron coordination from BO3 to BO4 units with increase of PbO content in the glass. Multi-wavelength excited luminescence spectra were recorded for the glasses at temperatures down to 10 K and qualitative interpretations of spectral differences with change of B2O3 content are given. The quantitative analysis of 5D0 luminescence intensity-bandwidth relations showed that although samples with higher boron content closely exhibit a simple proportional relationship with band intensity ratios, as expected from theory, the expression needs to be slightly modified for those with low boron content. The Judd-Ofelt intensity analysis of the 5D0 emission spectra under laser excitations at low temperature gives Ω2 values within the range from (3.9-6.5) × 10-20 cm2, and Ω4 in the range from (4.1-7.0) × 10-20 cm2, for different values of z. However, no clear monotonic relation was found between the parameter values and composition. The Judd-Ofelt parameters are compared with those from other systems doped with Eu3+ and are found to lie in the normal ranges for Eu3+-doped glasses. The comparison of parameter values derived from the 10 K spectra with those from room temperature spectra for our glasses, which are fairly constant for different compositions, shows that site selection occurs at low

  18. Absorption and emission properties of Ho{sup 3+} doped lead-zinc-borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sooraj Hussain, N. [DEMM, Faculty of Eng. University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal) and INEB-Instituto de Engenharia Biomedica, Rua Campo Alegre, 823, 4150-180, Porto (Portugal)]. E-mail: sooraj@fe.up.pt; Ali, N. [Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Dias, A.G. [DEMM, Faculty of Eng. University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); INEB-Instituto de Engenharia Biomedica, Rua Campo Alegre, 823, 4150-180, Porto (Portugal); Lopes, M.A. [DEMM, Faculty of Eng. University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); INEB-Instituto de Engenharia Biomedica, Rua Campo Alegre, 823, 4150-180, Porto (Portugal); Santos, J.D. [DEMM, Faculty of Eng. University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); INEB-Instituto de Engenharia Biomedica, Rua Campo Alegre, 823, 4150-180, Porto (Portugal); Buddhudu, S. [Department of Physics, S.V. University, Tirupati, 517502-AP (India)

    2006-09-25

    This paper reports on the affect of lead content on the absorption and emission spectra of the Ho{sup 3+} ion doped lead-zinc-borate glasses in the composition (mol%) of (20 - x)PbO-20ZnO-(59 + x)B{sub 2}O{sub 3}-1.0Ho{sub 2}O{sub 3} where x 0, 5,10,15 of PbO content with {lambda} {sub exc} = 405 nm. The experimental absorption band energies have satisfactorily been correlated with the theoretical results with an r.m.s deviation of zero with the following correction factors obtained by a least square fit analysis: {delta}E {sup 1} 348.495936 cm{sup -1}, {delta}E {sup 2} = 1.436043 cm{sup -1}, {delta}E {sup 3} = 46.481575 cm{sup -1}, {delta}{xi} {sub 4f} = - 28.512979 cm{sup -1}, {delta}{alpha} = 55.508936 cm{sup -1}, {delta}{beta} = - 1394.339908 cm{sup -1} and {delta}{gamma} 1208.424336 cm{sup -1}. By applying the Judd-Ofelt intensity parameter {omega} {sub 2} has been found to be linearly decreasing with the PbO content from 5 to 10 mol% and then increasing. And also radiative (A, A {sub T}, {beta}, {tau} {sub r}) characteristic factors of the luminescent transitions ({sup 5}I{sub 8} <- {sup 5}F{sub 3,4,5} and {sup 5}S{sub 2}) of the glasses have been evaluated. Stimulated emission cross-sections ({sigma} {sub p} {sup E}) of the measured emission transitions of holmium glasses have also been computed.

  19. Spectroscopic investigations on Pr³+ and Nd³+ doped strontium-lithium-bismuth borate glasses.

    Science.gov (United States)

    Rajesh, D; Balakrishna, A; Seshadri, M; Ratnakaram, Y C

    2012-11-01

    Spectroscopic investigations on different concentrations (0.1, 0.5, 1.0, 1.5 and 2.0mol%) of Pr(3+) and Nd(3+) doped strontium lithium bismuth borate glasses have been done. X-ray diffraction, SEM with EDS, absorption and luminescence spectra were recorded for all the glass matrices and analyzed. X-ray diffraction profiles and SEM images conformed amorphous nature of investigated glass samples. EDS spectra of host glass and Pr(3+)doped glass matrices gave information about the chemical composition of glass samples. From the absorption spectra of Pr(3+) and Nd(3+) ions, Judd-Ofelt (J-O) intensity parameters (Ω(λ),λ=2, 4 and 6) have been calculated and compared with other glass matrices. The emission characteristics such as radiative lifetimes (τ(R)), measured and calculated branching ratios (β) and stimulated emission cross-sections (σ(P)) have been obtained for the observed emission transitions of Pr(3+) and Nd(3+) ions in the above glass matrix for all the concentrations. From the emission spectra of Pr(3+) and Nd(3+) doped glass matrices, the effect of concentration on the quenching of intensity of (1)D(2)→(3)H(4) transition of Pr(3+) ion and (4)F(3/2)→(4)I(9/2), (4)I(11/2) and (4)I(13/2) transitions of Nd(3+) have been studied and discussed.

  20. Multimodal emissions from Tb3+/Yb3+ co-doped lithium borate glass: Upconversion, downshifting and quantum cutting

    Science.gov (United States)

    Bahadur, A.; Yadav, R. S.; Yadav, R. V.; Rai, S. B.

    2017-02-01

    This paper reports the optical properties of Tb3+/Yb3+ co-doped lithium borate (LB) glass prepared by melt quench method. The absorption spectrum of the Yb3+ doped LB glass contains intense NIR band centered at 976 nm due to 2F7/2→2F5/2 transition. The emission spectra of the prepared glasses have been monitored on excitation with 266, 355 and 976 nm. The Yb3+ doped glass emits a broad NIR band centered at 976 nm whereas the Tb3+ doped glass gives off visible bands on excitations with 266 and 355 nm. When the Tb3+ and Yb3+ ions are co-doped together, the emission intensity in the visible region decreases whereas it increases in the NIR region significantly. The increase in the emission intensity in the NIR region is due to efficient cooperative energy transfer (CET) from Tb3+ to Yb3+ ions. The quantum cutting efficiency for Tb3+/Yb3+ co-doped glass has been calculated and compared for 266 and 355 nm excitations. The quantum cutting efficiency is larger for 355 nm excitation (137%). The Tb3+/Yb3+ co-doped LB glass also emits upconverted visible bands on excitation with 976 nm. The mechanisms involved in the energy transfer have been discussed using schematic energy level diagram. The Tb3+/Yb3+ co-doped LB glass may be used in the optical devices and in solar cell for solar spectral conversion and behaves as a multi-modal photo-luminescent material.

  1. Spectroscopic studies of lead antimony borate glasses doped with erbium ions

    Science.gov (United States)

    Reddy, M. Chandra Shekhar; Goud, K. Krishna Murthy; Dharmaiah, P.; Rao, B. Appa

    2013-06-01

    Antimony borate glasses of the composition 30PbO-25Sb2O3-(45-x)B2O3-xEr2O3 with x = 0 to 1.0 in steps of 0.2 were prepared by the melt-quenching method. Various physical parameters. radiative parameters, transition probability A, branching ratio β and the radiative life time τ for different emission levels of Er3+ ions, have been evaluated.

  2. Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Tengku Kamarul Bahri, T.N.H., E-mail: tnhidayah2@gmail.com [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia); Wagiran, H.; Hussin, R.; Saeed, M.A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia); Hossain, I. [Department of Physics, College of Science and Arts, King Abdul Aziz University, 21911 Rabigh (Saudi Arabia); Ali, H. [Department of Radiotherapy and Oncology, Hospital Sultan Ismail, 81100 Johor Bahru (Malaysia)

    2014-10-01

    Highlights: •The TL properties of 29.9CaO–70B{sub 2}O{sub 3}: 0.1GeO{sub 2} glass has been investigated. •We exposed glass samples to 6 MV and 10 MV in a dose range of 0.5–4.0 Gy. •This glass has a potential material to be used for application in radiotherapy. -- Abstract: Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5–4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy.

  3. On the role of the network modifier PbO in Sm{sup 3+}-doped borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Krause, S., E-mail: stephan.krause@csp.fraunhofer.de [Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Straße 12, 06120 Halle (Saale) (Germany); Pfau, C. [Centre for Innovation Competence SiLi-nano, Martin Luther University of Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120 Halle (Saale) (Germany); Dyrba, M. [Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Straße 12, 06120 Halle (Saale) (Germany); Centre for Innovation Competence SiLi-nano, Martin Luther University of Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120 Halle (Saale) (Germany); Miclea, P.-T. [Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Straße 12, 06120 Halle (Saale) (Germany); Institute of Physics, Martin Luther University of Halle-Wittenberg, 06120 Halle (Saale) (Germany); Schweizer, S. [Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Straße 12, 06120 Halle (Saale) (Germany); Department of Electrical Engineering, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest (Germany)

    2014-07-01

    A series of Sm{sup 3+}-doped lead borate glasses with a lead oxide (PbO) content varying from 20 mol% to 80 mol% and a samarium oxide (Sm{sub 2}O{sub 3}) content of 1 mol% is investigated. In addition to the network changes in the glass structure, the lead doping has a significant influence on the fluorescence properties of Sm{sup 3+} and on the tuneable intrinsic fluorescence of Pb{sup 2+} itself. The Pb{sup 2+} excitation band shifts monotonously to lower energies; its intensity is significantly reduced for a PbO content of 50 mol% and more. For a concentration of 30 mol%, the Pb{sup 2+} emission overlaps with the intense {sup 6}H{sub 5/2} to {sup 6}P{sub 5/2} Sm{sup 3+} excitation band enabling for radiative and non-radiative energy transfers. Lifetime measurements of excited Sm{sup 3+} show in all cases non-single exponential decay and were fitted by the Inokuti–Hirayama model indicating non-radiative dipole–dipole interaction between neighbouring Sm{sup 3+} ions. - Highlights: • Tunable intrinsic fluorescence in lead borate glasses. • Energy transfer between the network modifier Pb{sup 2+} and Sm{sup 3+}. • Cut-off energy shifts with increasing PbO content.

  4. Optical stability of 3d transition metal ions doped-cadmium borate glasses towards γ-rays interaction

    Science.gov (United States)

    Marzouk, M.; ElBatal, H.; Eisa, W.

    2016-07-01

    This work reports the preparation of glasses of binary cadmium borate with the basic composition (mol% 45 CdO 55 B2O3) and samples of the same composition containing 0.2 wt% dopants of 3d transition metal (TM) oxides (TiO2 → CuO). The glasses have been investigated by combined optical and Fourier Transform infrared spectroscopic measurements before and after being subjected to gamma irradiation with a dose of 8 Mrad (8 × 104 Gy). Optical absorption of the undoped glass before irradiation reveals strong charge transfer UV absorption which is related to the presence of unavoidable contaminated trace iron impurities (mainly Fe3+) within the raw materials used for the preparation of the base cadmium borate glass. The optical spectra of the 3d TM ions exhibit characteristic bands which are related the stable oxidation state of the 3d TM ions within the host glass. Gamma irradiation produces some limited variations in the optical spectra due to the stability of the host glass containing high percent 45 mol% of heavy metal oxide (CdO) which causes some shielding effects towards irradiation. From the absorption edge data, the values of the optical band gap Eopt and Urbach energy (∆E) have been calculated. The values of the optical energy gap are found to be dependent on the glass composition. Infrared absorption spectral measurements reveal characteristic absorption bands due to both triangular and tetrahedral borate groups with the BO3 units vibrations more intense than BO4 units due to the known limit value for the change of BO3 to BO4 groups. The introduction of 3d TM ions with the doping level (0.2 wt%) causes no changes in the number or position of the IR bands because of the presence of TM ions in modifying sites in the glass network. It is observed that gamma irradiation causes some limited changes in the FT-IR spectral bands due to the stability of the host heavy cadmium borate glass.

  5. Optical properties of dy doped lead and bismuth borate glasses - effect of glass composition, metal and semiconducting nanoparticles

    Science.gov (United States)

    Ooi, Hio Giap

    The optical properties of Dy3+ ions in lead borate and bismuth borate glasses are studied as a function of glass composition with PbO content (29.5 to 69.5mol%) and Bi2O3 content (29.5 to 59.5 mol%). We also studied the effect of metal and semiconducting nanoparticles on the absorption and fluorescence emission of Dy3+ ions in both lead and bismuth borate glasses. The absorption coefficient at each wavelength is obtained from the optical absorption spectrum of a glass sample, and the number density of rare-earth (RE) ions is calculated from the measurement of the glass density. These two parameters are then used to calculate the oscillator strength of each transition using Judd-Ofelt theory. Using the oscillator strength for each transition, we obtained the intensity parameters which represent changes in the symmetry of the ligand field at the Dy 3+ site (due to structural group changes and changes in Dy-O covalency). Radiative transition probabilities, the radiative lifetime of the excited states and the branching ratios are then obtained from these intensity parameters. The fluorescence spectra, obtained using 355 nm and 458 nm laser excitation, are analyzed by determining the area ratio of yellow/blue (Y/B) peaks and the wavelength of the hypersensitive transition (HST). The compositional dependence and effect of nanoparticles on the stimulated emission cross-section (sigmap), are then evaluated using radiative transition probability, the refractive index of the host glass, effective fluorescence linewidth, and the position of the band. In all of the glass systems, it was found that the optical properties are strongly influenced by structural changes arising from compositional variation and size of nanoparticles. Dy 3+ transitions exhibit large sigmap suggesting the possible utilization of these materials in laser applications.

  6. Nonlinear optical properties of silver nanoparticles prepared in Ag doped borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Adamiv, V.T. [Institute of Physical Optics, Dragomanov str. 23, Lviv 79005 (Ukraine); Bolesta, I.M. [Ivan Franko National University, Dragomanov str. 50, Lviv 79005 (Ukraine); Burak, Ya.V., E-mail: burak@ifo.lviv.ua [Institute of Physical Optics, Dragomanov str. 23, Lviv 79005 (Ukraine); Gamernyk, R.V.; Karbovnyk, I.D.; Kolych, I.I.; Kovalchuk, M.G.; Kushnir, O.O.; Periv, M.V. [Ivan Franko National University, Dragomanov str. 50, Lviv 79005 (Ukraine); Teslyuk, I.M. [Institute of Physical Optics, Dragomanov str. 23, Lviv 79005 (Ukraine)

    2014-09-15

    Nonlinear properties of Li{sub 2}B{sub 4}O{sub 7}:Ag borate glasses with “Li{sub 2}B{sub 4}O{sub 7}:Ag nanoparticles” interface region formed by thermal treatment in hydrogen atmosphere and in vacuum are investigated. From the results of plasmon absorption and normalized transmission measurements in Z-scan regime it was ascertained that “Li{sub 2}B{sub 4}O{sub 7}:AgNPs” interface region changes the character of nonlinear refraction of Li{sub 2}B{sub 4}O{sub 7}:Ag glass from negative to positive, and, due to plasmon resonance, increases significantly its nonlinear properties. In particular, the observed growth of nonlinear refractive index n{sub 2} is more than four orders of magnitude.

  7. Ultrasonic investigations of some bismuth borate glasses doped with Al2O3

    Indian Academy of Sciences (India)

    Yasser B Saddeek; Moenis A Azooz; Amr Bakr Saddek

    2015-02-01

    The velocities of longitudinal and transverse ultrasonic waves in different compositions of 5Al2O3–29Na2O–(66−)B2O$_{3}−x$Bi2O3 glass system were measured at 4 MHz at room temperature using the pulse-echo technique. The velocity data were used to determine the elastic moduli and the dimensionality of the studied glasses. The observed changes in the elastic moduli of the glasses were related to the modifier role of Bi2O3 content. The results revealed that the density increased with increasing Bi2O3 content, which was attributed to the increase in the compactness and packing of the glass network. The ultrasonic data were analysed in terms of creation of new bonds of Bi2O3 attached to the structural units of the borate network. The new bonds decreased the average crosslink density and the number of network bonds per unit volume along with a weakening of the different modes of vibrations, which in its turn decreased the ultrasonic velocity. Quantitative analysis was carried out using Makishima–Mackenzie model in order to obtain more information about the rigidity of these glasses.

  8. Structural properties of lithium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    Thomazini D.

    2001-01-01

    Full Text Available This paper presents the study on lithium triborate glass (LBO in the system (1-x|3B2O3.Li2O| (xNb2O5 yPr3+ zYb3+ wNd3+ with 0 <= x <= 20 mol% (y, z and w in mol%. The samples were studied by Raman spectroscopy, infrared absorption and differential thermal analysis. Pr3+-doped LBO and Pr3+/Yb3+-doped LBO samples show an increase of the glass transition and crystallization temperatures and a decrease of the fusion temperature associated with the increase of the praseodymium concentration in the LBO matrix. For the Nd3+-doped LBO and Pr3+/Yb3+-doped (LBO+Nb2O5 samples, a decrease of the glass transition temperature of the samples was observed. The increase of the rare earth doping leads to an increase of the difference between the glass transition and the crystallization temperatures. From infrared analysis it was possible to identify all the modes associated to the B-O structure. The NbO6 octahedra was also identified by IR spectroscopy for samples with x=5, 10, 15 and 20 mol% and y=0.05, z=1.1 mol%. Raman spectroscopy shows the presence of boroxol rings, tetrahedral and triangular coordination for boron. For samples containing niobium, the Raman spectra show the vibrational mode associated with the Nb-O bond in the niobium octahedra (NbO6.

  9. Physical and optical absorption studies of Fe3+ - ions doped lithium borate glasses containing certain alkaline earths

    Science.gov (United States)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P.

    2016-05-01

    Iron ion doped lithium borate glasses with the composition 15RO-25Li2O-59B2O3-1Fe2O3 (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to 6A1g(S) → 4Eg (G) of Fe3+ ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties is discussed.

  10. Spectroscopic properties and luminescence behaviour of europium doped lithium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Anjaiah, J., E-mail: anjaiah.juluru@gmail.com [Department of Physics, The University of Dodoma, Tanzania, East Africa (Tanzania, United Republic of); Department of Physics, Geethanjali College of Engineering and Technology, Keesara, RR Dist., Hyderabad 501 301 (India); Laxmikanth, C. [Department of Physics, The University of Dodoma, Tanzania, East Africa (Tanzania, United Republic of); Veeraiah, N. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, AP. (India)

    2014-12-01

    Li{sub 2}O–MO–B{sub 2}O{sub 3} (MO=ZnO, CaO and CdO) glasses doped with europium are prepared by using the melt quenching technique to study their absorption and luminescence properties to understand their lasing potentialities. The XRD pattern of the glasses confirmed the amorphous nature and the IR spectra reveal the presence of BO{sub 3} and BO{sub 4} units in the glass network. Judd–Ofelt intensity parameters Ω{sub λ} (λ=2, 4, 6) are evaluated from the intensities of various absorption bands of optical absorption spectra. The J–O parameters have been used to calculate transition probabilities (A), lifetime (τ{sub R}), branching ratios (β{sub R}) and stimulated emission cross-section (σ{sub P}) for the {sup 5}D{sub 0}→{sup 7}F{sub J} (J=1–4) transitions of the Eu{sup 3+} ions. The decay from the {sup 5}D{sub 0} level of Eu{sup 3+} ions in these glasses has been measured and analysed. Branching ratios and stimulated emission cross-sections measured for all these glasses show that the {sup 5}D{sub 0}→{sup 7}F{sub 1} transition under investigation has the potential for laser applications. The high stimulated emission cross-section and branching ratios from the present glasses suggests their potential for infra red lasers. The study of the thermoluminescence is also carried out and the data suggests that the CdBEu glass is suitable for thermoluminescence emission output among the three Eu{sup 3+} doped glasses.

  11. Effect of Bi2O3 on spectroscopic and structural properties of Er3+ doped cadmium bismuth borate glasses.

    Science.gov (United States)

    Sanghi, S; Pal, I; Agarwal, A; Aggarwal, M P

    2011-12-01

    Glasses with composition 20CdO·xBi(2)O(3)·(79.5-x)B(2)O(3) (15≤x≤35, x in mol%) containing 0.5 mol% of Er(3+) ions were prepared by melt-quench technique (1150°C in air). The amorphous nature of the glasses was confirmed by X-ray diffraction. The spectroscopic properties of the glasses were investigated using optical absorption spectra and fluorescence spectra. The phenomenological Judd-Ofelt intensity parameters Ω(λ) (λ=2, 4, 6) were determined from the spectral intensities of absorption bands in order to calculate the radiative transition probability (A(R)), radiative life time (τ(R)), branching ratios (β(R)) for various excited luminescent states. Using the near infrared emission spectra, full width at half maxima (FWHM), stimulated emission cross-section (σ(e)) and figure of merit (FOM) were evaluated and compared with other hosts. Especially, the numerical values of these parameters indicate that the emission transition (4)I(13/2)→(4)I(15/2) at 1.506 μm in Er(3+)-doped cadmium bismuth borate glasses may be useful in optical communication.

  12. Self-quenching of spontaneous emission in Sm 3+ doped lead-borate glass

    Science.gov (United States)

    Manoj Kumar, G.; Shivakiran Bhaktha, B. N.; Narayana Rao, D.

    2006-08-01

    The lifetimes of Sm 3+ doped in a binary glass are studied as a function of the complex refractive index of the glass. The local field effect has been taken into account and a real cavity around the emitter is assumed. The results are analyzed in the framework of the quantum electrodynamical equation to obtain a parameter that is related to the radius of cavity around Sm 3+. The knowledge of this parameter is crucial in tailoring the lifetimes and has been found to be 1.48 nm.

  13. Optical characterization of Cu2+ ion-doped zinc lead borate glasses

    Science.gov (United States)

    Thulasiramudu, A.; Buddhudu, S.

    2006-01-01

    We have developed a new series of zinc lead borate (ZLB) glasses by varying ZnO content, to enhance UV transmission, in the chemical composition of xZnO 15PbO (85-x)B2O3, where x=0, 5, 10, 15, 20, 25, 30, 35, 40 and 45 mol% ZnO. From the measurement of UV absorption spectra both the direct and indirect band gaps have been evaluated. Also different physical properties of a reference glass of 45ZnO 15PbO 40B2O3 have been studied. From the measurement of refractive indices at six different wavelengths, Cauchy's constants (A=1.578743209; B=131832.33nm and C=-0.77756×10nm) have been computed and a satisfactory correlation has been achieved between the theoretical and the experimental results. Absorption spectra of Cu2+(45-x)ZnO 15PbO 40B2O3 (where x=0.1, 0.2, 0.5 and 1.0 mol%) have shown two absorption bands at 428 nm (2B1g→2Eg) and 777 nm (2B1g→2B2g). Emission spectra of (1.0 mol%) Cu2+:ZLB have revealed two emission transitions at 400 and 493 nm with excitations at 288 and 316 nm.

  14. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide.

    Science.gov (United States)

    Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B

    2015-12-01

    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters.

  15. Effect of co-doped SnO{sub 2} nanoparticles on photoluminescence of cu-doped potassium lithium borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Namma, Haydar Aboud; Wagiran, H.; Hussin, R.; Ariwahjoedi, B. [Department of Physics, Universiti Teknologi Malaysia, Skudai 81310, Malaysia and Baghdad College of Economic Sciences University (Iraq); Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 31750 Tronoh (Malaysia)

    2012-09-26

    The SnO{sub 2} co-doped lithium potassium borate glasses doped with 0.05, 0.10, 0.25 and 0.50 mol% of Cu were synthesized by the melt quenching technique. The SnO{sub 2} co-dope was added to the compounds in the amounts of 0.05, 0.10, and 0.20 mol%. The photoluminescent spectrum for different concentrations of copper was studied. It was observed that the intensity of blue emission (450, 490 nm) varies with concentration mol%. In addition, with different concentration of SnO{sub 2} to 0.10 mol% Cu, the influence of the luminescence has been observed to enhance intensity and shifted to blue and red (490, 535 nm) emissions.

  16. Physical, thermal, structural and optical absorption studies of vanadyl doped magnesium oxy-chloride bismo-borate glasses

    Directory of Open Access Journals (Sweden)

    M.S. Dahiya

    2015-06-01

    Full Text Available Oxy-chloride bismuth-borate glasses with composition xMgCl2·(30 − xMgO·20Bi2O3·50B2O3 containing 2 mol% doping of V2O5 (x = 12, 15, 20, 25 and 30 are prepared by melt-quenching technique. The structural, thermal and optical behaviors are explained by analyzing the data obtained from density (D, molar volume (Vm, theoretical optical basicity (Λth, differential scanning calorimetry (DSC, FTIR and UV–vis results. A decrease in D and increase in Vm (except for sample MBV3 for which D is maximum on increasing chloride content suggests the formation of non-bridging oxygen atoms. Maximum glass transition temperature (Tg and crystallization temperature (Tx have been observed for sample MBV3. The glass stability (S and stability ratio (S/Tg have been calculated from the values of Tg and Tx and both are having maximum values for sample MBV3. Study of the FTIR spectra in the mid-IR range reveals the presence of both triangular and tetrahedral coordinated boron. The optical studies through UV–vis spectral analysis show non-sharp edge. The optical band gap (Eg is also maximum for sample MBV3.

  17. Investigation of Optical and Luminescence Properties of Soda Lime Borate Glasses Doped with Sm3+ Ion

    Institute of Scientific and Technical Information of China (English)

    FALAK; Zaman; GUL; Rooh; NATTAPON; Srisittipokakun; JACKRAPONG; Kaewkhao

    2016-01-01

    This paper was to investigate the optical and luminescence properties of Sm3+ doped SLB glasses by a melt quenching technique. The optical and luminescence properties of the prepared glass samples were investigated via absorption and photoluminescence spectra, respectively. The related physical and optical parameters were also calculated. From optical absorption measurements, the transition 6H5/2 → 6P3/2 at 403 nm has a higher spectral intensity and is a hypersensitive transition. From photoluminescence spectra, four prominent emission spectra appear. The most intense band is located at 4G5/2 →6H9/2(599 nm), which is the characteristic emission range of Sm3+ ions with the reddish orange color. The experimental decay time of the 4G5/2 level of Sm3+ SLB glasses was determined. The decay time decreases from 1.367 to 0.333 ms with increasing the content of Sm3+. The color coordinates(x, y) of the prepared glasses passes through the reddish-orange region in the CIE 1931 diagram and are suitable for orange LEDs, optoelectronics, and solidstate lighting. The further investigation on the optimization of the dopant content in the SLB glasses was suggested.

  18. Investigation of Optical and Luminescence Properties of Soda Lime Borate Glasses Doped with Sm3+ Ion

    Institute of Scientific and Technical Information of China (English)

    FALAK Zaman; GUL Rooh; NATTAPON Srisittipokakun; JACKRAPONG Kaewkhao

    2016-01-01

    This paper was to investigate the optical and luminescence properties of Sm3+ doped SLB glasses by a melt quenching technique. The optical and luminescence properties of the prepared glass samples were investigatedvia ab-sorption and photoluminescence spectra, respectively. The related physical and optical parameters were also calculated. From optical absorption measurements, the transition6H5/2→6P3/2at 403 nm has a higher spectral intensity and is a hypersensitive transition. From photoluminescence spectra, four prominent emission spectra appear. The most intense band is located at4G5/2→6H9/2(599 nm), which is the characteristic emission range of Sm3+ ions with the reddish orange color. The experimental decay time of the4G5/2 level of Sm3+ SLB glasses was determined. The decay time decreases from 1.367 to 0.333 ms with increasing the content of Sm3+. The color coordinates (x,y) of the prepared glasses passes through the reddish-orange region in the CIE 1931 diagram and are suitable for orange LEDs, optoelectronics, and solid- state lighting. The further investigation on the optimization of the dopant content in the SLB glasses was suggested.

  19. Optical and other spectroscopic studies of lead, zinc bismuth borate glasses doped with CuO

    Science.gov (United States)

    Rajyasree, Ch.; Vinaya Teja, P. Michael; Murthy, K. V. R.; Krishna Rao, D.

    2011-12-01

    10MO·20Bi2O3·(70-x)B2O3·xCuO [M=Pb, Zn] with x=0, 0.4 and 0.8 (wt%) glasses were synthesized by the melt-quenching technique and were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Physical parameters, like density, and spectroscopic studies (optical absorption, EPR, FTIR and photoluminescence) were used to understand the role of modifier oxide and CuO in the glass matrix. A red shift of the absorption band corresponds to 2B1g→2B2g transition of Cu2+ ions from P2 to Z4 samples and the increase of hyperfine splitting factor (A‖) from P2 to Z2 shows that with the integration of PbO by ZnO the electron density around copper ion is increased. It is also supported by the gradual increase in theoretical optical basicity values of ZnO mixed glasses, as compared to that of PbO mixed glass matrix. Reduced bismuth radicals are found in undoped and 0.4% CuO doped glasses of both the series. Analysis of the absorption and emission studies indicates that the concentration of luminescence centers of bismuth ions (Bi3+ ions in UV region) is decreased by the integration of ZnO as well as by increasing the dopant concentration. In lead series PbO4 and BiO3 units are increased from P2 to P4 and in zinc series BiO3 units are decreased from Z0 to Z4. The conductivity of the glass matrices is increased in both the series with the dopant of CuO.

  20. Composition dependent spectroscopic properties of Nd3+ doped sodium lead borate glasses

    Science.gov (United States)

    Mohan, Shaweta; Thind, Kulwant Singh

    2016-05-01

    Nd3+ doped oxide glasses of the type xNa2O-30 PbO-(69.5-x) B2O3-0.5Nd2O3 were prepared and investigated for physical and spectroscopic properties. Optical absorption spectra and Judd-Ofelt theory has been used to determine the oscillator strengths and the intensity parameters Ωλ (λ=2, 4, 6). The radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the fluorescent levels of Nd3+ in the prepared glasses have been determined. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Ω4 / Ω6), the value of which is in the range 0.2-1.5, typical for Nd3+ in different laser hosts. The radiative transition probability of the potential lasing transition 4F3/2 → 4I11/2 of Nd3+ ions is found to increase with increase in content of Na2O.

  1. Spectroscopy and energy transfer in lead borate glasses doubly doped with Dy3+-Tb3+ and Tb3+-Eu3+ ions

    Science.gov (United States)

    Pisarska, Joanna; Kos, Agnieszka; Pisarski, Wojciech A.

    2014-08-01

    Lead borate glasses doubly doped with Dy3+-Tb3+ and Tb3+-Eu3+ were investigated using optical spectroscopy. Luminescence spectra of rare earths were detected under various excitation wavelengths. The main green emission band due to 5D4 → 7F5 transition of Tb3+ is observed under excitation of Dy3+, whereas the main red emission band related to 5D0 → 7F2 transition of Eu3+ is successfully observed under direct excitation of Tb3+. In both cases, the energy transfer processes from Dy3+ to Tb3+ and from Tb3+ to Eu3+ in lead borate glasses occur through a nonradiative processes with efficiencies up to 16% and 18%, respectively. The presence of energy transfer process was also confirmed by excitation spectra measurements.

  2. X-Ray Absorption Spectroscopy Studies of the Atomic Structure of Zirconium-Doped Lithium Silicate Glasses and Glass-Ceramics, Zirconium-Doped Lithium Borate Glasses, and Vitreous Rare-Earth Phosphates

    Science.gov (United States)

    Yoo, Changhyeon

    In the first part of this work, the atomic-scale structure around rare-earth (RE = Pr, Nd, Eu, Dy, and Er) cations (RE3+) in rare-earth sodium ultraphosphate (REUP) glasses were investigated using RE LIII -edge (RE = Nd, Er, Dy, and Eu) and K-edge (RE = Pr and Dy) Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. (RE2O 3)x(Na2O)y(P2O5) 1-x-y glasses in the compositional range 0 ≤ x ≤ 0.14 and 0.3 ≤ x + y ≤ 0.4 were studied. For the nearest oxygen shell, the RE-oxygen (RE-O) coordination number decreases from 10.8 to 6.5 with increasing RE content for Pr-, Nd-, Dy-, and Er-doped sodium ultraphosphate glasses. For Eu-doped samples, the Eu-O coordination number was between 7.5 and 8.8. Also, the RE-O mean distance ranges were between 2.43-2.45 A, 2.40-2.43 A, 2.36-2.38 A, 2.30-2.35 A, and 2.28-2.30 A for Pr-, Nd-, Eu-, Dy-, and Er-doped samples, respectively. In the second part, a series of Zr-doped (3-10 mol%) lithium silicate (ZRLS) glass-ceramics and their parent glasses and a series of Zr-doped (2-6 mol% ZrO2) lithium borate (ZRLB) glasses were investigated using Zr K-edge EXAFS and X-ray Absorption Near Edge Structure (XANES) spectroscopy. Immediate coordination environments of all ZRLS glasses are remarkably similar for different compositions. For the nearest oxygen shell, the Zr-O coordination number ranges were between 6.1 and 6.3 for nucleated and crystallized samples, respectively. Also, the Zr-O mean distance remains similar around 2.10 A. For these glasses, the composition dependence of structural parameters was small. Small changes in the coordination environment were observed for ZRLS glass-ceramics after thermal treatments. In contrast, Zr coordination environment in ZRLB glasses appear to depend appreciably on the Zr concentration. For the nearest oxygen shell, the Zr-O coordination number increased from 6.1 to 6.8 and the Zr-O distance decreased from 2.18 A to 2.14 A with decreasing ZrO2 content.

  3. Laser spectroscopy of rare earth ions in lead borate glasses and transparent glass-ceramics

    Science.gov (United States)

    Pisarski, W. A.; Grobelny, Ł.; Pisarska, J.; Lisiecki, R.; Dominiak-Dzik, G.; Ryba-Romanowski, W.

    2010-03-01

    Rare earth doped lead borate glasses and transparent glass-ceramics have been studied using optical spectroscopy. Based on the absorption, emission and its decay and the Judd-Ofelt calculations, several radiative and laser parameters for Ln 3+ ( Ln = Pr, Nd, Eu, Dy, Er, Tm) were evaluated. The large values of luminescence lifetime, quantum efficiency of excited state and room temperature peak stimulated emission cross-section suggest efficient laser transitions of Ln 3+ ions in lead borate glasses. The obtained results indicate that lead borate glasses and glass-ceramics containing Ln 3+ ions are promising host matrices for solid-state laser applications.

  4. Physical and electrical properties of copper oxide doped bismuth borate glasses

    Science.gov (United States)

    Dhiman, R. L.; Kundu, Virender Singh; Arora, Susheel; Maan, A. S.

    2013-06-01

    The role of CuO on the physical and electrical properties in x CuO.(25-x)Bi2O3.75B2O3;(5≤x≤20) glass system has been investigated. The glasses were prepared by normal melt quench technique. The density and molar volume of the glasses decreases with increase in CuO (mol %). The dc conductivity was measured in the temperature range 413-513 K. The conduction mechanism in these glasses was discussed in terms of small polaron hopping (SPH) theory proposed by Mott. The activation energy is found to decrease with increasing copper oxide content. The dc conductivity increases with increase in CuO content and ranging from 6.02×10-12 (Ωm)-1 to 1.096×10-10 (Ωm)-1 at 450K.

  5. Effect of lead oxide on optical properties of Pr{sup 3+} doped some borate based glasses

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, P.; Rai, S.B.; Rai, D.K

    2004-04-14

    The optical properties of Pr{sup 3+} ions in some borate based glasses with varying concentration of lead oxide have been studied. The concentration of lead oxide has been varied from 0 to 50 mol%. The Judd-Ofelt intensity parameters ({omega}{sub {lambda}}) and other radiative properties for the glasses have been calculated. Variations of Judd-Ofelt intensity parameters are discussed on the basis of structural analysis. It is observed from fluorescence spectra that the fluorescence yield increases with addition of lead oxide and is about five times greater at 40% PbO than that at 0% PbO.

  6. Optical characterization of Mn2+, Ni2+ and Co2+ ions doped zinc lead borate glasses

    Science.gov (United States)

    Thulasiramudu, A.; Buddhudu, S.

    2006-11-01

    This paper reports on the development and optical characterization of heavy metal oxide (HMO)-based transparent glasses in the chemical composition of 15PbO 40B2O3 (45-x) ZnO-x TM2+ (=Mn2+ or Ni2+ or Co2+) (where x=0.2, 0.5 mol%). For these glasses both absorption and emission spectra have been measured, in order to understand their optical performances. The XRD profiles have confirmed their glassy nature and the FTIR spectral features have been analyzed. From the emission spectra, a bright green emission (538 nm) from Mn2+-glasses, an intense red emission (670 nm) from Ni2+ and from Co2+ (625 nm) glasses have been noticed very clearly. Based on the UV-absorption spectra of these materials, both direct and indirect bond gaps have been computed. Apart from the spectral analysis, different physical properties of these glasses have also been carried out. Due to the presence of both PbO and ZnO, these glasses are found to be good moisture-resistant optical systems. Both optical and physical properties have been found to be more encouraging towards their use as novel luminescent optical materials.

  7. Structural study and DC conductivity of vanadyl doped zinc lithium borate glasses

    Science.gov (United States)

    Seema, Khasa, S.; Dahiya, M. S.; Yadav, Arti; Agarwal, A.; Dahiya, S.

    2015-06-01

    Glasses with composition xZnOṡ(30 - x)ṡLi2Oṡ70B2O3 containing 2 mol% of V2O5 (x = 0, 2, 5, 7 and 10) were prepared by standard melt-quench technique. The amorphous nature of the glass samples was confirmed by using x-ray diffraction. The structural changes in these glasses have been investigated by employing IR spectroscopy in the mid-IR range. The infrared spectroscopic analysis confirms the presence of both triangular and tetraheldral coordinated boron units and absence of boroxol ring. It also shows that metal-oxide vibrations are present which are due to the bonding of lithium and zinc ions with oxygen. The dc conductivity was measured in the temperature range 353-523 K. The dc conductivity results show that conductivity decreases and activation energy increases when Li2O is replaced by ZnO, keeping the concentration of B2O3 constant. Decrease in conductivity and increase in activation energy shows that addition of ZnO to the glass matrix shows a "blocking effect" on the overall mobility of alkali ions, but at higher concentration the hopping effect was also observed.

  8. Electrical properties and scaling behaviour of Sm3+ doped CaF2-bismuth borate glasses

    Indian Academy of Sciences (India)

    A A Ali; M H Shaaban

    2011-06-01

    The electrical properties for 20Bi2O3–60B2O3 (20−)–CaF2–Sm2O3 glasses (0 ≤ ≤ 2) were measured in the temperature range 297 K up to 629 K and in the frequency range 0.1–100 kHz. The d.c. and a.c. conductivity values and the dielectric loss (tan ) values were found to increase with increasing Sm2O3 content, whereas the activation energy of conductivities and the dielectric constant decreased. These results were attributed to the introduction of the rare earth ions; promote the formation of a high number of non-bridging oxygen atoms, which facilitate the mobility of charge carriers. The frequency dependence of the a.c. conductivity follows the power law ac() =As . The frequency exponent () values (0.64 < < 0.8) decrease with increasing temperature. This suggested that the a.c. conduction mechanism follows the correlated barrier hopping model (CBH). The dielectric constant (') and dielectric loss (tan values) were found to increase with increasing temperature and increasing Sm2O3 concentration in the glass. The a.c. conductivities as a function of frequency at different temperatures of a given glass superimposed onto a master curve (Roling scaling model). Furthermore, we have performed to scale the data as a function of composition. Two master curves were obtained, which suggested that there are differences in dominant charge carriers between glasses having Sm2O3 concentration ≥1 and glass of Sm2O3 concentration <1.

  9. Structure and properties of rare earth-doped lead borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, W.A. [University of Silesia, Institute of Materials Science, Bankowa 12, 40-007 Katowice (Poland)]. E-mail: wpisarsk@us.edu.pl; Goryczka, T. [University of Silesia, Institute of Materials Science, Bankowa 12, 40-007 Katowice (Poland); Wodecka-Dus, B. [University of Silesia, Department of Materials Science, Sniezna 2, 41-200 Sosnowiec (Poland); PIonska, M. [University of Silesia, Department of Materials Science, Sniezna 2, 41-200 Sosnowiec (Poland); Pisarska, J. [Silesian University of Technology, Department of Materials Science, Krasinskiego 8, 40-019 Katowice (Poland)

    2005-09-15

    Influence of rare earth oxide (Nd{sub 2}O{sub 3}, Er{sub 2}O{sub 3}) addition on structure and glass properties has been investigated in PbO-B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-WO{sub 3} system. With an increasing of rare earth concentration, intensity of OH band drastically decreases and IR transparency is slightly shifted to the longer wavelengths. The ErBO{sub 3} crystalline phase has been identified basing on X-ray diffraction analysis. In opposite to the neodymium oxide, the erbium oxide plays the role as glass-modifier and influences on BO{sub 3} {r_reversible} BO{sub 4} conversion, what was stated by infrared spectroscopy.

  10. Effect of ZnSe and CdSe nanoparticles on the fluorescence and optical band gap of Sm3+ doped lead borate glasses

    Science.gov (United States)

    Fatokun, Stephen O.

    For the first part of this work, we prepared a series of Sm-doped lead borate (PbO-B2O3) glasses containing zinc selenide (ZnSe) and cadmium selenide (CdSe) nanoparticles (NPs) and studied the Sm 3+ fluorescence by varying the glass composition and size of the NPs. We have chosen these heavy metal oxide glasses to incorporate Sm3+ ions because they have large glass forming region, high refractive index, and good physical and thermal stability. Lead borate glasses with the following compositions xPbO:(96.5-x)B2O 3:0.5Sm2O3:3ZnSe/CdSe, x=36.5 and 56.5 mol%) are prepared using the melt-quenching method. Transmission electron microscopy characterization was done to confirm both nucleation and growth of the NPs for different annealing times. Fluorescence spectra of these samples are obtained with the excitation wavelengths at 403 and 477nm. Three fluorescence transitions are observed at 563 nm, 598 nm and 646 nm. The transition at 646 nm is a electric dipole (ED) transition that strongly depends on the covalency of the Sm-O bond and the asymmetry of the crystal field at the Sm3+ site. The 646 nm/598 nm fluorescence intensity ratio has been studied for different annealing times and PbO concentration for both ZnSe and CdSe samples. Longer annealing times tend to make the crystal field at the Sm3+ site more symmetric in nature for these glasses. The presence of CdSe NPs is seen to produce the greatest influence on the fluorescence intensity ratio. This is believed to be due to the larger size of the CdSe nanoparticles and its stronger influence on Sm3+ ions. The second part of this work was dedicated to the understanding of the optical band gap of samarium doped lead borate glasses with and without ZnSe/CdSe NPs. Optical absorption spectra for all these glass samples show their absorption edge in the ultraviolet region. Detailed analysis of the absorption edge was carried out using the Mott-Davis model and the optical band gap and the width of the tail in the band gap

  11. Bioactive borate glass coatings for titanium alloys.

    Science.gov (United States)

    Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F

    2008-09-01

    Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.

  12. Intense white light luminescent Dy3+ doped lithium borate glasses for W-LED: A correlation between physical, thermal, structural and optical properties

    Science.gov (United States)

    Pawar, P. P.; Munishwar, S. R.; Gedam, R. S.

    2017-02-01

    In this article the physical, thermal structural and optical properties of Dy3+ doped lithium borate glasses have been studied for white LED application. The emission spectra shows two intense emission bands at around 483 nm and 574 nm corresponds to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions along with one feeble band at 663 nm corresponds to 4F9/2 → 6H11/2 transition. The average lifetime of Dy3+ were found to be about 2.95 and 4.94 ns for blue and yellow emission bands respectively. CIE chromaticity diagram shows glass LBD-4 containing 0.5 mol% Dy2O3 with colour co-ordinates x = 0.33 and y = 0.37 have highest emission intensity. These glasses having emission in the white region and thus can be used for bright white LED's and modern white LED bulbs.

  13. Structural relaxation in bismuth and lead borate glasses

    Science.gov (United States)

    Bajaj, Anu; Khanna, Atul

    2012-06-01

    Bismuth and lead borate glasses were prepared by melt quench technique. Effects of heat treatment on the density and thermal properties of bismuth and lead borate glasses was studied by annealing the glasses at 350°C for 500 h. Density of all bismuth borate glasses increases by about 0.5-0.7% with annealing and the effect is more in glasses with higher Bi2O3 concentration. In bismuth borate glasses with 50 and 55 mol % Bi2O3 we found an extraordinary large increase of Tg by 15°C after thermal annealing. All bismuth borate glasses remained completely clear and transparent on annealing. Lead borate glasses become cloudy on thermal annealing indicating occurrence of phase separation in these glasses.

  14. Optical absorption and fluorescence properties of $Er^{3+}$ in sodium borate glass

    OpenAIRE

    Ratnakaram, YC; J.Lakshmi; Chakradhar, RPS

    2005-01-01

    Spectroscopic properties of $Er^{3+}$ ions in sodium borate glass have been studied. The indirect and direct optical band gaps $(E_{opt})$ and energy level parameters (Racah $(E^{1}, E^{2} and E^{3})$, spin-orbit $(\\xi_{4f})$ and configurational interaction (\\alpha)) are evaluated. Spectral intensities for various absorption bands of $Er^{3+}$ doped sodium borate glass are calculated. Using Judd-Ofelt intensity parameters $(\\Omega_{2},\\Omega_{4}, \\Omega_{6})$, radiative transition probabiliti...

  15. Devitrification properties of lead borate glasses

    Science.gov (United States)

    Bajaj, Anu; Khanna, Atul; Krishnan, K.; Aggarwal, Suresh K.

    2013-06-01

    Lead borate glasses containing 30 to 60 mol% PbO were prepared by melt quenching technique and devitrified by long duration heat treament in the supercooled region. Glasses crystallized on heating above their glass transition temperature, and the crystalline phases produced on devitrification were characterized by XRD and DSC analyses. Glass with 30 mol% PbO slowly formed a solid solution of Pb6B10O21 and Pb5B8O17 crystalline phases, while glasses with 40 and 50 mol% PbO formed a mixture of Pb6B10O21, Pb5B8O17 and the remanent glassy phase. Glasses with higher PbO concentration of 56 to 60 mol% devitrified completely and produced only Pb5B8O17 crystalline phase. Lead borate glasses with PbO concentration of 40 to 50 mol% showed maximum thermal stability against devitrification, the ease of crystallization of glasses was correlated with the fraction of tetrahedral borons in them.

  16. Luminescent borate glass for efficiency enhancement of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Steudel, Franziska, E-mail: franziska.steudel@iwmh.fraunhofer.de [Fraunhofer Application Center for Inorganic Phosphors, Branch Lab of Fraunhofer Institute for Mechanics of Materials IWM, Lübecker Ring 2, 59494 Soest (Germany); Loos, Sebastian [Department of Electrical Engineering, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest (Germany); Ahrens, Bernd; Schweizer, Stefan [Fraunhofer Application Center for Inorganic Phosphors, Branch Lab of Fraunhofer Institute for Mechanics of Materials IWM, Lübecker Ring 2, 59494 Soest (Germany); Department of Electrical Engineering, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest (Germany)

    2015-08-15

    Rare-earth (RE) doped borate glasses are investigated for their potential as photon down-shifting cover glass for CdTe solar cells. The barium borate base glass is doped with trivalent rare-earth ions such as Sm{sup 3+}, Eu{sup 3+}, and Tb{sup 3+} showing an intense luminescence in the red (Sm{sup 3+}, Eu{sup 3+}) and green (Tb{sup 3+}) spectral range upon excitation in the ultraviolet and blue. Additionally, the glasses are double-doped with two RE ions for a broad-band absorption. The gain in short-circuit current density of CdTe solar cells with different thicknesses of the CdS buffer layer is calculated. Though the single-doped glasses already reveal a slight increase in short-circuit current density, the double-doped glasses allow for higher efficiency gains since a significant broader spectral range is covered for absorption. For a Tb{sup 3+}/Eu{sup 3+} double-doped glass with a RE doping level of 1 at% each, an efficiency increase of 1.32% can be achieved. - Highlights: • Rare-earth doped front glass for high efficiency CdTe solar cells were prepared. • Double-doping allows for higher efficiency gains than single-doping. • Efficiency enhancement of 1.32% can be achieved with Tb{sup 3+}/Eu{sup 3+} doped front glass.

  17. Interfacial reactions between titanium and borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K. [Sandia National Labs., Albuquerque, NM (United States); Saha, S.K.; Goldstein, J.I. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Materials Science

    1992-12-31

    Interfacial reactions between melts of several borate glasses and titanium have been investigated by analytical scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). A thin titanium boride interfacial layer is detected by XPS after short (30 minutes) thermal treatments. ASEM analyses after longer thermal treatments (8--120 hours) reveal boron-rich interfacial layers and boride precipitates in the Ti side of the interface.

  18. Structure and Properties of Compressed Borate Glasses

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Bauer, U.; Behrens, H.;

    in a series of borate glasses. Upon isostatic compression, NMR experiments show that the fraction of tetrahedral boron increases, leading to an overall decrease of the molar volume of the network. We correlate these structural changes with changes in elastic moduli from Brillouin scattering experiments......While the influence of thermal history on the structure and properties of glasses has been thoroughly studied in the past century, the influence of pressure history has received considerably less attention. In this study, we investigate the pressure-induced changes in structure and properties...

  19. Luminescence behavior of Dy 3+ ions in lead borate glasses

    Science.gov (United States)

    Pisarska, Joanna

    2009-10-01

    Dy-doped lead borate glasses were studied. The luminescence spectra showed two characteristic bands at 480 and 573 nm due to 4F 9/2- 6H 15/2 (blue) and 4F 9/2- 6H 13/2 (yellow) transitions of Dy 3+. The yellow/blue luminescence of trivalent dysprosium was analyzed as a function of the B 2O 3/PbO ratios, the activator (Dy 3+) and the PbX 2 (X = F, Cl, Br) content.

  20. Towards modeling gadolinium-lead-borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rada, S., E-mail: Simona.Rada@phys.utcluj.ro [Department of Physics, Technical University of Cluj-Napoca, 400641 Cluj-Napoca (Romania); Ristoiu, T. [Department of Physics, Technical University of Cluj-Napoca, 400641 Cluj-Napoca (Romania); Rada, M. [Department of Mechatronic, Technical University of Cluj-Napoca, 400641 Cluj-Napoca (Romania); Coroiu, I. [Department of Physics, Technical University of Cluj-Napoca, 400641 Cluj-Napoca (Romania); Maties, V. [Department of Mechatronic, Technical University of Cluj-Napoca, 400641 Cluj-Napoca (Romania); Culea, E. [Department of Physics, Technical University of Cluj-Napoca, 400641 Cluj-Napoca (Romania)

    2010-01-15

    Infrared spectra of gadolinium-lead-borate glasses of the xGd{sub 2}O{sub 3}.(100 - x)[3B{sub 2}O{sub 3}.PbO] system, where x = 0, 5, 10, 15, 25, 35 and 50 mol.%, have been recorded to explore the role of content of gadolinium ions behaving as glass modifier. The FTIR spectroscopy data for the xGd{sub 2}O{sub 3}.(1 - x)[3B{sub 2}O{sub 3}.PbO] glasses show the structural role of lead ions as a network-formers and of the gadolinium ions network modifiers. Adding of the rare earth ion up to 35 mol.% into the glass matrix, the IR bands characteristic to the studied glasses become sharper and more pronounced. Structural changes, as recognized by analyzing band shapes of IR spectra, revealed that Gd{sub 2}O{sub 3} causes a change from the continuous borate network to the continuous lead-borate network interconnected through Pb-O-B and B-O-B bridges and the transformation of some tetrahedral [BO{sub 4}] units into trigonal [BO{sub 3}] units. Then, gadolinium ions have affinity towards [BO{sub 3}] structural units which contain non-bridging oxygens necessary for the charge compensation because the more electronegative [BO{sub 3}] structural units were implied in the formation of B-O-Gd bonds and the transformation of glass network into a glass ceramic. We propose a possible structural model of building blocks for the formation of continuous random 3B{sub 2}O{sub 3}.PbO network glass used by density functional theory (DFT) calculations. DFT calculations show that lead atoms occupy three different sites in the proposed model. The first is coordinated with six oxygen atoms forming distorted octahedral geometries. The second lead atom has an octahedral oxygen environment and the five longer Pb-O bonds are considered as participating in the metal coordination scheme. The third lead atom has ionic character. In agreement with the results offered by the experimental FTIR data, the theoretical IR data confirm that our proposed structure is highly possible.

  1. Role of PbO in EPR, optical properties and DC conductivity of vanadyl-doped alkali lead borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gahlot, P.S. [Department of Physics, Maharshi Dayanand University, Rohtak 124001 (India); Seth, V.P. [Department of Physics, Maharshi Dayanand University, Rohtak 124001 (India); Agarwal, A. [Department of Applied Physics, Guru Jambheshwar University, Hisar 25001 (India)]. E-mail: aagju@yahoo.com; Sanghi, S. [Department of Applied Physics, Guru Jambheshwar University, Hisar 25001 (India); Chand, P. [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Goyal, D.R. [Department of Physics, Maharshi Dayanand University, Rohtak 124001 (India)

    2005-01-31

    Glasses with composition xM{sub 2}O (0.30-x) PbO 0.70 B{sub 2}O{sub 3} (M=Li, K) containing 2.0mol% of V{sub 2}O{sub 5} have been prepared in the range 0.00=glasses have been studied. Spin Hamiltonian parameters (SHPs), dipolar hyperfine parameter, P and Fermi contact interaction parameter, K and molecular orbital coefficients ({alpha}2 and {gamma}2) have been calculated. In these glasses there is an increase in the tetragonality of the V{sup 4+}O{sub 6} complex and the 3dxy orbit expands with an increase in the M{sub 2}O:PbO ratio. Values of the theoretical optical basicity, {lambda}{sub th}, have also been reported. Optical band gap increases with decrease in PbO content. For x>0.02, the DC conductivity of these glasses increases and activation energy decreases.

  2. The effect of Ce3+ ions on the spectral and decay characteristics of luminescence phosphate-borate glasses doped with rare-earth ions

    Science.gov (United States)

    Valiev, D. T.; Polisadova, E. F.; Belikov, K. N.; Egorova, N. L.

    2014-05-01

    The luminescent characteristics of Li2O-B2O3-P2O5-CaF2 (LBPC) glasses doped with Gd3+ and Tb3+ ions and codoped with Ce3+ are studied by pulsed optical spectrometry under electron beam excitation. It is found that in glass with Ce3+ and Gd3+ ions a decrease in the decay time of gadolinium luminescence in the 312-nm band (6 P J → 8 S 7/2) was observed. It is shown that in the glass LBPC: Tb, Ce, an increase in the emission intensity in the main radiative transitions in terbium ion was observed. In the kinetics of luminescence band 545 nm of LBPC: Tb, Ce glasses, is present stage of buildup, the character of which changes with the doped of Ce3+ ions. The mechanism of energy transfer in LBP glasses doped with rare elements is discussed.

  3. Mixed polaronic-ionic conduction in lithium borate glasses and glass-ceramics containing copper oxide

    Science.gov (United States)

    Khalil, M. M. I.

    2007-03-01

    The effect of electric field strength on conduction in lithium borate glasses doped with CuO with different concentration was studied and the value of the jump distance of charge carrier was calculated. The conductivity measurements indicate that the conduction is due to non-adiabatic hopping of polarons and the activation energies are found to be temperature and concentration dependent. Lithium borate glasses are subjected to carefully-programmed thermal treatments which cause the nucleation and growth of crystalline phases. X-ray diffraction analysis confirmed the amorphous nature for the investigated glass sample and the formation of crystalline phase for annealed samples at 650 °C. The main separated crystalline phase is Li2B8O13. The scanning electron micrographs of some selected glasses showed a significant change in the morphology of the films investigated due to heat treatment of the glass samples. It was found that the dc-conductivity decreases with an increase of the HT temperature. The decrease of dc conductivity, with an increase of the HT temperature, can be related to the decrease in the number of free ions in the glass matrix. There is deviation from linearity at high temperature regions in the logσ-1/T plots for all investigated doped samples at a certain temperature at which the transition from polaronic to ionic conduction occurs. The hopping of small polarons is dominant at low temperatures, whereas the hopping of Li+ ions dominates at high temperatures.

  4. Mixed polaronic-ionic conduction in lithium borate glasses and glass-ceramics containing copper oxide

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M.M.I. [National Center for Radiation Research and Technology, Radiation Physics Department, Cairo (Egypt)

    2007-03-15

    The effect of electric field strength on conduction in lithium borate glasses doped with CuO with different concentration was studied and the value of the jump distance of charge carrier was calculated. The conductivity measurements indicate that the conduction is due to non-adiabatic hopping of polarons and the activation energies are found to be temperature and concentration dependent. Lithium borate glasses are subjected to carefully-programmed thermal treatments which cause the nucleation and growth of crystalline phases. X-ray diffraction analysis confirmed the amorphous nature for the investigated glass sample and the formation of crystalline phase for annealed samples at 650 C. The main separated crystalline phase is Li{sub 2}B{sub 8}O{sub 13}. The scanning electron micrographs of some selected glasses showed a significant change in the morphology of the films investigated due to heat treatment of the glass samples. It was found that the dc-conductivity decreases with an increase of the HT temperature. The decrease of dc conductivity, with an increase of the HT temperature, can be related to the decrease in the number of free ions in the glass matrix. There is deviation from linearity at high temperature regions in the log{sigma}-1/T plots for all investigated doped samples at a certain temperature at which the transition from polaronic to ionic conduction occurs. The hopping of small polarons is dominant at low temperatures, whereas the hopping of Li{sup +} ions dominates at high temperatures. (orig.)

  5. Spectroscopic studies of lead halo borate glasses

    Science.gov (United States)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md.

    2015-06-01

    Glasses in the system xPbF2-(30-x) PbO-69B2O3-1CuO (x=5, 10, 15, 20, & 25 mole %) were prepared by melt quenching method and they are characterized by XRD to confirm the glassy nature. Electron Paramagnetic Resonance (EPR) studies at room temperature in the X-band frequencies and FTIR studies on prepared glass systems were reported. The non-linear variation of spin-Hamiltonian parameters with PbF2 content indicated the change in the ligand field strength around Cu2+ ions in the host glass. The ground state of Cu2+ ions in the glass is designated as dx2-y2 orbital (2B1g) while the observed symmetry around it is tetragonally distorted octahedral. The molecular orbital coefficients α2, β2 and β12 are evaluated for Cu2+ doped samples. From the FTIR studies it was observed that the glass made up of BO3 and BO4 units.

  6. Glass-Forming Ability of Soda Lime Borate Liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, J.C.; Smedskjær, Morten Mattrup;

    2012-01-01

    We investigate the composition dependence of glass-forming ability (GFA) of a series of iron-containing soda lime borate liquids by substituting Na2O for B2O3. We have characterized GFA by measuring the glass stability against crystallization using a differential scanning calorimeter (DSC......). The results show that the GFA decreases when substituting Na2O for B2O3. Moreover, we find that there is no direct link between the kinetic fragility and GFA for the soda lime borate series studied herein. We have also discovered and clarified a striking thermal history dependence of the glass stability...

  7. Barium-borate-flyash glasses: As radiation shielding materials

    Science.gov (United States)

    Singh, Sukhpal; Kumar, Ashok; Singh, Devinder; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The attenuation coefficients of barium-borate-flyash glasses have been measured for γ-ray photon energies of 356, 662, 1173 and 1332 keV using narrow beam transmission geometry. The photon beam was highly collimated and overall scatter acceptance angle was less than 3°. Our results have an uncertainty of less than 3%. These coefficients were then used to obtain the values of mean free path (mfp), effective atomic number and electron density. Good agreements have been observed between experimental and theoretical values of these parameters. From the studies of the obtained results it is reported here that from the shielding point of view the barium-borate-flyash glasses are better shields to γ-radiations in comparison to the standard radiation shielding concretes and also to the ordinary barium-borate glasses.

  8. Optical properties of neodymium doped lanthanum scandium borate

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Won Kweon [Hanseo University, Seosan (Korea, Republic of); Kim, Tae Hoon; Yu, Young Moon [Korea Photonics Technology Institute, Kwangju (Korea, Republic of)

    2001-11-15

    Optical characteristics of neodymium doped lanthanium scandium borate, newly developed crystal, was investigated. Technical description of crystal growth and its dependence on optical property were investigated with comparison to other laser crystals. Its potential as commercial laser crystal for microchip laser fabrication was observed with fundamental lasing experiments. It was possible for lanthanium scandium borate to be highly doped with neodymium ion without crystal defect, and it is an advantage for microchip laser host material. The laser operation was investigated in the fundamental with microchip system.

  9. Optimization of spectroscopic properties of ytterbium-doped laser glasses

    Institute of Scientific and Technical Information of China (English)

    姜淳[1; 张俊洲[2; 邓佩珍[3; 黄国松[4; 毛涵芬[5; 干福熹[6

    1999-01-01

    Four laser glasses with high emission cross sections are experimentally obtained. The laser performance parameters are determined from the spectroscopic parameters of these glasses and compared with those of developing laser glasses abroad. It is shown that Yb3--doped telluorogermanate, Yb3+-doped niobosilicate glasses have the highest emission cross section and gain coefficient, the smallest minimum pumping intensity and saturation pumping intensity, and the lowest minimum fraction of excited ions. Yb3+-doped borate glass follows just behind them. These glasses have some spectroscopic advantages over laser glasses developed recently elsewhere. Yb3+-doped phosphate glass is comparable to phosphate laser glass which had high emission cross section and was developed recently by HOYA Corporation in Japan.The domestic glasses with optimum spectroscopic properties may be promising candidates for applications in high-average power and high-peak power solid state lasers, especially laser for the ne

  10. Nuclear quadrupole resonance of boron in borate glasses

    Science.gov (United States)

    Gravina, Samuel J.; Bray, Phillip J.

    A continuous wave nuclear quadrupole resonance spectrometer that has a high sensitivity even at low frequencies has been built. Boron and aluminum NQR has been detected in the region 200 kHz to 1.4 MHz. For the first time, boron NQR has been detected in a glass. The NQR spectrum of pure B 20 3 glass is consistent with 85 ± 2% of the boron atoms belonging to boroxol rings. In sodium borate glasses, the number of borons in boroxol rings decreases with increasing sodium content, until when sodium oxide comprises 20 mol% of the glass less than 2% of the borons are in boroxol rings.

  11. Optical absorption and fluorescence properties of Er3+ in sodium borate glass

    Indian Academy of Sciences (India)

    Y C Ratnakaram; J Lakshmi; R P S Chakradhar

    2005-08-01

    Spectroscopic properties of Er3+ ions in sodium borate glass have been studied. The indirect and direct optical band gaps (opt) and energy level parameters (Racah (1, 2 and 3), spin-orbit (4f) and configurational interaction ()) are evaluated. Spectral intensities for various absorption bands of Er3+ doped sodium borate glass are calculated. Using Judd–Ofelt intensity parameters (2, 4, 6), radiative transition probabilities (), branching ratios () and integrated absorption cross sections ( ) are reported for certain transitions. The radiative lifetimes (R) for different excited states are estimated. From the fluorescence spectra, the emission cross section (p) for the transition, ${}^{4}I_{13/2} \\rightarrow {}^{4}I_{15/2}$ is reported.

  12. Mixed alkali effect in borate glasses - electron paramagnetic resonance and optical absorption studies in Cu sup 2 sup + doped xNa sub 2 O- (30 - x)K sub 2 O- 70B sub 2 O sub 3 glasses

    CERN Document Server

    Chakradhar, R P S; Rao, J L; Ramakrishna, J

    2003-01-01

    The mixed alkali borate glasses xNa sub 2 O-(30 - x)K sub 2 O-70B sub 2 O sub 3 (5 sup sup 2 B sub 2 sub g) and a weak band on the higher energy side at 22 115 cm sup - sup 1 corresponding to the transition ( sup 2 B sub 1 sub g -> sup 2 E sub g). With x > 5, the higher energy band disappears and the lower energy band shifts slightly to the lower energy side. By correlating the EPR and optical absorption data, the molecular orbital coefficients alpha sup 2 and beta sub 1 sup 2 are evaluated for the different glasses investigated. The values indicate that the in-plane sigma bonding is moderately covalent while the in-plane pi bonding is significantly ionic in nature; these exhibit a minimum with x = 15, showing the MAE. The theoretical values of optical basicity of the glasses have also been evaluated. From optical absorption edges, the optical bandgap energies have been calculated and are found to lie in the range 3.00-3.40 eV. The physical properties of the glasses studied have also been evaluated with respe...

  13. FTIR of binary lead borate glass: Structural investigation

    Science.gov (United States)

    Othman, H. A.; Elkholy, H. S.; Hager, I. Z.

    2016-02-01

    The glass samples were prepared according to the following formula: (100-x) B2O3 - x PbO, where x = 20-80 mol% by melt quenching method. The density of the prepared samples was measured and molar volume was calculated. IR spectra were measured for the prepared samples to investigate the glass structure. The IR spectra were deconvoluted using curves of Gaussian shape at approximately the same frequencies. The deconvoluted data were used to study the effect of PbO content on all the structural borate groups. Some structural parameters such as density, packing density, bond length and bond force constant were theoretically calculated and were compared to the obtained experimental results. Deviation between the experimental and theoretically calculated parameters reflects the dual role of PbO content on the network of borate glass.

  14. VO 2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques

    Science.gov (United States)

    Prakash, P. Giri; Rao, J. Lakshmana

    2005-09-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B 2O 3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO 2+ ions. The values of spin-Hamiltonian parameters indicate that the VO 2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C 4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V 2O 5 content and temperature but changing with ZnO content. The decrease in Δ g∥/Δ g⊥ value with increase in ZnO content indicates that the symmetry around VO 2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V 2O 5 is attributed to a fall in the ratio of the number of V 4+ ions ( N4) to the number of V 5+ ions ( N5). The number of spins ( N) participating in resonance was calculated as a function of temperature for VO 2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/ χ- T graph. The optical absorption spectra show single absorption band due to VO 2+ ions in tetragonally distorted octahedral sites.

  15. Study of structural and spectroscopic behavior of Sm3+ ions in lead-zinc borate glasses containing alkali metal ions

    Science.gov (United States)

    Sasi Kumar, M. V.; Babu, S.; Rajeswara Reddy, B.; Ratnakaram, Y. C.

    2017-02-01

    High luminescence behavior of rare earth inorganic glasses have a variety of uses in the industry. In the past few decades, rare earth ions with characteristic photonics applications are being hosted by heavy metal oxide glasses. Among the rare earth ions Sm3+ ion has features which make it apt for high density optical storage. The authors of the paper have experimented to synthesize Sm3+ doped glasses. In this regard a new series of borate glasses doped with 1 mol% Sm3+ ion are developed by using melt-quenching technique. XRD, FTIR, optical absorption, luminescence techniques are used to study the various characteristics of Sm3+ ion in the present glass matrices. The XRD spectra confirms the amorphous nature of glasses. Further, the researchers have used differential thermal analysis to study the glass transition temperature. The structural groups in the prepared glasses are studied using Fourier transform infrared spectra. From the measurement of its optical absorption, three phenomenological Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6) have been computed. Based on these Judd-Ofelt intensity parameters, radiative properties such as radiative probabilities (Arad), branching ratios (β), and radiative life time (τR) are calculated. The excitation spectra of Sm3+ doped lithium heavy metal borate glass matrix is recorded under the emission wavelength of 600 nm. The emission spectra are recorded under 404 nm excitation wavelength. From various emission transitions, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 bands could be of interest for various applications. The decay profiles of 4G5/2 level exhibit single exponential nature in all the prepared glass matrices. The potassium glass matrix exhibits higher quantum efficiency than the other glass matrices. Finally, by going through these several spectroscopic characterizations, it is concluded that the prepared Sm3+ doped lead-zinc borate glasses might be useful for visible light applications.

  16. Elastic Behavior of Borate Glasses Containing Lead and Bismuth Oxides

    Directory of Open Access Journals (Sweden)

    Mehrdad Khanisanij

    2014-01-01

    Full Text Available PbO and Bi2O3 binary borate glasses with different compositions, (MOX(B2O31−X (M = Pb, Bi, have been characterized and ultrasonic velocity as well as density is taken into account. In addition, the results have been compared with those of Ag, K, and Li oxide borate glasses from others. The ultrasonic velocities (both longitudinal and transverse and density for (PbOX(B2O31−X and (Bi2O3X(B2O31−X have been measured accurately and elastic moduli as well as hardness and Poisson’s ratio was determined. It has been demonstrated that density and ultrasonic velocities are enhanced by increasing PbO and Bi2O3 molar fraction with different values for each borate glass composition. However, the enhancement of ultrasonic velocities did not carry on continuously and after reaching a maximum point, they fell down dramatically. Both PbO and Bi2O3 showed almost similar glass improvement in case of density, ultrasonic velocity, and elastic moduli.

  17. SYNTHESIS, STRUCTURE AND SPECTRAL PROPERTIES OF POTASSIUMALUMINA- BORATE GLASS WITH NANOCRYSTALS OF MANGANESE FERRITE

    Directory of Open Access Journals (Sweden)

    D. I. Sobolev

    2016-07-01

    Full Text Available Subject of Research.The paper presents research results of optical properties of potassium-alumina-borate glass, activated with ions of iron and manganese. The formation process of nanocrystals of manganese ferrite MnFe2O4 in potassium-alumina-borate glass host was studied. Magneto-optical characteristics were analyzed. Method. The studied glasses were synthesized by the method of charge melting in the crucible. Potassium-alumina-borate glass system was used (K2O-Al2O3-B2O3 proposed by S.A. Stepanov (Vavilov State Institute. Glass system was doped by 3 wt% of Fe2O3 and 2 wt% MnO by weight (composition 1 and 2 wt% Fe2O3 and 1 wt% MnO by weight (composition 2. The glass transition temperature was 430 °C. Segregating of the crystal phase of manganese ferrite MnFe2O4 occurred during heat treatment at 550 °C for 2 hours in a programmable muffle furnace. The absorption spectrum in the wavelength range 200-2000 nm was recorded with Perkin Elmer Lambda 650 and Varian Cary 500 spectrophotometers. The XRD patterns were obtained on Rigaku Ultima IV X-ray diffractometer by copper anode with a wavelength λ (Cu = 0.15418 nm. Magneto-optical Verde constant was measured by the angle of polarization plane rotation of the passing light through the sample when the sample is placed in magnetic field. Main Results. New technological modes of potassium-alumina-borate glass synthesis doped with ions of iron and manganese were developed and studied. It is established that during heat treatment nanocrystals of manganese ferrites are evolved with an average size of 18 nm. These glasses have a Verde constant equal to 0.9 arc.min/(cm·Oe. It is shown that obtained glasses possess high absorbance in ultra-violet and visible light spectrum. Practical Relevance. Proposed and analyzed nanoglass-ceramics could be accepted as a basis for creation of sensing environments for sensors current and magnetic field and for creation of optical isolators based on the Faraday effect.

  18. Visible luminescence of dysprosium ions in oxyhalide lead borate glasses

    Science.gov (United States)

    Pisarska, Joanna; Żur, Lidia; Pisarski, Wojciech A.

    2011-08-01

    Visible luminescence of Dy 3+ ions in oxyhalide lead borate glasses was examined. Luminescence spectra show two intense bands at 480 nm and 573 nm due to 4F 9/2 → 6H 15/2 (blue) and 4F 9/2 → 6H 13/2 (yellow) transitions of Dy 3+. Luminescence decays from 4F 9/2 state and yellow-to-blue luminescence intensity ratios (Y/B) were analysed with PbX 2 (X = F, Cl) content. An introduction of PbX 2 to the borate glass results in the increasing of 4F 9/2 lifetime and the decreasing of yellow-to-blue luminescence intensity ratio, which is due to reduction of covalency between Dy 3+ and O 2-/X - ions.

  19. Laser spectroscopy of Nd 3+ and Dy 3+ ions in lead borate glasses

    Science.gov (United States)

    Pisarska, Joanna; Pisarski, Wojciech A.; Ryba-Romanowski, Witold

    2010-07-01

    The spectroscopic and laser properties of Nd 3+ and Dy 3+ ions in lead borate glass were studied. Luminescence spectra recorded in the near-infrared and visible ranges correspond to 4F 3/2- 4I J/2 ( J=9, 11, 13) transitions of Nd 3+ and 4F 9/2- 6H J/2 ( J=11, 13, 15) transitions of Dy 3+, respectively. Luminescence decay curves were analyzed as a function of activator concentration. Luminescence quenching is observed, which is due to Ln-Ln interaction increasing. Several spectroscopic parameters relevant to laser potential of Ln 3+ ions (Ln=Nd, Dy) in lead borate glass were determined. The relatively large values of the quantum efficiency and the room-temperature emission cross-section for the 4F 3/2- 4I 11/2 transition of Nd 3+ at 1061 nm and the 4F 9/2- 6H 13/2 transition of Dy 3+ at 573 nm imply that Ln-doped lead borate glasses can be considered as promising solid-state materials for laser applications.

  20. Effect of copper oxide on structure and physical properties of lithium lead borate glasses

    Science.gov (United States)

    Kashif, I.; Ratep, A.

    2015-09-01

    Copper-doped Lead lithium borate glass samples with the composition of (35- x) Pb3O4- xCuO-65Li2B4O7, where x = 5, 10, 15 or 20 mol%, have been prepared by melt quenching technique. Glass-forming ability, density, electrical conductivity, magnetic susceptibility and structural properties of lead lithium borate glasses have been investigated. IR spectroscopic data show that the copper ions play the role of glass modifier. Addition of CuO influences BO3 ↔ BO4 conversion. Density is expressed in terms of the structural modifications that take place in glass matrix. The increase in Tg reflects an increase in bond strength, and samples obtain more rigid glass structure. Electrical conductivity and magnetic susceptibility χ data show a variable behavior with the increase in the copper content in two valance states Cu+ and Cu+2. In addition, optical properties depend on the change of the role of copper ions in the samples' structure. Optical energy band gap E opt and Urbach energy E tail are determined. The increase in E opt and UV cutoff with an increase in CuO content is due to the decrease in non-bridging oxygen concentration. The decrease in E tail at higher concentrations is attributed to the copper ion accumulation in the interstitial positions and to the formation of orthoborate groups. These samples are suitable for the green light longpass filters.

  1. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system.

    Science.gov (United States)

    Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made.

  2. Structural properties of molybdenum-lead-borate glasses

    Science.gov (United States)

    Rada, M.; Rada, S.; Pascuta, P.; Culea, E.

    2010-11-01

    Glasses and glass ceramics in the system xMoO 3·(100 - x)[3B 2O 3·PbO] with 0 ≤ x ≤ 30 mol% have been prepared from melt quenching method and characterized by means of X-ray diffraction, FTIR, UV-VIS and EPR spectroscopy. We have examined and analyzed the effects of systematic molybdenum ions intercalation on lead-borate glasses and glass ceramics with interesting results. The observations present in these mechanisms show the lead ions bonded ionic have a strong affinity towards [BO 3] units containing non-bridging oxygens and [MoO 4] 2- molybdate units. The pronounced affinity towards molybdate anions yields the formation of the PbMoO 4 crystalline phase. Then, the excess of oxygen can be supported into the glass network by the formation of [MoO 6] and [Mo 2O 7] structural units. Pb 2+ ions with 6s 2 configuration show strong absorption in the ultraviolet due to parity allowed s 2-sp transition and yield an absorption band centered at about 310 nm. The changes in the features of the absorption bands centered at about 310 nm can be explained as a consequence of the appearance of additional absorption shoulder due to photoinduced color centers in the glass such as the formation of borate-molybdate and lead-molybdate paramagnetic defect centers in the glasses. The concentration of molybdenum ions influences the shape and width of the EPR signals located at g ˜ 1.86, 1.91 and 5.19. The microenvironment of molybdenum ions in glasses is expected to have mainly sixfold coordination. However, there is a possibility of reduction of a part of molybdenum ions from the Mo 6+ to the Mo 5+ and Mo 4+ to the Mo 3+ states.

  3. Structure-property relations in lanthanide borate glasses

    Science.gov (United States)

    Chakraborty, I. N.; Day, D. E.; Lapp, J. C.; Shelby, J. E.

    1985-01-01

    Glass formation in the system Ln2O3-B2O3 (Ln = Nd, Sm) was studied. Glasses could be formed in the range from 0 to 28 mol pct rare-earth oxide (Ln2O3), but liquid immiscibility in these systems limits the range of homogeneous glasses to 0 to 1.5 and 25 to 28 mol pct Ln2O3. The infrared spectra indicate that the rare-earth-rich glasses are structurally similar to rare-earth metaborates (LnB3O6) which contain (B3O6)-infinity chains. The variation in density, transformation temperature, thermal expansion coefficient, and transformation-range viscosity of these glasses with the size of the rare-earth ion is discussed. Glasses near the metaborate composition have a transformation temperature of about 700 C, which is high for binary borate glasses. Glasses could not be formed in the systems Eu2O3-, Gd2O3-, Ho2O3-, and Er2O3-B2O3, even by quenching at 1300 C/s. The sudden lack of glass formation in the system Ln2O3-B2O3 with Ln(3+) ions smaller than Sm(3+) is explained on the basis of the size effect of the Ln(3+) ion on the stability of (B3O6)-infinity chains in these metaborates.

  4. Influence of modifier oxides on some physical properties of antimony borate glass system doped with V{sub 2}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, Y. [Department of Physics, Acharya Nagarjuna University-Nuzvid Campus, Nuzvid 521 201, AP (India); Purnachand, N. [Department of Electronics and Communication Engineering, Sri Sarathi Institute of Engineering and Technology, Nuzvid 521 201, AP (India); Sudhakar, K.S.V.; Satyanarayana, T. [Department of Physics, Acharya Nagarjuna University-Nuzvid Campus, Nuzvid 521 201, AP (India); Veeraiah, N., E-mail: nvr8@rediffmail.com [Department of Physics, Acharya Nagarjuna University-Nuzvid Campus, Nuzvid 521 201, AP (India)

    2010-03-15

    Three series of glasses, of the composition 20 MO (M = Ca, Pb, Zn)-40 Sb{sub 2}O{sub 3}-(40 - x) B{sub 2}O{sub 3}:xV{sub 2}O{sub 5}, with six values of x ranging from 0 to 1 mol% were prepared. The samples were characterized by X-ray diffraction, scanning electron microscopy, EDS and differential scanning calorimetric techniques. The comparison of DSC data among the three series has indicated high glass forming ability for ZnO mixed glasses. Dielectric properties over a range of frequency and temperature, optical absorption, ESR spectra at room temperature and IR spectra have been investigated. The variations observed in all these properties due to different modifiers as a function of the concentration of V{sub 2}O{sub 5} have been analyzed in the light of different oxidation states and environment of vanadyl ions in these glasses. The analysis of these results indicated that the ZnO mixed glasses are more stable against devetrification and possess high insulating strength when compared with PbO and CaO mixed glasses.

  5. Microwave properties of vanadium borate glasses

    Indian Academy of Sciences (India)

    R H Amnerkar; C S Adgaonkar; S S Yawale; S P Yawale

    2002-10-01

    A.c. conductivity, dielectric constant and loss, and variation with temperature (302–373 K) for four different compositions of V2O5–B2O3 glasses were reported at 9.586 GHz microwave frequency. The quality factor () and attenuation factor () being the important parameters in the microwave range of applications were also studied. The change in the dielectric constant and loss was observed with composition of V2O5. The maximum loss was found to be at 15V2O5 mol%. The peak was observed in loss with temperature.

  6. Kinetics of fluorescence properties of Eu3+ion in strontium-aluminium-bismuth-borate glasses

    Institute of Scientific and Technical Information of China (English)

    M. Dhamodhara Naidu; D. Rajesh; A. Balakrishna; Y.C. Ratnakaram

    2014-01-01

    Eu3+doped strontium-aluminium-bismuth-borate glasses with the chemical composition (50–x)B2O3+20Bi2O3+7AlF3+8SrO+15SrF2+xEu2O3 (where x=0.1 mol.%, 0.5 mol.%, 1.0 mol.%and 1.5 mol.%) were prepared by the conventional melt quenching technique. Structural properties of the prepared glasses were analysed through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Raman spectral techniques. Thermal stability of glass was analysed by differential thermal analysis (DTA) curve. Photoluminescence characteristics were studied using excitation, emission spectra and decay curves of Eu3+doped strontium-aluminium-bismuth-borate glasses. The Judd-Ofelt (J-O) intensity parameters,Ωλ(λ=2, 4 and 6) were obtained using emission spectra and was used to identify the nature of Eu3+ions with their surrounding ligands. Using J-O parameters the tran-sition probabilities (A), stimulated emission cross-sections σEp , branching ratios (βR) and radiative lifetimes (τmeas and τcal) were evaluated for the 5D0→7FJ (J=0, 1, 2, 3 and 4) transition of Eu3+ions in the present glasses. The decay profiles were found to be non exponential for all the concentrations and the measured lifetimes (τmeas) were obtained from the decay profiles. The higher values of A,σEp ,βR and quantum efficiency (η) for 5D0→7F2 emission transition at 617 nm confirmed the present glass was as active medium for red laser emission applications.

  7. In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers.

    Science.gov (United States)

    Yang, Qingbo; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-10-01

    Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell-glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication.

  8. Optical properties of lead borate glasses containing Dy3+ ions

    Science.gov (United States)

    Pisarska, Joanna

    2009-07-01

    Optical properties of lead borate glasses containing Dy3+ ions were examined using absorption and luminescence measurements and theoretical calculations based on the Judd-Ofelt framework and the Inokuti-Hirayama model. The luminescence spectra show two characteristic bands at 480 and 573 nm, which are due to 4F9/2-6H15/2 (blue) and 4F9/2-6H13/2 (yellow) transitions of trivalent Dy3+ ions. The yellow/blue luminescence and its decay were analyzed as a function of activator concentration.

  9. The local structure of europium-lead-borate glass ceramics

    Science.gov (United States)

    Rada, S.; Pascuta, P.; Culea, M.; Maties, V.; Rada, M.; Barlea, M.; Culea, E.

    2009-04-01

    Glass ceramics in the xEu 2O 3(100 - x)[3B 2O 3·PbO] system with 0 ⩽ x ⩽ 50 mol% have been prepared using the melt quenching method, succeeded by heat treatment applied at 625 °C and 675 °C, respectively, for 48 h. The influence of europium ions on structural behavior of the lead-borate glass ceramics has been investigated using infrared spectroscopy and DFT calculations. The addition of europium ions into the host glass ceramics matrix leads to an increase of the glass network polymerization due to the replacement of B sbnd O sbnd B bonds by the more resistant B sbnd O sbnd Pb bonds. The structural evolution of the studied glass ceramics with the gradual increase of the europium oxide content up to 50 mol% could be explained by considering that the excess of oxygen may be accommodated by the formation of [PbO 4] structural units. Then, the formation of different ionic complexes of the lead ions will decrease the rate of crystal growth and the conversion of the glass into crystalline material becomes more difficult, in agreement to the X-ray data.

  10. FTIR AND SOME PHYSICAL PROPERTIES OF ALKALINE EARTH BORATE GLASSES CONTAINING HEAVY METAL OXIDES

    Directory of Open Access Journals (Sweden)

    RAMADEVUDU.G

    2011-09-01

    Full Text Available The FTIR spectra of heavy metal oxide doped borate glasses with the general formula RO-MO-B2O3 (RO= MgO, CaO, SrO and BaO, MO=ZnO, TeO2, PbO and Bi2O3 were studied in the spectral range 400-4400cm-1 toobtain information about the influence of the glass composition on the spectra. The FTIR studies revealed that MO acted differently in RO-B2O3 glass matrix and produced small variations in the glass structure. RO oxides also affected the glass structure slightly due to mixed oxide effect. However the structural groupings present ineach series of glasses are not much affected by the composition. The effect of composition on some physical properties like density, molar volume was also carried out. The increase in the values of physical parameters such as density and glass transition temperature is attributed to conversion of [BO3]3- triangular units into BO4-tetrahedral units.

  11. Hardness and crack behavior of compressed borate glasses

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Striepe, S.; Bauer, U.

    , but also concerning the metal particle formation, and the broadband near infrared luminescence. Both the inward diffusion and the infrared luminescence depend on the bismuth oxidation state. The latter can be varied by adjusting the parameters of the heat-treatment, e.g., time, temperature, and partial......Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...... pressure of hydrogen. Here, we present results on the effect of the heat-treatment on the optical properties of bismuth-doped sodium aluminosilicate glasses....

  12. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    OpenAIRE

    Suwimon Ruengsri

    2014-01-01

    Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of th...

  13. Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties

    Science.gov (United States)

    Möncke, D.; Kamitsos, E. I.; Palles, D.; Limbach, R.; Winterstein-Beckmann, A.; Honma, T.; Yao, Z.; Rouxel, T.; Wondraczek, L.

    2016-09-01

    A series of transition and post-transition metal ion (Mn, Cu, Zn, Pb, Bi) binary borate glasses was studied with special consideration of the cations impact on the borate structure, the cations cross-linking capacity, and more generally, structure-property correlations. Infrared (IR) and Raman spectroscopies were used for the structural characterization. These complementary techniques are sensitive to the short-range order as in the differentiation of tetrahedral and trigonal borate units or regarding the number of non-bridging oxygen ions per unit. Moreover, vibrational spectroscopy is also sensitive to the intermediate-range order and to the presence of superstructural units, such as rings and chains, or the combination of rings. In order to clarify band assignments for the various borate entities, examples are given from pure vitreous B2O3 to meta-, pyro-, ortho-, and even overmodified borate glass compositions. For binary metaborate glasses, the impact of the modifier cation on the borate speciation is shown. High field strength cations such as Zn2+ enhance the disproportionation of metaborate to polyborate and pyroborate units. Pb2+ and Bi3+ induce cluster formation, resulting in PbOn- and BiOn-pseudophases. Both lead and bismuth borate glasses show also a tendency to stabilize very large superstructural units in the form of diborate polyanions. Far-IR spectra reflect on the bonding states of modifier cations in glasses. The frequency of the measured cation-site vibration band was used to obtain the average force constant for the metal-oxygen bonding, FM-O. A linear correlation between glass transition temperature (Tg) and FM-O was shown for the metaborate glass series. The mechanical properties of the glasses also correlate with the force constant FM-O, though for cations of similar force constant the fraction of tetrahedral borate units (N4) strongly affects the thermal and mechanical properties. For paramagnetic Cu- and Mn-borate glasses, N4 was determined

  14. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    Directory of Open Access Journals (Sweden)

    Suwimon Ruengsri

    2014-01-01

    Full Text Available Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of the glass matrices. The silicate and phosphate glass systems are more appropriate choices as lead-based radiation shielding glass than the borate glass system. Moreover, comparison of results has shown that the glasses possess better shielding properties than standard shielding concretes, suggesting a smaller size requirement in addition to transparency in the visible region.

  15. Zinc containing borate glasses and glass-ceramics: Search for biomedical applications

    Directory of Open Access Journals (Sweden)

    Amr M. Abdelghany

    2014-12-01

    Full Text Available Ternary soda lime borate glass and samples with ZnO replacing CaO up to 10 mol% were prepared and studied for their bone bonding ability. Fourier transform infrared (FTIR absorption spectra of the prepared glasses before and after immersion in simulated body fluid (SBF, for one or two weeks, showed the appearance of calcium phosphate (hydroxyapatite (HA which is an indication of bone bonding ability. X-ray diffraction patterns were measured for the glasses and indicated the presence of small peaks related to hydroxyapatite in the samples immersed in SBF. The glasses were heat treated with controlled two-step regime to convert them to their corresponding glass-ceramic derivatives. FTIR and X-ray diffraction measurements of the glass-ceramic samples (before and after immersion in SBF confirmed the appearance of HA which is influenced by ZnO content. The overall data are explained on the basis of current views about the corrosion behaviour of borate glasses including hydrolysis and direct dissolution mechanism.

  16. Fullerene-doped porous glasses

    Science.gov (United States)

    Joshi, M. P.; Kukreja, L. M.; Rustagi, K. C.

    We report the doping of C60 in porous glass by diffusion in solution phase at room temperature. The presence of C60 in the doped porous glass was confirmed spectroscopically. We also report the changes in optical absorption spectrum and intensity-dependent transmission of 30 ns laser pulses at 527 nm in these materials.

  17. Fullerene-doped porous glasses

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, M.P. [Center for Adv. Technol., Indore (India). Nonlinear Optics Group; Kukreja, L.M. [Center for Adv. Technol., Indore (India). Nonlinear Optics Group; Rustagi, K.C. [Center for Adv. Technol., Indore (India). Nonlinear Optics Group

    1997-07-01

    We report the doping of C{sub 60} in porous glass by diffusion in solution phase at room temperature. The presence of C{sub 60} in the doped porous glass was confirmed spectroscopically. We also report the changes in optical absorption spectrum and intensity-dependent transmission of 30 ns laser pulses at 527 nm in these materials. (orig.)

  18. Composition-structure-properties relationship of strontium borate glasses for medical applications.

    Science.gov (United States)

    Hasan, Muhammad S; Werner-Zwanziger, Ulrike; Boyd, Daniel

    2015-07-01

    We have synthesized TiO2 doped strontium borate glasses, 70B2O3-(30-x)SrO-xTiO2 and 70B2 O3 -20SrO(10-x)Na2 O-xTiO2 . The composition dependence of glass structure, density, thermal properties, durability, and cytotoxicity of degradation products was studied. Digesting the glass in mineral acid and detecting the concentrations of various ions using an ICP provided the actual compositions that were 5-8% deviated from the theoretical values. The structure was investigated by means of (11)B magic angle spinning (MAS) NMR spectroscopy. DSC analyses provided the thermal properties and the degradation rates were measured by measuring the weight loss of glass disc-samples in phosphate buffered saline at 37°C in vitro. Finally, the MTT assay was used to analyze the cytotoxicity of the degradation products. The structural analysis revealed that replacing TiO2 for SrO or Na2 O increased the BO3/BO4 ratio suggesting the network-forming role of TiO2 . Thermal properties, density, and degradation rates also followed the structural changes. Varying SrO content predominantly controlled the degradation rates, which in turn controlled the ion release kinetics. A reasonable control (2-25% mass loss in 21 days) over mass loss was achieved in current study. Even though, very high concentrations (up to 5500 ppm B, and 1200 ppm Sr) of ions were released from the ternary glass compositions that saturated the degradation media in 7 days, the degradation products from ternary glass system was found noncytotoxic. However, quaternary glasses demonstrated negative affect on cell viability due to very high (7000 ppm) Na ion concentration. All the glasses investigated in current study are deemed fast degrading with further control over degradation rates, release kinetics desirable.

  19. Role of iron addition on structure and electrical and magnetic properties of lithium lead borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Farouk, H. [Al-Azhar Univ, Cairo (Egypt). Dept. of Phys.; Solimani, A.A. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Aly, S.A. [Al-Azhar Univ, Cairo (Egypt). Dept. of Phys.; El-Deen, H.Z. [Al-Azhar Univ, Cairo (Egypt). Dept. of Phys.; Kashif, I. [Al-Azhar Univ, Cairo (Egypt). Dept. of Phys.; Sanad, A.M. [Al-Azhar Univ, Cairo (Egypt). Dept. of Phys.

    1996-04-01

    The effect of iron oxide addition on the structure and electrical and magnetic properties of lithium lead borate glasses was studied using IR transmission spectra, optical absorption techniques, electrical conductivity, magnetic susceptibility measurements and differential thermal analysis (DTA). IR transmission spectra showed that the addition of up to 3 mol.% iron oxide to the samples introduced as modifiers at the expense of Pb ions. When the amount of iron oxide is increased to more than 3 mol.%, the iron enters the glass structure as network former with an FeO{sub 4} structure. The optical absorption properties of glass samples containing different amounts of iron oxide indicated that the oxidation state and the coordination of the doping ions are octahedral. At high contents of iron oxide, some of the iron ions exist in a tetrahedral form. The electrical conductivities as a function of temperature for glass samples containing different amounts of iron oxide up to 10 mol.% Fe{sub 2}O{sub 3} have similar behaviours, from which we deduced the activation energy for each sample. The investigation of the magnetic susceptibility as a function of Fe{sub 2}O{sub 3} concentration concluded that, for high amounts of iron ions, the iron ions exist in an octahedral coordination rather then in a tetrahedral coordination. DTA showed that the samples containing up to 5 mol.% iron oxide are characterized by one crystallization temperature, while samples containing 10 mol.% iron oxide have two crystallization temperatures. (orig.)

  20. Structural and acoustical studies of lead sodium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Saddeek, Yasser B. [Physics Department, Faculty of Science, Al-Azhar University, Assiut P.O. 71452 (Egypt)], E-mail: ysaddeek@gmail.com

    2009-01-07

    Glasses in the system Na{sub 2-2x}B{sub 4-4x}Pb{sub x}O{sub 7-6x}, 0 {<=} x {<=} 0.8, have been prepared by the melt quenching technique. Elastic properties and Debye temperature have been investigated using sound velocity measurements at 4 MHz. The ultrasonic parameters along with the IR spectroscopic studies have been employed to study the role of PbO on the structure of Na{sub 2}B{sub 4}O{sub 7} glass. The density, the molar volume, and the ultrasonic parameters of these samples have been found to be compositional dependent. The results indicate that PbO acts as a network modifier in the range 0 {<=} x {<=} 0.4, while beyound x = 0.4, PbO acts as a network former which affects the diborate units that mainly consist the strong borate network. These results are interpreted in terms of the IR analysis that indicates the transformation of the structural units BO{sub 3} into BO{sub 4}, the increase in the number of non-bridging oxygen atoms, and the substitution of longer Pb-O bond length, in place of shorter B-O bond. The observed compositional dependence of the elastic moduli is interpreted in terms of the effect of PbO on the boron-coordination number of the glass structure and to the relatively large electron-phonon anharmonic interactions. A good correlation was observed between the experimentally determined elastic moduli and those computed according to Makishima-Mackenzie model.

  1. In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qingbo [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering (CBSE), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Chen, Sisi [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering (CBSE), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Shi, Honglan [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering (CBSE), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Xiao, Hai [Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634 (United States); Ma, Yinfa, E-mail: yinfa@mst.edu [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering (CBSE), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-10-01

    Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell–glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication. - Highlights: • Bioactive glass nano-/micro-materials were effectively used for tissue wound healing. • The wound-healing effects of silicate-based 45S5, borate-based 13-93B3 and 1605 fibers were investigated. • Glass conversion rates were compared under either static or dynamic-flow modes. • Glass compositions and flow rates greatly influenced bioactivity and cell migration. • These results can

  2. Antiquenching effect of modifying cations on samarium clustering: Physical, structural and luminescent behavior of heavy metal borate glass systems

    Science.gov (United States)

    Kaur, Simranpreet; Kaur, Parvinder; Pal Singh, Gurinder; Kumar, Sunil; Singh, D. P.

    2015-09-01

    In this paper an attempt has been made to correlate the structural modifications and luminescence efficiencies by changing the environment of the glass network by modifying oxides. Sm3+ doped lead borate (SPB) and lead cadmium alumino borate (SCPB) glasses have been fabricated by melt quench technique at high temperature. The glass samples are characterized by XRD, FTIR, optical absorptions, fluorescence and density measurements. The effect of Sm3+ ion and glass host interaction on the emission spectra has been discussed in the view of the ionicity and covalency of hosts. The ratio of the intensities of electric to magnetic dipole emissions are calculated by varying both the concentration of the Sm3+ ion and the composition of the glass matrix. The XRD profile of all the glasses confirms their amorphous nature and FTIR spectrum shows the presence of BO3 and BO4 groups. These glasses have shown strong absorption bands in the visible (VIS and NIR) region and emit strong orange red wavelengths when excited by ultraviolet light. The concentration quenching has been noticed and ascribed to energy transfer through cross-relaxation between Sm3+ ions. Shifting of UV absorption edge towards longer wavelength with addition of Sm2O3 concentration has been observed. Incorporation of Al2O3 and CdO in 2nd glass system is responsible for strong effect on luminescence of the present glass system. Based on these results, an attempt has been made to throw some light on the relationship between the structural modifications and luminescence efficiencies in two different glass hosts as a laser active medium in the visible region. Moreover the optical basicity values were theoretically determined along with covalent behavior of two glass systems.

  3. Ion-conductivity of thin film Li-Borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Abouzari, M.R.S.

    2007-12-17

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi{sub 2}O.(1-y)B{sub 2}O{sub 3} with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10{sup -10} {omega}{sup -1}cm{sup -1} and 2.5 x 10{sup -6} {omega}{sup -1}cm{sup -1} when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but

  4. Preparation and Characterization of Low-Dielectric Glass Composite with Aluminum Borate

    Science.gov (United States)

    Jean, Jau-Ho; Hwang, Shiang-Po

    1994-10-01

    The effect of aluminum borate ( Al18B4O33) on crystallization and thermal expansion of Pyrex borosilicate glass has been studied. X-ray diffraction (XRD) results show that with 40 vol% aluminum borate, the precipitation of cristobalite in the Pyrex borosilicate glass is completely inhibited. This result is further evidenced by the linear thermal expansion measurement in which, in contrast to the system without aluminum borate, the thermal expansion coefficient remains unchanged with sintering time and is close to that of silicon, 3×10-6 K-1. Moreover, the composite with 40 vol% aluminum borate has a dielectric constant of 5.2 and a dielectric loss of 0.8% at 1 MHz.

  5. STRUCTURE AND DYNAMICS OF ALKALI BORATE GLASSES - A MOLECULAR-DYNAMICS STUDY

    NARCIS (Netherlands)

    VERHOEF, AH; DENHARTOG, HW

    1995-01-01

    Structural and dynamical properties of lithium, cesium and mixed alkali (i.e., lithium and cesium) borate glasses have been studied by the molecular dynamics method. The calculations yield glass structures consisting of planar BO3 triangles and BO4 tetrahedrons with no sixfold ring structures at all

  6. Structure modeling of terbium doped strontium-lanthanum borate

    Institute of Scientific and Technical Information of China (English)

    A. Shyichuk; S. Lis; G. Meinrath

    2014-01-01

    Terbium doped strontium-lanthanum borate, Sr3La2(BO3)4:Tb (SLB), was studied by semi-empirical computational ap-proaches using PM6 parametrization and the SPARKLE model for lanthanide(III) (Ln(III)) cations. The focus of interest was on structural aspects, e.g. the cell parameters and distribution of dopant ions between various sites as a function of dopant concentration. The cell linear dimensions were calculated to decrease linearly with increasing dopant molar concentration. SLB offered two sites for the dopant. Calculations predicted that one of these sites should be preferred by the Tb(III) dopant. The optimized cell dimensions as well as the total energies differed for structures with dopant exclusively in site 1 or site 2. Computational predictions were tested against experimental results obtained for SLB synthesized by sol-gel method varying the dopant concentration. The agreement be-tween experimental and computational results was found sufficiently promising to continue the computational studies.

  7. Study of the microstructural transformations of borate glass and barium metaborate crystals induced by femtosecond laser

    Institute of Scientific and Technical Information of China (English)

    Chen Bin; Yu Bing-Kun; Yan Xiao-Na; Qiu Jian-Rong; Jiang Xiong-Wei; Zhu Cong-Shan

    2004-01-01

    This paper describes the microstructural transformations of borate glass and barium metaborate crystals induced by femtosecond laser. Such structural transformations were verified by Raman spectroscopy. The borate glass is transformed into low temperature (LT) phase of barium metaborate (BaB2O4) crystals after being irradiated for 10 min by a femtosecond laser. In addition, after 20 min of irradiation, high temperature (HT) phase of BaB2O4 crystals is also produced. Further studies demonstrate that LT phase BaB2O4 crystals are formed in the HT phase BaB2O4 crystals after femtosecond laser irradiation for 10 s.

  8. Structural and optical characteristics of Eu3+ ions in sodium-lead-zinc-lithium-borate glass system

    Science.gov (United States)

    Rajagukguk, J.; Kaewkhao, J.; Djamal, M.; Hidayat, R.; Suprijadi; Ruangtaweep, Y.

    2016-10-01

    Structural and optical properties of Eu3+-doped sodium-lead-zinc-lithium-borate glasses (65-x)B2O3sbnd 15Na2Osbnd 10PbOsbnd 5ZnOsbnd 5Li2Osbnd xEu2O3 (where x = 0, 0.05, 0.1, 0.5, 1.0, 2.0 and 4.0) have been measured and analyzed by varying the Eu3+ ion concentrations. The physical parameters such as polaron radius, field strength and inter nuclear distance have been determined from measurements of densities and refractive indices. The structural properties of the prepared borate glasses were analyzed based on X-ray diffraction (XRD) and FTIR instruments. The diffraction spectra show no characteristic peaks in these glasses, which indicates the amorphous nature of the glasses. The infrared spectrum of the Eu3+-doped sodium-lead-zinc-lithium-borate glass systems show three disparate regions for active absorption band around 830-860 cm-1, 1020-1040 cm-1 and 1170-1180 cm-1. The electronic transitions in the UV-vis and NIR regions are assigned to the 7F0 → 5D4, 7F0 → 5G2, 7F0 → 5L6, 7F0 → 5D3, 7F0 → 5D2, 7F0 → 5D1, 7F0 → 5D07F1 → 5D07F0 → 7F6 and 7F1 → 7F6 levels centered at 362 nm, 380 nm, 395 nm, 414 nm, 465 nm, 533 nm, 583 nm, 590 nm 2092 nm and 2202 nm respectively. Five transition bands of luminescence spectra have been observed by using an excited wavelength of 395 nm. The luminescence intensity ratio (R) of 5D0 → 7F2 (electric dipole) transition to 5D0 → 7F1 (magnetic dipole) transition has been determined to obtain the strength of the covalent/ionic bond between the Eu3+ ions and the surrounding ligands. Radiative life time and emission color of the glasses were estimated and compared with other literature data by varying Eu3+ concentrations. The experimental lifetime of the 5D0 level was found to increase with increasing Eu3+ ion content, suggesting higher non-radiative energy transfer among Eu3+ ions in the glasses.

  9. Investigation of luminescence and spectroscopic properties of Nd3+ions in cadmium alkali borate glasses

    Science.gov (United States)

    Mohan, Shaweta; Thind, Kulwant Singh

    2016-07-01

    Neodymium doped cadmium alkali borate glasses having composition 20CdOsbnd 20R2Osbnd 59.5H3BO3sbnd 0.5Nd2O3; (R = Li, Na and K) were prepared by conventional melt-quenching technique. The amorphous nature of the glasses was confirmed by X-ray diffraction studies. The physical properties such as density, refractive index, molar volume, rare earth ion concentration etc. were determined. Optical absorption and fluorescence spectra were recorded. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. These parameters were in turn used to predict the radiative properties such as the radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the fluorescent levels of Nd3+ ion in the present glass series. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Ω4/Ω6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. The variation of Ω2 with the change in alkali oxide has been attributed to the changes in the asymmetry of the ligand field at the rare earth ion site. The shift of the hypersensitive bands, study of the oscillator strengths and the variation of the spectral profile of the transition 4I9/2 → 4F7/2 + 4S3/2 indicate a maximum covalency of Ndsbnd O bond for glass with potassium ions. From the fluorescence spectra, peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σp) have been obtained for the three transitions 4F3/2 → 4I9/2,4F3/2 → 4I11/2 and4F3/2 → 4I13/2 of Nd3+ ion. The relatively high values of σp obtained for Nd3+ in present glass system suggest that these materials can be considered as suitable candidates for laser applications. The glass with potassium ions shows the highest value of the stimulated emission cross-section.

  10. Ultrasonic and Thermal Properties of Borate and Phosphate Glasses Containing Bismuth and Lead

    Science.gov (United States)

    Aziz, Sidek Hj. Abd.; Ahmad, Hamezan; Wahab, Zaidan A.; Sulaiman, Zainal Abidin; Talib, Zainal Abidin; Shaari, A. Halim; Senin, H. B.

    2007-05-01

    Systematic series of (B2O3,P2O5)-Bi2O3-PbO glasses have been successfully prepared by using the rapid quenching technique in which each oxide content changes for every series on the basis of its weight percentage. Their amorphous natures were confirmed earlier by the x-ray diffraction technique. The experimental results show that the density of both glasses, determined by using the Archimedes principle, increases with the glass modifier content. This is due to the replacement of Bi2O3 and PbO in the borate and phosphate glassy networks. The molar volume for borate glass increases with the addition of bismuth and lead oxides, but a reverse trend occurs for the phosphate glass. The longitudinal and shear ultrasound velocities, determined by the MBS 8000 system, of both lead bismuth borate and phosphate glasses show a decreasing trend as more PbO and Bi2O3 are added to the glass system. The increase in PbO/Bi2O3 content was probably related to the progressive increase in the concentration of non-bridging oxygen (NBOs). Thermal studies of the glass, using the Labsys DTA-Setaram machine, show that the value of the glass transition temperature (Tg) is closely related to the chemical bond in the system. In lead bismuth borate glasses, the addition of more Pb2+ and Bi3+ results in a more dominant ionic bond character in the system and hence decreases Tg of the sample. However, in lead bismuth phosphate glasses, the addition of Pb2+ and Bi3+ not only failed to weaken the covalent character in P-O-P bonds, but strengthened it further, leading to an increment in the values of Tg.

  11. Optical and structural characterization of yttrium calcium borate glasses

    Science.gov (United States)

    Santos, Cristiane; Meneses, Domingos D. S.; Echegut, Patrick; Neuville, Daniel R.; Hernandes, Antonio C.; Ibanez, Alain

    2010-03-01

    Structural and optical properties of new stable glasses in the Y2O3 -- CaO -- B2O3 system, containing the same Y/Ca ratio as the YCa4O(BO3)3 (YCOB) crystal, were determined from Raman and reflectance infrared spectroscopy [1]. We have obtained the optical functions using a dielectric function model and their evolution with composition are associated with an increase in the number of non-bridging oxygen and to calcium/yttrium oxides content with the formation of pentaborate, metaborate, orthoborate and pyroborate groups. The orthoborate and pyroborate signatures increase with increasing the modifier cations. Refractive indexes values (from 1.597 to 1.627 at λ = 2 μm) are in good agreement with those of the YCOB crystal, an indication that these glasses are potential candidates for doping with rare-earth ions for optical applications. [4pt] [1] C. N. Santos, D.D.S. Meneses, P. Echegut, D. R. Neuville, A. C. Hernandes, A. Ibanez, Appl. Phys. Lett. 94, 151901(2009).

  12. In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass.

    Science.gov (United States)

    Luo, Shi-Hua; Xiao, Wei; Wei, Xiao-Juan; Jia, Wei-Tao; Zhang, Chang-Qing; Huang, Wen-Hai; Jin, Dong-Xu; Rahaman, Mohamed N; Day, Delbert E

    2010-11-01

    The cytotoxicity of silver-containing borate bioactive glass was evaluated in vitro from the response of osteoblastic and fibroblastic cells in media containing the dissolution products of the glass. Glass frits containing 0-2 weight percent (wt %) Ag were prepared by a conventional melting and quenching process. The amount of Ag dissolved from the glass into a simulated body fluid (SBF), measured using atomic emission spectroscopy, increased rapidly within the first 48 h, but slowed considerably at longer times. Structural and microchemical analysis showed that the formation of a hydroxyapatite-like layer on the glass surface within 14 days of immersion in the SBF. The response of MC3T3-E1 and L929 cells to the dissolution products of the glass was evaluated using SEM observation of cell morphology, and assays of MTT hydrolysis, lactate dehydrogenase release, and alkaline phosphatase activity after incubation for up to 48 h. Cytotoxic effects were found for the borate glass containing 2 wt % Ag, but not for 0.75 and 1 wt % Ag. This borate glass containing up to ∼1 wt % Ag could provide a coating material for bacterial inhibition and enhanced bioactivity of orthopaedic implant materials such as titanium.

  13. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    Science.gov (United States)

    Melo, B. M. G.; Graça, M. P. F.; Prezas, P. R.; Valente, M. A.; Almeida, A. F.; Freire, F. N. A.; Bih, L.

    2016-08-01

    In this work, phosphate-borate based glasses with molar composition 20.7P2O5-17.2Nb2O5-13.8WO3-34.5A2O-13.8B2O3, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σac and σdc, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz-1 MHz.

  14. Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model.

    Science.gov (United States)

    Deliormanli, Aylin M; Liu, Xin; Rahaman, Mohamed N

    2014-01-01

    Borate bioactive glass has been shown to convert faster and more completely to hydroxyapatite and enhance new bone formation in vivo when compared to silicate bioactive glass (such as 45S5 and 13-93 bioactive glass). In this work, the effects of the borate glass microstructure on its conversion to hydroxyapatite (HA) in vitro and its ability to support tissue ingrowth in a rat subcutaneous implantation model were investigated. Bioactive borate glass scaffolds, designated 13-93B3, with a grid-like microstructure and pore widths of 300, 600, and 900 µm were prepared by a robocasting technique. The scaffolds were implanted subcutaneously for 4 weeks in Sprague Dawley rats. Silicate 13-93 glass scaffolds with the same microstructure were used as the control. The conversion of the scaffolds to HA was studied as a function of immersion time in a simulated body fluid. Histology and scanning electron microscopy were used to evaluate conversion of the bioactive glass implants to hydroxyapatite, as well as tissue ingrowth and blood vessel formation in the implants. The pore size of the scaffolds was found to have little effect on tissue infiltration and angiogenesis after the 4-week implantation.

  15. NMR and Nqr Study of Atomic Order in Alkali Borate Glasses.

    Science.gov (United States)

    Gravina, Samuel John

    A modified Robinson oscillator circuit was built for the detection of nuclear quadrupole resonance (NQR) in the 200 to 10,000 kHz region. The circuit demonstrates near ideal performance with the detected noise limited only by the sample temperature. The use of computer controlled data acquisition and a carefully designed sample probe allows for the use of an integrating time constant of up to 6 hours. This spectrometer has been used to detect ^{10}B and ^{11 }B NQR in lithium and sodium borate glasses and crystals. In pure boron oxide glass two distinct boron sites are found. By comparing this experiment with previous NMR and Raman spectroscopy studies, one of the sites, which comprises 85% of the total boron, can be attributed to boron atoms in boroxol rings. As sodium is added to the glass the abundance of boroxol rings decreases. At 20 mol% sodium oxide less than 2% of the boron atoms are found in boroxol rings. The dipole-dipole interaction between lithium cations and four-coordinated boron atoms (B_4 units) has been measured. It is found that every B_4 unit has one lithium cation next to it at an average distance of 2.82 A. A comparison with lithium borate crystals shows that diborate groups do not occur in significant quantities. Both high field and low field NMR studies of the boron quadrupole interaction in a B_4 unit also show that diborate groups are not found in the glass. A ^{23}Na and ^6Li NMR MASS study of lithium and sodium borate glasses shows that ^{23 }Na chemical shifts can distinguish sodium cations bound to non-bridging oxygens from sodium cations bound to bridging oxygens. The chemical shifts measured in lithium-sodium borate glasses are identical to those measured in lithium borate or sodium borate glasses, indicating similar alkali-oxygen coordination. A significant narrowing of the ^6Li NMR spectrum in a mixed alkali glass can be understood as a decrease in the entropy of the lithium cations. This result is consistent with the weak

  16. Absorption of light by lead silicate borate glasses containing gadolinium tellurite

    Energy Technology Data Exchange (ETDEWEB)

    Ivanchenko, L.A.; Obolonchik, V.A.; Ovcharenko, N.V.; Frankfurt, V.M.; Serdyuk, V.A.; Zaletilo, L.S.

    1987-03-01

    The authors investigate how the properties of lead silicate borate glasses change when rare-earth tellurites are added to them. The choice of glasses based on PbO was prompted by the fact that they are low-melting and will dissolve large amounts of compounds of type Ln/sub 2/Te/sub 3/O/sub 9/. The compositions of the resultant glasses are shown. The refractive indices and absorption edge in the visible region of the spectrum is also presented. The dependences of the absorptive index of glasses in both visible and in IR regions are shown, as is the reflection spectra in the IR.

  17. Thermal and structural properties of Nd2O3-doped calcium boroaluminate glasses

    Institute of Scientific and Technical Information of China (English)

    JDM Dias; GHA Melo; TA Lodi; JO Carvalho; PF Faanha Filho; MJ Barboza; A Steimacher; F Pedrochi

    2016-01-01

    Nd3+ doped CaO-Al2O-B2O3-CaF2 glasses were prepared by conventional melt-quenching technique, and their structural and thermal properties were studied. The amorphous nature of these samples was confirmed by X-ray diffraction (XRD). The measured density showed an increase with Nd2O3 doping, at the expense of CaO. Raman spectra presented changes with addition of Nd2O3, which indicated that the network structure of the glasses studied presented various borate groups, such as tetraborates, metaborates, ortho-borates and pyroborates units. The N4 values calculated from FTIR spectra revealed that incorporation of Nd2O3 into glass network converted the structural units from BO4 to BO3. From the analysis of DTA curves, we verified thatTg increased with the addition of Nd2O3; it was similar to the behavior caused by modifier oxides in the structure of borate glasses. Besides that, the calculated glass stabilityTx–Tg for doped samples presented a decrease if compared to the undoped glass. Specific heat and thermal conductivity did not present significant changes with Nd2O3 concentration, up to 2.30 mol.%. The results of density, DTA, Raman and FTIR reinforced the idea that Nd2O3 acted as network modifier.

  18. Dy3+掺杂硼酸盐玻璃的制备、表征及发光特性%Preparation,Characterization and Luminescence Properties of Dy3+ Doped Borate Glasses

    Institute of Scientific and Technical Information of China (English)

    乔荫颇; 张攀; 殷海荣; 李艳肖; 刘晶; 周沁

    2016-01-01

    A series of Dy3+ doped B2 O3-ZnO-Na2 O-Al2 O3 glasses ( BZNA:xDy) were prepared by high temperature melting method. The structure,composition and luminescence property of BZNA:xDy samples were characterized through FTIR, UV-Vis-NIR and fluorescence spectra. The absorp-tion spectra showed the characteristics peaks of glass substrate and the energy level transition of Dy3+. Under 350 nm excitation, the luminescence intensity, ratio of yellow and blue emission peaks, fluorescence lifetime, color coordinate and color temperature of BZNA:xDy samples can be adjusted and changed according to the content of Dy3+. The luminescent intensity of Dy3+ doped samples are observed to be enhanced firstly and then decrease after 1. 0% of Dy3+ mole fraction. Thus, the concentration quenching of Dy occurs in the samples. Meanwhile, the fluorescence life-time of samples decreases with the increasing doping concentration of rare earth ions. Furthermore, the chromaticity coordinates values and the color temperatures of the emission are reduced gradually.%采用高温熔融-冷却法制备了一系列Dy3+掺杂的B2 O3-ZnO-Na2 O-Al2 O3发光玻璃,通过红外光谱、紫外-可见-近红外光谱和荧光光谱等研究了其结构及发光特性。分析表明:制备的发光玻璃中出现基质组分的结构特征峰及Dy3+的能级跃迁特征峰。在350 nm波长光激发下,样品的发光强度、黄蓝发射峰比、荧光寿命、色坐标及色温等均随Dy3+浓度的变化发生明显的可调节变化。样品的荧光发射强度随Dy3+浓度的增加呈现先增大后减小的变化,当Dy3+掺杂摩尔分数为1.0%时,发光强度最大。此外,随着Dy3+掺杂浓度的增大,发光玻璃的荧光寿命及发射光谱的色度坐标值、色温都呈现递减的趋势。这表明通过基质组分及掺杂元素的调节可以使得该硼酸盐体系发光玻璃获得高效可调节的光功能从而得到广泛应用。

  19. Ag-Pb Interaction and Enhanced Fluorescence Emission of Pb^2+ in Lead Borate Glasses

    Science.gov (United States)

    Mallur, Saisudha; Giri, Prakash; Dc, Mahendra; Babu, P. K.

    2012-06-01

    We carried out Pb^2+ fluorescence measurements in lead borate glasses and studied the effect of adding Ag into the base glass. Lead borate glasses containing Ag (0 and 3 mol%) were prepared by the usual melt quench method. The prepared glasses were then annealed near the glass transition temperature (400 ^oC) at 5, 10, 20 and 30h. Fluorescence spectra of all these samples were obtained using different excitation wavelengths. In general, Pb^2+ monomers are expected to have emission at wavelength less than 400nm. However, no emission in this region was observed due to the base glass absorption. The emission observed at 450nm is attributed to ^3P1->^1S0 transition of Pb^2+ ions in dimer centers. Addition of Ag enhances the Pb^2+ luminescence intensity at 450 nm which also shows an increase with the annealing time. The possible mechanisms for the fluorescence enhancement in the present glass could be the energy transfer from isolated Ag particles and local field effects due to the difference between the dielectric functions of the glass matrix and the silver particles.

  20. Intense upconversion fluorescence in Tm 3+/Yb3+ codoped alumina lead borate glasses

    Science.gov (United States)

    Krishna Murthy Goud, K.; Shekhar Reddy, M. Chandra; Appa Rao, B.

    2016-09-01

    The Tm3+/Yb3+ codoped alumina lead borate glasses were prepared by the conventional melt quenching technique. Optical absorption and FTIR spectra were recorded. The upconversion fluorescence spectra exhibited weak blue (480 nm) and intense red (660 nm) emissions due to 1G4 → 3H6 and 1G4 → 3H4 transitions, respectively. The results concluded that both emissions are due to three photon absorption process. It has been observed that in the upconversion efficiency increases with the increase in the concentration of Yb3+ ions. The strong red upconversion fluorescence indicate that Tm3+/Yb3+ codoped alumina lead borate glasses can be used as potential host material for upconversion lasers.

  1. Atom probe tomography of lithium-doped network glasses

    Energy Technology Data Exchange (ETDEWEB)

    Greiwe, Gerd-Hendrik, E-mail: g_grei01@uni-muenster.de [Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster (Germany); Balogh, Zoltan; Schmitz, Guido [Institute of Material Science, University of Stuttgart, Heisenberg Straße 3, D-70569 Stuttgart (Germany)

    2014-06-01

    Li-doped silicate and borate glasses are electronically insulating, but provide considerable ionic conductivity. Under measurement conditions of laser-assisted atom probe tomography, mobile Li ions are redistributed in response to high electric fields. In consequence, the direct interpretation of measured composition profiles is prevented. It is demonstrated that composition profiles are nevertheless well understood by a complex model taking into account the electronic structure of dielectric materials, ionic mobility and field screening. Quantitative data on band bending and field penetration during measurement are derived which are important in understanding laser-assisted atom probe tomography of dielectric materials. - Highlights: • Atom probe tomography is performed on ion conducting glasses. • Redistribution of ions during the measurement is observed. • An electrostatic model is applied to describe the electric field and ion diffusion. • Measurement is conducted of the absolute temperature during laser pulses.

  2. Comparative study of radiation shielding parameters for bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaundal, Rajinder Singh, E-mail: rajinder_apd@yahoo.com [Department of Physics, School of Physical Sciences, Lovely Professional University, Phagwara, Punjab (India)

    2016-07-15

    Melt and quench technique was used for the preparation of glassy samples of the composition x Bi{sub 2}O{sub 3-}(1-x) B{sub 2}O{sub 3} where x= .05 to .040. XCOM computer program is used for the evaluation of gamma-ray shielding parameters of the prepared glass samples. Further the values of mass attenuation coefficients, effective atomic number and half value layer for the glassy samples have been calculated in the energy range from 1KeV to 100GeV. Rigidity of the glass samples have been analyzed by molar volume of the prepared glass samples. (author)

  3. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish; Babu, Panakkattu K.

    2015-08-15

    Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the optical absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.

  4. Structural role of europium ions in lead -borate glasses inferred from spectroscopic and DFT studies

    Science.gov (United States)

    Rada, S.; Culea, M.; Neumann, M.; Culea, E.

    2008-07-01

    Glasses in the system xEu 2O 3 · (100 - x)[3B 2O 3·PbO] with 0 ⩽ x ⩽ 35 mol% have been prepared from melt quenching method. Structural changes, as recognized by analyzing band shapes of IR spectra, revealed that Eu 2O 3 causes a change from the continuous borate network to the continuous lead-borate network, interconnected through Pb-O-B and B-O-B bridges. DFT calculations show that lead atoms occupy three different sites in the proposed model. Comparing the theoretical and experimental data, we conclude that the performance of the method/basis sets used on the prediction of the structural data and vibrational modes is good.

  5. Effect of Ag Particles on the Fluorescence Properties of Eu Ions in Lead Borate Glasses

    Science.gov (United States)

    Giri, Prakash; Dc, Mahendra; Mallur, Saisudha; Babu, P. K.

    2011-11-01

    We have investigated the effect of Ag particles on the fluorescence of trivalent Eu ions in lead borate glasses. Lead borate glasses were prepared with varying Ag content (0 to 3 mol%) and sizes of Ag particles were controlled by varying the duration of annealing near the glass transition temperature. Fluorescence spectra of all these samples were obtained at two different excitation wavelengths (395 nm and 464 nm). Glass samples with Ag particles show an increase in the intensities for the major peaks in the Eu fluorescence spectra, appearing near 589 nm and 613 nm. Detailed analysis show that the enhancement effects clearly depend on the duration of annealing and the concentration of Ag. Fluorescence intensity enhancement is readily observed at relatively shorter annealing time (5 h) for samples with higher Ag concentration whereas a much longer annealing time (25 h) is required to observe any significant enhancement in fluorescence intensity for lower concentration of Ag. For higher concentrations of Ag, a broad feature is seen around 450 nm due to the emission from Ag particles and the effect of Ag is more pronounced for the fluorescence peak at 589 nm.

  6. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    Science.gov (United States)

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  7. Optical limiting in semiconductor-doped glasses

    Science.gov (United States)

    Bindra, K. S.; Oak, S. M.; Rustagi, K. C.

    1996-02-01

    We report optical limiting at 527 nm in two Schott semiconductor-doped glasses OG530 and OG515. These two glasses show quite contrasting nonlinear optical behaviour. The glass OG515 shows strong clamping while OG530 shows no clamping in optical limiting inspite of having much larger nonlinear refractive index. Similarly OG530 exhibits saturation of absorption while OG515 does not.

  8. Synthesis and characterization of lithium niobium borate glasses containing neodymium

    Institute of Scientific and Technical Information of China (English)

    WHA Kamaruddin; MS Rohani; MR Sahar; LIU Hong; SANG Yuanhua

    2016-01-01

    A series of (90–x)Li2B4O7-10Nb2O5-xNd2O3 glass samples (x=0, 5 mol.%, 10 mol.%, 15 mol.%, 20 mol.% and 25 mol.%) were synthesized using melt quenching technique. X-ray diffraction (XRD), differential thermal analyzer (DTA), Fourier transformed infrared (FTIR), ultraviolet-visible-near-infrared (UV-Vis-NIR) spectrometer and photoluminescence (PL) spectroscopic characteri-zations were made to examine the influence of Nd3+ concentration on the physical, structural and optical properties. Various physical properties such as glasses density, molar volume, thermal stability, ion concentration, polar on radius, inter-nuclear distance, field strength, cut-off wavelength, energy band gap and Urbach energy were calculated. The samples were amorphous in nature and con-firmed from XRD pattern. The FTIR spectra revealed the presence of BO3 and BO4 functional groups. UV-Vis-NIR spectra exhibited nine prominent bands centered at 353, 430, 475, 524, 583, 681, 745, 803, 875 nm corresponding to the transitions from the ground state to4D3/2,2P1/2,2G9/2,4G7/2,4G5/2,4F9/2,4F7/2,4F5/2,4F3/2 excited states, respectively. Moreover, the emission spectra at 355 nm ex-citation displayed three peaks centered at 903 nm (4F3/2→4I9/2), 1059 nm (4F3/2→4I11/2) and 1333 nm (4F3/2→4I13/2), respectively. Fluo-rescence lifetime was recorded between 53.69 to 28.43 µs. It was found that varying concentration of Nd3+ ions strongly affected the physical, structural and optical properties of the glass samples.

  9. Thermal and optical properties of Nd3+ doped lead zinc borate glasses—Influence of alkali metal ions

    Science.gov (United States)

    Sasi Kumar, M. V.; Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-04-01

    In the present investigation a new series of six different Nd3+ doped alkali and mixed alkali (Li, Na, K, Li-Na, Li-K and Na-K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd-Ofelt (J-O) theory has been applied to calculate J-O intensity parameters, Ωλ (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (AT), branching ratios (β), radiative lifetimes (τR) and integrated absorption cross-sections (Σ) were calculated using J-O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σP) are obtained for all the observed emission transitions.

  10. Thermal and optical properties of Nd{sup 3+} doped lead zinc borate glasses—Influence of alkali metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Sasi Kumar, M.V.; Rajesh, D.; Balakrishna, A. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Ratnakaram, Y.C., E-mail: ratnakaramsvu@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2013-04-15

    In the present investigation a new series of six different Nd{sup 3+} doped alkali and mixed alkali (Li, Na, K, Li–Na, Li–K and Na–K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd–Ofelt (J–O) theory has been applied to calculate J–O intensity parameters, Ω{sub λ} (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (A{sub T}), branching ratios (β), radiative lifetimes (τ{sub R}) and integrated absorption cross-sections (Σ) were calculated using J–O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σ{sub P}) are obtained for all the observed emission transitions.

  11. Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution.

    Science.gov (United States)

    Liu, Xin; Pan, Haobo; Fu, Hailuo; Fu, Qiang; Rahaman, Mohamed N; Huang, Wenhai

    2010-02-01

    Porous scaffolds of a borate-based glass (composition in mol%: 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5), with interconnected porosity of approximately 70% and pores of size 200-500 microm, were prepared by a polymer foam replication technique. The degradation of the scaffolds and conversion to a hydroxyapatite-type material in a 0.02 M K2HPO4 solution (starting pH = 7.0) at 37 degrees C were studied by measuring the weight loss of the scaffolds, as well as the pH and the boron concentration of the solution. X-ray diffraction, scanning electronic microscopy and energy dispersive x-ray analysis showed that a hydroxyapatite-type material was formed on the glass surface within 7 days of immersion in the phosphate solution. Cellular response to the scaffolds was assessed using murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed that the scaffolds supported cell attachment and proliferation during the 6 day incubation. The results indicate that this borate-based glass could provide a promising degradable scaffold material for bone tissue engineering applications.

  12. Conductivity and modulus formulation in lithium modified bismuth zinc borate glasses

    Science.gov (United States)

    Dahiya, Sajjan; Punia, R.; Murugavel, S.; Maan, A. S.

    2016-05-01

    The conductivity and modulus formulation in lithium modified bismuth zinc borate glasses with compositions xLi2O-(50-x) Bi2O3-10ZnO-40B2O3 has been studied in the frequency range 0.1 Hz-1.5 × 105 Hz in the temperature range 573 K-693 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the studied compositions, the dc conductivity (σdc), crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of the experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating centre (Hf) and enthalpy of migration (Hm) have been estimated. It has been observed that number of charge carriers and ac conductivity in the lithium modified bismuth zinc borate glasses increases with increase in Li2O content. Further, the conduction mechanism in the glass sample with x = 0 may be due to overlapping large polaron tunneling, whereas, conduction mechanism in other studied glass samples more or less follows diffusion controlled relaxation model. The ac conductivity is scaled using σdc and ωH as the scaling parameter and is found that these are suitable scaling parameter for conductivity scaling. Non-Debye type relaxation is found prevalent in the studied glass system. Scaling of ac conductivity as well as electric modulus confirms the presence of different type of conduction mechanism in the glass samples with x = 0 and 5 from other studied samples. The activation energy of relaxation (ER) and dc conductivity (Edc) are almost equal, suggesting that polarons/ions have to overcome same barrier while relaxing and conducting.

  13. Thermal Stress-Induced Birefringence in Borate Glass Irradiated by Femtosecond Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    DAI Ye; YU Bing-Kun; LU Bo; QIU Jian-Rong; YAN Xiao-Na; JIANG Xiong-Wei; ZHU Cong-Shan

    2005-01-01

    @@ Thermal stress-induced birefringence in borate glass which has been irradiated by 800-nm femtosecond laser pulses is observed under cross-polarized light. Due to the high temperature and pressure formed in the focal volume, the material at the edge of the micro-modified region is compressed between the expanding region and the unheated one, then stress emerges. Raman spectroscopy is used to investigate the stress distribution in the micro-modified region and indicates the redistributions of density and refractive index by Raman peak shift. We suggest that this technique can develop waveguide polarizers and Fresnel zone plates in integrated optics.

  14. Optical properties of lead borate glasses containing Dy{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Pisarska, Joanna [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)], E-mail: Joanna.Pisarska@polsl.pl

    2009-07-15

    Optical properties of lead borate glasses containing Dy{sup 3+} ions were examined using absorption and luminescence measurements and theoretical calculations based on the Judd-Ofelt framework and the Inokuti-Hirayama model. The luminescence spectra show two characteristic bands at 480 and 573 nm, which are due to {sup 4}F{sub 9/2}-{sup 6}H{sub 15/2} (blue) and {sup 4}F{sub 9/2}-{sup 6}H{sub 13/2} (yellow) transitions of trivalent Dy{sup 3+} ions. The yellow/blue luminescence and its decay were analyzed as a function of activator concentration.

  15. Terbium-doped heavy metal glasses for green luminescence

    Institute of Scientific and Technical Information of China (English)

    L.Zur; J. Pisarska; W.A. Pisarski

    2011-01-01

    Compositional-dependent heavy metal lead borate glasses doped with Tb3+ ior were investigated.Green luminescence related to main 5D4→7F5 (543 nm) transition was registered under excitation of 5D3 state of Tb3+ ions.Based on excitation and luminescence measurements,several spectroscopic parameters for Tb3+ ions were examined as a function of heavy metal PbO content.Luminescence decay analysis indicated that the 5D4 luminescence lifetime of Tb3+ reduced from 2.83 to 1.42 ms,when PbO:B2O3 ratio was changed from 1:1 to 4:1.

  16. Molecular Dynamics Simulation of Lead Borate and Related Glasses in Multicomponent Systems for Low Melting Vitrification of Nuclear Wastes

    Science.gov (United States)

    Kato, S.; Sakida, S.; Benino, Y.; Nanba, T.

    2011-03-01

    Glasses based on lead oxide have excellent properties in general such as low melting point, high chemical durability and high stability of glassy form, which are suitable for the preservation of volatile nuclear wastes in a permanent vitrified form. In order to confirm the long-term performance of lead borate based glasses it is necessary to establish dissolution and diffusion processes based on a reliable model of the glass structure. In the present study molecular dynamics (MD) simulation of lead borate based glasses was carried out introducing a dummy negative point charge to reproduce asymmetric PbOn units. Parameters for the dummy charge were optimized based on the comparison between calculated radial distribution function and experimental one. Asymmetric coordination around Pb, for example trigonal bipyramid, was successfully reproduced in the MD simulated binary and ternary glass models. The simple model using the dummy charge was confirmed to be valid for further simulations of multicomponent glasses containing nuclear wastes and heavy elements.

  17. Inorganic pigments doped with tris(pyrazol-1-yl)borate lanthanide complexes: A photoluminescence study

    Energy Technology Data Exchange (ETDEWEB)

    Gheno, Giulia, E-mail: giulia.gheno@unive.it [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Bortoluzzi, Marco; Ganzerla, Renzo [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Enrichi, Francesco [CIVEN, Coordinamento Interuniversitario Veneto per le Nanotecnologie, Via delle Industrie 5, 30175 Marghera, Venezia (Italy)

    2014-01-15

    The inorganic pigments malachite, Egyptian blue, Ercolano blue and chrome yellow have been doped with the neutral homoleptic Ln(III) complex Ln(Tp){sub 3} (Ln=Eu, Tb; Tp=hydrotris(pyrazol-1-yl)borate) in the presence of arabic gum or acrylic emulsion as binders, in order to obtain photoluminescent materials of interest for cultural heritage restoration. The doped pigments have shown emissions associated to f–f transitions in the visible range upon excitation with UV light. Thermal and UV-light ageings have been carried out. In all the cases the photoluminescent behaviour is maintained, but in the cases of acrylic-based paints emission spectra and lifetimes are strongly influenced by thermal treatments. The choice of binder and pigments influences the photoluminescent behaviour of the corresponding film paints. -- Highlights: • Inorganic pigments doped with photoluminescent lanthanide complexes. • Hydrotris(pyrazol-1-yl)borate (Tp) as antenna-ligand for Eu(III) and Tb(III). • Emission associated to f–f transitions upon excitation with UV light. • Photoluminescence of paints influenced by the choice of binder and pigments. • Photoluminescence after ageing depending upon the type of binder.

  18. Spectroscopic properties of Pr3+ and Er3+ ions in lead-free borate glasses modified by BaF2

    Science.gov (United States)

    Pisarska, Joanna; Pisarski, Wojciech A.; Dorosz, Dominik; Dorosz, Jan

    2015-09-01

    Lead-free oxyfluoride borate glasses singly doped with Pr3+ and Er3+ were prepared and next investigated using absorption and luminescence spectroscopy. In the studied glass system, barium oxide was substituted by BaF2. Two luminescence bands of Pr3+ located at visible spectral region are observed, which correspond to 3P0-3H4 (blue) and 1D2-3H4 (reddish orange) transitions, respectively. The luminescence bands due to 1D2-3H4 transition of Pr3+ are shifted to shorter wavelengths, when BaO was substituted by BaF2. Near-infrared luminescence spectra of Er3+ ions in lead-free borate glasses modified by BaF2 correspond to 4I13/2-4I15/2 transition. Their spectral linewidths increase with increasing BaF2 concentration. The changes in measured lifetimes of rare earth ions are well correlated with the bonding parameters calculated from the optical absorption spectra.

  19. In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing.

    Science.gov (United States)

    Zhou, Jie; Wang, Hui; Zhao, Shichang; Zhou, Nai; Li, Le; Huang, Wenhai; Wang, Deping; Zhang, Changqing

    2016-03-01

    Full-thickness skin defects represent urgent clinical problem nowadays. Wound dressing materials are hotly needed to induce dermal reconstruction or to treat serious skin defects. In this study, the borate bioactive glass (BG) micro-fibers were fabricated and compared with the traditional material 45S5 Bioglass(®) (SiG) micro-fibers. The morphology, biodegradation and bioactivity of BG and SiG micro-fibers were investigated in vitro. The wound size reduction and angiogenic effects of BG and SiG micro-fibers were evaluated by the rat full-thickness skin defect model and Microfil technique in vivo. Results indicated that the BG micro-fibers showed thinner fiber diameter (1 μm) and better bioactivity than the SiG micro-fibers did. The ionic extracts of BG and SiG micro-fibers were not toxic to human umbilical vein endothelial cells (HUVECs). In vivo, the BG micro-fiber wound dressings obviously enhanced the formation of blood vessel, and resulted in a much faster wound size reduction than the SiG micro-fibers, or than the control groups, after 9 days application. The good skin defect reconstruction ability of BG micro-fibers contributed to the B element in the composition, which results in the better bioactivity and angiogenesis. As shown above, the novel bioactive borate glass micro-fibers are expected to provide a promising therapeutic alternative for dermal reconstruction or skin defect repair.

  20. Effect of TeO{sub 2} on the elastic moduli of sodium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Saddeek, Y.B.; Abd El Latif, Lamia

    2004-05-01

    Sodium borate glass containing tellurite as Te{sub x}Na{sub 2-2x}B{sub 4-4x}O{sub 7-5x} with x=0, 0.05, 0.15, 0.25 and 0.35 have been prepared by rapid quenching. Ultrasonic velocity (both longitudinal and shear) measurements have been made using a transducer operated at the fundamental frequency of 4 MHz at room temperature. The density was measured by the conventional Archimedes method. The elastic moduli, the Debye temperature, Poisson's ratio, and the parameters derived from the Makishima-Mackenzie model and the bond compression model have been obtained as a function of TeO{sub 2} content. The monotonic decrease in the velocities and the elastic moduli, and the increase in the ring diameter and the ratio K{sub bc}/K{sub e} as a function of TeO{sub 2} modifier content reveals the loose packing structure, which is attributed to the increase in the molar volume and the reduction in the vibrations of the borate lattice. The observed results confirm that the addition of TeO{sub 2} changes the rigid character of Na{sub 2}B{sub 4}O{sub 7} to a matrix of ionic behaviour bonds (NBOs). This is due to the creation of more and more discontinuities and defects in the glasses, thus breaking down the borax structure.

  1. Infrared-to-visible conversion luminescence of Er 3+ ions in lead borate transparent glass-ceramics

    Science.gov (United States)

    Pisarski, Wojciech A.; Pisarska, Joanna; Lisiecki, Radosław; Grobelny, Łukasz; Dominiak-Dzik, Grażyna; Ryba-Romanowski, Witold

    2009-10-01

    Transparent glass-ceramics were successfully prepared during controlled heat treatment of lead borate glasses. The PbF 2 particles were dispersed into a borate glass matrix which was evidenced by X-ray diffraction analysis. The phase identification revealed that crystalline peaks can be related to the orthorhombic PbF 2 phase. Green up-conversion luminescence due to the 4S 3/2- 4I 15/2 transition of Er 3+ ions was registered. In comparison to the precursor glass the luminescence intensity was considerably higher, whereas the luminescence linewidth slightly decreased in the studied oxyfluoride transparent glass-ceramics. It indicated that a part of the trivalent erbium was incorporated into the PbF 2 crystalline phase.

  2. Effect of La2O3 on the structure and the properties of strontium borate glasses

    Directory of Open Access Journals (Sweden)

    Smiljanić Sonja V.

    2016-01-01

    Full Text Available The selected lanthanum-strontium-borate glasses were prepared by a conventional melt-quenching technique. The compositions of the investigated glasses were chosen to be: 5.7, 9.5, 14.3, 19.1 mol % for La2O3, 22.9, 19.1, 14.3, 9.5 for mol % SrO and 71.4 mol % for B2O3. The density, molar volume, oxygen molar volume, oxygen packing density, oxygen/boron ratios and structural transformations in the glass network were investigated according to the substitution of SrO by La2O3. The density and the molar volume increased in parallel with La2O3 content increase. Simultaneously, oxygen molar volume values increased while the oxygen packing density values decreased. A hot stage microscope (HSM and a differential thermal analysis (DTA were used to determine the characteristic temperatures. By increasing the content of lanthanum, the glass transition temperatures, changed with the same trend as the molar volume. Glass stability parameters were calculated from the temperatures obtained by DTA and HSM. The HSM results were used to obtain the viscosity curves by applying Vogel-Fulcher-Tamman (VFT equation. [Projekat Ministarstva nauke Republike Srbije, br. 172004 i br. 34001

  3. Structural and time resolved emission spectra of Er 3+: Silver lead borate glass

    Science.gov (United States)

    Coelho, João; Hungerford, Graham; Hussain, N. Sooraj

    2011-08-01

    The structural properties of Er 3+: silver lead borate glass is assessed by means of SEM, X-ray mapping, EDS and Raman analysis. In order to verify the time dependency of emission spectra, steady-state luminescence spectroscopy (SSLS) and time-resolved emission spectroscopy (TRES) studies have been performed. The stimulated emission cross-sections for the NIR emission transition 4I 13/2 → 4I 15/2 (1535 nm) at 970 nm excitation are reported. The decay times were obtained by fitting one ( τm = 0.301 ms) and two ( τm1 = 0.141 ms, τm2 = 0.368 ms) distributions for the NIR transition. Furthermore, by making use of TRES measurements the decay associated spectra were obtained allowing the time dependency for the different emission bands to be elucidated.

  4. Influence of europium (Eu3+) ions on the optical properties of silver lead borate glasses

    Indian Academy of Sciences (India)

    K Keshavamurthy; B Eraiah

    2015-09-01

    The influence of europium (Eu3+) ions on the optical properties of silver lead borate glasses of the Eu2O3–(1 – )Ag2O–29PbO–70B2O3 ( = 0, 0.1, 0.2, 0.3, 0.4 and 0.5 mol%) glass system prepared by the conventional melt quenching technique and their physical and optical properties were investigated. The UV absorption spectra were recorded at room temperature in the wavelength range of 200–600 nm. From the absorption edge data, it is found that both the direct and indirect transitions and their values are ranging from 3.19 to 3.54 and 2.50 to 3.07 eV, respectively. The Urbach energy values for these glasses were found to be in the range of 0.39–0.52 eV. The refractive indices have also been evaluated with respect to different molar concentrations of Eu2O3 and their calculated values are ranging from 1.598 to 1.654.

  5. Dependence of the emission electric dipole line strength of Eu~(3+) on the composition of lead borate glasses

    Institute of Scientific and Technical Information of China (English)

    江莎; 刘子怡; 夹国华; 段昌奎

    2009-01-01

    Lead borate glasses xB2O3+(99-x)PbO+0.5Eu2O3(x=70,60,...,10) were prepared by melt-quenching method.The luminescent properties were characterized with excitation and emission spectra.The emission intensities for 5D0-7FJ(J=0-4) were analyzed to give variation of the relative electric dipole line strengths with the composition of glasses so as to examine the crucial implicit assumption of independent electric dipole line strength on the composition of glass in the Phys.Rev.Lett.2003,91,203903 paper studying l...

  6. The influence of CdSe and ZnSe nanoparticles on the optical properties of Sm3+ ions in lead borate glasses

    Science.gov (United States)

    Mallur, Saisudha B.; Heidorn, William D.; Fatokun, Stephen O.; Joshi, Krishna D.; Bista, Sandip S.; Babu, Panakkattu K.

    2017-03-01

    The effect of glass composition and the presence of CdSe/ZnSe nanoparticles (NPs) on the optical absorption and fluorescence of Sm-doped lead borate glasses are studied. Three sets of glass samples xPbO:(99.5-x) B2O3:0.5Sm2O3, x = 29.5-69.5 mol%, xPbO:(96.5-x) B2O3:0.5Sm2O3: 3CdSe/ZnSe, x = 36.5, and 56.5 mol% are prepared. NPs are grown by annealing these glasses just below the glass transition temperature. Average size of both types of NPs increases with annealing time; however, CdSe NPs grew to a larger size range (2 to 20 nm) compared to ZnSe NPs (1 to 16 nm). We analyzed the hypersensitive transition, intensity parameters, radiative transition probability, stimulated emission cross section (σp), and the area ratio of the electric dipole/magnetic dipole transitions of Sm3+. The intensity parameters show a minimum at 11 h annealing for 36.5 mol% and a maximum for the same annealing duration in 56.5 mol% PbO containing CdSe NPs. The σp for 56.5 mol% of PbO with CdSe NPs is found to be a maximum when the average NP size is around 14 nm. ZnSe NPs containing glasses also show significant changes in σp when the average particle size is 16 nm, for 36.5 mol% PbO. Our results suggest that the optical properties of Sm3+ in lead borate glasses are sensitive to its electronic environment which can be modified by varying the base glass composition and/or incorporating large NPs of CdSe/ZnSe. The large σp values that we observe for some of the glass compositions make them attractive materials for photonic devices and photovoltaic applications.

  7. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Directory of Open Access Journals (Sweden)

    Yomei Tokuda

    2015-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1 the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2 the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1 glass showed that the average coordination number (CN of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. However, the degree of decrement in borates is much smaller than that in silicates. We have considered that the small difference in CN is due to 4-coordinated B, because it is electrically compensated by the alkali metal ions resulting in the restriction of having various coordinations of O to alkali metal.

  8. Optical absorption and fluorescence properties of Er3+/Yb3+ codoped lead bismuth alumina borate glasses

    Science.gov (United States)

    Goud, K. Krishna Murthy; Reddy, M. Chandra Shekhar; Rao, B. Appa

    2014-04-01

    Lead bismuth alumina borate glasses codoped with Er3+/Yb3+ were prepared by melt quenching technique. Optical absorption, FTIR and photoluminescence spectra of these glasses have been studied. Judd-Ofelt theory has been applied to to the f ↔ f transitions for evaluating Ω2, Ω4 and Ω6 parameters. Radiative properties like branching ratio βr and the radiative life time τR have been determined on the basis of Judd-Ofelt theory. Upconversion emissions have been observed under 980nm laser excitation at room temperature. Green and red up-conversion emissions are centered at 530, 550 and 656 nm corresponding to 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3+ respectively. The results obtained are discussed quantitatively based on the energy transfer between Yb3+ and Er3+.

  9. Molecular Dynamics Simulation of Lead Borate and Related Glasses in Multicomponent Systems for Low Melting Vitrification of Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S; Benino, Y; Nanba, T [Graduate School of Environmental Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 (Japan); Sakida, S, E-mail: benino@cc.okayama-u.ac.jp [Environmental Management Center, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 (Japan)

    2011-03-15

    Glasses based on lead oxide have excellent properties in general such as low melting point, high chemical durability and high stability of glassy form, which are suitable for the preservation of volatile nuclear wastes in a permanent vitrified form. In order to confirm the long-term performance of lead borate based glasses it is necessary to establish dissolution and diffusion processes based on a reliable model of the glass structure. In the present study molecular dynamics (MD) simulation of lead borate based glasses was carried out introducing a dummy negative point charge to reproduce asymmetric PbO{sub n} units. Parameters for the dummy charge were optimized based on the comparison between calculated radial distribution function and experimental one. Asymmetric coordination around Pb, for example trigonal bipyramid, was successfully reproduced in the MD simulated binary and ternary glass models. The simple model using the dummy charge was confirmed to be valid for further simulations of multicomponent glasses containing nuclear wastes and heavy elements.

  10. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses.

    Science.gov (United States)

    Gu, Yifei; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E

    2013-11-01

    Previous studies have evaluated the capacity of porous scaffolds composed of a single bioactive glass to regenerate bone. In the present study, scaffolds composed of a mixture of two different bioactive glasses (silicate 13-93 and borate 13-93B3) were created and evaluated for their response to osteogenic MLO-A5 cells in vitro and their capacity to regenerate bone in rat calvarial defects in vivo. The scaffolds, which have similar microstructures (porosity=58-67%) and contain 0, 25, 50 and 100 wt.% 13-93B3 glass, were fabricated by thermally bonding randomly oriented short fibers. The silicate 13-93 scaffolds showed a better capacity to support cell proliferation and alkaline phosphatase activity than the scaffolds containing borate 13-93B3 fibers. The amount of new bone formed in the defects implanted with the 13-93 scaffolds at 12 weeks was 31%, compared to values of 25, 17 and 20%, respectively, for the scaffolds containing 25, 50 and 100% 13-93B3 glass. The amount of new bone formed in the 13-93 scaffolds was significantly higher than in the scaffolds containing 50 and 100% 13-93B3 glass. While the 13-93 fibers were only partially converted to hydroxyapatite at 12 weeks, the 13-93B3 fibers were fully converted and formed a tubular morphology. Scaffolds composed of an optimized mixture of silicate and borate bioactive glasses could provide the requisite architecture to guide bone regeneration combined with a controllable degradation rate that could be beneficial for bone and tissue healing.

  11. Luminescence properties of Tm3+/Yb3+ codoped lead alumina bismuth borate glasses

    Science.gov (United States)

    Goud, K. Krishna Murthy; Reddy, M. Chandra Shekhar; Rao, B. Appa

    2016-05-01

    This paper reports on the spectroscopic properties of Yb3+ and Tm3+ codoped lead alumina bismuth borate glasses. Optical absorption spectra of these Samples were recorded at room temperature in the wavelength range 350-2000 nm. The absorption spectra exhibited the bands at 658 nm (3H6→3F2), 686 nm (3H6→3F3), 792 nm (3H6→3H4), 1211 nm (3H6→3H5) and 1663 nm (3H6→3F4) due to Tm3+ ions. The band at 977 nm (2F7/2→2F5/2) is due to Yb3+ ions. Optical band gap (Eopt) and Urbach energy (ΔE) values were calculated from the spectra. It was observed that the value of optical band gap decreases with increase in the concentration of Tm3+ ions. The upconversion luminescence spectra were measured under excitation of 980 nm laser diode, and the intense blue (470 nm) and green (656 nm) emission were simultaneously observed at room temperature. A proposed upconversion mechanism involving energy transfer from Yb3+ to Tm3+ has been presented.

  12. Melting and freezing of spherical bismuth nanoparticles confined in a homogeneous sodium borate glass

    Science.gov (United States)

    Kellermann, G.; Craievich, A. F.

    2008-08-01

    The melting temperature and the crystallization temperature of Bi nanoclusters confined in a sodium borate glass were experimentally determined as functions of the cluster radius. The results indicate that, on cooling, liquid Bi nanodroplets exhibit a strong undercooling effect for a wide range of radii. The difference between the melting temperature and the freezing temperature decreases for decreasing radius and vanishes for Bi nanoparticles with a critical radius R=1.9nm . The magnitude of the variation in density across the melting and freezing transitions for Bi nanoparticles with R=2nm is 40% smaller than for bulk Bi. These experimental results support a basic core-shell model for the structure of Bi nanocrystals consisting of a central crystalline volume surrounded by a structurally disordered shell. The volume fraction of the crystalline core decreases for decreasing nanoparticle radius and vanishes for R=1.9nm . Thus, on cooling, the liquid nanodroplets with R<1.9nm preserve, across the liquid-to-solid transformation, their homogeneous and disordered structure without crystalline core.

  13. Oxidation of ethyl ether on borate glass: chemiluminescence, mechanism, and development of a sensitive gas sensor.

    Science.gov (United States)

    Hu, Jing; Xu, Kailai; Jia, Yunzhen; Lv, Yi; Li, Yubao; Hou, Xiandeng

    2008-11-01

    A gas sensor was developed by using the chemiluminescence (CL) emission from the oxidation of ethyl ether by oxygen in the air on the surface of borate glass. Theoretical calculation, together with experimental investigation, revealed the main CL reactions: ethyl ether is first oxidized to acetaldehyde and then to acetic acid, during which main luminous intermediates such as CH 3CO (*) are generated and emit light with a peak at 493 nm. At a reaction temperature of 245 degrees C, the overall maximal emission was found at around 460 nm, and the linear range of the CL intensity versus the concentration of ethyl ether was 0.12-51.7 microg mL (-1) ( R = 0.999, n = 7) with a limit of detection (3sigma) of 0.04 microg mL (-1). Interference from foreign substances including alcohol (methanol, ethanol and isopropanol), acetone, ethyl acetate, n-hexane, cyclohexane, dichloromethane, or ether ( n-butyl ether, tetrahydrofuran, propylene oxide, isopropyl ether and methyl tert-butyl ether) was not significant except a minimal signal from n-butyl ether (ethyl ether.

  14. Modified refractive index of zinc sulfide nanoparticles doped glasses

    Directory of Open Access Journals (Sweden)

    M. Moussaoui

    2011-09-01

    Full Text Available ZnS nanoparticles (NPs embedded in an oxide glass have been achieved in the present work by melting process. The UV-visible absorption and fluorescence properties of these doped and undoped glasses have been evaluated and compared. Studies on absorption spectra showed that the size of the ZnS NPs was near to 2 nm. Doped glass fluorescence characterized by laser confocale microscopy is centered at about 620 nm. We measured also the refractive index of ZnS doped glasses. The maximum refractive index difference between the undoped and ZnS doped glasses was found about 0.1 (l = 632.8 nm.

  15. Effect of TiO2 on the optical, structural and crystallization behavior of barium borate glasses

    Science.gov (United States)

    Marzouk, M. A.; ElBatal, F. H.; ElBatal, H. A.

    2016-07-01

    Collective characterizations of prepared binary barium borate glass (50 mol % BaO - 50 mol % B2O3) together with samples containing increasing added TiO2 contents (5% → 30%) were carried out by optical and FT infrared absorption measurements. FT infrared and X-ray diffraction analysis were done for heat treated glass - ceramic derivatives prepared through two step regime process. Optical spectra of the glasses reveal the presence of titanium ions mainly in the tetravalent state imparting additional UV band beside strong UV absorption due to trace iron impurity. IR spectral studies indicate the presence of triangular and tetrahedral borate groups through the modification of BaO to some BO3 to BO4 groups beside the presence of titanium ions as interfering or overlapping TiO4 or Bsbnd Osbnd Ti groupings in the glassy network. Crystalline X-ray diffraction results indicate the separation of crystalline barium borate of the composition (2BaO.5 B2O3) as a main constituent together with some crystalline alkali titanates confirming the role of TiO2 of both as nucleating agent beside acting as structural forming through reaction with alkali oxides to form crystalline titanates. The optical band gap values reveal progressive decrease and increase of Urbach energy with TiO2 content and the same for the refractive index values and all these parameters are correlated with the proposed changes in the glass constitution with the introduction of TiO2. The additional thermal expansion measurements indicate the peculiar characteristic negative expansion up to 300 °C and after which an increase in the coefficient of thermal expansion is identified with the increase in temperature. The thermal parameters are also correlated with the modification of the glass structure by the introduction of titanium ions.

  16. The effect of semiconducting CdSe and ZnSe nanoparticles on the fluorescence of Sm3+ in lead borate glasses

    Science.gov (United States)

    Mallur, Saisudha; Fatokun, Stephen; Babu, P. K.

    2015-03-01

    We studied the fluorescence spectra of Sm3+ doped lead borate glasses containing zinc selenide (ZnSe) and cadmium selenide (CdSe) nanoparticles with the following compositions (x PbO: 96.5-x B2O3:0.5 Sm2O3:3ZnSe/CdSe, x =36.5 and 56.5 mol%). These glass samples are prepared using the melt-quenching technique. Each sample is annealed just below the glass transition temperature at 400°C for 3 hrs and 6 hrs. We have chosen PbO-B2O3 glasses to incorporate Sm3+ ions because they have large glass forming region, high refractive index, and good physical and thermal stability. Fluorescence spectra of these samples are obtained with the excitation wavelength at 477 nm. Four fluorescence transitions are observed at 563 nm, 598 nm, 646 nm and 708 nm. The transition at 646 nm is found to be a hypersensitive transition that strongly depends on the covalency of the Sm-O bond and the asymmetry of the crystal field at Sm site. The 646 nm/598 nm fluorescence intensity ratio has been studied for different annealing times and PbO concentration for both ZnSe and CdSe samples. The presence of CdSe nanoparticles is seen to produce the greatest influence on the fluorescence intensity ratio. This could be due to the size of the CdSe nanoparticles and covalency of the Sm-O bond.

  17. Concentration dependent spectroscopic properties of Dy3+ ions doped boro-phosphate glasses

    Science.gov (United States)

    Mariyappan, M.; Marimuthu, K.

    2016-05-01

    Dy3+ ions doped boro-phosphate glasses have been synthesized by melt quenching method and characterized through FTIR, absorption and luminescence spectral measurements. The presence of various stretching and bending vibrations of different borate and phosphate groups were identified from the FTIR spectra. In order to examine the electronic band structure of the studied glasses, Optical energy gap (Eopt) and Urbach energy (ΔE) values were estimated from the absorption spectra. The Judd-Ofelt (JO) intensity parameters were calculated to examine the symmetry of the ligand environment around the Dy3+ ions site. The emission spectra exhibit two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponding to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions respectively. The emission spectra were characterized through Commission International d'Eclairage (CIE) 1931 chromaticity diagram to explore its suitability for WLED applications.

  18. Study on visible luminescence of the Tm 3 + : 1D 2 → 3 F 4 emission state in lead borate titanate aluminumfluoride glasses

    Science.gov (United States)

    Suhasini, T.; Jamalaiah, B. C.; Sasikala, T.; Reddy, G. V. Lokeswara; Moorthy, L. Rama

    2012-03-01

    This paper reports the visible luminescence properties of 1D 2 state of Tm 3 + -doped lead borate titanate aluminumfluoride (LBTAFTm) glasses. The absorption and luminescence was analyzed within the frame work of Judd-Ofelt model. The reliability of J-O intensity parameters obtained from the experimental oscillator strengths have satisfactorily been correlated with the calculated oscillator strengths with small r.m.s deviation of ± 0.12 × 10 -6 by the least square fit analysis. Upon 359 nm excitation, the luminescence spectra show only one emission band at 458 nm (blue) corresponding to the 1D 2 → 3 F 4 transition in the spectral region 400-500 nm. No luminescence quenching has been observed with the increase of Tm 3 + concentration. The decay profiles of the 1D 2 level have shown single-exponential nature for all the concentrations and the decay times were found to decrease with the increase of concentration. The stimulated emission cross-section ( σe) for the observed emission transition has also been computed. The large quantum efficiency (η) of the 1D 2 level suggests the utility of LBTAFTm glass as a potential host for optical device applications at 458 nm emission wavelength.

  19. Synthesis and spectral analysis of Sm:BaB{sub 4}O{sub 7} microfibers embedded in borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Y., E-mail: yashjidwivedi@gmail.com [Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP (Brazil); Physics Department, National Institute of Technology Kurukshetra, Kurukshetra, Haryana 136119 (India); Zilio, S.C. [Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP (Brazil); Rai, S.B. [Laser and Spectroscopy Laboratory, Physics Department, Banaras Hindu University, Varanasi, UP221005 (India)

    2014-11-15

    The present article reports synthesis and spectroscopic analysis of Sm:BaB{sub 4}O{sub 7} microfibers embedded in borate glass. Structural analysis, using TEM, XRD techniques, revealed the formation of fibre shaped BaB{sub 4}O{sub 7} crystals. A bright red dominated orange–red emission was observed, on 355 nm and 532 nm excitations, in ceramic sample. Higher emission and absorption higher cross-sections were observed in the ceramic sample than its glass counterpart. We have monitored 45% enhancement in emission intensity ratio ({sup 4}G{sub 5/2}→{sup 6}H{sub 9/2}/G{sub 5/2}→{sup 6}H{sub 5/2}) in glass–ceramic sample due to significant increment in electric dipole transition. Time resolved analysis explored a significant alteration in the excited state relaxation process due to annealing. Several radiative parameters like stimulated emission cross-section, branching ratio, quantum efficiency etc. were estimated to explore lasing possibility in glass and ceramic samples. We found that the quantum efficiency increases from 60.4% in glass to 62.7% in Sm:BaB{sub 4}O{sub 7} microfibers embedded in glass. - Highlights: • Synthesis of fibre shaped surface crystallized Sm:BaB{sub 4}O{sub 7} reported in borate glass. • Strong red PL reported at various physical conditions on 532 and 355 nm excitations. • Effect of fibre growth on absorption, PL, decay dynamics was investigated. • J–O model used to calculate branching ratio, radiative lifetime, quantum efficiency. • Stimulated emission cross-section, bandwidth, gain enhances several times in fibres.

  20. Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials

    Science.gov (United States)

    Singh, Narveer; Singh, Kanwar Jit; Singh, Kulwant; Singh, Harvinder

    2004-09-01

    Gamma-ray mass attenuation coefficients have been measured experimentally and calculated theoretically for PbO-B 2O 3 and Bi 2O 3-PbO-B 2O 3 glass systems using narrow beam transmission method. These values have been used to calculate half value layer (HVL) parameter. These parameters have also been calculated theoretically for some standard radiation shielding concretes at same energies. Effect of replacing lead by bismuth has been analyzed in terms of density, molar volume and mass attenuation coefficient.

  1. Photostimulated luminescence from BaCl2:Eu2+ nanocrystals in lithium borate glasses following neutron irradiation

    NARCIS (Netherlands)

    Appleby, G.A.; Edgar, A.; Williams, G.V.M.; Bos, A.J.J.

    2006-01-01

    A glass-ceramic thermal neutron imaging plate material is reported. The material consists of a neutron sensitive 2B2O3–Li2O glass matrix containing nanocrystallites of the storage phosphor BaCl2:Eu2+. When doped with 0.5 mol % Eu2+, the neutron induced photostimulated luminescence (PSL) conversion e

  2. High Quantum Efficiency and High Concentration Erbium-Doped Silica Glasses Fabricated by Sintering Nanoporous Glasses

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new method was used to prepare erbium-doped high silica (SiO2%>96%) glasses by sintering nanoporous glasses. The concentration of erbium ions in high silica glasses can be considerably more than that in silica glasses prepared by using conventional methods. The fluorescence of 1532 nm has an FWHM (Full Wave at Half Maximum) of 50 nm, wider than 35 nm of EDSFA (erbium-doped silica fiber amplifer), and hence the glass possesses potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that the quantum efficiency of this erbium-doped glass is about 0.78, although the erbium concentration in this glass (6×103) is about twenty times higher than that in silica glass. These excellent characteristics of Er-doped high silica glass will be conducive to its usage in optical amplifiers and microchip lasers.

  3. Thermoluminescence and defect centres in Tb doped lithium magnesium borate phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Menon, S.N., E-mail: sanju_n_m@yahoo.com [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Kadam, Sonal [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Watanabe, S.; Gundu Rao, T.K. [Institute of Physics, University of Sao Paulo, 05508-090 Sao Paulo, SP (Brazil); Kulkarni, M.S.; Babu, D.A.R. [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2015-11-15

    Terbium doped lithium magnesium borate phosphor exhibits thermoluminescence (TL) peaks at about 140 °C, 200 °C, 225 °C and 370 °C. The phosphor was characterized by X-ray powder diffraction and photoluminescence studies. Electron Spin Resonance (ESR) studies were carried out to identify the defect centres responsible for the TL peaks. Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0108 is identified as an O{sup −} ion and the centre correlates with the TL peak at 200 °C. Centre II with an isotropic g-factor 2.0029 is assigned to an F{sup +}-type centre (singly ionized oxygen vacancy) and is the likely recombination centre for the TL peaks at 200 °C and 225 °C. An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F{sup +} centre) seems to originate from an F centre (oxygen vacancy with two electrons). This F centre may be related to the observed high temperature 370 °C TL peak in LiMgBO{sub 3}:Tb phosphor. - Highlights: • Powder phosphor of LiMgBO{sub 3}:Tb{sup 3+} was prepared by solid state diffusion method. • The phosphor exhibits a dominant emission at 545 nm ({sup 5}D{sub 4}→{sup 7}F{sub 5}) of the Tb{sup 3+} ion. • Electron Spin Resonance studies have been carried out to identify the defect centres responsible for the observed thermoluminescence peaks.

  4. Visible and infrared spectroscopy of Pr{sup 3+} and Tm{sup 3+} ions in lead borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, W A [University of Silesia, Institute of Materials Science, Bankowa 12, 40-007, Katowice (Poland); Pisarska, J [Silesian University of Technology, Department of Materials Science, 40-019 Katowice (Poland); Dominiak-Dzik, G [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw (Poland); Ryba-Romanowski, W [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw (Poland)

    2004-09-01

    The visible luminescence of Pr{sup 3+} and Tm{sup 3+} ions in lead borate glasses has been investigated as a function of activator concentration. The Judd-Ofelt analysis and the Inokuti-Hirayama model for energy transfer between activator ions have been applied for investigations of the radiative and non-radiative relaxation of the Pr and Tm excited states. Based on the luminescence decay curve analysis, the concentration quenching of the {sup 1}D{sub 2} emission of Pr{sup 3+} and {sup 1}G{sub 4} emission of Tm{sup 3+} ions has been attributed to cross-relaxation processes. The infrared spectroscopic measurements provide information on structural changes in the borate network initiated by optically active (Pr or Tm) ions. Contrary to the praseodymium ions, the thulium ions play an additional role as a glass-modifier in the PbO-B{sub 2}O-Al{sub 2}O{sub 3}-WO{sub 3} composition.

  5. OPTICALLY HOMOGENEOUS PHOSPHATE GLASSES DOPED WITH METAL NANOPARTICLES

    OpenAIRE

    Shakhgil'dyan, Georgiy; Savinkov, Vitaliy; Konev, Denis; Paleari, A.; Sigaev, Vladimir

    2013-01-01

    The technique of batch preparation, melting, glass working and nanoscale modification of the structure of phosphate glass doped with gold nanoparticles was developed. Glass samples containing different amounts of phosphorus oxide were synthesized. Heat treatments of the samples were held in a gradient furnace. Physical, spectral-luminescent and nonlinear optical properties of the samples were studied.

  6. Spectroscopic Properties of Nd3+-Doped High Silica Glass Prepared by Sintering Porous Glass

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new kind of Nd3+-doped high silica glass (SiO2>96% (mass fraction)) was obtained by sintering porous glass impregnated with Nd3+ ions. The absorption and luminescence properties of high silica glass doped with different Nd3+ concentrations were studied. The intensity parameters Ωt (t=2, 4, 6), spontaneous emission probability, fluorescence lifetime, radiative quantum efficiency, fluorescence branching ratio, and stimulated emission cross section were calculated using the Judd-Ofelt theory. The optimal Nd3+ concentration in high silica glass was 0.27% (mole fraction) because of its high quantum efficiency and emission intensity. By comparing the spectroscopic parameters with other Nd3+-doped oxide glasses and commercial silicate glasses, the Nd3+-doped high silica glasses are likely to be a promising material used for high power and high repetition rate lasers.

  7. Effect of pyrophosphate ions on the conversion of calcium-lithium-borate glass to hydroxyapatite in aqueous phosphate solution.

    Science.gov (United States)

    Fu, Hailuo; Rahaman, Mohamed N; Day, Delbert E; Huang, Wenhai

    2010-10-01

    The conversion of glass to a hydroxyapatite (HA) material in an aqueous phosphate solution is used as an indication of the bioactive potential of the glass, as well as a low temperature route for preparing biologically useful materials. In this work, the effect of varying concentrations of pyrophosphate ions in the phosphate solution on the conversion of a calcium-lithium-borate glass to HA was investigated. Particles of the glass (150-355 μm) were immersed for up to 28 days in 0.25 M K(2)HPO(4) solution containing 0-0.1 M K(4)P(2)O(7). The kinetics of degradation of the glass particles and their conversion to HA were monitored by measuring the weight loss of the particles and the ionic concentration of the solution. The structure and composition of the conversion products were analyzed using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. For K(4)P(2)O(7) concentrations of up to 0.01 M, the glass particles converted to HA, but the time for complete conversion increased from 2 days (no K(4)P(2)O(7)) to 10 days (0.01 M K(4)P(2)O(7)). When the K(4)P(2)O(7) concentration was increased to 0.1 M, the product consisted of an amorphous calcium phosphate material, which eventually crystallized to a pyrophosphate product (predominantly K(2)CaP(2)O(7) and Ca(2)P(2)O(7)). The consequences of the results for the formation of HA materials and devices by the glass conversion route are discussed.

  8. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions.

    Science.gov (United States)

    Huang, Wenhai; Day, Delbert E; Kittiratanapiboon, Kanisa; Rahaman, Mohamed N

    2006-07-01

    Bioactive glasses with controllable conversion rates to hydroxyapatite (HA) may provide a novel class of scaffold materials for bone tissue engineering. The objective of the present work was to comprehensively characterize the conversion of a silicate bioactive glass (45S5), a borate glass, and two intermediate borosilicate glass compositions to HA in a dilute phosphate solution at 37 degrees Celsius. The borate glass and the borosilicate glasses were derived from the 45S5 glass by fully or partially replacing the SiO(2) with B(2)O(3). Higher B(2)O(3) content produced a more rapid conversion of the glass to HA and a lower pH value of the phosphate solution. Whereas the borate glass was fully converted to HA in less than 4 days, the silicate (45S5) and borosilicate compositions were only partially converted even after 70 days, and contained residual SiO(2) in a Na-depleted core. The concentration of Na(+) in the phosphate solution increased with reaction time whereas the PO(4) (3-) concentration decreased, both reaching final limiting values at a rate that increased with the B(2)O(3) content of the glass. However, the Ca(2+) concentration in the solution remained low, below the detection limit of atomic absorption, throughout the reaction. Immersion of the glasses in a mixed solution of K(2)HPO(4) and K(2)CO(3) produced a carbonate-substituted HA but the presence of the K(2)CO(3) had little effect on the kinetics of conversion to HA. The kinetics and mechanisms of the conversion process of the four glasses to HA are compared and used to develop a model for the process.

  9. Structural studies of some phospho-borate glasses using ultrasonic pulse-echo technique, DSC and IR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gaafar, M.S., E-mail: mohamed_s_gaafar@hotmail.co [Ultrasonic Laboratory, National Institute for Standards, Tersa Street, P.O. Box 136, El-Haram, El-Giza 12211 (Egypt); Afifi, H.A. [Ultrasonic Laboratory, National Institute for Standards, Tersa Street, P.O. Box 136, El-Haram, El-Giza 12211 (Egypt); Mekawy, M.M. [Thermometry Laboratory, National Institute for Standards, Tersa Street, P.O. Box 136, El-Haram, El-Giza 12211 (Egypt)

    2009-06-01

    Glasses in the system (95-x) [0.25 Na{sub 2}O-0.75 B{sub 2}O{sub 3}]-x P{sub 2}O{sub 5}-5 Fe{sub 2}O{sub 3} (0<=x<=15 mol%), have been prepared by the melt quenching technique. Elastic properties and FT-IR spectroscopic studies have been employed to study the role of P{sub 2}O{sub 5} on the structure of the glass system. Elastic properties Poisson's ratio, micro-hardness and Debye temperature have been investigated using sound wave velocity measurements at 4 MHz (both longitudinal and shear) at room temperature. The results showed that the density and the molar volume increase as both sound velocities and the determined glass transition temperatures decrease with increasing the contents of P{sub 2}O{sub 5}. Infrared spectra of the glasses reveal that the borate network consists of diborate units and is affected by the increase in the concentration of P{sub 2}O{sub 5} content as a second network former. These results are interpreted in terms of the replacement of the diborate units with B-O-B bridges by phosphate units with non-bridging oxygens (NBOs). Therefore, the elastic moduli are observed to decrease with the increase in P{sub 2}O{sub 5} content.

  10. Characterization of Fe$^{3+}$-doped silver phosphate glasses

    Indian Academy of Sciences (India)

    B P CHOUDHARY; N B SINGH

    2016-12-01

    The relationship among the composition, structure and selected properties for five series of silver phosphate glasses containing 0, 5, 10, 15 and 20wt% Fe$_2$O$_3$ has been investigated. The synthesized glasses have been characterized using different experimental techniques. X-ray diffraction studies revealed that the glasses are amorphous in nature. IR spectral studies have shown the presence of characteristic P–O–P linkages of linear phosphate chains,presence of O–P–O units in the phosphate tetrahedral and the formation of P–O–Fe bonds in the doped glass. It is also confirmed that due to doping of Fe$_2$O$_3$, loosening of glassy structure occurred and the glass became more disordered. Differential scanning calorimetric (DSC) studies revealed that glass transition temperature increased with Fe$_2$O$_3$ concentration. Scanning electron microscopic studies have shown that Fe$_2$O$_3$ doping modifies the microstructures of the glass and at lower concentration of dopant, a nanostructure is obtained. Electrical conductivity measurements from 303 to 373 K in a frequency range from 100 Hz to 5 MHz have indicated that all glasses are ionic conductors with Ag$^+$ ions as the charge carrier. Fe$_2$O$_3$ doping in silver phosphate glass increased the electrical conductivities. Results have shown that dielectric constants increased with the increase of temperature at all the frequencies; a.c. and d.c. conductivities have been separated and a Cole–Cole plot is also drawn. Dielectric losses in all the glasses decreased with frequency at a particular temperature. It is found that Ag$_2$O–P$_2$O$_5$ glass doped with 5wt% Fe$_2$O$_3$ gives high OCV value and the doped glass can be used as an electrolyte for solid-state batteries.

  11. Study on borate glass system containing with Bi 2O 3 and BaO for gamma-rays shielding materials: Comparison with PbO

    Science.gov (United States)

    Kaewkhao, J.; Pokaipisit, A.; Limsuwan, P.

    2010-04-01

    In this work, the mass attenuation coefficients and shielding parameters of borate glass matrices containing with Bi 2O 3 and BaO have been investigated at 662 keV, and compare with PbO in same glass structure. The theoretical values were calculated by WinXCom software and compare with experiential data. The results found that the mass attenuation coefficients were increased with increasing of Bi 2O 3, BaO and PbO concentration, due to increase photoelectric absorption of all glass samples. However, Compton scattering gives dominant contribution to the total mass attenuation coefficients for studied glass samples. Moreover the half value layers (HVL) of glass samples were also better than ordinary concretes and commercial window glass. These results reflecting that the Bi-based glass can use replace Pb in radiation shielding glass. In the case of Ba, may be can use at appropriate energy such as X-rays or lower.

  12. Electrical, dielectric and structural properties of borovanadate glass systems doped with samarium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Graca, M.P.F.; Nico, C.; Soares, R.; Costa, L.C.; Valente, M.A. [Physics Department, I3N, Aveiro University, Campus Universitario de Santiago, Aveiro (Portugal); Fawzy, H.; Badr, Y. [Laser Science and Interactions Department, National Institute of Laser Enhanced Science, NILES, Cairo University (Egypt); Elokr, M.M. [Physics Department, Faculty of Science, Al Azhar University, Nasr City, Cairo (Egypt)

    2011-11-15

    Glasses doped with rare earth (RE) ions are widely studied due to the numerous applications of these systems (active media for solid state lasers, optical telecommunication, non-linear optical materials, electro-optic devices, etc.). Boron trioxide, B{sub 2}O{sub 3}, is a known glass forming oxide with a relative low melting temperature. The addition of a transition metal oxide, such as V{sub 2}O{sub 5}, promotes the exhibition of semiconducting properties making these promising systems for several technological applications, such that ones involved in solar energy conversion devices. It is known that alkali borovanadate glasses, like alkali borate glasses themselves, are ionically conducting materials. Despite their importance there are only few studies on these glasses reported on literature. Thus, the alkali-borovanadate glass system constitutes a family with high interest from the electrical and dielectric point of view. The effect of the increment of alkali quantity in the electrical and dielectric response of these glasses and the physical/structural explanation are questions which will be addressed. In this work, the transparent glass samples with molar composition 0.01Sm{sub 2}O{sub 3}-0.99[0.85B{sub 2}O{sub 3}-(0.15-x)Li{sub 2}O-xV{sub 2}O{sub 5}] with x = 0, 0.1, 0.2, 0.35, 0.5 and 2 (mol%) were prepared by conventional melting technique. The prepared samples were fully characterized using different experimental techniques such as, differential thermal analysis (DTA), X-ray diffraction (XRD), electrical and dielectric measurements. The samples structure, electrical and dielectric properties as a function of vanadium ions content was explored and discussed (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Advances in Laser Cooling of Thulium-Doped Glass

    Science.gov (United States)

    2003-05-01

    conversion,’’ Appl. Phys. Lett. 75, 1258–1260 (1999). 21. L. Wetenkamp, G. F. West, and H. Tobben, ‘‘Optical proper- ties of rare earth-doped ZBLAN glasses ...properties of Tm31 in ZBLAN fluoride glass . Part 2. Judd-Ofelt parameters,’’ Phys. Chem. Glasses 36, 139–140 (1995). 38. M. J. Weber, ‘‘Laser excited...Advances in laser cooling of thulium-doped glass C. W. Hoyt, M. P. Hasselbeck, and M. Sheik-Bahae Department of Physics and Astronomy, University of

  14. Preparation and properties of scintillating glass doped with organic activators

    Institute of Scientific and Technical Information of China (English)

    ZHU Dong-mei; LUO Fa; ZHAO Hong-sheng; ZHOU Wan-cheng

    2006-01-01

    A series of scintillating glasses were developed by doping organic activators into low melting temperature glasses according to different ratios. The fluorescence spectra and the transmission spectra of some scintillating glasses were explored and the actual concentration organic in scintillating glass was estimated. The results show that it is feasible to prepare the scintillating glass by doing organic scintillating activators into the low-melting glasses. There are two main reasons for the weak optical properties of the scintillation glasses: one is that the actual concentration of organic activators doped in the glasses is very low,and the other is the existence of lots of defects formed in the scintillating glasses due to the evaporation of organic activator,lowering the transmission of glasses. The fluorescence emission peaks of the glasses move to a longer wavelength compared with those in organic matrixes. To increase the light output of the glass,the optical transmittance of the glasses must be improved and the concentration of activators in the glasses must be increased.

  15. Spectral properties and dynamics of luminescent states of Pr{sup 3+} and Tm{sup 3+} in lead borate glasses modified by PbF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Dominiak-Dzik, G. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-950 Wroclaw (Poland)]. E-mail: G.Dominiak-Dzik@int.pan.wroc.pl; Ryba-Romanowski, W. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-950 Wroclaw (Poland); Pisarska, J. [Department of Materials Science, Silesian University of Technology, 40-019 Katowice (Poland); Pisarski, W.A. [Institute of Materials Science, University of Silesia, 40-007 Katowice (Poland)

    2007-01-15

    A heavy metal oxide borate glass with composition (70-x)PbO-18B{sub 2}O{sub 3}-6Al{sub 2}O{sub 3}-3WO{sub 3} (wt%) was modified by variable content of PbF{sub 2} (x=9, 36 and 72wt%) and doped with 1wt% of Pr{sup 3+} or Tm{sup 3+} ions. The influence of the PbF{sub 2} content on optical properties and luminescence dynamics has been observed through the variation of an effective line width of {sup 1}D{sub 2}->{sup 3}H{sub 4} and {sup 1}G{sub 4}->{sup 3}F{sub 4} emissions as well as the {sup 1}D{sub 2} and {sup 1}G{sub 4} lifetimes of Pr{sup 3+} and Tm{sup 3+}, respectively. It was observed that the increase of PbF{sub 2} content leads to narrowing of the {sup 1}D{sub 2}->{sup 3}H{sub 4} band from 680 to 590cm{sup -1}. This effect was not observed for the {sup 1}G{sub 4}->{sup 3}F{sub 4} thulium emission. The variation of luminescence kinetics was observed both for Pr{sup 3+}- and Tm{sup 3+}-doped samples; the increase of the PbF{sub 2} content has changed the {sup 1}D{sub 2} lifetime from 13.8 to 16.5{mu}s and from 34 to 43{mu}s for the {sup 1}G{sub 4} level.

  16. Surface characterization of silver-doped bioactive glass.

    Science.gov (United States)

    Vernè, E; Di Nunzio, S; Bosetti, M; Appendino, P; Brovarone, C Vitale; Maina, G; Cannas, M

    2005-09-01

    A bioactive glass belonging to the system SiO(2)-CaO-Na(2)O was doped with silver ions by ion exchange in molten salts as well as in aqueous solution. The ion exchange in the solution was done to check if it is possible to prepare an antimicrobial material using a low silver content. The doped glass was characterized by means of X-ray diffraction, SEM observation, EDS analysis, bioactivity test (soaking in a simulated body fluid), leaching test (GFAAS analyses) and cytotoxicity test. It is demonstrated that these surface silver-doped glasses maintain, or even improve, the bioactivity of the starting glass. The measured quantity of released silver into simulated body fluid compares those reported in literature for the antibacterial activity and the non-cytotoxic effect of silver. Cytotoxicity tests were carried out to understand the effect of the doped surfaces on osteogenic cell adhesion and proliferation.

  17. Monolithic Rare Earth Doped PTR Glass Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of the project is to demonstrate the feasibility of a monolithic solid state laser on the basis of PTR glass co-doped with luminescent rare earth ions....

  18. Orange emission in Pr3+-doped fluoroindate glasses

    CERN Document Server

    Manzani, Danilo; Ribeiro, Sidney J L; Goldner, Philippe; Bretenaker, Fabien

    2012-01-01

    We synthesize and study the properties of praseodymium doped fluoroindate glasses. Glass compositions with praseodymium molar concentrations up to 5% were obtained with good optical quality. Thermal, optical, and luminescence properties are investigated. Judd-Ofelt analysis is used to determine radiative lifetime and emission cross-section of the orange transition originating from the 3P0 level. We find that these glasses are good candidates for the realization of blue diode laser pumped orange lasers for quantum information processing applications.

  19. Structure Characterization of F-doped Silica Glass

    Institute of Scientific and Technical Information of China (English)

    XIE Junlin; DENG Tao; TU Feng; LUO Jie; HAN Qingrong

    2009-01-01

    Pure and fluorine-doped silica glass were fabricated by plasma chemical vapour deposition (PCVD) and characterized using Raman and infrared spectrum. The change in Raman in-tensity of 945 cm-1 peak, relating to ≡Si-F stretching vibration, agrees with the change of F content. Compared with measured wavenumber in IR spectrum, the calculated absorption wavelength confirms the incorporation form of F into the glass, the detail of which is a tetrahedron with a Si atom in the center coupled with one F atom and three network O atoms. Such structure identification may be useful for explaining some properties of F-doping silica glass.

  20. Optical absorption and fluorescence properties of Er{sup 3+}/Yb{sup 3+} codoped lead bismuth alumina borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Goud, K. Krishna Murthy, E-mail: krishnamurthy.phy@gmail.com; Reddy, M. Chandra Shekhar, E-mail: krishnamurthy.phy@gmail.com; Rao, B. Appa, E-mail: krishnamurthy.phy@gmail.com [Dept. of Physics, Osmania University, Hyderabad-500007, Andhra Pradesh (India)

    2014-04-24

    Lead bismuth alumina borate glasses codoped with Er{sup 3+}/Yb{sup 3+} were prepared by melt quenching technique. Optical absorption, FTIR and photoluminescence spectra of these glasses have been studied. Judd-Ofelt theory has been applied to to the f ↔ f transitions for evaluating Ω{sub 2}, Ω{sub 4} and Ω{sub 6} parameters. Radiative properties like branching ratio β{sub r} and the radiative life time τ{sub R} have been determined on the basis of Judd-Ofelt theory. Upconversion emissions have been observed under 980nm laser excitation at room temperature. Green and red up-conversion emissions are centered at 530, 550 and 656 nm corresponding to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} transitions of Er{sup 3+} respectively. The results obtained are discussed quantitatively based on the energy transfer between Yb{sup 3+} and Er{sup 3+}.

  1. Luminescence and spectral hole burning of Sm(2+) doped in Li(2)O-SrO-B(2)O(3) glass-ceramics.

    Science.gov (United States)

    Jiang, Chuanfang; Huang, Yanlin; Park, Seongtae; Jang, Kiwan; Seo, Hyo Jin

    2009-03-01

    The Sm(3+)-doped alkali strontium borate glass-ceramics were obtained by heating of the as-made glasses in air, where Sm(3+) ions were reduced to Sm(2+) ions. The XRD, optical absorption spectra and luminescence of Sm(3+) and Sm(2+) ions were investigated. The excitation spectra of the (7)F(0)-->(5)D(0) transition were measured in the region of (7)F(0)-->(5)D(1) transition, where spectral holes were burnt within two of the Stark split (5)D(1) bands. The Sm(2+) ions doped glass ceramics exhibit the persistent spectral hole burning at room temperature. The hole depth, which are burned by the DCM dye laser, are about 40% of the total intensity, respectively. It is concluded that the dominant burning mechanism is a photoionization of electron trapping at a site other than Sm(3+) ions because of the absence of an antihole around the burned hole.

  2. Silver doped nanobioactive glass particles for bone implant applications

    Science.gov (United States)

    Prabhu, M.; Kavitha, K.; Karunakaran, G.; Manivasakan, P.; Rajendran, V.

    2013-02-01

    Silica based silver doped nanobioactive glass compositions (58SiO2-33CaO-9P2O5 and 58SiO2-23CaO-9P2O5-10Ag2O(mol%)) were synthesized by a simple sol-gel route. The prepared samples were comprehensively characterised by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and scanning electron microscopic studies. The results reveal that the prepared samples have amorphous phase with spherical morphology and having a particle size less than 100 nm. The specific surface areas were 90 and 61 m2g-1 respectively. The in vitro bioactivity of glass samples were confirmed by the formation of hydroxyapatite layer on glass surfaces. The Ag2O-doped nanobioactive glasse samples shows reveal significant antibacterial activity compare with base glasses.

  3. Physical, structural and optical characterization of silicate modified bismuth-borate-tellurite glasses

    Science.gov (United States)

    Berwal, Neelam; Dhankhar, Sunil; Sharma, Preeti; Kundu, R. S.; Punia, R.; Kishore, N.

    2017-01-01

    The quaternary glass system xSiO2-(80-x) Bi2O3sbnd 15B2O3sbnd 5TeO2 has been prepared by melt-quench technique. The amorphous nature of glass samples has been ascertained by X-ray diffraction patterns. The variations in density, molar volume and crystalline volume with glass compositions have been discussed. A non-linear change has been observed in glass transition temperature and optical band gap energy. Raman and FTIR spectral studies suggest that glass network is mainly built up of BO3, BO4, SiO4, and TeO3 structural units, whereas BiO3 exists as both network modifying [BiO6] octahedral as well as network forming [BiO3] pyramidal structural units. The values of optical band gap energy have been estimated from fitting of both Mott and Davis's model and Hydrogenic excitonic model (HEM) with experimental data of absorption spectra. The HEM model shows good agreement with experimentally observed absorption spectra, which indicates the exciton formation in studied glass system. The non-linear compositional change in optical band gap energy is related with the structural changes occurring in present glass samples. The Urbach energy has also been estimated. The range of metallization criterion suggests that prepared glasses may be considered as new nonlinear optical materials.

  4. Study of structural and optical properties of lead borate glasses containing transition metal ion

    Science.gov (United States)

    Sanjay, Kaushik, A.; Kishore, N.; Agarwal, A.; Pal, I.; Dhar, R.

    2012-06-01

    Glasses with compositions xFe2O3.(40-x)PbO.60B2O3: V2O5 (2 mol%) have been prepared by the standard melt-quenching technique. Various properties such as glass transition temperature, density, IR spectra and optical band gap energy have been studied. The structural changes in these glasses have been monitored by IR spectroscopy. The values of optical band gap for indirect allowed and indirect forbidden transitions have been determined using available theories. The Urbach's energy is used to characterize the degree of disorder in amorphous solids.

  5. Physical study of Sm{sup 3+} doped borochromate glass system

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Wael Z., E-mail: drwael_7@yahoo.ca [Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt); Mahdy, M.M.; Elfayoumi, M.A.K. [Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt); Elokr, M.M. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt)

    2011-10-13

    Graphical abstract: Highlights: > The borate glass was used as a host for samarium and chromium oxides. > X-ray diffraction reveals the absence of any diffraction peaks. > The density of the samples and the molar volume exhibit opposite behavior. > IR spectra indicate that both Sm and Cr have minor effect on the boron structural units. > No ESR signals were observed for Cr-free sample. - Abstract: Sm{sup 3+} doped borochromate glasses of composition [xSm{sub 2}O{sub 3}-74.5B{sub 2}O{sub 3}-25Li{sub 2}O-(0.5 - x)Cr{sub 2}O{sub 3}] with x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5 mol% have been prepared by conventional quenching melting method. The XRD profile confirm the amorphous nature of the glass samples. The density measurements were made using Archimedes' principle of the prepared samples. Molar volume V{sub M}, rare-earth ion concentration N and ionic radius r{sub p} as well as field strength F have been estimated from the density measurements. The average optical basicity, {Lambda}{sub th}, electronegativity {chi}{sub 2av} and electronic polarizability {alpha}{sup 2-} were calculated for the prepared glass samples. Influence of rare earth ions on structural behavior in borochromate glasses have been investigated using infrared spectroscopy (IR). The structural changes have been analyzed with increasing rare earth concentration. Partial BO{sub 3} {r_reversible} BO{sub 4} conversion as a function of rare earth concentration was observed. From the relative peak areas of BO{sub 3} and BO{sub 4} in structural groups the ratio N{sub 4} has been calculated. ESR spectra were recorded at room temperature. The obtain ESR signals were used to estimate the paramagnetic susceptibility ({chi}).

  6. Gain Characteristics of Er3+-Doped Phosphate Glass Fibres

    Institute of Scientific and Technical Information of China (English)

    XU Shan-Hui; YANG Zhong-Min; ZHANG Qin-Yuan; DENG Zai-De; JIANG Zhong-Hong

    2006-01-01

    @@ An erbium-doped phosphate glass fibre has been drawn by the rod-in-tube technique in our laboratory. The gain for the Er3+-doped phosphate glass fibre with different pump powers and with different input signal wavelengths is investigated. The 2.2-cm-long fibre, pumped by a single-mode 980-nm fibre-pigtailed laser diode, can provide a net gain per unit length greater than 1.8dB/cm. The pump threshold is about 50mW at the wavelength of 1534nm, and below 70mW at 1550nm. The gain linewidth of the Er3+-doped phosphate glass fibre is greater than 34 nm and can cover the C band in optical communication networks.

  7. Investigations on spectral features of tungsten ions in sodium lead alumino borate glass system

    Science.gov (United States)

    Madhuri, V.; Kumar, J. Santhan; Rao, M. Subba; Cole, Sandhya

    2015-03-01

    Na2O-PbO-Al2O3-B2O3 (NPAB) glasses mixed with different concentrations of WO3 (ranging from 0 to 2.5 mol%) are synthesized by conventional melt quenching method. The samples are characterized by X-ray diffraction (XRD), optical absorption, Electron paramagnetic resonance (EPR) and Fourier transform infrared (FT-IR) spectroscopic techniques. Glass formation is confirmed by X-ray diffraction spectra. The optical absorption spectra of these glasses exhibited a predominant broad band peak at about 850-870 nm is identified due to dxy-dx2-y2 transition of W5+ ions. From the optical absorption spectral data, optical band gap (Eopt) and Urbach energy (ΔE) are evaluated. From EPR spectra the strength of the signal is increased and hyperfine splitting is resolved with increasing concentration of WO3 in the glass matrix. The FT-IR spectral studies have pointed out the existence of conventional BO3, BO4, B-O-B, PbO4, WO4 and WO6 structural units of these glasses. Various physical properties and optical basicity are also evaluated with respect to the concentration of WO3 ions.

  8. Optical phase conjugation in semiconductor-doped glasses

    Science.gov (United States)

    Roussignol, P.; Ricard, D.; Rustagi, K. C.; Flytzanis, C.

    1985-08-01

    We have studied optical phase conjugation in two types of semiconductor-doped glasses. Corning 3.68 and Schott OG 530 at λ = 0.532 μm using picosecond pulses. We observe a slow nonlinearity in agreement with the slow decay of luminescence. The saturation of the reflectivity is strongly correlated with the absorption saturation of these glasses and may be interpreted in terms of a three-level system model.

  9. -Irradiation effect on the acoustical properties of zinc lead borate glasses

    Science.gov (United States)

    Sharma, G.; Singh, K.; Manupriya; Klare, H. S.; Rajendran, V.; Gayathri Devi, A. V.; Narang, S. B.

    2005-11-01

    The effect of -irradiation on the acoustical properties of xZnO.2xPbO.(1-3x)B2O3 glasses has been studied. Ultrasonic velocity and attenuation measurements have been made before and after -irradiation at room temperature in the frequency range 2.25-10 MHz. From the measured density and ultrasonic velocity data, the elastic moduli, Poisson's ratio and other parameters have been obtained. Changes in the acoustical properties are explained in terms of radiation-induced structural defects and the influence of PbO/ZnO in the glass network structure.

  10. Properties and structural features of iron doped BABAL glasses

    Directory of Open Access Journals (Sweden)

    Reis Signo Tadeu dos

    2003-01-01

    Full Text Available The chemical durability, density and structure of the BABAL glasses with batch compositions (100-x(0.30BaO·0.50B2O3·0.20Al2O3·xFe 2O3 (1 < x < 10 mol%, were investigated using Mössbauer spectroscopy, electron paramagnetic resonance (EPR, X-ray diffraction, Raman and differential thermal analysis (DTA. The chemical durability for the glass of composition 27BaO·45B2O3·18Al 2O3·10Fe2O3 (mol% at 90 °C in distilled water was 700 times lower than that of iron phosphate glass 40Fe2O3·60P2O 5 (mol%. The Mössbauer spectra indicate the presence of iron (II and iron (III in tetrahedral or octahedral coordination. The results obtained from the g ef = 4.3 EPR line are typical of the occurrence of iron (III occupying substitutional sites and the line g ef = 2.0 is related to the association of two or more Fe ions found in the interstices (or holes occupied by the glass modifier cations of the glass network. The paths of X-ray diffraction are typical for glasses based in borate glasses. The Raman spectra showed that the boroxol ring disappears with the increase of iron content, concomitant with the appearance of BO4 and tetraborate structural units. At these conditions, an increase of dissolution rate and clustering of iron ions is observed.

  11. Transparent silicate glass-ceramics embedding Ni-doped nanocrystals

    OpenAIRE

    2010-01-01

    Recent progress in the development of transparent silicate glass-ceramics embedding Ni-doped nanocrystals as broadband gain media is reviewed. At first, optical properties such as the peak positions, wavelengths lifetimes and quantum efficiencies of the near-infrared emission of nickel-doped oxide crystals are overviewed. The quantum efficiencies of the near-infrared emission of nickel-doped LiGa5O8 and MgGa2O4 were as high as ~1 even at room temperature. Thus these materials are promising ca...

  12. Viscosity of lead borate glasses in the region of high PbO concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Komarova, N.V.; Nemilov, S.V.; Davydenko, L.S.

    1988-05-01

    It has been established that glasses of the PbO-B/sub 2/O/sub 3/ system containing more than 65 mole% of PbO melted from different reagents (PbO and Pb/sub 3/O/sub 4/) under comparable conditions with fairly rapid melting are characterized by distinctive viscosity parameters. The glasses melted from Pb/sub 3/O/sub 4/ have a steeper temperature dependence of viscosity with /eta/ 10/sup 11/ P; this is due to the absence of equilibrium in the redox reactions in the system when Pb/sub 3/O/sub 4/ is used as the batch material for the melting. The cast glass, even after careful agitation of the melt, showed nonuniformity of the chemical composition. The temperature dependence of the viscosity in the region of 10/sup 13/-10/sup 9/ P of glasses melted from PbO or Pb/sub 3/O/sub 4/ but in conditions which provide for the removal of excess oxygen is identical.

  13. Emission characteristics of Dy3+ ions in lead antimony borate glasses

    Science.gov (United States)

    Chandra Shekhar Reddy, M.; Appa Rao, B.; Brik, M. G.; Prabhakar Reddy, A.; Raghava Rao, P.; Jayasankar, C. K.; Veeraiah, N.

    2012-08-01

    Glasses with the composition 30PbO-25Sb2O3-(45- x)B2O3- xDy2O3 for x=0 to 1 were prepared in steps of 0.2 by the melt-quenching method. Various physical parameters, viz., density, molar volume, and oxygen packing density, were evaluated. Optical absorption and luminescence spectra of all the glasses were recorded at room temperature. From the observed absorption edges optical band gap, the Urbach energies are calculated; the optical band gap is found to decrease with the concentration of Dy2O3. The Judd-Ofelt theory was applied to characterize the absorption and luminescence spectra of Dy3+ ions in these glasses. Following the luminescence spectra, various radiative properties, like transition probability A, branching ratio β and the radiative life time τ for different emission levels of Dy3+ ions, have been evaluated. The radiative lifetime for the 4F9/2 multiplet has also been evaluated from the recorded life time decay curves, and the quantum efficiencies were estimated for all the glasses. The quantum efficiency is found to increase with the concentration of Dy2O3.

  14. Synthesis and photocatalytic properties of α-ZnWO4 nanocrystals in tungsten zinc borate glasses

    Directory of Open Access Journals (Sweden)

    Tatsuya Ida

    2014-09-01

    Full Text Available Tungsten oxide (WO3-containing glasses of WO3–ZnO–B2O3 were prepared using a conventional melt quenching method, and α-ZnWO4 nanocrystals were synthesized through the crystallization of glasses. A glass with the composition of 20WO3–50ZnO–30B2O3 showed the bulk crystallization of α-ZnWO4 nanocrystals with a diameter of ∼10 nm. Broad and asymmetric emission peaks were observed at the wavelength of λ ∼ 475 nm, i.e., blue emissions, in the photoluminescence spectra for the samples with α-ZnWO4 nanocrystals. From the degradation of the intensity of optical absorption under ultraviolet light (λ = 254 nm irradiations for the solution consisting of crystallized particles with α-ZnWO4 nanocrystals and methylene blue, it was clarified that α-ZnWO4 nanocrystals formed have photocatalytic activities. The formation of α-ZnWO4 nanocrystals is discussed from the viewpoint of the glass-forming tendency.

  15. Effect of substituting iron on structural, thermal and dielectric properties of lithium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Dalal, Seema [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal 131039 (India); Physics Department, Baba Mast Nath University, Asthal Bohr 124001 (India); Khasa, S., E-mail: skhasa@yahoo.com [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal 131039 (India); Dahiya, M.S. [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal 131039 (India); Agarwal, A. [Applied Physics Department, Guru Jambheshwar University of Science and Technology, Hisar 125001 (India); Yadav, Arti [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal 131039 (India); Seth, V.P. [Retd Professor, Physics Department, Maharshi Dayanand University Rohtak 124001 (India); Dahiya, S. [Physics Department, Baba Mast Nath University, Asthal Bohr 124001 (India)

    2015-10-15

    Highlights: • There is increase in NBOs with iron content. • FTIR spectra supported the results predicted by density. • Glass stability has been examined. • Iron shows “blocking effect” on migration of mobile ions. • Internal Circuit varies with temperature and composition. - Abstract: Glasses with composition xFe{sub 2}O{sub 3}·(30 − x)Li{sub 2}O·70B{sub 2}O{sub 3} (x = 0, 2, 5, 7 and 10 mol%) were prepared via melt-quenching technique and their physical, thermal and dielectric properties are discussed. XRD was carried out to confirm the amorphous nature of prepared glasses. Density (ρ) and molar volume (V{sub m}) were found to increase with increase in Fe{sub 2}O{sub 3} content. Infrared absorption spectra depicted that Fe{sub 2}O{sub 3} is acting as a network modifier. DTA has been carried out to determine glass transition temperature (T{sub g}) and crystallization temperature (T{sub x}). Electrical properties have been studied using impedance spectroscopy and dc conductivity. The dc conductivity decreases and activation energy increases on replacing Li{sup +} ions with Fe{sup 3+}. The impedance measurements reveal that the total conductivity obeys Jonscher’s power law. Study of the equivalent circuit analysis up to a temperature of 523 K shows a significant change in the equivalent circuitry with change in temperature and composition.

  16. Radioluminescence properties of Sm-doped fluorochlorozirconate glasses and glass-ceramics

    Science.gov (United States)

    Okada, Go; Edgar, Andy; Kasap, Safa; Yanagida, Takayuki

    2016-02-01

    We have investigated X-ray induced radioluminescence (XL) properties of Sm-doped fluorochlorozirconate (FCZ) glasses and glass-ceramics. The FCZ glass is a modified ZBLAN glass which shows a very high optical transmission over a wide spectral range. The glass matrix includes Sm3+-doped nanocrystals of BaCl2 after heat-treatment at temperatures above 250 °C. The glass-ceramic emits red light under UV and X-ray exposure. Since conventional Si-based photodetectors, e.g., CCDs, have the highest quantum efficiency to red light in general, the Sm-doped FCZ glass-ceramic plate can be a good candidate as a scintillator material for indirect radiation detection. Moreover, a very broad emission is present in the glass-ceramic around 300-500 nm, which is attributed to a self-trapped exciton (STE) emissions. The temperature dependence of X-ray induced luminescence and photoluminescence are very similar. The XL light yield is linearly proportional to the X-ray exposure rate for rates higher than 20 mR/s. For low exposure rates, emissions by Sm2+ are more sensitive than others, leading to a nonlinear response.

  17. Luminescence properties of Dy{sup 3+} ions in a variety of borate and fluoroborate glasses containing lithium, zinc, and lead

    Energy Technology Data Exchange (ETDEWEB)

    Jayasankar, C.K.; Venkatramu, V.; Surendra Babu, S.; Babu, P

    2004-07-14

    The fluorescence properties of Dy{sup 3+} ions, with two concentrations (1.0 and 0.1 mol%), have been investigated in a variety of borate and fluoroborate glasses modified with lithium, zinc, and/or lead. The fluorescence spectra and lifetimes of {sup 4}F{sub 9/2} level of Dy{sup 3+} ions in these glasses have been measured using the 457.9 nm line of argon ion laser as an excitation source. Decreasing trend in lifetimes has been observed when the glass compositions contain modifiers in the order of LiF{yields}Li{sub 2}O{yields}ZnO{yields}PbO. Decay curves for these glasses are found to be single exponential and non-exponential for 0.1 and 1.0 mol% concentrations, respectively. The non-exponential decay curves have been well fitted with the Inokuti-Hirayama (I-H) model for dipole-dipole interaction.

  18. Optical and FT Infrared Absorption Spectra of 3d Transition Metal Ions Doped in NaF-CaF2-B2O3 Glass and Effects of Gamma Irradiation

    Directory of Open Access Journals (Sweden)

    F. H. A. Elbatal

    2014-01-01

    Full Text Available Combined optical and FTIR spectroscopy has been employed to investigate the undoped NaF-CaF2-B2O3 glass together with samples containing 0.2% dopant of 3d TM ions before and after gamma irradiation. The optical spectrum of the undoped glass reveals strong UV absorption with two peaks which are related to unavoidable trace iron impurity within the raw materials. Upon gamma irradiation, an induced visible broad band centered at 500 nm is resolved and is related to B-O hole center or nonbridging oxygen hole center. TMs-doped samples exhibit characteristic absorption due to each respective TM ion but with faint colors. Gamma irradiation of TMs-doped samples reveals the same induced visible band at 500–510 nm in most samples except CuO and Cr2O3-doped glasses. Infrared absorption spectra reveal characteristic vibrational bands due to triangular and tetrahedral borate groups. The introduction of NaF and CaF2 modifies the borate network forming BO3F tetrahedra. The introduction of 3d TMs as dopants did not make any obvious changes in the FTIR spectra due to their low content (0.2%. Gamma irradiation causes only minor variations in the intensities of the characteristic IR borate bands while the bands at about 1640 cm−1 and 3450 cm−1 reveal distinct growth in most samples.

  19. {gamma}-irradiation effect on the acoustical properties of zinc lead borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.; Singh, K.; Manupriya; Klare, H.S. [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Rajendran, V.; Gayathri Devi, A.V. [Department of Physics, Mepco Schlenk Engineering College, Mepco Engineering College (P.O.) 626005, Virudhunagar, Tamil Nadu (India); Narang, S.B. [Department of Electronics and Technology, Guru Nanak Dev University, Amritsar 143005 (India)

    2005-11-01

    The effect of {gamma}-irradiation on the acoustical properties of xZnO.2xPbO.(1-3x)B{sub 2}O{sub 3} glasses has been studied. Ultrasonic velocity and attenuation measurements have been made before and after {gamma}-irradiation at room temperature in the frequency range 2.25-10 MHz. From the measured density and ultrasonic velocity data, the elastic moduli, Poisson's ratio and other parameters have been obtained. Changes in the acoustical properties are explained in terms of radiation-induced structural defects and the influence of PbO/ZnO in the glass network structure. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Nd3+ Doped Silicate Glass Photonic Crystal Fibres

    Institute of Scientific and Technical Information of China (English)

    YANG Lu-Yun; CHEN Dan-Ping; XIA Jin-An; WANG Chen; JIANG Xiong-Wei; ZHU Cong-Shan; QIU Jian-Rong

    2005-01-01

    @@ We report on the fabrication of two kinds of large core area Nd3+ doped silicate glass photonic crystal fibres, and demonstration of the fibre waveguiding properties. The measured minimum loss of one kind ofibres is 2.5 db/m at 660nm. The fibres sustain only a single mode at least over the wavelength range from 660nm to 980nm.

  1. Barium and calcium borate glasses as shielding materials for x rays and gamma rays

    DEFF Research Database (Denmark)

    Singh, H.; Singh, K.; Sharma, G.;

    2003-01-01

    Values of the gamma-ray, mass attenuation coefficient and the effective atomic number have been determined experimentally for xBaO.(1-x) B2O3 (x=0.24, 0.30, 0.34,0.40 and 0.44) and xCaO. (I-x)B2O3 (x=0.30 and 0.40) glasses at photon energies 356, 511, 662, 1173, and 1332 keV It is pointed out...

  2. Magnetic properties of nonirradiated and neutron irradiated iron-lead-borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Burzo, E.; Ursu, I.; Ungur, D.; Ardelean, I.; Nazarov, V.M.

    1985-11-01

    The results of magnetic measurements performed on xFe/sub 2/O/sub 3/(1-x)(yB/sub 2/O/sub 3/ PbO) glasses having y = 0.5, 1, 2, and 3 and x< or =25 mol % Fe/sub 2/O/sub 3/ are reported. For identical Fe/sub 2/O/sub 3/ content the Curie constants are greater as the PbO content of the glass matrix is higher. This is due to the increase of the fraction of Fe/sup 3 +/ ions as evidenced by Moessbauer effect measurements. As B/sub 2/O/sub 3/ content increases, a more random distribution of the ferric ions in the glass matrix takes place. Under the action of fast neutrons some iron ions situated in clusters are displaced and occupy sites more randomly distributed in the B/sub 2/O/sub 3/-PbO matrix. In addition, a fraction of ferrous ions is converted to ferric.

  3. Effect of Nd2O3 addition on structure and characterization of lead bismuth borate glass

    Directory of Open Access Journals (Sweden)

    I. Kashif

    2014-01-01

    Full Text Available The effect of different contents of Nd2O3 on the thermal transition temperature, density and structure of 25 Bi2O3 – 25 PbO – 50 B2O3 has been investigated using X-ray diffraction (XRD, differential thermal analysis (DTA, infrared spectrophotometer (FTIR and optical absorption. The amorphous phase has been identified based on X-ray diffraction analysis. The neodymium oxide plays the role as a glass-modifier and influences on BO3 ↔ BO4 conversion. The observed increase in Tg with Nd2O3 reflects an increase in bond strength. The decrease of the density and the increase of the molar volume with the addition of Nd2O3 contents attributed to an increase in the number of Non-bridging oxygen (NBOS. The optical absorption results are indicating the higher covalency of the Nd–O bond for glass containing 2 mol% of Nd2O3. In addition, a lowest covalency is observed in glass with 1 mol% Nd2O3. In addition, it is considered necessary in the construction of compact and efficient laser source.

  4. Effect of cement kiln dust and gamma irradiation on the ultrasonic parameters of HMO borate glasses

    Science.gov (United States)

    Abd elfadeel, G.; Saddeek, Yasser B.; Mohamed, Gehan Y.; Mostafa, A. M. A.; Shokry Hassan, H.

    2017-03-01

    Glass samples with the chemical formula x CKD-(100 - x) (5Na2O-65 B2O3-9 Bi2O3-21PbO), (0 ⩽ x ⩽ 32 mol%) were prepared. The density and the ultrasonic estimations of the investigated glasses were analyzed at room temperature before and after the impact of two dosages of gamma irradiation to study the effect of both CKD and gamma radiation. It was found that the density, and the ultrasonic parameters are sensitive to the variety of the content of CKD and the effect of γ-radiation. Replacement of oxides with higher atomic weights such as Bi2O3 and PbO by CKD decreases the density. Analysis of the behavior of the ultrasonic parameters demonstrates that creation of CaO6 and SiO4 on one hand and an alternate transformation between BO4 and BO3 structural units, on the other hand, affect the increase of the ultrasonic velocities and the elastic moduli. Moreover, the density and the ultrasonic parameters decrease somewhat with the increase of the doses of γ-irradiation. The variations of the previous physical parameters can be referred to the creation of radiation imperfections, which occupied the voids inside the glass structure.

  5. Spectroscopic properties of Eu-doped antimony-germanate glass and glass-ceramics

    Science.gov (United States)

    Zmojda, J.; Kochanowicz, M.; Miluski, P.; Ragin, T.; Dorosz, D.; ZajÄ c, A.

    2016-09-01

    In our work we focused on possibility of obtaining phosphate nano-phase structures in antimony-germanate glasses doped with europium ions. The glasses with molar composition of 50(Sb2O3 - GeO2) - 50(SiO2 - Al2O3 - Na2O) doped with 0.5mol% Eu2O3 were prepared by standard melt-quenching method. In order to optimize glass-ceramic system the influence of phosphate concentration (up to 10mol%) on spectroscopic properties have been investigated. The symmetry nature of molecular structure around europium ions have been determined from the intensity ratio between (5D0 →7F2)/(5D0 →7F1) transitions. The effect of prominent Stark splitting of luminescence band at 612 nm characterised as "hypersensitive transition" into 3 sub-wavelength was observed in glasses with 1mol% and 3mol% of P2O5.

  6. Electron Spin Resonance and optical absorption spectroscopic studies of manganese centers in aluminium lead borate glasses

    Science.gov (United States)

    SivaRamaiah, G.; LakshmanaRao, J.

    2012-12-01

    Electron Spin Resonance (ESR) and optical absorption studies of 5Al2O3 + 75H3BO3 + (20-x)PbO + xMnSO4 (where x = 0.5, 1,1.5 and 2 mol% of MnSO4) glasses at room temperature have been studied. The ESR spectrum of all the glasses exhibits resonance signals with effective isotropic g values at ≈2.0, 3.3 and 4.3. The ESR resonance signal at isotropic g ≈ 2.0 has been attributed to Mn2+ centers in an octahedral symmetry. The ESR resonance signals at isotropic g ≈ 3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn2+ ions. The zero-field splitting parameter (zfs) has been calculated from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits an intense band in the visible region and it has been attributed to 5Eg → 5T2g transition of Mn3+centers in an octahedral environment. The optical band gap and the Urbach energies have been calculated from the ultraviolet absorption edges.

  7. Determination of major, minor and trace elements in rock samples by laser ablation inductively coupled plasma mass spectrometry: Progress in the utilization of borate glasses as targets

    Science.gov (United States)

    Leite, Tácito Dantas F.; Escalfoni, Rainério, Jr.; da Fonseca, Teresa Cristina O.; Miekeley, Norbert

    2011-05-01

    The present work is a continuation of a research study performed at our laboratory aiming at the multielement analysis of rock samples (basalts and shale) by inductively coupled plasma mass spectrometry in combination with laser ablation using borate glasses as analytical targets. Argon, nitrogen-argon mixtures and helium were evaluated as cell gases, the latter confirming its better performance. Different operational parameters of the laser, such as gas flow, energy, focus, scanning speed and sampling frequency were optimized. External calibration was made with standards prepared by fusion of geological reference materials (basalts 688 and BCR-2, obsidian SRM 278, and shale SGR-1) of different mass fractions in the meta-tetra borate matrix. Coefficients of determination ( R2) were > 0.99 for 30 elements from o total of 40 determined. Method validation was then performed using additional certified reference materials (BHVO-2, BIR-1, SCo-1) produced as borate targets in a similar way. Accuracies were better than 10% for most of the elements studied and analytical precisions, calculated from the residual standard deviations of calibration curves were, typically, between 6% and 10%. Additionally, the semiquantitative TotalQuant® technique was applied, which gave, within the expected uncertainty for this calibration technique, concordant results when compared to the quantitative external calibration procedure. Both methods were then used for the analysis of marine shale samples, which are of great geological interest in petroleum prospecting.

  8. Fluorescence studies of Yb{sup 3+} ions in lead antimony borate glass-Influence of crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Purnachand, N. [Department of Electronics and Communication Engineering, Sri Sarathi Institute of Engineering and Technology, Nuzvid 521 201, A.P. (India); Satyanarayana, T. [Department of Physics, Acharya Nagarjuna University-Nuzvid Campus, Nuzvid 521 201, A.P. (India); Kityk, I.V. [Electrical Engineering Department, Technical University of Czesdochowa, Aleja Armii, Krajowej 17/19, PL-42-201 Czestochowa (Poland); Physics Department, King Saud University, Riyadh 11451 (Saudi Arabia); Veeraiah, N., E-mail: nvr8@rediffmail.co [Department of Physics, Acharya Nagarjuna University-Nuzvid Campus, Nuzvid 521 201, A.P. (India)

    2010-03-04

    PbO-Sb{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses doped with different concentrations of Yb{sub 2}O{sub 3} ranging from 0.2 to 0.6 (in mol%) have been synthesized and subsequently crystallized. The samples were characterized by X-ray diffraction, SEM and DSC techniques. The optical absorption and luminescence spectra have exhibited bands due to {sup 2}F{sub 7/2} {yields} {sup 2}F{sub 5/2} and {sup 2}F{sub 5/2} {yields} {sup 2}F{sub 7/2} transitions, respectively. Partial spectral overlap between emission and absorption bands has been observed. From these spectra, the absorption and emission cross-sections and fluorescence lifetime of Yb{sup 3+} ions has been evaluated. Following the obtained data, it was established that there is a less radiative trapping and enhanced fluorescence lifetime of Yb{sup 3+} ions in the glass ceramic samples with respect to those of amorphous samples. The reasons for such variations have been discussed in the light of variations in the oxidation states of antimony ions and changes in the structural units in the vicinity of Yb{sup 3+} ions in the glass network.

  9. Transition metal (Cr{sup 3+}) and rare earth (Eu{sup 3+}, Dy{sup 3+}) ions used as a spectroscopic probe in compositional-dependent lead borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, W.A., E-mail: Wojciech.Pisarski@us.edu.p [University of Silesia, Institute of Chemistry, Szkolna 9, 40-007 Katowice (Poland); Pisarska, J. [Silesian University of Technology, Department of Materials Science, Krasinskiego 8, 40-019 Katowice (Poland); Dominiak-Dzik, G.; Ryba-Romanowski, W. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw (Poland)

    2009-09-18

    Compositional-dependent lead borate glasses doped with transition metal and rare earth ions were studied using absorption and luminescence spectroscopy. The trivalent Cr{sup 3+}, Eu{sup 3+} and Dy{sup 3+} ions were used as a spectroscopic probe in glass samples with various PbO/B{sub 2}O{sub 3} ratios. Spectral analysis indicates that Cr{sup 3+} ions occupy intermediate field sites; the both sites coexist and emit from the {sup 4}T{sub 2} (low-field) and the {sup 2}E (high-field) states, respectively. The R and Y/B values due to {sup 5}D{sub 0}-{sup 7}F{sub 2}/{sup 5}D{sub 0}-{sup 7}F{sub 1} and {sup 4}F{sub 9/2}-{sup 6}H{sub 15/2}/{sup 4}F{sub 9/2}-{sup 6}H{sub 13/2} luminescence intensity ratios of Eu{sup 3+} and Dy{sup 3+} ions, respectively, increase with increasing heavy metal (PbO) content, suggesting higher asymmetry and more covalent bonding character between rare earth and oxygen ions.

  10. Erbium Doped Phosphate Glass For Optical Waveguide Amplifier

    Institute of Scientific and Technical Information of China (English)

    R.S.F.Wong; S.Q.Man; E.Y.B.Pun; P.S.Chung

    2000-01-01

    @@ Erbium (Er3+) doped phosphate glasses was prepared and the optical properties of these glasses were investigated. The emission parameters were calculated using the Judd-Ofelt treatment. The radiative lifetime of the 4I13/2 level is calculated to be 7.2ms. The fluorescence lifetime is measured to be 6ms, and the quantum efficiency is estimated to be 83%. Ion-exchanged optical waveguides were fabricated in these glasses by using pure KNO3 meet at 370℃, and diluted AgNO3 molten salt at 270℃. It was found that the lower temperature diluted AgNO3 molten salt is better for the ion exchange process. Planar waveguide with 5 modes at the 633nm and 2 modes at the 1550nm was demonstrated using the diluted AgNO3. Our results show that phosphate glass is a potential candidate for the 1.5μm optical amplifier device.

  11. Nucleation and crystallization behavior of RE - doped tellurite glasses

    Science.gov (United States)

    Goncharuk, V.; Mamaev, A.; Silant'ev, V.; Starodubtsev, P.; Maslennikova, I.

    2016-01-01

    The microstructure and crystallization of the glasses with composition (100-x-y)TeO2-xPbO·P2O5-yPbF2:zMF3 (M= Er, Eu, Nd; x=42.5-30, y=5-30, z=0.5-3.0) were investigated by transmission electron microscopy (TEM) and luminescence methods. It was found that the doping with the rare-earth (III) fluorides promoted nucleation in the bulk glasses. The sizes of generated particles are about 2-5 nanometers and their shapes are close to spherical. The growth rate of crystallites depended on the lead fluoride content and glass forming rate. The heat treatment of the samples promotes the glass ceramic formation, where the crystalline phase is Pb2P2O7.

  12. Inverted opal luminescent Ce-doped silica glasses

    Directory of Open Access Journals (Sweden)

    R. Scotti

    2006-01-01

    Full Text Available Inverted opal Ce-doped silica glasses (Ce : Si molar ratio 1 ⋅ 10−3 were prepared by a sol-gel method using opals of latex microspheres as templates. The rare earth is homogeneously dispersed in silica host matrix, as evidenced by the absence of segregated CeO2, instead present in monolithic Ce-doped SG with the same cerium content. This suggests that the nanometric dimensions of bridges and junctions of the host matrix in the inverted opal structures favor the RE distribution avoiding the possible segregation of CeO2.

  13. Silver doped nanobioactive glass particles for bone implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, M.; Kavitha, K.; Karunakaran, G.; Manivasakan, P.; Rajendran, V. [Centre for Nanoscience and Technology, K. S. Rangasamy College of Technology, Tiruchengode - 637215, Namakkal (DT), Tamil Nadu (India)

    2013-02-05

    Silica based silver doped nanobioactive glass compositions (58SiO{sub 2}-33CaO-9P{sub 2}O{sub 5} and 58SiO{sub 2}-23CaO-9P{sub 2}O{sub 5}-10Ag{sub 2}O(mol%)) were synthesized by a simple sol-gel route. The prepared samples were comprehensively characterised by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and scanning electron microscopic studies. The results reveal that the prepared samples have amorphous phase with spherical morphology and having a particle size less than 100 nm. The specific surface areas were 90 and 61 m{sup 2}g{sup -1} respectively. The in vitro bioactivity of glass samples were confirmed by the formation of hydroxyapatite layer on glass surfaces. The Ag{sub 2}O-doped nanobioactive glasse samples shows reveal significant antibacterial activity compare with base glasses.

  14. Emission mechanism of radiophotoluminescence in Ag-doped phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Y., E-mail: miyamoto-y@c-technol.co.j [Oarai Research Center, Chiyoda Technol Corpration, 3681 Narita-cho, Oarai-machi Higashi-ibaraki-gun, Ibaraki-ken 311-1313 (Japan); Yamamoto, T., E-mail: yamamoto-ta@c-technol.co.j [Oarai Research Center, Chiyoda Technol Corpration, 3681 Narita-cho, Oarai-machi Higashi-ibaraki-gun, Ibaraki-ken 311-1313 (Japan); Kinoshita, K. [Advanced Materials, Science Research, Development Center, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusann-shi, Ishikawa-ken 924-0838 (Japan); Koyama, S., E-mail: s-koyama@neptune.kanazawa-it.ac.j [Advanced Materials, Science Research, Development Center, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusann-shi, Ishikawa-ken 924-0838 (Japan); Takei, Y., E-mail: takei@neptune.kanazawa-it.ac.j [Advanced Materials, Science Research, Development Center, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusann-shi, Ishikawa-ken 924-0838 (Japan); Nanto, H., E-mail: hnanto@neptune.kanazawa-it.ac.j [Advanced Materials, Science Research, Development Center, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusann-shi, Ishikawa-ken 924-0838 (Japan); Shimotsuma, Y., E-mail: yshimo@collon1.kuic.kyoto-u.ac.j [Department of Materials Chemistry, Graduate School of Engineering, Kyoto University, A3-119 Katsura, Kyoto-University, Nishikyo-ku, Kyoto-shi, Kyoto-hu 615-8510 (Japan); Sakakura, M., E-mail: masa@collon1.kuic.kyoto-u.ac.j [Department of Materials Chemistry, Graduate School of Engineering, Kyoto University, A3-119 Katsura, Kyoto-University, Nishikyo-ku, Kyoto-shi, Kyoto-hu 615-8510 (Japan); Miura, K., E-mail: kmiura@collon1.kuic.kyoto-u.ac.j [Department of Materials Chemistry, Graduate School of Engineering, Kyoto University, A3-119 Katsura, Kyoto-University, Nishikyo-ku, Kyoto-shi, Kyoto-hu 615-8510 (Japan)

    2010-03-15

    The objective of this study is to investigate the emission mechanism of radiophotoluminescence (RPL) in the Ag{sup +}-doped phosphate glass (glass dosimeter), which is now used as individual radiation dosimeter, because the emission mechanism of RPL in glass dosimeter was not fully understood. Optical properties such as optical absorption spectrum, RPL spectrum and change of RPL spectrum as a function of X-ray irradiation dose were measured for commercially available glass dosimeter. In this study, we discuss the emission mechanism of two RPL peaks at 460 nm and 560 nm, based on the fact that electrons and holes produced by X-ray irradiation are trapped at Ag{sup +} ions to produce Ag{sup 0} and Ag{sup 2+} ions, respectively, when the Ag{sup +}-doped phosphate glass is exposed to X-ray. We would like to propose the emission mechanism of RPL peaks at 460 nm and 560 nm, concerning with Ag{sup 2+} and Ag{sup 0} ions.

  15. Upconversion in erbium-doped transparent glass ceramics

    Science.gov (United States)

    Jones, Gina Christine

    2005-11-01

    Transparent glass ceramics (TGCs) are a class of materials that are composed of a robust glass matrix which is densely embedded with nanometer-sized fluoride crystals: In bulk, fluoride materials tend to have poor handling and mechanical properties, and can be expensive to produce. In contrast, the forming and handling properties of the TGC are similar to those of the precursor, glass, and are engineered to be robust and mechanically stable. Rare earth ions can be incorporated into the TGC during manufacture and can become partially segregated into the crystalline phase. There they experience the low-phonon energy environment of the fluoride nanocrystallite, which induces long energy level lifetimes and enhanced frequency upconversion. Therefore, rare earth doped TGCs can have the spectroscopic properties of a crystal with the durability of an aluminosilicate glass. Upconversion fluorescence is studied for an aluminosilicate TGC containing LaF3 nanocrystallites and doped with an erbium density of 1.7 x 1020 CM-3. Time gated fluorescence and excitation spectra as well as photoluminescence decays are used to find the nature and origin of this fluorescence. It is determined that energy transfer upconversion occurs only in the nanocrystallite phase and sequential two-photon absorption upconversion occurs in both glass and crystal phases.

  16. Concentration Quenching in Erbium Doped Bismuth Silicate Glasses

    Institute of Scientific and Technical Information of China (English)

    DAI Shi-Xun; XU Tie-Feng; NIE Qiu-Hua; SHEN Xiang; WANG Xun-Si

    2006-01-01

    @@ Er2 O3-doped bismuth silicate glasses are prepared by the conventional melt-quenching method, and the Er3+ : 4 I13/2 → 4I15/2 fluorescence properties are studied for different Er3+ concentrations. Infrared spectra are measured to estimate the exact content of OH- groups in the samples. Based on the electric dipole-dipole interaction theory,the interaction parameter CEr,Er for the migration rate of Er3+ :4 I13/2 → 4 I13/2 in proposed glasses is calculated.

  17. Spectroscopy of titanium-doped gallium lanthanum sulfide glass

    OpenAIRE

    2008-01-01

    Titanium-doped gallium lanthanum sulfide (Ti:GLS) and gallium lanthanum oxysulfide (Ti:GLSO) glasses have an absorption band at similar to 500-600 nm that cannot be fully resolved because of its proximity to the band edge of the glass. At concentrations >0.5% a shoulder at 980 nm is observed in Ti:GLS but not in Ti :GLSO. The emission spectra of Ti:GLS and T :GLSO both peak at 900 nm with lifetimes of 67 and 97)us, respectively. We propose that the absorption at similar to 600 nm is due to th...

  18. Study on Thermal Stability and Spectroscopic Properties of Nd3+ -Doped Phosphate Laser Glasses

    Institute of Scientific and Technical Information of China (English)

    Shi Qi; Lv Jingwen; Cheng Hong; Fu Xingguo; Sun Yu

    2004-01-01

    Fluorescence spectra, absorption spectra and thermal stability properties of Nd3 + -doped phosphate laser glasses were tested in this work. We calculated spectroscopic parameters of Nd3 + -doped phosphate laser glasses according to their absorption spectrum. Measuring and calculating linear thermal expansion coefficient, and analysising thermal stability of glasses show that this kind of Nd3 + -doped phosphate laser glasses has thermal expansion coefficient α = 38.75× 10 -7/℃ and optimal spectroscopic properties which extend application range of Nd +3-doped phosphate laser glasses.

  19. Infrared emission from holmium doped gallium lanthanum sulphide glass

    Science.gov (United States)

    Schweizer, T.; Samson, B. N.; Hector, J. R.; Brocklesby, W. S.; Hewak, D. W.; Payne, D. N.

    1999-08-01

    Infrared emission at 1.2, 1.25, 1.67, 2.0, 2.2, 2.9, 3.9, and 4.9 μm is measured in holmium (Ho 3+) doped gallium lanthanum sulphide (GLS) glass. Branching ratios, radiative quantum efficiencies, and emission cross-sections are calculated from lifetime, absorption, and emission measurements using Judd-Ofelt analysis and the Füchtbauer-Ladenburg equation. The fluorescence band at 3.9 μm coincides with an atmospheric transmission window and the fluorescence band at 4.9 μm overlaps with the fundamental absorption of carbon monoxide, making the glass a potential fibre laser source for remote sensing and gas sensing applications. This is the first time this latter transition has been reported in any holmium doped host.

  20. Holmium doped Lead Tungsten Tellurite glasses for green luminescent applications

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswarlu, M.; Mahamuda, Sk.; Swapna, K.; Prasad, M.V.V.K.S. [Department of Physics, KL University, Green Fields, Vaddeswaram 522502, Guntur (Dt.), AP (India); Srinivasa Rao, A., E-mail: drsrallam@gmail.com [Department of Physics, KL University, Green Fields, Vaddeswaram 522502, Guntur (Dt.), AP (India); Department of Applied Physics, Delhi Technological University, Bawana Road, New Delhi 110042 (India); Shakya, Suman [Nanophotonics Laboratory, Department of Physics, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016 (India); Mohan Babu, A. [Department of Physics, C.R. Engineering College, Renigunta Road, Tirupati-517 502, AP (India); Vijaya Prakash, G. [Nanophotonics Laboratory, Department of Physics, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016 (India)

    2015-07-15

    Lead Tungsten Tellurite (LTT) glasses doped with different concentrations of Ho{sup 3+} ions have been synthesized using the melt quenching method and characterized to understand their visible emission characteristic features using optical absorption and photoluminescence spectral studies. The Judd–Ofelt (JO) parameters measured from the absorption spectral features were used to evaluate radiative properties such as transition probability (A{sub R}), branching ratio (β{sub R}) and radiative lifetimes (τ{sub R}) for the prominent fluorescent levels of Ho{sup 3+} ions in LTT glasses. The photoluminescence spectra recorded for all the Ho{sup 3+} doped LTT glasses at an excitation wavelength 452 nm gives three prominent emission transitions {sup 5}F{sub 4}→{sup 5}I{sub 8}, {sup 5}F{sub 5}→{sup 5}I{sub 8} and {sup 5}F{sub 4}→{sup 5}I{sub 7}, of which {sup 5}F{sub 4}→{sup 5}I{sub 8} observed in visible green region (546 nm) is relatively more intense than the other two transitions. The intensity of {sup 5}F{sub 4}→{sup 5}I{sub 8} emission transition in these glasses increases up to 1 mol% of Ho{sup 3+} ions and beyond concentration quenching is observed. Branching ratios (β{sub R}) and emission cross-sections (σ{sub se}) were evaluated for the intense emission transition {sup 5}F{sub 4}→{sup 5}I{sub 8} in these glasses to understand the luminescence efficiency in visible green region (546 nm). The CIE chromaticity coordinates were also evaluated in order to understand the suitability of these glasses for visible luminescence. From the measured emission cross-sections and CIE coordinates, it was found that 1 mol% of Ho{sup 3+} ions in LTT glasses are most suitable for visible green luminescence in principle. - Highlights: • Ho{sup 3+} doped LTT glasses have been synthesized using melt quenching technique. • From the absorption spectra, JO parameters have been evaluated using JO theory. • Branching ratios & Emission cross-sections were evaluated for

  1. Energy upconversion in erbium doped sodium lead germano tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Bommareddi, Swaroop; Dokhanian, Mostafa; Reddy, B.R. [Department of Physics, Alabama A and M University, Normal, AL (United States)

    2009-05-15

    Erbium doped sodium lead germano tellurite glass was prepared by the melt quenching technique. Optical characterization of the material was done using absorption and laser induced fluorescence measurements. Energy upconversion signals were observed from the sample at 415 nm and/or 546 nm under 488 or 806 nm laser excitations. Our results indicate that this material is useful for upconversion laser development. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Rare-earth ions doped transparent oxyfluoride glass-ceramics

    OpenAIRE

    2010-01-01

    In recent years, rare-earth ions doped transparent oxyfluoride glass-ceramics have attracted great attentions for their low phonon energy environments of fluoride nanocrystals and high chemical and mechanical stabilities of oxide glassy matrix. In this chapter, firstly, the crystallization behaviors of the transparent glassceramics containing CaF2 nanocrystals are presented to demonstrate the controllable microstructure evolution of nano-composites. Secondly, the optical properties of the new...

  3. Bi2+-doped strontium borates for white-light-emitting diodes.

    Science.gov (United States)

    Peng, Mingying; Wondraczek, Lothar

    2009-10-01

    We report on Bi(2+)-doped SrB(4)O(7) and SrB(6)O(10) as orange and red phosphors for white-light-emitting diodes. In both compounds, absorption due to (2)P(1/2)-->(2)S(1/2) in Bi(2+) could be observed and quantified. The emission redshift from SrB(4)O(7) to SrB(6)O(10) and their different phonon satellite spectra are attributed to the enhancement of phonon-electron interaction. Investigation of the reduction mechanism of Bi(3+) to Bi(2+) suggests that in oxidizing atmosphere, Bi(2+) can be stabilized on Sr(2+) sites only in such lattices that are dominated by tetrahedrally coordinated boron.

  4. Glass transition temperature and conductivity in Li2O and Na2O doped borophosphate glasses

    Science.gov (United States)

    Ashwajeet, J. S.; Sankarappa, T.; Ramanna, R.; Sujatha, T.; Awasthi, A. M.

    2015-08-01

    Two alkali doped Borophosphate glasses in the composition, (B2O3)0.2. (P2O5)0.3. (Na2O)(0.5-x). (Li2O)x, where x = 0.05 to 0.50 were prepared by standard melt quenching method at 1200K. Non-crystalline nature was confirmed by XRD studies. Room temperature density was measured by Archimedes principle. DC conductivity in the temperature range from 300K to 575K has been measured. Samples were DSC studied in the temperature range from 423K to 673K and glass transition temperature was determined. Glass transition temperature passed through minima for Li2O con.2centration between 0.25 and 0.30 mole fractions. Activation energy of conduction has been determined by analyzing temperature variation of conductivity determining Arrhenius law. Conductivity passed through minimum and activation passed through maximum for Li2O content from 0.25 to 0.30 mole fractions. Glass transition temperature passed through minimum for the same range of Li2O content. These results revealed mixed alkali effect taking place in these glasses. It is for the first time borophosphate glasses doped with Li2O and Na2O have been studied for density and dc conductivity and, the mixed alkali effect (MAE) has been observed.

  5. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar [Lehrstuhl fuer Glas und Keramik, WW3, Friedrich Alexander Universitaet Erlangen-Nuernberg, Martensstrasse 5, D-91058 Erlangen (Germany)], E-mail: mingying.peng@ww.uni-erlangen.de, E-mail: lothar.wondraczek@ww.uni-erlangen.de

    2009-07-15

    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi{sub 2}O{sub 3} into elementary Bi. Darkening of bismuthate glass melted at 1300 deg. C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi{sup 3+} is formed. By comparing with atomic spectral data, absorption bands at {approx}320 , {approx}500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi{sup 0} transitions {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 3/2}, {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 1/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 5/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(2) and {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(1), respectively, and broadband NIR emission is assigned to the transition {sup 2}D{sub 3/2}(1){yields}{sup 4}S{sub 3/2}.

  6. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature

    Science.gov (United States)

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar

    2009-07-01

    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi2O3 into elementary Bi. Darkening of bismuthate glass melted at 1300 °C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi3+ is formed. By comparing with atomic spectral data, absorption bands at ~320 , ~500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi0 transitions {}^{4}\\mathrm {S_{3/2}} \\to {}^{2}\\mathrm {P_{3/2}} , {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {P_{1/2}} , {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {D_{5/2}} , {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {D_{3/2}}(2) and {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {D_{3/2 }}(1) , respectively, and broadband NIR emission is assigned to the transition {}^{2}\\mathrm {D_{3/2}(1)}\\to {}^{4}\\mathrm {S_{3/2}} .

  7. Luminescence property of Eu-doped fluorochlorozirconate glass-ceramics

    Institute of Scientific and Technical Information of China (English)

    PEI Zhili; WANG Yongsheng; HE Dawei; MENG Xianguo

    2009-01-01

    A series of Eu2+-doped fluorochlorozireonate glass-ceramics were prepared by solid state reaction method. X-ray diffraction, pho-toluminescence, photo-stimulated luminescence (PSL) and the turbidity of fluorozirconate glass containing BaCl2 nano- and micro-crystals were measured for the samples annealed at 290 ℃ for 10 min. The PSL was attributed to the characteristic emission of Eu2+ in nano-crystallites of BaCl2, which formed in the glass upon annealing. The PSL efficiency of the glass ceramic was increased by increasing the concentration of BaCl2, which, however, resulted in the decreasing in the transparency of the sample. The sample turned to a semi-transparent glass ceramic or even an opaque and milky white one from a near-transparent glass. The trade-off between optical trans-parency and PSL intensity over different concentrations of BaCl2 for X-ray imaging plate applications was briefly discussed.

  8. Thermal Stability and Spectroscopic Properties of Yb3+-Doped New Gallium-Lead-Germanate Glass

    Institute of Scientific and Technical Information of China (English)

    XU Shi-Qing; FENG Ai-Ming; ZHANG Li-Yan; ZHAO Shi-Long; WANG Bao-Ling; ZHANG Jue; WANG Wei; BAO Ren-Qiang

    2006-01-01

    @@ Yb3+-doped new gallium-lead-germanate glass is presented. Thermal stability, spectroscopic and laser performance parameters of the Yb3+-doped new gallium-lead-germanate glass are calculated. The results show that the Yb3+-doped new gallium-lead-germanate glass has good thermal stability (△T = 198 ℃), high stimulated emission cross section (0.79pm2), and long fluorescence lifetime (1.46ms). Compared with other Yb3+-doped glass hosts, the Yb3+-doped new gallium-lead-germanate glass has better laser performance parameters and laser properties, indicating that Yb3+-doped new gallium-lead-germanate glass is a promising laser material for short pulse generation in diode pumped lasers, short pulse generation tunable laser, high-peak power and high-average power lasers.

  9. Luminescence properties of solid solutions of borates doped with rare-earth ions

    Science.gov (United States)

    Levushkina, V. S.; Mikhailin, V. V.; Spassky, D. A.; Zadneprovski, B. I.; Tret'yakova, M. S.

    2014-11-01

    The structural and luminescence properties of LuxY1 - xBO3 solid solutions doped with Ce3+ or Eu+3 have been investigated. It has been found that the solid solutions crystallize in the vaterite phase with a lutetium concentration x spectra are characterized by intensive impurity emission under excitation with the synchrotron radiation in the X-ray and ultraviolet spectral ranges. It has been shown that, as the lutetium concentration x in the LuxY1 - xBO3: Ce3+ solid solutions increases, the emission intensity smoothly decreases, which is associated with a gradual shift of the Ce3+ 5 d(1) level toward the bottom of the conduction band, as well as with a decrease in the band gap. It has been established that, in the LuxY1 - xBO3: Eu3+ solid solutions with intermediate concentrations x, the efficiency of energy transfer to luminescence centers increases. This effect is explained by the limited spatial separation of electrons and holes in the solid solutions. It has been demonstrated that the calcite phase adversely affects the luminescence properties of the solid solutions.

  10. Synthesis and characterization of low-melting scintillating glass doped with organic activator

    CERN Document Server

    Zhao Hong Sheng; Zhu Dong Mei; Wu Jing

    2000-01-01

    New colliders for high-energy physics studies require scintillators with short decay time, high density, good radiation hardness and low cost. It is possible to make glass scintillators that can meet these requirements by doping organic scintillating activators into an inorganic glass host. In this research, p-Terphenyl as the activator is doped into lead-tin-fluorophosphate glasses. There is no detectable change of the dopant on the densities and characteristic temperatures of the glass host. The hybrid scintillating glasses doped with p-TP possess 5 ns decay time and a broad fluorescence emission band, the peak of which is at about 545 nm. Although the light yields of the glasses are low, this research shows that it is possible to develop good hybrid scintillating glasses by doping organic activators into inorganic glass host.

  11. Lead-salt quantum dot doped glasses for photonics

    Science.gov (United States)

    Auxier, Jason Michael

    In this dissertation, I present photonics applications of PbS quantum-dot-doped (QD-doped) glasses. The dissertation consists of two major parts: bulk material applications (Cr:forsterite laser modelocking, bleaching dynamics, optical gain, and photo-luminescence) and the fabrication of QD-doped ion-exchanged waveguides. When this work began, these PbS QD-doped glasses were the state-of-the-art in quantum dot glasses due to their narrow size distribution. Modelocking of a Cr:forsterite laser using this glass as a saturable absorber had been demonstrated, with little understanding of the dynamics. This work began by studying the dynamics of the saturable absorber to explain the ps-pulse width. In the bulk measurements, I functioned as a secondary researcher. In the laser modelocking and bleaching measurements, my contribution was laser cavity alignment, sample preparation, collecting autocorrelation traces, and aiding in the setup and data collection for the bleaching measurements. On this work, I coauthored one refereed journal article in Applied Physics Letters [1] and one refereed conference paper [2], for which I am third and second author, respectively. For the gain measurements, I aided in the setup and data collection, whereas I setup and took most of the luminescence data. The gain measurements resulted in one second-author refereed journal article in Applied Physics Letters [3] and I presented the luminescence results at CLEO2000 [4]. I took the lead role in the waveguide fabrication and characterization and authored refereed journal articles in Applied Physics Letters [5], Journal of Applied Physics [6], and Journal of the Optical Society of America B [7]. I also presented an invited talk at Photonics West [8] and presented at CLEO200-1 [9]. Additionally, I have been a coauthor of presentations at the Nanotechnology Symposium (2006), American Ceramic Society [10], and Photonics Europe ( 2006) [11]. A book chapter in The Photonics Handbook, 2nd edition [12

  12. Fibre Laser At 589nm Using Pr+3 - Doped Fluoride Glass

    Science.gov (United States)

    2007-11-02

    range of Pr-doped fluoride glasses with the aim of identifying a suitable glass host for a 589 nm laser. Pr-doped fluorozirconate ZBLAN glass is known to...F 2 at 635 nm, which both originate from the 3P0 level and therefore compete. In ZBLAN glass the two peaks have equal strength. However, we found...4� Pr3÷ -doped fluoride glass for a 589 nm fibre laser University of Leeds Principal investigator: Dr Animesh Jha Final Report 1 July 1998 - 31

  13. Population dynamics in Er3+-doped fluoride glasses

    Science.gov (United States)

    Bogdanov, V. K.; Booth, D. J.; Gibbs, W. E.; Javorniczky, J. S.; Newman, P. J.; Macfarlane, D. R.

    2001-05-01

    A detailed study of the energy-transfer processes in Er3+: flouride glasses with doping concentrations of 0.2-18 mol % is presented. Fluorescence wave forms for 11 erbium transitions were measured under 802-nm, 1.5-μm, 975-nm, 520-nm, and 403-nm excitation from a high-energy short-pulse source. The analysis of these data provided a physical understanding of the processes responsible for the temporal behavior of the populations of a large number of energy levels. A comprehensive nine-level rate-equation model of the Er3+ population dynamics in these fluoride glasses is developed. The model performs well in predicting the observed fluorescence behavior of the main fluorescing lines under all pumping conditions. The modeling process allowed 14 ion-ion energy-transfer processes that are important for the population dynamics in these fluoride glasses to be identified and their rate constants obtained. Noticeably, the inclusion of seven three-ion processes was found necessary in order to obtain good fits to the experimental fluorescence wave forms. It was also found that some three-ion processes have a significant effect on the population dynamics of the levels even in lower doping concentrations.

  14. Surface silver-doping of biocompatible glass to induce antibacterial properties. Part I: Massive glass.

    Science.gov (United States)

    Verné, E; Miola, M; Vitale Brovarone, C; Cannas, M; Gatti, S; Fucale, G; Maina, G; Massé, A; Di Nunzio, S

    2009-03-01

    A glass belonging to the system SiO(2)-Al(2)O(3)-CaO-Na(2)O has been subjected to a patented ion-exchange treatment to induce surface antibacterial activity by doping with silver ions. Doped samples have been characterized by means of X-Ray diffraction (XRD), scanning electron microscopy (SEM) observation, energy dispersion spectrometry (EDS) analysis, in vitro bioactivity test, Ag(+) leaching test by graphite furnace atomic absorption spectroscopy (GFAAS) analyses, cytotoxicity tests by fibroblasts adhesion and proliferation, adsorption of IgA and IgG on to the material to evaluate its inflammatory property and antibacterial tests (cultures with Staphylococcus aureus and Escherichia coli). In vitro tests results demonstrated that the modified glass maintains the same biocompatibility of the untreated one and, moreover, it acquires an antimicrobial action against tested bacteria. This method can be selected to realize glass or glass-ceramic bone substitutes as well as coatings on bio-inert devices, providing safety against bacterial colonization thus reducing the risks of infections nearby the implant site. The present work is the carrying on of a previous research activity, concerning the application of an ion-exchange treatment on glasses belonging to the ternary system SiO(2)-CaO-Na(2)O. On the basis of previous results the glass composition was refined and the ion-exchange process was adapted to it, in order to tune the final material properties. The addition of Al(2)O(3) to the original glass system and the optimization of the ion-exchange conditions allowed a better control of the treatment, leading to an antibacterial material, without affecting both bioactivity and biocompatibility.

  15. Photon avalanche up-conversion in holmium doped fluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.H.; Liu, G.K.; Beitz, J.V. [Argonne National Lab., IL (United States). Chemistry Division; Jie Wang [Shanghai Institute of Optics and Fine Mechanics, Shanghai (China)

    1996-08-01

    Photon avalanche green up-conversion emission centered at 545 nm has been observed in Ho{sup 3+} doped and Ho{sup 3+}, Tm{sup 3+} co-doped ZrF{sub 4}-based fluoride glasses when excited near 585 nm which is off resonance with any ground state absorption bands of either Ho{sup 3+} or Tm{sup 3+} ions. Detailed spectral measurements and analysis suggest that the 545 nm emission occurs from the {sup 5}S{sub 2},{sup 5}F{sub 4} states of Ho{sup 3+} that are populated by excited state absorption from the {sup 5}I{sub 7} state of Ho{sup 3+}. Strong cross-relaxation that efficiently populates the {sup 5}I{sub 7} state makes the photon avalanche process possible in this system.

  16. Er-doped and Er, Yb co-doped oxyfluoride glasses and glass-ceramics, structural and optical properties

    Science.gov (United States)

    Lisiecki, Radosław; Augustyn, Elżbieta; Ryba-Romanowski, Witold; Żelechower, Michał

    2011-09-01

    The selected glasses and glass-ceramics pertinent to following chemical composition in mol%:48%SiO 2-11%Al 2O 3-7%Na 2O-10%CaO-10%PbO-11%PbF 2-3%ErF 3 and 48%SiO 2-11%Al 2O 3-7%Na 2O-10%CaO-10%PbO-10%PbF 2-1%ErF 3-3%YbF 3 have been manufactured from high purity components (Aldrich) at 1450 °C in normal atmosphere. Glass optical fibers were successfully drawn. Subsequently they were subject to the heat-treatment at 700 °C in various time periods. The preceding differential thermal analysis (DTA) studies allowed estimating both the fiber drawing temperature and the controlled crystallization temperature of glass fibers. It has been observed that the controlled heat-treatment of oxyfluoride glass fibers results in the creation of Pb 5Al 3F 19, Er 4F 2O 11Si 3 and Er 3FO 10Si 3 crystalline phases. The identified phases were characterized by X-ray powder diffraction (XRD) and confirmed by selected area electron diffraction (SAED). The fibers consist of mixed amorphous-crystalline microstructure with nano-crystals of size even below 10 nm distributed in the glassy host. Their morphology was investigated applying high-resolution transmission electron microscopy. Optical properties and excited state relaxation dynamics of optically active ions (Er 3+, Yb 3+) in glass and glass-ceramics have been studied. Based on absorption spectra the Judd-Ofelt analysis was carried out. The main attention was directed to NIR luminescence at. 1.6 μm related to 4I 13/2 → 4I 15/2 Er 3+ and less effective emission associated with 4I 11/2 → 4I 15/2 Er 3+ and 2F 5/2 → 2F 7/2 Yb 3+ transitions. The dissimilar spectroscopic properties have been revealed for glasses and glass-ceramic samples, respectively. The reduction of emission linewidth at 1.6 and 1.0 μm combined with substantial increase of 4I 13/2 lifetimes of erbium in glass-ceramics appear to be evidences that Er 3+ ions are accommodated in crystalline phases. The structural and optical characteristics of oxyfluoride glass

  17. Development of continuous glass melting for production of Nd-doped phosphate glasses for the NIF and LMJ laser systems

    Science.gov (United States)

    Campbell, Jack H.; McLean, M. J.; Hawley-Fedder, Ruth A.; Suratwala, Tayyab I.; Ficini-Dorn, G.; Trombert, Jean-Hugues

    1999-07-01

    The NIF and LMJ laser systems require about 3380 and 4752 Nd-doped laser glass slabs, respectively. Continuous laser glass melting and forming will be used for the first time to manufacture these slabs. Two vendors have been chosen to produce the glass: Hoya Corporation and Schott Glass Technologies. The laser glass melting systems that each of these two vendors have designed, built and tested are arguably the most advanced in the world. Production of the laser glass will begin on a pilot scale in the fall of 1998.

  18. Development of continuous glass melting for production of Nd-doped phosphate glasses for the NIF and LMJ laser system

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. H.; Ficini-Dorn, G.; Hawley-Fedder, R.; McLean, M. J.; Suratwala, T.; Trombert, J. H.

    1998-08-14

    The NIF and LMJ laser systems require about 3380 and 4752 Nd-doped laser glass slabs, respectively. Continuous laser glass melting and forming will be used for the first time to manufacture these slabs. Two vendors have been chosen to produce the glass: Hoya Corporation and Schott Glass Technologies. The laser glass melting systems that each of these two vendors have designed, built and tested are arguably the most advanced in the world. Production of the laser glass will begin on a pilot scale in the fall of 1999.

  19. Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass

    CERN Document Server

    Hughes, M; Rutt, H; Hewak, D

    2014-01-01

    Vanadium doped gallium lanthanum sulphide glass (V:GLS) displays three absorption bands at 580, 730 and 1155 nm identified by photoluminescence excitation measurements. Broad photoluminescence, with a full width half maximum (FWHM) of 500 nm, is observed peaking at 1500 nm when exciting at 514, 808 and 1064 nm. The fluorescence lifetime and quantum efficiency at 300 K were measured to be 33.4 us and 4 % respectively. From the available spectroscopic data we propose the vanadium ions valence to be 3+ and be in tetrahedral coordination The results indicate potential for development of a laser or optical amplifier based on V:GLS.

  20. Dielectric relaxation in AgI doped silver selenomolybdate glasses

    Science.gov (United States)

    Palui, A.; Shaw, A.; Ghosh, A.

    2016-05-01

    We report the study of dielectric properties of some silver ion conducting silver selenomolybdate mixed network former glasses in a wide frequency and temperature range. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been well interpreted using the Cole-Cole function. The temperature dependence of relaxation time obtained from real part of dielectric permittivity data shows an Arrhenius behavior. The activation energy shows a decreasing trend with the increase of doping content. Values of stretched exponential parameter are observed to be independent of temperature and composition.

  1. Dual role of the six-coordinated molybdenum and lead ions in novel of photochromic properties of the molybdenum-lead-borate glasses

    Science.gov (United States)

    Rada, M.; Maties, V.; Culea, M.; Rada, S.; Culea, E.

    2010-02-01

    Transparent glasses were prepared by conventional melting-quenching method in the xMoO 3·(100 - x)[3B 2O 3·PbO] system where 0 ≤ x ≤ 15 mol%. By increasing the MoO 3 content up to 20 mol% the PbMoO 4 crystalline phase appears. These systems exhibit a photochromic effect which can be induced through laser exposures ( λ = 633 nm) directly on the bulk sample. Structural investigations by FTIR spectroscopy show that the photosensitive effect is due to a reduction of Mo 6+ to Mo 4+ and/or Mo 5+ promoted by the oxidation of Pb 2+ and some structural changes of the borate network.

  2. Structure and luminescence of Dy3+ doped CaO-B2O3-SiO2 glasses

    Science.gov (United States)

    Hao, Yan; Cao, Ju

    2016-07-01

    The present work reports structure and luminescence of Dy3+ doped CaO-B2O3-SiO2 glasses prepared by melt quenching technique. The presence of various stretching and bending vibrations of different borate and silicate groups were identified from FTIR spectral measurements. The optical absorption and luminescence spectra were also measured, and their emission spectra exhibit two intense emission bands at around 485 nm (blue) and 577 nm (yellow) corresponds to 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions, respectively. The emission spectra were characterized through CIE 1931 color chromaticity diagram to explore its suitability for W-LED applications. Furthermore, the proper Y2O3 could change local structure of glass, which makes the UV absorption edge shift to longer wavelength, and it's easier to transfer energy from host to Dy3+ and then enhance the emission of Dy3+.

  3. Energy transfer and NIR emission in rare earth tri-doped barium lanthanum fluoro tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, J. Suresh; Pavani, K.; Graca, M.P.F.; Soares, M.J. [Department of Physics and I3N, University of Aveiro (Portugal); Venkataiah, G. [Department of Physics, Sri Venkateswara University, Tirupati (India); Jayasimhadri, M. [Department of Applied Physics, Delhi Technological University, Delhi (India)

    2014-09-15

    Barium lanthanum fluoro tellurite (BLFT) glasses doped with rare earth ions (ErF{sub 3}, PrF{sub 3} and YbF{sub 3}) both singly or in combinations were prepared by melt-quench technique and analysed spectroscopically. The prepared glasses were found to be mechanically strong and transparent. Optical absorption and NIR fluorescence were measured to the highly transparent and stable glass samples. Judd-Ofelt parameters and radiative properties were estimated for the single rare earth doped BLFT glasses using the optical absorption spectra. NIR fluorescence is measured using laser excitation. From the NIR emission spectra, energy transfer among the rare earth ions is analysed in the rare earth tri-doped BLFT glasses. These rare earth tri-doped BLFT glasses are found to be highly useful for the multi- wavelength emission in the NIR region for opto-electronic applications. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Cerium doped heavy metal fluoride glasses, a possible alternative for electromagnetic calorimetry

    CERN Document Server

    Auffray, Etiennette; Dafinei, I; Fay, J; Lecoq, P; Mares, J A; Martini, M; Mazé, G; Meinardi, F; Moine, B; Nikl, M; Pédrini, C; Poulain, M; Schneegans, M; Tavernier, Stefaan; Vedda, A

    1996-01-01

    The article is an overview of the research activity performed in the framework of the Crystal Clear Collaboration to produce scintillating glasses. The manufacturing of heavy metal fluoride glasses doped with Ce3+ is discussed. The luminescence and scintillation characteristics as well as the radiation hardness properties are extensively studied in the case of Ce doped fluorohafnate , found to be the most convenient glass scintillator for high energy physics applications.

  5. Structure and dynamics of iron doped and undoped silicate glasses

    Science.gov (United States)

    Santos, Cristiane N.; Meneses, Domingos D. S.; Echegut, Patrick; Lecomte, Emmanuel

    2010-03-01

    The optical properties of common silicate glass compositions are well known at room temperature. However, their radiative properties and structural evolution of these glasses with temperature are still largely unexplored. In this work we have measured the emissivity of a set of iron doped and undoped silicate and borosilicate glasses over an unprecedented temperature (up to 1700 K) and spectral range (40 -- 20000 cm-1). This was achieved by means of a home-made apparatus composed of a CO2 laser as the heat source, a black-body reference and two spectrometers. The optical functions were assessed using a dielectric function model [1], and the structure and dynamics of the glassy network, as well the absorption of iron species in different redox states were evidenced. We believe that these new data will help to understand the heat transfer in molten silicates. [4pt] [1] D. D. S. Meneses, G. Gruener, M. Malki, and P. Echegut, J. Non-Cryst. Solids 351, 124 (2005)

  6. Structural and spectroscopic behavior of Er{sup 3+}:Yb{sup 3+} co-doped lithium telluroborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Annapoorani, K. [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India); Maheshvaran, K. [Department of Physics, K.S. Rangasamy College of Technology, Trichengode 637215 (India); ArunKumar, S. [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India); Suriya Murthy, N. [Radiological Safety Division, IGCAR, Kalpakkam 603102 (India); Soukka, Tero [Department of Biotechnology, University of Turku (Finland); Marimuthu, K., E-mail: mari_ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India)

    2015-01-15

    A new series of Er{sup 3+}:Yb{sup 3+} co-doped Lithium telluroborate glasses were prepared following the melt quenching technique. The structural analyzes were made through XRD, Raman, FTIR spectra to explore the different vibrations of borate and tellurite network. The absorption spectra have been used to determine the nature of the metal–ligand and further Band gap and Urbach's analysis have also been carried out. The oscillator strength value of the {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} hypersensitive transition is found to be higher and increases as the concentration of the RE ion increases which emphasis the asymmetry nature of the glasses. The magnitude of the JO intensity parameters follow the trend as Ω{sub 2}>Ω{sub 4}>Ω{sub 6} uniformly for all the prepared glasses. A bright green emission corresponding to the {sup 2}H{sub 11/2}+{sup 4}S{sub 3/2}→ {sup 4}I{sub 15/2} transition and luminescence from {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} in eye safe region have also been observed. The radiative parameters such as radiative transition probability, stimulated emission cross-section, branching ratios, radiative lifetime, gain bandwidth and gain linewidth for the {sup 4}S{sub 3/2} and {sup 4}I{sub 13/2} level of the title glasses have also been determined. The absorption and emission cross-section corresponding to the {sup 4}I{sub 13/2} level has been calculated using McCumber theory. Lifetime measurements were made under 980 nm excitation and the quantum efficiency were also calculated to evaluate the appropriateness of the host matrix for the fabrication of laser materials and broad band amplifiers.

  7. Lead-barium fluoroborate glass ceramics doped with Nd3+ or Er3+

    Science.gov (United States)

    Petrova, O. B.; Sevostjanova, T. S.; Anurova, M. O.; Khomyakov, A. V.

    2016-02-01

    Lead-barium fluoroborate glasses in the PbF2-BaF2-B2O3, PbF2-BaO-B2O3, and PbO- BaF2-B2O3 systems doped with rare-earth ions (Nd3+ or Er3+) are synthesized and studied. It is shown that, based on these glasses, it is possible to produce transparent glass ceramics with fluoride crystalline phases, including ceramics with one crystalline phase of the fluorite structure. The spectral and luminescent properties of the doped glasses, glass ceramics, and polycrystalline complex fluorides containing Pb, Ba, and rare ions are studied.

  8. Enhanced Luminescent Properties in Tm3+/Dy3+ Co-doped Transparent Phosphate Glass Ceramic

    Directory of Open Access Journals (Sweden)

    Yao L. Q.

    2016-01-01

    Full Text Available Novel Tm3+/Dy3+ co-doped phosphate glass and glass ceramic samples for white light emitting diodes were prepared by melt quenching method. Under 353 nm excitation, the colors of the luminescence of the glass and glass ceramic samples are white. The CIE chromaticity coordinates (0.338, 0.328 of the emission from the glass ceramic is close to the standard white-light illumination (0.333, 0.333. Compared to the glass, the fluorescence intensity in the glass ceramic is greatly enhanced.

  9. In vitro study of manganese-doped bioactive glasses for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Miola, Marta, E-mail: marta.miola@polito.it [Applied Science and Technology Department, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy); Brovarone, Chiara Vitale [Applied Science and Technology Department, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy); Maina, Giovanni [Department of Clinical and Biological Sciences, University of Turin, Via Zuretti 29, 10126 Turin (Italy); Rossi, Federica [Department of Public Health and Pediatric Sciences, Piazza Polonia, 94, 10126 Torino (Italy); Bergandi, Loredana; Ghigo, Dario [Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Turin (Italy); Saracino, Silvia; Maggiora, Marina; Canuto, Rosa Angela; Muzio, Giuliana [Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin (Italy); Vernè, Enrica [Applied Science and Technology Department, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy)

    2014-05-01

    A glass belonging to the system SiO{sub 2}–P{sub 2}O{sub 5}–CaO–MgO–Na{sub 2}O–K{sub 2}O was modified by introducing two different amounts of manganese oxide (MnO). Mn-doped glasses were prepared by melt and quenching technique and characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) observation and energy dispersion spectrometry (EDS) analysis. In vitro bioactivity test in simulated body fluid (SBF) showed a slight decrease in the reactivity kinetics of Mn-doped glasses compared to the glass used as control; however the glasses maintained a good degree of bioactivity. Mn-leaching test in SBF and minimum essential medium (MEM) revealed fluctuating trends probably due to a re-precipitation of Mn compounds during the bioactivity process. Cellular tests showed that all the Mn-doped glasses, up to a concentration of 50 μg/cm{sup 2} (μg of glass powders/cm{sup 2} of cell monolayer), did not produce cytotoxic effects on human MG-63 osteoblasts cultured for up to 5 days. Finally, biocompatibility tests demonstrated a good osteoblast proliferation and spreading on Mn-doped glasses and most of all that the Mn-doping can promote the expression of alkaline phosphatase (ALP) and some bone morphogenetic proteins (BMPs). - Highlights: • Novel bioactive glasses doped with manganese were prepared. • Mn-doped bioactive glasses were not cytotoxic towards human MG-63 osteoblasts. • The Mn introduction promotes the expression of ALP and bone morphogenetic proteins. • Mn-doped glass may be a promising material for bone regeneration procedures.

  10. UV emission properties of thulium-doped fluorozirconate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Piramidowicz, R., E-mail: r.piramidowicz@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Telekomunikacja Polska Research and Development Centre, Obrzezna 7, 02-691 Warsaw (Poland); Bok, A.; Klimczak, M.; Malinowski, M. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland)

    2009-12-15

    In this work, we present our latest results on UV emission in bulk ZBLAN glasses doped with thulium ions, broadening knowledge of the short-wavelength optical properties of this system. We examined a set of samples with different activator concentrations (2500, 10,000, 25,000 and 50,000 ppm) in respect of absorption and short-wavelength emission properties. The concentration-dependant spectra of UV emission from the {sup 1}I{sub 6}+{sup 3}P{sub 0} and {sup 1}D{sub 2} levels and fluorescence dynamics profiles have been recorded and carefully examined under direct (one-photon) excitation, enabling discussion of fluorescence quenching mechanisms and determination of appropriate cross-relaxation rates. According to authors' best knowledge, the three-photon red-to-UV up-conversion has been reported for the first time under excitation of a laser diode.

  11. Glass-forming Ability and Chemical Stability of Mag-neto-optical Glass Heavily Doped with Rare Earth Oxide

    Institute of Scientific and Technical Information of China (English)

    YIN Hairong; ZHANG Chunxiang; LIU Liying; CHEN Guoping; TANG Baojun

    2009-01-01

    The glass-forming region of B_2O_3-Al_2O_3-SiO_2(BAS)glass heavily doped with rare earth oxides was investigated by an effective method,and the chemical stability was investigated by powder method.Influences of rare earth oxides on the glass-forming ability and the chemical stability of the BAS glass were also discussed.The experimental results show that the BAS glass-forming re-gion expands firstly with the increase of the Tb_2O_3 content up to 30mol%and then shrinks.The acid-resistant capacity of the BAS glass doped with rare earth oxides is the lowest,the water-resistant capacity is secondary,and the alkali-resistant capacity is the best.Besides,the glass chemical stability can be improved by doping appropriate amount of rare earth oxides.Moreover,the stronger the ionic polarization ability of the rare earth ions is,the better the chemical stability of the BAS glass will be.

  12. Fluoride-modified electrical properties of lead borate glasses and electrochemically induced crystallization in the glassy state

    Science.gov (United States)

    M'Peko, Jean-Claude; De Souza, José E.; Rojas, Seila S.; Hernandes, Antonio C.

    2008-02-01

    Lead fluoroborate glasses were prepared by the melt-quenching technique and characterized in terms of (micro)structural and electrical properties. The study was conducted on as prepared as well as temperature- and/or electric field-treated glass samples. The results show that, in the as-prepared glassy-state materials, electrical conductivity improved with increasing the PbF2 glass content. This result involves both an increase of the fluoride charge carrier density and, especially, a decrease of the activation energy from a glass structure expansion improving charge carrier mobility. Moreover, for the electric field-treated glass samples, surface crystallization was observed even below the glass transition temperature. As previously proposed in literature, and shown here, the occurrence of this phenomenon arose from an electrochemically induced redox reaction at the electrodes, followed by crystallite nucleation. Once nucleated, growth of β-PbF2 crystallites, with the indication of incorporating reduced lead ions (Pb+), was both (micro)structurally and electrically detectable and analyzed. The overall crystallization-associated features observed here adapt well with the floppy-rigid model that has been proposed to further complete the original continuous-random-network model by Zachariasen for closely addressing not only glasses' structure but also crystallization mechanism. Finally, the crystallization-modified kinetic picture of the glasses' electrical properties, through application of polarization/depolarization measurements originally combined with impedance spectroscopy, was extensively explored.

  13. Synthesis and Structural Characterization of Niobium Doped Lead-Telluride Glass-Ceramics

    Science.gov (United States)

    Sathish, M.; Eraiah, B.

    2015-02-01

    The basic glasses with composition (70-x) TeO2-30PbO-xNb2O5 (where x=0.1 mol % and 0.2 mol %) were prepared by melt quenching method and heat treated at 280°C for 30 min. The samples becoming glass ceramics was confirmed by SEM. The XRD parameters such as crystallite size of these glass ceramics decreases as increase the impurity and is the order of 184-109A°. However, micro strain (ε) and dislocation density (δ) increases. Glass transition and thermal stability estimated from DSC measurements and it has been found that both increase with increasing of impurity. Infrared Absorption spectra were measured for TeO2 glass and glass ceramic doped with Nb2O5. The recorded bands attributed to the different modes of vibration and stretching of Te-O band. Optical Absorption spectra of TeO2-PbO- Nb2O5 system shows that the absorption edge has a tail extending towards the lower energies and shifts towards for higher energies for rare earths-doped glass-ceramics. The degree of the edge shift was found to depend on the structural rearrangement and the relative concentrations of the glass basic units. The general appearance of the absorption spectra of these rare earth doped TeO2 glasses are similar to the spectra observed for other glasses doped with the same kind of rare earth oxides.

  14. Investigation on Structures and Properties of Yb3+-Doped Laser Glasses

    Institute of Scientific and Technical Information of China (English)

    Liu Shujiang; Lu Anxian; Tang Xiaodong; He Shaobo

    2006-01-01

    The Yb3+-doped silicate, phosphate and borophosphate laser glasses were prepared by means of conventional melt quenching technology.The physical and spectral properties of the glasses were investigated.The results show that, due to the existence of OH-, the fluorescence lifetime of phosphate glass is shorter than that of silicate glass, so silicate glass has better spectral properties than phosphate glass.Silicate glass has better mechanical and thermal properties than phosphate glass, but with the addition of B2O3, mechanical and thermal properties of phosphate glass are improved greatly without fluorescence quenching effect.This kind of borophosphate glass can be used in high average power solid state lasers.

  15. Spectral analysis of Cu2+ and Mn2+ ions doped borofluorophosphate glasses

    Indian Academy of Sciences (India)

    B Sudhakar Reddy; S Buddhudu

    2007-10-01

    We report here on the development and spectral analysis of Cu2+ (0.5 mol%) and Mn2+ (0.5 mol%) ions doped in two new series of glasses. The visible absorption spectra of Cu2+ and Mn2+ glasses have shown broad absorption bands at 820 nm and 495 nm, respectively. For Cu2+ BFP glasses, excitation at 380 nm, a blue emission at 441 nm and also a weak emission at 418 nm ions have been observed. For Mn2+ ions doped BFP glasses, excitation at 410 nm and a red shift at 605 nm emission have been observed.

  16. Luminescence efficiency growth in wide band gap semiconducting Bi2O3 doped Cd0.4Pb0.1B0.5 glasses and effect of γ-irradiation

    Science.gov (United States)

    Marzouk, M. A.; Ibrahim, S.; Hamdy, Y. M.

    2014-11-01

    Cadmium lead borate glasses together with other glasses containing different Bi2O3-doping concentrations (2.5, 5, 7.5, 10 mol%) were prepared by conventional melt annealing method. The density and molar volume values were calculated to obtain some insight on the packing density and arrangement in the network. Also their optical and structural properties have been characterized by means of X-ray diffraction, UV-visible spectroscopy, luminescence spectroscopy and FTIR spectroscopy. Optical measurements have been used to determine the optical band gap (Eg), Urbach energy (ΔE) and the refractive index (n). The results demonstrate the effective rule of Bi2O3 on the studied glasses. The undoped and Bi2O3 doped - glass show strong extended UV-near visible absorption bands which are attributed to the collective presence of both trace iron impurities from raw materials and also the sharing of bismuth Bi+3 ions. Furthermore, the luminescence intensity strongly increases with increasing Bi2O3 content which may be attributed to transfer of energy from transitions in its energy levels. It has been revealed that the decreasing values of optical band gap and band tail can be understood and related in terms of the structural changes that are taking place in the glass samples. The infrared absorption spectra of the prepared glasses show characteristic absorption bands related to the borate network (BO3, BO4 groups) together with vibrational modes due to Bi-O groups upon the introduction of Bi2O3. The prepared samples reveal a very limited response towards of gamma irradiation which reflects its shielding behavior towards the effect of such type of irradiation.

  17. Effects of transition metal oxide doping on the structure of sodium metaphosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zotov, N.; Kirfel, A.; Beuneu, B.; Delaplane, R.; Hohlwein, D.; Reinauer, F.; Glaum, R

    2004-07-15

    Neutron diffraction measurements of transition metal-oxide-doped sodium metaphosphate glasses and melts show an anomalous increase of the first sharp diffraction peak both with increasing transition metal content and temperature due to progressive increase of the structural disorder.

  18. Mid-infrared emission from Dy3+ doped tellurite bulk glass and waveguides

    Science.gov (United States)

    Richards, Billy D. O.; Teddy-Fernandez, Toney; Jha, Animesh; Binks, David

    2012-11-01

    We present the fabrication and characterisation of Dy3+-doped tellurite glasses and waveguides for applications in the mid-IR. The low phonon energy and large rare-earth ion solubility of tellurite glasses, as well as having infrared transmission ranges up to glasses, glass characterisation and rare-earth ion spectroscopy which is compared to other glass hosts relevant to the mid-IR such as fluoride glasses. When excited with an 808 nm laser diode source, Dy3+ doped tellurite bulk glasses exhibited very broad fluorescence from the 6H13/2 - 6H15/2 transition which extends from 3 μm to 3.6 μm FWHM compared to 2.9 μm to 3.1 μm in Dy3+ doped ZBLAN glass. This broad and red-shifted fluorescence band in tellurite glass may find use in LIDAR and sensing applications as it coincides with an atmospheric transmission band, compared to the ~3 μm emission of Dy3+ doped ZBLAN lasers which is absorbed by atmospheric water.

  19. Low-temperature photoluminescence in chalcogenide glasses doped with rare-earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Petr, E-mail: petr.kostka@irsm.cas.cz [Institute of Rock Structure and Mechanics AS CR, V Holešovičkách 41, 182 09 Praha 8 (Czech Republic); Zavadil, Jiří [Institute of Photonics and Electronics AS CR, Chaberská 57, 182 51 Praha 8, Kobylisy (Czech Republic); Iovu, Mihail S. [Institute of Applied Physics, Academy of Sciences of Moldova, Str. Academiei 5, MD-28 Chisinau, Republic of Moldova (Moldova, Republic of); Ivanova, Zoya G. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria); Furniss, David; Seddon, Angela B. [Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2015-11-05

    Sulfide and oxysulfide bulk glasses Ga-La-S-O, Ge-Ga-S and Ge-Ga-As-S doped, or co-doped, with various rare-earth (RE{sup 3+}) ions are investigated for their room temperature transmission and low-temperature photoluminescence. Photoluminescence spectra are collected by using external excitation into the Urbach tail of the fundamental absorption edge of the host-glass. The low-temperature photoluminescence spectra are dominated by the broad-band luminescence of the host glass, with superimposed relatively sharp emission bands due to radiative transitions within 4f shells of RE{sup 3+} ions. In addition, the dips in the host-glass luminescence due to 4f-4f up-transitions of RE{sup 3+} ions are observed in the Ge-Ga-S and Ge-Ga-As-S systems. These superimposed narrow effects provide a direct experimental evidence of energy transfer between the host glass and respective RE{sup 3+} dopants. - Highlights: • An evidence of energy transfer from host-glass to doped-in RE ions is presented. • Energy transfer is manifested by dips in host-glass broad-band luminescence. • This channel of energy transfer is documented on selected RE doped sulfide glasses. • Photoluminescence spectra are dominated by broad band host-glass luminescence. • Presence of RE ions is manifested by superimposed narrow 4f-4f transitions.

  20. Mesoporous Nitrogen Doped Carbon-Glass Ceramic Cathode for High Performance Lithium-Oxygen Battery

    Science.gov (United States)

    2012-06-01

    Hardwick, and J.- M. Tarascon, Nature Materials, vol. 11, pp 19-29, 2012. 2. Linden , D. (Ed), Handbook of Batteries , 2nd Edition, Mc-Graw-Hill, New...AFRL-RQ-WP-TP-2015-0053 MESOPOROUS NITROGEN DOPED CARBON-GLASS CERAMIC CATHODE FOR HIGH PERFORMANCE LITHIUM-OXYGEN BATTERY (POSTPRINT...DOPED CARBON-GLASS CERAMIC CATHODE FOR HIGH PERFORMANCE LITHIUM-OXYGEN BATTERY (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c

  1. Electron spin resonance and optical absorption spectroscopic studies of Cu{sup 2+} ions in aluminium lead borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    SivaRamaiah, G., E-mail: gsivaram7@yahoo.co.in [Department of Physics, Government College for Men, Kadapa 516004 (India); LakshmanaRao, J., E-mail: jlrao46@yahoo.co.in [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer It is for the first time to study optical absorption and EPR in these glasses. Black-Right-Pointing-Pointer The thermal properties are new and interesting in this glass system. Black-Right-Pointing-Pointer It is for the first time to report three optical bands for Cu{sup 2+} in oxide glasses. Black-Right-Pointing-Pointer The interesting optical results are due to excellent sample preparation. - Abstract: Electron Spin Resonance and optical absorption spectral studies of Cu{sup 2+} ions in 5 Al{sub 2}O{sub 3} + 75 B{sub 2}O{sub 3} + (20-z) PbO + z CuO (where z = 0.1-1.5 mol.% of CuO) glasses have been reported. The EPR spectra of all the glasses show resonance signals characteristic of Cu{sup 2+} ions at both room and low temperatures. The number of spins and Gibbs energy were calculated at different concentrations and temperatures. From the plot of the ratio of logarithmic number of spins and absolute temperature and the reciprocal of absolute temperature, the entropy and enthalpy have been evaluated. The optical absorption spectra of all the glasses exhibit three bands and these bands have been assigned to {sup 2}B{sub 1g} {yields} {sup 2}E{sub g}, {sup 2}B{sub 1g} {yields} {sup 2}B{sub 2g}, and {sup 2}B{sub 1g} {yields} {sup 2}A{sub 1g} transitions in the decreasing order of energy. It is for the first time to observe three optical absorption bands for Cu{sup 2+} ions in oxide glasses. Such type of results is due to excellent sample preparation. From the EPR and optical absorption spectroscopies data, the molecular orbital coefficients have been evaluated.

  2. Cross Relaxation in rare-earth-doped oxyfluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarayana, G.; Weis, Eric M. [Materials Science and Technology Division (MST-7), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lira, A.C. [Unidad Académica Profesional Nezahualcóyotl, Universidad Autónoma del Estado de México, Av. Bordo de Xochiaca s/n, Nezahualcóyotl, Estado de Mexico 57000, México (Mexico); Caldiño, Ulises [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, México D.F. 09340 (Mexico); Williams, Darrick J. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hehlen, Markus P., E-mail: hehlen@lanl.gov [Materials Science and Technology Division (MST-7), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-07-15

    The excited-state relaxation dynamics of Tb{sup 3+}, Sm{sup 3+}, and Eu{sup 3+} doped into a 50SiO{sub 2}–20Al{sub 2}O{sub 3}–10Na{sub 2}O–20LaF{sub 3} (mol%) oxyfluoride glass are studied. Multiphonon relaxation of the primary emitting states in Tb{sup 3+} ({sup 5}D{sub 3} and {sup 5}D{sub 4}), Sm{sup 3+} ({sup 4}G{sub 5/2}), and Eu{sup 3+} ({sup 5}D{sub 0}) was found to be negligible in the present host. The relaxation of Tb{sup 3+} ({sup 5}D{sub 4}) and Eu{sup 3+} ({sup 5}D{sub 0}) is dominated by radiative decay. For Tb{sup 3+} ({sup 5}D{sub 3}) and Sm{sup 3+} ({sup 4}G{sub 5/2}) in contrast, radiative relaxation is in competition with several non-radiative cross-relaxation processes. This competition was found to be particularly pronounced for the {sup 5}D{sub 3} excited state in Tb{sup 3+}, where a 124-fold decrease of the ({sup 5}D{sub 3}→{sup 7}F{sub 5})/({sup 5}D{sub 4}→{sup 7}F{sub 5}) emission intensity ratio and a ∼10-fold shortening of the {sup 5}D{sub 3} lifetime was observed upon increasing the Tb{sup 3+} concentration from 0.01% to 1%. The Tb{sup 3+} concentration dependence of {sup 5}D{sub 3} also points to some degree of ion aggregation in the “as quenched” glasses. A Judd–Ofelt intensity analysis was performed for Sm{sup 3+} and used to estimate the relative magnitude of {sup 4}G{sub 5/2} cross-relaxation processes. Four cross-relaxation processes in particular were identified to account for 92% of the total {sup 4}G{sub 5/2} non-radiative decay, and a 11% quantum efficiency was estimated for the {sup 4}G{sub 5/2} excited state. Non-exponentiality in the {sup 5}D{sub 0} decay of Eu{sup 3+} is evidence for several Eu{sup 3+} coordination environments in the glass host that manifest in different {sup 5}D{sub 0} decay constants because of the hypersensitivity of the {sup 5}D{sub 0}→{sup 7}F{sub 2} transition. -- Highlights: ► Tb{sup 3+}, Sm{sup 3+}, and Eu{sup 3+} were doped into a LaF{sub 3}-rich oxyfluoride glass. ► The

  3. Tm-Yb Doped Optical Fiber Performance with Variation of Host-Glass Composition

    Directory of Open Access Journals (Sweden)

    Anirban Dhar

    2014-01-01

    Full Text Available The fabrication process of Thulium-Ytterbium doped optical fiber comprising different host glass through the Modified Chemical Vapor Deposition (MCVD coupled with solution doping technique is presented. The material and optical performance of different fibers are compared with special emphasis on their lasing efficiency for 2 µm application.

  4. Study of vibrational spectroscopy, linear and non-linear optical properties of Sm3+ ions doped BaO-ZnO-B2O3 glasses

    Science.gov (United States)

    Nanda, Kirti; Kundu, R. S.; Sharma, Sarita; Mohan, Devendra; Punia, R.; Kishore, N.

    2015-07-01

    Samarium oxide doped Barium-Zinc-Borate glasses with compositions xSm2O3-(100-x)[0.1BaO-0.4ZnO-0.5B2O3]; x = 0.0, 0.5, 1.0, 1.5 and 2.0 have been prepared by melt quench technique. The amorphous nature of as-prepared glasses has been ascertained by X-ray diffraction patterns. The observed values of density and molar volume of the glass samples are found to increase with the increase in concentration of Sm2O3. Fourier Transform Infrared spectra of the prepared glasses indicate that Sm2O3 acts as glass modifier. With the increase in Sm2O3 content, BO4 structural units start converting into BO3 structural units. The values of optical energy band gap (Eg), estimated from Tauc's plots, are observed to decrease with the increase in Sm2O3 content. The nonlinear optical properties of glass samples have been investigated by Z-scan method with nanosecond pulsed laser at ˜532 nm in both open and close aperture geometries. The values of two photon absorption coefficient (β) and nonlinear refractive index (n2) have been estimated by fitting of experimentally observed data with theoretical models and both are found to increase with the increase in Sm3+ ions concentration in the glass matrix. The total third order nonlinear susceptibility (χ(3)) have been calculated and observed to increase with the increase in Sm3+ ions concentration.

  5. Lead fluorosilicate glass ceramics doped with Nd3+, Er3+, and Yb3+

    Science.gov (United States)

    Petrova, O. B.; Khomyakov, A. V.

    2013-06-01

    Glasses in the PbF2-PbO-SiO2 system doped with 1 mol % of rare-earth elements (Nd3+, Er3+, or Yb3+) are synthesized and studied. The glasses were heat-treated in order to obtain glass ceramics with a fluoride crystalline phase. The changes in the structure and spectral optical properties of glass ceramics with respect to initial glasses were determined by using X-ray diffraction analysis and by studying the luminescent characteristics of dopant ions.

  6. Raman and Photoluminescence Spectroscopy of Er(3+) Doped Heavy Metal Oxide Glasses

    Science.gov (United States)

    Dyer, Keith; Pan, Zheng-Da; Morgan, Steve

    1997-01-01

    The potential applications of rare-earth ion doped materials include fiber lasers which can be pumped conveniently by infrared semiconductor laser diodes. The host material systems most widely studied are fluoride crystals and glasses because fluorides have low nonradiative relaxation rates due to their lower phonon energies. However, the mechanical strength, chemical durability and temperature stability of the oxide glasses are generally much better than fluoride glasses. The objective of this research was to investigate the optical and spectroscopic properties of Er(3+)-doped lead-germanate and lead-tellurium-germanate glasses. The maximum vibrational energy of lead-tellurium-germanate glasses are in the range of 740-820/cm, intermediate between those of silicate (1150/cm) and fluoride (530/cm) glasses.

  7. Optical analysis of samarium doped sodium bismuth silicate glass

    Science.gov (United States)

    Thomas, V.; Sofin, R. G. S.; Allen, M.; Thomas, H.; Biju, P. R.; Jose, G.; Unnikrishnan, N. V.

    2017-01-01

    Samarium doped sodium bismuth silicate glass was synthesized using the melt quenching method. Detailed optical spectroscopic studies of the glassy material were carried out in the UV-Vis-NIR spectral range. Using the optical absorption spectra Judd-Ofelt (JO) parameters are derived. The calculated values of the JO parameters are utilized in evaluating the various radiative parameters such as electric dipole line strengths (Sed), radiative transition probabilities (Arad), radiative lifetimes (τrad), fluorescence branching ratios (β) and the integrated absorption cross- sections (σa) for stimulated emission from various excited states of Sm3 +‡ ion. The principal fluorescence transitions are identified by recording the fluorescence spectrum. Our analysis revealed that the novel glassy system has the optimum values for the key parameters viz. spectroscopic quality factor, optical gain, stimulated emission cross section and quantum efficiency, which are required for a high performance optical amplifier. Calculated chromaticity co-ordinates (0.61, 0.38) also confirm its application potential in display devices.

  8. Structural role of RO and Al{sub 2}O{sub 3} in borate glasses using an ultrasonic technique

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Moneim, A. [Physics Department, Faculty of Science, Zagazig University, Zagazig (Egypt)]. E-mail: aminabdelmoneim@hotmail.com; Youssof, I.M. [Glass Department, Faculty of Applied Arts, Helwan University, Giza (Egypt); Abd El-Latif, L. [National Institute for Standards, Tersa Street, El-Haram, Giza (Egypt)

    2006-08-15

    The ternary alkaline earth aluminoborate glasses RO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}, where R = Mg, Ca, Sr, have been prepared by the normal quenching method. Ultrasonic velocities and attenuation were measured in these glasses using the pulse-echo technique to explore the structural role of RO and Al{sub 2}O{sub 3} in these glasses. From the measured densities and velocities, various parameters such as elastic moduli, microhardness and Poisson's ratio have been determined. Results obtained are discussed in terms of the field strength of the interstitial cation, molar ratio (Al{sub 2}O{sub 3}/RO), fraction of four coordinated boron atoms, number of network bonds per unit volume, average cross-link density and fractal bond connectivity of the network. It was found that the network connectivity of these glasses increases in the order Mg > Ca > Sr. Makishima and Mackenzie theory has been applied to correlate the experimental and theoretical data and good correlation was observed.

  9. Sb/Mn co-doped oxyfluoride silicate glasses for potential applications in photosynthesis

    OpenAIRE

    Zhu, Chaofeng; ZHANG, XIANGHUA; Ma, Hongli

    2016-01-01

    International audience; A series of Sb/Mn co-doped oxyfluoride silicate glasses were prepared via the melt-quenching method to explore red luminescent materials for potential applications in photosynthesis of green plants, and these glasses are investigated by means of luminescence decay curves, absorption, emission, and excitation spectra. We find that the as-prepared glasses are transparent in the visible region and can emit strong red light under ultraviolet, purple, and green light excita...

  10. The role of stress in CdTe quantum dot doped glasses

    Science.gov (United States)

    de Thomaz, A. A.; Almeida, D. B.; Pelegati, V. B.; Carvalho, H. F.; Moreira, S. G. C.; Barbosa, L. C.; Cesar, C. L.

    2016-11-01

    In this work, we unequivocally demonstrate the influence of matrix-related stresses on quantum dots by measuring, side by side, a CdTe quantum dot doped glass and a colloidal sample with similar sizes. We measured the fluorescence spectra and fluorescence lifetime for both samples as a function of the temperature. We show that the expansion coefficient mismatch between CdTe quantum dots and the glass host causes stresses and drastically changes its behavior compared to its colloidal counterpart, even leading to phase transitions. This finding indicates that most experimental data on glass-doped quantum dots used to validate confinement models should be revised, taking stress into account.

  11. UV Laser Induced Transmission Change of Pure and Doped Silica Glass

    Institute of Scientific and Technical Information of China (English)

    XIE Junlin; DENG Tao; LUO Jie; BAN Qingrong

    2008-01-01

    Pure and F,GeO2-doped silica glass cut from fiber preforms prepared by plasma assisted chemical vapor deposition(PCVD) were investigated by ultraviolet absorption spectroscopy.The ultraviolet absorption characteristics of these glasses were also studied after UV laser irradiation and heating treatment.It was found that absorption band near 240 nm assigned to GODC was found both in GeO2-doped and F-GeO2 co-doped silica glass,but absorption intensity of the latter was lower than that of the former.It's because F can react with GODC and GeE' simultaneously and reduce their concentration.After irradiation,UV absorption change of F-GeO2 co-doped silica glass was weaker than that of GeO2-doped silica glass,it thus can be concluded that introduction of F could depress the UV absorption of GeO2-doped silica core effectively.

  12. Preparation and Luminescence of Er3+ Doped Oxyfluoride Glass Ceramics Containing LaF3 Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Er3+ doped transparent oxyfluoride glass ceramics containing LaF3 nanocrystals were prepared and the up-con-version and near infrared luminescence behavior of Er3+ in glasses and glass ceramics were investigated. With increasing heat-treating time and temperature, the size (varied from 0 to 19 nm) and crystallinity (varied from 0 to 47%) of LaF3 nanocrystals in the glass ceramics are increased. The up-conversion luminescence intensity of Er3+ ions in the glass ceramics is much stronger than that in the glasses and increased significantly with increasing heat-treating time and temperature. The near infrared emission of Er3+ ions in the glass ceramics is found to be similar to that in the glasses.

  13. Green-white-yellow tunable luminescence from doped transparent glass ceramics containing nanocrystals

    Science.gov (United States)

    Wang, X. F.; Yan, X. H.; Xuan, Y.; Zheng, J.; He, W. Y.

    2013-10-01

    , , and doped transparent ceramics containing nanocrystals were fabricated by a melt-quenching method and subsequent heating. Tetragonal phase spheres with 20 nm size are homogeneously precipitated among a borosilicate glass matrix. The photoluminescence spectrum of single doped transparent ceramics shows white light emission under 382 nm UV excitation. The emission color of co-doped transparent glass ceramics is tuned from green to white through energy transfer from to , and the emission color of co-doped transparent ceramics is tuned from white to yellow through energy transfer from to . CIE chromaticity and color temperature measurements show that the resulting transparent glass ceramics may be a candidate as a warm-white LED material pumped by a UV InGaN chip.

  14. Luminescence properties of Dy3+ doped lanthanum-calcium-silicaborate glass scintillator

    Science.gov (United States)

    Park, J. M.; Ha, D. H.; Lee, S. W.; Chanthima, N.; Ruangtaweep, Y.; Kaewkhao, J.

    2016-09-01

    In this research Dy3+-doped lanthanum-calcium-silicaborate glass scintillators, with the formula 25La2O3: 10CaO: 10SiO2: (55-x)B2O3: xDy2O3, were fabricated by using the melt-quenching technique. For the Dy3+ doping concentrations from 0.05 mol% to 0.5 mol% studied the luminescence properties of the Dy3+-doped glass scintillators with various radiation sources, such as X-ray, photo-, laser, and proton. To understand the absorption state, we measured the transmittance spectrum. Furthermore, X-ray, photo- and proton-induced emission spectra were measured to study the transition states of Dy3+-doped glass scintillators. The laser-induced emission spectra were measured at low temperatures in the range from 10 K to 300 K.

  15. Synthesis, thermal and photoluminescent properties of ZnSe- based oxyfluoride glasses doped with samarium

    Science.gov (United States)

    Kostova, I.; Okada, G.; Pashova, T.; Tonchev, D.; Kasap, S.

    2014-12-01

    Rare earth (RE) doped glasses and glass ceramic materials have recently received considerable attention because of their potential or realized applications as X-ray intensifying screens, phosphors, detectors, waveguides, lasers etc. [1]. In this work, we present a new RE doped ZnO-ZnSe-SrF2-P2O5-B2O3-Sm2O3-SmF3 (ZSPB) glass system synthesized by melt quenching technique. The resulting glasses were visually fully transparent and stable with glass the transition temperatures around 530°C. The thermal properties of this glass system were characterized by Modulated Differential Scanning Calorimetry (MDSC) measurements before and after annealing at 650°C. We have characterized these glasses by Raman spectroscopy and photoluminescence (PL) measurements over the UV-VIS range using light emitting diodes (LED) and laser diodes (LD) excitation sources. We have also irradiated thermally treated and non-treated glass samples by X-rays and have studied the resulting PL. We discuss the results in terms of previously reported models for Sm-doped Zn-borophosphate oxide, oxyfluoride and oxyselenide glasses.

  16. Gain properties of germanate glasses singly doped with Tm3+ and Ho3+ ions

    Institute of Scientific and Technical Information of China (English)

    LIN Qiongfei; XIA Haiping; ZHANG Yuepin; WANG Jinhao; ZHANG Jianli; HE Sailong

    2009-01-01

    Two kinds of germanate glasses singly doped with the ion concentration of 2.0mol.%Tm3+ and 2.0mol.%Ho3+, respectively, were prepared. According to McCumber theory, the absorption and stimulated emission cross-sections corresponding to the 3H6←→3F4 transitions of Tm3+ (at 1.8 μm) and the 5I8←→5I7 transitions of Ho3+ (at 2.0 μm) were obtained, and respective gain cross-section spectra were also computed as a function of population inversion according to absorption and emission cross-sections and the ion concentrations. For Tm3+-doped germanate glasses, the maximum of the absorption, emission, and gain cross-sections reached a value higher than those reported for fluorozirconate, fluoride, and oxyfluoride glasses. For Ho3+-doped germanate glasses, the maximum of absorption, emission, and gain cross-sections reached a value higher than that reported for fluorozircoaluminate glasses. Hence, these Tm3+-doped and Ho3+-doped germanate glasses exhibited an advantage for application in mid-infrared lasers at about 1.8 and 2.0 μm wavelength.

  17. Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics.

    Science.gov (United States)

    Gao, Guojun; Meszaros, Robert; Peng, Mingying; Wondraczek, Lothar

    2011-05-09

    We report on photoluminescence of vanadium-doped lithium zinc silicate glasses and corresponding nanocrystalline Li2ZnSiO4 glass ceramics as broadband UV-to-VIS photoconverters. Depending on dopant concentration and synthesis conditions, VIS photoemission from [VO4]3 is centered at 550-590 nm and occurs over a bandwidth (FWHM) of ~250 nm. The corresponding excitation band covers the complete UV-B to UV-A spectral region. In as-melted glasses, the emission lifetime is about 34 μs up to a nominal dopant concentration of 0.5 mol%. In the glass ceramic, it increases to about 45 μs. For higher dopant concentration, a sharp drop in emission lifetime was observed, what is interpreted as a result of concentration quenching. Self-quenching is further promoted by energy transfer to V4+ centers (2glass and/or synthesis conditions.

  18. Broadband emission from Ce3+/Mn2+/Yb3+ tri-doped oxyfluoride glasses for glass greenhouse

    Science.gov (United States)

    Wang, Weirong; Huang, Zhangyu; Gao, Huiping; Cheng, Xiuying; Mao, Yanli

    2016-12-01

    In this work, a kind of oxyfluoride glasses tri-doped with Ce3+/Mn2+/Yb3+ ions was prepared by a simple and fast high temperature melting method. Under excitation with 300 nm light, two meaningful broad band emissions (ranged from 340 to 500 nm and 510-700 nm) were obtained, which matched well with the absorption of the chlorophylls. Under near-infrared (980 nm) excitation, an abnormal up-conversion luminescence was demonstrated in the oxyfluoride glasses by the energy transfer from Yb3+ to Mn2+. In addition, the up-conversion emission has a red shift along with the increase of the doping concentration of Mn2+, which would contribute to match the action spectrum of photosynthesis better. Our materials will be favored to extend the utilization of solar energy in glass greenhouse for plant cultivation.

  19. Preparation and Optical Properties of Er3+ -Doped Gadolinium Borosilicate Glasses

    Institute of Scientific and Technical Information of China (English)

    Sun Jiangting; Zhang Jiahua; Chen Baojiu; Lu Shaozhe; Ren Xinguang; Wang Xiaojun

    2005-01-01

    Er3+-doped Gd2 O3 -SiO2 -B2 O3 -Na2O glasses were prepared, and formation range of glass of Gd2 O3 -SiO2 -B2O3 system was experimentally obtained. It is found that the glass phase can be formed only when the content of SiO2 is 0~50%(molar fraction), Gd2O3 is 0~30%(molar fraction) and B2 O3 is above 20%(molar fraction) in this glass system. The glass can also be obtained but becomes translucent at the contents of 60%(molar fraction) SiO2 and 30% Gd2O3 , or at the contents of 60%(molar fraction) SiO2 and 30%(molar fraction) B2O3. There is no glass phase formed in other glass components. Glass forming ability for Gd2O3 content of 10%, was characterized by the value of β, the parameter of crystallization tendency, which is 0.32~1.76, obtained from the differential thermal analysis. The absorption and emission cross section, the J-O parameters Ωt(2,4,6) and radiative transition probabilities were calculated by using the theory of McCumber and Judd-Ofelt. The emission properties at 1.5 μm of the samples are discussed with the product of full width at half maximum and stimulated emission cross section. It can be seen that the value of the FWHM×σepeak product in the prepared glass is more than those of germanate, silicate and phosphate glasses. Furthermore, the maximum value of the product among these glasses reported in this work is close to that of oxyfluoride silicate glass. Therefore, the Er3+-doped gadolinium borosilicate glass in this paper is a candidate for broadband erbium doped fiber amplifiers.

  20. In-volume waveguides by fs-laser direct writing in rare-earth-doped fluoride glass and phosphate glass

    Science.gov (United States)

    Esser, D.; Wortmann, D.; Gottmann, J.

    2009-02-01

    Refractive index modifications are fabricated in the volume of rare-earth-doped glass materials namely Er- and Pr-doped ZBLAN (a fluoride glass consisting of ZrF4, BaF2, LaF3, AlF3, NaF), an Er-doped nano-crystalline glass-ceramic and Yb- and Er-doped phosphate glass IOG. Femtosecond laser radiation (τ=500fs, λ=1045nm, f=0.1-5MHz) from an Ybfiber laser is focused with a microscope objective in the volume of the glass materials and scanned below the surface with different scan velocities and pulse energies. Non-linear absorption processes like multiphoton- and avalanche absorption lead to localized density changes and the formation of color centers. The refractive index change is localized to the focal volume of the laser radiation and therefore, a precise control of the modified volume is possible. The width of the written structures is analyzed by transmission light microscopy and additionally with the quantitative phase microscopy (QPm) software to determine the refractive index distribution perpendicular to a waveguide. Structures larger than 50μm in width are generated at high repetition rates due to heat accumulation effects. In addition, the fabricated waveguides are investigated by far-field measurements of the guided light to determine their numerical apertures. Using interference microscopy the refractive index distribution of waveguide cross-sections in phosphate glass IOG is determined. Several regions with an alternating refractive index change are observed whose size depend on the applied pulse energies and scan velocities.

  1. Thermal degradation of ultrabroad bismuth NIR luminescence in bismuth-doped tantalum germanate laser glasses.

    Science.gov (United States)

    Wang, Liping; Zhao, Yanqi; Xu, Shanhui; Peng, Mingying

    2016-04-01

    Because of ultra-broadband luminescence in 1000-1700 nm and consequent applications in fiber amplifier and lasers in the new spectral range where traditional rare earth cannot work, bismuth-doped laser glasses have received rising interest recently. For long-term practical application, thermal degradation must be considered for the glasses. This, however, has seldom been investigated. Here we report the thermal degradation of bismuth-doped germanate glass. Heating and cooling cycle experiments at high temperature reveal strong dependence of the thermal degradation on glass compositions. Bismuth and tantalum lead to the reversible degradation, while lithium can produce permanent irreversible degradation. The degradation becomes worse as lithium content increases in the glass. Absorption spectra show this is due to partial oxidation of bismuth near-infrared emission center. Surprisingly, we notice the emission of bismuth exhibits blueshift, rather than redshift at a higher temperature, and the blueshift can be suppressed by increasing the lithium content.

  2. Synthesis, Characterization, and Photoluminescence on the Glass Doped with AgInS2 Nanocrystals

    Directory of Open Access Journals (Sweden)

    Dewu Yin

    2015-01-01

    Full Text Available We demonstrated a synthetic process on the glass doped with AgInS2 nanocrystals through sol-gel method under a controlled atmosphere. X-ray powder diffraction and X-ray photoelectron spectra revealed that the AgInS2 crystalline phase had formed in the glass matrix. Transmittance electron microscopy showed that these AgInS2 crystals had spherical shape and good dispersed form in the glass matrix, and their diameter distribution was mainly focused on three size regions. Furthermore, the glass doped with AgInS2 nanocrystals exhibited three photoluminescence peaks located at 1.83 eV, 2.02 eV, and 2.21 eV, which were ascribed to the introduction of AgInS2 nanocrystals in the glass.

  3. Nanodiamond in tellurite glass Part II: practical nanodiamond-doped fibers

    CERN Document Server

    Ruan, Yinlan; Johnson, Brett C; Ohshima, Takeshi; Greentree, Andrew D; Gibson, Brant C; Monro, Tanya M; Ebendorff-Heidepriem, Heike

    2014-01-01

    Tellurite glass fibers with embedded nanodiamond are attractive materials for quantum photonics applications. Reducing the loss of these fibers in the 600-800 nm wavelength range of nanodiamond fluorescence is essential to exploit the unique properties of nanodiamond in the new hybrid material. The first part of this study reported the origin of loss in nanodiamond-doped glass and impact of glass fabrication conditions. Here, we report the fabrication of nanodiamond-doped tellurite fibers with significantly reduced loss in the visible through further understanding of the impact of glass fabrication conditions on the interaction of the glass melt with the embedded nanodiamond. We fabricated tellurite fibers containing nanodiamond in concentrations up to 0.7 ppm-weight, while reducing the loss by more than an order of magnitude down to 10 dB/m at 600-800 nm.

  4. Upconverted fluorescence in Er-doped ZBLAN glasses for high efficiency solar cells

    Science.gov (United States)

    Henke, Bastian; Ahrens, Bernd; Johnson, Jacqueline A.; Miclea, Paul T.; Schweizer, Stefan

    2009-08-01

    Transparent erbium-doped fluorozirconate (FZ) glasses are attractive systems for upconversion-based solar cells. Upconverted fluorescence intensity vs. excitation power dependence was investigated for a series of erbium-doped FZ glasses. It was found that the ratio of the 2-photon upconverted emission in the near infrared at 980 nm to the 3-photon upconverted emissions in the visible at 530, 550, and 660 nm decreases with increasing excitation power. The integrated upconverted fluorescence intensity per excitation power shows "saturation" upon increasing the excitation power, while the point of saturation shifts to lower excitation power with increasing erbium doping level. To demonstrate the potential of these upconverters for photovoltaic applications, the external quantum efficiency (EQE) of a commercial monocrystalline silicon solar cell with an Er-doped FZ glass on top of it was measured. For an excitation power of 1 mW at a wavelength of 1540 nm an EQE of 1.6% was found for a 9.1 mol% Er-doped FZ glass. The samples investigated were not optically coupled to the solar cell and no optical coating was applied to the glass surface.

  5. Optical properties and laser parameters of Nd 3+-doped flouride glasses

    Science.gov (United States)

    Tesar, A.; Campbell, J.; Weber, M.; Weinzapfel, C.; Lin, Y.; Meissner, H.; Toratani, H.

    1992-09-01

    Optical properties and laser parameters for 27 Nd 3+-doped flouride glasses are reported. Included are glasses based on zirconium flouride, hafnium flouride, and aluminum flouride and other glasses formed from mixtures of several heavy metal flourides. Measurements were made of the 4F 3/2→ 4I 11/2 flourescence spectra and the concentration-dependent flourescence decays. Judd-Ofelt intensity parameters were derived from absorption spectra and used to calculate the 4F 3/2→ 4I 11/2 stimulated emission cross section and the 4F 3/2 radiative lifetime. Cross sections showed only a small variation with glass composition, ranging from 2.2 to 3.4 pm 2; the radiative lifetimes ranged from 470 to 650 μs. Results for these flouride glasses are compared with values for BeF 2-based glasses and for oxide and oxyflouride laser glasses.

  6. Composition dependence of the optical and structural properties of Eu-doped oxyfluoride glasses

    DEFF Research Database (Denmark)

    Zhu, C.F.; Wu, D.Q.; Zhang, Y.F.

    2015-01-01

    on the base glass compositions. For certain base glass compositions, CaF2 crystals can form during the melt cooling process, and thereby enhance the conversion from Eu3+ to Eu2+. The formation of CaF2 crystals can be suppressed by adding CaO, Al2O3 and B2O3, but enhanced by adding Na2O and K2O in glass...... compositions. Finally, we propose a mechanism to explain how the glass structure affects the reduction of Eu ions as well as optical properties of the glasses.......Europium doped oxyfluoride glasses were prepared by the melt quenching method for the light emitting diodes applications. The optical and structural properties of these glasses were studied by means of photoluminescence spectra, Commission Internationale de L'Eclairage chromaticity coordinates, X...

  7. Enhanced luminescence in Er3+-doped chalcogenide glass-ceramics based on selenium

    OpenAIRE

    2013-01-01

    International audience; Rare earth doped glass-ceramics transparent in the infrared region up to 16 µm have been prepared and studied. The enhancement of the emission of Er3+ ions at 1.54 µm with increasing crystallinity was demonstrated in a selenium-based glass-ceramic having a composition of 80GeSe2-20Ga2Se3+1000 ppm Er. The optical transmission, microstructure and luminescence properties of a base glass and glass-ceramics were investigated. Luminescence intensities up to 7 times greater w...

  8. Overview of ultraviolet and infrared spectroscopic properties of Yb{sup 3+} doped borate and oxy-borates compounds; De l'ultraviolet a l'infrarouge: caracterisation spectroscopique de materiaux type borate et oxyborate dopes a l'ytterbium trivalent

    Energy Technology Data Exchange (ETDEWEB)

    Sablayrolles, J

    2006-12-15

    The trivalent ytterbium ion can give rise to two emissions with different spectroscopic properties: the first one, with a short lifetime, in the ultraviolet (charge transfer emission) is used in detectors such as scintillators, and the other one, with a long lifetime, in the infrared (4f-4f emission) for laser applications. The strong link between material structure and properties is illustrated through ytterbium luminescence study, in the ultraviolet and infrared, inserted in the borate Li{sub 6}Y(BO{sub 3}){sub 3} and two oxy-borates: LiY{sub 6}O{sub 5}(BO{sub 3}){sub 3} and Y{sub 17,33}B{sub 8}O{sub 38}. For the first time an ytterbium charge transfer emission in oxy-borates has been observed. The calculation of the single configurational coordinate diagram, as well as the thermal quenching, has been conducted under a fundamental approach on the ytterbium - oxygen bond. The study of the ytterbium infrared spectroscopy in these compounds has been realised and an energy level attribution is proposed in the particular case of the borate Li{sub 6}Y(BO{sub 3}){sub 3}: Yb{sup 3+}. An original approach is introduced with the study of the charge transfer states for the three compounds by looking at the infrared emission. The first laser performances in three operating modes (continuous wave, Q-switch and mode locking) of a Li{sub 6}Y(BO{sub 3}){sub 3}: Yb{sup 3+} crystal are reported. (author)

  9. Crystallization behavior of a barium titanate tellurite glass doped with Eu3+ and Er3+

    Science.gov (United States)

    Ferreira, Elivelton Alves; Cassanjes, Fábia Castro; Poirier, Gael

    2013-04-01

    The main objective of this work has been to investigate the crystallization behavior of the glass composition 70TeO2-15BaO-15TiO2 doped with Eu3+ and Er3+ in order to check the possibility of obtaining transparent glass-ceramics containing rare earth-doped BaTiO3 nanocrystals. Glass samples with the ternary composition 70TeO2-15BaO-15TiO2 were synthesized by the melt-quenching method and doped with 0.1% of Eu3+ and Er3+. Thermal properties were investigated by DTA and heat-treatments were applied between Tg and Tx to induce the controlled crystallization of these glasses. One-step and two-step heat treatments were tested and the final glass-ceramics characterized by X-ray diffraction and UV-Vis absorption. It has been shown that transparent glass-ceramics can be obtained after heat-treatment but barium titanate BaTiO3 is hardly precipitated without coprecipitation of another crystalline phase identified as an isostructure of lanthanum tellurate. In addition, the crystalline volume fraction is relatively small in these transparent samples. Finally, Gold doping has been shown to be very effective to promote a volume nucleation and preferential crystallization of BaTiO3 over the other crystalline phases.

  10. Structure and distortion of lead fluoride nanocrystals in rare earth doped oxyfluoride glass ceramics.

    Science.gov (United States)

    Ge, Jin; Zhao, Lijuan; Guo, Hui; Lan, Zijian; Chang, Lifen; Li, Yiming; Yu, Hua

    2013-10-28

    A series of rare earth (RE) doped oxyfluoride glasses with the composition of (45-x) SiO2-5Al2O3-40PbF2-10CdF2-xRe2O3 (x = 1, 5, 10, 15) (mol%) were prepared by a traditional melt-quenching method. Glass ceramics (GCs) were obtained after thermal treatment and characterized by X-ray diffraction (XRD) to investigate the nanocrystal structure and distortion. Both the dopant type and the doping level play an important role in the distortion of the PbF2-RE lattice. It is found that a cubic Pb3REF9 phase forms in low doping GCs, a tetragonal PbREF5 phase forms in middle doping GCs and cubic PbRE3F11 forms in high doping GCs. Accordingly, the site symmetry of RE(3+) dopants in β-PbF2 nanocrystal undergoes a transition of Oh···D4h···Oh with the increase of doping level. The change in the ligands coordinating the RE(3+) ions was further illustrated by the optical changes in Yb-doped GCs. This paper provides insights on the nanocrystal structure of RE at the atomic level and tries to make a complete description of the nanocrystal structure and distortion in these glass-ceramic materials, which will benefit the optimization of optical properties.

  11. 信息动态%Spectral Analysis of Ho3+ -doped and Ho3+, Yb3+, Er3+ Co-doped Up-conversion Luminescence Borosilicate Glass

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A series of holmium ions doped borosilicate glass, including Ho3+ -doped, Ho3+/ Er3+ -doped, Ho3+/ Y Yb3+-doped and Ho3 Yb3 YEr3+ -doped galss, have been prepared by high-temperature melting. The up-conversion excitation spectra and emission spectra of the samples decrease. The analysis result reveals that both the intensities of excitation spectra and emission spectra were weaken with the Ho3+ concentration. The spectral intensities of Ho3+/Yb3+ -doped borosilicate glass increase with the increase of Ho3+ concentration because of the sensitization of Yb3+. The excitation and emission spectra intensities of Ho3+/Yb3 +/Er3+-doped borosilicate glass are weak, and the reason is the energy transfers from Ho3+ ions to Er3+ ions through energy resonant transfer process. Meanwhile the luminescence mechanism of broadband emission peaked at 550 nm is analyzed.

  12. Er3+–Al2O3 nanoparticles doping of borosilicate glass

    Indian Academy of Sciences (India)

    Jonathan Massera; Laeticia Petit; Joona Koponen; Benoit Glorieux; Leena Hupa; Mikko Hupa

    2015-09-01

    Novel borosilicate glasses were developed by adding in the glass batch Er3+–Al2O3 nanoparticles synthetized by using a soft chemical method. A similar nanoparticle doping with modified chemical vapour deposition (MCVD) process was developed to increase the efficiency of the amplifying silica fibre in comparison to using MCVD and solution doping. It was shown that with the melt quench technique, a Er3+–Al22O3 nanoparticle doping neither leads to an increase in the Er3+ luminescence properties nor allows one to control the rare-earth chemical environment in a borosilicate glass. The site of Er3+ in the Er3+–Al2O3 nanoparticle containing glass seems to be similar as in glasses with the same composition prepared using standard raw materials. We suspect the Er3+ ions to diffuse from the nanoparticles into the glass matrix. There was no clear evidence of the presence of Al2O3 nanoparticles in the glasses after melting.

  13. Spectral Properties of Erbium-Doped Oxyfluoride Silicate Glasses for Broadband Optical Amplifiers

    Institute of Scientific and Technical Information of China (English)

    徐时清; 杨中民; 戴世勋; 杨建虎; 温磊; 胡丽丽; 姜中宏

    2003-01-01

    The new oxyfluoride silicate glasses of Er3+-doped 50SiO2-(50-x)PbO-xPbF2 were prepared. With increasing PbF2 content in the glass composition, the fluorescence full width at half maximum and lifetimes of the 4I13/2level of Er3+ increase, while the refractive indices and densities decrease. Er3+-doped 50SiO2-50PbF2 glass showed broad fluorescence spectra of 1.55μm with a large stimulated emission cross-section and long lifetimes of 4I13/2level of Er3+. Compared with other glass hosts, the gain bandwidth properties of Er3+-doped 50SiO2-50PbF2glass are close to those of tellurite and bismuth glasses, and have advantages over those of silicate, phosphate and germante glasses. The broad and flat 4I13/2 → 4I15/2 emission of Er3+ around 1.55μm can be used as host material for potential broadband optical amplifier in wavelength-division-multiplexing network system.

  14. Luminescence performance of Eu$^{3+}-doped lead-free zinc phosphate glasses for red emission

    Indian Academy of Sciences (India)

    Y C RATNAKARAM; V REDDY PRASAD; S BABU; V V RAVI KANTH KUMAR

    2016-08-01

    In this study, the luminescence performance of zinc phosphate glasses containing Eu$^{3+}$ ion with the chemical compositions $(60–x)NH_4H_2PO_4-20ZnO-10BaF_2-10NaF–x$ Eu$_2$O$_3$ (where $x = 0.2, 0.5, 1.0$ and 1.5 mol%) has been studied. These glasses were characterized by several spectroscopic techniques at room temperature. Allthe glasses showed relatively broad fluorescence excitation and luminescence spectra. Luminescence spectra of these glasses exhibit characteristic emission of Eu$^{3+}$ ion with an intense and most prominent red emission (614 nm), which is attributed to ${}^5$D$_0\\to {}^{7}$F$_2$ transition. Judd-Ofelt ($\\Omega_2$, $\\Omega_4$) parameters have been evaluated from the luminescence intensity ratios of ${}^5$D$_0\\to {}^{7}$F$_J$ (where $J = 2$ and 4) to ${}^5$D$_0\\to {}^{7}$F$_1$ transition. Using J-O parameters and excitationspectra, the radiative parameters are calculated for different Eu$^{3+}-doped glasses. Effect of $\\gamma$-irradiation at fixed dose has been studied for all the Eu$^{3+}$-doped glass matrices. The lifetimes of the excited level, ${}^{5}D$_0$, have been measured experimentally through decay profiles. The colour chromaticity coordinates are calculated and represented in the chromaticity diagram for Eu$^{3+}$-doped zinc phosphate glasses for all concentrations.

  15. Cu-doped photovoltaic glasses by ion exchange for sunlight down-shifting

    Science.gov (United States)

    Mardegan, M.; Cattaruzza, E.

    2016-11-01

    Ion exchange process is a widely studied synthesis technique for the controlled modification of silicate glass composition and properties, being moreover an easy and cheap approach. Silicate glasses containing copper are known to exhibit a broad luminescent band peaked around 500 nm, ascribed to 3d10-3d94s1 electronic transition of Cu+ ions; this band turns out to be much promising for the realization of down-shifting systems, being excited in the UV and near-UV region. Luminescent Cu-doped silicate glass sheets suitable as down-shifters to be used for covering solar cells have been prepared by thermal ion exchange. Synthesis of the Cu-doped glasses has been done by dipping pure silicate sheets (commercially used as cover of photovoltaic panels) into a fused copper salt mixture at temperature of 400 °C, for duration between a few minutes and some hours; two different types of copper chloride salt mixtures were explored, with the aim at obtaining luminescent glasses able to improve the Si cell yield. Absorption and luminescence glass features were collected and compared. The performance of the different samples was tested by a solar simulator, measuring the output power of a Si solar cell covered with the Cu-doped glass slides.

  16. Luminescent properties of Ln3+ doped tellurite glasses containing AlF3

    Science.gov (United States)

    Walas, Michalina; Pastwa, Agata; Lewandowski, Tomasz; Synak, Anna; Gryczyński, Ignacy; Sadowski, Wojciech; Kościelska, Barbara

    2016-09-01

    The low-phonon energy tellurite glasses TeO2-BaO-Bi2O3 and TeO2-BaO-Bi2O3-AlF3 triply doped with Eu3+, Tb3+, Tm3+ ions in two different molar ratios were synthesized using melt-quenching technique. Their structure and luminescence properties were widely investigated by X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence Spectroscopy (PL). The luminescence spectra of Eu3+, Tb3+, Tm3+ co-doped glasses show apart of the bands corresponding to the 4f-4f transitions of lanthanide ions also band corresponding to glass matrix. AlF3 doping increases emission intensity, although to improve overall emission color further studies on molar composition of samples and the molar ratio of the components should be carried out.

  17. Determining the 6Li Doped Side of a Glass Scintillator for Ultra Cold Neutrons

    CERN Document Server

    Jamieson, Blair

    2015-01-01

    Ultracold neutron (UCN) detectors using two visually very similar, to the microscopic level, pieces of optically contacted Cerium doped lithium glasses have been proposed for high rate UCN experiments. The chief difference between the two glass scintillators is that one side is 6Li depleted and the other side Li doped. This note outlines a method to determine which side of the glass stack is doped with 6Li using AmBe and 252Cf neutron sources, and a Si surface barrier detector. The method sees an excess of events around the alpha and triton energies of neutron capture on 6Li when the enriched side is facing the Si surface barrier detector.

  18. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium

    Energy Technology Data Exchange (ETDEWEB)

    PaBlick, C.; Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.; Johnson, J.A.; Schweizer, S. (U. Halle); (Bergische); (Tennessee-C)

    2012-10-10

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl2) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu3+ is more strongly reduced to Eu2+, in particular, when doped as a chloride instead of fluoride compound. The Eu2+-to-Eu3+ doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu2+ fraction leads to a BaCl2 phase transition from hexagonal to orthorhombic structure at a lower temperature.

  19. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium

    Energy Technology Data Exchange (ETDEWEB)

    Passlick, C. [Centre for Innovation Competence SiLi-nano registered , Martin Luther University of Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 3, 06120 Halle (Saale) (Germany); Mueller, O.; Luetzenkirchen-Hecht, D.; Frahm, R. [Bergische Universitaet Wuppertal, Gaussstrasse 20, 42097 Wuppertal (Germany); Johnson, J. A. [Department of Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, Tennessee 37388 (United States); Schweizer, S. [Centre for Innovation Competence SiLi-nano registered , Martin Luther University of Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 3, 06120 Halle (Saale) (Germany); Fraunhofer Center for Silicon Photovoltaics CSP, Walter-Huelse-Str. 1, 06120 Halle (Saale) (Germany)

    2011-12-01

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl{sub 2}) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu{sup 3+} is more strongly reduced to Eu{sup 2+}, in particular, when doped as a chloride instead of fluoride compound. The Eu{sup 2+}-to-Eu{sup 3+} doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu{sup 2+} fraction leads to a BaCl{sub 2} phase transition from hexagonal to orthorhombic structure at a lower temperature.

  20. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium.

    Science.gov (United States)

    Paßlick, C; Müller, O; Lützenkirchen-Hecht, D; Frahm, R; Johnson, J A; Schweizer, S

    2011-12-01

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl(2)) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu(3+) is more strongly reduced to Eu(2+), in particular, when doped as a chloride instead of fluoride compound. The Eu(2+)-to-Eu(3+) doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu(2+) fraction leads to a BaCl(2) phase transition from hexagonal to orthorhombic structure at a lower temperature.

  1. High-temperature borate crystal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Bubnova, Rimma S. [Russian Academy of Sciences, St. Petersburg (Russian Federation). Grebenshchikov Institute of Silicate Chemistry; Saint Petersburg State Univ. (Russian Federation). Dept. of Crystallography; Filatov, Stanislav K. [Saint Petersburg State Univ. (Russian Federation). Dept. of Crystallography

    2013-10-01

    The paper presents a brief review of the present state of high-temperature borate crystal chemistry. This review summarizes the results of high- and low-temperature single crystal X-ray diffraction studies for more than 10 borate structures and high-temperature powder Xray diffraction data for about 65 borates. Thermal behavior of their crystal structures, thermal expansion, polymorphic transitions and their relationship to borate glasses are presented. These studies allow to formulate the basic principles of high-temperature borate crystal chemistry and to reveal the regularities of thermal behavior of borates. On heating, the BO{sub 3} and BO{sub 4} polyhedra and rigid groups consisting of these polyhedra, practically maintain their configuration and size, but they are able to rotate like hinges exhibiting highly anisotropic thermal expansion, including linear negative expansion. Based on these results, we generalize the term 'rigid group' and render thermal vibrations as the key ingredient for the self-assembly of borate rigid groups. (orig.)

  2. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    OpenAIRE

    2011-01-01

    International audience; Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium ...

  3. Ultraviolet to visible frequency-conversion properties of rare earths doped glass ceramics

    Institute of Scientific and Technical Information of China (English)

    Y. Hatefi; N. Shahtahmasebi; A. Moghimi; E. Attaran

    2011-01-01

    Nd3+, Eu3+ and Tb3+ ions doped transparent chlorophosphate glass ceramics were prepared and their fiequency-conversion properties were studied. X-ray diffraction (XRD) patterns evidenced the formation of expected halide nanocrystals. The absorption, excitation and emission spectra investigation indicated that some of rare earth (RE) ions were trapped in low phonon energy halide nanocrystals, and therefore an efficient down frequency-conversion was observed. The comparative spectroscopic studies of RE doped samples suggested that the glass ceramics systems are potentially applicable as efficient ultraviolet to visible frequency-conversion photonics materials.

  4. Optical properties of thermally reduced bismuth-doped sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Nielsen, K.H.; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    , but also concerning the metal particle formation, and the broadband near infrared luminescence. Both the inward diffusion and the infrared luminescence depend on the bismuth oxidation state. The latter can be varied by adjusting the parameters of the heat-treatment, e.g., time, temperature, and partial......Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...... pressure of hydrogen. Here, we present results on the effect of the heat-treatment on the optical properties of bismuth-doped sodium aluminosilicate glasses....

  5. Enhanced luminescence in Er3+-doped chalcogenide glass-ceramics based on selenium

    Science.gov (United States)

    Hubert, Mathieu; Calvez, Laurent; Zhang, Xiang-Hua; Lucas, Pierre

    2013-10-01

    Rare earth doped glass-ceramics transparent in the infrared region up to 16 μm have been prepared and studied. The enhancement of the emission of Er3+ ions at 1.54 μm with increasing crystallinity was demonstrated in a selenium-based glass-ceramic having a composition of 80GeSe2-20Ga2Se3 + 1000 ppm Er. The optical transmission, microstructure and luminescence properties of a base glass and glass-ceramics were investigated. Luminescence intensities up to 7 times greater were obtained in glass-ceramics in comparison to the base glass. These materials are promising candidates for the production of new laser sources in the mid-infrared region.

  6. Effect of UV exposure on photochromic glasses doped with transition metal oxides

    Science.gov (United States)

    El-Zaiat, S. Y.; Medhat, M.; Omar, Mona F.; Shirif, Marwa A.

    2016-07-01

    Silver halide photochromic glasses doped with one of the transition metal oxides, (Ti O2) , (CoO) ,(Cr2 O3) are prepared using the melt quench technique. Glass samples are exposed to a UV source for 20 min. Spectral reflectance and transmittance at normal incidence of the prepared glasses are recorded before and after UV exposure with a double beam spectrophotometer in the spectral range 200-2500 nm. Dispersion parameters such as: single oscillator energy, dispersion energy and Abbe's number are deduced and compared. Absorption dispersion parameters, like optical energy gap for direct and indirect transitions, Urbach energy and steepness parameter, are deduced for the different glass prepared. Reflection loss, molar refractivity and electronic polarizability are deduced and compared. The effect of UV light exposure of these glasses on transmittance, reflectance, the linear and the predicted nonlinear optical parameters are investigated and discussed for the three transition metals. Nonlinear parameters increase in the three glass samples after UV exposure.

  7. Photoinduced Second Harmonic Generation of Bi2S3 Microcrystallite Doped Silica Glass

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Silica glasses doped with Bi2S3 microcystallite was prepared by the sol-gel process. Photoinduced second harmonic generation (SHG) was observed in the glass when it was irradiated with intense 1.06 μm and frequency doubled laser beams from a mode-locked Nd: YAG laser. It was found that the signal intensity increased with the irradiating time and approached a saturation gradually.The effect may be explained reasonably by the DC field model.

  8. Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses.

    Science.gov (United States)

    Oudadesse, H; Dietrich, E; Gal, Y L; Pellen, P; Bureau, B; Mostafa, A A; Cathelineau, G

    2011-06-01

    The use of bone grafts permits the filling of a bone defect without risk of virus transmission. In this work, pure bioactive glass (46S6) and zinc-doped bioactive glass (46S6Zn10) with 0.1 wt% zinc are used to elaborate highly bioactive materials by melting and rapid quenching. Cylinders of both types of glasses were soaked in a simulated body fluid (SBF) solution with the aim of determining the effect of zinc addition as a trace element on the chemical reactivity and bioactivity of glass. Several physico-chemical characterization methods such as x-ray diffraction, Fourier transform infrared spectroscopy and nuclear magnetic resonance methods, with particular focus on the latter, were chosen to investigate the fine structural behaviour of pure and Zn-doped bioactive glasses as a function of the soaking time of immersion in SBF. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was used to measure the concentrations of Ca and P ions in the SBF solution after different durations of immersion. The effect of the investigated samples on the proliferation rate of human osteoblast cells was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and tested on two different sizes of pure and zinc-doped glasses in powder form, with particle sizes that ranged between 40 to 63 µm and 500 to 600 µm. The obtained results showed the delay release of ions by Zn-doped glass (46S6Zn10) and the slower CaP deposition. Cytotoxicity and cell viability were affected by the particle size of the glass. The release rate of ions was found to influence the cell viability.

  9. Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses

    Energy Technology Data Exchange (ETDEWEB)

    Oudadesse, H; Dietrich, E; Gal, Y L; Pellen, P; Bureau, B; Mostafa, A A; Cathelineau, G, E-mail: hassane.oudadesse@univ-rennes1.fr [SCR, UMR-CNRS 6226, Campus de Beaulieu, Universite de Rennes 1, 263 Avenue du General Leclerc, 35042 Rennes Cedex (France)

    2011-06-15

    The use of bone grafts permits the filling of a bone defect without risk of virus transmission. In this work, pure bioactive glass (46S6) and zinc-doped bioactive glass (46S6Zn10) with 0.1 wt% zinc are used to elaborate highly bioactive materials by melting and rapid quenching. Cylinders of both types of glasses were soaked in a simulated body fluid (SBF) solution with the aim of determining the effect of zinc addition as a trace element on the chemical reactivity and bioactivity of glass. Several physico-chemical characterization methods such as x-ray diffraction, Fourier transform infrared spectroscopy and nuclear magnetic resonance methods, with particular focus on the latter, were chosen to investigate the fine structural behaviour of pure and Zn-doped bioactive glasses as a function of the soaking time of immersion in SBF. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was used to measure the concentrations of Ca and P ions in the SBF solution after different durations of immersion. The effect of the investigated samples on the proliferation rate of human osteoblast cells was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and tested on two different sizes of pure and zinc-doped glasses in powder form, with particle sizes that ranged between 40 to 63 {mu}m and 500 to 600 {mu}m. The obtained results showed the delay release of ions by Zn-doped glass (46S6Zn10) and the slower CaP deposition. Cytotoxicity and cell viability were affected by the particle size of the glass. The release rate of ions was found to influence the cell viability.

  10. Synthesis and optical properties of CsC1-doped gallium-sodium-sulfide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Hehlen, Markus P [Los Alamos National Laboratory; Bennett, Bryan L [Los Alamos National Laboratory; Williams, Darrick J [Los Alamos National Laboratory; Muenchausen, Ross E [Los Alamos National Laboratory; Castro, Alonso [Los Alamos National Laboratory; Tornga, Stephanie C [Los Alamos National Laboratory

    2009-01-01

    Ga{sub 2}S{sub 3}-Na{sub 2}S (GNS) glasses doped with CsCl were synthesized in open crucibles under inert atmosphere. The evaporative loss of CsCl during glass melting was measured by energy dispersive X-ray spectroscopy and corrected for by biasing the CsCl concentration in the mixture of starting materials to obtain glasses with accurately controlled stoichiometry. Glass transition temperatures, refractive index dispersions, and band edge energies were measured for four GNS:CsCl glasses, and the respective values were found to significantly improve over earlier studies that did not mitigate CsCl evaporative losses. The refractive index dispersion measurements indicate that the Cs{sup +} and Cl{sup -} radii are 16% larger in GNS:CsCl glass than in bulk crystalline CsCl. The band edge energy increases from 2.97 eV in GNS glass to 3.32 eV in GNS glass doped with 20 mol% CsCl as a result of introducing Cl{sup -} ions having a large optical electronegativity. The large bandgap of 3.32 eV and the low (450 cm{sup -1}) phonon energy make GNS:20%CsCl an attractive host material for rare-earth ions with radiative transitions in the near ultra-violet, visible, and near-infrared spectral regions.

  11. Spectroscopic properties and energy transfer parameters of Er3+- doped fluorozirconate and oxyfluoroaluminate glasses

    Science.gov (United States)

    Huang, Feifei; Liu, Xueqiang; Hu, Lili; Chen, Danping

    2014-05-01

    Er3+- doped fluorozirconate (ZrF4-BaF2-YF3-AlF3) and oxyfluoroaluminate glasses are successfully prepared here. These glasses exhibit significant superiority compared with traditional fluorozirconate glass (ZrF4-BaF2-LaF3-AlF3-NaF) because of their higher temperature of glass transition and better resistance to water corrosion. Judd-Ofelt (J-O) intensity parameters are evaluated and used to compute the radiative properties based on the VIS-NIR absorption spectra. Broad emission bands located at 1535 and 2708 nm are observed, and large calculated emission sections are obtained. The intensity of 2708 nm emission closely relates to the phonon energy of host glass. A lower phonon energy leads to a more intensive 2708 nm emission. The energy transfer processes of Er3+ ions are discussed and lifetime of Er3+: 4I13/2 is measured. It is the first time to observe that a longer lifetime of the 4I13/2 level leads to a less intensive 1535 nm emission, because the lifetime is long enough to generate excited state absorption (ESA) and energy transfer (ET) processes. These results indicate that the novel glasses possess better chemical and thermal properties as well as excellent optical properties compared with ZBLAN glass. These Er3+- doped ZBYA and oxyfluoroaluminate glasses have potential applications as laser materials.

  12. Structure and luminescence of Dy{sup 3+} doped CaO–B{sub 2}O{sub 3}–SiO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yan; Cao, Ju

    2016-07-15

    The present work reports structure and luminescence of Dy{sup 3+} doped CaO–B{sub 2}O{sub 3}–SiO{sub 2} glasses prepared by melt quenching technique. The presence of various stretching and bending vibrations of different borate and silicate groups were identified from FTIR spectral measurements. The optical absorption and luminescence spectra were also measured, and their emission spectra exhibit two intense emission bands at around 485 nm (blue) and 577 nm (yellow) corresponds to {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transitions, respectively. The emission spectra were characterized through CIE 1931 color chromaticity diagram to explore its suitability for W-LED applications. Furthermore, the proper Y{sub 2}O{sub 3} could change local structure of glass, which makes the UV absorption edge shift to longer wavelength, and it's easier to transfer energy from host to Dy{sup 3+} and then enhance the emission of Dy{sup 3+}.

  13. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials

    Science.gov (United States)

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-03-01

    Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH‑) content. Enhanced 2.7 μm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er3+-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10‑20 cm2). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers.

  14. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials

    Science.gov (United States)

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-01-01

    Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH−) content. Enhanced 2.7 μm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er3+-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10−20 cm2). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers. PMID:28266570

  15. Radiation hardening in sol-gel derived Er{sup 3+}-doped silica glasses

    Energy Technology Data Exchange (ETDEWEB)

    Hari Babu, B., E-mail: hariphy2012@gmail.com, E-mail: matthieu.lancry@u-psud.fr; León Pichel, Mónica [Laboratoire des Solides Irradiés, UMR CEA-CNRS 7642, Ecole Polytechnique, Université Paris Saclay, 91128 Palaiseau (France); Institut de Chimie Moléculaire et des Matériaux d' Orsay, UMR CNRS-UPSud 8182, Université Paris Sud, 91405 Orsay (France); Ollier, Nadège [Laboratoire des Solides Irradiés, UMR CEA-CNRS 7642, Ecole Polytechnique, Université Paris Saclay, 91128 Palaiseau (France); El Hamzaoui, Hicham; Bigot, Laurent; Savelii, Inna; Bouazaoui, Mohamed [Laboratoire PhLAM (UMR CNRS 8523), IRCICA (USR CNRS 3380), CERLA - FR CNRS 2416, Université Lille 1, Villeneuve d' Ascq Cedex F-59655 (France); Poumellec, Bertrand; Lancry, Matthieu, E-mail: hariphy2012@gmail.com, E-mail: matthieu.lancry@u-psud.fr [Institut de Chimie Moléculaire et des Matériaux d' Orsay, UMR CNRS-UPSud 8182, Université Paris Sud, 91405 Orsay (France); Ibarra, Angel [National Fusion Laboratory, CIEMAT, Avda Complutense 40, 28040 Madrid (Spain)

    2015-09-28

    The aim of the present paper is to report the effect of radiation on the Er{sup 3+}-doped sol-gel silica glasses. A possible application of these sol-gel glasses could be their use in harsh radiation environments. The sol-gel glasses are fabricated by densification of erbium salt-soaked nanoporous silica xerogels through polymeric sol-gel technique. The radiation-induced attenuation of Er{sup 3+}-doped sol-gel silica is found to increase with erbium content. Electron paramagnetic resonance studies reveal the presence of E′{sub δ} point defects. This happens in the sol-gel aluminum-silica glass after an exposure to γ-rays (kGy) and in sol-gel silica glass after an exposure to electrons (MGy). The concentration levels of these point defects are much lower in γ-ray irradiated sol-gel silica glasses. When the samples are co-doped with Al, the exposure to γ-ray radiation causes a possible reduction of the erbium valence from Er{sup 3+} to Er{sup 2+} ions. This process occurs in association with the formation of aluminum oxygen hole centers and different intrinsic point defects.

  16. Optical properties and local structure of Dy3+-doped chalcogenide and chalcohalide glasses

    Institute of Scientific and Technical Information of China (English)

    TANG Gao; YANG Zhiyong; LUO Lan; CHEN Wei

    2008-01-01

    Dy3+-doped Ge-Ga-Se chalcogenide glasses and GeSe2-Ga2Se3-CsI chalcohalide glasses were prepared. The absorption, emission properties, and local structure of the glasses were investigated. When excited at 808 nm diode laser, intense 1.32 and 1.55 μm near-infrared luminescence were observed with full width at half maximum (FWHM) of about 90 and 50 rim, respectively. The lifetime of the 1.32 μm emission varied due to changes in the local structure surrounding Dy3+ ions. The longest lifetime was over 2.5 ms, and the value was signifi-cantly higher than that in other Dy3+-doped glasses. Some other spectroscopic parameters were calculated by using Judd-Ofelt theory. Meanwhile, Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses showed good infrared transmittance. As a result, Dy3+-doped Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses were believed to be useful hosts for 1.3 μm optical fiber amplifier.

  17. Down- and up-conversion emissions in Er-doped transparent fluorotellurite glass-ceramics

    Science.gov (United States)

    Miguel, A.; Morea, R.; Gonzalo, J.; Fernandez, J.; Balda, R.

    2015-03-01

    In this work, we report the near infrared and upconversion emissions of Er3+-doped transparent fluorotellurite glassceramics obtained by heat treatment of the precursor Er-doped TeO2-ZnO-ZnF2 glass. Structural analysis shows that ErF3 nanocrystals nucleated in the glass-ceramic sample are homogeneously distributed in the glass matrix with a typical size of 45±10 nm. The comparison of the fluorescence properties of Er3+-doped precursor glass and glass-ceramic confirms the successful incorporation of the rare-earth into the nanocrystals. An enhancement of the red upconversion emission due to 4F9/2→4I15/2 transition together with weak emission bands due to transitions from 2H9/2, 4F3/2,5/2, and 4F7/2 levels to the ground state are observed under excitation at 801 nm in the glass-ceramic sample. The temporal evolution of the red emission together with the excitation upconversion spectrum suggest that energy transfer processes are responsible for the enhancement of the red emission.

  18. ER3+-DOPED SODA-LIME SILICATE GLASS: ARTIFICIAL PINK GEMSTONE

    Directory of Open Access Journals (Sweden)

    Weeranut Kaewwiset

    2012-01-01

    Full Text Available Er3+-doped soda-lime silicate glasses of the composition (in mol% (65-xSiO2:25Na2O:10CaO:xEr2O3 (where x = 0, 1, 2, 3, 4 and 5 were fabricated by conventional melt quenching technique. The physical and optical properties were measured and investigated. The erbium oxide enters the glass network as a modifier by occupying the interstitial space in the network and generating the NBOs to the structure. The molar volume increases with an increase in Er2O3 content, which is attributed to the increase in the number of Non-Bridging Oxygen (NBOs. The increase of NBOs in the structure generally leads to an increase in average atomic separation. The density, molar volume and refractive index of glasses increased linearly with increasing Er2O3 concentration. The color of glasses was changed from light pink to intense pink as the Er2O3 concentration was increased from 1 to 5 mol%. The Vickers hardness of Er3+-doped glasses was found to be in the range of 450-500 HV. In this study, it can be concluded that the soda-lime silicate glasses doped with high Er2O3 concentration has intense pink color and high value of hardness which is suitable to be cut as gems.

  19. Experimental investigation of photoluminescence spectra of Yb3+ sensitized Er3+-doped glass samples in series

    Institute of Scientific and Technical Information of China (English)

    Chengren Li (李成仁); Changlie Song (宋昌烈); Shufeng Li (李淑凤); Jingsheng Gao (高景生)

    2003-01-01

    Fabrication technology of the Yb3+:Er3+ co-doped glass samples is introduced. Photoluminescence (PL)characteristics of a single sample were experimentally investigated. The PL peak intensities of two samples in series were measured and discussed. The results show that the PL peak intensities of two samples in series depend on pump manners and arrangement of the samples. The better amplification ability can be obtained by two samples in series doped with low-concentration ytterbium instead of a single sample doped with high-concentration ytterbium.

  20. Laser Cooling Using Anti-Stokes Fluorescencein Yb3+-Doped Fluorozirconate Glasses

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The fluorozirconate glasses ZBLANP( ZrF4-BaF2-LaF3-AlF3-NaF-PbF2) doped with different Yb3+ concentration were prepared. The Raman spectra and absorption spectra are measured to substantiate the existence of phonon-assisted emission. After analyzing the normalized absorption spectra of samples with different Yb3+-doped concentration, we calculated the maximum cooling effect in the 3 wt% Yb3+-doped sample pumped at 1 012.5 nm. The corresponding cooling capability is about -4.09 ℃/W and the cooling efficiency reaches 1.76%.

  1. Cubic to tetragonal phase transition of Tm3+ doped nanocrystals in oxyfluoride glass ceramics

    Directory of Open Access Journals (Sweden)

    Yiming Li

    2016-02-01

    Full Text Available Tm3+ ions doped β-PbF2 nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm3+ doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an Oh to D4h site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm3+ doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field.

  2. Cubic to tetragonal phase transition of Tm{sup 3+} doped nanocrystals in oxyfluoride glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yiming; Fu, Yuting; Shi, Yahui; Zhang, Xiaoyu; Yu, Hua, E-mail: zhaolj@nankai.edu.cn, E-mail: yuhua@nankai.edu.cn [The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071 (China); Zhao, Lijuan, E-mail: zhaolj@nankai.edu.cn, E-mail: yuhua@nankai.edu.cn [The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071 (China); Applied Physics School of TEDA, Nankai University, Tianjin 300457 (China)

    2016-02-15

    Tm{sup 3+} ions doped β-PbF{sub 2} nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm{sup 3+} doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O{sub h} to D{sub 4h} site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm{sup 3+} doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field.

  3. Effect of silver nanoparticles on the dielectric properties of holmium doped silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Rejikumar, P.R.; Jyothy, P.V. [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560 (India); Mathew, Siby [Department of Physics, S.H. College, Thevara, Cochin, Kerala 682013 (India); Thomas, Vinoy [Department of Physics, Christian College, Chengannur, Kerala 689122 (India); Unnikrishnan, N.V., E-mail: nvu50@yahoo.co.i [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560 (India)

    2010-03-15

    The effect of silver nanoparticle co-doping on the dielectric properties of holmium doped silica glasses was studied. Silver nanoparticles of size between 20 and 22 nm were produced by the sol-gel technique. One of the samples showed an icosahedral morphology of the nanocrystal formed, along with spherical morphology. It was found that the tuning of the dielectric constant values could be accomplished by co-doping. The sample, with 1 wt% of Ho, had low dielectric constant values within the range 100 Hz-3 MHz due to the formation of quasi-molecular structures of holmium. This effect was evaded to some extent with silver co-doping as a result of the interdispersion of holmium complexes. Also it was found that the co-doping produced a higher dielectric loss which was calculated from the tan delta-log f graph. The Cole-Cole parameters and the Jonscher power law parameters were also calculated and are presented.

  4. In-vitro bioactivity of zirconia doped borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Samudrala, Rajkumar; Azeem, P. Abdul, E-mail: rk.satyaswaroop@gmail.com, E-mail: drazeem2002@yahoo.com [Department of Physics, National Institute of Technology, Warangal-506004 (India)

    2015-06-24

    Glass composition 31B{sub 2}O{sub 3}-20SiO{sub 2}-24.5Na{sub 2}O-(24.5-x) CaO-xZrO{sub 2} x=1,2,3,4,5 were prepared by melt-quenching Technique. The formation of hydroxyapatite layer on the surface of glasses after immersion in simulated body fluid (SBF) was explored through XRD, Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM-EDX) analyses. In this report, we observed that hydroxyapatite formation for 5days of immersion time. Also observed that with increasing the immersion time up to 15days, higher amount of hydroxyapatite layer formation on the surface of glasses. The varying composition of zirconia in glass samples influences shown by XRD, FTIR studies. The present results indicate that, in-vitro bioactivity of glasses decreased with increasing zirconia incorporation.

  5. Thermal and radiative characteristics of oxyfluoride glass singly doped with lanthanide ions

    Institute of Scientific and Technical Information of China (English)

    Barbara; Gra(z)yna; DOMINIAK-DZIK; RYBA-ROMANOWSKI

    2010-01-01

    Rare earths-doped oxyfluoride glasses based on germanium oxide and lead fluoride were prepared from commercial raw materials.The glasses with general composition of 50GeO2-(50-x-y)PbO-yPbF2-xLnF3(Ln=Pr3+-Yb3+),contained different concentrations of optically active dopants(x=0.2 mol.% and 2 mol.%)and PbF2(y≤15 mol.%).The differential thermal analysis(DTA)was used to determine both thermal characteristic and thermal stability properties of the glasses in the function of the kind of dopant,its concentration,and a glass composition.Characteristic glass temperatures such as glass transition temperature(Tg),glass crystallization temperature(Tc)and temperature corresponding to the maximum of the crystallization rate(Tpc)were evaluated.On the basis of obtained results,the thermal stabilities of glasses under study were evaluated using various thermal stability criteria(Dietzel factor △T,Saad-Poulain factors H' and S').It was found that the increase in rare earth fluoride contents influenced thermal characteristics when the characteristic temperatures of the individual glass was shifted towards higher values.The effect of the PbF2 content and the kind of rare earth impurity on the glass stability was observed.Absorption spectra of lanthanide-doped glasses were measured at room temperature and used to determine the phenomenological intensity parameters Ωt and next,to estimate radiative properties of lanthanide ions in this matrix.Radiative transition probabilities of luminescent states of Ln3+,branching ratios and radiative lifetimes were determined.The variation of the Ωt along the lanthanide series was presented and discussed.

  6. Waveguides in Ni-doped glass and glass-ceramic written with a 1 kHz femtosecond laser

    Science.gov (United States)

    Hughes, M. A.; Homewood, K. P.; Curry, R. J.; Ohishi, Y.; Suzuki, T.

    2014-07-01

    We report waveguides in Ni-doped Li2O-Ga2O3-SiO2 (Ni:LGS) glass and glass-ceramic (GC) fabricated with a femtosecond (fs) laser with repetition rate of 1 kHz. When the glass is annealed to form a GC, the waveguides are erased. However, in the GC the waveguides are not erased by annealing. In Ni:LGS GC a 415 nm absorption band was created by fs laser waveguide writing due to the creation of Ni nanoparticles with an estimated diameter of a few nm. Raman and photoluminescence spectra of the bulk and waveguide structures were indistinguishable; however, fluorescence decay profiles indicated more long lifetime components in the waveguide compared to the bulk.

  7. Eu-, Tb-, and Dy-Doped Oxyfluoride Silicate Glasses for LED Applications

    DEFF Research Database (Denmark)

    Zhu, C.F.; Wang, J.; Zhang, M.M.

    2014-01-01

    Luminescence glass is a potential candidate for the light-emitting diodes (LEDs) applications. Here, we study the structural and optical properties of the Eu-, Tb-, and Dy-doped oxyfluoride silicate glasses for LEDs by means of X-ray diffraction, photoluminescence spectra, Commission Internationale...... de L’Eclairage (CIE) chromaticity coordinates, and correlated color temperatures (CCTs). The results show that the white light emission can be achieved in Eu/Tb/Dy codoped oxyfluoride silicate glasses under excitation by near-ultraviolet light due to the simultaneous generation of blue, green, yellow...

  8. Influence of CeO_2 on scintillating properties of Tb~(3+)-doped silicate glasses

    Institute of Scientific and Technical Information of China (English)

    孙心瑗; 顾牡; 张敏; 黄世明

    2010-01-01

    A series of Tb3+-,Ce3+-doped,and Tb3+/Ce3+-codoped silicate glasses were synthesized by melt-quenching technique.Some properties of the investigated glasses were characterized by X-ray photoelectron spectroscopy(XPS),photoluminescence(PL),X-ray excited luminescence(XEL) and thermoluminescence(TL) spectra.The result of XPS revealed that both Ce3+ and Ce4+ ions coexisted in these silicate glasses,and energy transfer from Ce3+ to Tb3+ ions was observed under UV excitation.However,under X-ray excitation the XEL...

  9. Electrical and mechanical properties of ZnO doped silver-molybdate glass-nanocomposite system

    Science.gov (United States)

    Kundu, Ranadip; Roy, Debasish; Bhattacharya, Sanjib

    2016-05-01

    Zno doped silver-molybdate glass-nanocomposites, 0.3 Ag2O - 0.7 [0.075 ZnO - 0.925 MoO3] have been prepared by melt-quenching method. Ionic conductivity of these glass-nanocomposites has been measured in wide temperature and frequency windows. Vicker's hardness methods have been employed to study micro-hardness of the as-prepared samples. Heat-treated counterparts for this glass-nanocomposites system has been analyzed in different temperature to observe the changes in conductivity as well as micro-hardness for that system.

  10. Fluorescent Er2O3 doped lead silicate glass for optical amplifiers

    OpenAIRE

    Mennig, Martin; Niegisch, Nico; Kalleder, Axel; Schmidt, Helmut K.; Graf, Jürgen; Sautter, Helmut

    1999-01-01

    A hot-pressing method is investigated for the fabrication of a planar optical waveguide amplifier. Therefore commercially available LaSFN15 produced by Schott is used as substrate and cladding material in combination with Er2O3 doped lead silicate glass as core material, synthesised by a hybrid sol-gel melting technique. The lead silicate glass is selected for its low melting temperature required for the waveguide processing. The core glass is adapted to the LaSFN15 with respect to the therma...

  11. Spectroscopic Properties and Judd-Ofelt Theory Analysis of Er3+-Doped Heavy Metal Oxyfluoride Silicate Glass

    Institute of Scientific and Technical Information of China (English)

    徐时清; 杨中民; 戴世勋; 张军杰; 胡丽丽; 姜中宏

    2004-01-01

    Er3+-doped heavy metal oxyfluoride silicate glass was fabricated and characterized, and the absorption spectrum and fluorescence spectrum of the glass were studied. The Judd-Ofelt intensity parameters Ωt (t=2, 4, 6), spontaneous transition probability, fluorescence branching ratio and radiative lifetime of each energy levels for Er3+ were calculated by Judd-Ofelt theory, and stimulated emission cross-section of 4I13/2→4I15/2 transition was calculated by McCumber theory. The results show that fluorescence full width at half maximum and stimulated emission cross-section of Er3+-doped heavy metal oxyfluoride silicate glass are broad and large, respectively. Compared with other host glasses, the gain bandwidth property of Er3+-doped heavy metal oxyfluoride silicate glass is close to those of tellurite and bismuth glasses, and has advantage over those of silicate, phosphate and germante glasses.

  12. S tudy on Doped Fluoride Glasses for Scintillation Applications

    Institute of Scientific and Technical Information of China (English)

    Shaukat; S; F.; Farooq; R; 等

    2002-01-01

    This paper studies the properties of fluoride glasses for use in particle calorimeters or in optical fibers.The effects of major and minor impurities in manufacturing process and ultimately on the glass properties have been investigated.Glasses in a range of compositions have been made and tested in the form of small samples as well as larger blocks of size 2× 3×14cm3.Results of measurements on these materials,using a high energy particle beam,are presented.

  13. Luminescence of Er3+ Doped Titanium Barium Glass Microsphere under 514 nm Excitation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The titanium barium glass microspheres doped with Er2O3 were designed and prepared. The components of the glass sample were 25TiO2-27BaCO3-8Ba(NO3)2-5ZnO2-10CaCO3-5H3BO3-10SiO2-7water glass-3Er2O3 (%, mass fraction). The emission spectra of titanium barium glass matrix and the titanium barium glass microsphere under 514 nm excitation were measured with micro-Raman spectrometer. Whispering gallery modes in the emission spectra from a 31 μm glass microsphere were observed. Many regularly spaced, sharp peaks appeared in the emission spectra of the Er2O3-doped glass microsphere. The wavelength separation between the two adjacent peaks is 1.92 nm for the 31 μm microsphere. According to the Lorenz-Mie formula, the calculated value of the wavelength separation between the two adjacent peaks is 1.95 nm. The observed resonances could be assigned by using the well-known Lorenz-Mie formula.

  14. Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds.

    Science.gov (United States)

    Wang, Hui; Zhao, Shichang; Xiao, Wei; Xue, Jingzhe; Shen, Youqu; Zhou, Jie; Huang, Wenhai; Rahaman, Mohamed N; Zhang, Changqing; Wang, Deping

    2016-01-01

    Copper doped borosilicate glasses (BG-Cu) were studied by means of FT-IR, Raman, UV-vis and NMR spectroscopies to investigate the changes that appeared in the structure of borosilicate glass matrix by doping copper ions. Micro-fil and immunohistochemistry analysis were applied to study the angiogenesis of its derived scaffolds in vivo. Results indicated that the Cu ions significantly increased the B-O bond of BO4 groups at 980 cm(-1), while they decrease that of BO2O(-) groups at 1440-1470 cm(-1) as shown by Raman spectra. A negative shift was observed from (11)B and (29)Si NMR spectra. The (11)B NMR spectra exhibited a clear transformation from BO3 into BO4 groups, caused by the agglutination effect of the Cu ions and the charge balance of the agglomerate in the glass network, leading to a more stable glass network and lower ions release rate in the degradation process. Furthermore, the BG-Cu scaffolds significantly enhanced blood vessel formation in rat calvarial defects at 8 weeks post-implantation. Generally, it suggested that the introduction of Cu into borosilicate glass endowed glass and its derived scaffolds with good properties, and the cooperation of Cu with bioactive glass may pave a new way for tissue engineering.

  15. Effect of Ultrashort Pulsed Laser and X-Ray Irradiation on Au~+ -Doped Glass

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Au nanoparticles were precipitated inside Au+-doped glass samples after irradiation by femtosecond laser or x-ray. Femtosecond laser and X-ray irradiation result in decreasing of anneal temperature and critical size for the precipitation of Au nanoparticles.

  16. Wideband Erbium-Ytterbium Co-Doped Phosphate Glass Waveguide Amplifier

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new '(?)' type of wideband erbium-ytterbium co-doped phosphate glass waveguide amplifier integrated with medium thin film filter is proposed, Average gain about 15.5dB between 1530nm and 1570nm with gain difference of below 2 dB is obtained.

  17. Impact of the radiation trapping on lifetime measurement of Er{sup 3+} doped glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stoita, A.; Vautey, T.; Jacquier, B. [Universite de Lyon, Lyon F-69000 (France); Universite Lyon 1, Villeurbanne F-69622 (France); CNRS, UMR5620, Laboratoire de Physico-Chimie des Materiaux Luminescents F-69622 Villeurbanne Cedex (France); Guy, S., E-mail: guy@pcml.univ-lyon1.f [Universite de Lyon, Lyon F-69000 (France); Universite Lyon 1, Villeurbanne F-69622 (France); CNRS, UMR5620, Laboratoire de Physico-Chimie des Materiaux Luminescents F-69622 Villeurbanne Cedex (France)

    2010-07-15

    We report on the interplay between experimental arrangement, resonant radiation trapping and decay measurements of infra-red emission of erbium doped glasses. The impact of the relative position between the exciting and detecting positions of the bulk samples is investigated. We show that the radiation trapping leads to long rise time dynamics evenly distributed outside the pulsed pumped region.

  18. Multiphoton upconversion process in Tm 3+ doped ZBLAN glass by CW laser irradiation

    Science.gov (United States)

    Li, Jianfu; Wang, Xiaoli; Jiang, Zhankui

    2009-11-01

    Blue, even ultraviolet emissions and very strong red emissions have been observed in ZBLAN glass doped with Tm 3+ under 800 nm CW laser excitation. The red emissions were demonstrated to be of sequential two-photon process, while the ultraviolet emissions be of three-photon process, according to the intensity dependence.

  19. Design and achieving of multicolor upconversion emission based on rare-earth doped tellurite glasses

    Institute of Scientific and Technical Information of China (English)

    邢明铭; 马运北; 罗昔贤; 付姚; 姜涛; 汪红; 段小龙

    2014-01-01

    Yb3+/Tm3+ co-doped and Yb3+/Ho3+/Tm3+ tri-doped tellurite glasses were synthesized by fusing the mixture of TeO2, PbF2, AlF3, BaF2, Yb2O3, Tm2O3 and Ho2O3 in a corundum crucible at 850 ºC for 20 min. The synthesized glasses were characterized by upconversion emission spectra under the excitation of 980 nm laser, and the emission colors were investigated according to the CIE-1931 standards. The results indicated that Yb3+/Tm3+ co-doped tellurite glass exhibited blue upconversion emission with favor-able color coordinates of (0.20, 0.07). Yb3+, Ho3+ and Tm3+ tri-doped tellurite glasses presented white upconversion luminescence under a single 980 nm laser excitation. Moreover, a very wide range of emission colors could be tuned by altering Ho3+ concentration. Combining the contribution of adjusting Ho3+ concentration and pump power, near equal energy white light was obtained.

  20. Effect of Ultrashort Pulsed Laser and X-Ray Irradiation on Au+ -Doped Glass

    Institute of Scientific and Technical Information of China (English)

    Huidan Zeng; Jianrong Qiu; Xiongwei Jiang; Congshan Zhu; Fuxi Gan

    2003-01-01

    Au nanoparticles were precipitated inside Au+-doped glass samples after irradiation by femtosecond laser or x-ray. Femtosecond laser and X-ray irradiation result in decreasing of anneal temperature and critical size for the precipitation of Au nanoparticles.

  1. Infrared to ultraviolet upconversion luminescence in Nd3+ doped nano-glass-ceramic

    Institute of Scientific and Technical Information of China (English)

    CHEN Daqin; WANG Yuansheng; YU Yunlong; LIU Feng; HUANG Ping

    2008-01-01

    Nd3+ doped transparent oxyfluoride glass ceramic containing β-YF3 nanocrystals was prepared and the upconversion luminescence behaviors of Nd3+ in the precursor glass and glass ceramic were investigated. Under 796 nm laser excitation, ultraviolet upconversion emissions of Nd3+ ions at 354 nm (4D3/2→4I9/2) and 382 nm (4D3/2→4I11/2) were observed at room temperature. Power dependence analysis demonstrated that three-photon upconversion processes populated the 4D3/2 excited state. In comparison with those of the precursor glass, the ultraviolet emissions were enhanced by a factor of 500 in the glass ceramic, which was attributed to the change in the ligand field of Nd3+ ions and the decrease in phonon energy because of the partition of Nd3+ ions into the β-YF3 nanocrystals after crystallization.

  2. Optical properties of samarium doped zinc–tellurite glasses

    Indian Academy of Sciences (India)

    B Eraiah

    2006-08-01

    Glasses with the composition, (Sm2O3)(ZnO)(40–)(TeO2)(60), were prepared by conventional melt quenching method. The density, molar volume, and optical energy band gap of these glasses have been measured. The refractive index, molar refraction and polarizability of oxide ion have been calculated by using Lorentz–Lorentz relations. Optical absorption spectra of these glasses were recorded in the range 300–700 nm at room temperature. The oxide ion polarizabilities deduced from two different quantities, viz. refractive index and optical energy band gap, agree well compared with other glasses. The nonlinear variation of the above optical parameters with respect to samarium dopant has been explained.

  3. Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui [School of Materials Science and Engineering, Tongji University, Shanghai 2001804 (China); Zhao, Shichang [Department of Orthopedic Surgery, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Xiao, Wei [Department of Materials Science and Engineering, and Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0340 (United States); Xue, Jingzhe [Department of Chemistry, Tongji University, Shanghai 200092 (China); Shen, Youqu [Department of Materials Science and Engineering, and Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0340 (United States); Zhou, Jie; Huang, Wenhai [School of Materials Science and Engineering, Tongji University, Shanghai 2001804 (China); Rahaman, Mohamed N. [Department of Materials Science and Engineering, and Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0340 (United States); Zhang, Changqing, E-mail: shzhangchangqing@163.com [Department of Orthopedic Surgery, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Wang, Deping, E-mail: wdpshk@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 2001804 (China)

    2016-01-01

    Copper doped borosilicate glasses (BG–Cu) were studied by means of FT-IR, Raman, UV–vis and NMR spectroscopies to investigate the changes that appeared in the structure of borosilicate glass matrix by doping copper ions. Micro-fil and immunohistochemistry analysis were applied to study the angiogenesis of its derived scaffolds in vivo. Results indicated that the Cu ions significantly increased the B–O bond of BO{sub 4} groups at 980 cm{sup −1}, while they decrease that of BO{sub 2}O{sup −} groups at 1440–1470 cm{sup −1} as shown by Raman spectra. A negative shift was observed from {sup 11}B and {sup 29}Si NMR spectra. The {sup 11}B NMR spectra exhibited a clear transformation from BO{sub 3} into BO{sub 4} groups, caused by the agglutination effect of the Cu ions and the charge balance of the agglomerate in the glass network, leading to a more stable glass network and lower ions release rate in the degradation process. Furthermore, the BG–Cu scaffolds significantly enhanced blood vessel formation in rat calvarial defects at 8 weeks post-implantation. Generally, it suggested that the introduction of Cu into borosilicate glass endowed glass and its derived scaffolds with good properties, and the cooperation of Cu with bioactive glass may pave a new way for tissue engineering. - Highlights: • Agglutination effect of Cu{sup 2+} and charge balance of agglomerate lead to more stable glass. • Lower degradability and lower ions release were found in BG-Cu scaffolds. • Excellent angiogenesis and sustain Cu{sup 2+} release were endowed by doping Cu.

  4. Bioactive and Antibacterial Glass Powders Doped with Copper by Ion-Exchange in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Marta Miola

    2016-05-01

    Full Text Available In this work, two bioactive glass powders (SBA2 and SBA3 were doped with Cu by means of the ion-exchange technique in aqueous solution. SBA2 glass was subjected to the ion-exchange process by using different Cu salts (copper(II nitrate, chloride, acetate, and sulphate and concentrations. Structural (X-ray diffraction-XRD, morphological (Scanning Electron Microscopy-SEM, and compositional (Energy Dispersion Spectrometry-EDS analyses evidenced the formation of crystalline phases for glasses ion-exchanged in copper(II nitrate and chloride solutions; while the ion-exchange in copper(II acetate solutions lead to the incorporation of higher Cu amount than the ion-exchange in copper(II sulphate solutions. For this reason, the antibacterial test (inhibition halo towards S. aureus was performed on SBA2 powders ion-exchanged in copper(II acetate solutions and evidenced a limited antibacterial effect. A second glass composition (SBA3 was developed to allow a greater incorporation of Cu in the glass surface; SBA3 powders were ion-exchanged in copper(II acetate solutions (0.01 M and 0.05 M. Cu-doped SBA3 powders showed an amorphous structure; morphological analysis evidenced a rougher surface for Cu-doped powders in comparison to the undoped glass. EDS and X-ray photoelectron spectroscopy (XPS confirmed the Cu introduction as Cu(II ions. Bioactivity test in simulated body fluid (SBF showed that Cu introduction did not alter the bioactive behaviour of the glass. Finally, inhibition halo test towards S. aureus evidenced a good antimicrobial effect for glass powders ion-exchanged in copper(II acetate solutions 0.05 M.

  5. Preparation and Fluorescent Property of Eu-Doped High Silica Glasses

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A method to fabricate europium ions doped-high silica glass for transparent fluorescence materials based on the fabrication and sintering technique of nano-porous silica glass was reported. Glasses impregnated with Eu ions and sintered at above 1150 ℃ in a reduction atmosphere show a very strong blue light from an emission band at about 430 nm due to the 4f65d→4f7(8S7/2) transition of the Eu2+ ions. On the other hand, the Eu-doped glass obtained by co-impregnated with Y3+ and V5+ ions and sintering in oxidation atmosphere behaves a very strong red emission band at about 615 nm with a UV excitation. An appearance of vanadate band in the excitation spectrum of Eu3+, Y3+ and V5+ ions co-doped high silica glass implies an effective energy transferring from VO43- to Eu3+ and effective excitation of Eu3+ by about 500 nm strong broad emission of VO43-.

  6. Thermal, optical and structural properties of Dy3+ doped sodium aluminophosphate glasses

    Science.gov (United States)

    Kaur, Manpreet; Singh, Anupinder; Thakur, Vanita; Singh, Lakhwant

    2016-03-01

    Trivalent Dysprosium doped sodium aluminophosphate glasses with composition 50P2O5-10Al2O3-(20-x)Na2O-20CaO-xDy2O3 (x varying from 0 to 5 mol%) were prepared by melt quench technique. The density of the prepared samples was measured using Archimedes principle and various physical properties like molar volume, rare earth ion concentration, polaron radius, inter nuclear distance and field strength were calculated using different formulae. The differential scanning calorimetry (DSC) was carried out to study the thermal stability of prepared glasses. The UV Visible absorption spectra of the dysprosium doped glasses were found to be comprised of ten absorption bands which correspond to transitions from ground state 6H15/2 to various excited states. The indirect optical band gap energy of the samples was calculated by Tauc's plot and the optical energy was found to be attenuated with Dy3+ ions. The photoluminescence spectrum revealed that Dy3+ doped aluminophosphate glasses have strong emission bands in the visible region. A blue emission band centred at 486 nm, a bright yellow band centred at 575 nm and a weak red band centred at 668 nm were observed in the emission spectrum due to excitation at 352 nm wavelength. Both FTIR and Raman spectra assert slight structural changes induced in the host glass network with Dy3+ ions.

  7. The microstructure of erbium-ytterbium co-doped oxyfluoride glass-ceramic optical fibers

    Science.gov (United States)

    Augustyn, Elżbieta; Żelechower, Michał; Stróż, Danuta; Chrapoński, Jacek

    2012-04-01

    Oxyfluoride transparent glass-ceramics combine some features of glasses (easier shaping or lower than single crystals cost of fabrication) and some advantages of rare-earth doped single crystals (narrow absorption/emission lines and longer lifetimes of luminescent levels). Since the material seems to be promising candidate for efficient fiber amplifiers, the manufacturing as well as structural and optical examination of the oxyfluoride glass-ceramic fibers doped with rare-earth ions seems to be a serious challenge. In the first stage oxyfluoride glasses of the following compositions 48SiO2-11Al2O3-7Na2CO3-10CaO-10PbO-11PbF2-3ErF3 and 48SiO2-11Al2O3-7Na2CO3-10CaO-10PbO-10PbF2-3YbF3-1ErF3 (in molar%) were fabricated from high purity commercial chemicals (Sigma-Aldrich). The fabricated glass preforms were drawn into glass fibers using the mini-tower. Finally, the transparent Er3+ doped and Er3+/Yb3+ co-doped oxyfluoride glass-ceramic fibers were obtained by controlled heat treatment of glass fibers. The preceding differential thermal analysis (DTA) studies allowed estimating both the fiber drawing temperature and the controlled crystallization temperature of glass fibers. X-ray diffraction examination (XRD) at each stage of the glass-ceramic fibers fabrication confirmed the undesirable crystallization of preforms and glass fibers has been avoided. The fibers shown their mixed amorphous-crystalline microstructure with nano-crystals of size even below 10 nm distributed in the glassy host. The crystal structure of the grown nano-crystals has been determined by XRD and confirmed by electron diffraction (SAED). Results obtained by both techniques seem to be compatible: Er3FO10Si3 (monoclinic; ICSD 92512), Pb5Al3F19 (triclinic; ICSD 91325) and Er4F2O11Si3 (triclinic; ICSD 51510) against to initially expected PbF2 crystals.

  8. Luminescent properties of Bi-doped boro-alumino-phosphate glasses

    Science.gov (United States)

    Denker, B.; Galagan, B.; Osiko, V.; Sverchkov, S.; Dianov, E.

    2007-03-01

    A new Bi-doped boro-alumino-phosphate glass (BAP) composition was developed. Absorption and emission spectra and luminescence decay kinetics were investigated. The emission spectrum consists of two wide bands in the visible (0.6 0.8 μm) and near-infrared (˜1.0 1.5 μm) ranges. The luminescence decay curve investigation has revealed a complicated behavior dependent on both excitation and registration wavelengths. In contrast to earlier investigated Bi-doped glasses, Bi:BAP has good technological properties and can be easily scaled. This makes the developed glass composition interesting for broadband tunable (˜1.0 1.5 μm) lasers and amplifiers.

  9. Theoretical studies on mid-infrared amplification in Ho{sup 3+}-doped chalcogenide glass fibers

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shulin [Laboratory of Infrared Materials and Devices, Ningbo University, Ningbo 315211 (China); College of Information Science and Engineering, Ningbo University, Ningbo 315211 (China); Xu, Yinsheng [Laboratory of Infrared Materials and Devices, Ningbo University, Ningbo 315211 (China); The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Dai, Shixun, E-mail: daishixun@nbu.edu.cn [Laboratory of Infrared Materials and Devices, Ningbo University, Ningbo 315211 (China); College of Information Science and Engineering, Ningbo University, Ningbo 315211 (China); Zhou, Yaxun [Laboratory of Infrared Materials and Devices, Ningbo University, Ningbo 315211 (China); College of Information Science and Engineering, Ningbo University, Ningbo 315211 (China); Lin, Changgui [Laboratory of Infrared Materials and Devices, Ningbo University, Ningbo 315211 (China); The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Zhang, Peiqing [Laboratory of Infrared Materials and Devices, Ningbo University, Ningbo 315211 (China); College of Information Science and Engineering, Ningbo University, Ningbo 315211 (China)

    2013-05-01

    This paper investigated the MIR emission of Ho{sup 3+}-doped Ge{sub 20}Ga{sub 5}Sb{sub 10}S{sub 65} chalcogenide glasses upon excitation of 900 nm laser diode. The spontaneous emission probability, absorption cross-section, and emission cross-section were calculated using the Judd-Ofelt theory and the Fuchbauer–Ladenburg equation. Theoretical studies of the Ho{sup 3+}-doped chalcogenide glass fiber amplifier operating in the MIR wavelength range, specifically around the 2.86 μm wavelength, were performed based on the rate and light propagation equations. The results indicate that the chalcogenide glass fiber presented a larger signal MIR gain and wider MIR gain spectrum. The maximum signal gain was 36 dB and the gain width was 20 dB.

  10. Preparation and luminescence properties of Eu3+ doped oxyfluoride borosilicate glass ceramics

    Institute of Scientific and Technical Information of China (English)

    LI Yanhong; ZHAO Li; ZHANG Yongming; MA Jing

    2012-01-01

    Oxyfluoride borosilicate glass with the molar composition of60SiO2-15B2O3-15Na2O-8CaF2-2NaF-0.25Eu2O3 was synthesized by a traditional glass melting method.Glass ceramics containing CaF2 nanocrystals were preparcd by heat treating the glass samples at a temperature in the range of 620-680℃.The results of X-ray diffraction (XRD) indicated that the average crystallite size and the lattice constant of CaF2 nanocrystals increased with the heat treatment temperature incrcasing.The luminescence spectra showed that the emission intensity of Eu3+ doped glass ceramics was stronger than that of the glass matrix,and increased with the heat treatment temperature increasing.The left edge of excitation band shifted to shorter wavelength in the glass ceramics.The local environments of Eu3+ ions in the glass and glass ceramics were different.

  11. 2 μm mid-infrared optical spectra of Tm3+-doped germanium gallate glasses

    Institute of Scientific and Technical Information of China (English)

    XIA; Haiping

    2009-01-01

    Glasses with the composition of 65GeO212Ga2O3-10BaO-8Li2O-5La2O3(molar ratio) doped with 1.526 wt.%, 3.006 wt.%, 5.836 wt.%, 11.028 wt.%, and 15.678 wt.% Tm2O3, respectively, were fabricated by conventional melting method. According to the absorption spectra and the Judd-Ofelt theory, the J-O strength parameters (Ω2,Ω4, Ω6) were calculated, with which the radiative transition probabilities,branching ratios and radiative lifetimes were obtained. The infrared emission spectra (with 808 nm LD excitation) at~1.47 and~1.8 μm of various concentrations of Tm3+-doped glasses were studied. The emission intensity at~1.8 μm reached to the maximum when the Tm2O3-doping concentration was near to be~3.006 wt.% (1.0 mol.%), and then decreased as doping concentration increased further. The mechanism of the fluorescence intensity change was explained with the cross-relaxation effect and the concentration quenching effect of Tm3+. Meanwhile, according to McCumber theory, the absorption and emission cross-sections corresponding to the 3F4→3H6 transitions of Tm3+ at 1.8 μm was obtained. For Tm3+-doped germanate glasses, the maximum emission cross-section reached a value higher than that re-ported for fluorozircoaluminate glasses. It is expected to be a favorable candidate host for~2.0 μm mid-inflated laser because the glass shows favorable optical spectra.

  12. 2 μm mid-infrared optical spectra of Tm~(3+)-doped germanium gallate glasses

    Institute of Scientific and Technical Information of China (English)

    XIA Haiping; LIN Qiongfei; ZHANG Jianli; ZHANG Qinyuan

    2009-01-01

    Glasses with the composition of 65GeO_2-12Ga_2O_3-10BaO-8Li_2O-5La_2O_3(molar ratio) doped with 1.526 wt.%, 3.006 wt.%, 5.836 wt.%, 11.028 wt.%, and 15.678 wt.% Tm2O3, respectively, were fabricated by conventional melting method. According to the absorption spectra and the Judd-Ofelt theory, the J-O strength parameters (Ω_2,Ω_4,Ω_6) were calculated, with which the radiative transition probabilities,branching ratios and radiative lifetimes were obtained. The infrared emission spectra (with 808 nm LD excitation) at~1.47 and~1.8 μm of various concentrations of Tm3+-doped glasses were studied. The emission intensity at~1.8 μm reached to the maximum when the Tm2O3-doping concentration was near to be~3.006 wt.% (1.0 mol.%), and then decreased as doping concentration increased further. The mechanism of the fluorescence intensity change was explained with the cross-relaxation effect and the concentration quenching effect of Tm~(3+). Meanwhile, according to McCumber theory, the absorption and emission cross-sections corresponding to the ~3F_4→~3H_6 transitions of Tm~(3+) at 1.8 μm was obtained. For Tm3+-doped germanate glasses, the maximum emission cross-section reached a value higher than that re-ported for fluorozircoaluminate glasses. It is expected to be a favorable candidate host for~2.0 μm mid-inflated laser because the glass shows favorable optical spectra.

  13. Optical properties of Ce3+ doped fluorophosphates scintillation glasses

    Science.gov (United States)

    Yao, Yongxin; Liu, Liwan; Zhang, Yu; Chen, Danping; Fang, Yongzheng; Zhao, Guoying

    2016-01-01

    Fluorophosphates (P2O5-BaO-BaF2-Al2O3-Gd2O3-Ce2O3) glasses with different Gd2O3 and BaF2 concentrations have been prepared by a melt quenching method. The effect of Gd2O3 and BaF2 on the glass performance including the density, absorption as well as luminescence properties under both ultraviolet (UV) and X-ray excitation was studied systematically. Energy transfer from Gd3+ to Ce3+ plays an important role in the scintillation mechanism of these glasses and the optimum concentration of Gd2O3 is found to be approximately 3 mol%. The highest integrated light emission intensity of these glass samples excited by X-ray is 25% of BGO and the decay time constants are in the range of 25-35 ns, much shorter than the 300 ns decay time of BGO. Meanwhile, replacing lighter compound BaO with the BaF2 can increase the density of the glasses and also improve the light yield.

  14. Comparison of Er-doped sol-gel glasses with various hosts

    Science.gov (United States)

    Xiang, Qing; Zhou, Yan; Lam, Yee Loy; Ooi, Boon Siew; Chan, Yuen Chuen; Kam, Chan Hin

    1999-11-01

    Using the sol-gel process, we prepared three groups of Er-doped glasses, namely, Er-doped Si02-A101.5 (SAB) glass, Er-doped Si02-Ti02-A101.5 (STAE) glass, and Er-doped Si02-Ge02-Al01.5 (SGAE) glass. Various erbium concentration and different host composition under the same processing condition have been studied in order to optimize the material composition to get the strongest fluorescence emission for each material system. It has been found that for SAE glass, the strongest fluorescence emission is obtained when the mole ratio of the three constituent oxides is lOOSiO2 : 20A101.5 2ErO1.5. For the STAE material system, the best composition ratio for the strongest fluorescence emission is 93 Si02 : 7TiO2: 20A101.5 : lErO1.5, whereas the value for SGAE glass is 9OSiO2:lOGeO2 : 2OAlO1.5: 1ErO1.5. But the relative lifetimes were obtained with the recipe lOOSiO2:10A101.5:1ErO1.5 for SAE series, 90 Si02:lOGeO2:1OAlO1.5: 1ErO1.5 for STAE group and 93 Si02:7Ti02:20A101.5:1ErO1.5 for STAE group. Using these recipes, three 20-layer (up to 2.5 μm) crack-free films have been deposited on silica-on-silicon (SOS) substrates with multiple spin-coating and rapid thermal annealing (RTA). Only the STAE film and the SGAE film are found to guide light. The experimental results show that STAB glasses have higher hydrophilicity than SGAE glasses and SGAE glasses has lower crystallization temperature than STAE glasses. The fact that these waveguiding films emit relatively strong fluorescence around the wavelength of 1.55 μm implies that such planar waveguides are potential candidates from which integrated optical waveguide amplifiers and lasers operating at the third optical fiber communication window can be fabricated.

  15. The tetragonal structure of nanocrystals in rare-earth doped oxyfluoride glass ceramics.

    Science.gov (United States)

    Hu, Nan; Yu, Hua; Zhang, Ming; Zhang, Pan; Wang, Yazhou; Zhao, Lijuan

    2011-01-28

    Rare-earth doped oxyfluoride glasses and nanocrystalline glass ceramics have been prepared and studied by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) aiming at investigating the structure and the symmetry of the nanocrystal as well as the site of the rare-earth ion. To solve the problem encountered by previous researchers due to glass host interference, we etched off glass matrix and released the fluoride nanocrystal, which is more convenient for EDS measurement. A tetragonal phase model with the chemical formula as PbREF(5) proved by quantitative EDS and XRD analyses has been proposed in this paper for the first time. Two specific crystalline phases with the same space group have been observed at 460 °C-500 °C and 520 °C-560 °C, respectively. Moreover, a super "pseudo-cubic" cell based on our tetragonal model may give a good explanation to the probable previous cubic-symmetry misunderstanding by researchers. Additionally, the thermodynamic mechanism of phase transition and the thermal stability related to the structure of nanocrystals in glass ceramics have been studied and supported by ab initio calculations and experimental methods. The structure and thermal stability of the nanocrystal and clear environment of the rare-earth ion reported here have far-reaching significance with respect to the optical investigations and further applications of rare-earth doped oxyfluoride glass ceramics.

  16. Spectroscopic properties of Er doped and Er, Nd codoped fluoride glasses under simulated sunlight illumination

    Science.gov (United States)

    Mizuno, Shintaro; Ito, Hiroshi; Hasegawa, Kazuo; Kawai, Hiroyuki; Nasu, Hiroyuki; Hughes, Mark A.; Suzuki, Takenobu; Ohishi, Yasutake

    2011-10-01

    We investigated the fluorescence characteristics of Er codoped Nd doped ZBLAN glasses proposed for solar pumped fiber laser (SPFL) under simulated sunlight. Er is used as a sensitizer because it absorbs a part of the ultraviolet and visible light where is no absorption of Nd. Under simulated sunlight illumination, Er singly doped fluoride glass displayed four emission bands with peaks at 550, 848, 977 and 1533 nm attributed to the 4S 3/2- 4I 15/2, 4S 3/2- 4I 13/2, 4I 11/2- 4I 15/2 and 4I 13/2- 4I 15/2 electronic transitions of Er, respectively. The quantum efficiency measurement was carried out using an integrating sphere and under the simulated sunlight excitation showed a maximum of 73% for 0.5 mol.% of ErF 3 in ZBLAN glass. In Nd, Er codoped fluoride glass, the 1.05 μm emission of Nd was observed under 380 nm excitation what supposes the energy transfer from Er to Nd in ZBLAN glasses as Nd has no absorption at the wavelength. Er, Nd codoped fluoride glasses are promising as a sensitized laser media for solar pumped fiber lasers.

  17. Gamma ray interactions with V{sub 2}O{sub 5}-doped sodium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    ElBatal, F.H. [Glass Research Department, National Research Center, Cairo (Egypt); Hamdy, Y.M. [Spectroscopy Department, National Research Center, Cairo (Egypt)], E-mail: yousry_m_h@yahoo.com; Marzouk, S.Y. [Electron Microscope and Thin Film Department, National Research Center, Cairo (Egypt)

    2008-12-20

    Undoped and V{sub 2}O{sub 5}-doped sodium phosphate glasses of various compositions and with varying progressive V{sub 2}O{sub 5} contents were prepared. UV-vis and infrared, Raman and electron spin resonance spectroscopic studies were measured before and after successive gamma irradiation. Experimental results indicate that vanadium ions exist in three possible valencies in sodium phosphate glasses, namely, the trivalent, tetravalent and pentavalent states. The first two lower valencies are predominant in this glass system. The changes in UV-vis and infrared spectral data are discussed in relation to the structural evolution caused by the change in the V{sub 2}O{sub 5} content or glass composition. Raman and ESR measurements are taken as confirmative tools to support our assumptions relating to the states of vanadium and structural groups arrangements in the studied glasses. Gamma irradiation produces induced defects depending on the host glass and the concentration of V{sub 2}O{sub 5} content together with the sharing of unavoidable trace iron impurities. Vanadium ions when present in high doping level, have been found to exhibit a shielding behaviour towards the effects of progressive gamma irradiation causing a retardation of the growth of the induced defects caused by irradiation.

  18. Biocompatibility and antibacterial effect of silver doped 3D-glass-ceramic scaffolds for bone grafting.

    Science.gov (United States)

    Balagna, Cristina; Vitale-Brovarone, Chiara; Miola, Marta; Verné, Enrica; Canuto, Rosa Angela; Saracino, Silvia; Muzio, Giuliana; Fucale, Giacomo; Maina, Giovanni

    2011-02-01

    A 3D-glass-ceramic scaffold for bone tissue engineering with an interconnected macroporous network of pores was doped with silver ions in order to confer antibacterial properties. For this purpose, silver ions were selectively added to the scaffold surfaces through ion-exchange using an aqueous silver nitrate solution. The silver-doped scaffolds were characterized by means of leaching, in vitro antibacterial, and citotoxicity tests. In particular, the silver effect was examined through a broth dilution test in order to evaluate the proliferation of bacteria by counting the colonies forming units. Moreover, cytotoxicity tests were carried out to understand the effect of silver-containing scaffolds on cell adhesion, proliferation, and vitality. For all tests a comparison between silver-doped scaffold and silver-doped scaffold dry sterilized was performed.

  19. Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr

    Directory of Open Access Journals (Sweden)

    Marta eMiola

    2015-10-01

    Full Text Available In this research work the original 45S5 bioactive glass (BG was modified by introducing zinc and/or strontium oxide (6% mol in place of calcium oxide. Sr was added for its ability to stimulate bone formation, Zn for its role in bone metabolism, antibacterial properties and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology, while compositional analysis (EDS demonstrated the effective addition of these elements inside the glass network. Bioactivity test in simulated body fluid (SBF up to one month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD. Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD and alternating current EPD (AC-EPD. The stability of the suspension was analysed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, while the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behaviour of 45S5-Sr containing coating, while coatings containing Zn exhibited no hydroxyapatite formation.

  20. Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr.

    Science.gov (United States)

    Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R

    2015-01-01

    In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation.

  1. White light emission of dysprosium doped lanthanum calcium phosphate oxide and oxyfluoride glasses

    Science.gov (United States)

    Luewarasirikul, N.; Kim, H. J.; Meejitpaisan, P.; Kaewkhao, J.

    2017-04-01

    Lanthanum calcium phosphate oxide and oxyfluoride glasses doped with dysprosium oxide were prepared by melt-quenching technique with chemical composition 20La2O3:10CaO:69P2O5:1Dy2O3 and 20La2O3:10CaF2:69P2O5:1Dy2O3. The physical, optical and luminescence properties of the glass samples were studied to evaluate their potential to using as luminescence materials for solid-state lighting applications. The density, molar volume and refractive index of the glass samples were carried out. The optical and luminescence properties were studied by investigating absorption, excitation, and emission spectra of the glass samples. The absorption spectra were investigated in the UV-Vis-NIR region from 300 to 2000 nm. The excitation spectra observed under 574 nm emission wavelength showed the highest peak centered at 349 nm (6H15/2 → 6P7/2). The emission spectra, excited with 349 nm excitation wavelength showed two major peaks corresponding to 482 nm blue emission (4F9/2 → 6H15/2) and 574 nm yellow emission (4F9/2 → 6H13/2). The experimental lifetime were found to be 0.539 and 0.540 for oxide and oxyfluoride glass sample, respectively. The x,y color coordinates under 349 nm excitation wavelength were (0.38, 0.43) for both glass samples, that be plotted in white region of CIE 1931 chromaticity diagram. The CCT values obtained from the glass samples are 4204 K for oxide glass and 4228 K for oxyfluoride glass corresponding to the commercial cool white light (3100-4500 K). Judd-Ofelt theory had also been employed to obtain the J-O parameters (Ω2, Ω4 and Ω6), oscillator strength, radiative transition possibility, stimulated emission cross section and branching ratio. The Ω2 > Ω4 > Ω6 trend of J-O parameters of both glass samples may indicate the good quality of a glass host for using as optical device application. Temperature dependence of emission spectra was studied from 300 K to 10 K and found that the intensity of the emission peak was found to be increased with

  2. Effect of Network Modifiers on Spectroscopic Properties of Erbium-doped Phosphate Glasses

    Institute of Scientific and Technical Information of China (English)

    YANG Gangfeng; JIANG Zhonghong; DENG Zaide; YIN Bing; YING Tingzhao; FENG Zhouming

    2005-01-01

    The integrated absorption cross section Σabs, peak emission cross section σemi, Judd-Ofeld intensity parameters Ωt(t=2,4,6), and spontaneous emission probability AR of Er3+ ions were determined for Erbium doped alkali and alkaline earth phosphate glasses. It is found the compositional dependence of σemi is almost similar to that of Σabs, which is determined by the sum of Ωt (3Ω2+10Ω4+21Ω6). In addition, the compositional dependence of Ωt was studied in these glass systems. As a result, compared with Ω4 and Ω6, the Ω2 has a stronger compositional dependence on the ionic radius and content of modifiers. The covalency of Er-O bonds in phosphate glass is weaker than that in silicate glass, germanate glass, aluminate glass, and tellurate glass, since Ω6 of phosphate glass is relatively large. AR is affected by the covalency of the Er3+ ion sites and corresponds to the Ω6 value.

  3. Spectroscopic properties of Nd-doped phosphate glass with a high emission cross section

    Institute of Scientific and Technical Information of China (English)

    毛艳丽; 孙真荣; 蒋秀丽; 邓佩珍; 干福熹

    2002-01-01

    Neodymium doped phosphate glasses have been prepared by the semi-continuous melting technique. Their ab-sorption and emission spectra have been recorded at room temperature. The Judd-Ofelt theory has been applied to ewluate the stimulated emission cross sections of 4F3/2→4I11/2 transition for Nd3+. The higher stimulated emission cross section, 4.0×10-20cm2, is obtained. The fluorescence decays of the 4F3/2→411/2 transition of Nd3+ are mea-sured for the samples doped (0.7-10) wt% of Nd2O3 at room temperature. The concentration quenching of Nd-doped phosphate glass is mainly attributed to cross-relaxation and energy migration. The site-dependent properties of fluores-cence spectra and the fluorescence lifetime of the Nd3+-doped phosphate glass (with 2.2wt% Nd2O3) are studied using laser-induced fluorescence line narrowing techniques, and the site-to-site variations of optical properties are observed at low temperature.

  4. Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO{sub 2}-PVA nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Murata, Takahiro [Faculty of Education and Master' s Course in Education, Kumamoto University, 2-40-1 Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Fujino, Shigeru, E-mail: fujino@astec.kyushu-u.ac.jp [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2015-07-15

    Monolithic silica glasses doped with Cu ions were prepared by immersing a mesoporous SiO{sub 2}-polyvinyl alcohol (PVA) nanocomposite in a copper nitrate solution followed by sintering at 1100 °C for 12 h in air. The Cu ions were reduced from divalent to monovalent during the sintering process and consequently Cu{sup +} was doped into the silica glass matrix. The sintered glass possessed blue or yellow photoluminescence (PL) under UV irradiation, depending on the total concentration of Cu ions in the sintered silica glass. At a lower concentration below 30 ppm, the isolated Cu{sup +} existed in the glass matrix resulting in the blue PL. However, above 70 ppm, the Cu{sup +}–Cu{sup +} pairs were present, exhibiting the yellow PL. It was demonstrated that the PL characteristics of the sintered silica glasses doped with monovalent copper ions were affected by the total concentration of Cu ions in the glass, which can be adjusted as a function of the immersion conditions. - Highlights: • Silica glass doped with Cu{sup +} was fabricated by sintering the nanocomposite. • The Cu ions were reduced from divalent to monovalent during the sintering process. • The sintered glass possessed blue or yellow PL under UV irradiation. • The blue and yellow PL are due to isolated Cu{sup +} and Cu{sup +}–Cu{sup +} pairs, respectively. • The PL characteristics depended on the total concentration of Cu ions in the glass.

  5. Spectral properties and shielding behavior of gamma irradiated MoO{sub 3}-doped silicophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Hamdy, Y.M., E-mail: yousry_m_h@yahoo.com [Spectroscopy Department, Physics Division, National Research Center, Dokki, Cairo (Egypt); Marzouk, M.A.; ElBatal, H.A. [Glass Research Department, National Research Center, Dokki, Cairo (Egypt)

    2013-11-15

    Combined optical and infrared absorption spectra of prepared molybdenum ions in sodium silicophosphate host glasses were investigated before and after gamma irradiation with a dose of 8 Mrad (8×10{sup 4} Gy). The undoped base sodium silicophosphate glass reveals strong charge transfer ultraviolet absorption but with no visible bands. This strong UV absorption is related to the presence of contaminated trace iron impurities (mainly Fe{sup 3+} ions) within the raw materials used for the preparation of this host glass. The MoO{sub 3} doped glasses exhibit extra characteristic absorption bands due to the presence of molybdenum ions in three possible valence states, the trivalent, pentavalent and hexavalent forms. Gamma irradiation of the base undoped glass increases the extension of optical absorption within the UV spectrum and produces an extra broad visible band centered at 520 nm. Such radiation-induced spectra are interpreted by assuming the formation of new induced color centers through the absorption of released electrons and formed positive holes during the irradiation process. Also, the possible formation of induced centers through photochemical transformation of some Fe{sup 2+} ions to Fe{sup 3+} ions by accepting positive holes. The presence of molybdenum ions is assumed to compete with the suggested irradiation reactions by capturing electrons and positive holes during the irradiation process. Infrared absorption spectra of the undoped and MoO{sub 3}-doped glasses reveal broad IR vibrational bands which are attributed to the presence of combined characteristic vibrational IR modes due to main phosphate and partner silicate groups. The addition of MoO{sub 3} (0.5–1.5%) as dopant level causes no changes in the number and position of the main characteristic absorption bands. Gamma irradiation did not cause any marked changes in the IR spectra and the maintainance of the same main IR bands due to the stability of the network containing dual compact two glass

  6. Up- and Downconversion Luminescence Properties of Nd3+ Ions Doped in Bi2O3–BaO–B2O3 Glass System

    Directory of Open Access Journals (Sweden)

    R. Ruamnikhom

    2014-01-01

    Full Text Available Physical, optical, and luminescence properties of Nd3+ ions in bismuth barium borate glass system were studied. The glasses prepared by a melt quenching method were doped at various Nd2O3 concentrations in compositions (40-xB2O3 : 40Bi2O3 : 20BaO : xNd2O3 (where x = 0.00, 0.50, 1.00, 1.50, 2.00, and 2.50 in mol%. Luminescence properties of the glasses were studied under two excitations of 585 and 750 nm for downconversion. From both excitations, the results show emission bands in NIR region corresponding to the transitions between 4F3/2 → 4I9/2 (900 nm, 4F3/2 → 4I11/2 (1,060 nm, and 4F3/2 → 4I13/2 (1,345 nm. The luminescence intensity obtained with 585 nm excitation was stronger than 750 nm, with the strongest NIR emission at 1,060 nm. The upconversion emission spectrum exhibits strong fluorescence bands in the UV region at 394 nm (λex=591 nm. The processes are associated with excited state absorption (ESA from 4F3/2 level to 4D3/2 level and it is the radiative decay from the 4D3/2 to ground levels (4D3/2 → 4I13/2 which are responsible for the emission at 394 nm.

  7. Optical and spectroscopic study of erbium doped calcium borotellurite glasses

    Science.gov (United States)

    Gomes, J. F.; Lima, A. M. O.; Sandrini, M.; Medina, A. N.; Steimacher, A.; Pedrochi, F.; Barboza, M. J.

    2017-04-01

    In this study, 10CaF2 - (29.9-0.4x)CaO - (60-0.6x)B2O3 - xTeO2 - 0,1Er2O3 (x = 10, 16, 22, 30 and 50 mol %) glasses were synthesized, and their optical and spectroscopic properties were investigated. X-ray diffraction, density, glass transition temperature (Tg), crystallization temperature (Tx), refraction index, luminescence, radiative lifetime and optical absorption measurements were carried out. Molar volume (Vm), thermal stability (Tx-Tg), electronic polarizability (αm), optical bang gap energy (Eg) and Judd-Ofelt (JO) parameters Ωt (2,4,6) were also calculated. The results are discussed in terms of tellurium oxide content. The increase of TeO2 in the glasses composition increases density, refractive index and electronic polarizability. The optical band gap energy decreases varying from 3.37 to 2.71 eV for the glasses with 10 and 50 mol% of TeO2, respectively. The optical absorption coefficient spectra show characteristic bands of Er3+ ions. Furthermore, these spectra in NIR region show a decrease of hydroxyl groups as a function of TeO2 addition. Luminescence intensity and radiative lifetimes at 1530 nm show an increasing with the TeO2 content. The JO parameters of Er:CaBTeX glasses follow the trend Ω2 > Ω4 > Ω6 and the quality factor values (Ω4/Ω6) were between 1.37 and 3.07. By comparing the measured lifetime with the calculated radiative decay time, quantum efficiency was calculated. The luminescence emission intensity at 1530 nm decreases with the increase of temperature. The lifetime values show a slight trend to decrease with the temperature increase, from 300 to 420 K, for all the samples.

  8. Influence of addition of B2O3 on properties of Yb3+ -doped phosphate laser glass

    Institute of Scientific and Technical Information of China (English)

    LIU Shu-jiang; LU An-xian; TANG Xiao-dong; HE Shao-bo

    2006-01-01

    The three host glasses doped with Yb3+ were prepared by means of conventional melt quenching technol ogy, and the influence on physical and spectral properties of phosphate glass due to addition of B2O3 was investigated and compared with silicate glass. The results show that due to the existence of OH- impurities which induce thenon-radiative route, the fluorescence lifetime of phosphate glass is shorter, so silicate glass has better spectral properties than phosphate glass. Silicate glass has more excellent thermal-mechanical properties than phosphate glass,but with the addition of B2O3, thermal-mechanical properties of phosphate glass are improved greatly without fluo rescence quenching effect, and this kind of borophosphate glass will be the candidate to be used in high average pow er solid state laser.

  9. Dy{sup 3+}-doped germanate glasses for waveguide-typed irradiation light sources

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.Y.; Shen, L.F. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Pun, E.Y.B. [Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Lin, H., E-mail: lhai8686@yahoo.com [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-10-15

    Intense orange-yellow luminescence was achieved in trivalent dysprosium ion (Dy{sup 3+}) doped waveguide-adaptive sodium magnesium aluminium germanate (NMAG) glasses under ultraviolet (UV) radiation. The dominant 482.5 nm (blue) and 574.5 nm (yellow) peaks correspond to {sup 4}F{sub 9/2} → {sup 6}H{sub 15/2} and {sup 4}F{sub 9/2} → {sup 6}H{sub 13/2} transitions, respectively. The internal quantum efficiency for the {sup 4}F{sub 9/2} level of Dy{sup 3+} and the total external quantum yield for the four visible emissions were calculated to be 70.88% and 8.90%, respectively. Slab and channel waveguides were attempted by K{sup +}-Na{sup +} ion-exchange processes and the effective diffusion coefficient D{sub e} was derived to be 0.085 μm{sup 2}/min, indicating that thermal ion exchange was feasible to fabricate Dy{sup 3+}-doped NMAG glasses waveguide. The efficient visible emissions in Dy{sup 3+}-doped NMAG glasses demonstrate the potential in developing waveguide-typed irradiation light sources for minimally invasive photodynamic therapy. - Highlights: • Dy{sup 3+}-doped germanate glass was confirmed suitable for K{sup +}-Na{sup +} ion exchange for waveguide devices. • Orange-yellow luminescence dominated by {sup 4}F{sub 9/2} → {sup 6}H{sub 13/2} yellow emission was recorded. • High quantum efficiency of 70.88% was identified for {sup 4}F{sub 9/2} level of Dy{sup 3+} in germanate glasses. • Total quantum yield of four emissions in visible spectral region was derived to be 8.90%.

  10. Praseodymium ion doped phosphate glasses for integrated broadband ion-exchanged waveguide amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Shen, L.F. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Chen, B.J. [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Lin, H., E-mail: lhai8686@yahoo.com [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Pun, E.Y.B. [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-02-15

    Highlights: • Effective near-infrared emission (1380-1525 nm) is observed in Pr{sup 3+}-doped phosphate glasses. • Effective bandwidth of {sup 1}D{sub 2} → {sup 1}G{sub 4} transition emission is obtained to be 124 nm. • Channel waveguides have been fabricated by K{sup +}-Na{sup +} ion-exchange method. • Pr{sup 3+}-doped phosphate glasses are promising in developing integrated broadband waveguide amplifier. - Abstract: Effective near-infrared emission covering the fifth optical telecommunication window (1380-1525 nm) has been observed in Pr{sup 3+}-doped phosphate (NMAP) glasses. Judd-Ofelt parameters Ω{sub 2} (6.38 × 10{sup −20} cm{sup 2}), Ω{sub 4} (20.30 × 10{sup −20} cm{sup 2}) and Ω{sub 6} (0.40 × 10{sup −20} cm{sup 2}) indicate a high inversion asymmetrical and strong covalent environment in the optical glasses. The effective bandwidth (Δλ{sub eff}) of the corresponding {sup 1}D{sub 2} → {sup 1}G{sub 4} transition emission is obtained to be 124 nm, and the maximum stimulated emission cross-section (σ{sub em-max}) at 1468 nm is derived to be 1.14 × 10{sup −20} cm{sup 2}. Channel waveguide was fabricated successfully by K{sup +}-Na{sup +} ion-exchange method with mode field diameter of 8.8 μm in the horizontal direction and 6.7 μm in the vertical direction. Broad effective bandwidth, large emission cross-section and perfect thermal ion-exchangeability indicate that Pr{sup 3+}-doped NMAP phosphate glasses are promising in developing integrated broadband waveguide amplifier, especially operating at E- and S-bands which belong to the fifth optical telecommunication window.

  11. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures

    Science.gov (United States)

    Ferrera, M.; Razzari, L.; Duchesne, D.; Morandotti, R.; Yang, Z.; Liscidini, M.; Sipe, J. E.; Chu, S.; Little, B. E.; Moss, D. J.

    2008-12-01

    Photonic integrated circuits are a key component of future telecommunication networks, where demands for greater bandwidth, network flexibility, and low energy consumption and cost must all be met. The quest for all-optical components has naturally targeted materials with extremely large nonlinearity, including chalcogenide glasses and semiconductors, such as silicon and AlGaAs (ref. 4). However, issues such as immature fabrication technology for chalcogenide glass and high linear and nonlinear losses for semiconductors motivate the search for other materials. Here we present the first demonstration of nonlinear optics in integrated silica-based glass waveguides using continuous-wave light. We demonstrate four-wave mixing, with low (5 mW) continuous-wave pump power at λ = 1,550 nm, in high-index, doped silica glass ring resonators. The low loss, design flexibility and manufacturability of our device are important attributes for low-cost, high-performance, nonlinear all-optical photonic integrated circuits.

  12. Free volume effects on the fluorescence characteristics of sol-gel glasses doped with quinine sulphate

    Science.gov (United States)

    Meneses-Nava, M. A.; Barbosa-García, O.; Díaz-Torres, L. A.; Chávez-Cerda, S.; King, T. A.

    1999-12-01

    The broadening of the absorption and fluorescence spectra and the red shift of the fluorescence maximum of quinine sulfate doped sol-gel glasses, before and after PMMA polymer impregnation, are investigated at different concentrations. The fluorescence decay of the quinine sulfate doped samples does not fit to a single exponential, as it does in ethanol solutions. We found that a double exponential gives a good fit to the obtained results. Introduction of solvent to fill the pores of the matrix does not only have the same effect as the polymer, but also reveals the strong attachment of the molecules to the pore walls and the influence of the interaction with the cage.

  13. Dy{sup 3+}-doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Mingjie [Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116 (China); Yang, Anping, E-mail: apyang@jsnu.edu.cn [Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116 (China); Peng, Yuefeng [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Zhang, Bin; Ren, He; Guo, Wei; Yang, Yan; Zhai, Chengcheng; Wang, Yuwei; Yang, Zhiyong; Tang, Dingyuan [Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116 (China)

    2015-10-15

    Highlights: • Novel Ga–Sb–S chalcogenide glasses doped with Dy{sup 3+} ions were synthesized. • The glasses show good thermal stability and excellent infrared transparency. • The glasses show low phonon energy and intense mid-infrared emissions. • The mid-infrared emissions have high quantum efficiency. • The mid-infrared emissions have large stimulated emission cross sections. - Abstract: Novel Ga–Sb–S chalcogenide glasses doped with different amount of Dy{sup 3+} ions were prepared. Their thermal stability, optical properties, and mid-infrared (MIR) emission properties were investigated. The glasses show good thermal stability, excellent infrared transparency, very low phonon energy (∼306 cm{sup −1}), and intense emissions centered at 2.95, 3.59, 4.17 and 4.40 μm. Three Judd–Ofelt intensity parameters (Ω{sub 2} = 8.51 × 10{sup −20} cm{sup 2}, Ω{sub 4} = 2.09 × 10{sup −20} cm{sup 2}, and Ω{sub 6} = 1.60 × 10{sup −20} cm{sup 2}) are obtained, and the related radiative transition properties are evaluated. The high quantum efficiencies and large stimulated emission cross sections of the MIR emissions (88.10% and 1.11 × 10{sup −20} cm{sup 2} for 2.95 μm emission, 75.90% and 0.38 × 10{sup −20} cm{sup 2} for 4.40 μm emission, respectively) in the Dy{sup 3+}-doped Ga–Sb–S glasses make them promising gain materials for the MIR lasers.

  14. Study on the protection of Er-doped phosphate glass waveguide surface in ion-exchange processing

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel method, sputtering K9 glass film, is proposed to solve the surface corrosion of Er-doped phosphate glass during ion-exchange processing for optical waveguide fabrication. The corrosion causes are analyzed to be the intrinsically weak stabilization of phosphate glass structure, hydrophile and weakly acidic property of phosphate radical. Experimental results show that the K9 glass film could not only protect the Er-doped phosphate glass surface from being corroded but also give no influence on the waveguide fabrication. The effect of thickness of K9 glass film on the optical property of waveguide is also investigated and the op- timal thickness is found to be 60―80 nm. It provides a good base for further fabri- cation of active phosphate glass optical waveguide devices.

  15. Linear and nonlinear optical characteristics of Te nanoparticles-doped germanate glasses

    Science.gov (United States)

    Xu, Zhousu; Guo, Qiangbing; Liu, Chang; Ma, Zhijun; Liu, Xiaofeng; Qiu, Jianrong

    2016-10-01

    Te nanoparticles (NPs)-doped GeO2-MgO-B2O3-Al2O3-TeO2 glasses were prepared by the conventional melt-quenching method. Based on X-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscope observation, the coloration of the glass at high TeO2 concentration is ascribed to the precipitation of elemental Te NPs with a size of 5-10 nm in the germanate glass. Optical absorption spectra and nonlinear optical (NLO) properties of the glass samples were analyzed by UV-3600 spectrophotometry and Z-scan technique, respectively. The nonlinear absorption coefficient ( β) and the imaginary part of the third-order NLO susceptibility (Im χ (3)) were estimated to be 1.74 cm/GW and 1.142 × 10-12 esu for laser power of 95 μW, respectively. Due to the excellent NLO properties, the Te NPs-doped germanate glasses may have potential applications for ultrafast optical switch and photonics.

  16. Composition dependence of luminescence of Eu and Eu/Tb doped silicate glasses for LED applications

    DEFF Research Database (Denmark)

    Zhu, C.F.; Chaussedent, S.; Liu, S.

    2013-01-01

    The Eu and Eu/Tb doped silicate glasses are good candidates for light emitting diode (LED) applications. But the optical performance of these glasses is sensitive to variations in chemical composition. In this paper we report our recent findings about the effect of addition of minor components....... The results show that the asymmetry factor and luminescence lifetimes of as-prepared materials are dependent on composition. White fluorescence is achieved in Eu/Tb co-doped glasses, which can be attributed to the simultaneous generation of red, green and blue wavelengths from Eu3+ and Tb3+ ions...... such as B2O3, Al2O3 and CaF2 on the luminescent properties of the above-mentioned glasses. We explore the role of Eu3+ ions as a structural probe of the glasses by determining the asymmetry factor, i.e., the ratio of the emission intensity of the 5D0→7F2 transition to that of the 5D0 →7F1 transition...

  17. Spectroscopic properties of transparent Er-doped oxyfluoride glass-ceramics with GdF₃.

    Science.gov (United States)

    Środa, Marcin; Szlósarczyk, Krzysztof; Różański, Marek; Sitarz, Maciej; Jeleń, Piotr

    2015-01-05

    Optically active glass-ceramics (GC) with the low-phonon phases of fluorides, doped with Er(3+) was studied. Glass based on SiO₂-Al₂O₃-Na₂F₂-Na₂O-GdF₃-BaO system was obtained. Dopant were introduced to the glass in an amount of 0.01 mol Er₂O₃ per 1 mol of glass. DTA/DSC study shows multi-stage crystallization. XRD identification of obtained phases did not confirm the presence of pure GdF₃ phase. Instead of that ceramization process led to formation of NaGdF₄ and BaGdF₅. The structural changes were studied using FT-IR spectroscopic method. The study of luminescence of the samples confirmed that optical properties of the obtained GC depend on crystallizing phases during ceramization. Time resolved spectroscopy of Er-doped glass showed the 3 and 8 times increase of lifetime of emission from (4)S₃/₂ and (4)F₉/₂ states, respectively. It confirms the erbium ions have ability to locate in the low phonon gadolinium-based crystallites. The results give possibility to obtain a new material for optoelectronic application.

  18. DC electrical conductivity study of cerium doped conducting glass systems

    Science.gov (United States)

    Barde, R. V.; Waghuley, S. A.

    2013-06-01

    The glass samples of composition 60V2O5-5P2O5-(35-x)B2O3-xCeO2, (1 ≤ x ≤ 5) were prepared by the conventional melt quench method. The samples were characterized by X-ray diffraction and thermo gravimetric-differential thermal analysis. The glass transition temperature and crystallization temperature determined from TG-DTA analysis. The DC electrical conductivity has been carried out in the temperature range 303-473 K. The maximum conductivity and minimum activation energy were found to be 0.039 Scm-1 and 0.15 eV at 473 K for x=1, respectively.

  19. Formation and removal of multi-layered fluorescence patterns in gold-ion doped glass

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jongho; Jang, Kyungsik [BK21 Physics Program and Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Lim, Ki-Soo, E-mail: kslim@chungbuk.ac.kr [BK21 Physics Program and Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Youn-Shil; Lee, You-Lee; Choi, Jung-Hyun [BK21 Physics Program and Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Sohn, Ik-Bu; Lee, Jongmin [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Myeongkyu [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2009-09-30

    We report the formation of fluorescence patterns inside gold-doped glass medium by femtosecond-laser fabrication. Strong fluorescence images appeared from the irradiated multi-layered region after low temperature annealing. We removed the images by exposing the glass to an electric furnace or a CO{sub 2} laser beam for high temperature annealing. The method was also applied to recording, reading, and erasing of fluorescence data by a femtosecond laser, a 405-nm laser diode, and a CO{sub 2} laser respectively.

  20. Optical planar waveguides in Yb3+-doped phosphate glasses produced by He+ ion implantation

    Institute of Scientific and Technical Information of China (English)

    Liu Chun-Xiao; Li Wei-Nan; Wei Wei; Peng Bo

    2012-01-01

    Optical planar waveguides in Yb3+-doped phosphate glasses are fabricated by implanting triple-energy helium ions.The guiding modes and the near-field intensity distribution are measured by using the prism-coupling method and the end-face coupling setup with a He-Ne laser at 633 nm The intensity calculation method (ICM) is used to reconstruct the refractive index profile of the waveguide.The absorption and the fluorescence investigations reveal that the glass bulk features are well preserved in the active volumes of the waveguides,suggesting the fabricated structures for possible applications as waveguide lasers.

  1. Nonlinear optical studies in semiconductor-doped glasses under femtosecond pulse excitation

    Indian Academy of Sciences (India)

    C P Singh; K S Bindra; S M Oak

    2010-12-01

    Nonlinear optical studies in semiconductor-doped glasses (SDGs) are performed under femtosecond laser pulse excitation. Z-scan experiments with 800 nm wave- length pulses are used to excite SDG samples in the resonance and non-resonance regimes. Schott colour glass filter OG 515 shows stronger two-photon absorption than GG 420 and both the samples exhibit positive nonlinearity. However, in resonantly excited RG 850 the intensity-dependent Z-scan shows transition from saturable to reverse saturable absorption behaviour with the increase in intensity.

  2. Enhancement of upconversion luminescence due to the formation of nanocrystals in Er3+-doped tellurite glasses

    Institute of Scientific and Technical Information of China (English)

    Gang Zhou; Shixun Dai; Chunlei Yu; Junjie Zhang; Guonian Wang; Lei Wen; Zhonghong Jiang

    2006-01-01

    Optically transparent Er3+-doped tellurite-based nanocrystallized glasses with the composition of 70TeO2·15Lie2O·0·15Nb2O5·0.5Er2O3(mol)have been perpared by a conventional melting quenching and the subsequent heat treatment porcesses.The sizes of grown nanocrystals in glass matrix appear to be35-50 nm from the X-ray diffraction (XRD) measurement. The microhardness measurement shows that the Vickers hardness values of the nanocrystallized tellurite glasses are larger (33%-62%) than those inthe base glass. The Raman spectra imply that the maximum phonon energy of the based glass decreases and shifts from 668 to 638 cm-1 after heat-treatment. Visible upconversion luminescence and infrared luminescence of the base glass and heat-treated glasses under 980-nm laser diode (LD) excitation are investigated. The 524-, 546- and 656-nm upconversion intensities by 980-nm pumping increase significantly.

  3. Nanodiamond in tellurite glass Part I: origin of loss in nanodiamond-doped glass

    CERN Document Server

    Ebendorff-Heidepriem, Heike; Ji, Hong; Greentree, Andrew D; Gibson, Brant C; Monro, Tanya M

    2014-01-01

    Tellurite glass fibers with embedded nanodiamond are attractive materials for quantum photonic applications. Reducing the loss of these fibers in the 600-800 nm wavelength range of nanodiamond fluorescence is essential to exploit the unique properties of nanodiamond in the new hybrid material. In the first part of this study, we report the effect of interaction of the tellurite glass melt with the embedded nanodiamond on the loss of the glasses. The glass fabrication conditions such as melting temperature and concentration of NDs added to the melt were found to have critical influence on the interaction. Based on this understanding, we identified promising fabrication conditions for decreasing the loss to levels required for practical applications.

  4. Preparation and Visible Light Photocatalytic Activity for Photocatalyst of Permeable Glass Membrane/TiO2 Doped with Co

    Institute of Scientific and Technical Information of China (English)

    HU Ke-Yan; CUI Ping; CHEN Xiao-Ming; ZHANG Min; LI Yong

    2007-01-01

    @@ The photocatalyst of permeable glass membrane/TiO2 doped with Co (permeable glass membrane/TiO2 doped with Co) is prepared by the sol-gel method. The morphology and phase of the samples are determined by the field emission scanning electron microscopy (FESEM) and x-ray diffraction experiment, respectively. The photocatalytic results show that the photocatalyst is sensitive to the visible light and exhibits excellent photocatalytic activity of photodegradation methylene blue. The photocatalytic mechanism is also discussed.

  5. Mesoporous Nitrogen-Doped Carbon-Glass Ceramic Cathodes for Solid-State Lithium-Oxygen Batteries (Postprint)

    Science.gov (United States)

    2012-01-01

    A. C.; Swanson, S .; Wilcke, W. J. Phys. Chem. Lett. 2010, 1, 2193−2203. (3) In Handbook of Batteries and Fuel Cells, 2nd ed.; Linden , D., Ed...AFRL-RZ-WP-TP-2012-0057 MESOPOROUS NITROGEN-DOPED CARBON-GLASS CERAMIC CATHODES FOR SOLID-STATE LITHIUM−OXYGEN BATTERIES (Postprint...November 2011 4. TITLE AND SUBTITLE MESOPOROUS NITROGEN-DOPED CARBON-GLASS CERAMIC CATHODES FOR SOLID-STATE LITHIUM−OXYGEN BATTERIES (Postprint

  6. Crystallization studies on rare-earth co-doped fluorozirconate-based glasses.

    Science.gov (United States)

    Paßlick, C; Johnson, J A; Schweizer, S

    2013-07-01

    This work focuses on the structural changes of barium chloride (BaCl2) nanoparticles in fluorochlorozirconate-based glass ceramics when doped with two different luminescent activators, in this case rare-earth (RE) ions, and thermally processed using a differential scanning calorimeter. In a first step, only europium in its divalent and trivalent oxidation states, Eu(2+) and Eu(3+), is investigated, which shows no significant influence on the crystallization of hexagonal phase BaCl2. However, higher amounts of Eu(2+) increase the activation energy of the phase transition to an orthorhombic crystal structure. In a second step, nucleation and nanocrystal growth are influenced by changing the structural environment of the glasses by co-doping with Eu(2+) and trivalent Gd(3+), Nd(3+), Yb(3+), or Tb(3+), due to the different atomic radii and electro-negativity of the co-dopants.

  7. Broadband Near-Infrared Emission from Transparent Ni2+-Doped Sodium Aluminosilicate Glass Ceramics

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shi-Feng; FENG Gao-Feng; XU Shi-Qing; WU Bo-Tao; QIU Jian-Rong

    2006-01-01

    @@ Broadband near-infrared emission from transparent Ni2+-doped sodium aluminosilicate glass-ceramics is observed.The broad emission is centred at 1290nm and covers the whole telecommunication wavelength region (1100-1700nm) with full width at half maximum of about 340nm. The observed infrared emission could be attributed to the 3T2(F) → 3A2(F) transition of octahedral Ni2+ ions that occupy high-field sites in nanocrystals. The product of the lifetime and the stimulated emission cross section is 2.15 × 10-24 cm2s. It is suggested that Ni2+-doped sodium aluminosilicate glass ceramics have potential applications in tunable broadband light sources and broadband amplifiers.

  8. Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass

    Science.gov (United States)

    Frantz, J. A.; Shaw, L. B.; Sanghera, J. S.; Aggarwal, I. D.

    2006-03-01

    Waveguide amplifiers fabricated in Er3+-doped gallium lanthanum sulfide (GLS) glass are demonstrated. GLS is deposited onto fused silica substrates by RF magnetron sputtering, and waveguides are patterned by use of the lift-off technique. The waveguides exhibit a total internal gain of 6.7 dB (2.8 dB/cm) for a signal with a wavelength of 1.55 μm. This experiment is, to the best of our knowledge, the first demonstration of gain in an Er3+-doped chalcogenide glass waveguide. The fabrication methods we apply, if used with other rare earth dopants, could potentially be employed to produce sources operating in the mid-IR.

  9. Monte Carlo simulations of homogeneous upconversion in erbium-doped silica glasses

    OpenAIRE

    Philipsen, Jacob Lundgreen; Bjarklev, Anders Overgaard

    1997-01-01

    Quenching of Er3+ ions by homogeneous energy-transfer upconversion in high-concentration erbium-doped silica glasses has been theoretically investigated, The results indicate that at Er3+ concentrations of 1.0-2.0·1026 m-3 or below, the kinetic limit of strong migration is not reached, and hence the widely accepted quadratic upconversion model is not generally valid. Nevertheless, the results offer an explanation of the experimental observations of quadratic upconversion. Furthermore, it has ...

  10. Nd3+ Doped Silicate Glass Photonic Crystal Fiber with Random Hole Distributions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The fabrication of one kind of large core area Nd3+ doped silicate glass photonic crystal fiber, and demonstration of the fiber's waveguidence properties were reported. This fiber owns a random air hole distribution in the cladding. The measured minimum loss of this kind of fiber is 10 dB·m-1 at 660 nm. These fibers can sustain only a single mode at least over wavelength ranging from 660 nm to 980 nm.

  11. Ultraviolet upconversion emission from ZBLAN glass doped with Tm 3+ ions

    Science.gov (United States)

    Li, Jianfu; Wang, Xiaoli; Yang, Haigui; Jiang, Zhankui

    2007-04-01

    The ultraviolet upconversion emission properties from Tm 3+ ions doped ZBLAN glass upon 463 nm laser excitation have been studied. Two ultraviolet emission bands, centered at 347 nm for 1I 6→ 3F 4 Tm 3+ transition and 362 nm for 1D 2→ 3H 6 Tm 3+ transition, have been observed. The responsible upconversion mechanisms were investigated by measuring time evolution spectra.

  12. Features Of The Phase Transformations In Titanium-containing Zinc Aluminosilicate Glasses Doped With Cobalt Oxide

    OpenAIRE

    Alekseeva I.P.; Dymshits O.S.; Ermakov V.A.; Zhilin A.A.; Tsenter M.Ya.

    2013-01-01

    We demonstrated the efficiency of the Raman spectroscopy method in the study of the process of the formation of the amorphous zinc aluminotitanate (ZAT) phase during the phase decomposition of the titanium-containing zinc aluminosilicate glasses doped with cobalt oxide. The quantitative dependences of the variation of the intensity of the Raman bands characteristic for amorphous and crystalline phases on the temperature of the thermal treatment and the cobalt oxide concentration have been obt...

  13. Optical nonlinearities in semiconductor-doped glasses near and below the band edge

    Science.gov (United States)

    Bindra, K. S.; Oak, S. M.; Rustagi, K. C.

    1998-03-01

    We present a brief review of our recent experimental results on optical nonlinearities in semiconductor-doped glasses. It is shown that even below the absorption edge the nonlinearities are determined by nonlinear absorption. The optical Kerr effect is found to have a susceptibility which is comparable to that for nonlinear refraction. We also find that in degenerate four-wave mixing the observed intensity dependence can be strongly influenced by nonlinear absorption.

  14. Optimization of TM-Doped Phosphosilicate Glass for High Power Fiber Lasers

    Science.gov (United States)

    2016-04-28

    such as glass and ceramics, again way beyond the capability of current mechanical tools. Some of the key applications include drilling micron-size...throughput, which far exceeds the capability of current technologies. It is already revolutionizing many industries, e.g. drilling micron-size holes in fuel...wave detections using extremely long interferometers. Tm-doped high power fiber lasers at 2µm are critical for eye-safer LIDAR and other optical

  15. Influence of low concentration V and Co oxide doping on the dissolution behaviors of simplified nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaonan; Neeway, James J.; Ryan, Joseph V.; Du, Jincheng

    2016-11-01

    Transition metal oxides are commonly present in nuclear waste and they can alter the structure, property and especially dissolution behaviors of the glasses used for waste immobilization. In this paper, we investigated vanadium and cobalt oxide induced structural and properties changes, especially dissolution behaviors, of International Simple Glass (ISG), a model nuclear waste glass system. Static chemical durability tests were performed at 90 °C with a pH value of 7 and a surface-area-to-solution-volume of 200 m-1 for 112 days on three glasses: ISG, ISG doped with 0.5 mol% Co2O3, and ISG doped with 2.0 mol% V2O5. ICP-MS was used to analyze the dissolved ion concentrations. It was found that doping with vanadium and cobalt oxide, even at the low doping concentration, significantly reduced the extent of the ISG glass dissolution. Differential Scanning Calorimetry (DSC) analysis showed that vanadium oxide doping reduced the glass transition temperature (Tg) while cobalt oxide did not significantly change the Tg of ISG. X-ray diffraction (XRD), Raman spectrometry and scanning electron microscopy (SEM) were used to analyze the glass samples before and after corrosion to understand the phase and microstructure changes.

  16. Effects of Nb2O5 on thermal stability and optical properties of Er3+-doped tellurite glasses

    Institute of Scientific and Technical Information of China (English)

    Zhao Chun; Zhang Qin-Yuan; Pan Yue-Xiao; Jiang Zhong-Hong

    2006-01-01

    Er3+-doped tellurite glasses with molar compositions of xNb2O5 - (14.7 - x)Na2O-10ZnO-SK2O-10GeO2-60TeO2-0.3Er2O3 (x = 0, 3, 5, 7 and 9) have been investigated for developing 1.5 μm fibre and planar amplifiers. The effects of Nb2O5 on the thermal stability and optical properties of Er3+-doped tellurite glasses have been discussed.It is noted that the incorporation of Nb2O5 (x=5) increases the thermal stability of tellurite glasses significantly.Er3+-doped niobium tellurite glasses exhibit a large stimulated emission cross-section (7.2×10-21 - 10.7×10-21 cm2)and the gain bandwidth, FWHM×σepeak (274×10-28 -480×10-28 cm3), which are significantly higher than that of silicate and phosphate glasses. In addition, the intensity of upconversion luminescence of the Er3+-doped niobium tellurite glasses decreases rapidly with increasing Nb2O5 content. As a result, Er3+-doped niobium tellurite glasses might be a potential candidate for developing laser or optical amplifier devices.

  17. Influence of high magnetic field on the luminescence of Eu{sup 3+}-doped glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Chen, Weibo; Chen, Ping; Xu, Beibei; Zheng, Shuhong; Guo, Qiangbing; Liu, Xiaofeng, E-mail: xfliu@zju.edu.cn, E-mail: qjr@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, Junpei; Han, Junbo [Wuhan National High Magnetic field Center, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Qiu, Jianrong, E-mail: xfliu@zju.edu.cn, E-mail: qjr@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640 (China)

    2014-09-28

    Rare earth (RE) doped materials have been widely exploited as the intriguing electronic configuration of RE ions offers diverse functionalities from optics to magnetism. However, the coupling of magnetism with photoluminescence (PL) in such materials has been rarely reported in spite of its fundamental significance. In the present paper, the effect of high pulsed magnetic field on the photoluminescence intensity of Eu{sup 3+}-doped nano-glass-ceramics has been investigated. In our experiment, Eu-doped oxyfluoride glass and glass ceramic were prepared by the conventional melt-quenching process and controlled heat treatment. The results demonstrate that the integrated PL intensity of Eu{sup 3+} decreases with the enhancement of magnetic field, which can be interpreted in terms of cooperation effect of Zeeman splitting and magnetic field induced change in site symmetry. Furthermore, as a result of Zeeman splitting, both blue and red shift in the emission peaks of Eu{sup 3+} can be observed, and this effect becomes more prominent with the increase of magnetic field. Possible mechanisms associated with the observed magneto-optical behaviors are suggested. The results of the present paper may open a new gate for modulation of luminescence by magnetic field and remote optical detection of magnetic field.

  18. Influence of high magnetic field on the luminescence of Eu3+-doped glass ceramics

    Science.gov (United States)

    Jiang, Wei; Zhang, Junpei; Chen, Weibo; Chen, Ping; Han, Junbo; Xu, Beibei; Zheng, Shuhong; Guo, Qiangbing; Liu, Xiaofeng; Qiu, Jianrong

    2014-09-01

    Rare earth (RE) doped materials have been widely exploited as the intriguing electronic configuration of RE ions offers diverse functionalities from optics to magnetism. However, the coupling of magnetism with photoluminescence (PL) in such materials has been rarely reported in spite of its fundamental significance. In the present paper, the effect of high pulsed magnetic field on the photoluminescence intensity of Eu3+-doped nano-glass-ceramics has been investigated. In our experiment, Eu-doped oxyfluoride glass and glass ceramic were prepared by the conventional melt-quenching process and controlled heat treatment. The results demonstrate that the integrated PL intensity of Eu3+ decreases with the enhancement of magnetic field, which can be interpreted in terms of cooperation effect of Zeeman splitting and magnetic field induced change in site symmetry. Furthermore, as a result of Zeeman splitting, both blue and red shift in the emission peaks of Eu3+ can be observed, and this effect becomes more prominent with the increase of magnetic field. Possible mechanisms associated with the observed magneto-optical behaviors are suggested. The results of the present paper may open a new gate for modulation of luminescence by magnetic field and remote optical detection of magnetic field.

  19. Study on surface roughness evolvement of Nd-doped phosphate glass after IBF

    Science.gov (United States)

    Li, Furen; Xie, Xuhui; Zhou, Lin; Tie, Guipeng; Hu, Hao

    2016-10-01

    Nd doped phosphate glass is widely used as gain media in high power laser system. It is traditionally polished with the annular polishing technology. The edge effect is inevitable in annular polishing process and it results in the low manufacturing efficiency. Ion Beam Figuring (IBF) is a highly deterministic, non-contact method for the ultra-precision optics fabrication. So the edge effect is avoided. Nanometer and sub-nanometer precision is realizable in IBF. In this paper, Nd doped phosphate glass was polished with IBF, and the evolvement of surface roughness was emphasized. The roughness of surface polished with ion beam at normal and oblique incidence was researched. The oblique incident angle was 45°. The surface roughness was measured with the white light interferometer. No evident change was observed. This means that the pre-finish roughness can be preserved in IBF. The results denote that IBF is a feasible method to correct the contour errors of Nd doped phosphate glass, and the roughness will not be coarsened.

  20. Characterization of Waste Material Derived Willemite-Based Glass-Ceramics Doped with Erbium

    Directory of Open Access Journals (Sweden)

    G. V. Sarrigani

    2015-01-01

    Full Text Available We reported, for the first time, to the best of our knowledge, the production of erbium doped willemite-based glass-ceramic using waste material. In this work, a willemite-based glass-ceramic was prepared from waste material to obtain excellent crystallinity and then doped with trivalent erbium (Er3+ to yield ([(ZnO0.5(SLS0.5]1−x[Er2O3]x final composition where x=3 wt%. The samples were sintered at various temperatures (500–1100°C to study the effects of sintering temperatures on microstructure and physical properties of the samples. X-ray diffraction (XRD and Fourier transform infrared (FTIR were used to determine structural changes and functional groups in the samples, respectively. Field-emission scanning electron microscopy (FE-SEM equipped with energy dispersive X-ray was used to observe surface morphology and to detect presence of elements in the samples. Findings showed that average grain size of the Er3+ doped glass-ceramic sample increased as a function of the sintering temperature and the optimum temperature was 900°C.

  1. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    CERN Document Server

    Blanc, Wilfried; Nguyen, Luan; Bhaktha, S N B; Sebbah, Patrick; Pal, Bishnu P; Dussardier, Bernard

    2011-01-01

    Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporati...

  2. Characterization of Undoped and Cu-Doped ZnO Thin Films Deposited on Glass Substrates by Spray Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Metin Bedir; Mustafa (O)ztas; A. Necmeddin Yazici; E. Vural Kafadar

    2006-01-01

    @@ Undoped and copper doped zinc oxide (ZnO) thin films have been prepared on glass substrates by spray pyrolysis technique. The films were doped with copper using the direct method by addition of a copper salt (CuCl2) in the spray solution of ZnO. Variation of structural, electrical, optical and thermoluminescence (TL) properties with doping concentrations is investigated in detail.

  3. Radiation damage induced by gamma irradiation on Ce sup 3 sup + doped phosphate and silicate scintillating glasses

    CERN Document Server

    Baccaro, S; Mihoková, E; Nikl, M; Nitsch, K; Polato, P; Zanella, G; Zannoni, R

    2002-01-01

    The effect of gamma irradiation on the optical properties of Ce sup 3 sup + -doped phosphate and silicate glasses is studied in the 1-250 Gy dose range. Results are discussed by taking into account the possible dependence of radiation-induced effects on the composition of the glass matrix.

  4. Development of large-scale production of Nd-doped phosphate glasses for megajoule-scale laser systems

    Science.gov (United States)

    Ficini, Gaelle; Campbell, Jack H.

    1996-08-01

    Nd-doped phosphate glasses are the preferred gain medium for high-peak-power lasers used for inertial confinement fusion research because they have excellent energy storage and extraction characteristics. In addition, these glasses can be manufactured defect-free in large sizes and a t relatively low cost. To meet the requirements of the future megajoule size lasers, advanced laser glass manufacturing methods are being developed that would enable laser glass to be continuously produced at the rate of several thousand large plates of glass per year. This represents more than a 10 to 100-fold improvement in the scale of the present manufacturing technology.

  5. Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment.

    Science.gov (United States)

    Fang, Zaijin; Zheng, Shupei; Peng, Wencai; Zhang, Hang; Ma, Zhijun; Dong, Guoping; Zhou, Shifeng; Chen, Danping; Qiu, Jianrong

    2015-11-02

    Glass ceramic fibers containing Ni(2+) doped LiGa(5)O(8) nanocrystals were fabricated by a melt-in-tube method and successive heat treatment. Fiber precursors were prepared by drawing at high temperature where fiber core glass was melted while fiber clad glass was softened. After heat treatment, LiGa(5)O(8) nanocrystals were precipitated in the fiber core. Excited by 980 nm laser, efficient broadband near-infrared emission was observed in the glass ceramic fiber compared to that of precursor fiber. The melt-in-tube method can realize controllable crystallization and is suitable for fabrication of novel glass ceramic fibers. The Ni(2+)-doped glass ceramic fiber is promising for broadband optical amplification.

  6. Absorption spectra of gamma-irradiation TM-doped cabal glasses

    Science.gov (United States)

    Marzouk, Samir Y.; Elbatal, Fatma H.; Salem, A. M.; Abo-Naf, S. M.

    2007-07-01

    The UV-visible absorption spectra of nominally pure and transition metals-doped (Ti → Cu 0.1%) cabal glasses were measured from 200 to 1000 nm before and after successive gamma irradiation. The absorption spectra of the undoped glass exhibit charge transfer bands due to iron trace impurities which eventually affect the induced absorption due to some transition metals and that due to the host base glass in the UV region. The intensity of the radiation-induced bands depends on the number of intrinsic defects and the rate of formation of the different induced color centers. Also, the possible photochemical processes due to the effect of radiation on the transition metal ions are observed to affect the overall induced spectra. The growth behavior of the repetitive induced bands in the undoped and TM-doped glasses reveals a fast increase at first dose and the growth rate decreases or approaches saturation afterwards and different possible assumptions are given to interpret this behavior.

  7. Intense red upconversion emission of Yb/Tm/Ho triply-doped tellurite glasses.

    Science.gov (United States)

    Zhan, Huan; Zhou, Zhiguang; He, Jianli; Lin, Aoxiang

    2012-05-20

    By conventional melting and quenching methods, 3Yb2O3-0.2Tm2O3-xHo2O3 (wt%, x=0.2~1.2) was doped into an easily fiberized tellurite glass with composition of 78TeO2-10ZnO-12Na2O (mol%) to form YTH-TZN78 glasses. Under 976 nm excitation, the direct sensitizing effect of Yb ions (Yb→Ho) and indirect sensitizing and self-depopulating effects of Tm ions (Yb→Tm→Ho) were found to present intense red upconversion emission at 657 nm (Red, Ho:5F5→5I8) and were responsible for the absence of the usually observed 484 nm emission (Blue, Tm:1G4→3H36). Regardless of the dopant concentration of Ho ions, the intensity of the red emission at 657 nm (Red, Ho:5F5→5I8) is about three times stronger than that of the green one at 543 nm (Green, Ho:5S2→5I8). For this certain red emission at 657 nm, 0.4 wt% Ho2O3-doped YTH-TZN78 glass was found to present the highest emission intensity and is therefore determined as a promising active tellurite glass for red fiber laser development.

  8. Performance of Photoluminescence Glass Fiber in Eu3+ Doped ZMCB and ZMLB

    Institute of Scientific and Technical Information of China (English)

    Chang Shulan

    2005-01-01

    The photoluminescence glass fiber in Eu3+ doped ZnO-MgO-CdO-B2O3 is drawn artificially by high-temperature solid state reaction and glass stream hauling method in handling of photoluminecent waste material. Its diameter is 0.01~0.30 mm and its length is more than 10 m. The strong emission band of Eu3+ at 613 nm belongs to 5D0→7F2 electric dipole transition, and the emission intensity at 591 nm is 40% of that at 613 nm and intensity belongs to 5D0→7F1 magnetic dipole transition. It is known to all that Eu3+ mainly hold asymmetrical center lattice in local ambient and also possesses symmetrical center lattice. By fitting decay curves of Eu3+ of different concentrations, it is discovered that the luminescence changes from the first order decay to the second order decay while the concentrations of Eu3+ are increased. It is observed by SEM that glass fiber shows smooth surface, low crystal growing rate, high density of fracture and shellfish veins of fracture obviously submits ditch form. Meanwhile, a series of mechanics parameters were measured and the spectral behaviors of the glass fiber in Eu3+ doped ZnO-MgO-CdO-B2O3 were studied.

  9. An hour-glass magnetic spectrum in an insulating, hole-doped antiferromagnet.

    Science.gov (United States)

    Boothroyd, A T; Babkevich, P; Prabhakaran, D; Freeman, P G

    2011-03-17

    Superconductivity in layered copper oxide compounds emerges when charge carriers are added to antiferromagnetically ordered CuO(2) layers. The carriers destroy the antiferromagnetic order, but strong spin fluctuations persist throughout the superconducting phase and are intimately linked to superconductivity. Neutron scattering measurements of spin fluctuations in hole-doped copper oxides have revealed an unusual 'hour-glass' feature in the momentum-resolved magnetic spectrum that is present in a wide range of superconducting and non-superconducting materials. There is no widely accepted explanation for this feature. One possibility is that it derives from a pattern of alternating spin and charge stripes, and this idea is supported by measurements on stripe-ordered La(1.875)Ba(0.125)CuO(4) (ref. 15). Many copper oxides without stripe order, however, also exhibit an hour-glass spectrum. Here we report the observation of an hour-glass magnetic spectrum in a hole-doped antiferromagnet from outside the family of superconducting copper oxides. Our system has stripe correlations and is an insulator, which means that its magnetic dynamics can conclusively be ascribed to stripes. The results provide compelling evidence that the hour-glass spectrum in the copper oxide superconductors arises from fluctuating stripes.

  10. Effect of lithium-potassium mixed alkali on spectroscopic properties of Er3+-doped aluminophosphate glasses

    Institute of Scientific and Technical Information of China (English)

    Fang Yong-Zheng; Liao Mei-Song; Hu Li-Li

    2007-01-01

    Er3+-doped lithium-potassium mixed alkali aluminophosphate glasses belonging to the oxide system xK2O-(15-x)Li2O-4B2O3-11Al2O3-5BaO-65P2O5 are obtained in a semi-continuous melting quenching process. Spectroscopic properties of Er3+-doped glass matrix have been analysed by fitting the experimental data with the standard Judd- Ofelt theory. It is observed that Judd- Ofelt intensity parameters Ωt(t = 2, 4 and 6) of Er3+ change when the second alkali is introduced into glass matrix. The variation of line strength Sed[4I13/2,4I15/2] follows the same trend as that of the Ω6 parameter. The effect of mixed alkali on the spectroscopic properties of the aluminophosphate glasses, such as absorption cross-section, stimulated emission cross-section, spontaneous emission probability, branching ratio and the radiative lifetime, has also been investigated in this paper.

  11. FTIR spectra and thermal properties of TiO2-doped iron phosphate glasses

    Science.gov (United States)

    Lu, Mingwei; Wang, Fu; Liao, Qilong; Chen, Kuiru; Qin, Jianfa; Pan, Sheqi

    2015-02-01

    Structure and thermal properties of xTiO2·(90 - x) (60P2O5-40Fe2O3)ṡ10CaF2 (x = 0, 5, 10, 15, 20 and 25 mol%) glasses are investigated in detail by Fourier Transform Infrared Spectrum (FTIR) and Differential Thermal Analysis (DTA), respectively. It is found that incorporation of TiO2 increase the density and glass transition temperature of iron phosphate system glass. The increment of doped-TiO2 can also strengthen phosphate network chains due to increasing O/P ratios and more orthophosphate (Q0) units formed in the glass structure at expense of pyrophosphate (Q1) units and metaphosphate (Q2) groups. Moreover, the structure of iron phosphate glass with TiO2 content contain distorted octahedral [TiO6] linked to phosphate unit through Psbnd Osbnd Ti bonds, thus enhanced structure cohesion and increased density obtained. The knowledge provides an improved understanding of the role of TiO2 in the structure of iron phosphate glasses.

  12. Raman and Luminescence Investigation of Rare Earth Doped Laser-Induced Crystals-in-Glass

    Science.gov (United States)

    Knorr, Brian; Stone, Adam; Jain, Himanshu; Dierolf, Volkmar

    2015-03-01

    Laser induced crystallization of glasses is a highly spatially selective process which has the potential to produce compact, integrated optics within a glass matrix. In LaBGeO5 low temperature Combined Excitation Emission Spectroscopy (CEES) revealed that erbium incorporates into both glass-ceramics and laser-induced crystals-in-glass in predominantly one type of environment (site). The energy levels of this site were quantified. The fluorescence characteristics of the erbium ions in any site in the laser-induced crystals were found to be only weakly influenced by the irradiation conditions during growth. On the other hand, a hidden parameter, potentially boron deficiency-related defects, resulted in a significant change in the incorporation behavior of the erbium ions. Scanning confocal Raman and fluorescence spectroscopy showed that the energies of the Raman modes are shifted and the erbium fluorescence intensity is inhomgeneously distributed, despite the host glass being homogeneously doped, across the cross-sections of laser-induced crystals in glass. These fluctuations within the Raman and fluorescence are spatially correlated, implying that different erbium sites form preferentially at different locations in the crystal cross-section.

  13. Enhancement of cells proliferation and control of bioactivity of strontium doped glass

    Science.gov (United States)

    Oudadesse, H.; Dietrich, E.; Bui, X. V.; Le Gal, Y.; Pellen, P.; Cathelineau, G.

    2011-08-01

    Bioactivity and chemical reactivity of bioactive glass offer the ability to bond for soft and hard biological tissues. In this work, synthesis was carried out by using melting and rapid quenching. Strontium was introduced as trace element at different contents in the glass matrix, according to its concentration in the bone matrix. This chemical element presents a high interest in the bone metabolism activity. Investigations were conducted on the surface of biomaterials by using in vitro assay after immersion in SBF. Several physico-chemical methods such as SEM, FTIR, NMR, ICP-OES and MTT test were employed to highlight the effects of the Sr. The in vitro experiments showed that after soaking in SBF, the behaviour of pure glass is different compared to glass doped with Sr. NMR analyses showed in the 29Si MAS-NMR that glass matrix undergoes some changes after in vitro assays particularly the emergence of new components attributed to Q 3(OH). The presence of Sr slowed down the bioactivity of glass after immersion in SBF. The non toxic character of compounds was confirmed. Introduction of Sr at 0.1 wt % induce an enhancement of cells at about 14.3%.

  14. Optical properties of zinc–vanadium glasses doped with samarium trioxide

    Indian Academy of Sciences (India)

    B Eraiah

    2014-04-01

    Zinc–vanadium glasses doped with samarium oxide having the chemical composition Sm2O3() ZnO(40-)V2O5(60) (where = 0.1–0.5 mol%) were prepared by melt quenching method. The density of these glasses was measured by Archimedes method; the corresponding molar volumes have also been calculated. The values of density range from 3.7512 to 5.0535 gm/cm3 and those of molar volume range from 28.3004 to 37.6415 cm-3. The optical absorbance studies were carried out on these glasses to measure their energy bandgaps. The absorption spectra of these glasses were recorded in UV–Visible region. No sharp edges were found in the optical spectra, which verify the amorphous nature of these glasses. The calculated optical bandgap energies of these glasses were found to be in the range of 0.3173–0.6640 eV. The refractive index and polarizability of oxide ion have been calculated by using Lorentz–Lorentz relations. The values of refractive index range from 1.1762 to 1.2901 and those of polarizability of oxide ion range from 1.6906 × 10-24 to 2.2379 × 10-24 cm3.

  15. Preparation and Performance of Magneto-optical Glasses Doped with Tb3+/Dy3+

    Institute of Scientific and Technical Information of China (English)

    YIN Hairong; ZHAO Gaoyang; LIU Pan; WANG Shunni; GUO Hongwei

    2014-01-01

    In order to increase the content of rare-earth oxides in magneto-optical glass and improve the Verdet constant, the rare-earth doped ternary Ga2O3-B2O3-SiO2(GBS) system magneto-optical glasses were prepared by the melt quenching technique. The influence of Tb3+and Dy3+ions on the structure of GBS glasses was investigated using FTIR, DSC and Faraday rotations. The experimental results showed that the content of rare-earth oxides in the glasses with the double incorporation of Tb2O3 and Dy2O3 was higher. The crystallization parameterβachieved the maximum 0.48 with Tb3+/Dy3+content of 35mol%. Terbium oxide existed mainly in [TbO3] units in the glasses and [TbO4] units were converted into [TbO3] with increasing Tb2O3 content. As Ga3+ion is larger than B3+ion in radius, leading to an increasing of the glass network gap and improvement in the ability of accommodating rare earth ions, Verdet constant increased.

  16. NIR emission studies and dielectric properties of Er(3+)-doped multicomponent tellurite glasses.

    Science.gov (United States)

    Sajna, M S; Thomas, Sunil; Jayakrishnan, C; Joseph, Cyriac; Biju, P R; Unnikrishnan, N V

    2016-05-15

    Multicomponent tellurite glasses containing altered concentrations of Er2O3 (ranging from 0 to 1 mol%) were prepared by the standard melt quenching technique. Investigations through energy dispersive X-ray spectroscopy (EDS), Raman scattering spectroscopy, Fourier transform infrared (FTIR) spectroscopy, near-infrared (NIR) emission studies and dielectric measurement techniques were done to probe their compositional, structural, spectroscopic and dielectric characteristics. The broad emission together with the high values of the effective linewidth (~63 nm), stimulated emission cross-section (9.67 × 10(-21) cm(2)) and lifetime (2.56 ms) of (4)I13/2 level for 0.5 mol% of Er(3+) makes these glasses attractive for broadband amplifiers. From the measured capacitance and dissipation factor, the relative permittivity, dielectric loss and the conductivity were computed; which furnish the dielectric nature of the multicomponent tellurite glasses that depend on the applied frequency. Assuming the ideal Debye behavior as substantiated by Cole-Cole plot, an examination of the real and imaginary parts of impedance was performed. The power-law and Cole-Cole parameters were resolved for all the glass samples. From the assessment of the emission analysis and dielectric properties of the glass samples, it was obvious that the Er(3+) ion concentration had played a vital role in tuning the optical and dielectric properties and the 0.5 mol% of Er(3+) -doped glass was confirmed as the optimum composition.

  17. NIR emission studies and dielectric properties of Er3+-doped multicomponent tellurite glasses

    Science.gov (United States)

    Sajna, M. S.; Thomas, Sunil; Jayakrishnan, C.; Joseph, Cyriac; Biju, P. R.; Unnikrishnan, N. V.

    2016-05-01

    Multicomponent tellurite glasses containing altered concentrations of Er2O3 (ranging from 0 to 1 mol%) were prepared by the standard melt quenching technique. Investigations through energy dispersive X-ray spectroscopy (EDS), Raman scattering spectroscopy, Fourier transform infrared (FTIR) spectroscopy, near-infrared (NIR) emission studies and dielectric measurement techniques were done to probe their compositional, structural, spectroscopic and dielectric characteristics. The broad emission together with the high values of the effective linewidth (~ 63 nm), stimulated emission cross-section (9.67 × 10- 21 cm2) and lifetime (2.56 ms) of 4I13/2 level for 0.5 mol% of Er3+ makes these glasses attractive for broadband amplifiers. From the measured capacitance and dissipation factor, the relative permittivity, dielectric loss and the conductivity were computed; which furnish the dielectric nature of the multicomponent tellurite glasses that depend on the applied frequency. Assuming the ideal Debye behavior as substantiated by Cole-Cole plot, an examination of the real and imaginary parts of impedance was performed. The power-law and Cole-Cole parameters were resolved for all the glass samples. From the assessment of the emission analysis and dielectric properties of the glass samples, it was obvious that the Er3+ ion concentration had played a vital role in tuning the optical and dielectric properties and the 0.5 mol% of Er3+ -doped glass was confirmed as the optimum composition.

  18. Optical properties of Yb{sup 3+}-doped phosphate laser glasses

    Energy Technology Data Exchange (ETDEWEB)

    Venkatramu, V. [Department of Physics, Yogi Vemana University, Kadapa 516 003 (India); Vijaya, R. [Department of Physics, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh (India); Leon-Luis, S.F. [MALTA Consolider Team, Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna, E-38200 San Cristobal de La Laguna, Santa Cruz de Tenerife (Spain); Babu, P. [Department of Physics, Govt. Degree and P.G. College, Wanaparthy 509 103 (India); Jayasankar, C.K., E-mail: ckjaya@yahoo.com [Department of Physics, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh (India); Lavin, V. [MALTA Consolider Team, Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna, E-38200 San Cristobal de La Laguna, Santa Cruz de Tenerife (Spain); Instituto Universitario de Estudios Avanzados en Atomica, Molecular y Fotonica (IUdEA), Universidad de La Laguna, E-38200 San Cristobal de La Laguna, Santa Cruz de Tenerife (Spain); Dhareshwar, L.J. [Laser and Neutron Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2011-04-21

    Graphical abstract: Display Omitted Research highlights: > The optical properties of Yb{sup 3+}-doped phosphate glasses exhibit better laser performance parameters. > The OH{sup -} concentration in glasses increases with increase of Yb{sub 2}O{sub 3} concentration. > The quenching of lifetime is purely diffusion limited at lower Yb{sub 2}O{sub 3} concentration. > The lifetime of {sup 2}F{sub 5/2} is proportional to inter-ionic distance between Yb{sup 3+} ions. - Abstract: Ytterbium-doped phosphate glasses have been prepared and studied their spectroscopic properties through absorption, emission and Fourier transform infrared (FTIR) spectral studies and time-resolved luminescence decay curves. The absorption cross-section has been found to vary with the variation of Yb{sub 2}O{sub 3} concentration. The results of the FTIR spectra show that the OH{sup -} content is increasing with increase of the Yb{sub 2}O{sub 3} concentration in these glasses. The decay curves of the {sup 2}F{sub 5/2} level of Yb{sup 3+} ions exhibit a single exponential nature for all the concentrations. The lifetimes of the {sup 2}F{sub 5/2} level of Yb{sup 3+} ions decreases from 1.04 to 0.27 ms when the Yb{sub 2}O{sub 3} concentration is increased from 0.1 to 6.0 mol%. The quenching of lifetimes has been found to vary directly with the inter-ionic distance between the Yb{sup 3+} ions. The concentration quenching of the lifetime has been analyzed using different energy transfer processes and no evidence of cooperative luminescence of Yb{sup 3+} ions has been found in these glasses, which reveals that the present glasses are useful for photonic device applications. The laser performance properties have also been evaluated for these glasses and compared with those of other reported Yb{sup 3+}-doped glass systems.

  19. Spectroscopic and luminescence characteristics of erbium doped TNZL glass for lasing materials

    Energy Technology Data Exchange (ETDEWEB)

    Assadi, A.A. [Laboratoire Géoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia); Otto-Schott-Institut, Jena University, Fraunhoferstrasse 6, 07743 Jena (Germany); Damak, K., E-mail: Kamel.Damak@fss.rnu.tn [Laboratory of Radio Analysis and Environment, Sfax University, ENIS 3038 Sfax (Tunisia); Lachheb, R. [Laboratoire Géoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia); Otto-Schott-Institut, Jena University, Fraunhoferstrasse 6, 07743 Jena (Germany); Herrmann, A. [Otto-Schott-Institut, Jena University, Fraunhoferstrasse 6, 07743 Jena (Germany); Yousef, E. [Department of Physics, Faculty of Sciences, Al Azhar University, Assuit Branch, Assuit (Egypt); Department of Physics, Faculty of Sciences, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Rüssel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstrasse 6, 07743 Jena (Germany); Maâlej, R. [Laboratoire Géoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia)

    2015-01-25

    Highlights: • A new thermally stable tellurite glass (TNZL:Er) was synthesized by melt-quenching method. • A complete Judd–Ofelt spectroscopic evaluation of the TNZL:Er glass is presented. • A high gain coefficient and emission cross section are obtained in the 1.53 μm region. • The TNZL:Er glass would be a potential laser operation around 1.53 μm emission as well as to generate green light in color display devices. - Abstract: Rare earth-doped tellurite glasses are very attractive materials for laser and photonic applications, such as optical amplifiers. They have a good glass stability which leads to an enhancement of the radiative transition. In the present study, a new transparent bulk glass with the composition 85TeO{sub 2}–5Nb{sub 2}O{sub 5}–5ZnO–5LiF doped with 1% Er{sub 2}O{sub 3} (TNZL doped with Er{sup 3+}) was prepared by using the conventional melt-quenching method. The thermal stability and the crystallization behavior of the glass were investigated using Differential Scanning Calorimetry (DSC), X-ray diffraction and Raman spectroscopy. Furthermore, UV–vis–NIR spectra were determined. From these Judd–Ofelt parameters, Ω{sub k} (k = 2, 4, 6) of Er{sup 3+} were evaluated. The oscillator strength type transition probabilities, spectroscopic quality factors, branching ratio and radiative lifetimes of several excited states of Er{sup 3+} were predicted using intensity Judd–Ofelt parameters. The down conversion, up conversion and near infrared luminescence of the Er{sup 3+} ions in TNZL glass were investigated. Green and red emissions corresponding to ({sup 2}H{sub 11/2}, {sup 4}S{sub 3/2}) → {sup 4}I{sub 15/2} and {sup 4}F{sub 9/2} → {sup 4}I{sub 15/2} transitions were observed.

  20. Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification

    Science.gov (United States)

    Yang, D. L.; Pun, E. Y. B.; Lin, H.

    2009-10-01

    K+-Na+ ion-exchanged channel waveguide amplifiers have been fabricated in Tm3+-doped acid-resistant aluminum germanate glasses. The optical and relative gains of a 3.15-cm-long waveguide channel were achieved to be 4.05 and 2.29 dB at 1.482 μm wavelength under 110 mW 793 nm laser excitation, respectively. After compensating the propagation loss, an internal gain of 1.50 dB and a remarkable gain coefficient of 0.48 dB/cm were obtained, which reveals a definite S-band signal amplification in the low phonon energy glass waveguide. As an expectation, UV-radiation-sensitive glass waveguide should promote the developments of gain-flatten S-band waveguide amplifiers, infrared UV-writing grating waveguide lasers, and compact multifunctional integrated optical devices.

  1. Photosensitivity of ion-exchanged Er-doped phosphate glass using 248nm excimer laser radiation.

    Science.gov (United States)

    Pissadakis, Stavros; Ikiades, Aris; Hua, Ping; Sheridan, Anna; Wilkinson, James

    2004-07-12

    The photosensitivity to 248nm excimer laser radiation of Er-doped Schott IOG-1 phosphate glass is presented. The photosensitive mechanism is investigated by employing a grating recording process. Index changes of up to ~2.0x10(-3) were measured in silver ion-exchanged samples using diffraction efficiency measurements; whereas changes of only ~10(-5) were measured for non-ion-exchanged samples. Absorption measurements allowed the identification of specific color center bands, which were attributed to the glass matrix and to the silver ions. Investigation of the exposed ion-exchanged glass using scanning electron microscopy and energy dispersive x-ray microanalysis revealed that in addition to the color centers formed, silver ion migration and ionization contribute significantly to the UV-induced index changes.

  2. Effect of yttrium oxide addition on absorption and emission properties of bismuth-doped silicate glasses

    Institute of Scientific and Technical Information of China (English)

    DAI Nengli; WANG Yanshan; XU Bing; YANG Lüyun; LUAN Huaixun; LI Jinyan

    2012-01-01

    Y/Bi co-doped silicate glasses were prepared,and the effects of Y2O3 on the absorption and emission properties were investigated by spectrum measurement.It was found that the absorption intensity in visible region decreases with increase of Y3+ concentration in (70-x)SiO2-xY2O3-30CaO-1.5Bi2O3 (x=0mol.%,1mol.%,3 mol.%,5 mol.%,7 mol.%) glasses.The emissions centered at 410,630,1200 and 1290 nmwere observed under 280,470,514 and 808 nm excitation,respectively.The emission intensity had the similar change tendency in the visible and near infrared region.We also discussed the actual role of Y 3+ ions playing in the visible and near infrared emissions of the silicate glasses.

  3. Spectral properties of erbium-doped heavy metal oxyfluoride silicate glasses for broadband amplification

    Institute of Scientific and Technical Information of China (English)

    徐时清; 杨中民; 戴世勋; 杨建虎; 戴能利; 林傲翔; 胡丽丽; 姜中宏

    2003-01-01

    Erbium-doped glasses showing a wide 1.55?m emission band are reported ina novel heavy metal oxyfluoride glass system SiO2-PbO-PbF2 and their optical properties such as emission spectra,fluorescence lifetime and the refractive index have been investigated.The broad and flat 4I13/2 →4I15/2 emission of Er3+ ions around 1.55μm can be used as host materials for potential optical amplifiers in wavelength-division-multiplexing network system.We find that with increasing PbF2 content in the glass composition,the fluorescence full width at half maximum and fluorescence lifetime of the 4I13/2 level of Er3+ increase,while refractive index and density decrease.

  4. Thermal stability and optical properties of a novel Tm3+doped fluorotellurite glass

    Institute of Scientific and Technical Information of China (English)

    成茵; 吴钟晴; 胡茜; 吴腾宴; 周伟伟

    2014-01-01

    A series of fluorotellurite glasses based on (81–x)TeO2-(10+x)KF-9La2O3 (TKL), where x=0 mol.%, 5 mol.%, 10 mol.%, 15 mol.%, doped with 2000 ppm Tm2O3, were prepared by the conventional melt quenching method. The influence of KF content on the thermal stability and optical spectroscopic properties of the Tm3+doped fluorotellurite glasses were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), density measurement, Fourier transform infrared spectroscopy (FTIR), UV-VIS-NIR optical spectroscopy and fluorescence spectroscopy. Judd-Ofelt intensity parameters of Tm3+ in as-prepared glasses were determined and used to calculate the spontaneous emission probabilities and the radiative lifetime for the 4f-4f transitions of the Tm3+ions. Stimulated emission cross sections in the 1470 nm region (σse) were evaluated by Füchtbauer-Ladenburg formula. The re-sults showed that KF substitution of TeO2 was beneficial to improving the thermal stability, decreasing glass density and reducing the content of OH related groups for the investigated fluorotellurite glasses. The glass with composition of 66TeO2-25KF-9La2O3 (named TKL25) had the longest radiative lifetime of the 3H4 (361μs) and the largest FWHM×σse value (420.07×10–28 cm3), which made it a promising material for S-band fiber amplifiers.

  5. White light simulation and luminescence studies on Dy{sup 3+} doped Zinc borophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, R. [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India); Venkataiah, G. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Marimuthu, K., E-mail: mari_ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India)

    2015-01-15

    The Dy{sup 3+} doped Zinc borophosphate glasses with the chemical composition (79-x)B{sub 2}O{sub 3}+xP{sub 2}O{sub 5}+10Li{sub 2}O+10ZnO+1Dy{sub 2}O{sub 3} (where x=0, 10, 20, 30 and 50 in wt%) have been prepared by melt quenching technique. The prepared glass samples were characterized through optical absorption, emission and decay measurements. The bonding parameters, optical band gap and Urbach's energy values were calculated from the optical absorption spectra to explore the bonding nature of the Dy–O metal ligand and electronic band structure of the studied glasses. Judd–Ofelt (JO) intensity parameters were calculated from the absorption spectra by using the JO theory and it gives information about symmetry of the ligand environment around the Dy{sup 3+} ion site. The Y/B intensity ratio and radiative properties were obtained from the emission spectra and the results were compared with the reported literature. The x, y chromaticity color coordinates of the studied glasses were analyzed using a CIE 1931 color chromaticity diagram and found that the x, y coordinates lie in the white light region. The decay curve measurements of the prepared glasses exhibit non-exponential behavior and are well fitted to Inokuti–Hirayama (IH) model to understand the energy transfer mechanism between Dy{sup 3+} ions. The Q, R{sub 0} and C{sub DA} values of the prepared Dy{sup 3+} doped glasses were obtained from the IH model and the results were discussed and compared with the reported literature.

  6. New Er{sup 3+} doped antimony oxide based glasses: Thermal analysis, structural and spectral properties

    Energy Technology Data Exchange (ETDEWEB)

    Ouannes, K. [Faculté des Sciences et de la Technologie, Université de Biskra, BP 145 RP, 07000, Biskra (Algeria); Lebbou, K., E-mail: kheirreddine.lebbou@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne (France); Walsh, Brian-M. [NASA Langley Research Center, Hampton, VA, 23681 (United States); Poulain, M. [UMR 6226- Verres et Céramiques – Campus de Beaulieu, Université de Rennes1, 35042, Rennes (France); Alombert-Goget, G.; Guyot, Y. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne (France)

    2015-11-15

    The novel oxide glass compositions based on Sb{sub 2}O{sub 3} are elaborated and characterized, in the system (90-X)Sb{sub 2}O{sub 3}–10Na{sub 2}O–XBi{sub 2}O{sub 3} (SNB). We are interested in bismuth rates incorporated into the glass, its effect on the different physical properties that have been measured, and especially, in radiative and spectroscopic properties of erbium doped SNB glasses. Differential scanning calorimeter (DSC) measurements show an improvement of the stability factor,ΔT, of the glasses, which can indicate a reinforcement of the network. Both FTIR and Raman spectra have also been considered in terms of bismuth influence. As a function of composition, we have principally measured optical absorption, visible and infrared emission, and lifetime. The Judd–Ofelt parameters measured from the absorption spectra have been used to calculate the radiative lifetime (τ{sub r}) and the stimulated emission cross section. The spectroscopic quality factor χ = Ω{sub 4}/Ω{sub 6} = 0.73, low phonon energy of ∼600–700 cm{sup −1}, a reduced quenching effect, and a high quantum efficiency of 90% for the 1.53 μm measured emission, by pumping at 980 nm, are in favor of promising laser applications. - Highlights: • Glass belonging to Er-doped Sb{sub 2}O{sub 3}–Na{sub 2}O–Bi{sub 2}O{sub 3} (SNB) system are elaborated and characterized. • The intensity parameters Ωt were obtained via the Judd–Ofelt theory. • The optical properties were studied as a function of glass composition.

  7. Characterization of Tm{sup 3+} doped TNZL glass laser material

    Energy Technology Data Exchange (ETDEWEB)

    Lachheb, R. [Laboratoire Géoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia); Otto-Schott-Institut, Jena University, Fraunhoferstrasse 6, 07743 Jena (Germany); Damak, K., E-mail: Kamel.Damak@fss.rnu.tn [Laboratory of Radio Analysis and Environment, Sfax University, ENIS, 3038 Sfax (Tunisia); Assadi, A.A. [Laboratoire Géoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia); Otto-Schott-Institut, Jena University, Fraunhoferstrasse 6, 07743 Jena (Germany); Herrmann, A. [Otto-Schott-Institut, Jena University, Fraunhoferstrasse 6, 07743 Jena (Germany); Yousef, E. [Department of Physics, Faculty of Sciences, Al Azhar University, Assuit branch, Assuit (Egypt); Department of Physics, Faculty of Sciences, King Khalid University, P. O. Box 9004, Abha (Saudi Arabia); Rüssel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstrasse 6, 07743 Jena (Germany); Maâlej, R. [Laboratoire Géoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia)

    2015-05-15

    In this paper, a new tellurite glass (85TeO{sub 2}·5.0Nb{sub 2}O{sub 5}·5.0ZnO·5.0LiF) doped with 1 mol% Tm{sub 2}O{sub 3} was prepared by melt-quenching technique. Differential scanning calorimetry (DSC) measurements indicate a good thermal stability, X-ray diffraction patterns show no sign of crystallization. Precise refractive index measurements were performed on five different wavelengths by a prism spectrometer. The optical energy gap, the Sellmeier energy gap and the dispersion energy were estimated. Judd–Ofelt intensity parameters were evaluated in order to obtain electric and magnetic-dipole transition probabilities, branching ratios and radiative lifetimes of several excited states of Tm{sup 3+}. The classical McCumber theory was used to evaluate the emission cross-sections for the {sup 3}F{sub 4}→{sup 3}H{sub 6} transition at a wavelength of around 1.8 µm. The characteristics of down-conversion luminescence in the visible range were studied by exciting Tm{sup 3+} ions into the {sup 1}G{sub 4} level. Furthermore the structure of this glass was analyzed by Raman spectroscopy. - Highlights: • A new thermally stable tellurite glass (TNZL doped 1 mol% Tm{sup 3+}) was synthesized by a melt-quenching method. • A complete Judd–Ofelt spectroscopic evaluation of the TNZL:Tm glass is presented. • A high gain coefficient and emission cross section are obtained for Tm{sup 3+} in TNZL glass in the 1.8 μm region. • The TNZL:Tm glass would be a potential laser operation around 1.8 μm emission. • TNZL:Tm is a good candidate for generate a blue light for color display devices and light emitting diodes.

  8. CONTROL OF LASER RADIATION PARAMETERS: Passive laser Q switches made of glass doped with oxidised nanoparticles of copper selenide

    Science.gov (United States)

    Yumashev, K. V.

    2000-01-01

    Passive Q switching of Nd3+:YAG (λ = 1060 nm) and YAlO3:Nd3+ (1340 nm) lasers, as well as of an Er3+ (1540 nm) glass laser was realised by using glass doped with oxidised nanoparticles of copper selenide. Nonlinear optical properties of the nanoparticles (radius of 25 nm) in a glass matrix were studied by the picosecond absorption spectroscopy technique.

  9. Effects of doping CeO{sub 2}/TiO{sub 2} on structure and properties of silicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenlin, E-mail: wzl@cqut.edu.cn [Science and Technology on Thermostructural Composites Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Cheng, Laifei [Science and Technology on Thermostructural Composites Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China)

    2014-06-01

    Highlights: • Doping CeO{sub 2} results in depolymerization and narrowed Q{sup n} distribution. • Co-doping CeO{sub 2} and TiO{sub 2} favors enhanced network and broader Q{sup n} distribution. • Cerium acts as modifier and titanium as intermediate in glass network structure. • Adding CeO{sub 2}/TiO{sub 2} results in decreased optical band gap. • Doping-induced structural modifications affect mechanical properties. - Abstract: In order to elucidate the effects of doping CeO{sub 2}/TiO{sub 2} on the structure and physical properties of silicate glass, glasses with composition 72SiO{sub 2}–3Al{sub 2}O{sub 3}–10Na{sub 2}O–10K{sub 2}O–5CaO doped with varied ratios of CeO{sub 2}/TiO{sub 2} were synthesized by melt-quenching method and were characterized by X-ray diffraction, infrared and Raman spectrometry, UV–Visible spectrophotometry and micro-indentations. X-ray diffraction conforms the amorphous state of doped glasses. The spectroscopic analysis reveals that doping CeO{sub 2} alone results in depolymerization of glass network and narrowed distribution of Q{sup n} (Si–O tetrahedral with n bridging oxygen atoms), while doping TiO{sub 2} singly or combined with CeO{sub 2} favors the enhanced polymerization of network and regains a broader Q{sup n} distribution relative to doping CeO{sub 2} alone. It is proposed that doped cerium and titanium in glass exists in multivalent state and the former in presence of trivalent state preferentially acts as modifier inducing network depolymerization, whilst the latter in form of tetrahedral tends to interconnect network units as intermediate. Doped cerium in trivalent state contributes mainly to the red-shift of absorption edge while titanium suppresses such change of absorption band. Either adding cerium alone or co-doping with titanium will result in decreased optical band gap due to the structural modifications. The relatively loosened structure due to depolymerization induced by cerium is responsible for

  10. Analysis of structure origin and luminescence properties of Yb(3+)-Er(3+) co-doped fluorophosphate glass.

    Science.gov (United States)

    Chen, Fangze; Jing, Xufeng; Wei, Tao; Wang, Fengchao; Tian, Ying; Xu, Shiqing

    2014-08-14

    The near infrared luminescence properties of Yb(3+)-Er(3+) co-doped fluorophosphate glasses have been investigated. The various effects on structure and 1.53 μm emission were analyzed as a function of Yb(3+) concentration. The energy transfer mechanism was proposed. High measured lifetime (10.75 ms), large effective full widths at half maximum (73.71 nm) and large gain per unit length (62.8 × 10(-)(24)cm(2)s) have been achieved in prepared glass. The present glass co-doped with 6mol% YbF3 and 2 mol% ErF3 showed magnificent luminescence properties for telecommunication application.

  11. Dielectric properties of NaF–B2O3 glasses doped with certain transition metal ions

    Indian Academy of Sciences (India)

    M Krishna Murthy; K S N Murthy; N Veeraiah

    2000-08-01

    Dielectric constant , loss tan , a.c. conductivity and dielectric breakdown strength of NaF–B2O3 glasses doped with certain transition metal ions (viz. Cu2+, VO2+, Ti4+ and Mn4+) are studied in the frequency range 102–107 Hz and in the temperature range 30–250°C. The values of , tan , a.c. are found to be the highest for Cu2+ doped glasses and the lowest for Mn4+ doped glasses. Activation energy for a.c. conduction and the value of dielectric breakdown strength are found to be the lowest for Cu2+ doped glasses and the highest for Mn4+ doped glasses. With the help of infrared spectra, increase in the values of and tan of these glasses with frequency and temperature are identified with space charge polarization. An attempt has been made to explain a.c. conduction phenomenon on the basis of quantum mechanical tunneling model (QMT)/carrier barrier hopping model.

  12. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    Energy Technology Data Exchange (ETDEWEB)

    Vasileva, A.A., E-mail: anvsilv@gmail.com [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation); Nazarov, I.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg (Russian Federation); Olshin, P.K.; Povolotskiy, A.V. [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation); Sokolov, I.A. [St.Petersburg State Polytechnical University, St.Petersburg (Russian Federation); LTD “AtomTjazhMash”, St.Petersburg (Russian Federation); Manshina, A.A. [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation)

    2015-10-15

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag{sub 2}O–0.4P{sub 2}O{sub 5}–0,1Nb{sub 2}O{sub 5} glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag{sub 2}O–0.1Nb{sub 2}O{sub 5}–0.4P{sub 2}O{sub 5} and 0.55Ag{sub 2}O–0.45P{sub 2}O{sub 5} glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown.

  13. Spectroscopy and optical characterization of thulium doped TZN glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gebavi, H; Milanese, D; Ferraris, M [Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Balda, R; Fernandez, J [Departamento de Fisica Aplicada I, Escuela Superior de Ingenieros, Alda. Urquijo s/n 48013 Bilbao, Spain and Center of Materials Physics CSIC-UPV/EHU and Donostia International Physics Center, Apartado 1072, 20080 San Sebastian (Spain); Chaussedent, S [Laboratoire POMA-FRE CNRS 2988, Universite d' Angers, 2 bd Lavoisier, 49045 Angers (France); Ferrari, M, E-mail: gebavi@yahoo.co [CNR-IFN, CSMFO Lab., via alla Cascata 56/C, 38050 Povo-Trento (Italy)

    2010-04-07

    This paper reports on the spectroscopic properties of the {sup 3}H{sub 4} and {sup 3}F{sub 4} Tm{sup 3+} levels in a TZN glass host with a concentration range from 0.82 to 22 x 10{sup 20} cm{sup -3}. Precise refractive index measurements are performed on five different wavelengths by the prism coupling method. Judd-Ofelt intensity parameters have been determined in order to obtain transition rate, branching ratio and radiative lifetime. Spectroscopic measurements show the most promising concentration for the1.8 {mu}m short cavity laser emission at 6.84 x 10{sup 20} cm{sup -3} Tm{sup 3+} with a 24% quantum efficiency and upper limit concentration of 11 x 10{sup 20} cm{sup -3} Tm{sup 3+}. Energy transfer microparameters and critical ion distance are determined for both emission levels within the framework of diffusion-limited regime and dipole-dipole interaction.

  14. Spectroscopic properties of 2.7 μm emission in Er{sup 3+} doped telluride glasses and fibers

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xiaokang [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Li, Kefeng, E-mail: kfli@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Xia; Kuan, Peiwen; Wang, Xin [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Hu, Lili [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-12-05

    Highlights: • Telluride glasses with high Er{sup 3+} doping concentration and good thermal property are prepared. • Energy transfer processes for 1.5 μm, 2.7 μm and visible emission are fully discussed. • Enhanced 2.7 μm emission is achieved from the bulk glasses. • An Er{sup 3+} doped fiber is successfully drawn and strong upconversion emission is observed in the fiber. - Abstract: Emissions at 2.7 μm from telluride glasses with various Er{sub 2}O{sub 3} doping concentrations are investigated. The prepared glasses have excellent thermostability and high rare-earth solubility. Judd–Ofelt parameters are calculated based on the absorption spectra. A large emission cross section (1.12 × 10{sup −20} cm{sup 2}) and a high spontaneous radiative coefficient (57.8 s{sup −1}) are obtained at 2.7 μm. The fluorescence properties of glasses with different concentrations are analyzed and presented. An Er{sup 3+}-doped fiber is fabricated via a rod-in-tube technique, and the loss at 1310 nm is ∼2.1 dB/m measured by using the cut-back method. Strong upconversion emission caused by intense pump absorption is observed from the Er{sup 3+}doped fiber under excitation by a 980 nm laser diode (LD). Telluride glasses with high Er{sup 3+} doping concentration and good thermal property are prepared. Energy transfer processes for 1.5 μm, and 2.7 μm, as well as visible emission are fully discussed. Enhanced 2.7 μm emission is achieved from the bulk glass. An Er{sup 3+} doped fiber is successfully drawn, and strong upconversion emission is observed in the fiber.

  15. Transmission Properties of a New Glass Ceramic and Doped with Co2+ as Saturable Absorber for 1.54 μm Er Glass Short Pulse Laser

    Institute of Scientific and Technical Information of China (English)

    YU Chunlei; CHEN Li; FENG Suya; HE Dongbing; WANG Meng; HU Lili

    2012-01-01

    The preparation and characteristics of a new transparent glass ceramic were described.Crystal phase particles with nanometer size were successfully precipitated in glass matrix,which was confirmed to be one of indium aluminum zinc oxide compounds (InxAlyZnzO).The presence of aluminum (Al) and indium (In) impurities in the zinc oxides (ZnO) crystal lattice leads to some changes of the carrier concentration in the material and then promote the sharply changes of transmission spectra in IR range wavelength.And subsequently,the IR cut-off edge blue shifted from 5.5 μm in base glass to 3 μm in transparent glass ceramic sample.Furthermore,passive Q switched 1.54 μm Er glass laser pulses with pulse energy of 10 mJ and pulse width of 800 ns were successfully obtained by using the cobalt doped transparent glass ceramic as a saturable absorber.

  16. The chemical durability of glass and graphite-glass composite doped with cesium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hamodi, Nasir H., E-mail: nasirhamodi@yahoo.co.uk [School of Mechanical, Aerospace and Civil Engineering (MACE)/University of Manchester, Pariser Building, F-floor, Manchester M13 9PL (United Kingdom); Abram, Timothy J. [School of Mechanical, Aerospace and Civil Engineering (MACE)/University of Manchester, Pariser Building, F-floor, Manchester M13 9PL (United Kingdom); Lowe, Tristan; Cernik, Robert J. [Henry Mosley Imaging Facility, Material Science Centre, University of Manchester, Manchester M13 9PL (United Kingdom); Lopez-Honorato, Eddie [Centro de Investigacion y Estudios Avanzados del IPN (CINVESTAV), Unidad Saltillo. Carretera Saltillo-Monterrey km 13.5, 25900 Ramos Arizpe, Coahuila (Mexico)

    2013-01-15

    The role of temperature in determining the chemical stability of a waste form, as well as its leach rate, is very complex. This is because the dissolution kinetics is dependent both on temperature and possibility of different rate-controlling mechanisms that appear at different temperature regions. The chemical durability of Alumina-Borosilicate Glass (ABG) and Glass-Graphite Composite (GGC), bearing Tristructural Isotropic (TRISO) fuel particles impregnated with cesium oxide, were compared using a static leach test. The purpose of this study is to examine the chemical durability of glass-graphite composite to encapsulate coated fuel particles, and as a possible alternative for recycling of irradiated graphite. The test was based on the ASTM C1220-98 methodology, where the leaching condition was set at a temperature varying from 298 K to 363 K for 28 days. The release of cesium from ABG was in the permissible limit and followed the Arrhenius's law of a surface controlled reaction; its activation energy (E{sub a}) was 65.6 {+-} 0.5 kJ/mol. Similar values of Ea were obtained for Boron (64.3 {+-} 0.5) and Silicon (69.6 {+-} 0.5 kJ/mol) as the main glass network formers. In contrast, the dissolution mechanism of cesium from GGC was a rapid release, with increasing temperature, and the activation energy of Cs (91.0 {+-} 5 kJ/mol) did not follow any model related to carbon kinetic dissolution in water. Microstructure analysis confirmed the formation of Crystobalite SiO{sub 2} as a gel layer and Cs{sup +1} valence state on the ABG surface.

  17. UV light induced red emission in Eu3+-doped zincborophosphate glasses

    Science.gov (United States)

    Hima Bindu, S.; Siva Raju, D.; Vinay Krishna, V.; Rajavardhana Rao, T.; Veerabrahmam, K.; Linga Raju, Ch.

    2016-12-01

    This paper reports the preparation of transparent zincborophosphate (ZBP) glasses doped with Eu3+ ions by the conventional melt quenching technique. The prepared glasses were characterized using powder XRD, FTIR, optical absorption, photoluminescence and decay curves. Judd-Ofelt (JO) intensity parameters calculated under various constraints using absorption and emission spectra. These JO intensity parameters have been used to predict the radiative properties such as radiative life time, branching ratios and stimulated emission cross section of the 5D0→7FJ (J = 0-4) transitions. Decay curves for the 5D0 level of Eu3+ ions shows single exponential for all concentrations. Luminescence properties of 5D0→7F2 transitions of Eu3+ions have revealed that the present ZBP:Eu3+ glasses have significant in optical applications at around 613 nm. An intense red luminescence has been observed due to 5D0→7F2 transition of Eu3+ ion in these glasses. From the CIE color coordinate diagram, it is observed that the present glass system is prominent material for red emission.

  18. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. Sreehari, E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Rao, B. Rupa Venkateswara [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Department of Physics, V.R. Siddhartha Engineering College, Vijayawada 52007 (India)

    2014-02-01

    In this paper spectroscopic investigation of Cu{sup 2+} doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu{sup 2+} state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu{sup 2+} is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds.

  19. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Science.gov (United States)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-02-01

    In this paper spectroscopic investigation of Cu2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR - X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P-O-P bonds and creating more number of new P-O-Cu bonds.

  20. Crystallization and structural investigation of Eu-doped fluorozirconate-based glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Passlick, Christian [Centre for Innovation Competence SiLi-nano, Martin Luther University of Halle-Wittenberg, Halle (Saale) (Germany); Ahrens, Bernd; Henke, Bastian; Schweizer, Stefan [Centre for Innovation Competence SiLi-nano, Martin Luther University of Halle-Wittenberg, Halle (Saale) (Germany); Fraunhofer Center for Silicon Photovoltaics, Halle (Saale) (Germany); Johnson, Jacqueline A. [Department of Materials Science and Engineering, University of Tennessee Space Institute, Tullahoma, TN (United States)

    2010-07-01

    A series of Eu-doped fluorozirconate-based glass ceramics has been developed for medical and photovoltaic applications. In the first case, the materials can be used as X-ray scintillators or X-ray storage phosphors, in the latter case as down-converting top layers for highly efficient solar cells. The glasses are based on a modified ZBLAN composition, i.e. a mixture of Zr, Ba, La, Al, and Na fluorides. They are additionally doped with chlorine ions to initiate the growth of BaCl{sub 2} nanocrystals upon thermal processing. Eu{sup 2+} ions are incorporated into the nanocrystals during the annealing procedure enabling a strong fluorescence upon ultraviolet or x-ray excitation. The nanocrystal size and structural phase depend significantly on the heating conditions and Eu doping level. X-ray diffraction patterns show a structural phase change of the BaCl{sub 2} nanocrystals from hexagonal to orthorhombic as annealing temperatures are increased. DSC experiments were performed to obtain activation energies, thermal stability parameters and information on the crystal growth mechanisms.

  1. Direct laser writing of topographic features in semiconductor-doped glass

    Science.gov (United States)

    Smuk, Andrei Y.

    2000-11-01

    Patterning of glass and silica surfaces is important for a number of modern technologies, which depend on these materials for manufacturing of both final products, such as optics, and prototypes for casting and molding. Among the fields that require glass processing on microscopic scale are optics (lenses and arrays, diffractive/holographic elements, waveguides), biotechnology (capillary electrophoresis chips and biochemical libraries) and magnetic media (landing zones for magnetic heads). Currently, standard non-laser techniques for glass surface patterning require complex multi-step processes, such as photolithography. Work carried out at Brown has shown that semiconductor- doped glasses (SDG) allow a single-step patterning process using low power continuous-wave visible lasers. SDG are composite materials, which consist of semiconductor crystallites embedded into glass matrix. In this study, borosilicate glasses doped with CdSxSe1-x nanocrystals were used. Exposure of these materials to a low-power above- the-energy gap laser beam leads to local softening, and subsequent expansion and rapid solidification of the exposed volume, resulting in a nearly spherical topographic feature on the surface. The effects of the incident power, beam configuration, and the exposure time on the formation and final parameters of the microlens were studied. Based on the numerical simulation of the temperature distribution produced by the absorbed Gaussian beam, and the ideas of viscous flow at the temperatures around the glass transition point, a model of lens formation is suggested. The light intensity distribution in the near-field of the growing lens is shown to have a significant effect on the final lens height. Fabrication of dense arrays of microlenses is shown, and the thermal and structural interactions between the neighboring lenses were also studied. Two-dimensional continuous-profile topographic features are achieved by exposure of the moving substrates to the writing

  2. Spectroscopic investigation of zinc tellurite glasses doped with Yb3 + and Er3 + ions

    Science.gov (United States)

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-01

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80 - x - y) TeO2 + (0.20) ZnO + xEr2O3 + yYb2O3 (x = 0, y = 0; x = 0.004, y = 0; x = 0, y = 0.05 and x = 0.004, y = 0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er3 + glasses as erbium doped fiber amplifiers at 1.55 μm in infrared emission region.

  3. Luminescence properties of Dy3+ doped different fluoro-phosphate glasses for solid state lighting applications

    Science.gov (United States)

    Babu, S.; Reddy Prasad, V.; Rajesh, D.; Ratnakaram, Y. C.

    2015-01-01

    Dy3+ doped different fluoro-phosphate glasses are prepared and they are characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), Raman, optical absorption, and photoluminescence (PL) techniques. The structural characterization is accomplished by XRD, FTIR and Raman spectroscopy. The morphological analysis was performed by SEM. The absorption spectra have been analyzed using Judd-Ofelt theory and the intensity parameters have been evaluated. These parameters are used to calculate radiative properties such as emission probabilities (AR), radiative lifetimes (τR) and integrated absorption cross-sections (Σ) for different Dy3+ transitions. The PL spectra exhibit bands in the blue, yellow and red regions. Furthermore, the dependence of luminescence properties such as stimulated emission cross-sections (σp) and branching ratios (β) on different metal cations in these glasses is studied. From decay curve analysis, the lifetimes of the excited state 4F9/2 have been measured. The calorimetric property is also studied based on Commission International del'Eclairage (CIE) standards for Dy3+ doped different fluoro-phosphate glasses and discussed.

  4. Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells.

    Science.gov (United States)

    Brown, Roger F; Rahaman, Mohamed N; Dwilewicz, Agatha B; Huang, Wenhai; Day, Delbert E; Li, Yadong; Bal, B Sonny

    2009-02-01

    Glasses containing varying amounts of B(2)O(3) were prepared by partially or fully replacing the SiO(2) in silicate 45S5 bioactive glass with B(2)O(3). The effects of the B(2)O(3) content of the glass on its conversion to hydroxyapatite (HA) and on the proliferation of MC3T3-E1 cells were investigated in vitro. Conversion of the glasses to HA in dilute (20 mM) K(2)HPO(4) solution was monitored using weight loss and pH measurements. Proliferation of MC3T3-E1 cells was determined qualitatively by assay of cell density at the glass interface after incubation for 1 day and 3 days, and quantitatively by fluorescent measurements of total DNA in cultures incubated for 4 days. Higher B(2)O(3) content of the glass increased the conversion rate to HA, but also resulted in a greater inhibition of cell proliferation under static culture conditions. For a given mass of glass in the culture medium, the inhibition of cell proliferation was alleviated by using glasses with lower B(2)O(3) content, by incubating the cell cultures under dynamic rather than static conditions, or by partially converting the glass to HA prior to cell culture.

  5. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics.

    Science.gov (United States)

    Bejarano, Julian; Caviedes, Pablo; Palza, Humberto

    2015-03-11

    Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.

  6. Optical thermometry based on luminescence behavior of Dy{sup 3+}-doped transparent LaF{sub 3} glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Y.Y. [Nanjing University of Posts and Telecommunications, College of Electronic Science and Engineering, Nanjing (China); Nanjing University of Posts and Telecommunications, College of Science, Nanjing (China); Cheng, S.J.; Wang, X.F. [Nanjing University of Posts and Telecommunications, College of Electronic Science and Engineering, Nanjing (China); Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing, Jiangsu (China); Yan, X.H. [Nanjing University of Posts and Telecommunications, College of Electronic Science and Engineering, Nanjing (China); Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing, Jiangsu (China); Nanjing University of Aeronautics and Astronautics, College of Science, Nanjing (China)

    2015-11-15

    Dy{sup 3+}-doped transparent LaF{sub 3} glass ceramics were fabricated, and its structures of resulting glass ceramics are studied by the X-ray diffraction and transmission electron microscopy. Optical temperature sensing of the resulting glass ceramics in the temperature range from 298 to 523 K is studied based on the down-conversion luminescence of Dy{sup 3+} ion. By using fluorescence intensity ratio method, the {sup 4}I{sub 15/2} and {sup 4}F{sub 9/2} of Dy{sup 3+} ions are verified as thermally coupled levels. A minimum S{sub R} = 1.16 x 10{sup -4} K{sup -1} is obtained at T = 294 K. By doping Eu{sup 3+} ion, the overall emission color of Eu{sup 3+}-Dy{sup 3+} co-doped transparent glass ceramics can be tuned from white to yellow with the temperature increase through energy transfer between Eu{sup 3+} and Dy{sup 3+}. Additionally, the thermal stability of the Dy{sup 3+} single-doped transparent glass ceramics becomes higher after doping Eu{sup 3+} ion. (orig.)

  7. Thermal stability and spectroscopic properties of erbium-doped niobic-tungsten-tellurite glasses for laser and amplifier devices

    Energy Technology Data Exchange (ETDEWEB)

    Boetti, Nadia G., E-mail: nadia.boetti@polito.it [PhotonLab, Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Lousteau, Joris [PhotonLab, Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Chiasera, Alessandro; Ferrari, Maurizio [CNR-IFN, Istituto di Fotonica e Nanotecnologie, CSMFO Lab. via alla Cascata 56/C, Povo, 38123 Trento (Italy); Mura, Emanuele; Scarpignato, Gerardo C. [PhotonLab, Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Abrate, Silvio [PhotonLab, Istituto Superiore Mario Boella, Via P.C. Boggio, 61, 10138 Torino (Italy); Milanese, Daniel [PhotonLab, Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2012-05-15

    Er{sup 3+} doped niobic-tungsten-tellurite glasses doped with concentration of Er{sup 3+} ion up to 3 wt% were fabricated. The effect of Er{sup 3+} doping concentration on thermal stability and optical properties was investigated in order to obtain the most suitable rare earth content for developing 1.5 {mu}m compact fiber amplifier pumped with a commercial telecom 980 nm laser diode. The maximum doping concentration allowed was found to be around 1.77 Multiplication-Sign 10{sup 20} ions/cm{sup 3}, for which a broad 1.5 {mu}m emission spectra of 65 nm FWHM and a lifetime of 3.4 ms for the {sup 4}I{sub 13/2} level was measured. - Highlights: Black-Right-Pointing-Pointer Thermal and optical properties of Er{sup 3+} doped niobic-tungsten-tellurite glasses. Black-Right-Pointing-Pointer Spectroscopic properties measured when pumped by commercial telecom 980 nm LD. Black-Right-Pointing-Pointer Investigation of the effect of Er{sup 3+}doping level on glass properties. Black-Right-Pointing-Pointer Present glass is a good candidate for efficient 1.5 {mu}m compact fiber amplifier or laser.

  8. Nonlinear Refractive Index Measurement in Semiconductor-Doped Glasses

    Directory of Open Access Journals (Sweden)

    M. t. Tavassoli

    1997-04-01

    Full Text Available   There are several techniques in use for non-linear refractive index measurement, namely, interferometric techniques, in which conventional inter-ferometers are used, degenerate for wave mixing (DFWM, and z-scan, Each of these techniques suffers from some shortcmings. For example conventional interferometers like Fabry-Perot and Twyman-Green need high quality optical components, unwanted reflections on these components produce noise, and the device limits the probe-pump anglc, or in z-scan technique one needs very sensitive detectors and since the intensity is monitored by the nonlinear absorption, which is usually present, reduces the measurement accuracy.   In the techniqucs introduced here, in principle, only a plate of the sample is required, and even parallelism of the plate surfaces is not curcial. Experiments can be carried out successfully if the angle between the plate surface is less than few minutes. In the first technique, the probe beam strikes the surface at an arbitray angle of incidence. The reflected beam from the two surfaces of the sample interfere on a photo-sensitive screen like CCD, and more or less linear interference fringes are produced. When the pump beam is switched on, the interference pattern deforms. The amount and the direction of the deformation give the value and the sign of the non-linear refractive index. In this technique the probe-pump angle can be varied from 00 to 1900.  In the second technique, interference between the reflected probe beam from the sample and the diffracted pump beam from the grating induced by the interference of the probe and the pump beams, leads to a series of circular fringes. When the non-linear sample is replaced by a linear material like fuse silica glass, the above mentioned circular fringes are formed, but the number of fringes in a specified angular interval remains fixed as the pump beam intensity increases. But, in the case of a non-linear sample the number changes due to

  9. Optical response and magnetic characteristic of samarium doped zinc phosphate glasses containing nickel nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Azmi, Siti Amlah M.; Sahar, M.R., E-mail: mrahim057@gmail.com

    2015-11-01

    A magnetic glass of composition 40ZnO–(58−x) P{sub 2}O{sub 5}–1Sm{sub 2}O{sub 3}–xNiO, with x=0.0, 1.0, 1.5 and 2.0 mol% is prepared by melt-quenching technique. The glass is characterized by X-ray diffraction, high-resolution transmission electron microscope (HRTEM), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM) analysis. The X-rays diffraction confirms the amorphous nature of the glass while the HRTEM analysis reveals the presence of nickel nanoparticles in the glass samples. High-resolution TEM reveals that the lattice spacing of nickel nanoparticles is 0.35 nm at (100) plane. Photoluminescence emission shows the existence of four peaks that correspond to the transition from the upper level of {sup 4}G{sub 5/2} to the lower level of {sup 6}H{sub 5/2}, {sup 6}H{sub 7/2}, {sup 6}H{sub 9/2,} and {sup 6}H{sub 11/2.} It is observed that all peaks experience significant quenching effect with the increasing concentration of nickel nanoparticles, suggesting a strong energy transfer from excited samarium ions to the nickel ions. The glass magnetization and susceptibility at 12 kOe at room temperature are found to be in the range of (3.87±0.17×10{sup −2}–7.19±0.39×10{sup −2}) emu/g and (3.24±0.16×10{sup −6}–5.99±0.29×10{sup −6}) emu/Oe g respectively. The obtained hysteresis curve indicates that the glass samples are paramagnetic materials. The studied glass can be further used towards the development of magneto-optical functional glass. - Highlights: • Sm{sup 3+} doped zinc phosphate glass embedded with Ni NPs has been prepared. • The Laue pattern and lattice spacing of Ni NPs are confirmed by HRTEM image. • The magnetic response of glasses has been studied through VSM analysis. • Enhancement factor and decay half-lifetime are investigated.

  10. Glass formation and structure of calcium antimony phosphate glasses and those doped with tellurium oxide

    Science.gov (United States)

    Li, Jun; Zhang, Yin; Nian, Shangjiu; Wu, Zhenning; Cao, Weijing; Zhou, Nianying; Wang, Danian

    2017-03-01

    An approximate glass-forming region in the P2O5-Sb2O3-CaO ternary system was determined. The properties and structure of two compositional series of (A) (75- x)P2O5- xSb2O3-25CaO ( x = 20, 25, 30, 35 mol%) and (B) 45P2O5-30Sb2O3-(25- x)CaO- xTeO2 ( x = 5, 10, 15, 20 mol%) were studied systematically. Thermal properties were investigated by means of differential scanning calorimetry (DSC). The densities of all samples were measured by Archimedes' method using distilled water as the immersion liquid. The water durability of the glasses was described by their dissolution rate (DR) in the distilled water at 90 °C for some time periods. Density, thermal stability and water durability were improved with the addition of Sb2O3 and TeO2. Structural studies were carried out by X-ray diffraction (XRD), infrared spectroscopy and Raman spectroscopy. The phosphate chain depolymerization occurred with the increase of Sb2O3 and the Q2 structural units transformed to the Q1 and Q0 structural units with the addition of TeO2.

  11. Ultra-broadband amplification properties of Ni2+-doped glass-ceramics amplifiers.

    Science.gov (United States)

    Jiang, Chun

    2009-04-13

    The energy level, transition configuration and mathematical model of Ni(2+)-doped glass-ceramics amplifiers are presented for the first time, to the best of one's knowledge. A quasi-three-level system is employed to model the gain and noise characteristics of the doped system, and the rate and power propagation equations of the mathematical model are solved to analyze the effect of the active ion concentration, fiber length, pump power as well as thermal-quenching on the gain spectra. It is shown that our model is in agreement with experimental result, and when excited at longer wavelength, the center of gain spectra of the amplifier red shifts, the ultra-broad band room-temperature gain spectra can cover 1.25-1.65 microm range for amplification of signal in the low-loss windows of the all-wave fiber without absorption peak caused by OH group.

  12. Photocatalytic antibacterial performance of Sn(4+)-doped TiO(2) thin films on glass substrate.

    Science.gov (United States)

    Sayilkan, Funda; Asiltürk, Meltem; Kiraz, Nadir; Burunkaya, Esin; Arpaç, Ertuğrul; Sayilkan, Hikmet

    2009-03-15

    Pure anatase, nanosized and Sn(4+) ion doped titanium dioxide (TiO(2)) particulates (TiO(2)-Sn(4+)) were synthesized by hydrothermal process. TiO(2)-Sn(4+) was used to coat glass surfaces to investigate the photocatalytic antibacterial effect of Sn(4+) doping to TiO(2) against gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus). Relationship between solid ratio of TiO(2)-Sn(4+) in coatings and antibacterial activity was reported. The particulates and the films were characterized using particle size analyzer, zeta potential analyzer, Brunauer-Emmett-Teller (BET), X-ray diffractometer (XRD), SEM, AAS and UV/VIS/NIR techniques. The results showed that TiO(2)-Sn(4+) is fully anatase crystalline form and easily dispersed in water. Increasing the solid ratio of TiO(2)-Sn(4+) from 10 to 50% in the coating solution increased antibacterial effect.

  13. Enhanced Laser Cooling of Rare-Earth-Ion-Doped Glass Containing Nanometer-Sized Metallic Particles

    Institute of Scientific and Technical Information of China (English)

    JIA You-Hun; ZHONG Biao; YIN Jian-Ping

    2009-01-01

    The enhanced laser cooling performance of rare-earth-ions-doped glasses containing small particles is predicted. This is achieved by the enhancement of local field around rare earth ions, owing to the surface plasmon resonance of small metallic particles. The role of energy transfer between ions and the particle is theoretical discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption and the fluorescence is predicted. Moreover, taking Yb3+-doped ZBLAN as example, the cooling power and heat-light converting efficiency are calculated. It is finally concluded that the absorption and the fluorescence are greatly enhanced in these composite materials, the cooling power is increased compared to the bulk material.

  14. Infrared absorption spectra of transition metals-doped soda lime silica glasses

    Science.gov (United States)

    Khalil, E. M. A.; ElBatal, F. H.; Hamdy, Y. M.; Zidan, H. M.; Aziz, M. S.; Abdelghany, A. M.

    2010-03-01

    Infrared (IR) absorption spectra of some prepared undoped and transition metals-doped soda-lime-silicate glasses have been studied in the region of 400-4000 cm -1. IR spectra were analyzed to determine and differentiate the various vibrational modes by applying a deconvolution method to the IR spectra. Although the first sight reveals close similarity between the different transition metal- (TM) doped samples; careful inspection indicates some minor differences depending on the type of TM ions. These observed data are correlated with similar energy of the 3d orbitals of TM atoms in the neutral state and when the atoms are ionized, the 3d orbitals becomes more stable than the 4 s orbitals.

  15. Evidence of a cluster glass-like behavior in Fe-doped ZnO nanoparticles

    Science.gov (United States)

    Ramos, J. E.; Montero-Muñoz, M.; Coaquira, J. A. H.; Rodríguez-Páez, J. E.

    2014-05-01

    We report on the study of the structural and magnetic properties of crystalline Fe-doped ZnO nanoparticles with Fe content up to 10% synthesized by a co-precipitation method. The Rietveld analysis indicates that the Fe-doped ZnO nanoparticles are formed in a single phase wurtzite structure. DC magnetization (M) vs. applied magnetic field (H) curves obtained at 5 K show the occurrence of a ferromagnetic behavior. The coercive field and saturation magnetization depend on the Fe content. At room temperature, M vs. H curves show features consistent with a superparamagnetic state of nanoscale system. The temperature dependence of the AC and DC magnetic susceptibilities show features related to the thermal relaxation of the nano-sized particles. From the AC data analysis, a magnetic transition from the superparamagnetic to cluster-glass state is determined.

  16. Higher Fe{sup 2+}/total Fe ratio in iron doped phosphate glass melted by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Ashis K., E-mail: ashis@cgcri.res.in [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Sinha, Prasanta K. [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Das, Dipankar [UGC-DAE Consortium for Scientific Research, Kolkata 700098 (India); Guha, Chandan [Department of Chemical Engineering, Jadavpur University, Kolkata 700032 (India); Sen, Ranjan [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India)

    2015-03-15

    Highlights: • Iron doped phosphate glasses prepared using microwave heating and conventional heating under air and reducing atmosphere. • Presence of iron predominantly in the ferrous oxidation state in all the glasses. • Significant concentrations of iron in the ferrous oxidation state on both octahedral and tetrahedral sites in all the glasses. • Ratio of Fe{sup 2+} with total iron is found higher in microwave prepared glasses in comparison to conventional prepared glasses. - Abstract: Iron doped phosphate glasses containing P{sub 2}O{sub 5}–MgO–ZnO–B{sub 2}O{sub 3}–Al{sub 2}O{sub 3} were melted using conventional resistance heating and microwave heating in air and under reducing atmosphere. All the glasses were characterised by UV–Vis–NIR spectroscopy, Mössbauer spectroscopy, thermogravimetric analysis and wet colorimetry analysis. Mössbauer spectroscopy revealed presence of iron predominantly in the ferrous oxidation state on two different sites in all the glasses. The intensity of the ferrous absorption peaks in UV–Vis–NIR spectrum was found to be more in glasses prepared using microwave radiation compared to the glasses prepared in a resistance heating furnace. Thermogravimetric analysis showed increasing weight gain on heating under oxygen atmosphere for glass corroborating higher ratio of FeO/(FeO + Fe{sub 2}O{sub 3}) in glass melted by direct microwave heating. Wet chemical analysis also substantiated the finding of higher ratio Fe{sup +2}/ΣFe in microwave melted glasses. It was found that iron redox ratio was highest in the glasses prepared in a microwave furnace under reducing atmosphere.

  17. The effect of OH- groups on the spectroscopic properties of erbium-doped tellurite glasses

    Institute of Scientific and Technical Information of China (English)

    YU; Chunlei; DAI; Shixun; ZHOU; Gang; ZHANG; Junjie; HU; Li

    2005-01-01

    A series of five different concentration erbium-doped tellurite glasses with various hydroxl groups were prepared. Infrared spectra of glasses were measured. In order to estimate the exact content of OH- groups in samples, various absorption coefficients of the OH- vibration band were analyzed under the different oxygen bubbling times. The absorption spectra of the glasses were measured, and the Judd-Ofelt intensity parameters Ωi of samples with the different erbium ions concentration and OH- Contents were calculated on the basis of the Judd-Ofelt theory. The peak stimulated emission cross-section of 4I13/2→4I15/2 transition of the samples was finally calculated by using the McCumber theory. The fluorescence spectra of Er3+:4I13/2→4I15/2 transition and the lifetime of Er3+:4I13/2 level of the samples were measured. The effects of OH- groups on the spectroscopic properties of Er3+ doped samples with the different concentrations were discussed. The results showed that the OH- groups had great influences on the Er3+ lifetime and the fluorescence peak intensity. The OH- Group is a main influence factor of fluorescence quenching when the doping concentration of Er2O3 is smaller than 1.0 mol%, but higher after this concentration, the energy transfer of Er3+ ions turns into the main function of the fluorescence quenching. And basically, there is no influence on the other spectroscopic properties (FWHM, absorption spectra, peak stimulated emission cross section, etc.).

  18. Borat vihastas ka rumeenlasi

    Index Scriptorium Estoniae

    2006-01-01

    Rumeenia mustlasküla Glod elanikud peavad endi solvamiseks viisi, kuidas neid ära kasutati Briti koomiku Sacha Baron Coheni loodud peategelasega USA filmi "Borat - kultuurialased õppetunnid Ameerikast abiks suursuguse Kasahstani riigi ülesehitamisel" võtetel

  19. Side-pumped short rectangular Nd-doped phosphate glass fiber lasers

    Institute of Scientific and Technical Information of China (English)

    Yulong Tang; Yong Yang; Jianqiu Xu

    2008-01-01

    Watt-level short fiber lasers side-pumped through fiber-to-waveguide couplers are demonstrated. The fiber lasers are fabricated from Nd-doped phosphate glass with large numerical aperture of 0.2 and rectangular cross section of 1.5 × 0.5 (mm). Single transverse mode output is achieved by the gain-guiding effect. Average power of 1 W is generated from a 4.0-cm-long fiber laser with a slope efficiency of 10%.

  20. Ultraviolet upconversion emission from ZBLAN glass doped with Tm{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianfu [Department of Physics, Linyi Normal University, Linyi 276005 (China); Wang Xiaoli [National Laboratory of Superhard Materials, Jilin University, Changchun 130021 (China); Yang Haigui [Department of Physics, Jilin University, Changchun 130021 (China); Jiang Zhankui [Department of Physics, Jilin University, Changchun 130021 (China) and Department of Physics, Yantai University, Yantai 246005 (China)]. E-mail: jzk@mail.jlu.edu.cn

    2007-04-15

    The ultraviolet upconversion emission properties from Tm{sup 3+} ions doped ZBLAN glass upon 463 nm laser excitation have been studied. Two ultraviolet emission bands, centered at 347 nm for {sup 1}I{sub 6}{sup {yields}}{sup 3}F{sub 4} Tm{sup 3+} transition and 362 nm for {sup 1}D{sub 2}{sup {yields}}{sup 3}H{sub 6} Tm{sup 3+} transition, have been observed. The responsible upconversion mechanisms were investigated by measuring time evolution spectra.

  1. Femtosecond laser-induced color change and filamentation in Ag+-doped silicate glass

    Institute of Scientific and Technical Information of China (English)

    Haiyi Sun; Fei He; Jian Xu; Yang Liao; Ya Cheng; Zhizhan Xu; Xiongwei Jiang; Ye Dai

    2009-01-01

    We investigate the influence of multiple filamentation (MF) on the micromachining in Ag+-doped silicate glass irradiated by a 1-kHz femtosecond laser. The thresholds of MF and color change (CC) are measured for both linearly and circularly polarized laser beams. The results demonstrate that the thresholds of MF and CC are very close. The thresholds of CC and MF for circular polarization increase by ~1.4 times compared with linear polarization. Circular polarization can suppress the number of filaments to some extent compared with linear polarization. However, it is difficult to obtain CC without any filamentation if circular polarization technique is used alone.

  2. Tunable Room Temperature Second Harmonic Generation in Glasses Doped with CuCI Nanocrystalline Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Thantu, Napoleon; Schley, Robert Scott; B. L. Justus

    2003-05-01

    Two-photon excited emission centered at 379-426 nm in photodarkening borosilicate glass doped with CuCl nanocrystalline quantum dots at room temperature has been observed. The emission is detected in the direction of the fundamental near-infrared beam. Time- and frequency-resolved measurements at room temperature and 77 K indicate that the emission is largely coherent light characteristic of second harmonic generation (SHG). An average conversion efficiency of ~10-10 is obtained for a 2 mm thick sample. The observed SHG can originate in the individual noncentrosymmetric nanocrystals, leading to a bulk-like contribution, and at the nanocrystal-glass interface, leading to a surface contribution. The bulk-like conversion efficiency is estimated using previously reported values of coherence length (5m) and bulk nonlinear susceptibility. This bulk-like conversion efficiency estimate is found to be smaller than the measured value, suggesting a more prominent surface contribution.

  3. Luminescent Properties of Eu3+-Doped Yttrium Oxide Chloride Embedded in Nanoporous Glass

    Institute of Scientific and Technical Information of China (English)

    曾小青; 林凤英; 干福熹; 袁绥华

    2002-01-01

    The photoluminescence of Eu3+-doped yttrium oxide chloride embedded in nanoporous glass has been observed. In comparison with those in the powder phosphor, the emission lines of Eu3+ ions become much broader and blueshift was observed in the lines due to 5D0 → 7F2 transitions and the Eu-O charge transfer excitation band. The ratio intensities of the 5 D0 → 7 F1 transitions to the 5Do → 7 F2 transitions of Eu3+ ion become higher and change at different excitation wavelengths, such as 393nm and 254nm. The two excitation wavelengths belong to the 4f → 4f transition of the Eus+ ion and the Eu-O charge transfer, respectively. This material may be developed into a new luminescent glass.

  4. Localized devitrifiation in Er{sup 3+}-doped strontium barium niobate glass by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Haro-Gonzalez, P.; Martin, I.R.; Lahoz, F.; Gonzalez-Perez, S. [Universidad de La Laguna, Departamento de Fisica Fundamental, Electronica y Sistemas, La Laguna, Tenerife (Spain); Capuj, N.E. [Universidad de La Laguna, Departamento de Fisica Basica, La Laguna, Tenerife (Spain); Jaque, D. [Universidad Autonoma de Madrid, Departamento de Fisica de Materiales, Madrid (Spain)

    2008-12-15

    Localized devitrifiation in strontium barium niobate glass doped with Er{sup 3+} under laser irradiation has been carried out. The samples of this study have been fabricated by the melt quenching method and doped with 5% mol of Er{sup 3+}. A 1.5-W cw Ar laser was focused on the sample to obtain devitrifiation of the glass. Evidence of the changes induced by the Ar laser has been observed through the analysis of the photoluminescence of the Er{sup 3+} ions. The transitions corresponding to {sup 2}H{sub 11/2}{yields}{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}{yields}{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}{yields}{sup 4}I{sub 15/2} have been studied to analyze structure changes. Microluminescence measurements have been carried out to spatially select positions inside and outside the irradiated area. We have observed changes in the emission bands corresponding to these transitions. The emission bands from Er{sup 3+} ions in the irradiated zone show a resolved structure while they are broadened outside that area. These changes in the optical properties of the Er{sup 3+} ions indicate that the Ar-laser irradiation has produced a change in the local structure of the material. These results show that a localized devitrifiation has been produced after the laser action and the transition from glass to glass ceramic has been completed. (orig.)

  5. Progress in rare-earth-doped nanocrystalline glass-ceramics for laser cooling

    Science.gov (United States)

    Venkata Krishnaiah, Kummara; Ledemi, Yannick; Soares de Lima Filho, Elton; Loranger, Sebastien; Nemova, Galina; Messaddeq, Younes; Kashyap, Raman

    2016-03-01

    Laser cooling with anti-Stokes fluorescencewas predicted by Pringsheim in 1929, but for solids was only demonstrated in 1995. There are many difficulties which have hindered laser assisted cooling, principally the chemical purity of a sample and the availability of suitable hosts. Recent progress has seen the cooled temperature plummet to 93K in Yb:YLF. One of the challenges for laser cooling to become ubiquitous, is incorporating the rare-earthcooling ion in a more easily engineered material, rather than a pure crystalline host. Rare-earth-doped nanocrystalline glass-ceramics were first developed by Wang and Ohwaki for enhanced luminescence and mechanical properties compared to their parent glasses. Our work has focused on creating a nanocrystalline environment for the cooling ion, in an easy to engineer glass. The glasses with composition 30SiO2-15Al2O3-27CdF2-22PbF2-4YF3-2YbF3 (mol%), have been prepared by the conventional melt-quenching technique. By a simple post fabrication thermal treatment, the rare-earth ions are embedded in the crystalline phase within the glass matrix. Nanocrystals with various sizes and rare-earth concentrations have been fabricated and their photoluminescence properties assessed in detail. These materials show close to unity photoluminescence quantum yield (PLQY) when pumped above the band. However, they exhibit strong up-conversion into the blue, characteristic of Tm trace impurity whose presence was confirmed. The purification of the starting materials is underway to reduce the background loss to demonstrate laser cooling. Progress in the development of these nano-glass-ceramics and their experimental characterization will be discussed.

  6. Recent progress on upconversion luminescence enhancement in rare-earth doped transparent glass-ceramics

    Institute of Scientific and Technical Information of China (English)

    邱建备; 焦清; 周大成; 杨正文

    2016-01-01

    The upconversion (UC) of the rare earth doped glass-ceramics has been extensively investigated due to their potential ap-plications in many fields, such as color display, high density memories, optical data storage, sensor and energy solar cell, etc. Many series of them, especially the oxyfluorides glasses containing Ba2LaF7 nanocrystals were studied in this review work, due to the ther-mal and mechanical toughness, high optical transmittance from the ultraviolet to the infrared regions, and a low nonlinear refractive index compared to the other commercial laser glasses. Moreover, the energy transfer (ET) between the rare earth ions and transition metals plays an important role in the upconversion process. The cooperative ET has been researched very activly in UC glasses due to applications in the fields of solar cells, such as in the Er/Yb, Tm/Yb, Tb/Yb, Tb/Er/Yb and Tm/Er/Yb couples. The present article re-views on the recent progress made on: (i) upconversion materials with fluoride microcrystals in glasses and the mechanisms involved, including the UC in double and tri-dopant RE ions activated fluoride microcrystal, energy transfer process; and (ii) the effect of the metal Mn and nanoparticles of Au, Ag, Cu on the enhancement of UC emissions. Discussions have also been made on materials, ma-terial synthesis, the structural and emission properties of glass-ceramics. Additionally, the conversion efficiency is still a challenge for the spectra conversion materials and application; challenge and future advances have also been demonstrated.

  7. Fabrication and Characterization of Glass-Ceramics Doped with Rare Earth Oxide and Heavy Metal Oxide

    Institute of Scientific and Technical Information of China (English)

    陈国华; 刘心宇; 成钧

    2004-01-01

    Cordierite-based glass-ceramics with non-stoichiometric composition doped with rare earth oxide (REO2) and heavy metal oxide (M2O3) respectively were fabricated from glass powders. After sintering and crystallization heat treatment, various physical properties, including compact density and apparent porosity, were examined to evaluate the sintering behavior of cordierite-based glass-ceramics. Results show that the additives both heavy metal oxide and rare earth oxide promote the sintering and lower the phase temperature from μ- to α-cordierite as well as affect the dielectric properties of sintered glass-ceramics. The complete-densification temperature for samples is as low as 900 ℃. The materials have a low dielectric constant (≈5), a low thermal expansion coefficient ((2.80~3.52)×10-6 ℃-1) and a low dissipation factor (≤0.2%) and can be co-fired with high conductivity metals such as Au, Cu, Ag/Pd paste at low temperature (below 950 ℃), which makes it to be a promising material for low-temperature co-fired ceramic substrates.

  8. Antibacterial and bioactive composite bone cements containing surface silver-doped glass particles.

    Science.gov (United States)

    Miola, Marta; Fucale, Giacomo; Maina, Giovanni; Verné, Enrica

    2015-10-20

    A bioactive silica-based glass powder (SBA2) was doped with silver (Ag(+)) ions by means of an ion-exchange process. Scanning electron microscopy (SEM), energy dispersion spectrometry (EDS) and x-ray diffraction (XRD) evidenced that the glass powder was enriched with Ag(+) ions. However, a small amount of Ag2CO3 precipitated with increased Ag concentrations in the exchange solution. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of Ag-SBA2 towards Staphylococcus aureus were also evaluated and were respectively 0.05 mg ml(-1) and 0.2 mg ml(-1). Subsequently, Ag-SBA2 glass was used as filler (30%wt) in a commercial formulation of bone cement (Simplex(™) P) in order to impart both antibacterial and bioactive properties. The composite bone cement was investigated in terms of morphology (using SEM) and composition (using EDS); the glass powder was well dispersed and exposed on the cement surface. Bioactivity tests in simulated body fluid (SBF) evidenced the precipitation of hydroxyapatite on sample surfaces. Composite cement demonstrated antibacterial properties and a compressive strength comparable to the commercial formulation.

  9. Modified magnetic and optical properties of manganese nanoparticles incorporated europium doped magnesium borotellurite glass

    Science.gov (United States)

    Aziz, Siti Maisarah; Sahar, M. R.; Ghoshal, S. K.

    2017-02-01

    This paper reports the modified optical and magnetic properties of europium (Eu3+) ions doped and Manganese nanoparticles (NPs) embedded Magnesium Borotellurite glass synthesized via melt quenching method. The influence of varying Mn NPs concentrations on the magnetic, absorption and emission properties of such glass samples are determined. Stables, transparent and amorphous glasses are obtained. The observed modification of the electronic polarizability is interpreted in terms of the generation of non-bridging oxygen (NBO) and bridging oxygen (BO) in the amorphous network. TEM images manifested the growth of Mn NPs with average diameter 11±1 nm. High-resolution TEM reveals that the lattice spacing of manganese nanoparticles is 0.308 nm at (112) plane. The emission spectra revealed four prominent peaks centered at 587 nm, 610 nm, 651 nm and 700 nm assigned to the transition from 5D0 →7FJ (J=1, 2, 3, 4) states of Eu3+ ion. A significant drop in the luminescence intensity due to the incorporation of Mn NPs is ascribed to the enhanced energy transfer from the Eu3+ ion to NPs. Prepared glass systems exhibited paramagnetic behavior.

  10. Broad-spectrum bactericidal activity of Ag(2)O-doped bioactive glass.

    Science.gov (United States)

    Bellantone, Maria; Williams, Huw D; Hench, Larry L

    2002-06-01

    Bioactive glass has found extensive application as an orthopedic and dental graft material and most recently also as a tissue engineering scaffold. Here we report an initial investigation of the in vitro antibacterial properties of AgBG, a novel bioactive glass composition doped with Ag(2)O. The bacteriostatic and bactericidal properties of this new material and of two other bioactive glass compositions, 45S5 Bioglass and BG, have been studied by using Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus as test microorganisms. Concentrations of AgBG in the range of 0.05 to 0.20 mg of AgBG per ml of culture medium were found to inhibit the growth of these bacteria. Not only was AgBG bacteriostatic, but it also elicited a rapid bactericidal action. A complete bactericidal effect was elicited within the first hours of incubation at AgBG concentrations of 10 mg ml(-1). 45S5 Bioglass and BG had no effect on bacterial growth or viability. The antibacterial action of AgBG is attributed exclusively to the leaching of Ag(+) ions from the glass matrix. Analytical measurements rule out any contribution to AgBG-mediated bacterial killing by changes in pH or ionic strength or the dissolution of other ionic species from the biomaterials. Our observations of the dissolution profiles of Ag(+) from AgBG in the presence and absence of bacteria are consistent with silver accumulation by the bacteria.

  11. Ni2+-doped new silicate glass-ceramics for broadband near infrared luminescence

    Science.gov (United States)

    Zheng, Jian; Cheng, Yin

    2016-12-01

    The new composite transparent spinel silicate glass-ceramics containing Ni2+-doped ZnGa2O4 and solid solution MgxZn1-xGa2O4 nanocrystals were fabricated by in situ controlled crystallization method. After heat treatment, the crystal phase content of ZnGa2O4 increase with increasing heat treatment temperature, and the Mg2+ ions could enter the crystal lattice of ZnGa2O4 to replace the Zn2+ ions and form a new solid solution MgxZn1-xGa2O4. The coordination environment of Ni2+ was changed from tetrahedral in glasses to octahedral sites in glass ceramics. The super-broadband infrared luminescence with full width at half maximum (FWHM) of about 400 nm overing 1.1-1.7 μm wavelength region and fluorescent lifetime of about 480 μs were observed from the glass ceramics containing MgxZn1-xGa2O4 nanocrystals. It is probably due to the variety of solid solution structure making Ni2+ ions enter two different octahedral sites. At the same time, the impact of heat treatment temperature and the concentration of NiO on peak position and intensity were also discussed. The results demonstrate that the method presented may be an effective way to fabricate super-broadband optical amplifiers and tunable lasers.

  12. Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion

    Science.gov (United States)

    Ami Hazlin, M. N.; Halimah, M. K.; Muhammad, F. D.; Faznny, M. F.

    2017-04-01

    The zinc borotellurite doped with dysprosium oxide glass samples with chemical formula {[(TeO2) 0 . 7(B2O3) 0 . 3 ] 0 . 7(ZnO) 0 . 3 } 1 - x(Dy2O3)x (where x=0.01, 0.02, 0.03, 0.04 and 0.05 M fraction) were prepared by using conventional melt quenching technique. The structural and optical properties of the proposed glass systems were characterized by using X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and UV-VIS spectroscopy. The amorphous nature of the glass systems is confirmed by using XRD technique. The infrared spectra of the glass systems indicate three obvious absorption bands which are assigned to BO3 and TeO4 vibrational groups. Based on the absorption spectra obtained, the direct and indirect optical band gaps, as well as the Urbach energy were calculated. It is observed that both the direct and indirect optical band gaps increase with the concentration of Dy3+ ions. On the other hand, the Urbach energy is observed to decrease as the concentration of Dy3+ ions increases.

  13. Spectroscopic characterization of manganese-doped alkaline earth lead zinc phosphate glasses

    Indian Academy of Sciences (India)

    S Sreehari Sastry; B Rupa Venkateswara Rao

    2015-04-01

    Alkaline earth lead zinc phosphate glasses doped with Mn(II) are characterized by spectroscopic techniques like X-ray diffraction (XRD), UV–visible, differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), Fourier transform infrared (FTIR) and Raman. Optical absorption spectrum exhibits four bands which are characteristic of Mn(II) in distorted octahedral site symmetry. The crystal field parameter Dq and Racah interelectronic-repulsion parameters and have been evaluated. All investigated samples exhibit EPR signals which are characteristic to the Mn2+ ions. The shapes of spectra are also changed with varying alkaline earth ions content. FTIR spectra show specific vibrations of phosphate units. The characteristic Raman bands of these glasses due to stretching and bending vibrations were identified and analysed by varying alkaline earth content. The intensity and frequency variations for the characteristic phosphate group vibrations have been correlated with the changes of the structural units present in these glasses. Depolymerization of the phosphate chains in all the glasses is observed with replacement of alkaline earth content by spectroscopic studies. This leads to a strong decrease of the average chain length and a small decrease of the average P–O–P bridging angle with replacement of alkaline earth content.

  14. Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses

    Science.gov (United States)

    Shao, Chongyun; Xu, Wenbin; Ollier, Nadege; Guzik, Malgorzata; Boulon, Georges; Yu, Lu; Zhang, Lei; Yu, Chunlei; Wang, Shikai; Hu, Lili

    2016-10-01

    Yb3+/Al3+ co-doped silica glasses with different Ce2O3 contents were prepared using the sol-gel method combined with high-temperature sintering. Changes in refractive index, absorption, emission and fluorescence lifetime of these glasses caused by X-ray irradiation were recorded and analyzed systematically. It is found that co-doping with certain amount of Ce could greatly improve the radiation resistance without evident negative effects on the basic optical properties of the Yb3+ ions in the near-infrared region. The nature of the radiation-induced color centres and the mechanism by which Ce prevented the formation of these centres were studied using optical absorption, electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS) methods. Direct evidence confirmed that trapped electron centres (Yb2+/Si-E'/Al-E') and trapped hole centres (Al-OHCs) were effectively inhibited by Ce doping, which was correlated to the coexistence of the redox couple Ce3+/Ce4+ in the glasses. These results are helpful to understand the micro-structural origin and the suppression mechanism by Ce co-doping of the photodarkening effect in Yb3+-doped silica fibers.

  15. Synthesis of Ag doped calcium phosphate particles and their antibacterial effect as additives in dental glass ionomer cements

    OpenAIRE

    2016-01-01

    Developing dental restorations with enhanced antibacterial properties has been a constant quest for materials scientists. The aim of this study was to synthesize silver doped calcium phosphate particles and use them to improve antibacterial properties of conventional glass ionomer cement. The Ag doped monetite (Ag-DCPA) and hydroxyapatite (Ag-HA) were synthesized by precipitation method and characterized using X-ray diffraction, scanning electron microscope and X-ray fluorescence spectroscopy...

  16. Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics

    Science.gov (United States)

    Chen, Daqin; Wang, Yuansheng; Bao, Feng; Yu, Yunlong

    2007-06-01

    Transparent SiO2-Al2O3-NaF-YF3 glass ceramics co-doped with Er3+ and Tm3+ were prepared by melt quenching and subsequent heating. X-ray diffraction and transmission electron microscopy experiments revealed that β-YF3 nanocrystals incorporated with Er3+ and Tm3+ were precipitated homogeneously among the oxide glass matrix. An integrated broad near-infrared emission band in the wavelength region of 1300-1700 nm, consisting of Tm3+ emissions around 1472 nm (H34→F34) and 1626 nm (F34→H36), and Er3+ emission around 1543 nm (I413/2→I415/2), was obtained under 792 nm laser excitation. The full width at half maximum of this integrated band increased with the increasing of [Tm]/[Er] ratio, and it reached as large as 175 nm for the 0.1 mol% Er3+ and 0.8 mol% Tm3+ co-doped sample. The energy transfers between Er3+ and Tm3+ were proposed to play an important role in tailoring the emission bandwidth of the sample.

  17. Field-swept pulsed electron paramagnetic resonance of Cr{sup 3+}-doped ZBLAN fluoride glass

    Energy Technology Data Exchange (ETDEWEB)

    Drew, S.C. [School of Physics and Materials Engineering, Monash University, VIC (Australia)]. E-mail: simon.drew@spme.monash.edu.au; Pilbrow, J.R. [School of Physics and Materials Engineering, Monash University, VIC (Australia); Newman, P.J.; MacFarlane, D.R. [Department of Chemistry, Monash University, VIC (Australia)

    2001-10-07

    Field-swept pulsed electron paramagnetic resonance (EPR) spectra of a ZBLAN fluoride glass doped with a low concentration of Cr{sup 3+} are obtained using echo-detected EPR and hole-burning free induction decay detection. We review the utility of the pulsed EPR technique in generating field-swept EPR spectra, as well as some of the distorting effects that are peculiar to the pulsed detection method. The application of this technique to Cr{sup 3+}-doped ZBLAN reveals that much of the broad resonance extending from g{sup eff}=5.1 to g{sup eff}=1.97, characteristic of X-band continuous wave EPR of Cr{sup 3+} in glasses, is absent. We attribute this largely to the variation in nutation frequencies across the spectrum that result from sites possessing large fine structure interactions. The description of the spin dynamics of such sites is complicated and we discuss some possible approaches to the simulation of the pulsed EPR spectra. (author)

  18. Luminescent properties of Ce3+/Tb3+co-doped glass ceramics containing YPO4 nanocrystals for W-LEDs

    Institute of Scientific and Technical Information of China (English)

    张志雄; 张约品; 冯治刚; 王成; 夏海平; 张新民

    2016-01-01

    Ce3+/Tb3+ co-doped transparent glass ceramics containing YPO4 nanocrystals were prepared using high temperature melt-ing method, and their structural and luminous properties were investigated. XRD analysis and TEM images confirmed the existence of YPO4 nanocrystals in glass ceramics. The transmission spectra proved that the glass ceramics specimens still maintained a high transparency. Then the excitation and emission spectra of the Ce3+ and Tb3+ single-doped and co-doped glass and glass ceramics were discussed, which proved that the glass ceramics had better luminescent properties. Under the near ultraviolet (331 nm) excitation, the broadband emission located at 385 nm was observed which was ascribed to 5d→2F5/2 and2F7/2 transition of Ce3+ ions. Several char-acteristic sharp peaks centered at 489, 543, 578 and 620 nm originated from the5D4 to7FJ (J=6, 5, 4, 3) of Tb3+ ions. The decay time of Tb3+ ions at 543 nm and the relevant energy levels of Ce3+ ions and Tb3+ ions illustrated the transfer process from Ce3+ ions to Tb3+ ions. The best CIE chromaticity coordinate of the glass ceramics specimen was calculated as (x=0.3201,y=0.3749), which was close to the NTSC standard values for white (x=0.333,y=0.333). All the results suggested that the YPO4-based Ce3+/Tb3+ co-doped glass ceramics could act as potential luminescent materials for white light-emitting diodes.

  19. STRUCTURE FEATURES OF THE SODIUM-GERMANATE GLASSES DOPED WITH YTTERBIUM ERBIUM RETRIEVED FROM RAMAN SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    I. M. Sevastianova

    2016-09-01

    Full Text Available Subject of Research.The paper deals with study of Raman spectra and luminescence spectra in the visible region of the sodium-germanate glass: 49 GeO2 – 13 Na2O – 27 Yb2O3 – 11 La2O3 - 0,25 Er2O3 and presents research results. In addition, this glass is doped with 5 mol% of the following components MgO, BaO, Al2O3, PbO, Nb2O5, TiO2, SiO2, P2O5 in order to study the effect of these additives on the structure of the glassy matrix and the anti-Stokes luminescence spectra of erbium ions. Method. Raman scatteringspectra were recorded by Renishaw inVia Raman Microscope. Excitation source is a helium neon laser (λ= 633 nm with power equal to 50Wt. Anti-Stokes luminescence of erbium ions was registered in spectral region of 450–750 nm at room temperature (excitation laser wavelength is 975 nm, power is 1Wt. Main Results. It was shown that the structure of the initial glass does not change with the introduction of niobium as Nb2O5 in any coordination plays a role of network forming, building a single mixed grid with tetrahedrons [GeO4]. Introduction of the second glass former P2O5 leads to loosening germanate structure due to the appearance of the phosphate sublattice. This leads to a redistribution of the relative intensity of up-conversion luminescence bands with maxima at 540 and 670 nm compared with the initial glass. Introduction of additives PbO, MgO, Al2O3, TiO2 results in a multicenter structure. In case of titanium oxide addition it leads to a change in the relative intensities of the erbium luminescence.

  20. Making Glasses Conduct: Electrochemical Doping of Redox-Active Polymer Thin Films

    Science.gov (United States)

    Boudouris, Bryan

    Optoelectronically-active macromolecules have been established as promising materials in myriad organic electronic applications (e.g., organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices). To date, however, the majority of the work surrounding these materials has focused on materials with a great deal of conjugation along their macromolecular backbones and with varying degrees of crystalline structure. Here, we describe an emerging class of macromolecular charge conductors, radical polymers, that: (1) do not contain conjugation and (2) are completely amorphous glasses. Radical polymers contain non-conjugated macromolecular backbones and stable radical sites along the side chains of the electronically-active materials. In contrast to conjugated polymer systems, these materials conduct charge in the solid state through oxidation-reduction (redox) reactions along these pendant groups. Specifically, we demonstrate that controlling the chemical functionality of the pendant groups and the molecular mobility of the macromolecular backbones significantly impacts the charge transport ability of the pristine (i.e., not doped) radical polymers spec