Holographic dual of a boost-invariant plasma with chemical potential
International Nuclear Information System (INIS)
We construct a gravity dual of a boost-invariant flow of an N=4 SU(N) supersymmetric Yang-Mills gauge theory plasma with chemical potential. We present both a first-order corrected late-time solution in Eddington-Finkelstein coordinates and a zeroth-order solution in parametric form in Fefferman-Graham coordinates. The resulting background takes the form of a time-dependent AdS Reissner-Nordstroem-type black hole whose horizons move into the bulk of the AdS space. The solution correctly reproduces the energy and charge density as well as the viscosity of the plasma previously computed in the literature. (orig.)
Holographic dual of a boost-invariant plasma with chemical potential
Energy Technology Data Exchange (ETDEWEB)
Kalaydzhyan, Tigran; Kirsch, Ingo
2010-12-15
We construct a gravity dual of a boost-invariant flow of an N=4 SU(N) supersymmetric Yang-Mills gauge theory plasma with chemical potential. We present both a first-order corrected late-time solution in Eddington-Finkelstein coordinates and a zeroth-order solution in parametric form in Fefferman-Graham coordinates. The resulting background takes the form of a time-dependent AdS Reissner-Nordstroem-type black hole whose horizons move into the bulk of the AdS space. The solution correctly reproduces the energy and charge density as well as the viscosity of the plasma previously computed in the literature. (orig.)
Evolution of non-local observables in an expanding boost-invariant plasma
Pedraza, Juan F
2014-01-01
Using the AdS/CFT correspondence, we compute analytically the late-time behavior of two-point functions, Wilson loops and entanglement entropy in a strongly-coupled $\\mathcal{N}=4$ super-Yang-Mills plasma undergoing a boost-invariant expansion. We take into account the effects of first order dissipative hydrodynamics and investigate the effects of the (time dependent) shear viscosity on the various observables. The two-point functions decay exponentially at late times and are unaffected by the viscosity if the points are separated along the transverse directions. For longitudinal separation we find a much richer structure. In this case the exponential is modulated by a non-monotonic function of the rapidities and a dimensionless combination of the shear viscosity and proper time. Similar results are found for certain Wilson loops and entanglement entropies.
Thermalization of a boost-invariant non-Abelian plasma: Holographic approach with boundary sourcing
Bellantuono, Loredana; De Fazio, Fulvia; Giannuzzi, Floriana
2015-01-01
In a holographic approach, the evolution of a 4D strongly coupled non-Abelian plasma towards equilibrium can be studied investigating a 5D gravitational dual. The process driving the plasma out-of-equilibrium can be described by boundary sourcing, a deformation of the boundary metric; the analysis of the late-time dynamics allows to understand how the hydrodynamic regime settles in. We apply the method to a boost-invariant case, considering the effects of different quenches, solving the Einstein equations in the bulk and studying the time-dependence of observables such as the effective temperature, the energy density and the pressures. The main outcome is that, if the effective temperature of the system when the quench is switched off is $T_{eff}(\\tau^*)=500$ MeV, thermalization is reached within a time of ${\\cal O}$(1 fm/c), an important information if the case of the QCD plasma produced in relativistic heavy ion collisions is considered.
Non-boost-invariant dissipative hydrodynamics
Florkowski, Wojciech; Strickland, Michael; Tinti, Leonardo
2016-01-01
The one-dimensional non-boost-invariant evolution of the quark-gluon plasma, presumably produced during the early stages of heavy-ion collisions, is analyzed within the frameworks of viscous and anisotropic hydrodynamics. We neglect transverse dynamics and assume homogeneous conditions in the transverse plane but, differently from Bjorken expansion, we relax longitudinal boost invariance in order to study the rapidity dependence of various hydrodynamical observables. We compare the results obtained using several formulations of second-order viscous hydrodynamics with a recent approach to anisotropic hydrodynamics, which treats the large initial pressure anisotropy in a non-perturbative fashion. The results obtained with second-order viscous hydrodynamics depend on the particular choice of the second-order terms included, which suggests that the latter should be included in the most complete way. The results of anisotropic hydrodynamics and viscous hydrodynamics agree for the central hot part of the system, ho...
Complexified boost invariance and holographic heavy ion collisions
Gubser, Steven; van der Schee, Wilke
2014-01-01
At strong coupling holographic studies have shown that heavy ion collisions do not obey normal boost invariance. Here we study a modified boost invariance through a complex shift in time, and show that this leads to surprisingly good agreement with numerical holographic computations. When including perturbations the agreement becomes even better, both in the hydrodynamic and the far-from-equilibrium regime. One of the main advantages is an analytic formulation of the stress-energy tensor of t...
Complexified boost invariance and holographic heavy ion collisions
Gubser, Steven S
2015-01-01
At strong coupling holographic studies have shown that heavy ion collisions do not obey normal boost invariance. Here we study a modified boost invariance through a complex shift in time, and show that this leads to surprisingly good agreement with numerical holographic computations. When including perturbations the agreement becomes even better, both in the hydrodynamic and the far-from-equilibrium regime. One of the main advantages is an analytic formulation of the stress-energy tensor of the longitudinal dynamics of holographic heavy ion collisions.
Black brane entropy and hydrodynamics: The boost-invariant case
International Nuclear Information System (INIS)
The framework of slowly evolving horizons is generalized to the case of black branes in asymptotically anti-de Sitter spaces in arbitrary dimensions. The results are used to analyze the behavior of both event and apparent horizons in the gravity dual to boost-invariant flow. These considerations are motivated by the fact that at second order in the gradient expansion the hydrodynamic entropy current in the dual Yang-Mills theory appears to contain an ambiguity. This ambiguity, in the case of boost-invariant flow, is linked with a similar freedom on the gravity side. This leads to a phenomenological definition of the entropy of black branes. Some insights on fluid/gravity duality and the definition of entropy in a time-dependent setting are elucidated.
Black brane entropy and hydrodynamics: the boost-invariant case
Booth, Ivan; Heller, Michal P.; Spalinski, Michal
2009-01-01
The framework of slowly evolving horizons is generalized to the case of black branes in asymptotically anti-de Sitter spaces in arbitrary dimensions. The results are used to analyze the behavior of both event and apparent horizons in the gravity dual to boost-invariant flow. These considerations are motivated by the fact that at second order in the gradient expansion the hydrodynamic entropy current in the dual Yang-Mills theory appears to contain an ambiguity. This ambiguity, in the case of ...
International Nuclear Information System (INIS)
Using gauge/gravity duality, we study the creation and evolution of boost-invariant anisotropic, strongly-coupled N=4 supersymmetric Yang-Mills plasma. In the dual gravitational description, this corresponds to horizon formation in a geometry driven to be anisotropic by a time-dependent change in boundary conditions.
Quark and Gluon Production from a Boost-invariantly Expanding Color Electric Field
Taya, Hidetoshi
2016-01-01
Particle production from an expanding classical color electromagnetic field is extensively studied, motivated by the early stage dynamics of ultra-relativistic heavy ion collisions. We develop a formalism at one-loop order to compute the particle spectra by canonically quantizing quark, gluon and ghost fluctuations under the presence of such an expanding classical color background field; the canonical quantization is done in the $\\tau$-$\\eta$ coordinates in order to take into account manifestly the expanding geometry. As a demonstration, we model the expanding classical color background field by a boost-invariantly expanding homogeneous color electric field with lifetime $T$, for which we obtain analytically the quark and gluon production spectra by solving the equations of motion of QCD non-perturbatively with respect to the color electric field. In this paper we study (i) finite lifetime effect which is found to modify significantly the particle spectra from those expected from the Schwinger formula; (ii) t...
Directory of Open Access Journals (Sweden)
Zhengbin Pang
2009-01-01
Full Text Available We present a reconfigurable architecture model for rotation invariant multi-view face detection based on a novel two-stage boosting method. A tree-structured detector hierarchy is designed to organize multiple detector nodes identifying pose ranges of faces. We propose a boosting algorithm for training the detector nodes. The strong classifier in each detector node is composed of multiple novelly designed two-stage weak classifiers. With a shared output space of multicomponents vector, each detector node deals with the multidimensional binary classification problems. The design of the hardware architecture which fully exploits the spatial and temporal parallelism is introduced in detail. We also study the reconfiguration of the architecture for finding an appropriate tradeoff among the hardware implementation cost, the detection accuracy, and speed. Experiments on FPGA show that high accuracy and marvelous speed are achieved compared with previous related works. The execution time speedups range from 14.68 to 20.86 for images with size of 160×120 up to 800×600 when our FPGA design (98 MHz is compared with software solution on PC (Pentium 4 2.8 GHz.
Energy Technology Data Exchange (ETDEWEB)
Eschlböck-Fuchs, S., E-mail: simon.eschlboeck-fuchs@jku.at [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Kolmhofer, P.J.; Bodea, M.A.; Hechenberger, J.G.; Huber, N. [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Rössler, R. [voestalpine Stahl GmbH, A-4031 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)
2015-07-01
Plasma induced by nanosecond laser ablation is re-excited by a pulsed electric discharge and the parameters and optical emission of the plasma are measured. The discharge is a low-voltage and high-current electric arc that is triggered by the laser-induced plasma and slowly decaying with time. The optical emission of such combined plasma lasts up to several milliseconds which is much longer than without re-excitation (μs range). The emission spectra of re-excited plasma measured on different sample materials show higher line intensities than spectra measured by conventional laser-induced breakdown spectroscopy (LIBS). Moreover, emission lines of fluorine (spectral range 683–691 nm) and sulfur (range 520–550 nm) not detected by conventional LIBS become easily detectable with the combined plasma. The concentration of major components in metallurgical slags, as determined by calibration-free LIBS, agrees very well to the reference data evaluating the spectra taken from re-excited plasma. - Highlights: • Persistence time of laser-induced plasma in air is increased from ~ 10 μs to ~ 1 ms. • Laser-induced plasma triggers an electric arc discharge that boosts the plasma. • The combined laser-arc plasma is in LTE state over very long time (ms range). • CF-LIBS method delivers accurate results evaluating spectra of combined plasma. • Emission from S and F, not detected by LIBS, is detected with combined plasma.
Global scale-invariant dissipation in collisionless plasma turbulence
Kiyani, K H; Khotyaintsev, Yu V; Dunlop, M W
2009-01-01
A higher-order multiscale analysis of the dissipation range of collisionless plasma turbulence is presented using in-situ high-frequency magnetic field measurements from the Cluster spacecraft in a stationary interval of fast ambient solar wind. The observations, spanning five decades in temporal scales, show a crossover from multifractal intermittent turbulence in the inertial range to non-Gaussian monoscaling in the dissipation range. This presents a strong observational constraint on theories of dissipation mechanisms in turbulent collisionless plasmas.
Tobar, M E; McFerran, J J; Guéna, J; Abgrall, M; Bize, S; Clairon, A; Laurent, Ph; Rosenbusch, P; Rovera, D; Santarelli, G
2013-01-01
The frequencies of three separate Cs fountain clocks and one Rb fountain clock have been compared to various hydrogen masers to search for periodic changes correlated with the changing solar gravitational potential at the Earth and boost with respect to the Cosmic Microwave Background (CMB) rest frame. The data sets span over more than eight years. The main sources of long-term noise in such experiments are the offsets and linear drifts associated with the various H-masers. The drift can vary from nearly immeasurable to as high as 1.3*10^-15 per day. To circumvent these effects we apply a numerical derivative to the data, which significantly reduces the standard error when searching for periodic signals. We determine a standard error for the putative Local Position Invariance (LPI) coefficient with respect to gravity for a Cs-Fountain H-maser comparison of 4.8*10^-6 and 10^-5 for a Rb-Fountain H-maser comparison. From the same data the putative boost LPI coefficients were measured to a precision of up to part...
International Nuclear Information System (INIS)
It is well known that hydrogen addition to spark-ignited (SI) engines can reduce exhaust emissions and increase efficiency. Micro plasmatron fuel converters can be used for onboard generation of hydrogen-rich gas by partial oxidation of a wide range of fuels. These plasma-boosted microreformers are compact, rugged, and provide rapid response. With hydrogen supplement to the main fuel, SI engines can run very lean resulting in a large reduction in nitrogen oxides (NO x ) emissions relative to stoichiometric combustion without a catalytic converter. This paper presents experimental results from a microplasmatron fuel converter operating under variable oxygen to carbon ratios. Tests have also been carried out to evaluate the effect of the addition of a microplasmatron fuel converter generated gas in a 1995 2.3-L four-cylinder SI production engine. The tests were performed with and without hydrogen-rich gas produced by the plasma boosted fuel converter with gasoline. A one hundred fold reduction in NO x due to very lean operation was obtained under certain conditions. An advantage of onboard plasma-boosted generation of hydrogen-rich gas is that it is used only when required and can be readily turned on and off. Substantial NO x reduction should also be obtainable by heavy exhaust gas recirculation (EGR) facilitated by use of hydrogen-rich gas with stoichiometric operation
Becker, G.
1992-01-01
The shapes of the electron temperature and electron density profiles in the OH, L- and H-mode confinement regimes of ASDEX are explored by statistical analysis. It is shown that the shape of Te(r) is conserved in the outer half of the plasma in these regimes and that it is invariant with respect to heating power, heating profile, density, density scale length, q value and ion mass. These results suggest that microturbulence constrains the shape of the temperature profile by adjusting the electron heat diffusivity χe(r). No such invariance is found for the temperature profile in the inner half of the plasma and for the density profile over the whole cross-section. Properties of the empirical electron heat diffusivity and the diffusion coefficient in different regimes can be described by Te profile invariance. The improved confinement with peaked density profiles, the reduction of χe in the bulk of H-mode plasmas and the power dependence of χe in the L-regime are discussed
Simulating relativistic beam and plasma systems using an optimal boosted frame
International Nuclear Information System (INIS)
It was shown recently that it may be computationally advantageous to perform computer simulations in a Lorentz boosted frame for a certain class of systems. However, even if the computer model relies on a covariant set of equations, it was pointed out that algorithmic difficulties related to discretization errors may have to be overcome in order to take full advantage of the potential speedup. In this paper, we summarize the findings, the difficulties and their solutions, and review the applications of the technique that have been performed to date.
Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.
Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M
2015-03-27
An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19} W/ cm^{2}. Highly charged gold ions with kinetic energies up to >200 MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.
Coulomb driven energy boost of heavy ions for laser plasma acceleration
Braenzel, J; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M
2014-01-01
An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultra thin gold foils have been irradiated by an ultra short laser pulse at an intensity of $6\\times 10^{19}$ W/cm$^{2}$. Highly charged gold ions with kinetic energies up to $> 200$ MeV and a bandwidth limited energy distribution have been reached by using $1.3$ Joule laser energy on target. $1$D and $2$D Particle in Cell simulations show how a spatial dependence on the ions ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a varying charge density along the target normal and is capable of explaining the energy boost of highly charged ions, leading to a higher efficiency in laser acceleration of heavy ions.
Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.
Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M
2015-03-27
An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19} W/ cm^{2}. Highly charged gold ions with kinetic energies up to >200 MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration. PMID:25860747
Quantification of infectious HIV-1 plasma viral load using a boosted in vitro infection protocol.
Rusert, Peter; Fischer, Marek; Joos, Beda; Leemann, Christine; Kuster, Herbert; Flepp, Markus; Bonhoeffer, Sebastian; Günthard, Huldrych F; Trkola, Alexandra
2004-08-15
Methods currently used for HIV-1 viral load measurements are very sensitive, but cannot distinguish between infectious and noninfectious particles. Here we describe the development of a novel, sensitive, and highly reproducible method that allows rapid isolation and quantification of infectious particles from patient plasma. By immobilizing HIV-1 particles in human plasma to platelets using polybrene, we observed a 10- to 1000-fold increase in infectivity over infection protocols using free virus particles. Using this method, we evaluated infectivity in plasma from 52 patients at various disease stages. At plasma viral loads of 1000-10000 HIV-1 RNA copies/ml 18%, at 10,000-50,000 copies/ml 73%, at 50,000-100,000 copies/ml 90%, and above 100,000 copies 96% of cultures were positive. We found that infectious titers among patients vary distinctively but are characteristic for a patient over extended time periods. Furthermore, we demonstrate that by evaluating infectious titers in conjunction with total HIV RNA loads, subtle effects of treatment intervention on viremia levels can be detected. The immobilization procedure does not interfere with viral entry and does not restore the infectivity of neutralized virus. Therefore, this assay system can be utilized to investigate the influence of substances that specifically affect virion infectivity such as neutralizing antibodies, soluble CD4, or protease inhibitors. Measuring viral infectivity may thereby function as an additional, useful marker in monitoring disease progression and evaluating efficacy of antivirals in vivo.
Energy Technology Data Exchange (ETDEWEB)
Sonnino, Giorgio, E-mail: gsonnino@ulb.ac.be [Université Libre de Bruxelles (U.L.B.), Department of Physics, Campus de la Plaine Code Postal 231 - Boulevard du Triomphe, 1050 Brussels (Belgium); Cardinali, Alessandro [EURATOM-ENEA Fusion Association, Via E. Fermi 45, C.P. 65-00044 Frascati, Rome (Italy); Steinbrecher, Gyorgy [EURATOM-MEdC Fusion Association, Physics Faculty, University of Craiova, Str. A.I. Cuza 13, 200585 Craiova (Romania); Peeters, Philippe [Université Libre de Bruxelles (U.L.B.), Department of Physics, Campus de la Plaine Code Postal 231 - Boulevard du Triomphe, 1050 Brussels (Belgium); Sonnino, Alberto [Université Catholique de Louvain (UCL), Ecole Polytechnique de Louvain (EPL), Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve (Belgium); Nardone, Pasquale [Université Libre de Bruxelles (U.L.B.), Department of Physics, Campus de la Plaine Code Postal 231 - Boulevard du Triomphe, 1050 Brussels (Belgium)
2013-12-09
We derive the expression of the reference distribution function for magnetically confined plasmas far from the thermodynamic equilibrium. The local equilibrium state is fixed by imposing the minimum entropy production theorem and the maximum entropy (MaxEnt) principle, subject to scale invariance restrictions. After a short time, the plasma reaches a state close to the local equilibrium. This state is referred to as the reference state. The aim of this Letter is to determine the reference distribution function (RDF) when the local equilibrium state is defined by the above mentioned principles. We prove that the RDF is the stationary solution of a generic family of stochastic processes corresponding to an universal Landau-type equation with white parametric noise. As an example of application, we consider a simple, fully ionized, magnetically confined plasmas, with auxiliary Ohmic heating. The free parameters are linked to the transport coefficients of the magnetically confined plasmas, by the kinetic theory.
Directory of Open Access Journals (Sweden)
Pierangelo Chinello
2015-03-01
Full Text Available Sildenafil and bosentan are increasingly used for the treatment of pulmonary arterial hypertension (PAH in HIV-infected patients. However, concerns exist about pharmacokinetic interactions among sildenafil, bosentan and antiretroviral drugs, including protease inhibitors (PI. We describe here the case of an HIV-infected patient with PAH, who was co-administered bosentan 125 mg twice daily and sildenafil 40 mg three times per day, together with a ritonavir-boosted PI-based antiretroviral therapy; plasma levels of bosentan, sildenafil, N-desmethylsildenafil, and PI were measured. The patient had a sildenafil Cthrough and Cmax of 276.94 ng/mL and 1733.19 ng/mL, respectively. The Cthrough and the Cmax of bosentan were 1546.53 ng/mL and 3365.99 ng/mL, respectively. The patient was able to tolerate as high sildenafil blood concentrations as 10 times those usually requested and did not report any significant adverse reaction to sildenafil during the follow-up period. Therapeutic drug monitoring should be considered during sildenafil therapy in patients concomitantly treated with ritonavir-boosted PI.
Boosted Horizon of a Boosted Space-Time Geometry
Battista, Emmanuele; Scudellaro, Paolo; Tramontano, Francesco
2015-01-01
We apply the ultrarelativistic boosting procedure to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface, by exploiting the picture of the embedding of an hyperboloid in a five-dimensional Minkowski spacetime. After reverting to the usual four-dimensional formalism, we also solve the geodesic equation and evaluate the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Eventually, the analysis of the Kretschmann invariant (and of the geodesic equation) shows the global structure of space- time, as we demonstrate the presence of a "scalar curvature singularity" within a 3-sphere and find that it is also possible to define what we have called "boosted horizon", a sort of elastic wall where all particles are surprisingly pushe...
Hattori, Takanari; Fukushi, Keiichi
2016-01-01
2D computer simulation revealed that amino acids and weak electrolytes were cationized because of the migration of counter-ion from a BGE zone to a sample zone, which encouraged electrokinetic injection (EKI) of these analytes (by the mobility-boost (MB) effect). To investigate the effects of kinds and concentrations of counter-ions on the MB effect and the analyte amount injected into the capillary, experiments, and 1D computer simulations were performed. When acetate was used as the counter-ion, the LODs (S/N = 3) of l-histidine and creatinine, respectively, reached 0.10 and 0.25 nM because of the concentration effect by transient ITP (tITP). The concentrations of l-histidine and creatinine in human blood plasma obtained using the proposed method were agreed with those obtained using the conventional methods. The proposed method can be applied to the analysis of amino acids and weak bases that have similar pI and pKa to l-histidine and creatinine. PMID:26454141
Frank, Steven A.
2016-01-01
In nematodes, environmental or physiological perturbations alter death’s scaling of time. In human cancer, genetic perturbations alter death’s curvature of time. Those changes in scale and curvature follow the constraining contours of death’s invariant geometry. I show that the constraints arise from a fundamental extension to the theories of randomness, invariance and scale. A generalized Gompertz law follows. The constraints imposed by the invariant Gompertz geometry explain the tendency of perturbations to stretch or bend death’s scaling of time. Variability in death rate arises from a combination of constraining universal laws and particular biological processes.
Riemann curvature of a boosted spacetime geometry
Battista, Emmanuele; Scudellaro, Paolo; Tramontano, Francesco
2014-01-01
The ultrarelativistic boosting procedure had been applied in the literature to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface. This paper evaluates the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Thus, for the first time in the literature, the singular limit of curvature through Dirac's delta distribution and its derivatives is numerically evaluated for this class of spacetimes. Eventually, the analysis of the Kteschmann invariant and the geodesic equation show that the spacetime possesses a scalar curvature singularity within a 3-sphere and it is possible to define what we here call boosted horizon, a sort of elastic wall where all particles are surprisingly pushed away, as numerical analysis demonstrates. Thi...
Riemann curvature of a boosted spacetime geometry
Battista, Emmanuele; Esposito, Giampiero; Scudellaro, Paolo; Tramontano, Francesco
2016-10-01
The ultrarelativistic boosting procedure had been applied in the literature to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface. This paper evaluates the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Thus, for the first time in the literature, the singular limit of curvature, through Dirac’s δ distribution and its derivatives, is numerically evaluated for this class of spacetimes. Moreover, the analysis of the Kretschmann invariant and the geodesic equation shows that the spacetime possesses a “scalar curvature singularity” within a 3-sphere and it is possible to define what we here call “boosted horizon”, a sort of elastic wall where all particles are surprisingly pushed away, as numerical analysis demonstrates. This seems to suggest that such “boosted geometries” are ruled by a sort of “antigravity effect” since all geodesics seem to refuse to enter the “boosted horizon” and are “reflected” by it, even though their initial conditions are aimed at driving the particles toward the “boosted horizon” itself. Eventually, the equivalence with the coordinate shift method is invoked in order to demonstrate that all δ2 terms appearing in the Riemann curvature tensor give vanishing contribution in distributional sense.
QCD resummations for boosted top production
Ferroglia, Andrea; Scott, Darren J; Yang, Li Lin
2015-01-01
We present new results for QCD corrections to the top-pair invariant mass and top-quark $p_T$ distributions in boosted top-quark pair production at hadron colliders. They are derived from a formalism which allows the joint resummation of soft and small-mass logarithms at NNLL$'$ order, thus taking into account all potentially large corrections in the boosted regime, where the partonic center-of-mass energy is parameterically much larger than the mass of the top quark. We match these results with those from standard soft-gluon resummation away from the small-mass limit to NNLL order and also with NLO fixed-order calculations, so that our results are valid in the maximum possible range of phase space. The resummation effects on the $p_T$ and top-pair invariant mass distributions are significant, bringing theory predictions into better agreement with experimental data compared to pure NLO calculations.
Boosting foundations and algorithms
Schapire, Robert E
2012-01-01
Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.
Directory of Open Access Journals (Sweden)
A Imaz
2012-11-01
Full Text Available Purpose of the study: Few clinical trials have compared non-nucleoside reverse transcriptase inhibitors (NNRTI and ritonavir-boosted protease inhibitors (PI/r as initial combined antiretroviral therapy (cART for HIV-1-infected patients with high plasma viral load (pVL, and non-conclusive results have been reported. We compared the effectiveness between NNRTI and PI/r as first-line cART for HIV-1-infected patients with high pVL. Methods: Observational retrospective study of 664 consecutive treatment-naïve HIV-1-infected patients with pVL (HIV-1 RNA >100,000 copies/mL who initiated NNRTI or PI/r-based cART between 2000–2010 in three University hospitals. Only currently preferred or alternative regimens in clinical guidelines were included. Primary endpoint: percentage of therapeutic failures at week 48. Virologic failure was defined as: a lack of virologic response (<1 log RNA HIV-1 decrease in first 3 months; b RNA HIV-1 >50 c/mL at week 48; c confirmed rebound >50 c/ml after a previous value <50 c/mL. Intent-to-treat (ITT noncompleter=failure and on-treatment (OT analyses were performed. Results: 62% of patients initiated NNRTI-regimens (83% efavirenz and 38% PI/r-regimens (62% lopinavir/. Baseline characteristics: male 83%; median age 39 yrs; median CD4 count: 212/µL (NNRTI 232 vs PI/r 177, p=0.028; pVL 5.83 log10 c/mL (NNRTI 5.43 vs PI/r 5.55, p=0.007; AIDS 24% (NNRTI 21% vs PI/r 29%, p=0.015. NRTI backbones were tenofovir plus 3TC or FTC in 72%. The percentage of therapeutic failure was higher in the PI/r group (ITT NC=F 26% vs 18%, p=0.012 with no differences in virologic failures (PI/r 5%, NNRTI 6%, p=0.688. The rate of treatment changes due to toxicity and/or voluntary discontinuations was higher in the PI/r group (15% vs 8%, p=0.008. A multivariate analysis adjusted for age, gender, CD4 count, VL and AIDS showed NNRTI vs PI/r as the only variable associated with treatment response (OR 0.61, 95% CI 0.41–0.88. Median pVL and rate of
Galilean invariant resummation schemes of cosmological perturbations
Peloso, Marco
2016-01-01
Many of the methods proposed so far to go beyond Standard Perturbation Theory break invariance under time-dependent boosts (denoted here as extended Galilean Invariance, or GI). This gives rise to spurious large scale effects which spoil the small scale predictions of these approximation schemes. By using consistency relations we derive fully non-perturbative constraints that GI imposes on correlation functions. We then introduce a method to quantify the amount of GI breaking of a given scheme, and to correct it by properly tailored counterterms. Finally, we formulate resummation schemes which are manifestly GI, discuss their general features, and implement them in the so called Time-Flow, or TRG, equations.
Mukherjee, Arindam
2015-01-01
If you are a C++ programmer who has never used Boost libraries before, this book will get you up-to-speed with using them. Whether you are developing new C++ software or maintaining existing code written using Boost libraries, this hands-on introduction will help you decide on the right library and techniques to solve your practical programming problems.
Lorentz invariance in chiral kinetic theory.
Chen, Jing-Yuan; Son, Dam T; Stephanov, Mikhail A; Yee, Ho-Ung; Yin, Yi
2014-10-31
We show that Lorentz invariance is realized nontrivially in the classical action of a massless spin-1/2 particle with definite helicity. We find that the ordinary Lorentz transformation is modified by a shift orthogonal to the boost vector and the particle momentum. The shift ensures angular momentum conservation in particle collisions and implies a nonlocality of the collision term in the Lorentz-invariant kinetic theory due to side jumps. We show that 2/3 of the chiral-vortical effect for a uniformly rotating particle distribution can be attributed to the magnetic moment coupling required by the Lorentz invariance. We also show how the classical action can be obtained by taking the classical limit of the path integral for a Weyl particle. PMID:25396362
Higher dimensional gravity invariant under the AdS group
Salgado, Patricio; Izaurieta, Fernando; Rodriguez, Eduardo
2003-01-01
A higher dimensional gravity invariant both under local Lorentz rotations and under local Anti de Sitter boosts is constructed. It is shown that such a construction is possible both when odd dimensions and when even dimensions are considered. It is also proved that such actions have the same coefficients as those obtained by Troncoso and Zanelli.
Computational invariant theory
Derksen, Harm
2015-01-01
This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be ...
Creation of quark-gluon plasma in ultrarelativistic heavy-ion collisions
International Nuclear Information System (INIS)
We propose a unified space-time picture of baryon stopping and quark-gluon plasma creation in ultrarelativistic heavy-ion collisions. It is assumed that the highly Lorentz contracted nuclei are decelerated by the coherent color field which is formed between them after they pass through each other. This process continues until the field is neutralized by the Schwinger mechanism. Conservation of energy and momentum allow us to calculate the energy losses of the nuclear slabs and the initial energy density of the quark-gluon plasma. Significant deviations from the boost-invariant scenario have been found. (orig.)
Tan, Aimin; Wu, Yanxin; Wong, Molly; Licollari, Albert; Bolger, Gordon; Fanaras, John C; Shopp, George; Helson, Lawrence
2016-08-15
Tetrahydrocurcumin (THC), a major metabolite of curcumin, is often quantified by LC-MS or LC-MS/MS using acidic mobile phases due to the concern of its instability in a basic medium. However, acidic mobile phases often lead to poor chromatography (e.g. split or double peaks) and reduced detection sensitivity in the commonly used negative ionization mode. To overcome these shortcomings, a basic mobile phase was used for the first time in the LC-MS/MS quantification of THC. In comparison with the acidic mobile phases, a single symmetrical chromatographic peak was obtained and the sensitivity increased by 7-fold or more under the equivalent conditions. The new LC-MS/MS method using the basic mobile phase has been successfully validated for the quantification of THC in human EDTA plasma over the concentration range of 5-2500ng/ml. The within-batch accuracy (% nominal concentration) was between 88.7 and 104.9 and the between-batch accuracy ranged from 96.7 to 108.6. The CVs for within- and between-batch precisions were equal to or less than 5.5% and 9.1%, respectively. No significant matrix interference or matrix effect was observed from normal or lipemic and hemolytic plasma matrices. In addition, the common stabilities with adequate durations were established, including up to 5days of post-preparative stability. Furthermore, when the validated method was applied to a clinical study, the passing rate of ISR samples was 83%, indicating the good reproducibility of the method. The success of the unconventional approach presented in this article demonstrates that a mobile phase could be selected based mainly on its merits to facilitate LC separation and/or MS detection. There is no need for excessive concern about the stability of the compound(s) of interest in the selected mobile phase because the run time of modern LC-MS or LC-MS/MS methods is typically only a few minutes. PMID:27327398
Breast boost - why, how, when...?
International Nuclear Information System (INIS)
Background: Breast conservation management including tumorectomy or quadrantectomy and external beam radiotherapy with a dose of 45 to 50 Gy in the treatment of small breast carcinomas is generally accepted. The use of a radiation boost - in particular for specific subgroups - has not been clarified. With regard to the boost technique there is some controversy between groups emphasizing the value of electron boost treatment and groups pointing out the value of interstitial boost treatment. This controversy has become even more complicated as there is an increasing number of institutions reporting the use of HDR interstitial brachytherapy for boost treatment. The most critical issue with regard to interstitial HDR brachytherapy is the assumed serious long-term morbidity after a high single radiation dose as used in HDR-treatments. Methods and Results: This article gives a perspective and recommendations on some aspects of this issue (indication, timing, target volume, dose and dose rate). Conclusion: More information about the indication for a boost is to be expected from the EORTC trial 22881/10882. Careful selection of treatment procedures for specific subgroups of patients and refinement in surgical procedures and radiotherapy techniques may be useful in improving the clinical and cosmetic results in breast conservation therapy. Prospective trials comparing on the one hand different boost techniques and on the other hand particular morphologic criteria in treatments with boost and without boost are needed to give more detailed recommendations for boost indication and for boost techniques. (orig.)
Diversity-Based Boosting Algorithm
Directory of Open Access Journals (Sweden)
Jafar A. Alzubi
2016-05-01
Full Text Available Boosting is a well known and efficient technique for constructing a classifier ensemble. An ensemble is built incrementally by altering the distribution of training data set and forcing learners to focus on misclassification errors. In this paper, an improvement to Boosting algorithm called DivBoosting algorithm is proposed and studied. Experiments on several data sets are conducted on both Boosting and DivBoosting. The experimental results show that DivBoosting is a promising method for ensemble pruning. We believe that it has many advantages over traditional boosting method because its mechanism is not solely based on selecting the most accurate base classifiers but also based on selecting the most diverse set of classifiers.
Lykov, A; Vaninsky, K
2011-01-01
We introduce a dynamical system which we call the AdaBoost flow. The flow is defined by a system of ODEs with control. We show how by a suitable choice of control AdaBoost algorithm of Schapire and Freund and arc-gv algorithm of Breiman can be embedded in the AdaBoost flow. We also show how previously studied by Schapire and Singer confidence rated prediction can be obtained from our continuous time approach. We introduce a new continuous time algorithm which we call superBoost and describe its properties. The AdaBoost flow equations coincide with the equations of dynamics of the nonperiodic Toda system written in terms of spectral variables. This establishes a connection between two seemingly unrelated fields of boosting algorithms and classical integrable models. Finally we explain similarity of the AdaBoost flow with Perelman's ideas to control Ricci flow.
Boosting Support Vector Machines
Directory of Open Access Journals (Sweden)
Elkin Eduardo García Díaz
2006-11-01
Full Text Available En este artículo, se presenta un algoritmo de clasificación binaria basado en Support Vector Machines (Máquinas de Vectores de Soporte que combinado apropiadamente con técnicas de Boosting consigue un mejor desempeño en cuanto a tiempo de entrenamiento y conserva características similares de generalización con un modelo de igual complejidad pero de representación más compacta./ In this paper we present an algorithm of binary classification based on Support Vector Machines. It is combined with a modified Boosting algorithm. It run faster than the original SVM algorithm with a similar generalization error and equal complexity model but it has more compact representation.
Analytic Boosted Boson Discrimination
Larkoski, Andrew J; Neill, Duff
2015-01-01
Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, $D_2$, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between these limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted $Z...
Stark, Giordon; The ATLAS collaboration
2016-01-01
In this talk, I present a discussion of techniques used in supersymmetry searches in papers published by the ATLAS Collaboration from late Run 1 to early Run 2. The goal is to highlight concepts the analyses have in common, why/how they work, and possible SUSY searches that could benefit from boosted studies. Theoretical background will be provided for reference to encourage participants to explore in depth on their own time.
Analytic boosted boson discrimination
Andrew J. Larkoski; Moult, Ian; Neill, Duff
2015-01-01
Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, $D_2$, valid for both signal and background jets. Our factorization t...
Measurement invariance versus selection invariance : Is fair selection possible?
Borsboom, Denny; Romeijn, Jan-Willem; Wicherts, Jelte M.
2008-01-01
This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement instrume
Generalized relativistic kinematics in Poincar\\'e-invariant models
Ivetic, B; Samsarov, A
2016-01-01
Assuming the validity of the relativity principle, we discuss the implications on relativistic kinematics of a deformation of the Poincar\\'e invariance that preserves the Poincar\\'e algebra, and only modifies its action on phase space in a Lorentz-invariant way. We show that, in contrast to the case where the Poincar\\'e algebra is deformed, the action of boosts on two-particle states is not affected, while the addition law of momenta is to a large extent arbitrary. We give some nontrivial examples of this arising from doubly special relativity and noncommutative geometry and show that Hopf-algebra methods give equivalent results.
Late time behavior of non-conformal plasmas
Gursoy, Umut; Policastro, Giuseppe
2015-01-01
We determine analytically the dependence of the approach to thermal equilibrium of strongly coupled plasmas on the breaking of scale invariance. The theories we consider are the holographic duals to Einstein gravity coupled to a scalar with an exponential potential. The coefficient in the exponent, $X$, is the parameter that controls the deviation from the conformally invariant case. For these models we obtain analytic solutions for the plasma expansion in the late-time limit, under the assumption of boost-invariance, and we determine the scaling behaviour of the energy density, pressure, and temperature as a function of time. We find that the temperature decays as a function of proper time as $T\\sim \\tau^{-s/4}$ with $s$ determined in terms of the non-conformality parameter $X$ as $s=4(1-4X^2)/3$. This agrees with the result of Janik and Peschanski, $s=4/3$, for the conformal plasmas and generalizes it to non-conformal plasmas with $X\
Boosted Top Quark Pair Production in Soft Collinear Effective Theory
Ferroglia, Andrea; Pecjak, Ben D; Yang, Li Lin
2014-01-01
We review a Soft Collinear Effective Theory approach to the study of factorization and resummation of QCD effects in top-quark pair production. In particular, we consider differential cross sections such as the top-quark pair invariant mass distribution and the top-quark transverse momentum and rapidity distributions. Furthermore, we focus our attention on the large invariant mass and large transverse momentum kinematic regions, characteristic of boosted top quarks. We discuss the factorization of the differential cross section in the double soft gluon emission and small top-quark mass limit, both in Pair Invariant Mass (PIM) and One Particle Inclusive (1PI) kinematics. The factorization formulas can be employed in order to implement the simultaneous resummation of soft emission and small mass effects up to next-to-next-to-leading logarithmic accuracy. The results are also used to construct improved next-to-next-to-leading order approximations for the differential cross sections.
Morozov, Albert D; Dragunov, Timothy N; Malysheva, Olga V
1999-01-01
This book deals with the visualization and exploration of invariant sets (fractals, strange attractors, resonance structures, patterns etc.) for various kinds of nonlinear dynamical systems. The authors have created a special Windows 95 application called WInSet, which allows one to visualize the invariant sets. A WInSet installation disk is enclosed with the book.The book consists of two parts. Part I contains a description of WInSet and a list of the built-in invariant sets which can be plotted using the program. This part is intended for a wide audience with interests ranging from dynamical
Transformation invariance in pattern recognition - tangent distance and tangent propagation
Simard, Patrice,; Le Cun, Yann; Denker, John,; Victorri, Bernard
1998-01-01
http://research.microsoft.com/~patrice/PDF/tricks.pdf In pattern recognition, statistical modeling, or regression, the amount of data is the most critical factor affecting the performance. If the amount of data and computational resources are near infinite, many algorithmes will probably converge to the optimal solution. When this is not the case, one has to introduce regularizers and a-priori knowledge to supplement the available data in order to boost the performance. Invariance (or know...
Kernel based visual tracking with scale invariant features
Institute of Scientific and Technical Information of China (English)
Risheng Han; Zhongliang Jing; Yuanxiang Li
2008-01-01
The kernel based tracking has two disadvantages:the tracking window size cannot be adjusted efficiently,and the kernel based color distribution may not have enough ability to discriminate object from clutter background.FDr boosting up the feature's discriminating ability,both scale invariant features and kernel based color distribution features are used as descriptors of tracked object.The proposed algorithm can keep tracking object of varying scales even when the surrounding background is similar to the object's appearance.
Duchovni, Ehud
2013-01-01
Jets with transverse energy of few TeV are becoming now common in LHC data. Most of these jets are produced by QCD processes and some from the collimated decay of highly boosted objects like W, Z, H0 and top-quark. The study of such QCD jets may shed light on QCD showering processes and the identification of the jets coming from decays may test the Standard Model under extreme conditions and may also provide the first hints for Physics Beyond the Standard Model. A short review of jet algorithms, Correction procedures for pile-up effects and commonly used substructure observables are described.
Boost C++ application development cookbook
Polukhin, Antony
2013-01-01
This book follows a cookbook approach, with detailed and practical recipes that use Boost libraries.This book is great for developers new to Boost, and who are looking to improve their knowledge of Boost and see some undocumented details or tricks. It's assumed that you will have some experience in C++ already, as well being familiar with the basics of STL. A few chapters will require some previous knowledge of multithreading and networking. You are expected to have at least one good C++ compiler and compiled version of Boost (1.53.0 or later is recommended), which will be used during the exer
Gradient boosting machines, a tutorial.
Natekin, Alexey; Knoll, Alois
2013-01-01
Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods with a strong focus on machine learning aspects of modeling. A theoretical information is complemented with descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. Three practical examples of gradient boosting applications are presented and comprehensively analyzed. PMID:24409142
Gradient Boosting Machines, A Tutorial
Directory of Open Access Journals (Sweden)
Alexey eNatekin
2013-12-01
Full Text Available Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. A set of practical examples of gradient boosting applications are presented and comprehensively analyzed.
Analytic boosted boson discrimination
Larkoski, Andrew J.; Moult, Ian; Neill, Duff
2016-05-01
Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D 2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between these limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. Our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.
Transport coefficients of the Gribov-Zwanziger plasma
Florkowski, Wojciech; Su, Nan; Tywoniuk, Konrad
2015-01-01
We study dynamic features of a plasma consisting of gluons whose infrared dynamics is improved by the Gribov-Zwanziger quantization. This approach embodies essential features of color confinement which set the plasma apart from conventional quasiparticle systems in several aspects. Our study focusses on a boost-invariant expansion for in- and out-of-equilibrium settings, which at late times can be characterized by the sound velocity, $c_s$, and the shear, $\\eta$, and bulk, $\\zeta$, viscosities. We obtain explicit expressions for the transport coefficients $\\eta$ and $\\zeta$ and check that they are consistent with the numerical solutions of the kinetic equation. At high temperature, we find a scaling $\\zeta/\\eta \\propto 1/3 - c_s^2$ which manifests strong breaking of conformal symmetry in contrast to the case of weakly coupled plasmas.
Ultrarelativistic boost with scalar field
Svítek, O.; Tahamtan, T.
2016-02-01
We present the ultrarelativistic boost of the general global monopole solution which is parametrized by mass and deficit solid angle. The problem is addressed from two different perspectives. In the first one the primary object for performing the boost is the metric tensor while in the second one the energy momentum tensor is used. Since the solution is sourced by a triplet of scalar fields that effectively vanish in the boosting limit we investigate the behavior of a scalar field in a simpler setup. Namely, we perform the boosting study of the spherically symmetric solution with a free scalar field given by Janis, Newman and Winicour. The scalar field is again vanishing in the limit pointing to a broader pattern of scalar field behaviour during an ultrarelativistic boost in highly symmetric situations.
Schlaffer, Matthias; Takeuchi, Michihisa; Weiler, Andreas; Wymant, Chris
2014-01-01
The inclusive Higgs production rate through gluon fusion has been measured to be in agreement with the Standard Model (SM). We show that even if the inclusive Higgs production rate is very SM-like, a precise determination of the boosted Higgs transverse momentum shape offers the opportunity to see effects of natural new physics. These measurements are generically motivated by effective field theory arguments and specifically in extensions of the SM with a natural weak scale, like composite Higgs models and natural supersymmetry. We show in detail how a measurement at high transverse momentum of $H\\to 2\\ell+\\mathbf{p}\\!\\!/_T$ via $H\\to \\tau\\tau$ and $H\\to WW^*$ could be performed and demonstrate that it offers a compelling alternative to the $t\\bar t H$ channel. We discuss the sensitivity to new physics in the most challenging scenario of an exactly SM-like inclusive Higgs cross-section.
Energy Technology Data Exchange (ETDEWEB)
Schlaffer, Matthias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Spannowsky, Michael [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Takeuchi, Michihisa [King' s College London (United Kingdom). Theoretical Physics and Cosmology Group; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Wymant, Chris [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Laboratoire d' Annecy-le-Vieux de Physique Theorique, Annecy-le-Vieux (France)
2014-05-15
The inclusive Higgs production rate through gluon fusion has been measured to be in agreement with the Standard Model (SM). We show that even if the inclusive Higgs production rate is very SM-like, a precise determination of the boosted Higgs transverse momentum shape offers the opportunity to see effects of natural new physics. These measurements are generically motivated by effective field theory arguments and specifically in extensions of the SM with a natural weak scale, like composite Higgs models and natural supersymmetry. We show in detail how a measurement at high transverse momentum of H→2l+p{sub T} via H→ττ and H→WW{sup *} could be performed and demonstrate that it offers a compelling alternative to the t anti tH channel. We discuss the sensitivity to new physics in the most challenging scenario of an exactly SM-like inclusive Higgs cross-section.
Energy Technology Data Exchange (ETDEWEB)
Schlaffer, Matthias [DESY, Hamburg (Germany); Spannowsky, Michael [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Takeuchi, Michihisa [King' s College London, Theoretical Physics and Cosmology Group, Department of Physics, London (United Kingdom); Weiler, Andreas [DESY, Hamburg (Germany); CERN, Theory Division, Physics Department, Geneva 23 (Switzerland); Wymant, Chris [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Laboratoire d' Annecy-le-Vieux de Physique Theorique, 9 Chemin de Bellevue, 74940, Annecy-le-Vieux (France); Imperial College London, Department of Infectious Disease Epidemiology, London (United Kingdom)
2014-10-15
The inclusive Higgs production rate through gluon fusion has been measured to be in agreement with the Standard Model (SM). We show that even if the inclusive Higgs production rate is very SM-like, a precise determination of the boosted Higgs transverse momentum shape offers the opportunity to see effects of natural new physics. These measurements are generically motivated by effective field theory arguments and specifically in extensions of the SM with a natural weak scale, like composite Higgs models and natural supersymmetry. We show in detail how a measurement at high transverse momentum of H → 2l + p{sub T} via H → ττ and H → WW* could be performed and demonstrate that it offers a compelling alternative to the t anti tH channel. We discuss the sensitivity to newphysics in the most challenging scenario of an exactly SM-like inclusive Higgs cross section. (orig.)
Transformation invariant sparse coding
DEFF Research Database (Denmark)
Mørup, Morten; Schmidt, Mikkel Nørgaard
2011-01-01
Sparse coding is a well established principle for unsupervised learning. Traditionally, features are extracted in sparse coding in specific locations, however, often we would prefer invariant representation. This paper introduces a general transformation invariant sparse coding (TISC) model....... The model decomposes images into features invariant to location and general transformation by a set of specified operators as well as a sparse coding matrix indicating where and to what degree in the original image these features are present. The TISC model is in general overcomplete and we therefore invoke...... sparse coding to estimate its parameters. We demonstrate how the model can correctly identify components of non-trivial artificial as well as real image data. Thus, the model is capable of reducing feature redundancies in terms of pre-specified transformations improving the component identification....
Invariant facial feature extraction using biologically inspired strategies
Du, Xing; Gong, Weiguo
2011-12-01
In this paper, a feature extraction model for face recognition is proposed. This model is constructed by implementing three biologically inspired strategies, namely a hierarchical network, a learning mechanism of the V1 simple cells, and a data-driven attention mechanism. The hierarchical network emulates the functions of the V1 cortex to progressively extract facial features invariant to illumination, expression, slight pose change, and variations caused by local transformation of facial parts. In the network, filters that account for the local structures of the face are derived through the learning mechanism and used for the invariant feature extraction. The attention mechanism computes a saliency map for the face, and enhances the salient regions of the invariant features to further improve the performance. Experiments on the FERET and AR face databases show that the proposed model boosts the recognition accuracy effectively.
Detection of Illegitimate Emails using Boosting Algorithm
DEFF Research Database (Denmark)
Nizamani, Sarwat; Memon, Nasrullah; Wiil, Uffe Kock
2011-01-01
spam email detection. For our desired task, we have applied a boosting technique. With the use of boosting we can achieve high accuracy of traditional classification algorithms. When using boosting one has to choose a suitable weak learner as well as the number of boosting iterations. In this paper, we...... propose a Naive Bayes classifier as a suitable weak learner for the boosting algorithm. It achieves maximum performance with very few boosting iterations....
Permutationally invariant state reconstruction
DEFF Research Database (Denmark)
Moroder, Tobias; Hyllus, Philipp; Tóth, Géza;
2012-01-01
-scale optimization problem, this is a major challenge in the design of scalable tomography schemes. Here we present an efficient state reconstruction scheme for permutationally invariant quantum state tomography. It works for all common state-of-the-art reconstruction principles, including, in particular, maximum...... likelihood and least squares methods, which are the preferred choices in today's experiments. This high efficiency is achieved by greatly reducing the dimensionality of the problem employing a particular representation of permutationally invariant states known from spin coupling combined with convex...
Pérez-Nadal, Guillem
2016-01-01
We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates "scaling like time" is generically greater than one. We propose the Cartesian product of two curved spaces, with the metric of each space parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry.
Role of nonlocal probes of thermalization for a strongly interacting non-Abelian plasma
Bellantuono, L.; Colangelo, P.; De Fazio, F.; Giannuzzi, F.; Nicotri, S.
2016-07-01
The thermalization process of an out-of-equilibrium boost-invariant strongly interacting non-Abelian plasma is investigated using a holographic method. Boundary sourcing, a distortion of the boundary metric, is employed to drive the system far from equilibrium. Thermalization is analyzed in the fully dynamical system through nonlocal probes: the equal-time two-point correlation function of large conformal dimension operators in the boundary theory, and Wilson loops of different shapes. A dependence of the thermalization time on the size of the probes is found, which can be compared to the result of local observables: the onset of thermalization is first observed at short distances.
Using nonlocal probes of thermalization for a strongly interacting non-Abelian plasma
Bellantuono, Loredana; De Fazio, Fulvia; Giannuzzi, Floriana; Nicotri, Stefano
2016-01-01
We use a holographic method to investigate thermalization of a boost-invariant strongly interacting non-Abelian plasma. Boundary sourcing, a distorsion of the boundary metric, is employed to drive the system far from equilibrium. Thermalization is analyzed through nonlocal probes: the equal-time two-point correlation function of large conformal dimension operators in the boundary theory, and Wilson loops of different shapes. We study the dependence of the thermalization time on the size of the probes, and compare the results to the ones obtained using local observables: the onset of thermalization is first observed at short distances.
Wetterich, C
2016-01-01
We propose a gauge invariant flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations, corresponding to a particular gauge fixing. The freedom in the precise choice of the macroscopic field can be exploited in order to keep the flow equation simple.
Kobayashi, Tatsuo; Urakawa, Yuko
2016-01-01
Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field $T$ whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by $T$. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential $V_{ht}$, but it also has a non-negligible deviation from $V_{ht}$. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still po...
Invariant differential operators
Dobrev, Vladimir K
2016-01-01
With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory.
Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko
2016-08-01
Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential Vht, but it also has a non-negligible deviation from Vht. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.
Physics with boosted top quarks
Kuutmann, Elin Bergeaas
2014-01-01
The production at the LHC of boosted top quarks (top quarks with a transverse momentum that greatly exceeds their rest mass) is a promising process to search for phenomena beyond the Standard Model. In this contribution several examples are discussed of new techniques to reconstruct and identify (tag) the collimated decay topology of the boosted hadronic decays of top quarks. Boosted top reconstruction techniques have been utilized in searches for new physical phenomena. An overview is given of searches by ATLAS, CDF and CMS for heavy new particles decaying into a top and an anti-top quark, vector-like quarks and supersymmetric partners to the top quark.
Distribution-Specific Agnostic Boosting
Feldman, Vitaly
2009-01-01
We consider the problem of boosting the accuracy of weak learning algorithms in the agnostic learning framework of Haussler (1992) and Kearns et al. (1992). Known algorithms for this problem (Ben-David et al., 2001; Gavinsky, 2002; Kalai et al., 2008) follow the same strategy as boosting algorithms in the PAC model: the weak learner is executed on the same target function but over different distributions on the domain. We demonstrate boosting algorithms for the agnostic learning framework that only modify the distribution on the labels of the points (or, equivalently, modify the target function). This allows boosting a distribution-specific weak agnostic learner to a strong agnostic learner with respect to the same distribution. When applied to the weak agnostic parity learning algorithm of Goldreich and Levin (1989) our algorithm yields a simple PAC learning algorithm for DNF and an agnostic learning algorithm for decision trees over the uniform distribution using membership queries. These results substantia...
Continuous Integrated Invariant Inference Project
National Aeronautics and Space Administration — The proposed project will develop a new technique for invariant inference and embed this and other current invariant inference and checking techniques in an...
Gradient boosting machines, a tutorial
Natekin, Alexey; Knoll, Alois
2013-01-01
Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods with a strong focus on machine learning aspects of modeling. A theoretical information is complemented with de...
Gradient Boosting Machines, A Tutorial
Alexey Natekin; Alois Knoll
2013-01-01
Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all th...
Invariants for Parallel Mapping
Institute of Scientific and Technical Information of China (English)
YIN Yajun; WU Jiye; FAN Qinshan; HUANG Kezhi
2009-01-01
This paper analyzes the geometric quantities that remain unchanged during parallel mapping (i.e., mapping from a reference curved surface to a parallel surface with identical normal direction). The second gradient operator, the second class of integral theorems, the Gauss-curvature-based integral theorems, and the core property of parallel mapping are used to derive a series of parallel mapping invadants or geometri-cally conserved quantities. These include not only local mapping invadants but also global mapping invari-ants found to exist both in a curved surface and along curves on the curved surface. The parallel mapping invadants are used to identify important transformations between the reference surface and parallel surfaces. These mapping invadants and transformations have potential applications in geometry, physics, biome-chanics, and mechanics in which various dynamic processes occur along or between parallel surfaces.
Permutationally invariant state reconstruction
Moroder, Tobias; Toth, Geza; Schwemmer, Christian; Niggebaum, Alexander; Gaile, Stefanie; Gühne, Otfried; Weinfurter, Harald
2012-01-01
Feasible tomography schemes for large particle numbers must possess, besides an appropriate data acquisition protocol, also an efficient way to reconstruct the density operator from the observed finite data set. Since state reconstruction typically requires the solution of a non-linear large-scale optimization problem, this is a major challenge in the design of scalable tomography schemes. Here we present an efficient state reconstruction scheme for permutationally invariant quantum state tomography. It works for all common state-of-the-art reconstruction principles, including, in particular, maximum likelihood and least squares methods, which are the preferred choices in today's experiments. This high efficiency is achieved by greatly reducing the dimensionality of the problem employing a particular representation of permutationally invariant states known from spin coupling combined with convex optimization, which has clear advantages regarding speed, control and accuracy in comparison to commonly employed n...
Cheng, Miranda C N; Harrison, Sarah M; Kachru, Shamit
2015-01-01
In this note, we describe a connection between the enumerative geometry of curves in K3 surfaces and the chiral ring of an auxiliary superconformal field theory. We consider the invariants calculated by Yau--Zaslow (capturing the Euler characters of the moduli spaces of D2-branes on curves of given genus), together with their refinements to carry additional quantum numbers by Katz--Klemm--Vafa (KKV), and Katz--Klemm--Pandharipande (KKP). We show that these invariants can be reproduced by studying the Ramond ground states of an auxiliary chiral superconformal field theory which has recently been observed to give rise to mock modular moonshine for a variety of sporadic simple groups that are subgroups of Conway's group. We also study equivariant versions of these invariants. A K3 sigma model is specified by a choice of 4-plane in the K3 D-brane charge lattice. Symmetries of K3 sigma models are naturally identified with 4-plane preserving subgroups of the Conway group, according to the work of Gaberdiel--Hoheneg...
Braaten, Eric
2015-01-01
XEFT is a low-energy effective field theory for charm mesons and pions that provides a systematically improvable description of the X(3872) resonance. A Galilean-invariant formulation of XEFT is introduced to exploit the fact that mass is very nearly conserved in the transition D*0 --> D0 pi0. The transitions D*0 --> D0 pi0 and X --> D0 D0-bar pi0 are described explicitly in XEFT. The effects of the decay D*0 --> D0 gamma and of short-distance decay modes of the X(3872), such as J/psi --> pi+ pi-, can be taken into account by using complex on-shell renormalization schemes for the D*0 propagator and for the D*0 D0-bar propagator in which the positions of their complex poles are specified. Galilean-invariant XEFT is used to calculate the D*0 D0-bar scattering length to next-to-leading order. Galilean invariance ensures the cancellation of ultraviolet divergences without the need for truncating an expansion in powers of the ratio of the pion and charm meson masses.
Invariant operators of inhomogeneous groups
International Nuclear Information System (INIS)
The problems concerning the invariant operators of the W(p, q) Weyl group of arbitrary dimension are considered. The Weyl group relative invariants, which do not contain the dilatation operators and which are the absolute invariants of the ISO (p, q) group, are searched for. The invariant operators of the Weyl group are represented in the form of the ratio of the Cazimir operators of the inhomogeneous pseudoorthogonal subgroup. It is shown that all the invariant operators of the W(p, q) Weyl group are rational and their number is [p+q-1/2
Abubakkar Siddik A; Shangeetha M
2012-01-01
Increasing in power demand and shortage of conventional energy sources, researchers are focused on renewable energy. The proposed solar power generation circuit consists of solar array, boost converter and boost inverter. Low voltage, of photovoltaic array, is boosted using dc-dc boost converter to charge the battery and boost inverter convert this battery voltage to high quality sinusoidal ac voltage. The output of solar power fed from boost inverter feed to autonomous load without any inter...
Thinning Invariant Partition Structures
Starr, Shannon
2011-01-01
A partition structure is a random point process on $[0,1]$ whose points sum to 1, almost surely. In the case that there are infinitely many points to begin with, we consider a thinning action by: first, removing points independently, such that each point survives with probability $p>0$; and, secondly, rescaling the remaining points by an overall factor to normalize the sum again to 1. We prove that the partition structures which are "thinning divisible" for a sequence of $p$'s converging to 0 are mixtures of the Poisson-Kingman partition structures. We also consider the property of being "thinning invariant" for all $p \\in (0,1)$.
Resolving Boosted Jets with XCone
Thaler, Jesse
2015-01-01
We show how the recently proposed XCone jet algorithm smoothly interpolates between resolved and boosted kinematics. When using standard jet algorithms to reconstruct the decays of hadronic resonances like top quarks and Higgs bosons, one typically needs separate analysis strategies to handle the resolved regime of well-separated jets and the boosted regime of fat jets with substructure. XCone, by contrast, is an exclusive cone jet algorithm that always returns a fixed number of jets, so jet regions remain resolved even when (sub)jets are overlapping in the boosted regime. In this paper, we perform three LHC case studies---dijet resonances, Higgs decays to bottom quarks, and all-hadronic top pairs---that demonstrate the physics applications of XCone over a wide kinematic range.
Tractors, mass, and Weyl invariance
International Nuclear Information System (INIS)
Deser and Nepomechie established a relationship between masslessness and rigid conformal invariance by coupling to a background metric and demanding local Weyl invariance, a method which applies neither to massive theories nor theories which rely upon gauge invariances for masslessness. We extend this method to describe massive and gauge invariant theories using Weyl invariance. The key idea is to introduce a new scalar field which is constant when evaluated at the scale corresponding to the metric of physical interest. This technique relies on being able to efficiently construct Weyl invariant theories. This is achieved using tractor calculus-a mathematical machinery designed for the study of conformal geometry. From a physics standpoint, this amounts to arranging fields in multiplets with respect to the conformal group but with novel Weyl transformation laws. Our approach gives a mechanism for generating masses from Weyl weights. Breitenlohner-Freedman stability bounds for Anti-de Sitter theories arise naturally as do direct derivations of the novel Weyl invariant theories given by Deser and Nepomechie. In constant curvature spaces, partially massless theories-which rely on the interplay between mass and gauge invariance-are also generated by our method. Another simple consequence is conformal invariance of the maximal depth partially massless theories. Detailed examples for spins s≤2 are given including tractor and component actions, on-shell and off-shell approaches and gauge invariances. For all spins s≥2 we give tractor equations of motion unifying massive, massless, and partially massless theories
On obtaining strictly invariant Lagrangians from gauge-invariant Lagrangians
International Nuclear Information System (INIS)
Lagrangian dynamical systems are considered on tangent bundles of differentiable manifolds whose Lagrangian functions are gauge invariant under the action of a Lie group on the base manifold. Necessary and sufficient conditions are then obtained for finding a function on the base manifold whose time derivative, if added to the gauge-invariant Lagrangian, yields a strictly invariant one. The problem is transported from the tangent bundle also to the cotangent bundle
Boosting jet power in black hole spacetimes
Neilsen, David; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garret, T
2010-01-01
The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.
Boosting jet power in black hole spacetimes
Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M.; Garrett, Travis
2011-01-01
The extraction of rotational energy from a spinning black hole via the Blandford–Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux. PMID:21768341
Boosting jet power in black hole spacetimes.
Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis
2011-08-01
The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.
Boost.Asio C++ network programming
Torjo, John
2013-01-01
What you want is an easy level of abstraction, which is just what this book provides in conjunction with Boost.Asio. Switching to Boost.Asio is just a few extra #include directives away, with the help of this practical and engaging guide.This book is great for developers that need to do network programming, who don't want to delve into the complicated issues of a raw networking API. You should be familiar with core Boost concepts, such as smart pointers and shared_from_this, resource classes (noncopyable), functors and boost::bind, boost mutexes, and the boost date/time library. Readers should
Palmer, T N
2016-01-01
Invariant Set Theory (IST) is a realistic, locally causal theory of fundamental physics which assumes a much stronger synergy between cosmology and quantum physics than exists in contemporary theory. In IST the (quasi-cyclic) universe $U$ is treated as a deterministic dynamical system evolving precisely on a measure-zero fractal invariant subset $I_U$ of its state space. In this approach, the geometry of $I_U$, and not a set of differential evolution equations in space-time $\\mathcal M_U$, provides the most primitive description of the laws of physics. As such, IST is non-classical. The geometry of $I_U$ is based on Cantor sets of space-time trajectories in state space, homeomorphic to the algebraic set of $p$-adic integers, for large but finite $p$. In IST, the non-commutativity of position and momentum observables arises from number theory - in particular the non-commensurateness of $\\phi$ and $\\cos \\phi$. The complex Hilbert Space and the relativistic Dirac Equation respectively are shown to describe $I_U$...
Noncommutative coordinates invariant under rotations and Lorentz transformations
International Nuclear Information System (INIS)
Dynamics with noncommutative coordinates invariant under three-dimensional rotations or, if time is included, under Lorentz transformations is developed. These coordinates turn out to be the boost operators in SO(1,3) or in SO(2,3), respectively. The noncommutativity is governed by a mass parameter M. The principal results are: (i) a modification of the Heisenberg algebra for distances smaller than 1/M, (ii) a lower limit, 1/M, on the localizability of wave packets, (iii) discrete eigenvalues of the coordinate operator in timelike directions, and (iv) an upper limit, M, on the mass for which free field equations have solutions. Possible restrictions on small black holes are discussed
Polynomial invariants of quantum codes
Rains, E M
1997-01-01
The weight enumerators (quant-ph/9610040) of a quantum code are quite powerful tools for exploring its structure. As the weight enumerators are quadratic invariants of the code, this suggests the consideration of higher-degree polynomial invariants. We show that the space of degree k invariants of a code of length n is spanned by a set of basic invariants in one-to-one correspondence with S_k^n. We then present a number of equations and inequalities in these invariants; in particular, we give a higher-order generalization of the shadow enumerator of a code, and prove that its coefficients are nonnegative. We also prove that the quartic invariants of a ((4,4,2)) are uniquely determined, an important step in a proof that any ((4,4,2)) is additive ([2]).
Tractors, Mass and Weyl Invariance
Gover, A R; Waldron, A
2008-01-01
Deser and Nepomechie established a relationship between masslessness and rigid conformal invariance by coupling to a background metric and demanding local Weyl invariance, a method which applies neither to massive theories nor theories which rely upon gauge invariances for masslessness. We extend this method to describe massive and gauge invariant theories using Weyl invariance. The key idea is to introduce a new scalar field which is constant when evaluated at the scale corresponding to the metric of physical interest. This technique relies on being able to efficiently construct Weyl invariant theories. This is achieved using tractor calculus--a mathematical machinery designed for the study of conformal geometry. From a physics standpoint, this amounts to arranging fields in multiplets with respect to the conformal group but with novel Weyl transformation laws. Our approach gives a mechanism for generating masses from Weyl weights. Breitenlohner--Freedman stability bounds for Anti de Sitter theories arise na...
Factorization invariants in numerical monoids
O'Neill, Christopher; Pelayo, Roberto
2015-01-01
Nonunique factorization in commutative monoids is often studied using factorization invariants, which assign to each monoid element a quantity determined by the factorization structure. For numerical monoids (co-finite, additive submonoids of the natural numbers), several factorization invariants have received much attention in the recent literature. In this survey article, we give an overview of the length set, elasticity, delta set, $\\omega$-primality, and catenary degree invariants in the ...
Invariants and Likelihood Ratio Statistics
McCullagh, P.; Cox, D. R.
1986-01-01
Because the likelihood ratio statistic is invariant under reparameterization, it is possible to make a large-sample expansion of the statistic itself and of its expectation in terms of invariants. In particular, the Bartlett adjustment factor can be expressed in terms of invariant combinations of cumulants of the first two log-likelihood derivatives. Such expansions are given, first for a scalar parameter and then for vector parameters. Geometrical interpretation is given where possible and s...
Tractors, mass, and Weyl invariance
Gover, A. R.; Shaukat, A.; Waldron, A.
2009-05-01
Deser and Nepomechie established a relationship between masslessness and rigid conformal invariance by coupling to a background metric and demanding local Weyl invariance, a method which applies neither to massive theories nor theories which rely upon gauge invariances for masslessness. We extend this method to describe massive and gauge invariant theories using Weyl invariance. The key idea is to introduce a new scalar field which is constant when evaluated at the scale corresponding to the metric of physical interest. This technique relies on being able to efficiently construct Weyl invariant theories. This is achieved using tractor calculus—a mathematical machinery designed for the study of conformal geometry. From a physics standpoint, this amounts to arranging fields in multiplets with respect to the conformal group but with novel Weyl transformation laws. Our approach gives a mechanism for generating masses from Weyl weights. Breitenlohner-Freedman stability bounds for Anti-de Sitter theories arise naturally as do direct derivations of the novel Weyl invariant theories given by Deser and Nepomechie. In constant curvature spaces, partially massless theories—which rely on the interplay between mass and gauge invariance—are also generated by our method. Another simple consequence is conformal invariance of the maximal depth partially massless theories. Detailed examples for spins s⩽2 are given including tractor and component actions, on-shell and off-shell approaches and gauge invariances. For all spins s⩾2 we give tractor equations of motion unifying massive, massless, and partially massless theories.
Representing Arbitrary Boosts for Undergraduates.
Frahm, Charles P.
1979-01-01
Presented is a derivation for the matrix representation of an arbitrary boost, a Lorentz transformation without rotation, suitable for undergraduate students with modest backgrounds in mathematics and relativity. The derivation uses standard vector and matrix techniques along with the well-known form for a special Lorentz transformation. (BT)
Berlo, L.A.H.M.
2012-01-01
Onlangs sloot TNO een samenwerkingsovereenkomst met brancheorganisaties in de bouwkolom waaromder Bouwend Nederland en BNA. Doel van de overeenkomst: een BIM-boost in Nederland bewerkstelligen. Een gesprek met Leon van Berlo van TNO over deze en andere BIM-actualiteiten
Invariant and Absolute Invariant Means of Double Sequences
Directory of Open Access Journals (Sweden)
Abdullah Alotaibi
2012-01-01
Full Text Available We examine some properties of the invariant mean, define the concepts of strong σ-convergence and absolute σ-convergence for double sequences, and determine the associated sublinear functionals. We also define the absolute invariant mean through which the space of absolutely σ-convergent double sequences is characterized.
Lorentz invariant intrinsic decoherence
Milburn, G J
2003-01-01
Quantum decoherence can arise due to classical fluctuations in the parameters which define the dynamics of the system. In this case decoherence, and complementary noise, is manifest when data from repeated measurement trials are combined. Recently a number of authors have suggested that fluctuations in the space-time metric arising from quantum gravity effects would correspond to a source of intrinsic noise, which would necessarily be accompanied by intrinsic decoherence. This work extends a previous heuristic modification of Schr\\"{o}dinger dynamics based on discrete time intervals with an intrinsic uncertainty. The extension uses unital semigroup representations of space and time translations rather than the more usual unitary representation, and does the least violence to physically important invariance principles. Physical consequences include a modification of the uncertainty principle and a modification of field dispersion relations, in a way consistent with other modifications suggested by quantum grav...
Invariants of Lagrangian surfaces
Yau, Mei-Lin
2004-01-01
We define a nonnegative integer $\\la(L,L_0;\\phi)$ for a pair of diffeomorphic closed Lagrangian surfaces $L_0,L$ embedded in a symplectic 4-manifold $(M,\\w)$ and a diffeomorphism $\\phi\\in\\Diff^+(M)$ satisfying $\\phi(L_0)=L$. We prove that if there exists $\\phi\\in\\Diff^+_o(M)$ with $\\phi(L_0)=L$ and $\\la(L,L_0;\\phi)=0$, then $L_0,L$ are symplectomorphic. We also define a second invariant $n(L_1,L_0;[L_t])=n(L_1,L_0,[\\phi_t])$ for a smooth isotopy $L_t=\\phi_t(L_0)$ between two Lagrangian surfac...
Boosting Applied to Word Sense Disambiguation
Escudero, Gerard; Marquez, Lluis; Rigau, German
2000-01-01
In this paper Schapire and Singer's AdaBoost.MH boosting algorithm is applied to the Word Sense Disambiguation (WSD) problem. Initial experiments on a set of 15 selected polysemous words show that the boosting approach surpasses Naive Bayes and Exemplar-based approaches, which represent state-of-the-art accuracy on supervised WSD. In order to make boosting practical for a real learning domain of thousands of words, several ways of accelerating the algorithm by reducing the feature space are s...
Reducing Lookups for Invariant Checking
DEFF Research Database (Denmark)
Thomsen, Jakob Grauenkjær; Clausen, Christian; Andersen, Kristoffer Just;
2013-01-01
satisfied. We present a formal model of this scenario, based on a simple query language for the expression of invariants that covers the core of a realistic query language. We present an algorithm which simplifies a representation of the invariant, along with a mechanically verified proof of correctness. We...
Invariant Measures for Cherry Flows
Saghin, Radu; Vargas, Edson
2013-01-01
We investigate the invariant probability measures for Cherry flows, i.e. flows on the two-torus which have a saddle, a source, and no other fixed points, closed orbits or homoclinic orbits. In the case when the saddle is dissipative or conservative we show that the only invariant probability measures are the Dirac measures at the two fixed points, and the Dirac measure at the saddle is the physical measure. In the other case we prove that there exists also an invariant probability measure supported on the quasi-minimal set, we discuss some situations when this other invariant measure is the physical measure, and conjecture that this is always the case. The main techniques used are the study of the integrability of the return time with respect to the invariant measure of the return map to a closed transversal to the flow, and the study of the close returns near the saddle.
Hidden scale invariance of metals
DEFF Research Database (Denmark)
Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.;
2015-01-01
of metals making the condensed part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental values for the 16 elements where reliable data were......Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general “hidden” scale invariance...... available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant...
Fayngold, Moses
2010-01-01
A careful look at an allegedly well-known century-old concept reveals interesting aspects in it that have generally avoided recognition in literature. There are four different kinds of physical observables known or proclaimed as relativistic invariants under space-time rotations. Only observables in the first three categories are authentic invariants, whereas the single "invariant" - proper length - in the fourth category is actually not an invariant. The proper length has little is anything to do with proper distance which is a true invariant. On the other hand, proper distance, proper time, and rest mass have more in common than usually recognized, and particularly, mass - time analogy opens another view of the twin paradox.
Physical Invariants of Intelligence
Zak, Michail
2010-01-01
A program of research is dedicated to development of a mathematical formalism that could provide, among other things, means by which living systems could be distinguished from non-living ones. A major issue that arises in this research is the following question: What invariants of mathematical models of the physics of systems are (1) characteristic of the behaviors of intelligent living systems and (2) do not depend on specific features of material compositions heretofore considered to be characteristic of life? This research at earlier stages has been reported, albeit from different perspectives, in numerous previous NASA Tech Briefs articles. To recapitulate: One of the main underlying ideas is to extend the application of physical first principles to the behaviors of living systems. Mathematical models of motor dynamics are used to simulate the observable physical behaviors of systems or objects of interest, and models of mental dynamics are used to represent the evolution of the corresponding knowledge bases. For a given system, the knowledge base is modeled in the form of probability distributions and the mental dynamics is represented by models of the evolution of the probability densities or, equivalently, models of flows of information. At the time of reporting the information for this article, the focus of this research was upon the following aspects of the formalism: Intelligence is considered to be a means by which a living system preserves itself and improves its ability to survive and is further considered to manifest itself in feedback from the mental dynamics to the motor dynamics. Because of the feedback from the mental dynamics, the motor dynamics attains quantum-like properties: The trajectory of the physical aspect of the system in the space of dynamical variables splits into a family of different trajectories, and each of those trajectories can be chosen with a probability prescribed by the mental dynamics. From a slightly different perspective
Totally Corrective Boosting for Regularized Risk Minimization
Shen, Chunhua; Barnes, Nick
2010-01-01
Consideration of the primal and dual problems together leads to important new insights into the characteristics of boosting algorithms. In this work, we propose a general framework that can be used to design new boosting algorithms. A wide variety of machine learning problems essentially minimize a regularized risk functional. We show that the proposed boosting framework, termed CGBoost, can accommodate various loss functions and different regularizers in a totally-corrective optimization fashion. We show that, by solving the primal rather than the dual, a large body of totally-corrective boosting algorithms can actually be efficiently solved and no sophisticated convex optimization solvers are needed. We also demonstrate that some boosting algorithms like AdaBoost can be interpreted in our framework--even their optimization is not totally corrective. We empirically show that various boosting algorithms based on the proposed framework perform similarly on the UCIrvine machine learning datasets [1] that we hav...
Reweighting with Boosted Decision Trees
Rogozhnikov, A
2016-01-01
Machine learning tools are commonly used in modern high energy physics (HEP) experiments. Different models, such as boosted decision trees (BDT) and artificial neural networks (ANN), are widely used in analyses and even in the software triggers. In most cases, these are classification models used to select the "signal" events from data. Monte Carlo simulated events typically take part in training of these models. While the results of the simulation are expected to be close to real data, in practical cases there is notable disagreement between simulated and observed data. In order to use available simulation in training, corrections must be introduced to generated data. One common approach is reweighting - assigning weights to the simulated events. We present a novel method of event reweighting based on boosted decision trees. The problem of checking the quality of reweighting step in analyses is also discussed.
Invariant manifolds and global bifurcations.
Guckenheimer, John; Krauskopf, Bernd; Osinga, Hinke M; Sandstede, Björn
2015-09-01
Invariant manifolds are key objects in describing how trajectories partition the phase spaces of a dynamical system. Examples include stable, unstable, and center manifolds of equilibria and periodic orbits, quasiperiodic invariant tori, and slow manifolds of systems with multiple timescales. Changes in these objects and their intersections with variation of system parameters give rise to global bifurcations. Bifurcation manifolds in the parameter spaces of multi-parameter families of dynamical systems also play a prominent role in dynamical systems theory. Much progress has been made in developing theory and computational methods for invariant manifolds during the past 25 years. This article highlights some of these achievements and remaining open problems.
Invariants of Toric Seiberg Duality
Hanany, Amihay; Jejjala, Vishnu; Pasukonis, Jurgis; Ramgoolam, Sanjaye; Rodriguez-Gomez, Diego
2011-01-01
Three-branes at a given toric Calabi-Yau singularity lead to different phases of the conformal field theory related by toric (Seiberg) duality. Using the dimer model/brane tiling description in terms of bipartite graphs on a torus, we find a new invariant under Seiberg duality, namely the Klein j-invariant of the complex structure parameter in the distinguished isoradial embedding of the dimer, determined by the physical R-charges. Additional number theoretic invariants are described in terms of the algebraic number field of the R-charges. We also give a new compact description of the a-maximization procedure by introducing a generalized incidence matrix.
On density of the Vassiliev invariants
DEFF Research Database (Denmark)
Røgen, Peter
1999-01-01
The main result is that the Vassiliev invariants are dense in the set of numeric knot invariants if and only if they separate knots.Keywords: Knots, Vassiliev invariants, separation, density, torus knots......The main result is that the Vassiliev invariants are dense in the set of numeric knot invariants if and only if they separate knots.Keywords: Knots, Vassiliev invariants, separation, density, torus knots...
Invariant and semi-invariant probabilistic normed spaces
Energy Technology Data Exchange (ETDEWEB)
Ghaemi, M.B. [School of Mathematics Iran, University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)], E-mail: mghaemi@iust.ac.ir; Lafuerza-Guillen, B. [Departamento de Estadistica y Matematica Aplicada, Universidad de Almeria, Almeria E-04120 (Spain)], E-mail: blafuerz@ual.es; Saiedinezhad, S. [School of Mathematics Iran, University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)], E-mail: ssaiedinezhad@yahoo.com
2009-10-15
Probabilistic metric spaces were introduced by Karl Menger. Alsina, Schweizer and Sklar gave a general definition of probabilistic normed space based on the definition of Menger . We introduce the concept of semi-invariance among the PN spaces. In this paper we will find a sufficient condition for some PN spaces to be semi-invariant. We will show that PN spaces are normal spaces. Urysohn's lemma, and Tietze extension theorem for them are proved.
Invariant measures for Cherry flows
Saghin, Radu
2011-01-01
We investigate the invariant probability measures for Cherry flows, i.e. flows on the two-torus which have a saddle, a source, and no other fixed points, closed orbits or homoclinic orbits. In the case when the saddle is dissipative or conservative we show that the only invariant probability measures are the Dirac measures at the two fixed points, and the Dirac measure at the saddle is the physical measure. In the other case we discuss some situations when there exists another invariant measure supported on the quasi-minimal set, which is the physical measure, and conjecture that this is always the case. The main techniques used are the study of the integrability of the return time with respect to the invariant measure of the return map to a closed transversal to the flow, and the study of the close returns near the saddle.
Scaling Equation for Invariant Measure
Institute of Scientific and Technical Information of China (English)
LIU Shi-Kuo; FU Zun-Tao; LIU Shi-Da; REN Kui
2003-01-01
An iterated function system (IFS) is constructed. It is shown that the invariant measure of IFS satisfies the same equation as scaling equation for wavelet transform (WT). Obviously, IFS and scaling equation of WT both have contraction mapping principle.
Local Scale Invariance and Inflation
Singh, Naveen K
2016-01-01
We study the inflation and the cosmological perturbations generated during the inflation in a local scale invariant model. The local scale invariant model introduces a vector field $S_{\\mu}$ in this theory. In this paper, for simplicity, we consider the temporal part of the vector field $S_t$. We show that the temporal part is associated with the slow roll parameter of scalar field. Due to local scale invariance, we have a gauge degree of freedom. In a particular gauge, we show that the local scale invariance provides sufficient number of e-foldings for the inflation. Finally, we estimate the power spectrum of scalar perturbation in terms of the parameters of the theory.
Invariant foliations for parabolic equations
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
It is proved for parabolic equations that under certain conditions the weak (un-)stable manifolds possess invariant foliations, called strongly (un-)stable foliations. The relevant results on center manifolds are generalized to weak hyperbolic manifolds.
Invariant foliations for parabolic equations
Institute of Scientific and Technical Information of China (English)
张伟年
2000-01-01
It is proved for parabolle eguations that under certain conditions the weak (un-) stable manifolds possess invariant foliations, called strongly (un-)stable foliations. The relevant results on center manifolds are generalized to weak hyperbolic manifolds.
Gauge-invariant formulation of the dynamics of the quantized Yang--Mills field
International Nuclear Information System (INIS)
The quantum theory of the Yang--Mills field is formulated in terms of gauge-invariant, path-independent potentials and conjugate momenta. These nonlocal variables are a generalization to the non-Abelian case of the gauge invariants used by Dirac in his gauge-invariant formulation of quantum electrodynamics, and they are a path-independent, symmetrically ordered modification of the Mandelstam-displaced operators. The commutation relations, constraints, and equations of motion satisfied by the gauge invariants are derived from a canonical foundation and are seen to form Schwinger's consistent system of symmetrically factor-ordered gauge-field equations. All equations are satisfied strongly, and, if gauge-invariant operators are used to raise states from a gauge-invariant vacuum, nonphysical states will not be introduced into the theory. A simple relation holds between the local, canonical variables and the gauge invariants; this circumstance allows the energy--momentum tensor density to be expressed either in terms of the canonical variables or the gauge invariants. Elimination of the local canonical variables in favor of the gauge invariants shows, from a different point of view, the origin of the nonclassical terms in Schwinger's Hamiltonian and equations of motion. It is shown that these terms are necessary in order to satisfy integrability conditions on the field equations. Working with the canonical variables permits a straightforward evaluation of the energy--momentum density commutators which are needed to verify the Lie-algebra relations of the inhomogeneous Lorentz group and the local conservation of the energy--momentum density operator. The inhomogeneous Lorentz-group boost-transformation equations are derived in a manner natural to the development given here. Schwinger's transformations are found and his assertion of Lorentz invariance is confirmed
Classification of simple current invariants
Gato-Rivera, Beatriz
1992-01-01
We summarize recent work on the classification of modular invariant partition functions that can be obtained with simple currents in theories with a center (Z_p)^k with p prime. New empirical results for other centers are also presented. Our observation that the total number of invariants is monodromy-independent for (Z_p)^k appears to be true in general as well. (Talk presented in the parallel session on string theory of the Lepton-Photon/EPS Conference, Geneva, 1991.)
Classification of Simple Current Invariants
Gato-Rivera, Beatriz
1991-01-01
We summarize recent work on the classification of modular invariant partition functions that can be obtained with simple currents in theories with a center (Z_p)^k with p prime. New empirical results for other centers are also presented. Our observation that the total number of invariants is monodromy-independent for (Z_p)^k appears to be true in general as well. (Talk presented in the parallel session on string theory of the Lepton-Photon/EPS Conference, Geneva, 1991.)
Invariant Manifolds and Collective Coordinates
Papenbrock, T
2001-01-01
We introduce suitable coordinate systems for interacting many-body systems with invariant manifolds. These are Cartesian in coordinate and momentum space and chosen such that several components are identically zero for motion on the invariant manifold. In this sense these coordinates are collective. We make a connection to Zickendraht's collective coordinates and present certain configurations of few-body systems where rotations and vibrations decouple from single-particle motion. These configurations do not depend on details of the interaction.
Operator equations and invariant subspaces
Directory of Open Access Journals (Sweden)
Valentin Matache
1994-05-01
Full Text Available Banach space operators acting on some fixed space X are considered. If two such operators A and B verify the condition A2=B2 and if A has nontrivial hyperinvariant subspaces, then B has nontrivial invariant subspaces. If A and B commute and satisfy a special type of functional equation, and if A is not a scalar multiple of the identity, the author proves that if A has nontrivial invariant subspaces, then so does B.
Hidden scale invariance of metals
Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.; Pedersen, Ulf R.
2015-11-01
Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general "hidden" scale invariance of metals making the condensed part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental values for the 16 elements where reliable data were available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant inverse power-law (IPL) pair interactions. However, crystal packings of several transition metals (V, Cr, Mn, Fe, Nb, Mo, Ta, W, and Hg), most post-transition metals (Ga, In, Sn, and Tl), and the metalloids Si and Ge cannot be explained by the IPL assumption. The virial-energy correlation coefficients of iron and phosphorous are shown to increase at elevated pressures. Finally, we discuss how scale invariance explains the Grüneisen equation of state and a number of well-known empirical melting and freezing rules.
A MHD invariant with effects on the confinement regimes in Tokamak
Spineanu, Florin
2015-01-01
Fundamental Lagrangian, frozen-in and topological invariants can be useful to explain systematic connections between plasma parameters. At high plasma temperature the dissipation is small and the robust invariances are manifested. We invoke a frozen-in invariant which is an extension of the Ertel's theorem and connects the vorticity of the large scale motions with the profile of the safety factor and of particle density. Assuming ergodicity of the small scale turbulence we consider the approximative preservation of the invariant for changes of the vorticity in an annular region of finite radial extension (i.e. poloidal rotation). We find that the ionization-induced rotation triggered by a pellet requires a reversed-$q$ profile. In the $H$-mode, the invariance requires a accumulation of the current density in the rotation layer. Then this becomes a vorticity-current sheet which may explain experimental observations related to the penetration of the Resonant Magnetic Perturbation and the filamentation during th...
Where boosted significances come from
Plehn, Tilman; Schichtel, Peter; Wiegand, Daniel
2014-03-01
In an era of increasingly advanced experimental analysis techniques it is crucial to understand which phase space regions contribute a signal extraction from backgrounds. Based on the Neyman-Pearson lemma we compute the maximum significance for a signal extraction as an integral over phase space regions. We then study to what degree boosted Higgs strategies benefit ZH and tt¯H searches and which transverse momenta of the Higgs are most promising. We find that Higgs and top taggers are the appropriate tools, but would profit from a targeted optimization towards smaller transverse momenta. MadMax is available as an add-on to MadGraph 5.
Positive Semidefinite Metric Learning with Boosting
Shen, Chunhua; Kim, Junae; Wang, Lei; Hengel, Anton van den
2009-01-01
The learning of appropriate distance metrics is a critical problem in image classification and retrieval. In this work, we propose a boosting-based technique, termed \\BoostMetric, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite. Semidefinite programming is sometimes used to enforce this constraint, but does not scale well. \\BoostMetric is instead based on a key observat...
Adaptive Sampling for Large Scale Boosting
Dubout, Charles; Fleuret, Francois
2014-01-01
Classical Boosting algorithms, such as AdaBoost, build a strong classifier without concern for the computational cost. Some applications, in particular in computer vision, may involve millions of training examples and very large feature spaces. In such contexts, the training time of off-the-shelf Boosting algorithms may become prohibitive. Several methods exist to accelerate training, typically either by sampling the features or the examples used to train the weak learners. Even if some of th...
Rotation invariant moments and transforms for geometrically invariant image watermarking
Singh, Chandan; Ranade, Sukhjeet K.
2013-01-01
We present invariant image watermarking based on a recently introduced set of polar harmonic transforms and angular radial transforms and their comparative analysis with state-of-art approaches based on Zernike moments and pseudo-Zernike moments (ZMs/PZMs). Similar to ZMs/PZMs, these transforms provide rotation invariance and resilience to noise while mitigating inherent limitations like numerical instability and computational cost at high order of moments. These characteristics motivate us to design invariant transform-based invariant image watermarking schemes that can withstand various intentional or unintentional attacks, handle large bitcarriers, and work in a limited computing environment. A comparative performance evaluation of watermarking systems regarding critical parameters like visual imperceptibility, embedding capacity, and watermark robustness against geometric transformations, common signal processing distortions, and Stirmark attacks is performed along with the empirical analysis of various inherent properties of transforms and moments such as magnitude invariance, reconstruction capabilities, and computational complexity to investigate relationships between the performance of watermarking schemes and inherent properties of transforms.
Recursive bias estimation and L2 boosting
Energy Technology Data Exchange (ETDEWEB)
Hengartner, Nicolas W [Los Alamos National Laboratory; Cornillon, Pierre - Andre [INRA, FRANCE; Matzner - Lober, Eric [RENNE, FRANCE
2009-01-01
This paper presents a general iterative bias correction procedure for regression smoothers. This bias reduction schema is shown to correspond operationally to the L{sub 2} Boosting algorithm and provides a new statistical interpretation for L{sub 2} Boosting. We analyze the behavior of the Boosting algorithm applied to common smoothers S which we show depend on the spectrum of I - S. We present examples of common smoother for which Boosting generates a divergent sequence. The statistical interpretation suggest combining algorithm with an appropriate stopping rule for the iterative procedure. Finally we illustrate the practical finite sample performances of the iterative smoother via a simulation study.
Weyl invariance with a nontrivial mass scale
Alvarez, Enrique
2016-01-01
A theory with a mass scale and yet Weyl invariant is presented. The theory is not invariant under all diffeomorphisms but only under transverse ones. This is the reason why Weyl invariance does not imply scale invariance in a free falling frame. Physical implications of this framework are discussed.
Weyl invariance with a nontrivial mass scale
Álvarez, Enrique; González-Martín, Sergio
2016-09-01
A theory with a mass scale and yet Weyl invariant is presented. The theory is not invariant under all diffeomorphisms but only under transverse ones. This is the reason why Weyl invariance does not imply scale invariance in a free falling frame. Physical implications of this framework are discussed.
On higher rank Donaldson-Thomas invariants
Nagao, Kentaro
2010-01-01
We study higher rank Donaldson-Thomas invariants of a Calabi-Yau 3-fold using Joyce-Song's wall-crossing formula. We construct quivers whose counting invariants coincide with the Donaldson-Thomas invariants. As a corollary, we prove the integrality and a certain symmetry for the higher rank invariants.
Topological invariants in Fermi systems with time-reversal invariance
Avron, J. E.; Sadun, L.; Segert, J.; Simon, B.
1988-09-01
We discuss topological invariants for Fermi systems that have time-reversal invariance. The TKN2 integers (first Chern numbers) are replaced by second Chern numbers, and Berry's phase becomes a unit quaternion, or equivalently an element of SU(2). The canonical example playing much the same role as spin (1/2 in a magnetic field is spin (3/2 in a quadrupole electric field. In particular, the associated bundles are nontrivial and have +/-1 second Chern number. The connection that governs the adiabatic evolution coincides with the symmetric SU(2) Yang-Mills instanton.
Second order invariants and holography
Bonanno, Luca; Luongo, Orlando
2011-01-01
Motivated by recent works on the role of the Holographic principle in cosmology, we relate a class of second order Ricci invariants to the IR cutoff characterizing the holographic Dark Energy density. The choice of second order invariants provides an invariant way to account the problem of causality for the correct cosmological cutoff, since the presence of event horizons is not an \\emph{a priori} assumption. We find that these models work fairly well, by fitting the observational data, through a combined cosmological test with the use of SNeIa, BAO and CMB. This class of models is also able to overcome the fine-tuning and coincidence problems. Finally, to make a comparison with other recent models, we adopt the statistical tests AIC and BIC.
Invariant probabilities of transition functions
Zaharopol, Radu
2014-01-01
The structure of the set of all the invariant probabilities and the structure of various types of individual invariant probabilities of a transition function are two topics of significant interest in the theory of transition functions, and are studied in this book. The results obtained are useful in ergodic theory and the theory of dynamical systems, which, in turn, can be applied in various other areas (like number theory). They are illustrated using transition functions defined by flows, semiflows, and one-parameter convolution semigroups of probability measures. In this book, all results on transition probabilities that have been published by the author between 2004 and 2008 are extended to transition functions. The proofs of the results obtained are new. For transition functions that satisfy very general conditions the book describes an ergodic decomposition that provides relevant information on the structure of the corresponding set of invariant probabilities. Ergodic decomposition means a splitting of t...
Face Alignment Using Boosting and Evolutionary Search
Zhang, Hua; Liu, Duanduan; Poel, Mannes; Nijholt, Anton; Zha, H.; Taniguchi, R.-I.; Maybank, S.
2010-01-01
In this paper, we present a face alignment approach using granular features, boosting, and an evolutionary search algorithm. Active Appearance Models (AAM) integrate a shape-texture-combined morphable face model into an efficient fitting strategy, then Boosting Appearance Models (BAM) consider the f
Simple Algebras of Invariant Operators
Institute of Scientific and Technical Information of China (English)
Xiaorong Shen; J.D.H. Smith
2001-01-01
Comtrans algebras were introduced in as algebras with two trilinear operators, a commutator [x, y, z] and a translator , which satisfy certain identities. Previously known simple comtrans algebras arise from rectangular matrices, simple Lie algebras, spaces equipped with a bilinear form having trivial radical, spaces of hermitian operators over a field with a minimum polynomial x2+1. This paper is about generalizing the hermitian case to the so-called invariant case. The main result of this paper shows that the vector space of n-dimensional invariant operators furnishes some comtrans algebra structures, which are simple provided that certain Jordan and Lie algebras are simple.
Invariant manifolds and collective coordinates
Energy Technology Data Exchange (ETDEWEB)
Papenbrock, T. [Centro Internacional de Ciencias, Cuernavaca, Morelos (Mexico); Institute for Nuclear Theory, University of Washington, Seattle, WA (United States); Seligman, T.H. [Centro Internacional de Ciencias, Cuernavaca, Morelos (Mexico); Centro de Ciencias Fisicas, University of Mexico (UNAM), Cuernavaca (Mexico)
2001-09-14
We introduce suitable coordinate systems for interacting many-body systems with invariant manifolds. These are Cartesian in coordinate and momentum space and chosen such that several components are identically zero for motion on the invariant manifold. In this sense these coordinates are collective. We make a connection to Zickendraht's collective coordinates and present certain configurations of few-body systems where rotations and vibrations decouple from single-particle motion. These configurations do not depend on details of the interaction. (author)
Leptogenesis and a Jarlskog Invariant
Davidson, Sacha; Davidson, Sacha; Kitano, Ryuichiro
2004-01-01
The relation between low energy CP violating phases, and the CP asymmetry of leptogenesis, $\\epsilon$, is investigated. Although it is known that in general those are independent, there may be a relation when a model is specified. We construct a Jarlskog invariant which is proportional to $\\epsilon$ if the right-handed neutrino masses are hierarchical. Since the invariant can be expressed in terms of left-handed neutrino parameters--some measurable, and some not--it is useful in identifying the limits in which $\\epsilon$ is related to MNS phases.
ATLAS boosted object tagging 2
Caudron, Julien; The ATLAS collaboration
2015-01-01
A detailed study into the optimal techniques for identifying boosted hadronically decaying W or Z bosons is presented. Various algorithms for reconstructing, grooming and tagging bosonic jets are compared for W bosons with a wide range of transverse momenta using 8 TeV data and 8 TeV and 13 TeV MC simulations. In addition, given that a hadronic jet has been identified as resulting from the hadronic decay of a W or Z, a technique is developed to discriminate between W and Z bosons. The modeling of the tagging variables used in this technique is studied using 8 TeV pp collision data and systematic uncertainties for the tagger efficiency and fake rates are evaluated.
Directory of Open Access Journals (Sweden)
Abubakkar Siddik A
2012-06-01
Full Text Available Increasing in power demand and shortage of conventional energy sources, researchers are focused on renewable energy. The proposed solar power generation circuit consists of solar array, boost converter and boost inverter. Low voltage, of photovoltaic array, is boosted using dc-dc boost converter to charge the battery and boost inverter convert this battery voltage to high quality sinusoidal ac voltage. The output of solar power fed from boost inverter feed to autonomous load without any intermediate conversion stage and a filter. For boost converter operation duty cycle is varied through fuzzy logic controller and PWM block to regulate the converter output voltage. The ac voltage total harmonic distortion (THD obtained using this configuration is quite acceptable. The proposed power generation system has several desirable features such as low cost and compact size as number of switches used, are limited to four as against six switches used in classical two-stage inverters.
Boost-invariant Leptonic Observables and Reconstruction of Parent Particle Mass
Kawabata, Sayaka; Sumino, Yukinari; Yokoya, Hiroshi
2011-01-01
We propose a class of observables constructed from the lepton energy distribution, which are independent of the velocity of the parent particle if it is scalar or unpolarized. These observables may be used to measure properties of various particles in the LHC experiments. We demonstrate their usage in a determination of the Higgs boson mass.
Scale-invariant power spectra from a Weyl-invariant scalar-tensor theory
Energy Technology Data Exchange (ETDEWEB)
Myung, Yun Soo [Inje University, Institute of Basic Sciences and Department of Computer Simulation, Gimhae (Korea, Republic of); Park, Young-Jai [Sogang University, Department of Physics, Seoul (Korea, Republic of)
2016-02-15
We obtain scale-invariant scalar and tensor power spectra from a Weyl-invariant scalar-tensor theory in de Sitter spacetime. This implies that the Weyl invariance guarantees the implementation of the scale invariance of the power spectrum in de Sitter spacetime. We establish a deep connection between the Weyl invariance of the action and the scale invariance of the power spectrum in de Sitter spacetime. (orig.)
Orthodontics Align Crooked Teeth and Boost Self-Esteem
... desktop! more... Orthodontics Align Crooked Teeth and Boost Self- esteem Article Chapters Orthodontics Align Crooked Teeth and Boost Self- esteem Orthodontics print full article print this chapter email ...
Scale invariance and superfluid turbulence
Energy Technology Data Exchange (ETDEWEB)
Sen, Siddhartha, E-mail: siddhartha.sen@tcd.ie [CRANN, Trinity College Dublin, Dublin 2 (Ireland); R.K. Mission Vivekananda University, Belur 711 202, West Bengal (India); Ray, Koushik, E-mail: koushik@iacs.res.in [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Calcutta 700 032 (India)
2013-11-11
We construct a Schroedinger field theory invariant under local spatial scaling. It is shown to provide an effective theory of superfluid turbulence by deriving, analytically, the observed Kolmogorov 5/3 law and to lead to a Biot–Savart interaction between the observed filament excitations of the system as well.
Group Invariance in Mathematical Morphology
Roerdink, J.B.T.M.
1995-01-01
In this paper we discuss how invariance of operators arising in binary mathematical morphology can be achieved for the collection of groups commonly denoted as `the computer vision groups'. We present an overview, starting with set mappings such as dilations, erosions, openings and closings, which a
Geng, C. Q.; Geng, Lei
2005-01-01
We first briefly review tests on CPT invariance based on the consequences of the CPT theorem and then present some possible CPT tests due to exotic models in which some of the CPT conditions are lost, such as those without hermiticity.
Hidden scale invariance of metals
DEFF Research Database (Denmark)
Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.;
2015-01-01
Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general “hidden” scale invariance of m...
Pairing interaction and Galilei invariance
International Nuclear Information System (INIS)
The relation between Galilei invariance and the energy weighted sum rule for a mass dipole operator is discussed using a monopole pairing interaction. It is found that the energy weighted sum rule for the mass dipole operator changes as much as 18% in medium and heavy nuclei. copyright 1997 The American Physical Society
Conjectured enumeration of Vassiliev invariants
Broadhurst, D J
1997-01-01
These conjectures are motivated by successful enumerations of irreducible Euler sums. Predictions for $\\beta_{15,10}$, $\\beta_{16,12}$ and $\\beta_{19,16}$ suggest that the action of sl and osp Lie algebras, on baguette diagrams with ladder insertions, fails to detect an invariant in each case.
Generalized Donaldson-Thomas invariants
Joyce, Dominic
2009-01-01
This is a summary of the much longer paper arXiv:0810.5645 with Yinan Song. Let X be a Calabi-Yau 3-fold over C. The Donaldson-Thomas invariants of X are integers DT^a(t) which count stable sheaves with Chern character a on X, with respect to a Gieseker stability condition t. They are defined only for Chern characters a for which there are no strictly semistable sheaves on X. They have the good property that they are unchanged under deformations of X. Their behaviour under change of stability condition t was not understood until now. We discuss "generalized Donaldson-Thomas invariants" \\bar{DT}^a(t). These are rational numbers, defined for all Chern characters a, and are equal to DT^a(t) if there are no strictly semistable sheaves in class a. They are deformation-invariant, and have a known transformation law under change of stability condition. We conjecture they can be written in terms of integral "BPS invariants" \\hat{DT}^a(t) when the stability condition t is "generic". We extend the theory to abelian cat...
A BOOSTING APPROACH FOR INTRUSION DETECTION
Institute of Scientific and Technical Information of China (English)
Zan Xin; Han Jiuqiang; Zhang Junjie; Zheng Qinghua; Han Chongzhao
2007-01-01
Intrusion detection can be essentially regarded as a classification problem,namely,distinguishing normal profiles from intrusive behaviors.This paper introduces boosting classification algorithm into the area of intrusion detection to learn attack signatures.Decision tree algorithm is used as simple base learner of boosting algorithm.Furthermore,this paper employs the Principle Component Analysis(PCA)approach,an effective data reduction approach,to extract the key attribute set from the original high-dimensional network traffic data.KDD CUP 99 data set is used in these exDeriments to demonstrate that boosting algorithm can greatly improve the clas.sification accuracy of weak learners by combining a number of simple"weak learners".In our experiments,the error rate of training phase of boosting algorithm is reduced from 30.2%to 8%after 10 iterations.Besides,this Daper also compares boosting algorithm with Support Vector Machine(SVM)algorithm and shows that the classification accuracy of boosting algorithm is little better than SVM algorithm's.However,the generalization ability of SVM algorithm is better than boosting algorithm.
Intrinsic physical properties and Doppler boosting effects in LSI+61303
Massi, M
2014-01-01
Our aim is to show how variable Doppler boosting of an intrinsically variable jet can explain the long-term modulation of 1667 \\pm 8 days observed in the radio emission of LSI+61303. The physical scenario is that of a conical, magnetized plasma jet having a periodical (P1) increase of relativistic particles, Nrel, at a specific orbital phase, as predicted by accretion in the eccentric orbit of LSI+61303. Jet precession (P2) changes the angle, eta, between jet axis and line of sight, thereby inducing variable Doppler boosting. The problem is defined in spherical geometry, and the optical depth through the precessing jet is calculated by taking into account that the plasma is stratified along the jet axis. The synchrotron emission of such a jet was calculated and we fitted the resulting flux density Smodel(t) to the observed flux density obtained during a 6.5-year monitoring of LSI+61303 by the Green Bank radio interferometer. Our physical model for the system LSI+61303 is not only able to reproduce the long-te...
Gauge-invariant cosmological density perturbations
International Nuclear Information System (INIS)
Gauge-invariant formulation of cosmological density perturbation theory is reviewed with special emphasis on its geometrical aspects. Then the gauge-invariant measure of the magnitude of a given perturbation is presented. (author)
Speziale, Simone
2016-01-01
We study the SL(2,C) Clebsch-Gordan coefficients appearing in the lorentzian EPRL spin foam amplitudes for loop quantum gravity. We show how the amplitudes decompose into SU(2) nj-symbols at the vertices and integrals over boosts at the edges. The integrals define edge amplitudes that can be evaluated analytically using and adapting results in the literature, leading to a pure state sum model formulation. This procedure introduces virtual representations which, in a manner reminiscent to virtual momenta in Feynman amplitudes, are off-shell of the simplicity constraints present in the theory, but with the integrands that peak at the on-shell values. We point out some properties of the edge amplitudes which are helpful for numerical and analytical evaluations of spin foam amplitudes, and suggest among other things a simpler model useful for calculations of certain lowest order amplitudes. As an application, we estimate the large spin scaling behaviour of the simpler model, on a closed foam with all 4-valent edg...
Modeling of asymmetrical boost converters
Directory of Open Access Journals (Sweden)
Eliana Isabel Arango Zuluaga
2014-03-01
Full Text Available The asymmetrical interleaved dual boost (AIDB is a fifth-order DC/DC converter designed to interface photovoltaic (PV panels. The AIDB produces small current harmonics to the PV panels, reducing the power losses caused by the converter operation. Moreover, the AIDB provides a large voltage conversion ratio, which is required to step-up the PV voltage to the large dc-link voltage used in grid-connected inverters. To reject irradiance and load disturbances, the AIDB must be operated in a closed-loop and a dynamic model is required. Given that the AIDB converter operates in Discontinuous Conduction Mode (DCM, classical modeling approaches based on Continuous Conduction Mode (CCM are not valid. Moreover, classical DCM modeling techniques are not suitable for the AIDB converter. Therefore, this paper develops a novel mathematical model for the AIDB converter, which is suitable for control-pur-poses. The proposed model is based on the calculation of a diode current that is typically disregarded. Moreover, because the traditional correction to the second duty cycle reported in literature is not effective, a new equation is designed. The model accuracy is contrasted with circuital simulations in time and frequency domains, obtaining satisfactory results. Finally, the usefulness of the model in control applications is illustrated with an application example.
Energy balance invariance for interacting particle systems
Yavari, Arash; Marsden, Jerrold E.
2009-01-01
This paper studies the principle of invariance of balance of energy and its consequences for a system of interacting particles under groups of transformations. Balance of energy and its invariance is first examined in Euclidean space. Unlike the case of continuous media, it is shown that conservation and balance laws do not follow from the assumption of invariance of balance of energy under time-dependent isometries of the ambient space. However, the postulate of invariance of balance of ener...
Invariant manifolds for flows in Banach Spaces
Energy Technology Data Exchange (ETDEWEB)
Lu Kening.
1989-01-01
The author considers the existence, smoothness and exponential attractivity of global invariant manifolds for flow in Banach Spaces. He shows that every global invariant manifold can be expressed as a graph of a C{sup k} map, provided that the invariant manifolds are exponentially attractive. Applications go to the Reaction-Diffusion equation, the Kuramoto-Sivashinsky equation, and singular perturbed wave equation.
Avoiding Anemia: Boost Your Red Blood Cells
... link, please review our exit disclaimer . Subscribe Avoiding Anemia Boost Your Red Blood Cells If you’re ... and sluggish, you might have a condition called anemia. Anemia is a common blood disorder that many ...
Anemia Boosts Stroke Death Risk, Study Finds
... page: https://medlineplus.gov/news/fullstory_160476.html Anemia Boosts Stroke Death Risk, Study Finds Blood condition ... 2016 (HealthDay News) -- Older stroke victims suffering from anemia -- a lack of red blood cells -- may have ...
Finite type invariants and fatgraphs
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Bene, Alex; Meilhan, Jean-Baptiste Odet Thierry;
2010-01-01
–Murakami–Ohtsuki of the link invariant of Andersen–Mattes–Reshetikhin computed relative to choices determined by the fatgraph G; this provides a basic connection between 2d geometry and 3d quantum topology. For each fixed G, this invariant is shown to be universal for homology cylinders, i.e., G establishes an isomorphism...... from an appropriate vector space of homology cylinders to a certain algebra of Jacobi diagrams. Via composition for any pair of fatgraph spines G,G′ of Σ, we derive a representation of the Ptolemy groupoid, i.e., the combinatorial model for the fundamental path groupoid of Teichmüller space, as a group...... of automorphisms of this algebra. The space comes equipped with a geometrically natural product induced by stacking cylinders on top of one another and furthermore supports related operations which arise by gluing a homology handlebody to one end of a cylinder or to another homology handlebody. We compute how G...
Geometry-Invariant Resonant Cavities
Liberal, Iñigo; Engheta, Nader
2015-01-01
Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modeling to everyday life devices. The eigenfrequencies of conventional cavities are a function of its geometry, and, thus, the size and shape of a resonant cavity is selected in order to operate at a specific frequency. Here, we demonstrate theoretically the existence of geometry-invariant resonant cavities, i.e., resonators whose eigenfrequency is invariant with respect to geometrical deformations. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, which enable decoupling of the time and spatial field variations. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices.
Gauge invariance and holographic renormalization
Directory of Open Access Journals (Sweden)
Keun-Young Kim
2015-10-01
Full Text Available We study the gauge invariance of physical observables in holographic theories under the local diffeomorphism. We find that gauge invariance is intimately related to the holographic renormalization: the local counter terms defined in the boundary cancel most of gauge dependences of the on-shell action as well as the divergences. There is a mismatch in the degrees of freedom between the bulk theory and the boundary one. We resolve this problem by noticing that there is a residual gauge symmetry (RGS. By extending the RGS such that it satisfies infalling boundary condition at the horizon, we can understand the problem in the context of general holographic embedding of a global symmetry at the boundary into the local gauge symmetry in the bulk.
Invariance for Single Curved Manifold
Castro, Pedro Machado Manhaes de
2012-08-01
Recently, it has been shown that, for Lambert illumination model, solely scenes composed by developable objects with a very particular albedo distribution produce an (2D) image with isolines that are (almost) invariant to light direction change. In this work, we provide and investigate a more general framework, and we show that, in general, the requirement for such in variances is quite strong, and is related to the differential geometry of the objects. More precisely, it is proved that single curved manifolds, i.e., manifolds such that at each point there is at most one principal curvature direction, produce invariant is surfaces for a certain relevant family of energy functions. In the three-dimensional case, the associated energy function corresponds to the classical Lambert illumination model with albedo. This result is also extended for finite-dimensional scenes composed by single curved objects. © 2012 IEEE.
Neutrinos and electromagnetic gauge invariance
Energy Technology Data Exchange (ETDEWEB)
Pisano, F.; Silva-Sobrinho, J.A. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Tonasse, M.D. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica
1996-02-01
It is discussed a recently proposed connection among electromagnetic gauge invariance U(1){sub em} and the nature of the neutrino mass terms in the framework of SU(3){sub C} x G{sub W} x U(1){sub N}, G{sub W} SU(3){sub L}, extensions of the Standard Model. The impossibility of that connection, also in the case G{sub W} = SU(4){sub L}, is demonstrated. (author). 7 refs.
A reparametrization invariant surface ordering
Gustavsson, Andreas
2005-01-01
We introduce a notion of a non-Abelian loop gauge field defined on points in loop space. For this purpose we first find an infinite-dimensional tensor product representation of the Lie algebra which is particularly suited for fields on loop space. We define the non-Abelian Wilson surface as a `time' ordered exponential in terms of this loop gauge field and show that it is reparametrization invariant.
Gauge Invariance in Classical Electrodynamics
Engelhardt, W
2005-01-01
The concept of gauge invariance in classical electrodynamics assumes tacitly that Maxwell's equations have unique solutions. By calculating the electromagnetic field of a moving particle both in Lorenz and in Coulomb gauge and directly from the field equations we obtain, however, contradicting solutions. We conclude that the tacit assumption of uniqueness is not justified. The reason for this failure is traced back to the inhomogeneous wave equations which connect the propagating fields and their sources at the same time.
Internationalization of Boost Juice to Malaysia
Jane L. Menzies; Stuart C. Orr
2014-01-01
This case describes the process that the Australian juice retail chain, Boost Juice, has used to internationalize to Malaysia. The main objective of this case is to demonstrate good practice in regard to internationalization. The case provides the background of the juice bar industry in Malaysia and determines that it is an attractive market for new start-up juice bars. An analysis of Boost Juice's capability determined that the company utilized the skills of its staff, product innovations, b...
On the generator of Lorentz boost
Institute of Scientific and Technical Information of China (English)
Wang Zhi-Yong; Xiong Cai-Dong
2006-01-01
Traditionally, the theory related to the spatial angular momentum has been studied completely, while the investigation in the generator of Lorentz boost is inadequate. This paper shows that the generator of Lorentz boost has a nontrivial physical significance: it endows a charged system with an electric moment, and has an important significance for the electrical manipulations of electron spin in spintronics. An alternative treatment and interpretation for the traditional Darwin term and spin-orbit coupling are given.
Top reconstruction and boosted top experimental overview
Skinnari, Louise
2015-01-01
An overview of techniques used to reconstruct resolved and boosted top quarks is presented. Techniques for resolved top quark reconstruction include kinematic likelihood fitters and pseudo- top reconstruction. Many tools and methods are available for the reconstruction of boosted top quarks, such as jet grooming techniques, jet substructure variables, and dedicated top taggers. Different techniques as used by ATLAS and CMS analyses are described and the performance of different variables and top taggers are shown.
Elementary examples of adiabatic invariance
Energy Technology Data Exchange (ETDEWEB)
Crawford, F.S. (Physics Department, University of California, Berkeley, CA (USA) Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 (USA))
1990-04-01
Simple classical one-dimensional systems subject to adiabatic (gradual) perturbations are examined. The first examples are well known: the adiabatic invariance of the product {ital E}{tau} of energy {ital E} and period {tau} for the simple pendulum and for the simple harmonic oscillator. Next, the adiabatic invariants of the vertical bouncer are found---a ball bouncing elastically from the floor of a rising elevator having slowly varying velocity and acceleration. These examples lead to consideration of adiabatic invariance for one-dimensional systems with potentials of the form {ital V}={ital ax}{sup {ital n}}, with {ital a}={ital a}({ital t}) slowly varying in time. Then, the horizontal bouncer is considered---a mass sliding on a smooth floor, bouncing back and forth between two impenetrable walls, one of which is slowly moving. This example is generalized to a particle in a bound state of a general potential with one slowly moving turning point.'' Finally, circular motion of a charged particle in a magnetic field slowly varying in time under three different configurations is considered: (a) a free particle in a uniform field; (b) a free particle in a nonuniform betatron'' field; and (c) a particle constrained to a circular orbit in a uniform field.
Institute of Scientific and Technical Information of China (English)
HUANG Bo-Wen; GU Zhi-Yu; QIAN Shang-Wu
2005-01-01
This article puts forward a general shape invariant potential, which includes the translational shape invariant potential and scaling shape invariant potential as two particular cases, and derives the set of linear differential equations for obtaining general solutions of the generalized shape invariance condition.
Philippine campaign boosts child immunizations.
Manuel-santana, R
1993-03-01
In 1989, USAID awarded the Philippines a 5-year, US $50 million Child Survival Program targeting improvement in immunization coverage of children, prenatal care coverage for pregnant women, and contraceptive prevalence. Upon successful completion of performance benchmarks at the end of each year, USAID released monies to fund child survival activities for the following year. This program accomplished a major program goal, which was decentralization of health planning. The Philippine Department of Health soon incorporated provincial health planning. The Philippine Department of Health soon incorporated provincial health planning in its determination of allocation of resources. Social marketing activities contributed greatly to success in achieving the goal of boosting the immunization coverage rate for the 6 antigens listed under the Expanded Program for Immunization (51%-85% of infants, 1986-1991). In fact, rural health officers in Tarlac Province in Central Luzon went from household to household to talk to mothers about the benefits of immunizing a 1-year-old child, thereby contributing greatly to their achieving a 95% full immunization coverage rate by December 1991. Social marketing techniques included modern marketing strategies and multimedia channels. They first proved successful in metro Manila which, at the beginning of the campaign, had the lowest immunization rate of all 14 regions. Every Wednesday was designated immunization day and was when rural health centers vaccinated the children. Social marketing also successfully publicized oral rehydration therapy (ORT), breast feeding, and tuberculosis control. Another contributing factor to program success in child survival activities was private sector involvement. For example, the Philippine Pediatric Society helped to promote ORT as the preferred treatment for acute diarrhea. Further, the commercial sector distributed packets of oral rehydration salts and even advertised its own ORT product. At the end of 2
Larkoski, Andrew
2015-04-01
Jets are collimated streams of high-energy particles ubiquitous at any particle collider experiment and serve as proxy for the production of elementary particles at short distances. As the Large Hadron Collider at CERN continues to extend its reach to ever higher energies and luminosities, an increasingly important aspect of any particle physics analysis is the study and identification of jets, electroweak bosons, and top quarks with large Lorentz boosts. In addition to providing a unique insight into potential new physics at the tera-electron volt energy scale, high energy jets are a sensitive probe of emergent phenomena within the Standard Model of particle physics and can teach us an enormous amount about quantum chromodynamics itself. Jet physics is also invaluable for lower-level experimental issues including triggering and background reduction. It is especially important for the removal of pile-up, which is radiation produced by secondary proton collisions that contaminates every hard proton collision event in the ATLAS and CMS experiments at the Large Hadron Collider. In this talk, I will review the myriad ways that jets and jet physics are being exploited at the Large Hadron Collider. This will include a historical discussion of jet algorithms and the requirements that these algorithms must satisfy to be well-defined theoretical objects. I will review how jets are used in searches for new physics and ways in which the substructure of jets is being utilized for discriminating backgrounds from both Standard Model and potential new physics signals. Finally, I will discuss how jets are broadening our knowledge of quantum chromodynamics and how particular measurements performed on jets manifest the universal dynamics of weakly-coupled conformal field theories.
Volume conjecture for $SU(n)$-invariants
Chen, Qingtao; Zhu, Shengmao
2015-01-01
This paper discuss an intrinsic relation among congruent relations \\cite{CLPZ}, cyclotomic expansion and Volume Conjecture for $SU(n)$ invariants. Motivated by the congruent relations for $SU(n)$ invariants obtained in our previous work \\cite{CLPZ}, we study certain limits of the $SU(n)$ invariants at various roots of unit. First, we prove a new symmetry property for the $SU(n)$ invariants by using a symmetry of colored HOMFLYPT invariants. Then we propose some conjectural formulas including the cyclotomic expansion conjecture and volume conjecture for $SU(n)$ invariants (specialization of colored HOMFLYPT invariants). We also give the proofs of these conjectural formulas for the case of figure-eight knot.
Boosted searches for new physics at the LHC
International Nuclear Information System (INIS)
During the first run of the LHC, no apparent signs of new physics beyond the Standard Model were discovered, but rather the Standard Model-like properties of the Higgs particle confirmed. Therefore, new and powerful methods are needed to disclose the traces of new physics, which is expected to be at the TeV scale in order to solve the hierarchy problem. In this thesis, we propose two complementary strategies for the quest for new physics at the LHC. First, we show how a very boosted Higgs in association with a hard jet can be used to determine the important top Yukawa coupling in gluon fusion. In the inclusive gluon fusion process this is not feasible since possible deviations from its Standard Model value are combined and can even cancel with the effective Higgs-gluon interaction mediated by new top partners. This cancellation is motivated within minimal composite Higgs models but also in certain regions of the MSSM parameter space and can lead to a Standard Model-like inclusive cross section that allows no conclusions on the mass spectrum of the new physics. We work out in detail how this degeneracy can be broken in the boosted Higgs channel and find that even in the worst case scenario with a Standard Model-like inclusive cross section, the top Yukawa coupling can be constrained to 0.8-1.3 times its Standard Model value at 95% CL with an integrated luminosity of 3 000 fb-1. The second strategy is targeted at direct stop and sbottom searches in the fully hadronic top decay channel. Since the stop, sbottom and neutralino masses are unknown, very different event shapes are imaginable, ranging from unboosted top quarks and low missing energy to highly boosted top quarks and large missing energy in the final state. In order to cover a wide range of possible event shapes and consequently stop, sbottom, and neutralino masses, we combine several top taggers based on jet substructure techniques to obtain a scale invariant search strategy. The performance of this approach
International Nuclear Information System (INIS)
It has been shown (1) that it may be computationally advantageous to perform computer simulations in a boosted frame for a certain class of systems: particle beams interacting with electron clouds, free electron lasers, and laser-plasma accelerators. However, even if the computer model relies on a covariant set of equations, it was also pointed out that algorithmic difficulties related to discretization errors may have to be overcome in order to take full advantage of the potential speedup (2) . In this paper, we focus on the analysis of the complication of data input and output in a Lorentz boosted frame simulation, and describe the procedures that were implemented in the simulation code Warp(3). We present our most recent progress in the modeling of laser wakefield acceleration in a boosted frame, and describe briefly the potential benefits of calculating in a boosted frame for the modeling of coherent synchrotron radiation.
Quantum Weyl invariance and cosmology
Directory of Open Access Journals (Sweden)
Atish Dabholkar
2016-09-01
Full Text Available Equations for cosmological evolution are formulated in a Weyl invariant formalism to take into account possible Weyl anomalies. Near two dimensions, the renormalized cosmological term leads to a nonlocal energy-momentum tensor and a slowly decaying vacuum energy. A natural generalization to four dimensions implies a quantum modification of Einstein field equations at long distances. It offers a new perspective on time-dependence of couplings and naturalness with potentially far-reaching consequences for the cosmological constant problem, inflation, and dark energy.
Quantum Weyl invariance and cosmology
Dabholkar, Atish
2016-09-01
Equations for cosmological evolution are formulated in a Weyl invariant formalism to take into account possible Weyl anomalies. Near two dimensions, the renormalized cosmological term leads to a nonlocal energy-momentum tensor and a slowly decaying vacuum energy. A natural generalization to four dimensions implies a quantum modification of Einstein field equations at long distances. It offers a new perspective on time-dependence of couplings and naturalness with potentially far-reaching consequences for the cosmological constant problem, inflation, and dark energy.
Scale invariance and renormalization group
International Nuclear Information System (INIS)
Scale invariance enabled the understanding of cooperative phenomena and the study of elementary interactions, such as phase transition phenomena, the Curie critical temperature and spin rearrangement in crystals. The renormalization group method, due to K. Wilson in 1971, allowed for the study of collective phenomena, using an iterative process from smaller scales to larger scales, leading to universal properties and the description of matter state transitions or long polymer behaviour; it also enabled to reconsider the quantum electrodynamic theory and its relations to time and distance scales
Invariant Classification of Gait Types
DEFF Research Database (Denmark)
Fihl, Preben; Moeslund, Thomas B.
2008-01-01
This paper presents a method of classifying human gait in an invariant manner based on silhouette comparison. A database of artificially generated silhouettes is created representing the three main types of gait, i.e. walking, jogging, and running. Silhouettes generated from different camera angles....... Input silhouettes are matched to the database using the Hungarian method. A classifier is defined based on the dissimilarity between the input silhouettes and the gait actions of the database. The overall recognition rate is 88.2% on a large and diverse test set. The recognition rate is better than...
Tracking down hyper-boosted top quarks
Larkoski, Andrew J.; Maltoni, Fabio; Selvaggi, Michele
2015-06-01
The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directly employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportional to their transverse boost and combines the standard calorimetric information with charged track-based observables. By means of a fast detector simulation, we apply it to top quark identification and demonstrate that our method efficiently discriminates hadronically decaying top quarks from light QCD jets up to transverse boosts of 20 TeV. Our results open the way to tagging heavy objects with energies in the multi-TeV range at present and future hadron colliders.
Top Quark Forward-Backward Asymmetry in the Large Invariant Mass Region
Cheung, Kingman
2011-01-01
The forward-backward asymmetry (FBA) in top-pair production that was observed in 2008 gets a boost in a recent CDF publication. Not only has the FBA further been confirmed, but also distributional preferences are shown. Strikingly, the FBA is the most sizable in the large $M_{t\\bar t}$ invariant mass region and in the large rapidity difference $|\\Delta y|$ region. Here we used our previously proposed $t$-channel exchanged $W'$ boson to explain the new observations. We show that a new particle exchanged in the $t$-channel generically gives rise to such observations.
Centrifugal compressor design for electrically assisted boost
Y Yang, M.; Martinez-Botas, R. F.; Zhuge, W. L.; Qureshi, U.; Richards, B.
2013-12-01
Electrically assisted boost is a prominent method to solve the issues of transient lag in turbocharger and remains an optimized operation condition for a compressor due to decoupling from turbine. Usually a centrifugal compressor for gasoline engine boosting is operated at high rotational speed which is beyond the ability of an electric motor in market. In this paper a centrifugal compressor with rotational speed as 120k RPM and pressure ratio as 2.0 is specially developed for electrically assisted boost. A centrifugal compressor including the impeller, vaneless diffuser and the volute is designed by meanline method followed by 3D detailed design. Then CFD method is employed to predict as well as analyse the performance of the design compressor. The results show that the pressure ratio and efficiency at design point is 2.07 and 78% specifically.
Centrifugal compressor design for electrically assisted boost
International Nuclear Information System (INIS)
Electrically assisted boost is a prominent method to solve the issues of transient lag in turbocharger and remains an optimized operation condition for a compressor due to decoupling from turbine. Usually a centrifugal compressor for gasoline engine boosting is operated at high rotational speed which is beyond the ability of an electric motor in market. In this paper a centrifugal compressor with rotational speed as 120k RPM and pressure ratio as 2.0 is specially developed for electrically assisted boost. A centrifugal compressor including the impeller, vaneless diffuser and the volute is designed by meanline method followed by 3D detailed design. Then CFD method is employed to predict as well as analyse the performance of the design compressor. The results show that the pressure ratio and efficiency at design point is 2.07 and 78% specifically
Boost Breaking in the EFT of Inflation
Delacretaz, Luca V; Senatore, Leonardo
2015-01-01
If time-translations are spontaneously broken, so are boosts. This symmetry breaking pattern can be non-linearly realized by either just the Goldstone boson of time translations, or by four Goldstone bosons associated with time translations and boosts. In this paper we extend the Effective Field Theory of Multifield Inflation to consider the case in which the additional Goldstone bosons associated with boosts are light and coupled to the Goldstone boson of time translations. The symmetry breaking pattern forces a coupling to curvature so that the mass of the additional Goldstone bosons is predicted to be equal to $\\sqrt{2}H$ in the vast majority of the parameter space where they are light. This pattern therefore offers a natural way of generating self-interacting particles with Hubble mass during inflation. After constructing the general effective Lagrangian, we study how these particles mix and interact with the curvature fluctuations, generating potentially detectable non-Gaussian signals.
Improved Stereo Matching With Boosting Method
Directory of Open Access Journals (Sweden)
Shiny B
2015-06-01
Full Text Available Abstract This paper presents an approach based on classification for improving the accuracy of stereo matching methods. We propose this method for occlusion handling. This work employs classification of pixels for finding the erroneous disparity values. Due to the wide applications of disparity map in 3D television medical imaging etc the accuracy of disparity map has high significance. An initial disparity map is obtained using local or global stereo matching methods from the input stereo image pair. The various features for classification are computed from the input stereo image pair and the obtained disparity map. Then the computed feature vector is used for classification of pixels by using GentleBoost as the classification method. The erroneous disparity values in the disparity map found by classification are corrected through a completion stage or filling stage. A performance evaluation of stereo matching using AdaBoostM1 RUSBoost Neural networks and GentleBoost is performed.
Equivalent topological invariants of topological insulators
Energy Technology Data Exchange (ETDEWEB)
Wang Zhong [Department of Modern Physics, University of Science and Technology of China, Hefei, 230026 (China); Qi Xiaoliang; Zhang Shoucheng, E-mail: sczhang@stanford.ed [Department of Physics, Stanford University, Stanford, CA 94305 (United States)
2010-06-15
A time-reversal (TR) invariant topological insulator can be generally defined by the effective topological field theory with a quantized {theta} coefficient, which can only take values of 0 or {pi}. This theory is generally valid for an arbitrarily interacting system and the quantization of the {theta} invariant can be directly measured experimentally. Reduced to the case of a non-interacting system, the {theta} invariant can be expressed as an integral over the entire three-dimensional Brillouin zone. Alternatively, non-interacting insulators can be classified by topological invariants defined over discrete TR invariant momenta. In this paper, we show the complete equivalence between the integral and the discrete invariants of the topological insulator.
International Nuclear Information System (INIS)
The question of how far the requirement of invariance under the continuous conformal group determines relativistic Schroedinger wave equations for (free) zero mass particles of arbitrary spin is rised. First, the conditions to be satisfied by the Hamiltonian operator appearing in the Schroedinger wave equation i∂Ψ/∂t= H Ψ (with Ψ transforming locally under homogeneous Lorentz transformations) are derived such that the wave equation is invariant individually under boosts, dilatations and special conformal transformations of the conformal group whose generators are in the local forms given by Mack and Salam for Type Ia fields. Then starting with the most general form of the Hamiltonian for the spin s case, invariant under translations and rotations, the boost, dilatational and special conformal invariance conditions are applied on H so as to make an explicit determination of the solutions for H when ψ transforms according (i) D(o,s) (ii) D(s,o) and (iii) D(o,s) + D(s,o) representation of the Homogeneous Lorentz group. (E.G.)
Boosting magnetic reconnection by viscosity and thermal conduction
Minoshima, Takashi; Miyoshi, Takahiro; Imada, Shinsuke
2016-07-01
Nonlinear evolution of magnetic reconnection is investigated by means of magnetohydrodynamic simulations including uniform resistivity, uniform viscosity, and anisotropic thermal conduction. When viscosity exceeds resistivity (the magnetic Prandtl number P r m > 1 ), the viscous dissipation dominates outflow dynamics and leads to the decrease in the plasma density inside a current sheet. The low-density current sheet supports the excitation of the vortex. The thickness of the vortex is broader than that of the current for P r m > 1 . The broader vortex flow more efficiently carries the upstream magnetic flux toward the reconnection region, and consequently, boosts the reconnection. The reconnection rate increases with viscosity provided that thermal conduction is fast enough to take away the thermal energy increased by the viscous dissipation (the fluid Prandtl number Pr < 1). The result suggests the need to control the Prandtl numbers for the reconnection against the conventional resistive model.
Boosting Magnetic Reconnection by Viscosity and Thermal Conduction
Minoshima, Takashi; Imada, Shinsuke
2016-01-01
Nonlinear evolution of magnetic reconnection is investigated by means of magnetohydrodynamic simulations including uniform resistivity, uniform viscosity, and anisotropic thermal conduction. When viscosity exceeds resistivity (the magnetic Prandtl number Prm > 1), the viscous dissipation dominates outflow dynamics and leads to the decrease in the plasma density inside a current sheet. The low-density current sheet supports the excitation of the vortex. The thickness of the vortex is broader than that of the current for Prm > 1. The broader vortex flow more efficiently carries the upstream magnetic flux toward the reconnection region, and consequently boosts the reconnection. The reconnection rate increases with viscosity provided that thermal conduction is fast enough to take away the thermal energy increased by the viscous dissipation (the fluid Prandtl number Pr < 1). The result suggests the need to control the Prandtl numbers for the reconnection against the conventional resistive model.
Diode-assisted buck-boost voltage source inverters
DEFF Research Database (Denmark)
Gao, F.; Loh, P.C.; Teodorescu, Remus;
2007-01-01
This paper proposes buck-boost voltage source inverters with a unique X-shape diode-capacitor network inserted between inverter circuitry and dc source for producing a large voltage boost gain. Comparing with other voltage buck-boost techniques, the presented topologies with only a little more...... passive components can significantly enhance voltage boost capability for dc-ac inversion. With different front-end circuitries, the diode-assisted buck-boost inverters can show different operational principle and voltage boost ratio. Carefully analyzing the operational principle for the inherent energy...
Equivalent topological invariants of topological insulators
Wang, Zhong; Qi, Xiao-Liang; Zhang, Shou-Cheng
2009-01-01
A time-reversal invariant topological insulator can be generally defined by the effective topological field theory with a quantized \\theta coefficient, which can only take values of 0 or \\pi. This theory is generally valid for an arbitrarily interacting system and the quantization of the \\theta invariant can be directly measured experimentally. Reduced to the case of a non-interacting system, the \\theta invariant can be expressed as an integral over the entire three dimensional Brillouin zone...
Knot invariants and higher representation theory
Webster, Ben
2013-01-01
We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel and Sussan for sl_n. Our technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimens...
Light Speed Invariance is a Remarkable Illusion
Gift, Stephan J. G.
2007-01-01
Though many experiments appear to have confirmed the light speed invariance postulate of special relativity theory, this postulate is actually unverified. This paper resolves this issue by first showing the manner in which an illusion of light speed invariance occurs in two-way light speed measurement in the framework of a semi-classical absolute space theory. It then demonstrates a measurable variation of the one-way speed of light, which directly invalidates the invariance postulate and con...
On factorization invariants and Hilbert functions
O'Neill, Christopher
2015-01-01
Nonunique factorization in commutative semigroups is often studied using factorization invariants, which assign to each semigroup element a quantity determined by the factorization structure. For numerical semigroups (additive subsemigroups of the natural numbers), several factorization invariants are known to admit predictable behavior for sufficiently large semigroup elements. In particular, the catenary degree and delta set invariants are both eventually periodic, and the omega-primality i...
Entanglement asymmetry for boosted black branes
Mishra, Rohit
2016-01-01
We study the effects of asymmetry in entanglement thermodynamics of the CFT subsystems. It is found that `boosted' $p$-branes backgrounds give rise to the first law of the entanglement thermodynamics where the CFT pressure plays decisive role in the entanglement. Two different strip like subsystems, one parallel to the boost and the other perpendicular, are studied in the perturbative regime, where $T_{thermal}\\ll T_E$. We also discuss the AdS-wave backgrounds where some universal bounds can be obtained.
Three papers on boosting: an introduction
Koltchinskii, Vladimir; Yu, Bin
2004-01-01
The notion of boosting originated in the Machine Learning literature in the 1980's [VALIANT, L.G. (1984). A theory of the learnable. In Proc. 16th Annual ACM Symposium on Theory of Computing 436-445. ACM Press, New York]. The goal of boosting is to improve the generalization performance of weak (or base) learning algorithms by combining them in a certain way. The first algorithm of this type was discovered by Schapire [SCHAPIRE, R.E. (1990). The strength of weak learnability. Machine Learning...
Wilson loop invariants from WN conformal blocks
Alekseev, Oleg; Novaes, Fábio
2015-12-01
Knot and link polynomials are topological invariants calculated from the expectation value of loop operators in topological field theories. In 3D Chern-Simons theory, these invariants can be found from crossing and braiding matrices of four-point conformal blocks of the boundary 2D CFT. We calculate crossing and braiding matrices for WN conformal blocks with one component in the fundamental representation and another component in a rectangular representation of SU (N), which can be used to obtain HOMFLY knot and link invariants for these cases. We also discuss how our approach can be generalized to invariants in higher-representations of WN algebra.
Optimized Set of RST Moment Invariants
Directory of Open Access Journals (Sweden)
Khalid M. Hosny
2008-01-01
Full Text Available Moment invariants are widely used in image processing, pattern recognition and computer vision. Several methods and algorithms have been proposed for fast and efficient calculation of moment's invariants where numerical approximation errors are involved in most of these methods. In this paper, an optimized set of moment invariants with respect to rotation, scaling and translation is presented. An accurate method is used for exact computation of moment invariants for gray level images. A fast algorithm is applied to accelerate the process of computation. Error analysis is presented and a comparison with other conventional methods is performed. The obtained results explain the superiority of the proposed method.
Wilson loop invariants from WN conformal blocks
Directory of Open Access Journals (Sweden)
Oleg Alekseev
2015-12-01
Full Text Available Knot and link polynomials are topological invariants calculated from the expectation value of loop operators in topological field theories. In 3D Chern–Simons theory, these invariants can be found from crossing and braiding matrices of four-point conformal blocks of the boundary 2D CFT. We calculate crossing and braiding matrices for WN conformal blocks with one component in the fundamental representation and another component in a rectangular representation of SU(N, which can be used to obtain HOMFLY knot and link invariants for these cases. We also discuss how our approach can be generalized to invariants in higher-representations of WN algebra.
Conformal invariance conserved quantity of Hamilton systems
Institute of Scientific and Technical Information of China (English)
Cai Jian-Le; Luo Shao-Kai; Mei Feng-Xiang
2008-01-01
This paper studies conformal invariance and comserved quantRies of Hamilton system.The definition and the determining equation of conformal invariance for Hamilton system are provided.The relationship between the conformal invariance and the Lie symmetry are discussed,and the necessary and sufficient condition that the conformal invariance would be the Lie symmetry of the system under the infinitesimal one-parameter transformation group is deduced.It gives the conserved quantities of the system and an example for illustration.
Rotating Shallow Water Dynamics: Extra Invariant and the Formation of Zonal Jets
Balk, Alexander M; Weichman, Peter B
2011-01-01
We show that rotating shallow water dynamics possesses an approximate (adiabatic-type) positive quadratic invariant, which exists not only at mid-latitudes (where its analogue in the quasigeostrophic equation has been previously investigated), but near the equator as well (where the quasigeostrophic equation is inapplicable). Deriving the extra invariant, we find "small denominators" of two kinds: (1) due to the triad resonances (as in the case of the quasigeostrophic equation) and (2) due to the equatorial limit, when the Rossby radius of deformation becomes infinite. We show that the "small denominators" of both kinds can be canceled. The presence of the extra invariant can lead to the generation of zonal jets. We find that this tendency should be especially pronounced near the equator. Similar invariant occurs in magnetically confined fusion plasmas and can lead to the emergence of zonal flows.
Pattern Recognition by Combined Invariants
Institute of Scientific and Technical Information of China (English)
WANG Xiaohong; ZHAO Rongchun
2001-01-01
A feature-based recognition of objectsor patterns independent of their position, size, orien-tation and other variations has been the goal of muchrecent research. The existing approaches to invarianttwo-dimensional pattern recognition are useless whenpattern is blurred. In this paper, we present a novelpattern recognition system which can solve the prob-lem by using combined invariants as image features.The classification technique we choose for our systemis weighted normalized cross correlation. The mean ofthe intraclass standard deviations of the kth featureover the total number of prototypes for each class isused as a weighting factor during the classification pro-cess to improve recognition accuracy. The feasibilityof our pattern recognition system and the invarianceof the combined features with respect to translation,scaling, rotation and blurring are approved by numer-ical experiments on head images.
Inflation and classical scale invariance
Racioppi, Antonio
2014-01-01
BICEP2 measurement of primordial tensor modes in CMB suggests that cosmological inflation is due to a slowly rolling inflaton taking trans-Planckian values and provides further experimental evidence for the absence of large $M_{\\rm P}$ induced operators. We show that classical scale invariance solves the problem and allows for a remarkably simple scale-free inflaton model without any gauge group. Due to trans-Planckian inflaton values and VEVs, a dynamically induced Coleman-Weinberg-type inflaton potential of the model can predict tensor-to-scalar ratio $r$ in a large range. Precise determination of $r$ in future experiments will allow to test the proposed field-theoretic framework.
Dynamical invariance for random matrices
Unterberger, Jeremie
2016-01-01
We consider a general Langevin dynamics for the one-dimensional N-particle Coulomb gas with confining potential $V$ at temperature $\\beta$. These dynamics describe for $\\beta=2$ the time evolution of the eigenvalues of $N\\times N$ random Hermitian matrices. The equilibrium partition function -- equal to the normalization constant of the Laughlin wave function in fractional quantum Hall effect -- is known to satisfy an infinite number of constraints called Virasoro or loop constraints. We introduce here a dynamical generating function on the space of random trajectories which satisfies a large class of constraints of geometric origin. We focus in this article on a subclass induced by the invariance under the Schr\\"odinger-Virasoro algebra.
Gromov-Witten invariants of $\\bp^1$ and Eynard-Orantin invariants
Norbury, Paul
2011-01-01
We prove that stationary Gromov-Witten invariants of $\\bp^1$ arise as the Eynard-Orantin invariants of the spectral curve $x=z+1/z$, $y=\\ln{z}$. As an application we show that tautological intersection numbers on the moduli space of curves arise in the asymptotics of large degree Gromov-Witten invariants of $\\bp^1$.
Taxation Policies Adjust,Motor Vehicles Boost
Institute of Scientific and Technical Information of China (English)
Alice
2007-01-01
@@ In recent years,Chinese automotive industry,as one of the pillar industries has kept on rising.In 2006,Chinese auto production ranked the third in the world.The governmental authorities are also studying the corresponding taxations to boost the healthy development of Chinese automotive industry.
The Attentional Boost Effect and Context Memory
Mulligan, Neil W.; Smith, S. Adam; Spataro, Pietro
2016-01-01
Stimuli co-occurring with targets in a detection task are better remembered than stimuli co-occurring with distractors--the attentional boost effect (ABE). The ABE is of interest because it is an exception to the usual finding that divided attention during encoding impairs memory. The effect has been demonstrated in tests of item memory but it is…
Music Might Give Babies' Language Skills a Boost
... nlm.nih.gov/medlineplus/news/fullstory_158486.html Music Might Give Babies' Language Skills a Boost Small ... April 25, 2016 (HealthDay News) -- Can listening to music boost your baby's brainpower? Maybe, at least in ...
Music Might Give Babies' Language Skills a Boost
... page: https://medlineplus.gov/news/fullstory_158486.html Music Might Give Babies' Language Skills a Boost Small ... April 25, 2016 (HealthDay News) -- Can listening to music boost your baby's brainpower? Maybe, at least in ...
Polynomial Invariant Theory of the Classical Groups
Westrich, Quinton
2011-01-01
The goal of invariant theory is to find all the generators for the algebra of representations of a group that leave the group invariant. Such generators will be called \\emph{basic invariants}. In particular, we set out to find the set of basic invariants for the classical groups GL$(V)$, O$(n)$, and Sp$(n)$ for $n$ even. In the first half of the paper we set up relevant definitions and theorems for our search for the set of basic invariants, starting with linear algebraic groups and then discussing associative algebras. We then state and prove a monumental theorem that will allow us to proceed with hope: it says that the set of basic invariants is finite if $G$ is reductive. Finally we state without proof the First Fundamental Theorems, which aim to list explicitly the relevant sets of basic invariants, for the classical groups above. We end by commenting on some applications of invariant theory, on the history of its development, and stating a useful theorem in the appendix whose proof lies beyond the scope ...
INVARIANT RANDOM APPROXIMATION IN NONCONVEX DOMAIN
Directory of Open Access Journals (Sweden)
R. Shrivastava
2012-05-01
Full Text Available Random fixed point results in the setup of compact and weakly compact domain of Banach spaces which is not necessary starshaped have been obtained in the present work. Invariant random approximation results have also been determined asits application. In this way, random version of invariant approximation results due toMukherjee and Som [13] and Singh [17] have been given.
Spectral properties of supersymmetric shape invariant potentials
Indian Academy of Sciences (India)
Barnali Chakrabarti
2008-01-01
We present the spectral properties of supersymmetric shape invariant potentials (SIPs). Although the folded spectrum is completely random, unfolded spectrum shows that energy levels are highly correlated and absolutely rigid. All the SIPs exhibit harmonic oscillator-type spectral statistics in the unfolded spectrum. We conjecture that this is the reflection of shape invariant symmetry.
Synthesizing Chaotic Maps with Prescribed Invariant Densities
Rogers, Alan; Shorten, Robert; Heffernan, Daniel M.
2004-01-01
The Inverse Frobenius-Perron problem (IFPP) concerns the creation of discrete chaotic mappings with arbitrary invariant densities. In this note, we present a new and elegant solution to the IFPP, based on positive matrix theory. Our method allows chaotic maps with arbitrary piecewise-constant invariant densities, and with arbitrary mixing properties, to be synthesized.
Invariants and submanifolds in almost complex geometry
Kruglikov, Boris
2007-01-01
In this paper we describe the algebra of differential invariants for GL(n,C)-structures. This leads to classification of almost complex structures of general positions. The invariants are applied to the existence problem of higher-dimensional pseudoholomorphic submanifolds.
Uniqueness in ergodic decomposition of invariant probabilities
Zimmermann, Dieter
1992-01-01
We show that for any set of transition probabilities on a common measurable space and any invariant probability, there is at most one representing measure on the set of extremal, invariant probabilities with the $\\sigma$-algebra generated by the evaluations. The proof uses nonstandard analysis.
Scale invariant Volkov–Akulov supergravity
Directory of Open Access Journals (Sweden)
S. Ferrara
2015-10-01
Full Text Available A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.
Borromean surgery formula for the Casson invariant
DEFF Research Database (Denmark)
Meilhan, Jean-Baptiste Odet Thierry
2008-01-01
It is known that every oriented integral homology 3-sphere can be obtained from S3 by a finite sequence of Borromean surgeries. We give an explicit formula for the variation of the Casson invariant under such a surgery move. The formula involves simple classical invariants, namely the framing, li...
Rational Invariants of the Generalized Classical Groups
Institute of Scientific and Technical Information of China (English)
NAN JI-ZHU; ZHAO JING
2011-01-01
In this paper, we give transcendence bases of the rational invariants fields of the generalized classical groups and their subgroups B, N and T, and we also compute the orders of them. Furthermore, we give explicit generators for the rational invariants fields of the Borel subgroup and the Neron-Severi subgroup of the general linear group.
Constructing Invariant Fairness Measures for Surfaces
DEFF Research Database (Denmark)
Gravesen, Jens; Ungstrup, Michael
1998-01-01
This paper presents a general method which from an invariant curve fairness measure constructs an invariant surface fairness measure. Besides the curve fairness measure one only needs a class of curves on the surface for which one wants to apply the curve measure. The surface measure at a point...... variation.The method is extended to the case where one considers, not the fairness of one curve, but the fairness of a one parameter family of curves. Such a family is generated by the flow of a vector field, orthogonal to the curves. The first, respectively the second order derivative along the curve...... of the size of this vector field is used as the fairness measure on the family.Six basic 3rd order invariants satisfying two quadratic equations are defined. They form a complete set in the sense that any invariant 3rd order function can be written as a function of the six basic invariants together...
Geometric invariance of compressible turbulent boundary layers
Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle
2015-11-01
A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.
Factorial invariance in multilevel confirmatory factor analysis.
Ryu, Ehri
2014-02-01
This paper presents a procedure to test factorial invariance in multilevel confirmatory factor analysis. When the group membership is at level 2, multilevel factorial invariance can be tested by a simple extension of the standard procedure. However level-1 group membership raises problems which cannot be appropriately handled by the standard procedure, because the dependency between members of different level-1 groups is not appropriately taken into account. The procedure presented in this article provides a solution to this problem. This paper also shows Muthén's maximum likelihood (MUML) estimation for testing multilevel factorial invariance across level-1 groups as a viable alternative to maximum likelihood estimation. Testing multilevel factorial invariance across level-2 groups and testing multilevel factorial invariance across level-1 groups are illustrated using empirical examples. SAS macro and Mplus syntax are provided.
Yoshida, Z
2014-01-01
Adiabatic invariants foliate phase space, and impart a macro-scale hierarchy by separating microscopic variables. On a macroscopic leaf, long-scale ordered structures are created while maximizing entropy. A plasma confined in a magnetosphere is invoked for unveiling the organizing principle ---in the vicinity of a magnetic dipole, the plasma self-organizes to a state with a steep density gradient. The resulting nontrivial structure has maximum entropy in an appropriate, constrained phase space. One could view such a phase space as a leaf foliated in terms of Casimir invariants ---adiabatic invariants measuring the number of quasi-particles (macroscopic representation of periodic motions) are identified as the relevant Casimir invariants. The density clump is created in response to the inhomogeneity of the energy level (frequency) of quasi-particles.
Feedback-Driven Dynamic Invariant Discovery
Zhang, Lingming; Yang, Guowei; Rungta, Neha S.; Person, Suzette; Khurshid, Sarfraz
2014-01-01
Program invariants can help software developers identify program properties that must be preserved as the software evolves, however, formulating correct invariants can be challenging. In this work, we introduce iDiscovery, a technique which leverages symbolic execution to improve the quality of dynamically discovered invariants computed by Daikon. Candidate invariants generated by Daikon are synthesized into assertions and instrumented onto the program. The instrumented code is executed symbolically to generate new test cases that are fed back to Daikon to help further re ne the set of candidate invariants. This feedback loop is executed until a x-point is reached. To mitigate the cost of symbolic execution, we present optimizations to prune the symbolic state space and to reduce the complexity of the generated path conditions. We also leverage recent advances in constraint solution reuse techniques to avoid computing results for the same constraints across iterations. Experimental results show that iDiscovery converges to a set of higher quality invariants compared to the initial set of candidate invariants in a small number of iterations.
A scale invariance criterion for LES parametrizations
Directory of Open Access Journals (Sweden)
Urs Schaefer-Rolffs
2015-01-01
Full Text Available Turbulent kinetic energy cascades in fluid dynamical systems are usually characterized by scale invariance. However, representations of subgrid scales in large eddy simulations do not necessarily fulfill this constraint. So far, scale invariance has been considered in the context of isotropic, incompressible, and three-dimensional turbulence. In the present paper, the theory is extended to compressible flows that obey the hydrostatic approximation, as well as to corresponding subgrid-scale parametrizations. A criterion is presented to check if the symmetries of the governing equations are correctly translated into the equations used in numerical models. By applying scaling transformations to the model equations, relations between the scaling factors are obtained by demanding that the mathematical structure of the equations does not change.The criterion is validated by recovering the breakdown of scale invariance in the classical Smagorinsky model and confirming scale invariance for the Dynamic Smagorinsky Model. The criterion also shows that the compressible continuity equation is intrinsically scale-invariant. The criterion also proves that a scale-invariant turbulent kinetic energy equation or a scale-invariant equation of motion for a passive tracer is obtained only with a dynamic mixing length. For large-scale atmospheric flows governed by the hydrostatic balance the energy cascade is due to horizontal advection and the vertical length scale exhibits a scaling behaviour that is different from that derived for horizontal length scales.
A test of Lorentz invariance in β decay
Energy Technology Data Exchange (ETDEWEB)
Sytema, Auke; Dijck, Elwin; Mueller, Stefan; Onderwater, Gerco; Pijpker, Coen; Wilschut, Hans; Noordmans, Jacob; Timmermans, Rob [Kernfysisch Versneller Instituut, Rijksuniversiteit Groningen (Netherlands)
2013-07-01
In theories aiming to unify the Standard Model with gravity, Lorentz invariance may be broken. Although Lorentz symmetry appears to hold well, few experiments have been performed that consider its violation in the weak interaction. We have started a theoretical and experimental research program to this effect. In particular we consider a Lorentz-violating correction of the W-boson propagator, which manifests itself in a directional dependence of the β-decay rate and may be independent of boosts. We discuss in the context of this extension of the Standard Model which observables are sensitive. Specifically, we consider allowed Fermi and Gamow-Teller transitions and explore the spin degrees of freedom in the latter. Experimentally we exploit the Gamow-Teller transition of polarized {sup 20}Na. The transition rate (i.e. lifetime) would depend on the spin orientation of {sup 20}Na. The accuracy of the experiment relies on the fact that one measures an asymmetry when reversing the spin. The asymmetry should also follow the earth's rotation, depending on the polarization direction. The method of the measurement is presented, together with the first results.
A test of Lorentz invariance in β decay
International Nuclear Information System (INIS)
In theories aiming to unify the Standard Model with gravity, Lorentz invariance may be broken. Although Lorentz symmetry appears to hold well, few experiments have been performed that consider its violation in the weak interaction. We have started a theoretical and experimental research program to this effect. In particular we consider a Lorentz-violating correction of the W-boson propagator, which manifests itself in a directional dependence of the β-decay rate and may be independent of boosts. We discuss in the context of this extension of the Standard Model which observables are sensitive. Specifically, we consider allowed Fermi and Gamow-Teller transitions and explore the spin degrees of freedom in the latter. Experimentally we exploit the Gamow-Teller transition of polarized 20Na. The transition rate (i.e. lifetime) would depend on the spin orientation of 20Na. The accuracy of the experiment relies on the fact that one measures an asymmetry when reversing the spin. The asymmetry should also follow the earth's rotation, depending on the polarization direction. The method of the measurement is presented, together with the first results.
Factorization for substructures of boosted Higgs jets
Isaacson, Joshua; Li, Zhao; Yuan, C -P
2015-01-01
We present a perturbative QCD factorization formula for substructures of an energetic Higgs jet, taking the energy profile resulting from the $H\\to b\\bar b$ decay as an example. The formula is written as a convolution of a hard Higgs decay kernel with two $b$-quark jet functions and a soft function that links the colors of the two $b$ quarks. We derive an analytical expression to approximate the energy profile within a boosted Higgs jet, which significantly differs from those of ordinary QCD jets. This formalism also extends to boosted $W$ and $Z$ bosons in their hadronic decay modes, allowing an easy and efficient discrimination of fat jets produced from different processes.
On Metrizability of Invariant Affine Connections
Tanaka, Erico
2011-01-01
The metrizability problem for a symmetric affine connection on a manifold, invariant with respect to a group of diffeomorphisms G, is considered. We say that the connection is G-metrizable, if it is expressible as the Levi-Civita connection of a G-invariant metric field. In this paper we analyze the G-metrizability equations for the rotation group G = SO(3), acting canonically on three- and four-dimensional Euclidean spaces. We show that the property of the connection to be SO(3)-invariant allows us to find complete explicit description of all solutions of the SO(3)-metrizability equations.
Gromov-Witten invariants and localization
Morrison, David R
2016-01-01
We give a pedagogical review of the computation of Gromov-Witten invariants via localization in 2D gauged linear sigma models. We explain the relationship between the two-sphere partition function of the theory and the Kahler potential on the conformal manifold. We show how the Kahler potential can be assembled from classical, perturbative, and non-perturbative contributions, and explain how the non-perturbative contributions are related to the Gromov-Witten invariants of the corresponding Calabi-Yau manifold. We then explain how localization enables efficient calculation of the two-sphere partition function and, ultimately, the Gromov-Witten invariants themselves.
Comment on ``Pairing interaction and Galilei invariance''
Arias, J. M.; Gallardo, M.; Gómez-Camacho, J.
1999-05-01
A recent article by Dussel, Sofia, and Tonina studies the relation between Galilei invariance and dipole energy weighted sum rule (EWSR). The authors find that the pairing interaction, which is neither Galilei nor Lorentz invariant, produces big changes in the EWSR and in effective masses of the nucleons. They argue that these effects of the pairing force could be realistic. In this Comment we stress the validity of Galilei invariance to a very good approximation in this context of low-energy nuclear physics and show that the effective masses and the observed change in the EWSR for the electric dipole operator relative to its classical value are compatible with this symmetry.
Does ICT boost Dutch productivity growth?
Henry van der Wiel
2001-01-01
From an historical and international perspective, Dutch labour productivity growth rates have been lacklustre. Using a growth accounting framework, this document analyses whether ICT has recently boosted Dutch labour productivity growth, similar to developments in the US. Labour productivity growth in the Dutch market sector slightly accelerated in the second half of the 1990s. The acceleration seems to be related to the production and use of ICT. The productivity performance of the Dutch ICT...
Cash boost to Great British science unveiled
2002-01-01
"Trade and Industry Secretary, Patricia Hewitt today unveiled new plans for the DTI's record science budget over the next three years, to keep Britain at the forefront of world science. The plans include funding to develop life saving new health techniques, to seek alternative energy sources, to help our rural economy, to develop the computers of tomorrow and boost business with the next generation of leading edge technologies" (1 page).
Tracking down hyper-boosted top quarks
Larkoski, Andrew J; Selvaggi, Michele
2015-01-01
The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directly employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportion...
Boosted Dark Matter at Neutrino Experiments
Necib, Lina; Wongjirad, Taritree; Conrad, Janet M
2016-01-01
Current and future neutrino experiments can be used to discover dark matter, not only in searches for dark matter annihilating to neutrinos, but also in scenarios where dark matter itself scatters off Standard Model particles in the detector. In this work, we study the sensitivity of different neutrino detectors to a class of models called boosted dark matter, in which a subdominant component of a dark sector acquires a large Lorentz boost today through annihilation of a dominant component in a dark matter-dense region, such as the galactic center or dwarf spheroidal galaxies. This analysis focuses on the sensitivity of different neutrino detectors, specifically the Cherenkov-based Super-K and the future argon-based DUNE to boosted dark matter that scatters off electrons. We study the dependence of the expected limits on the experimental features, such as energy threshold, volume and exposure in the limit of constant scattering amplitude. We highlight experiment-specific features that enable current and futur...
Exposure fusion using boosting Laplacian pyramid.
Shen, Jianbing; Zhao, Ying; Yan, Shuicheng; Li, Xuelong
2014-09-01
This paper proposes a new exposure fusion approach for producing a high quality image result from multiple exposure images. Based on the local weight and global weight by considering the exposure quality measurement between different exposure images, and the just noticeable distortion-based saliency weight, a novel hybrid exposure weight measurement is developed. This new hybrid weight is guided not only by a single image's exposure level but also by the relative exposure level between different exposure images. The core of the approach is our novel boosting Laplacian pyramid, which is based on the structure of boosting the detail and base signal, respectively, and the boosting process is guided by the proposed exposure weight. Our approach can effectively blend the multiple exposure images for static scenes while preserving both color appearance and texture structure. Our experimental results demonstrate that the proposed approach successfully produces visually pleasing exposure fusion images with better color appearance and more texture details than the existing exposure fusion techniques and tone mapping operators. PMID:25137687
b-tagging in boosted topologies
CMS Collaboration
2015-01-01
As the LHC explores a new energy regime, searches for physics beyond the Standard Model at high mass scale will probe objects produced with a momentum considerably higher than their mass, modifying in a very appreciable way the event topology. The decay products of boosted objects will be collimated into a smaller area such that they could be merged within a single \\emph{fat} jet. Highly boosted objects represent a challenge to the standard jet algorithm, object identification and isolation criteria, developed for decaying particles approximately at rest in the laboratory frame. For larger boosts above order of $p_T>$200 GeV, the final state from the $H\\rightarrow b\\bar{b}$ or $t\\rightarrow bW$ decay can merge into a single jet and the approach to reconstruct the Higgs boson or top quark in this environment should change drastically. Rather than attempting to resolve jets individually, the decaying object is reconstructed as a single fat jet. Then, the composite nature of the jet is revealed by analyzing its ...
Lorentz boosted frame simulation of Laser wakefield acceleration in quasi-3D geometry
Yu, Peicheng; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Meyers, Michael D; Tsung, Frank S; Decyk, Viktor K; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A; Lu, Wei; Silva, Luis O; Mori, Warren B
2015-01-01
When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at $\\beta_b c$ towards the laser, which can lead to a computational speedup of $\\sim \\gamma_b^2=(1-\\beta_b^2)^{-1}$. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional problems with the computation load on the order of two dimensional $r-z$ simulations. Here, we describe how to combine the speed ups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that can be used to effectively eliminate the Numerical Cerenkov Instability (NCI) that inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simul...
Pineau, Didier
An experiment of a plasma torch on a production foundry cupola is reported. The test runs were conducted on a hot blast cupola, the blast temperature in the absence of plasma being 400 C. With the torch, the temperature of the blast was increased to 1000 C. The experiment was conducted for the manufacture of car engines with a 2.5 MW transportable plasma system. The cupola was boosted with a 4 MW torch and results included an increase in production of 45 percent, a decrease in coke rate and no more new iron in the loads. The plasma torch and hot air cupola furnace are described.
On link invariants and topological string amplitudes
Energy Technology Data Exchange (ETDEWEB)
Ramadevi, P. E-mail: rama@phy.iitb.ernet.in; Sarkar, Tapobrata E-mail: tapo@theory.tifr.res.in
2001-04-30
We explicitly show that the new polynomial invariants for knots, upto nine crossings, agree with the Ooguri-Vafa conjecture relating Chern-Simons gauge theory to topological string theory on the resolution of the conifold.
On Link Invariants and Topological String Amplitudes
Ramadevi, P.; Sarkar, Tapobrata
2000-01-01
We explicitly show that the new polynomial invariants for knots, upto nine crossings, agree with the Ooguri-Vafa conjecture relating Chern-Simons gauge theory to topological string theory on the resolution of the conifold.
Testing gauge-invariant perturbation theory
Törek, Pascal
2016-01-01
Gauge-invariant perturbation theory for theories with a Brout-Englert-Higgs effect, as developed by Fr\\"ohlich, Morchio and Strocchi, starts out from physical, exactly gauge-invariant quantities as initial and final states. These are composite operators, and can thus be considered as bound states. In case of the standard model, this reduces almost entirely to conventional perturbation theory. This explains the success of conventional perturbation theory for the standard model. However, this is due to the special structure of the standard model, and it is not guaranteed to be the case for other theories. Here, we review gauge-invariant perturbation theory. Especially, we show how it can be applied and that it is little more complicated than conventional perturbation theory, and that it is often possible to utilize existing results of conventional perturbation theory. Finally, we present tests of the predictions of gauge-invariant perturbation theory, using lattice gauge theory, in three different settings. In ...
Invariant Spectral Hashing of Image Saliency Graph
Taquet, Maxime; De Vleeschouwer, Christophe; Macq, Benoit
2010-01-01
Image hashing is the process of associating a short vector of bits to an image. The resulting summaries are useful in many applications including image indexing, image authentication and pattern recognition. These hashes need to be invariant under transformations of the image that result in similar visual content, but should drastically differ for conceptually distinct contents. This paper proposes an image hashing method that is invariant under rotation, scaling and translation of the image. The gist of our approach relies on the geometric characterization of salient point distribution in the image. This is achieved by the definition of a "saliency graph" connecting these points jointly with an image intensity function on the graph nodes. An invariant hash is then obtained by considering the spectrum of this function in the eigenvector basis of the Laplacian graph, that is, its graph Fourier transform. Interestingly, this spectrum is invariant under any relabeling of the graph nodes. The graph reveals geomet...
Local and gauge invariant observables in gravity
Khavkine, Igor
2015-01-01
It is well known that General Relativity (GR) does not possess any non-trivial local (in a precise standard sense) and diffeomorphism invariant observables. We propose a generalized notion of local observables, which retain the most important properties that follow from the standard definition of locality, yet is flexible enough to admit a large class of diffeomorphism invariant observables in GR. The generalization comes at a small price, that the domain of definition of a generalized local observable may not cover the entire phase space of GR and two such observables may have distinct domains. However, the subset of metrics on which generalized local observables can be defined is in a sense generic (its open interior is non-empty in the Whitney strong topology). Moreover, generalized local gauge invariant observables are sufficient to separate diffeomorphism orbits on this admissible subset of the phase space. Connecting the construction with the notion of differential invariants, gives a general scheme for...
Ermakov–Lewis invariants and Reid systems
Energy Technology Data Exchange (ETDEWEB)
Mancas, Stefan C., E-mail: stefan.mancas@erau.edu [Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, S.L.P. (Mexico)
2014-06-13
Reid's mth-order generalized Ermakov systems of nonlinear coupling constant α are equivalent to an integrable Emden–Fowler equation. The standard Ermakov–Lewis invariant is discussed from this perspective, and a closed formula for the invariant is obtained for the higher-order Reid systems (m≥3). We also discuss the parametric solutions of these systems of equations through the integration of the Emden–Fowler equation and present an example of a dynamical system for which the invariant is equivalent to the total energy. - Highlights: • Reid systems of order m are connected to Emden–Fowler equations. • General expressions for the Ermakov–Lewis invariants both for m=2 and m≥3 are obtained. • Parametric solutions of the Emden–Fowler equations related to Reid systems are obtained.
Invariant Solutions for Soil Water Equations
Baikov, V.; Khalique, C.
1999-01-01
We obtain exact solutions for a class of nonlinear partial differential equations which models soil water infiltration and redistribution in a bedded soil profile irrigated by a drip irrigation system. The solutions obtained are invariant under two parameter symmetry groups.
On the -Invariant of Hermitian Forms
Indian Academy of Sciences (India)
Sudeep S Parihar; V Suresh
2013-08-01
Let be a field of characteristic not 2 and a central simple algebra with an involution . A result of Mahmoudi provides an upper bound for the -invariants of hermitian forms and skew-hermitian forms over (,) in terms of the -invariant of . In this paper we give a different upper bound when is a tensor product of quaternion algebras and is a the tensor product of canonical involutions. We also show that our bounds are sharper than those of Mahmoudi.
Rotational invariance and the Pauli exclusion principle
O'Hara, Paul
2001-01-01
In this article, the rotational invariance of entangled quantum states is investigated as a possible cause of the Pauli exclusion principle. First, it is shown that a certain class of rotationally invariant states can only occur in pairs. This will be referred to as the coupling principle. This in turn suggests a natural classification of quantum systems into those containing coupled states and those that do not. Surprisingly, it would seem that Fermi-Dirac statistics follows as a consequence...
The invariator principle in convex geometry
DEFF Research Database (Denmark)
Thórisdóttir, Ólöf; Kiderlen, Markus
The invariator principle is a measure decomposition that was rediscovered in local stereology in 2005 and has since been used widely in the stereological literature. We give an exposition of invariator related results where existing formulae are generalized and new ones proposed. In particular, w...... functions and derive several, more explicit representations of these functions. In particular, we use Morse theory to write the measurement functions in terms of critical values of the sectioned object. This is very useful for surface area estimation....
Conformal Invariance of Black Hole Temperature
Jacobson, Ted; Kang, Gungwon
1993-01-01
It is shown that the surface gravity and temperature of a stationary black hole are invariant under conformal transformations of the metric that are the identity at infinity. More precisely, we find a conformal invariant definition of the surface gravity of a conformal Killing horizon that agrees with the usual definition(s) for a true Killing horizon and is proportional to the temperature as defined by Hawking radiation. This result is reconciled with the intimate relation between the trace ...
On Lorentz invariants in relativistic magnetic reconnection
Yang, Shu-Di; Wang, Xiao-Gang
2016-08-01
Lorentz invariants whose nonrelativistic correspondences play important roles in magnetic reconnection are discussed in this paper. Particularly, the relativistic invariant of the magnetic reconnection rate is defined and investigated in a covariant two-fluid model. Certain Lorentz covariant representations for energy conversion and magnetic structures in reconnection processes are also investigated. Furthermore, relativistic measures for topological features of reconnection sites, particularly magnetic nulls and separatrices, are analyzed.
Computer calculation of Witten's 3-manifold invariant
International Nuclear Information System (INIS)
Witten's 2+1 dimensional Chern-Simons theory is exactly solvable. We compute the partition function, a topological invariant of 3-manifolds, on generalized Seifert spaces. Thus we test the path integral using the theory of 3-manifolds. In particular, we compare the exact solution with the asymptotic formula predicted by perturbation theory. We conclude that this path integral works as advertised and gives an effective topological invariant. (orig.)
Computer calculation of Witten's 3-manifold invariant
Freed, Daniel S.; Gompf, Robert E.
1991-10-01
Witten's 2+1 dimensional Chern-Simons theory is exactly solvable. We compute the partition function, a topological invariant of 3-manifolds, on generalized Seifert spaces. Thus we test the path integral using the theory of 3-manifolds. In particular, we compare the exact solution with the asymptotic formula predicted by perturbation theory. We conclude that this path integral works as advertised and gives an effective topological invariant.
Gauge Invariant Monopoles in SU(2) Gluodynamics
Gubarev, F V
2002-01-01
We introduce a gauge invariant topological definition of monopole charge in pure SU(2) gluodynamics. The non-trivial topology is provided by hedgehog configurations of the non-Abelian field strength tensor on the two-sphere surrounding the monopole. It is shown that this definition can be formulated entirely in terms of Wilson loops which makes the gauge invariance manifest. Moreover, it counts correctly the monopole charge in case of spontaneously broken gauge symmetry and of pure Abelian gauge fields.
A Homeomorphism Invariant for Substitution Tiling Spaces
Ormes, Nic; Radin, Charles; Sadun, Lorenzo
2000-01-01
We derive a homeomorphism invariant for those tiling spaces which are made by rather general substitution rules on polygonal tiles, including those tilings, like the pinwheel, which contain tiles in infinitely many orientations. The invariant is a quotient of Cech cohomology, is easily computed directly from the substitution rule, and distinguishes many examples, including most pinwheel-like tiling spaces. We also introduce a module structure on cohomology which is very convenient as well as ...
Invariants of Fokker-Planck equations
Abe, Sumiyoshi
2016-01-01
A weak invariant of a stochastic system is defined in such a way that its expectation value with respect to the distribution function as a solution of the associated Fokker-Planck equation is constant in time. A general formula is given for time evolution of fluctuations of the invariants. An application to the problem of share price in finance is illustrated. It is shown how this theory makes it possible to reduce the growth rate of the fluctuations.
Weyl Invariance and the Origins of Mass
Gover, A R; Waldron, A
2008-01-01
By a uniform and simple Weyl invariant coupling of scale and matter fields, we construct theories that unify massless, massive, and partially massless excitations. Masses are related to tractor Weyl weights, and Breitenlohner-Freedman stability bounds in anti de Sitter amount to reality of these weights. The method relies on tractor calculus -- mathematical machinery allowing Weyl invariance to be kept manifest at all stages. The equivalence between tractor and higher spin systems with arbitrary spins and masses is also considered.
Invariant Spectral Hashing of Image Saliency Graph
Taquet, Maxime; Jacques, Laurent; De Vleeschouwer, Christophe; Macq, Benoît
2010-01-01
Image hashing is the process of associating a short vector of bits to an image. The resulting summaries are useful in many applications including image indexing, image authentication and pattern recognition. These hashes need to be invariant under transformations of the image that result in similar visual content, but should drastically differ for conceptually distinct contents. This paper proposes an image hashing method that is invariant under rotation, scaling and translation of the image....
Conformal Invariance in Classical Field Theory
Grigore, D. R.
1993-01-01
A geometric generalization of first-order Lagrangian formalism is used to analyse a conformal field theory for an arbitrary primary field. We require that global conformal transformations are Noetherian symmetries and we prove that the action functional can be taken strictly invariant with respect to these transformations. In other words, there does not exists a "Chern-Simons" type Lagrangian for a conformally invariant Lagrangian theory.
On adiabatic invariant in generalized Galileon theories
Ema, Yohei; Jinno, Ryusuke; Mukaida, Kyohei; Nakayama,Kazunori
2015-01-01
We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is us...
Modeling laser wakefield accelerators in a Lorentz boosted frame
Energy Technology Data Exchange (ETDEWEB)
Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.
2010-09-15
Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [1] is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing theframe of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.
Modeling laser wakefield accelerators in a Lorentz boosted frame
Energy Technology Data Exchange (ETDEWEB)
Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grotec, D. P.
2010-06-15
Modeling of laser-plasma wakefield accelerators in an optimal frame of reference is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.
Page, Don N.
2008-01-01
VSI (`vanishing scalar invariant') spacetimes have zero values for all total scalar contractions of all polynomials in the Riemann tensor and its covariant derivatives. However, there are other ways of concocting local scalar invariants (nonpolynomial) from the Riemann tensor that need not vanish even in VSI spacetimes, such as Cartan invariants. Simple examples are given that reduce to the squared amplitude for a linearized monochromatic plane gravitational wave. These nonpolynomial local sc...
Shift-invariant target in allocation problems.
Mandal, Saumen; Biswas, Atanu
2014-07-10
We provide a template for finding target allocation proportions in optimal allocation designs where the target will be invariant for both shifts in location and scale of the response distributions. One possible application of such target allocation proportions is to carry out a response-adaptive allocation. While most of the existing designs are invariant for any change in scale of the underlying distributions, they are not location invariant in most of the cases. First, we indicate this serious flaw in the existing literature and illustrate how this lack of location invariance makes the performance of the designs very poor in terms of allocation for any drastic change in location, such as the changes from degrees centigrade to degrees Fahrenheit. We illustrate that unless a target allocation is location invariant, it might lead to a completely irrelevant and useless target for allocation. Then we discuss how such location invariance can be achieved for general continuous responses. We illustrate the proposed method using some real clinical trial data. We also indicate the possible extension of the procedure for more than two treatments at hand and in the presence of covariates.
On gauge-invariant and phase-invariant spinor analysis. II
Buchdahl, H. A.
1992-01-01
Granted customary definitions, the operations of juggling indices and covariant differentiation do not commute with one another in a Weyl space. The same noncommutativity obtains in the spinor calculus of Infeld and van der Waerden. Gauge-invariant and phase-invariant calculations therefore tend to be rather cumbersome. Here, a modification of the definition of covariant derivative leads immediately to a manifestly gauge-invariant and phase-invariant version of Weyl-Cartan space and of the two-spinor calculus associated with it in which the metric tensor and the metric spinor are both covariant constant.
Scalar Field Theory on κ-MINKOWSKI Space-Time and Translation and Lorentz Invariance
Meljanac, S.; Samsarov, A.
We investigate the properties of κ-Minkowski space-time by using representations of the corresponding deformed algebra in terms of undeformed Heisenberg-Weyl algebra. The deformed algebra consists of κ-Poincaré algebra extended with the generators of the deformed Weyl algebra. The part of deformed algebra, generated by rotation, boost and momentum generators, is described by the Hopf algebra structure. The approach used in our considerations is completely Lorentz covariant. We further use an advantage of this approach to consistently construct a star product, which has a property that under integration sign, it can be replaced by a standard pointwise multiplication, a property that was since known to hold for Moyal but not for κ-Minkowski space-time. This star product also has generalized trace and cyclic properties, and the construction alone is accomplished by considering a classical Dirac operator representation of deformed algebra and requiring it to be Hermitian. We find that the obtained star product is not translationally invariant, leading to a conclusion that the classical Dirac operator representation is the one where translation invariance cannot simultaneously be implemented along with hermiticity. However, due to the integral property satisfied by the star product, noncommutative free scalar field theory does not have a problem with translation symmetry breaking and can be shown to reduce to an ordinary free scalar field theory without nonlocal features and tachyonic modes and basically of the very same form. The issue of Lorentz invariance of the theory is also discussed.
International Nuclear Information System (INIS)
Purpose: To evaluate the influence of a radiotherapy boost on the cosmetic outcome after 3 years of follow-up in patients treated with breast-conserving therapy (BCT). Methods and Materials: In EORTC trial 22881/10882, 5569 Stage I and II breast cancer patients were treated with tumorectomy and axillary dissection, followed by tangential irradiation of the breast to a dose of 50 Gy in 5 weeks, at 2 Gy per fraction. Patients having a microscopically complete tumor excision were randomized between no boost and a boost of 16 Gy. The cosmetic outcome was evaluated by a panel, scoring photographs of 731 patients taken soon after surgery and 3 years later, and by digitizer measurements, measuring the displacement of the nipple of 3000 patients postoperatively and of 1141 patients 3 years later. Results: There was no difference in the cosmetic outcome between the two treatment arms after surgery, before the start of radiotherapy. At 3-year follow-up, both the panel evaluation and the digitizer measurements showed that the boost had a significant adverse effect on the cosmetic result. The panel evaluation at 3 years showed that 86% of patients in the no-boost group had an excellent or good global result, compared to 71% of patients in the boost group (p = 0.0001). The digitizer measurements at 3 years showed a relative breast retraction assessment (pBRA) of 7.6 pBRA in the no-boost group, compared to 8.3 pBRA in the boost group, indicating a worse cosmetic result in the boost group at follow-up (p = 0.04). Conclusions: These results showed that a boost dose of 16 Gy had a negative, but limited, impact on the cosmetic outcome after 3 years
Primary Paralleled Isolated Boost Converter with Extended Operating Voltage Range
DEFF Research Database (Denmark)
Hernandez Botella, Juan Carlos; Sen, Gökhan; Mira Albert, Maria del Carmen;
2012-01-01
Applications requiring wide input and output voltage range cannot often be satisfied by using buck or boost derived topologies. Primary paralleled isolated boost converter (PPIBC) [1]-[2] is a high efficiency boost derived topology. This paper proposes a new operation mode for extending the input...... and output voltage range in PPIBC. The proposed solution does not modify PPIBC power stage, the converter gain is modified instead by short circuiting one of the paralleled connected primary windings present in this topology.......Applications requiring wide input and output voltage range cannot often be satisfied by using buck or boost derived topologies. Primary paralleled isolated boost converter (PPIBC) [1]-[2] is a high efficiency boost derived topology. This paper proposes a new operation mode for extending the input...
Boost matrix converters in clean energy systems
Karaman, Ekrem
This dissertation describes an investigation of novel power electronic converters, based on the ultra-sparse matrix topology and characterized by the minimum number of semiconductor switches. The Z-source, Quasi Z-source, Series Z-source and Switched-inductor Z-source networks were originally proposed for boosting the output voltage of power electronic inverters. These ideas were extended here on three-phase to three-phase and three-phase to single-phase indirect matrix converters. For the three-phase to three-phase matrix converters, the Z-source networks are placed between the three-switch input rectifier stage and the output six-switch inverter stage. A brief shoot-through state produces the voltage boost. An optimal pulse width modulation technique was developed to achieve high boosting capability and minimum switching losses in the converter. For the three-phase to single-phase matrix converters, those networks are placed similarly. For control purposes, a new modulation technique has been developed. As an example application, the proposed converters constitute a viable alternative to the existing solutions in residential wind-energy systems, where a low-voltage variable-speed generator feeds power to the higher-voltage fixed-frequency grid. Comprehensive analytical derivations and simulation results were carried out to investigate the operation of the proposed converters. Performance of the proposed converters was then compared between each other as well as with conventional converters. The operation of the converters was experimentally validated using a laboratory prototype.
Invariant object recognition based on extended fragments.
Bart, Evgeniy; Hegdé, Jay
2012-01-01
Visual appearance of natural objects is profoundly affected by viewing conditions such as viewpoint and illumination. Human subjects can nevertheless compensate well for variations in these viewing conditions. The strategies that the visual system uses to accomplish this are largely unclear. Previous computational studies have suggested that in principle, certain types of object fragments (rather than whole objects) can be used for invariant recognition. However, whether the human visual system is actually capable of using this strategy remains unknown. Here, we show that human observers can achieve illumination invariance by using object fragments that carry the relevant information. To determine this, we have used novel, but naturalistic, 3-D visual objects called "digital embryos." Using novel instances of whole embryos, not fragments, we trained subjects to recognize individual embryos across illuminations. We then tested the illumination-invariant object recognition performance of subjects using fragments. We found that the performance was strongly correlated with the mutual information (MI) of the fragments, provided that MI value took variations in illumination into consideration. This correlation was not attributable to any systematic differences in task difficulty between different fragments. These results reveal two important principles of invariant object recognition. First, the subjects can achieve invariance at least in part by compensating for the changes in the appearance of small local features, rather than of whole objects. Second, the subjects do not always rely on generic or pre-existing invariance of features (i.e., features whose appearance remains largely unchanged by variations in illumination), and are capable of using learning to compensate for appearance changes when necessary. These psychophysical results closely fit the predictions of earlier computational studies of fragment-based invariant object recognition. PMID:22936910
Invariant Object Recognition Based on Extended Fragments
Directory of Open Access Journals (Sweden)
Evgeniy eBart
2012-08-01
Full Text Available Visual appearance of natural objects is profoundly affected by viewing conditions such as viewpoint and illumination. Human subjects can nevertheless compensate well for variations in these viewing conditions. The strategies that the visual system uses to accomplish this are largely unclear. Previous computational studies have suggested that in principle, certain types of object fragments (rather than whole objects can be used for invariant recognition. However, whether the human visual system is actually capable of using this strategy remains unknown. Here, we show that human observers can achieve illumination invariance by using object fragments that carry the relevant information. To determine this, we have used novel, but naturalistic, 3-D visual objects called ‘digital embryos’. Using novel instances of whole embryos, not fragments, we trained subjects to recognize individual embryos across illuminations. We then tested the illumination-invariant object recognition performance of subjects using fragments. We found that the performance was strongly correlated with the mutual information (MI of the fragments, provided that MI value took variations in illumination into consideration. This correlation was not attributable to any systematic differences in task difficulty between different fragments. These results reveal two important principles of invariant object recognition. First, the subjects can achieve invariance at least in part by compensating for the changes in the appearance of small local features, rather than of whole objects. Second, the subjects do not always rely on generic or pre-existing invariance of features (i.e., features whose appearance remains largely unchanged by variations in illumination, and are capable of using learning to compensate for appearance changes when necessary. These psychophysical results closely fit the predictions of earlier computational studies of fragment-based invariant object recognition.
Invariants of 3-Manifolds derived from finite dimensional hopf algebras
Kauffman, L H; Louis H Kauffman; David E Radford
1994-01-01
Abstract: This paper studies invariants of 3-manifolds derived from certain fin ite dimensional Hopf algebras. The invariants are based on right integrals for these algebras. It is shown that the resulting class of invariants is distinct from the class of Witten-Reshetikhin-Turaev invariants.
Zhenhai to Boost Crude on Rising Demand
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
@@ Zhenhai Refining & Chemical plans to boost July crude throughput by at least 5 percent from June due to expectations of a rise in domestic demand, an industry official said on June 24. The forecast July level could match the refinery's April throughput at 1.06 million tons, the highest so far in 2003, an official close to the refinery's operations said, adding "China could see a big rise in demand from domestic travels next month especially after Beijing was dropped off the travel warning list."
BOOSTING CED USING ROBUST ORIENTATION ESTIMATION
Directory of Open Access Journals (Sweden)
Tariq M. Khan
2014-05-01
Full Text Available In this paper, Coherence Enhancement Diffusion (CED is boosted feeding external orientation using new robust orientation estimation. In CED, proper scale selection is very important as the gradient vector at that scale reﬂects the orientation of local ridge. For this purpose a new scheme is proposed in which pre calculated orientation, by using local and integration scales. From the experiments it is found the proposed scheme is working much better in noisy environment as compared to the traditional Coherence Enhancement Diffusion
Mixed Lorentz boosted $Z^{0}'s$
Kjaer, N J
2001-01-01
A novel technique is proposed to study systematic errors on jet reconstruction in W physics measurements at LEP2 with high statistical precision. The method is based on the emulation of W pair events using Mixed Lorentz Boosted Z0 events. The scope and merits of the method and its statistical accuracy are discussed in the context of the DELPHI W mass measurement in the fully hadronic channel. The numbers presented are preliminary in the sense that they do not constitute the final DELPHI systematic errors.
A Composite PWM Control Strategy for Boost Converter
Qingfeng, Liu; Zhaoxia, Leng; Jinkun, Sun; Huamin, Wang
In order to improve the control performance of boost converter with large signal disturbance, a composite PWM control strategy for boost converter operating in continuous condition mode (CCM) was proposed in this paper. The parasitical loss of Boost converter was analyzed and a loss compensation strategy was adopted to design feed-forward tracker for converter. The composite PWM controller consisted of the tracker and PID controller. Simulation and experiment results validated the validity of the control strategy presented in this paper.
Yu, Peicheng; Xu, Xinlu; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Li, Fei; Meyers, Michael D.; An, Weiming; Tsung, Frank S.; Decyk, Viktor K.; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.
2016-07-01
When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at βb c towards the laser, which can lead to a computational speedup of ∼ γSUB>/bSUB>2 = (1 -space-time distribution of the LWFA data in the lab and boosted frame, we propose to use a moving window to follow the drifting plasma, instead of following the laser driver as is done in the LWFA lab frame simulations, in order to further reduce the computational loads. We describe the details of how the NCI is mitigated for the quasi-3D geometry, the setups for simulations which combine the Lorentz boosted frame, quasi-3D geometry, and the use of a moving window, and compare the results from these simulations against their corresponding lab frame cases. Good agreement is obtained among these sample simulations, particularly when there is no self-trapping, which demonstrates it is possible to combine the Lorentz boosted frame and the quasi-3D algorithms when modeling LWFA. We also discuss the preliminary speedups achieved in these sample simulations.
Buchstaber numbers and classical invariants of simplicial complexes
Ayzenberg, Anton
2014-01-01
Buchstaber invariant is a numerical characteristic of a simplicial complex, arising from torus actions on moment-angle complexes. In the paper we study the relation between Buchstaber invariants and classical invariants of simplicial complexes such as bigraded Betti numbers and chromatic invariants. The following two statements are proved. (1) There exists a simplicial complex U with different real and ordinary Buchstaber invariants. (2) There exist two simplicial complexes with equal bigrade...
Precision Jet Substructure from Boosted Event Shapes
Feige, Ilya; Stewart, Iain; Thaler, Jesse
2012-01-01
Jet substructure has emerged as a critical tool for LHC searches, but studies so far have relied heavily on shower Monte Carlos, which formally approximate QCD at leading-log level. We demonstrate that systematic higher-order QCD computations of jet substructure can be carried out by boosting global event shapes by a large momentum Q, and accounting for effects due to finite jet size, initial state radiation (ISR), and underlying event (UE) as 1/Q corrections. In particular, we compute the 2-subjettiness substructure distribution for boosted Z -> q qbar events at the LHC at next-to-next-to-next-to-leading log order. The calculation is greatly simplified by recycling known results for the thrust distribution in e+ e- collisions. The 2-subjettiness distribution quickly saturates, becoming Q independent for Q > 400 GeV. Crucially, the effects of jet contamination from ISR/UE can be subtracted out analytically at large Q, without knowing their detailed form. Amusingly, the Q=infinity and Q=0 distributions are rel...
A multiview boosting approach to tissue segmentation
Kwak, Jin Tae; Xu, Sheng; Pinto, Peter A.; Turkbey, Baris; Bernardo, Marcelino; Choyke, Peter L.; Wood, Bradford J.
2014-04-01
Digitized histopathology images have a great potential for improving or facilitating current assessment tools in cancer pathology. In order to develop accurate and robust automated methods, the precise segmentation of histologic objects such epithelium, stroma, and nucleus is necessary, in the hopes of information extraction not otherwise obvious to the subjective eye. Here, we propose a multivew boosting approach to segment histology objects of prostate tissue. Tissue specimen images are first represented at different scales using a Gaussian kernel and converted into several forms such HSV and La*b*. Intensity- and texture-based features are extracted from the converted images. Adopting multiview boosting approach, we effectively learn a classifier to predict the histologic class of a pixel in a prostate tissue specimen. The method attempts to integrate the information from multiple scales (or views). 18 prostate tissue specimens from 4 patients were employed to evaluate the new method. The method was trained on 11 tissue specimens including 75,832 epithelial and 103,453 stroma pixels and tested on 55,319 epithelial and 74,945 stroma pixels from 7 tissue specimens. The technique showed 96.7% accuracy, and as summarized into a receiver operating characteristic (ROC) plot, the area under the ROC curve (AUC) of 0.983 (95% CI: 0.983-0.984) was achieved.
A Magnetohydrodynamic Boost for Relativistic Jets
Mizuno, Yosuke; Hardee, Philip; Hartmann, Dieter H.; Nishikawa, Ken-Ichi; Zhang, Bing
2007-01-01
We performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field changes the properties of the shock interface between the tenuous, overpressured jet (V^z j) flowing tangentially to a dense external medium. We find that magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A "poloidal" magnetic field (B^z), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and a stronger inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to larger Lorentz factors than those obtained in the pure-hydrodynamic case. Likewise, a strong "toroidal" magnetic field (B^y), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case. Thus. the presence and relative orientation of a magnetic field in relativistic jets can significant modify the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).
Brain glucosamine boosts protective glucoprivic feeding.
Osundiji, Mayowa A; Zhou, Ligang; Shaw, Jill; Moore, Stephen P; Yueh, Chen-Yu; Sherwin, Robert; Heisler, Lora K; Evans, Mark L
2010-04-01
The risk of iatrogenic hypoglycemia is increased in diabetic patients who lose defensive glucoregulatory responses, including the important warning symptom of hunger. Protective hunger symptoms during hypoglycemia may be triggered by hypothalamic glucose-sensing neurons by monitoring changes downstream of glucose phosphorylation by the specialized glucose-sensing hexokinase, glucokinase (GK), during metabolism. Here we investigated the effects of intracerebroventricular (ICV) infusion of glucosamine (GSN), a GK inhibitor, on food intake at normoglycemia and protective feeding responses during glucoprivation and hypoglycemia in chronically catheterized rats. ICV infusion of either GSN or mannoheptulose, a structurally different GK inhibitor, dose-dependently stimulated feeding at normoglycemia. Consistent with an effect of GSN to inhibit competitively glucose metabolism, ICV coinfusion of d-glucose but not l-glucose abrogated the orexigenic effect of ICV GSN at normoglycemia. Importantly, ICV infusion of a low GSN dose (15 nmol/min) that was nonorexigenic at normoglycemia boosted feeding responses to glucoprivation in rats with impaired glucose counterregulation. ICV infusion of 15 nmol/min GSN also boosted feeding responses to threatened hypoglycemia in rats with defective glucose counterregulation. Altogether our findings suggest that GSN may be a potential therapeutic candidate for enhancing defensive hunger symptoms during hypoglycemia.
Boosted Higgs boson tagging using jet substructures
Shvydkin, Pavel
2016-01-01
Searching BSM particles via the Higgs boson final state has now become common. The mass of desired BSM particle is more than 1 TeV, thereby its decay products are highly Lorentz-boosted. Hence the jets from b quark-antiquark pair - which the Higgs boson mostly decays into - are very closed to each other, and merged into one jet, that is typically reconstructed using large jet sizes (∆R = 0.8). In this work regression technique is applied to AK8 jets (which defined by anti-kT algorithm, using ΔR = 0.8). The regression makes use of boosted jets with substructure information, coupled with the pecularities of a b quark decay, like the presence of a soft lepton (SL) inside the jet. It has allowed to improve the resolution of the mass reconstruction and transverse momentum of the Higgs boson. This application results in improvement of the mass reconstruction by 3-4 percent. These result may be improved firstly by making more careful pileup rejection. Then it is possible to combine base regression train for dif...
Gauge-invariant inflaton in the minimal supersymmetric standard model
International Nuclear Information System (INIS)
We argue that all the necessary ingredients for successful inflation are present in the flat directions of the Minimally Supersymmetric Standard Model. We show that out of many gauge-invariant combinations of squarks, sleptons, and Higgs bosons, there are two directions, LLe and udd, which are promising candidates for the inflaton. The model predicts more than 103 e-foldings, with an inflationary scale of Hinf∼O(1-10) GeV, provides a tilted spectrum with an amplitude of δH∼10-5 and a negligible tensor perturbation. The temperature of the thermalized plasma could be as low as Trh∼O(1-10) TeV. Parts of the inflaton potential can be determined independently of cosmology by future particle physics experiments
Invariant properties of representations under cleft extensions
Institute of Scientific and Technical Information of China (English)
2007-01-01
The main aim of this paper is to give the invariant properties of representations of algebras under cleft extensions over a semisimple Hopf algebra. Firstly, we explain the concept of the cleft extension and give a relation between the cleft extension and the crossed product which is the approach we depend upon. Then, by making use of them, we prove that over an algebraically closed field k, for a finite dimensional Hopf algebra H which is semisimple as well as its dual H*, the representation type of an algebra is an invariant property under a finite dimensional H-cleft extension . In the other part, we still show that over an arbitrary field k, the Nakayama property of a k-algebra is also an invariant property under an H -cleft extension when the radical of the algebra is H-stable.
Second-Order Invariants and Holography
Luongo, Orlando; Bonanno, Luca; Iannone, Gerardo
2012-12-01
Motivated by recent works on the role of the holographic principle in cosmology, we relate a class of second-order Ricci invariants to the IR cutoff characterizing the holographic dark energy density. The choice of second-order invariants provides an invariant way to account the problem of causality for the correct cosmological cutoff, since the presence of event horizons is not an a priori assumption. We find that these models work fairly well, by fitting the observational data, through a combined cosmological test with the use of SNeIa, BAO and CMB. This class of models is also able to overcome the fine-tuning and coincidence problems. Finally, to make a comparison with other recent models, we adopt the statistical tests AIC and BIC.
Rainbow gravity and scale-invariant fluctuations
Amelino-Camelia, Giovanni; Gubitosi, Giulia; Magueijo, Joao
2013-01-01
We re-examine a recently proposed scenario where the deformed dispersion relations associated with a flow of the spectral dimension to a UV value of 2 leads to a scale-invariant spectrum of cosmological fluctuations, without the need for inflation. In that scenario Einstein gravity was assumed. The theory displays a wavelength-dependent speed of light but by transforming to a suitable "rainbow frame" this feature can be removed, at the expense of modifying gravity. We find that the ensuing rainbow gravity theory is such that gravity switches off at high energy (or at least leads to a universal conformal coupling). This explains why the fluctuations are scale-invariant on all scales: there is no horizon scale as such. For dispersion relations that do not lead to exact scale invariance we find instead esoteric inflation in the rainbow frame. We argue that these results shed light on the behaviour of gravity under the phenomenon of dimensional reduction.
Some Cosmological Consequences of Weyl Invariance
Álvarez, Enrique; Herrero-Valea, Mario
2015-01-01
Some Weyl invariant cosmological models are examined in the framework of dilaton gravity. It will be shown that When the FRW ansatz for the spacetime metric is assumed, the Ward identity for conformal invariance guarantees that the gravitational equations hold whenever the matter EM do so. It follows that any scale factor can solve the theory provided a non-trivial profile for a dilaton field. In particular, accelerated expansion is a natural solution to the full set of equations. When two or more scalar fields are coupled to gravity in a Weyl invariant way there is an antigravity phase in which the effective Newton constant is negative. This phase is separated from the atractive gravity phase by a strong coupling barrier. Nevertheles, and perhaps contradicting na\\"ive beliefs, the antigravity phase does not imply accelerated expansion, although it is compatible with it.
Scale-Invariant Random Spatial Networks
Aldous, David J
2012-01-01
Real-world road networks have an approximate scale-invariance property; can one devise mathematical models of random networks whose distributions are {\\em exactly} invariant under Euclidean scaling? This requires working in the continuum plane. We introduce an axiomatization of a class of processes we call {\\em scale-invariant random spatial networks}, whose primitives are routes between each pair of points in the plane. We prove that one concrete model, based on minimum-time routes in a binary hierarchy of roads with different speed limits, satisfies the axioms, and note informally that two other constructions (based on Poisson line processes and on dynamic proximity graphs) are expected also to satisfy the axioms. We initiate study of structure theory and summary statistics for general processes in this class.
Gauge-invariant massive BF models
Energy Technology Data Exchange (ETDEWEB)
Bizdadea, Constantin; Saliu, Solange-Odile [University of Craiova, Department of Physics, Craiova (Romania)
2016-02-15
Consistent interactions that can be added to a free, Abelian gauge theory comprising a BF model and a finite set of massless real scalar fields are constructed from the deformation of the solution to the master equation based on specific cohomological techniques. Under the hypotheses of analyticity in the coupling constant, Lorentz covariance, spacetime locality, and Poincare invariance, supplemented with the requirement of the preservation of the number of derivatives on each field with respect to the free theory, we see that the deformation procedure leads to two classes of gauge-invariant interacting theories with a mass term for the BF vector field A{sub μ} with U(1) gauge invariance. In order to derive this result we have not used the Higgs mechanism based on spontaneous symmetry breaking. (orig.)
Gauge-invariant massive BF models
Bizdadea, Constantin; Saliu, Solange-Odile
2016-02-01
Consistent interactions that can be added to a free, Abelian gauge theory comprising a BF model and a finite set of massless real scalar fields are constructed from the deformation of the solution to the master equation based on specific cohomological techniques. Under the hypotheses of analyticity in the coupling constant, Lorentz covariance, spacetime locality, and Poincaré invariance, supplemented with the requirement of the preservation of the number of derivatives on each field with respect to the free theory, we see that the deformation procedure leads to two classes of gauge-invariant interacting theories with a mass term for the BF vector field A_{μ } with U(1) gauge invariance. In order to derive this result we have not used the Higgs mechanism based on spontaneous symmetry breaking.
Gauge-invariant massive BF models
Bizdadea, Constantin
2015-01-01
Consistent interactions that can be added to a free, Abelian gauge theory comprising a BF model and a finite set of massless real scalar fields are constructed from the deformation of the solution to the master equation based on specific cohomological techniques. Under the hypotheses of analyticity in the coupling constant, Lorentz covariance, spacetime locality, Poincare invariance, supplemented with the requirement on the preservation of the number of derivatives on each field with respect to the free theory, we obtain that the deformation procedure leads to two classes of gauge-invariant interacting theories with a mass term for the BF vector field $A_{\\mu }$ with U(1) gauge invariance. In order to derive this result we have not used the Higgs mechanism based on spontaneous symmetry breaking.
INVARIANTS UNDER STABLE EQUIVALENCES OF MORITA TYPE
Institute of Scientific and Technical Information of China (English)
Li Fang; Sun Longgang
2012-01-01
The aim of this article is to study some invariants of associative algebras under stable equivalences of Morita type.First of all,we show that,if two finite-dimensional selfinjective k-algebras are stably equivalent of Morita type,then their orbit algebras are isomorphic.Secondly,it is verified that the quasitilted property of an algebra is invariant under stable equivalences of Morita type.As an application of this result,it is obtained that if an algebra is of finite representation type,then its tilted property is invariant under stable equivalences of Morita type; the other application to partial tilting modules is given in Section 4. Finally,we prove that when two finite-dimensional k-algebras are stably equivalent of Morita type,their repetitive algebras are also stably equivalent of Morita type under certain conditions.
Gravity as the breakdown of conformal invariance
Amelino-Camelia, Giovanni; Gubitosi, Giulia; Magueijo, Joao
2015-01-01
We propose that at the beginning of the universe gravity existed in a limbo either because it was switched off or because it was only conformally coupled to all particles. This picture can be reverse-engineered from the requirement that the cosmological perturbations be (nearly) scale-invariant without the need for inflation. It also finds support in recent results in quantum gravity suggesting that spacetime becomes two-dimensional at super-Planckian energies. We advocate a novel top-down approach to cosmology based on the idea that gravity and the Big Bang Universe are relics from the mechanism responsible for breaking the fundamental conformal invariance. Such a mechanism should leave clear signatures in departures from scale-invariance in the primordial power spectrum and the level of gravity waves generated.
Gauge-Invariant Formulation of Circular Dichroism.
Raimbault, Nathaniel; de Boeij, Paul L; Romaniello, Pina; Berger, J A
2016-07-12
Standard formulations of magnetic response properties, such as circular dichroism spectra, are plagued by gauge dependencies, which can lead to unphysical results. In this work, we present a general gauge-invariant and numerically efficient approach for the calculation of circular dichroism spectra from the current density. First we show that in this formulation the optical rotation tensor, the response function from which circular dichroism spectra can be obtained, is independent of the origin of the coordinate system. We then demonstrate that its trace is independent of the gauge origin of the vector potential. We also show how gauge invariance can be retained in practical calculations with finite basis sets. As an example, we explain how our method can be applied to time-dependent current-density-functional theory. Finally, we report gauge-invariant circular dichroism spectra obtained using the adiabatic local-density approximation. The circular dichroism spectra we thus obtain are in good agreement with experiment. PMID:27295541
Perturbative string theory in BRST invariant formalism
International Nuclear Information System (INIS)
In this talk we present a constructive and very explicit way of calculating multiloop amplitudes in string theories. The main ingredients are the BRST invariant N String Vertex and the BRST invariant twisted propagator. This approach naturally leads to the Schottky parametrization of moduli space in terms of multipliers and fixed points of the g projective transformations which characterize a Riemann surface of genus g. The complete expression (including measure) of the multiloop corrections to the N String Vertex for the bosonic string is exhibited. (orig.)
Invariant measures on multimode quantum Gaussian states
Energy Technology Data Exchange (ETDEWEB)
Lupo, C. [School of Science and Technology, Universita di Camerino, I-62032 Camerino (Italy); Mancini, S. [School of Science and Technology, Universita di Camerino, I-62032 Camerino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); De Pasquale, A. [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy); Facchi, P. [Dipartimento di Matematica and MECENAS, Universita di Bari, I-70125 Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Florio, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, I-00184 Roma (Italy); Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy); Pascazio, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy)
2012-12-15
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Some cosmological consequences of Weyl invariance
Energy Technology Data Exchange (ETDEWEB)
Alvarez, Enrique; González-Martín, Sergio; Herrero-Valea, Mario [Departamento de Física Teórica and Instituto de Física Teórica, IFT-UAM/CSIC, Universidad Autónoma, 20849 Madrid (Spain)
2015-03-19
We examine some Weyl invariant cosmological models in the framework of generalized dilaton gravity, in which the action is made of a set of N conformally coupled scalar fields. It will be shown that when the FRW ansatz for the spacetime metric is assumed, the Ward identity for conformal invariance guarantees that the gravitational equations hold whenever the scalar fields EM do so. It follows that any scale factor can solve the theory provided a non-trivial profile for a dilaton field. In particular, accelerated expansion is a natural solution to the full set of equations.
Invariant distances and metrics in complex analysis
Jarnicki, Marek
2013-01-01
As in the field of ""Invariant Distances and Metrics in Complex Analysis"" there was and is a continuous progress this is the second extended edition of the corresponding monograph. This comprehensive book is about the study of invariant pseudodistances (non-negative functions on pairs of points) and pseudometrics (non-negative functions on the tangent bundle) in several complex variables. It is an overview over a highly active research area at the borderline between complex analysis, functional analysis and differential geometry. New chapters are covering the Wu, Bergman and several other met
Invariants of contact structures from open books
Etnyre , John B.; Ozbagci, Burak
2006-01-01
In this note we define three invariants of contact structures in terms of open books supporting the contact structures. These invariants are the support genus (which is the minimal genus of a page of a supporting open book for the contact structure), the binding number (which is the minimal number of binding components of a supporting open book for the contact structure with minimal genus pages) and the norm (which is minus the maximal Euler characteristic of a page of a supporting open book).
Leptogenesis, Yukawa Textures and Weak Basis Invariants
Branco, Gustavo Castello; Silva-Marcos, J I; Branco, Gustavo C.
2006-01-01
We show that a large class of sets of leptonic texture zeros considered in the literature imply the vanishing of certain CP-odd weak-basis invariants. These invariant conditions enable one to recognize a flavour model corresponding to a set of texture zeros, when written in an arbitrary weak-basis where the zeros are not manifest. We also analyse the r\\^ ole of texture zeros in allowing for a connection between leptogenesis and low-energy leptonic masses, mixing and CP violation. For some of the textures the variables relevant for leptogenesis can be fully determined in terms of low energy parameters and heavy neutrino masses.
Affine Invariant Character Recognition by Progressive Removing
Iwamura, Masakazu; Horimatsu, Akira; Niwa, Ryo; Kise, Koichi; Uchida, Seiichi; Omachi, Shinichiro
Recognizing characters in scene images suffering from perspective distortion is a challenge. Although there are some methods to overcome this difficulty, they are time-consuming. In this paper, we propose a set of affine invariant features and a new recognition scheme called “progressive removing” that can help reduce the processing time. Progressive removing gradually removes less feasible categories and skew angles by using multiple classifiers. We observed that progressive removing and the use of the affine invariant features reduced the processing time by about 60% in comparison to a trivial one without decreasing the recognition rate.
Hidden BRS invariance in classical mechanics
International Nuclear Information System (INIS)
We give in this paper a path integral formulation of classical mechanics. We do so by writing down the associated classical-generating functional. This functional exhibits an unexpected BRS-like and antiBRS-like invariance. This invariance allows for a simple expression, in term of superfields, of this generating functional. Associated to the BRS and antiBRS charges there is also a ghost charge whose conservation turns out to be nothing else than the well-known theorem of classical mechanics. (orig.)
The decomposition of global conformal invariants
Alexakis, Spyros
2012-01-01
This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Dese
Burning invariant manifolds in reactive front propagation
Mahoney, John; Mitchell, Kevin; Solomon, Tom
2011-01-01
We present theory and experiments on the dynamics of reaction fronts in a two-dimensional flow composed of a chain of alternating vortices. Inspired by the organization of passive transport by invariant manifolds, we introduce burning invariant manifolds (BIMs), which act as one-sided barriers to front propagation. The BIMs emerge from the theory when the advection-reaction- diffusion system is recast as an ODE for reaction front elements. Experimentally, we demonstrate how these BIMs can be measured and compare their behavior with simulation. Finally, a topological BIM formalism yields a maximum front propagation speed.
Scaling theory of {{{Z}}_{2}} topological invariants
Chen, Wei; Sigrist, Manfred; Schnyder, Andreas P.
2016-09-01
For inversion-symmetric topological insulators and superconductors characterized by {{{Z}}2} topological invariants, two scaling schemes are proposed to judge topological phase transitions driven by an energy parameter. The scaling schemes renormalize either the phase gradient or the second derivative of the Pfaffian of the time-reversal operator, through which the renormalization group flow of the driving energy parameter can be obtained. The Pfaffian near the time-reversal invariant momentum is revealed to display a universal critical behavior for a great variety of models examined.
Hidden invariance of the free classical particle
García, S
1993-01-01
A formalism describing the dynamics of classical and quantum systems from a group theoretical point of view is presented. We apply it to the simple example of the classical free particle. The Galileo group $G$ is the symmetry group of the free equations of motion. Consideration of the free particle Lagrangian semi-invariance under $G$ leads to a larger symmetry group, which is a central extension of the Galileo group by the real numbers. We study the dynamics associated with this group, and characterize quantities like Noether invariants and evolution equations in terms of group geometric objects. An extension of the Galileo group by $U(1)$ leads to quantum mechanics.
Hidden invariance of the free classical particle
International Nuclear Information System (INIS)
A formalism describing the dynamics of classical and quantum systems from a group theoretical point of view is presented. We apply it to the simple example of the classical free particle. The Galileo group G is the symmetry group of the free equations of motion. Consideration of the free particle Lagrangian semi-invariance under G leads to a larger symmetry group, which is a central extension of the Galileo group by the real numbers. We study the dynamics associated with this group, and characterize quantities like Noether invariants and evolution equations in terms of group geometric objects. An extension of the Galileo group by U(1) leads to quantum mechanics
A Family of Invariant Stress Surfaces
DEFF Research Database (Denmark)
Krenk, S.
A family of invariant stress surfaces with a cubic dependence on the deviatoric stress components is expressed as a linear combination of the second and third deviatori stress invariants. A simple geometric derivation demonstrates the convexity of the contours in the deviatoric plane. An explicit...... contour is given in explicit form. Several special cases are considered: a generalized Drucker-Prager criterion with straight generators and a smooth triangular deviatoric contour, surfaces with parabolic compression and tension generators, and the Lade failure surface for cohesionless soils. The use...
Time invariance violating nuclear electric octupole moments
Flambaum, V V; Orton, S R
1997-01-01
The existence of a nuclear electric octupole moment (EOM) requires both parity and time invariance violation. The EOMs of odd $Z$ nuclei that are induced by a particular T- and P-odd interaction are calculated. We compare such octupole moments with the collective EOMs that can occur in nuclei having a static octupole deformation. A nuclear EOM can induce a parity and time invariance violating atomic electric dipole moment, and the magnitude of this effect is calculated. The contribution of a nuclear EOM to such a dipole moment is found, in most cases, to be smaller than that of other mechanisms of atomic electric dipole moment production.
Energy Technology Data Exchange (ETDEWEB)
Odorici, F., E-mail: fabrizio.odorici@bo.infn.it; Malferrari, L.; Montanari, A. [INFN—Bologna, Viale B. Pichat, 6/2, 40127 Bologna (Italy); Rizzoli, R. [INFN—Bologna, Viale B. Pichat, 6/2, 40127 Bologna (Italy); CNR–Istituto per la Microelettronica ed i Microsistemi, Via Gobetti 101, 40129 Bologna (Italy); Mascali, D.; Castro, G.; Celona, L.; Gammino, S.; Neri, L. [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy)
2016-02-15
Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to “screen” the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.
Odorici, F.; Malferrari, L.; Montanari, A.; Rizzoli, R.; Mascali, D.; Castro, G.; Celona, L.; Gammino, S.; Neri, L.
2016-02-01
Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.
Boosted objects: a probe of beyond the standard model physics
DEFF Research Database (Denmark)
Abdesselam, A.; Belyaev, A.; Kuutmann, E. B.;
2011-01-01
We present the report of the hadronic working group of the BOOST2010 workshop held at the University of Oxford in June 2010. The first part contains a review of the potential of hadronic decays of highly boosted particles as an aid for discovery at the LHC and a discussion of the status of tools ...
Top quark forward-backward asymmetry in the large invariant mass region
International Nuclear Information System (INIS)
The forward-backward asymmetry in top-pair production that was observed in 2008 gets a boost in a recent CDF publication. Not only has the forward-backward asymmetry been further confirmed, but also distributional preferences are shown. Strikingly, the forward-backward asymmetry is the most sizable in the large Mtt invariant mass region and in the large rapidity difference |Δy| region. Here we used our previously proposed t-channel exchanged W' boson to explain the new observations. We show that a new particle exchanged in the t channel generically gives rise to such observations. Furthermore, we show that the proposed W' can be directly produced in association with a top quark at the Tevatron and the LHC. We perform a signal-background analysis and show that such a W' is readily observed at the Tevatron with a 10 fb-1 luminosity and at the LHC-7 with just a 100 pb-1 luminosity.
Exploiting affine invariant regions and leaf edge shapes for weed detection
DEFF Research Database (Denmark)
Kazmi, Wajahat; Garcia Ruiz, Francisco Jose; Nielsen, Jon;
2015-01-01
In this article, local features extracted from field images are evaluated for weed detection. Several scale and affine invariant detectors from computer vision literature along with high performance descriptors were applied. Field dataset contained a total of 474 plant images of sugar beet...... color descriptor was introduced which used various combinations of color indices and offered a very high precision. Retrieval in the field data was evaluated group-wise. Although, the impact of the sunlight was found to be very low on shape features, but relatively higher precisions were obtained...... for younger plants under a shade (overall more than 80%). The weed detection accuracy was assessed using the Bag-of-Visual-Word scheme with KNN and SVM classifiers. The assessment showed that with an SVM classifier, a fusion of surface color and edge shapes boosted the overall classification accuracy...
Application ofBoost Inverter to Multi Input PV system
Directory of Open Access Journals (Sweden)
G.SHINYVIKRAM
2014-11-01
Full Text Available With the shortage of the energy and ever increasing of the oil price, research on the renewable and green energy sources, especially the solar arrays and the fuel cells, becomes more and more important. How to achieve high step- up and high efficiency DC/DC converters is the major consideration in the renewable power applications due to the low voltage of PV arrays and fuel cells. The conventional boost converters increase the harmonics rate and add an extra stage of power conversion. This paper proposes a boost dc-ac inverter that can invert and boost the output voltage in a single stage. In this paper the proposed boost dc-ac inverter is applied to the solar power panels and is simulated using Simulink. The output results of the boost inverter are worthy promising.
Momentum Routing Invariance in Extended QED: Assuring Gauge Invariance Beyond Tree Level
Vieira, A R; Sampaio, Marcos
2015-01-01
We address the study of gauge invariance in the Standard Model Extension which encompasses all Lorentz-violating terms originated by spontaneous symmetry breaking at the Planck scale. In particular, we fully evaluate Ward identities involving two and three point functions and derive the conditions which assure gauge invariance of the electromagnetic sector of the Standard Model Extension at one-loop. We show that momentum routing invariance is sufficient to fix arbitrary and regularization dependent parameters intrinsic to perturbation theory in the diagrams involved. A scheme which judiciously collects finite but undetermined quantum corrections is employed, a particularly subtle issue in the presence of $\\gamma_5$ matrices.
Boosting low-mass hadronic resonances
Shimmin, Chase; Whiteson, Daniel
2016-09-01
Searches for new hadronic resonances typically focus on high-mass spectra due to overwhelming QCD backgrounds and detector trigger rates. We present a study of searches for relatively low-mass hadronic resonances at the LHC in the case that the resonance is boosted by recoiling against a well-measured high-pT probe such as a muon, photon or jet. The hadronic decay of the resonance is then reconstructed either as a single large-radius jet or as a resolved pair of standard narrow-radius jets, balanced in transverse momentum to the probe. We show that the existing 2015 LHC data set of p p collisions with ∫L d t =4 fb-1 should already have powerful sensitivity to a generic Z' model which couples only to quarks, for Z' masses ranging from 20 - 500 GeV /c2 .
Very boosted Higgs in gluon fusion
Grojean, Christophe; Schlaffer, Matthias; Weiler, Andreas
2014-01-01
The Higgs production and decay rates offer a new way to probe new physics beyond the Standard Model. While dynamics aiming at alleviating the hierarchy problem generically predict deviations in the Higgs rates, the current experimental analyses cannot resolve the long- and short-distance contributions to the gluon fusion process and thus cannot access directly the coupling between the Higgs and the top quark. We investigate the production of a boosted Higgs in association with a high-transverse momentum jet as an alternative to the $t\\bar{t}h$ channel to pin down this crucial coupling. Presented first in the context of an effective field theory, our analysis is then applied to models of partial compositeness at the TeV scale and of natural supersymmetry.
Opportunities to boost bioenergy in Lithuania
Energy Technology Data Exchange (ETDEWEB)
Silveira, Semida [International Secretariat, Swedish Energy Agency, Box 310, SE-631 04 Eskilstuna (Sweden); Andersson, Lars [Skogsvaardsstyrelsen Vaermland OErebro/Regional Forestry Board, Skogsenheten/Forest Department, P.O. Box 387, S-651 09 Karlstad (Sweden); Lebedys, Arvydas [Forest Economics Service, Forestry Department, Food and Agriculture Organization of UN, Viale delle Terme di Caracalla, 00100 Rome (Italy)
2006-12-15
Significant efforts have been made in Lithuania to enhance the utilization of bioenergy since the early 1990s. While opportunities are large and signs of development visible, bioenergy still needs technical, institutional and policy-related support for further development side by side with other industries. This paper discusses the existing bioenergy potential in Lithuanian forests, biofuels market formation in the region and possible roads to boost development. The retrofitting of heat plants, forest management and policies are reviewed as a way to identify opportunities to promote bioenergy in the country. It is shown that the interplay between national and regional forces can promote technological and managerial improvements in the forest industry while also enhancing the biomass supply and sustainability of bioenergy systems. (author) (author)
Boosting low-mass hadronic resonances
Shimmin, Chase
2016-01-01
Searches for new hadronic resonances typically focus on high-mass spectra, due to overwhelming QCD backgrounds and detector trigger rates. We present a study of searches for relatively low-mass hadronic resonances at the LHC in the case that the resonance is boosted by recoiling against a well-measured high-$p_{\\textrm{T}}$ probe such as a muon, photon or jet. The hadronic decay of the resonance is then reconstructed either as a single large-radius jet or as a resolved pair of standard narrow-radius jets, balanced in transverse momentum to the probe. We show that the existing 2015 LHC dataset of $pp$ collisions with $\\int\\mathcal{L}dt = 4\\ \\mathrm{fb}^{-1}$ should already have powerful sensitivity to a generic $Z'$ model which couples only to quarks, for $Z'$ masses ranging from 20-500 GeV/c$^2$.
Giving top quark effective operators a boost
Englert, Christoph; Moore, Liam; Russell, Michael
2016-01-01
We investigate the prospects to systematically improve generic effective field theory-based searches for new physics in the top sector during LHC run 2 as well as the high luminosity phase. In particular, we assess the benefits of high momentum transfer final states on top EFT-fit as a function of systematic uncertainties in comparison with sensitivity expected from fully-resolved analyses focusing on $t\\bar t$ production. We find that constraints are typically driven by fully-resolved selections, while boosted top quarks can serve to break degeneracies in the global fit. This demystifies and clarifies the importance of high momentum transfer final states for global fits to new interactions in the top sector from direct measurements.
Very boosted Higgs in gluon fusion
Energy Technology Data Exchange (ETDEWEB)
Grojean, C. [ICREA at IFAE, Universitat Autónoma de Barcelona,E-08193 Bellaterra (Spain); Salvioni, E. [Department of Physics, University of California,Davis, CA 95616 (United States); Theory Division, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Dipartimento di Fisica e Astronomia, Università di Padova and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Schlaffer, M. [DESY,Notkestrasse 85, D-22607 Hamburg (Germany); Weiler, A. [Theory Division, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); DESY,Notkestrasse 85, D-22607 Hamburg (Germany)
2014-05-06
The Higgs production and decay rates offer a new way to probe new physics beyond the Standard Model. While dynamics aiming at alleviating the hierarchy problem generically predict deviations in the Higgs rates, the current experimental analyses cannot resolve the long- and short-distance contributions to the gluon fusion process and thus cannot access directly the coupling between the Higgs and the top quark. We investigate the production of a boosted Higgs in association with a high-transverse momentum jet as an alternative to the tt-macronh channel to pin down this crucial coupling. Presented first in the context of an effective field theory, our analysis is then applied to models of partial compositeness at the TeV scale and of natural supersymmetry.
Very boosted Higgs in gluon fusion
Energy Technology Data Exchange (ETDEWEB)
Grojean, C. [Univ. Autonoma de Barcelona, Bellaterra (Spain). ICREA at IFAE; Salvioni, E. [California Univ., Davis, CA (United States). Dept. of Physics; European Organization for Nuclear Research (CERN), Geneva (Switzerland); Padova Univ. (Italy). Dipt. di Fisica e Astronomica; INFN, Sezione di Padova (Italy); Schlaffer, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Weiler, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-12-15
The Higgs production and decay rates offer a new way to probe new physics beyond the Standard Model. While dynamics aiming at alleviating the hierarchy problem generically predict deviations in the Higgs rates, the current experimental analyses cannot resolve the long- and short-distance contributions to the gluon fusion process and thus cannot access directly the coupling between the Higgs and the top quark. We investigate the production of a boosted Higgs in association with a high-transverse momentum jet as an alternative to the t anti th channel to pin down this crucial coupling. Presented rst in the context of an effective field theory, our analysis is then applied to models of partial compositeness at the TeV scale and of natural supersymmetry.
Dattagupta, Aparajita; The ATLAS collaboration
2016-01-01
A detailed study of the techniques for identifying boosted hadronically decaying W or Z bosons is presented. The best performing algorithm for reconstructing, grooming and tagging bosonic jets as seen in studies using 8 TeV data and simulation is validated for W bosons with a wide range of transverse momenta using 13 TeV data and MC simulations. The same is studied for Z bosons in 13 TeV MC simulation. Improvement in tagger performance using detector tracking information is also studied. In addition, given that a hadronic jet has been identified as resulting from the hadronic decay of a W or Z, a technique is developed to discriminate between W and Z bosons using 8 TeV data. The alternative of using variable-R jets for capturing the hadronic decay products compared to standard techniques is also discussed.
Boosted jets in searches for new physics
Energy Technology Data Exchange (ETDEWEB)
Spannowsky, Michael [Institute for Particle Physics Phenomenology, Department of Physics, Durham University (United Kingdom)
2012-07-01
Jets are collimated sprays of hadrons. They are the most complex and least understood, but also the most frequently observed objects at the LHC. Almost all theoretical extensions of the standard model predict heavy TeV scale resonances which, to explain electroweak symmetry breaking, have to couple to electroweak scale resonances, e.g. top quarks or electroweak gauge bosons. Therefore, boosted electroweak-scale resonances with large branching ratios into jets is a highly probable and enthusiastic scenario in many processes probing new physics. The resonances' collimated hadronic decay products can easily blend with the cornucopia of jets from hard relative light QCD states. Here, jet substructure methods can help to disentangle the sought-after signal from the backgrounds. In this talk we classify, motivate and discuss scenarios where jet substructure methods can be beneficial for new physics searches at the LHC.
Testing Lorentz and CPT invariance with neutrinos
Diaz, Jorge S
2016-01-01
Neutrino experiments can be considered sensitive tools to test Lorentz and CPT invariance. Taking advantage of the great variety of neutrino experiments, including neutrino oscillations, weak decays, and astrophysical neutrinos, the generic experimental signatures of the breakdown of these fundamental symmetries in the neutrino sector are presented.
Conformal classes realizing the Yamabe invariant
Macbeth, Heather
2014-01-01
We give a characterization of conformal classes realizing a compact manifold's Yamabe invariant. This characterization is the analogue of an observation of Nadirashvili for metrics realizing the maximal first eigenvalue, and of Fraser and Schoen for metrics realizing the maximal first Steklov eigenvalue.
Superconformal invariance and superstring in background fields
International Nuclear Information System (INIS)
We consider the propagation of the superstring on a general classical background containing the effects of the metric, the antisymmetric tensor and the dilaton fields. Using the operator product expansion method for two dimensional superconformal field theories we derive the equations for these fields as a consequence of the superconformal invariance of the theory. (author)
Universality Classes of Scale Invariant Inflation
Ozkan, Mehmet; Roest, Diederik
2015-01-01
We investigate the inflationary implications of extensions of Poincare symmetry. The simplest constructions with local scale invariance lead to universal predictions: the spectral index is $n_s = 1-2/N$, in excellent agreement with Planck data, while the tensor-to-scalar ratio is determined by a fre
Invariance Properties for General Diagnostic Classification Models
Bradshaw, Laine P.; Madison, Matthew J.
2016-01-01
In item response theory (IRT), the invariance property states that item parameter estimates are independent of the examinee sample, and examinee ability estimates are independent of the test items. While this property has long been established and understood by the measurement community for IRT models, the same cannot be said for diagnostic…
Physics Fun with Discrete Scale Invariance
Georgi, Howard
2016-01-01
I construct a quantum field theory model with discrete scale invariance at tree level. The model has some unusual mathematical properties (such as the appearance of $q$-hypergeometric series) and may possibly have some interesting physical properties as well. In this note, I explore some possible physics that could be regarded as a violation of standard effective field theory ideas.
Conformally Invariant Off-shell Strings
Myers, R C
1993-01-01
Recent advances in non-critical string theory allow a unique continuation of critical Polyakov string amplitudes to off-shell momenta, while preserving conformal invariance. These continuations possess unusual, apparently stringy, characteristics, as we illustrate with our results for three-point functions. (Talk by R.C.M. at Strings '93)
Translation invariance and doubly special relativity
Mignemi, S.
2010-01-01
We propose a new interpretation of doubly special relativity based on the distinction between the momenta and the translation generators in its phase space realization. We also argue that the implementation of the theory does not necessarily require a deformation of the Lorentz symmetry, but only of the translation invariance.
Joint Local Quasinilpotence and Common Invariant Subspaces
Indian Academy of Sciences (India)
A Fernández Valles
2006-08-01
In this article we obtain some positive results about the existence of a common nontrivial invariant subspace for -tuples of not necessarily commuting operators on Banach spaces with a Schauder basis. The concept of joint quasinilpotence plays a basic role. Our results complement recent work by Kosiek [6] and Ptak [8].
Scale invariance, conformality, and generalized free fields
Dymarsky, Anatoly; Farnsworth, Kara; Komargodski, Zohar; Luty, Markus A.; Prilepina, Valentina
2016-02-01
This paper addresses the question of whether there are 4D Lorentz invariant unitary quantum field theories with scale invariance but not conformal invariance. An important loophole in the arguments of Luty-Polchinski-Rattazzi and Dymarsky-Komargodski-Schwimmer-Theisen is that trace of the energy-momentum tensor T could be a generalized free field. In this paper we rule out this possibility. The key ingredient is the observation that a unitary theory with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if T is a generalized free field unless the theory also contains a dimension-2 scalar operator. In the special case where such an operator is present it can be used to redefine ("improve") the energy-momentum tensor, and we show that there is at least one energy-momentum tensor that is not a generalized free field. In addition, we emphasize that, in general, large momentum limits of correlation functions cannot be understood from the leading terms of the coordinate space OPE. This invalidates a recent argument by Farnsworth-Luty-Prilepina (FLP). Despite the invalidity of the general argument of FLP, some of the techniques turn out to be useful in the present context.
Field transformations, collective coordinates and BRST invariance
International Nuclear Information System (INIS)
A very large class of general field transformations can be viewed as a field theory generalization of the method of collective coordinates. The introduction of new variables induces a gauge invariance in the transformed theory, and the freedom left in gauge fixing this new invariance can be used to find equivalent formulations of the same theory. First the Batalin-Fradkin-Vilkovisky formalism is applied to the Hamiltonian formulation of physical systems that can be described in terms of collective coordinates. We then show how this type of collective coordinate scheme can be generalized to field transformations, and discuss the War Identities of the associated BRST invariance. For Yang-Mills theory a connection to topological field theory and the background field method is explained in detail. In general the resulting BRST invariance we find hidden in any quantum field theory can be viewed as a consequence of our freedom in choosing a basis of coordinates φ(χ) in the action S[φ]. (orig.)
Scale invariant density perturbations from cyclic cosmology
Frampton, Paul Howard
2016-04-01
It is shown how quantum fluctuations of the radiation during the contraction era of a comes back empty (CBE) cyclic cosmology can provide density fluctuations which re-enter the horizon during the subsequent expansion era and at lowest order are scale invariant, in a Harrison-Zel’dovich-Peebles sense. It is necessary to be consistent with observations of large scale structure.
BRST invariance in Coulomb gauge QCD
Andrasi, A
2015-01-01
In the Coulomb gauge, the Hamiltonian of QCD contains terms of order h^2, identified by Christ and Lee, which are non-local but instantaneous. The question is addressed how these terms fit in with BRST invariance. Our discussion is confined to the simplest, O(g^4), example.
BRST invariance in Coulomb gauge QCD
Andraši, A.; Taylor, J. C.
2015-12-01
In the Coulomb gauge, the Hamiltonian of QCD contains terms of order ħ2, identified by Christ and Lee, which are non-local but instantaneous. The question is addressed how do these terms fit in with BRST invariance. Our discussion is confined to the simplest, O(g4) , example.
Automatic invariant detection in dynamic web applications
Groeneveld, F.; Mesbah, A.; Van Deursen, A.
2010-01-01
The complexity of modern web applications increases as client-side JavaScript and dynamic DOM programming are used to offer a more interactive web experience. In this paper, we focus on improving the dependability of such applications by automatically inferring invariants from the client-side and us
Holography for chiral scale-invariant models
R.N. Caldeira Costa; M. Taylor
2010-01-01
Deformation of any d-dimensional conformal field theory by a constant null source for a vector operator of dimension (d + z -1) is exactly marginal with respect to anisotropic scale invariance, of dynamical exponent z. The holographic duals to such deformations are AdS plane waves, with z=2 being th
Broken Scale Invariance and Anomalous Dimensions
Wilson, K. G.
1970-05-01
Mack and Kastrup have proposed that broken scale invariance is a symmetry of strong interactions. There is evidence from the Thirring model and perturbation theory that the dimensions of fields defined by scale transformations will be changed by the interaction from their canonical values. We review these ideas and their consequences for strong interactions.
Scale Invariance, Conformality, and Generalized Free Fields
Dymarsky, Anatoly; Komargodski, Zohar; Luty, Markus A; Prilepina, Valentina
2014-01-01
This paper addresses the question of whether there are 4D Lorentz invariant unitary quantum field theories with scale invariance but not conformal invariance. An important loophole in the arguments of Luty-Polchinski-Rattazzi and Dymarsky-Komargodski-Schwimmer-Theisen is that trace of the energy-momentum tensor $T$ could be a generalized free field. In this paper we rule out this possibility. The key ingredient is the observation that a unitary theory with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if $T$ is a generalized free field unless the theory also contains a dimension-2 scalar operator. In the special case where such an operator is present it can be used to redefine ("improve") the energy-momentum tensor, and we show that there is at least one energy-momentum tensor that is not a generalized free field. In addition, we emphasize that, in general, large momentum limits of correlation functio...
η-Invariant and Flat Vector Bundles
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
We present an alternate definition of the mod Z component of the AtiyahPatodi-Singer η invariant associated to (not necessary unitary) fiat vector bundles, which identifies explicitly its real and imaginary parts. This is done by combining a deformation of flat connections introduced in a previous paper with the analytic continuation procedure appearing in the original article of Atiyah, Parodi and Singer.
Invariant algebraic surfaces for a virus dynamics
Valls, Claudia
2015-08-01
In this paper, we provide a complete classification of the invariant algebraic surfaces and of the rational first integrals for a well-known virus system. In the proofs, we use the weight-homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations.
Invariant metric for nonlinear symplectic maps
Indian Academy of Sciences (India)
Govindan Rangarajan; Minita Sachidanand
2002-03-01
In this paper, we construct an invariant metric in the space of homogeneous polynomials of a given degree (≥ 3). The homogeneous polynomials specify a nonlinear symplectic map which in turn represents a Hamiltonian system. By minimizing the norm constructed out of this metric as a function of system parameters, we demonstrate that the performance of a nonlinear Hamiltonian system is enhanced.
Shape invariant potentials in SUSY quantum mechanics
Directory of Open Access Journals (Sweden)
A. Dadkhah
2007-12-01
Full Text Available We give a brief review on the known shape invariant potentials. We derive the all of them by introducing a general superpotential with two constant and four variable parameters. Finally we examine those potentials which lead to the equally-spaced energy spectrum for the Klein-Gordon equation.
Invariant properties between stroke features in handwriting
Teulings, H L; Schomaker, L R
1993-01-01
A handwriting pattern is considered as a sequence of ballistic strokes. Replications of a pattern may be generated from a single, higher-level memory representation, acting as a motor program. Therefore, those stroke features which show the most invariant pattern are probably related to the paramete
A functional LMO invariant for Lagrangian cobordisms
DEFF Research Database (Denmark)
Cheptea, Dorin; Habiro, Kazuo; Massuyeau, Gwénaël
2008-01-01
Lagrangian cobordisms are three-dimensional compact oriented cobordisms between once-punctured surfaces, subject to some homological conditions. We extend the Le–Murakami–Ohtsuki invariant of homology three-spheres to a functor from the category of Lagrangian cobordisms to a certain category...
Invariant Hilbert spaces of holomorphic functions
Faraut, J; Thomas, EGF
1999-01-01
A Hilbert space of holomorphic functions on a complex manifold Z, which is invariant under a group G of holomorphic automorphisms of Z, can be decomposed into irreducible subspaces by using Choquet theory. We give a geometric condition on Z and G which implies that this decomposition is multiplicity
Topologically Left Invariant Means on Semigroup Algebras
Indian Academy of Sciences (India)
Ali Ghaffari
2005-11-01
Let $M(S)$ be the Banach algebra of all bounded regular Borel measures on a locally compact Hausdorff semitopological semigroup with variation norm and convolution as multiplication. We obtain necessary and sufficient conditions for $M(S)^∗$ to have a topologically left invariant mean.
Conformal invariant D-dimensional field theory
International Nuclear Information System (INIS)
Conformation invariant quantum field theory is especially interesting by the fact that the high symmetry imposes very strict limitations on its structure and one can try to find exact solutions for very wide classes of field models. In this paper, the authors consider field theory in D-dimensional Euclidean space and describe the method to find it's exact solution
Lorentz-invariant ensembles of vector backgrounds
International Nuclear Information System (INIS)
We consider gauge field theories in the presence of ensembles of vector backgrounds. While Lorentz invariance is explicitly broken in the presence of any single background, here, the Lorentz invariance of the theory is restored by averaging over a Lorentz-invariant ensemble of backgrounds, i.e., a set of background vectors that is mapped onto itself under Lorentz transformations. This framework is used to study the effects of a non-trivial but Lorentz-invariant vacuum structure or mass dimension two vector condensates by identifying the background with a shift of the gauge field. Up to now, the ensembles used in the literature comprise configurations corresponding to non-zero field tensors together with such with vanishing field strength. We find that even when constraining the ensembles to pure gauge configurations, the usual high-energy degrees of freedom are removed from the spectrum of asymptotic states in the presence of said backgrounds in Euclidean and in Minkowski space. We establish this result not only for the propagators to all orders in the background and otherwise at tree level but for the full propagator
Average sampling theorems for shift invariant subspaces
Institute of Scientific and Technical Information of China (English)
孙文昌; 周性伟
2000-01-01
The sampling theorem is one of the most powerful results in signal analysis. In this paper, we study the average sampling on shift invariant subspaces, e.g. wavelet subspaces. We show that if a subspace satisfies certain conditions, then every function in the subspace is uniquely determined and can be reconstructed by its local averages near certain sampling points. Examples are given.
OCTONIONS: INVARIANT REPRESENTATION OF THE LEECH LATTICE
Dixon, Geoffrey
1995-01-01
The Leech lattice, $\\Lambda_{24}$, is represented on the space of octonionic 3-vectors. It is built from two octonionic representations of $E_{8}$, and is reached via $\\Lambda_{16}$. It is invariant under the octonion index cycling and doubling maps.
Adaptivity and group invariance in mathematical morphology
Roerdink, Jos B.T.M.
2009-01-01
The standard morphological operators are (i) defined on Euclidean space, (ii) based on structuring elements, and (iii) invariant with respect to translation. There are several ways to generalise this. One way is to make the operators adaptive by letting the size or shape of structuring elements depe
On the maximum regulation range in boost and buck-boost converters
Ninomiya, T.; Harada, K.; Nakahara, M.
Two types of instability conditions in boost and buck-boost converters with a feedback loop are analyzed by means of the steady-state characteristic and dynamic small-signal modeling. Type I instability involves a drastic voltage drop, and in Type II instability, a limit-cycle oscillation arises and the output voltage oscillates at low frequencies. The maximum regulation range is derived analytically for the load variation and verified experimentally. For high feedback gain, it is determined by the Type II instability condition, whereas for low feedback gain, it is determined by the Type I instability condition. Type II instability can be suppressed by decreasing the reactor inductance or by increasing the capacitance of a smoothing capacitor. However, Type I instability is found to be independent of these values.
Glucose starvation boosts Entamoeba histolytica virulence.
Directory of Open Access Journals (Sweden)
Ayala Tovy
2011-08-01
Full Text Available The unicellular parasite, Entamoeba histolytica, is exposed to numerous adverse conditions, such as nutrient deprivation, during its life cycle stages in the human host. In the present study, we examined whether the parasite virulence could be influenced by glucose starvation (GS. The migratory behaviour of the parasite and its capability to kill mammalian cells and to lyse erythrocytes is strongly enhanced following GS. In order to gain insights into the mechanism underlying the GS boosting effects on virulence, we analyzed differences in protein expression levels in control and glucose-starved trophozoites, by quantitative proteomic analysis. We observed that upstream regulatory element 3-binding protein (URE3-BP, a transcription factor that modulates E.histolytica virulence, and the lysine-rich protein 1 (KRiP1 which is induced during liver abscess development, are upregulated by GS. We also analyzed E. histolytica membrane fractions and noticed that the Gal/GalNAc lectin light subunit LgL1 is up-regulated by GS. Surprisingly, amoebapore A (Ap-A and cysteine proteinase A5 (CP-A5, two important E. histolytica virulence factors, were strongly down-regulated by GS. While the boosting effect of GS on E. histolytica virulence was conserved in strains silenced for Ap-A and CP-A5, it was lost in LgL1 and in KRiP1 down-regulated strains. These data emphasize the unexpected role of GS in the modulation of E.histolytica virulence and the involvement of KRiP1 and Lgl1 in this phenomenon.
The attentional boost effect and context memory.
Mulligan, Neil W; Smith, S Adam; Spataro, Pietro
2016-04-01
Stimuli co-occurring with targets in a detection task are better remembered than stimuli co-occurring with distractors-the attentional boost effect (ABE). The ABE is of interest because it is an exception to the usual finding that divided attention during encoding impairs memory. The effect has been demonstrated in tests of item memory but it is unclear if context memory is likewise affected. Some accounts suggest enhanced perceptual encoding or associative binding, predicting an ABE on context memory, whereas other evidence suggests a more abstract, amodal basis of the effect. In Experiment 1, context memory was assessed in terms of an intramodal perceptual detail, the font and color of the study word. Experiment 2 examined context memory cross-modally, assessing memory for the modality (visual or auditory) of the study word. Experiments 3 and 4 assessed context memory with list discrimination, in which 2 study lists are presented and participants must later remember which list (if either) a test word came from. In all experiments, item (recognition) memory was also assessed and consistently displayed a robust ABE. In contrast, the attentional-boost manipulation did not enhance context memory, whether defined in terms of visual details, study modality, or list membership. There was some evidence that the mode of responding on the detection task (motoric response as opposed to covert counting of targets) may impact context memory but there was no evidence of an effect of target detection, per se. In sum, the ABE did not occur in context memory with verbal materials. (PsycINFO Database Record PMID:26348201
Global invariant methods for object recognition
Stiller, Peter F.
2001-11-01
The general problem of single-view recognition is central to man image understanding and computer vision tasks; so central, that it has been characterized as the holy grail of computer vision. In previous work, we have shown how to approach the general problem of recognizing three dimensional geometric configurations (such as arrangements of lines, points, and conics) from a single two dimensional view, in a manner that is view independent. Our methods make use of advanced mathematical techniques from algebraic geometry, notably the theory of correspondences, and a novel equivariant geometric invariant theory. The machinery gives us a way to understand the relationship that exists between the 3D geometry and its residual in a 2D image. This relationship is shown to be a correspondence in the technical sense of algebraic geometry. Exploiting this, one can compute a set of fundamental equations in 3D and 2D invariants which generate the ideal of the correspondence, and which completely describe the mutual 3D/2D constraints. We have chosen to call these equations object/image equations. They can be exploited in a number of ways. For example, from a given 2D configuration, we can determine a set of non-linear constraints on the geometric invariants of a 3D configurations capable of imaging to the given 2D configuration (features on an object), we can derive a set of equations that constrain the images of that object; helping us to determine if that particular object appears in various images. One previous difficulty has been that the usual numerical geometric invariants get expressed as rational functions of the geometric parameters. As such they are not always defined. This leads to degeneracies in algorithms based on these invariants. We show how to replace these invariants by certain toric subvarieties of Grassmannians where the object/image equations become resultant like expressions for the existence of a non- trivial intersection of these subvarieties with
Invariant visual object recognition: biologically plausible approaches.
Robinson, Leigh; Rolls, Edmund T
2015-10-01
Key properties of inferior temporal cortex neurons are described, and then, the biological plausibility of two leading approaches to invariant visual object recognition in the ventral visual system is assessed to investigate whether they account for these properties. Experiment 1 shows that VisNet performs object classification with random exemplars comparably to HMAX, except that the final layer C neurons of HMAX have a very non-sparse representation (unlike that in the brain) that provides little information in the single-neuron responses about the object class. Experiment 2 shows that VisNet forms invariant representations when trained with different views of each object, whereas HMAX performs poorly when assessed with a biologically plausible pattern association network, as HMAX has no mechanism to learn view invariance. Experiment 3 shows that VisNet neurons do not respond to scrambled images of faces, and thus encode shape information. HMAX neurons responded with similarly high rates to the unscrambled and scrambled faces, indicating that low-level features including texture may be relevant to HMAX performance. Experiment 4 shows that VisNet can learn to recognize objects even when the view provided by the object changes catastrophically as it transforms, whereas HMAX has no learning mechanism in its S-C hierarchy that provides for view-invariant learning. This highlights some requirements for the neurobiological mechanisms of high-level vision, and how some different approaches perform, in order to help understand the fundamental underlying principles of invariant visual object recognition in the ventral visual stream.
Li, Chonghong
2012-01-01
We study cosmological perturbation spectra using the dynamical equations of gauge invariant perturbations with a generalized blue/red-shift term. Combined with the power-law index of cosmological background, {\
Markov invariants, plethysms, and phylogenetics (the long version)
Sumner, J G; Jermiin, L S; Jarvis, P D
2008-01-01
We explore model based techniques of phylogenetic tree inference exercising Markov invariants. Markov invariants are group invariant polynomials and are distinct from what is known in the literature as phylogenetic invariants, although we establish a commonality in some special cases. We show that the simplest Markov invariant forms the foundation of the Log-Det distance measure. We take as our primary tool group representation theory, and show that it provides a general framework for analysing Markov processes on trees. From this algebraic perspective, the inherent symmetries of these processes become apparent, and focusing on plethysms, we are able to define Markov invariants and give existence proofs. We give an explicit technique for constructing the invariants, valid for any number of character states and taxa. For phylogenetic trees with three and four leaves, we demonstrate that the corresponding Markov invariants can be fruitfully exploited in applied phylogenetic studies.
Cardinal invariants associated with Fubini product of ideals
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We prove some results displaying the relationship between Fubini product of ideals and its factor ideals, and study a partial order using the cardinal invariant of the continuum. The relationships among transitive cardinal invariants of abelian group are also investigated.
Equivalence Partitioning as a Basis for Dynamic Conditional Invariant Detection
Isaratham, Worakarn
2015-01-01
Program invariants are statements asserting properties of programs at certain points. They can assist developers and testers in understanding the program, and can be used for automated formal verification of the program. However, despite their usefulness they are often omitted from code. Dynamic invariant detection is a technique that discovers program invariants by observing execution of the program. One type of invariants that presents challenge to this technique is condit...
A Note On Galilean Invariants In Semi-Relativistic Electromagnetism
Song, Yintao
2013-01-01
The incompatibility between the Lorentz invariance of classical electromagnetism and the Galilean invariance of continuum mechanics is one of the major barriers to prevent two theories from merging. In this note, a systematic approach of obtaining Galilean invariant ?eld variables and equations of electromagnetism within the semi-relativistic limit is reviewed and extended. In particular, the Galilean invariant forms of Poynting's theorem and the momentum identity, two most important electrom...
Conformal invariance and Hojman conserved quantities of canonical Hamilton systems
Institute of Scientific and Technical Information of China (English)
Liu Chang; Liu Shi-Xing; Mei Feng-Xiang; Guo Yong-Xin
2009-01-01
This paper discusses the conformal invariance by infinitesimal transformations of canonical Hamilton systems. The necessary and sufficient conditions of conformal invariance being Lie symmetrical simultaneously by the action of infinitesimal transformations are given. The determining equations of the conformal invariance are gained. Then the Hojman conserved quantities of conformal invariance by special infinitesimal transformations are obtained. Finally an illustrative example is given to verify the results.
Invariant feedback control for the kinematic car on the sphere
Collon, Carsten
2012-01-01
The design of an invariant tracking control law for the kinematic car driving on a sphere is discussed. Using a Lie group framework a left-invariant description on SO(3) is derived. Basic geometric considerations allow a direct comparison of the model with the usual planar case. Exploiting the Lie group structure an invariant tracking error is defined and a feedback is designed. Finally, one possible design of an invariant asymptotic observer is sketched.
A scale invariant covariance structure on jet space
DEFF Research Database (Denmark)
Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo
2005-01-01
This paper considers scale invariance of statistical image models. We study statistical scale invariance of the covariance structure of jet space under scale space blurring and derive the necessary structure and conditions of the jet covariance matrix in order for it to be scale invariant. As part...... results where we estimate the scale invariant jet covariance of natural images and show that it resembles that of Brownian images....
Photovoltaic Simplified Boost Z Source Inverter for Ac Module Applications
Directory of Open Access Journals (Sweden)
J. Sam Alaric
2014-08-01
Full Text Available This study mainly proposed PV z source boost inverter used to boundary grid or ac module applications. Separate types of converter used for solar system due to its current lagging, here capacitor multiplier based boost converter introduced for maintain the current lagging and voltage gain. Here, the switched inductor z source inverter implemented for grid interface. Proposed z source inverter is controlled by pulse width modulation. A simplified capacitor multiplier controlled by continuous conduction mode, A detailed topology analysis and a generalized discussion are given. The multiplier boost converter has the merits of maintain voltage level and reducing cost and current lagging. Simulation results are implemented and analysis MATLAB software.
Remote Sensing Data Binary Classification Using Boosting with Simple Classifiers
Directory of Open Access Journals (Sweden)
Nowakowski Artur
2015-10-01
Full Text Available Boosting is a classification method which has been proven useful in non-satellite image processing while it is still new to satellite remote sensing. It is a meta-algorithm, which builds a strong classifier from many weak ones in iterative way. We adapt the AdaBoost.M1 boosting algorithm in a new land cover classification scenario based on utilization of very simple threshold classifiers employing spectral and contextual information. Thresholds for the classifiers are automatically calculated adaptively to data statistics.
Directory of Open Access Journals (Sweden)
Alexandra J Spencer
Full Text Available The orthodox role of the invariant chain (CD74; Ii is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA, higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required.
Perturbation to Mei symmetry and adiabatic invariants for Hamilton systems
Institute of Scientific and Technical Information of China (English)
Ding Ning; Fang Jian-Hui
2008-01-01
Based on the concept of adiabatic invariant,this paper studies the perturbation to Mei symmetry and adiabatic invariants for Hamilton systems.The exact invaxiants of Mei symmetry for the system without perturbation are given.The perturbation to Mei symmetry is discussed and the adiabatic invariants induced from the perturbation to Mei symmetry of the system are obtained.
ON THE INVARIANT SUBMANIFOLDS OF RIEMANNIAN PRODUCT MANIFOLD
Institute of Scientific and Technical Information of China (English)
M.Atceken; S.Keles
2004-01-01
In this paper, the vertical and horizontal distributions of an invariant submanifold of a Riemannian product manifold are discussed. An invariant real space form in a Riemannian product manifold is researched. Finally, necessary and sufficient conditions are given on an invariant submanifold of a Riemannian product manifold to be a locally symmetric and real space form.
Conformal projective invariants in the problem of image recognition.
Directory of Open Access Journals (Sweden)
Надежда Григорьевна Коновенко
2014-11-01
Full Text Available In this paper we reduce local classification of differential 1-forms on the plane with respect to group SL_2(C of Mobius transformations. We find the field of rational conformal differential invariants and show that the field is generated by two differential invariant derivations and by differential invariants of the first and second orders.
Lie-form invariance of the Lagrange system
Institute of Scientific and Technical Information of China (English)
Wu Hui-Bin
2005-01-01
In this paper, the Lie-form invariance of the Lagrange system is studied. The definition and the criterion of the Lie-form invariance of the Lagrange system are given. The Hojman conserved quantity and a new type of conserved quantity deduced from the Lie-form invariance are obtained. Finally, two examples are presented to illustrate the application of the results.
FORM INVARIANCE AND LIE SYMMETRY OF THE GENERALIZED HAMILTONIAN SYSTEM
Institute of Scientific and Technical Information of China (English)
WuHuibin; MeiFengxiang
2004-01-01
The form invariance and the Lie symmetry of the generalized Hamiltonian system are studied. Firstly, definitions and criteria of the form invariance and the Lie symmetry of the system are given. Next, the relation between the form invariance and the Lie symmetry is studied.Finally, two examples are given to illustrate the application of the results.
Basis Invariants in Non--Abelian Gauge Theories
Müller, Uwe
1997-01-01
A basis of Lorentz and gauge-invariant monomials in non--Abelian gauge theories with matter is described, applicable for the inverse mass expansion of effective actions. An algorithm to convert an arbitrarily given invariant expression into a linear combination of the basis elements is presented. The linear independence of the basis invariants is proven.
Hiding Lorentz Invariance Violation with MOND
Sanders, R H
2011-01-01
Ho\\v{r}ava gravity is a attempt to construct a renormalizable theory of gravity by breaking the Lorentz Invariance of the gravitational action at high energies. The underlying principle is that Lorentz Invariance is an approximate symmetry and its violation by gravitational phenomena is somehow hidden to present limits of observational precision. Here I point out that a simple modification of the low energy limit of Ho\\v{r}ava gravity in its non-projectable form can effectively camouflage the presence of a preferred frame in regions where the Newtonian gravitational field gradient is higher than $cH_0$; this modification results in the phenomenology of MOND at lower accelerations.
Mutation, Witten Index, and Quiver Invariant
Kim, Heeyeon; Yi, Piljin
2015-01-01
We explore Seiberg-like dualities, or mutations, for ${\\cal N}=4$ quiver quantum mechanics in the context of wall-crossing. In contrast to higher dimensions, the 1d Seiberg-duality must be performed with much care. With fixed Fayet-Iliopoulos constants, at most two nodes can be mutated, one left and the other right, mapping a chamber of a quiver into a chamber of a mutated quiver. We delineate this complex pattern for triangle quivers and show how the Witten indices are preserved under such finely chosen mutations. On the other hand, the quiver invariants, or wall-crossing-safe part of supersymmetric spectra, mutate more straightforwardly, whereby a quiver is mapped to a quiver. The mutation rule that preserves the quiver invariant is different from the usual one, however, which we explore and confirm numerically.
Gauge-invariant approach to quark dynamics
Sazdjian, H.
2016-02-01
The main aspects of a gauge-invariant approach to the description of quark dynamics in the nonperturbative regime of quantum chromodynamics (QCD) are first reviewed. The role of the parallel transport operation in constructing gauge-invariant Green's functions is then presented, and the relevance of Wilson loops for the representation of the interaction is emphasized. Recent developments, based on the use of polygonal lines for the parallel transport operation, are presented. An integro-differential equation, obtained for the quark Green's function defined with a phase factor along a single, straight line segment, is solved exactly and analytically in the case of two-dimensional QCD in the large- N c limit. The solution displays the dynamical mass generation phenomenon for quarks, with an infinite number of branch-cut singularities that are stronger than simple poles.
Symmetric form-invariant dual Pearcey beams.
Ren, Zhijun; Fan, Changjiang; Shi, Yile; Chen, Bo
2016-08-01
We introduce another type of Pearcey beam, namely, dual Pearcey (DP) beams, based on the Pearcey function of catastrophe theory. DP beams are experimentally generated by applying Fresnel diffraction of bright elliptic rings. Form-invariant Bessel distribution beams can be regarded as a special case of DP beams. Subsequently, the basic propagation characteristics of DP beams are identified. DP beams are the result of the interference of two half DP beams instead of two classical Pearcey beams. Moreover, we also verified that half DP beams (including special-case parabolic-like beams) generated by half elliptical rings (circular rings) are a new member of the family of form-invariant beams. PMID:27505650
Extended Weyl Invariance in a Bimetric Model
Hassan, S F; von Strauss, Mikael
2015-01-01
We revisit a particular ghost-free bimetric model which is related to both partial masslessness as well conformal gravity. Its equations of motion can be recast in the form of a perturbative series in derivatives which exhibits a remarkable amount of structure. In a perturbative (but fully nonlinear) analysis, we demonstrate that the equations are invariant under scalar gauge transformations up to six orders in derivatives, the lowest-order term being a local Weyl scaling of the metrics. More specifically, we develop a procedure for constructing terms in the gauge transformations order by order in the perturbative framework. This allows us to derive sufficient conditions for the existence of a gauge symmetry at the nonlinear level. It is explicitly demonstrated that these conditions are satisfied at the first relevant order and, consequently, the equations are gauge invariant up to six orders in derivatives. We furthermore show that the model propagates six instead of seven degrees of freedom not only around ...
Field redefinition invariance in quantum field theory
Apfeldorf, K M; Apfeldorf, Karyn M; Ordonez, Carlos
1994-01-01
We investigate the consequences of field redefinition invariance in quantum field theory by carefully performing nonlinear transformations in the path integral. We first present a ``paradox'' whereby a 1+1 freemassless scalar theory on a Minkowskian cylinder is reduced to an effectively quantum mechanical theory. We perform field redefinitions both before and after reduction to suggest that one should not ignore operator ordering issues in quantum field theory. We next employ a discretized version of the path integral for a free massless scalar quantum field in d dimensions to show that beyond the usual jacobian term, an infinite series of divergent ``extra'' terms arises in the action whenever a nonlinear field redefinition is made. The explicit forms for the first couple of these terms are derived. We evaluate Feynman diagrams to illustrate the importance of retaining the extra terms, and conjecture that these extra terms are the exact counterterms necessary to render physical quantities invariant under fie...
Scale invariant features extraction for stereo vision
Institute of Scientific and Technical Information of China (English)
Liu Li; Peng Fuyuan; Tian Yan; Wan Yaping
2009-01-01
Stable local feature detection is a fundamental component of many stereo vision problems such as 3-D reconstruction, object localization, and object tracking. A robust method for extracting scale-invariant feature points is presented. First, the Harris corners in three-level pyramid are extracted. Then, the points detected at the highest level of the pyramid are correctly propagated to the lower level by pyramid based scale invariant (PBSI) method. The corners detected repeatedly in different levels are chosen as final feature points. Finally, the characteristic scale is obtained based on maximum entropy method. The experimental results show that the algorithm has low computation cost, strong antinoise capability, and excellent performance in the presence of significant scale changes.
Hiding Lorentz invariance violation with MOND
International Nuclear Information System (INIS)
Horava-Lifshitz gravity is an attempt to construct a renormalizable theory of gravity by breaking the Lorentz invariance of the gravitational action at high energies. The underlying principle is that Lorentz invariance is an approximate symmetry and its violation by gravitational phenomena is somehow hidden to present limits of observational precision. Here I point out that a simple modification of the low-energy limit of Horava-Lifshitz gravity in its nonprojectable form can effectively camouflage the presence of a preferred frame in regions where the Newtonian gravitational field gradient is higher than cH0; this modification results in the phenomenology of modified Newtonian dynamics (MOND) at lower accelerations. As a relativistic theory of MOND, this modified Horava-Lifshitz theory presents several advantages over its predecessors.
Topological Invariance under Line Graph Transformations
Directory of Open Access Journals (Sweden)
Allen D. Parks
2012-06-01
Full Text Available It is shown that the line graph transformation G ↦ L(G of a graph G preserves an isomorphic copy of G as the nerve of a finite simplicial complex K which is naturally associated with the Krausz decomposition of L(G. As a consequence, the homology of K is isomorphic to that of G. This homology invariance algebraically confirms several well known graph theoretic properties of line graphs and formally establishes the Euler characteristic of G as a line graph transformation invariant.
The relativistic virial theorem and scale invariance
Gaite, Jose
2013-01-01
The virial theorem is related to the dilatation properties of bound states. This is realized, in particular, by the Landau-Lifshitz formulation of the relativistic virial theorem, in terms of the trace of the energy-momentum tensor. We construct a Hamiltonian formulation of dilatations in which the relativistic virial theorem naturally arises as the condition of stability against dilatations. A bound state becomes scale invariant in the ultrarelativistic limit, in which its energy vanishes. However, for very relativistic bound states, scale invariance is broken by quantum effects and the virial theorem must include the energy-momentum tensor trace anomaly. This quantum field theory virial theorem is directly related to the Callan-Symanzik equations. The virial theorem is applied to QED and then to QCD, focusing on the bag model of hadrons. In massless QCD, according to the virial theorem, 3/4 of a hadron mass corresponds to quarks and gluons and 1/4 to the trace anomaly.
Adiabatic Invariance of Oscillons/I-balls
Kawasaki, Masahiro; Takeda, Naoyuki
2015-01-01
Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or $I$-balls. We prove the adiabatic invariance of the oscillons/$I$-balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/$I$-balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/$I$-balls are only quasi-stable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the $I$-balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/$I$-balls is due to the adiabatic invariance.
Unimodular Gravity with Pseudo-scale Invariance
Jain, Pankaj; Singh, Naveen K
2011-01-01
We consider a model of gravity and matter fields which is invariant only under unimodular general coordinate transformations (GCT). The determinant of the metric is treated as a separate field which transforms as a scalar under unimodular GCT. Furthermore we also demand that the theory obeys pseudo-scale invariance. We study the implications of the resulting theory. We solve the resulting field equations for a sperically symmetric system in vacuum. We find that the resulting solution contains an additional term in comparison to the standard Schwarzchild solution. We also study the cosmological implications of the model. We find that both in case of radiation and matter dominated universe it predicts an accelerated expansion. Furthermore the model does not admit a cosmological constant, thereby solving its fine tuning problem.
BMS invariance and the membrane paradigm
Penna, Robert F
2015-01-01
We reinterpret the BMS invariance of gravitational scattering using the membrane paradigm. BMS symmetries imply an infinite number of conserved quantities. Energy conservation at every angle is equivalent to the fluid energy equation on the membrane (a conservation law at each point in the fluid). Momentum conservation at every angle is equivalent to the Damour-Navier-Stokes equation on the membrane. Soft gravitons are encoded in the membrane's mass-energy density, $\\Sigma(z,\\bar{z})$. Fluid dynamics is governed by infinite dimensional reparametrization invariance, which corresponds to the group of volume preserving diffeomorphisms. This coincides with the generalized BMS group, so there is a connection between the fluid and gravity pictures at the level of symmetries. The existence of membrane fluid conservation laws at event horizons implies BMS symmetries also act on event horizons. This may be relevant for the information problem because it implies infalling information can be stored in $\\Sigma(z,\\bar{z})...
Role of Lifshitz Invariants in Liquid Crystals
Directory of Open Access Journals (Sweden)
Amelia Sparavigna
2009-06-01
Full Text Available The interaction between an external action and the order parameter, via a dependence described by a so-called Lifshitz invariant, is very important to determine the final configuration of liquid crystal cells. The external action can be an electric field applied to the bulk or the confinement due to free surfaces or cell walls. The Lifshitz invariant includes the order parameter in the form of an elastic strain. This coupling between elastic strains and fields, inserted in a Landau-Ginzburg formalism, is well known and gives rise to striction effects causing undulations in the director configuration. We want to discuss here the role of Lifshitz coupling terms, following an approach similar to that introduced by Dzyaloshinskii for magnetic materials. Case studies on nematics in planar and cylindrical cells are also proposed.
Scale-invariant nonlinear optics in gases
Heyl, C M; Miranda, M; Louisy, M; Kovacs, K; Tosa, V; Balogh, E; Varjú, K; L'Huillier, A; Couairon, A; Arnold, C L
2015-01-01
Nonlinear optical methods are becoming ubiquitous in many areas of modern photonics. They are, however, often limited to a certain range of input parameters, such as pulse energy and average power, since restrictions arise from, for example, parasitic nonlinear effects, damage problems and geometrical considerations. Here, we show that many nonlinear optics phenomena in gaseous media are scale-invariant if spatial coordinates, gas density and laser pulse energy are scaled appropriately. We develop a general scaling model for (3+1)-dimensional wave equations, demonstrating the invariant scaling of nonlinear pulse propagation in gases. Our model is numerically applied to high-order harmonic generation and filamentation as well as experimentally verified using the example of pulse post-compression via filamentation. Our results provide a simple recipe for up-or downscaling of nonlinear processes in gases with numerous applications in many areas of science.
Scale-invariant geometric random graphs
Xie, Zheng
2015-01-01
We introduce and analyze a class of growing geometric random graphs that are invariant under rescaling of space and time. Directed connections between nodes are drawn according to an influence zone that depends on node position in space and time, capturing the heterogeneity and increased specialization found in growing networks. Through calculations and numerical simulations we explore the consequences of scale-invariance for geometric graphs generated this way. Our analysis reveals a dichotomy between scale-free and Poisson distributions of in- and out-degree, the existence of a random number of hub nodes, high clustering, and unusual percolation behaviour. Moreover, we show how these properties provide a good fit to those of empirically observed web graphs.
Real object recognition using moment invariants
Indian Academy of Sciences (India)
Muharrem Mercimek; Kayhan Gulez; Tarik Veli Mumcu
2005-12-01
Moments and functions of moments have been extensively employed as invariant global features of images in pattern recognition. In this study, a flexible recognition system that can compute the good features for high classiﬁcation of 3-D real objects is investigated. For object recognition, regardless of orientation, size and position, feature vectors are computed with the help of nonlinear moment invariant functions. Representations of objects using two-dimensional images that are taken from different angles of view are the main features leading us to our objective. After efﬁcient feature extraction, the main focus of this study, the recognition performance of classiﬁers in conjunction with moment–based feature sets, is introduced.
Gauge-invariant approach to quark dynamics
Sazdjian, H
2016-01-01
The main aspects of a gauge-invariant approach to the description of quark dynamics in the nonperturbative regime of QCD are first reviewed. In particular, the role of the parallel transport operation in constructing gauge-invariant Green's functions is presented, and the relevance of Wilson loops for the representation of the interaction is emphasized. Recent developments, based on the use of polygonal lines for the parallel transport operation, are then presented. An integro-differential equation is obtained for the quark Green's function defined with a phase factor along a single, straight line segment. It is solved exactly and analytically in the case of two-dimensional QCD in the large $N_c$ limit. The solution displays the dynamical mass generation phenomenon for quarks, with an infinite number of branch-cut singularities that are stronger than simple poles.
Invariant holomorphic extension in several complex variables
Institute of Scientific and Technical Information of China (English)
ZHOU Xiangyu
2006-01-01
Two fundamental problems on the invariant holomorphic extensions have been posed, which are naturally arose from our solution of the extended future tube conjecture and closely and deeply related to the general theory of Stein manifolds due to Cartan-Serre. In this paper, the relationship is presented between the two problems, the motivation of considering the problems, and the methods to approach the problems. We have also posed some questions and conjectures related to this two problems.
Scale invariance, unimodular gravity and dark energy
Shaposhnikov, Mikhail; Zenhausern, Daniel
2008-01-01
We demonstrate that the combination of the ideas of unimodular gravity, scale invariance, and the existence of an exactly massless dilaton leads to the evolution of the universe supported by present observations: inflation in the past, followed by the radiation and matter dominated stages and accelerated expansion at present. All mass scales in this type of theories come from one and the same source. © 2008 Elsevier B.V. All rights reserved.
Some Invariant Subspaces in L2H
Ohno, Yoshiki
1996-01-01
Let H be a separable Hilbert space and let A be the algebra of continuous functions on the torus T 2 which are uniform limits of polynomials in e imxe iny where (m,n)∈{(m,0)∈Z 2|m ≥ 0}∪{(m,n)∈Z 2|n ≥ 1}. For this uniform algebra A, we characterize invariant subspaces of LH2.
Toward an invariant definition of repulsive gravity
Luongo, Orlando; Quevedo, Hernando
2010-01-01
A remarkable property of naked singularities in general relativity is their repulsive nature. The effects generated by repulsive gravity are usually investigated by analyzing the trajectories of test particles which move in the effective potential of a naked singularity. This method is, however, coordinate and observer dependent. We propose to use the properties of the Riemann tensor in order to establish in an invariant manner the regions where repulsive gravity plays a dominant role. In par...
Evaluating Invariances in Document Layout Functions
MacDonald, Alexander J; Brailsford, David F.; Lumley, John
2006-01-01
With the development of variable-data-driven digital presses - where each document printed is potentially unique - there is a need for pre-press optimization to identify material that is invariant from document to document. In this way rasterisation can be confined solely to those areas which change between successive documents thereby alleviating a potential performance bottleneck. Given a template document specified in terms of layout functions, where actual data is bound at the last pos...
Invariant object recognition based on extended fragments
Bart, Evgeniy; Hegdé, Jay
2012-01-01
Visual appearance of natural objects is profoundly affected by viewing conditions such as viewpoint and illumination. Human subjects can nevertheless compensate well for variations in these viewing conditions. The strategies that the visual system uses to accomplish this are largely unclear. Previous computational studies have suggested that in principle, certain types of object fragments (rather than whole objects) can be used for invariant recognition. However, whether the human visual syst...
Liaison, Schottky Problem and Invariant Theory
Alonso, Maria Emilia; Mallavibarrena, Raquel; Sols, Ignacio
2010-01-01
This volume is a homage to the memory of the Spanish mathematician Federico Gaeta (1923-2007). Apart from a historical presentation of his life and interaction with the classical Italian school of algebraic geometry, the volume presents surveys and original research papers on the mathematics he studied. Specifically, it is divided into three parts: linkage theory, Schottky problem and invariant theory. On this last topic a hitherto unpublished article by Federico Gaeta is also included.
Explicit Traveling Waves and Invariant Algebraic Curves
Gasull, Armengol; Giacomini, Hector
2013-01-01
In this paper we introduce a precise definition of algebraic traveling wave solution for general n-th order partial differential equations. All examples of explicit traveling waves known by the authors fall in this category. Our main result proves that algebraic traveling waves exist if and only if an associated n- dimensional first order ordinary differential system has some invariant algebraic curve. As a paradigmatic application we prove that, for the celebrated Fisher- Kolmogorov equation...
Entanglement entropy, conformal invariance and extrinsic geometry
Solodukhin, Sergey N.
2008-01-01
We use the conformal invariance and the holographic correspondence to fully specify the dependence of entanglement entropy on the extrinsic geometry of the 2d surface $\\Sigma$ that separates two subsystems of quantum strongly coupled ${\\mathcal{N}}=4$ SU(N) superconformal gauge theory. We extend this result and calculate entanglement entropy of a generic 4d conformal field theory. As a byproduct, we obtain a closed-form expression for the entanglement entropy in flat space-time when $\\Sigma$ ...
Gromov-Witten Invariants and Quantum Cohomology
Indian Academy of Sciences (India)
Amiya Mukherjee
2006-11-01
This article is an elaboration of a talk given at an international conference on Operator Theory, Quantum Probability, and Noncommutative Geometry held during December 20--23, 2004, at the Indian Statistical Institute, Kolkata. The lecture was meant for a general audience, and also prospective research students, the idea of the quantum cohomology based on the Gromov-Witten invariants. Of course there are many important aspects that are not discussed here.
The multiplicativity of fixed point invariants
Ponto, Kate; Shulman, Michael
2012-01-01
We prove two general factorization theorems for fixed-point invariants of fibrations: one for the Lefschetz number and one for the Reidemeister trace. These theorems imply the familiar multiplicativity results for the Lefschetz and Nielsen numbers of a fibration. Moreover, the proofs of these theorems are essentially formal, taking place in the abstract context of bicategorical traces. This makes generalizations to other contexts straightforward.
An invariant distribution in static granular media
T. Aste; Di Matteo, T.; Saadatfar, M.; Senden, T. J.; Schroter, M.; Swinney, Harry L.
2006-01-01
We have discovered an invariant distribution for local packing configurations in static granular media. This distribution holds in experiments for packing fractions covering most of the range from random loose packed to random close packed, for beads packed both in air and in water. Assuming only that there exist elementary cells in which the system volume is subdivided, we derive from statistical mechanics a distribution that is in accord with the observations. This universal distribution fu...
Deep video gesture recognition using illumination invariants
Gupta, Otkrist; Raviv, Dan; Raskar, Ramesh
2016-01-01
In this paper we present architectures based on deep neural nets for gesture recognition in videos, which are invariant to local scaling. We amalgamate autoencoder and predictor architectures using an adaptive weighting scheme coping with a reduced size labeled dataset, while enriching our models from enormous unlabeled sets. We further improve robustness to lighting conditions by introducing a new adaptive filer based on temporal local scale normalization. We provide superior results over kn...
Quantum group invariants and link polynomials
International Nuclear Information System (INIS)
A general method is developed for constructing quantum group invariants and determining their eigenvalues. Applied to the universal R-matrix this method leads to the construction of a closed formula for link polynomials. To illustrate the application of this formula, the quantum groups Uq(E8), Uq(so(2m+1)) and Uq(gl(m)) are considered as examples, and corresponding link polynomials are obtained. (orig.)
Test of CP invariance in decay
Energy Technology Data Exchange (ETDEWEB)
Chauvat, P.; Erhan, S.; Hayes, K.; Smith, A.M.; Meritet, L.; Reyrolle, M.; Vazeille, F.; Bonino, R.; Cousins, R.; Kroll, I.J.; Medinnis, M.; Schlein, P.E.; Sherwood, P.; Zweizig, J.G.; Alitti, J.; Bloch-Devaux, B.; Cheze, J.B.; Montag, A.; Pichard, B.; Zsembery, J.; R608 Collaboration.
1985-11-21
In an experiment at the CERN intersecting storage rings with s = 31 GeV, we have measured P, the product of asymmetry parameter and polarization, for anti 's and 's produced in anti pp interactions, respectively. The ratio, ( P)anti /( P)sub( ) = -1.04+-0.29, is consistent with the value -1, and constitutes the first test of CP invariance in decay. (orig.).
Conformally Invariant Spinorial Equations in Six Dimensions
Batista, Carlos
2016-01-01
This work deals with the conformal transformations in six-dimensional spinorial formalism. Several conformally invariant equations are obtained and their geometrical interpretation are worked out. Finally, the integrability conditions for some of these equations are established. Moreover, in the course of the article, some useful identities involving the curvature of the spinorial connection are attained and a digression about harmonic forms and more general massless fields is made.
CLASSIFICATION OF MPSK SIGNALS USING CUMULANT INVARIANTS
Institute of Scientific and Technical Information of China (English)
Yang Shaoquan; Chen Weidong
2002-01-01
A new feature based on higher order statistics is proposed for classification of MPSKsignals, which is invariant with respect to translation (shift), scale and rotation transforms of MPSK signal constellations, and can suppress additive color or white Gaussian noise. Application of the new feature to classification of MPSK signals, at medium signal-to-noise ratio with specified sample size, results in high probability of correct identification. Finally, computer simulations and comparisons with existing algorithms are given.
The relativistic virial theorem and scale invariance
Gaite, Jose
2013-01-01
The virial theorem is related to the dilatation properties of bound states. This is realized, in particular, by the Landau-Lifshitz formulation of the relativistic virial theorem, in terms of the trace of the energy-momentum tensor. We construct a Hamiltonian formulation of dilatations in which the relativistic virial theorem naturally arises as the condition of stability against dilatations. A bound state becomes scale invariant in the ultrarelativistic limit, in which its energy vanishes. H...
Hodge-type structures as link invariants
Borodzik, Maciej; Nemethi, Andras
2010-01-01
Based on some analogies with the Hodge theory of isolated hypersurface singularities, we define Hodge-type numerical invariants (called H-numbers) of any, not necessarily algebraic, link in $S^3$. They contain the same information as the (normalized) real Seifert matrix. We study their basic properties, we express the Tristram-Levine signatures and the higher order Alexander polynomial in terms of them. Motivated by singularity theory, we also introduce the spectrum of the link (determined fr...
Trojan Horse particle invariance in fusion reactions
Pizzone R.G.; Spitaleril C.; Bertulani C.; Mukhamedzhanov A.; Blokhintsev L.; La Cognata M.; Lamia L.; Spartá R.; Tumino A.
2015-01-01
Trojan Horse method plays an important part for the measurement of several charged particle induced reactions cross sections of astrophysical interest. In order to better understand its cornerstones and the related applications to different astrophysical scenarios several tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance for the binary reactions d(d,p)t, 6,7Li(p,α)3,4He was therefore tested using the appropriate quasi f...
Nonequilibrium invariant measure under heat flow.
Delfini, Luca; Lepri, Stefano; Livi, Roberto; Politi, Antonio
2008-09-19
We provide an explicit representation of the nonequilibrium invariant measure for a chain of harmonic oscillators with conservative noise in the presence of stationary heat flow. By first determining the covariance matrix, we are able to express the measure as the product of Gaussian distributions aligned along some collective modes that are spatially localized with power-law tails. Numerical studies show that such a representation applies also to a purely deterministic model, the quartic Fermi-Pasta-Ulam chain.
Permutation-invariant distance between atomic configurations
Energy Technology Data Exchange (ETDEWEB)
Ferré, Grégoire; Maillet, Jean-Bernard [CEA, DAM, DIF, F-91297 Arpajon (France); Stoltz, Gabriel [Université Paris-Est, CERMICS (ENPC), INRIA, F-77455 Marne-la-Vallée (France)
2015-09-14
We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.
Sheaves on Graphs and Their Homological Invariants
Friedman, Joel
2011-01-01
We introduce a notion of a sheaf of vector spaces on a graph, and develop the foundations of homology theories for such sheaves. One sheaf invariant, its "maximum excess," has a number of remarkable properties. It has a simple definition, with no reference to homology theory, that resembles graph expansion. Yet it is a "limit" of Betti numbers, and hence has a short/long exact sequence theory and resembles the $L^2$ Betti numbers of Atiyah. Also, the maximum excess is defined via a supermodular function, which gives the maximum excess much stronger properties than one has of a typical Betti number. The maximum excess gives a simple interpretation of an important graph invariant, which will be used to study the Hanna Neumann Conjecture in a future paper. Our sheaf theory can be viewed as a vast generalization of algebraic graph theory: each sheaf has invariants associated to it---such as Betti numbers and Laplacian matrices---that generalize those in classical graph theory.
Invariance algorithms for processing NDE signals
Mandayam, Shreekanth; Udpa, Lalita; Udpa, Satish S.; Lord, William
1996-11-01
Signals that are obtained in a variety of nondestructive evaluation (NDE) processes capture information not only about the characteristics of the flaw, but also reflect variations in the specimen's material properties. Such signal changes may be viewed as anomalies that could obscure defect related information. An example of this situation occurs during in-line inspection of gas transmission pipelines. The magnetic flux leakage (MFL) method is used to conduct noninvasive measurements of the integrity of the pipe-wall. The MFL signals contain information both about the permeability of the pipe-wall and the dimensions of the flaw. Similar operational effects can be found in other NDE processes. This paper presents algorithms to render NDE signals invariant to selected test parameters, while retaining defect related information. Wavelet transform based neural network techniques are employed to develop the invariance algorithms. The invariance transformation is shown to be a necessary pre-processing step for subsequent defect characterization and visualization schemes. Results demonstrating the successful application of the method are presented.
Nakayama, Yu
2016-01-01
We show that eleven dimensional supergravity in Euclidean signature admits an exact classical solution with isometry corresponding to a three dimensional scale invariant field theory without conformal invariance. We also construct the holographic renormalization group flow that connects the known UV conformal fixed point and the new scale invariant but not conformal fixed point. In view of holography, the existence of such classical solutions suggests that the topologically twisted M2-brane gauge theory possesses a scale invariant but not conformal phase.
Corinne Pralavorio
2015-01-01
The first HIE-ISOLDE cryomodule was commissioned at the end of October. The radioactive ion beams can now be accelerated to 4.3 MeV per nucleon. The ISOLDE beamline that supplies the Miniball array. The first HIE-ISOLDE cryomodule can be seen in the background, in its light-grey cryostat. ISOLDE is getting an energy boost. The first cryomodule of the new superconducting linear accelerator HIE-ISOLDE (High Intensity and Energy ISOLDE), located downstream of the REX-ISOLDE accelerator, increases the energy of the radioactive ion beams from 3 to 4.3 MeV per nucleon. It supplies the Miniball array, where an experiment using radioactive zinc ions (see box) began at the end of October. This is the first stage in the commissioning of HIE-ISOLDE. The facility will ultimately be equipped with four cryomodules that will accelerate the beams to 10 MeV per nucleon. Each cryomodule has five accelerating cavities and a solenoid, which focuses the beam. All of these components are superconducting. This first ...
Exploiting tRNAs to Boost Virulence.
Albers, Suki; Czech, Andreas
2016-01-01
Transfer RNAs (tRNAs) are powerful small RNA entities that are used to translate nucleotide language of genes into the amino acid language of proteins. Their near-uniform length and tertiary structure as well as their high nucleotide similarity and post-transcriptional modifications have made it difficult to characterize individual species quantitatively. However, due to the central role of the tRNA pool in protein biosynthesis as well as newly emerging roles played by tRNAs, their quantitative assessment yields important information, particularly relevant for virus research. Viruses which depend on the host protein expression machinery have evolved various strategies to optimize tRNA usage-either by adapting to the host codon usage or encoding their own tRNAs. Additionally, several viruses bear tRNA-like elements (TLE) in the 5'- and 3'-UTR of their mRNAs. There are different hypotheses concerning the manner in which such structures boost viral protein expression. Furthermore, retroviruses use special tRNAs for packaging and initiating reverse transcription of their genetic material. Since there is a strong specificity of different viruses towards certain tRNAs, different strategies for recruitment are employed. Interestingly, modifications on tRNAs strongly impact their functionality in viruses. Here, we review those intersection points between virus and tRNA research and describe methods for assessing the tRNA pool in terms of concentration, aminoacylation and modification. PMID:26797637
Exploiting tRNAs to Boost Virulence
Directory of Open Access Journals (Sweden)
Suki Albers
2016-01-01
Full Text Available Transfer RNAs (tRNAs are powerful small RNA entities that are used to translate nucleotide language of genes into the amino acid language of proteins. Their near-uniform length and tertiary structure as well as their high nucleotide similarity and post-transcriptional modifications have made it difficult to characterize individual species quantitatively. However, due to the central role of the tRNA pool in protein biosynthesis as well as newly emerging roles played by tRNAs, their quantitative assessment yields important information, particularly relevant for virus research. Viruses which depend on the host protein expression machinery have evolved various strategies to optimize tRNA usage—either by adapting to the host codon usage or encoding their own tRNAs. Additionally, several viruses bear tRNA-like elements (TLE in the 5′- and 3′-UTR of their mRNAs. There are different hypotheses concerning the manner in which such structures boost viral protein expression. Furthermore, retroviruses use special tRNAs for packaging and initiating reverse transcription of their genetic material. Since there is a strong specificity of different viruses towards certain tRNAs, different strategies for recruitment are employed. Interestingly, modifications on tRNAs strongly impact their functionality in viruses. Here, we review those intersection points between virus and tRNA research and describe methods for assessing the tRNA pool in terms of concentration, aminoacylation and modification.
Exploiting tRNAs to Boost Virulence
Albers, Suki; Czech, Andreas
2016-01-01
Transfer RNAs (tRNAs) are powerful small RNA entities that are used to translate nucleotide language of genes into the amino acid language of proteins. Their near-uniform length and tertiary structure as well as their high nucleotide similarity and post-transcriptional modifications have made it difficult to characterize individual species quantitatively. However, due to the central role of the tRNA pool in protein biosynthesis as well as newly emerging roles played by tRNAs, their quantitative assessment yields important information, particularly relevant for virus research. Viruses which depend on the host protein expression machinery have evolved various strategies to optimize tRNA usage—either by adapting to the host codon usage or encoding their own tRNAs. Additionally, several viruses bear tRNA-like elements (TLE) in the 5′- and 3′-UTR of their mRNAs. There are different hypotheses concerning the manner in which such structures boost viral protein expression. Furthermore, retroviruses use special tRNAs for packaging and initiating reverse transcription of their genetic material. Since there is a strong specificity of different viruses towards certain tRNAs, different strategies for recruitment are employed. Interestingly, modifications on tRNAs strongly impact their functionality in viruses. Here, we review those intersection points between virus and tRNA research and describe methods for assessing the tRNA pool in terms of concentration, aminoacylation and modification. PMID:26797637
Severe Obesity May Boost Infection Risk After Heart Surgery
... https://medlineplus.gov/news/fullstory_159143.html Severe Obesity May Boost Infection Risk After Heart Surgery Excess ... new study suggests. The researchers found that severe obesity was linked to much higher odds of developing ...
Testosterone Therapy May Boost Older Men's Sex Lives
... 159622.html Testosterone Therapy May Boost Older Men's Sex Lives Gel hormone treatment led to improved libido ... experienced a moderate but significant improvement in their sex drive, sexual activity and erectile function compared to ...
Insurance Mandates Boost U.S. Autism Diagnoses
... page: https://medlineplus.gov/news/fullstory_159812.html Insurance Mandates Boost U.S. Autism Diagnoses Early treatment provides ... the Penn researchers analyzed inpatient and outpatient health insurance claims from 2008 through 2012 for more than ...
Severe Obesity May Boost Infection Risk After Heart Surgery
... nih.gov/medlineplus/news/fullstory_159143.html Severe Obesity May Boost Infection Risk After Heart Surgery Excess ... new study suggests. The researchers found that severe obesity was linked to much higher odds of developing ...
Zika's Delivery Via Mosquito Bite May Boost Its Effect
... page: https://medlineplus.gov/news/fullstory_159484.html Zika's Delivery Via Mosquito Bite May Boost Its Effect ... The inflammation caused by a mosquito bite helps Zika and other viruses spread through the body more ...
Beijing to Boost Gas Consumption for Green Games
Institute of Scientific and Technical Information of China (English)
Zhang Jian
2002-01-01
@@ To implement the "Green Olympic"strategy proposed in "Plan for Beijing Olympic Games,"Beijing Gas Group Company will boost its annual gas supply to 4 billion cubic meters by 2005 and 6 billion cubic meters by 2010.
Superconducting Electric Boost Pump for Nuclear Thermal Propulsion Project
National Aeronautics and Space Administration — A submersible, superconducting electric boost pump sized to meet the needs of future Nuclear Thermal Propulsion systems in the 25,000 lbf thrust range is proposed....
Exposure / Ritual Prevention Therapy Boosts Antidepressant Treatment of OCD
... NIMH (99 items) Exposure / Ritual Prevention Therapy Boosts Antidepressant Treatment of OCD CBT Trumps Antipsychotic for Augmentation, ... Update A form of behavioral therapy can augment antidepressant treatment of obsessive compulsive disorder (OCD) better than ...
Boosting-like Deep Learning For Pedestrian Detection
Wang, Lei; Zhang, Baochang
2015-01-01
This paper proposes boosting-like deep learning (BDL) framework for pedestrian detection. Due to overtraining on the limited training samples, overfitting is a major problem of deep learning. We incorporate a boosting-like technique into deep learning to weigh the training samples, and thus prevent overtraining in the iterative process. We theoretically give the details of derivation of our algorithm, and report the experimental results on open data sets showing that BDL achieves a better sta...
Face Alignment using Boosted Appeareance Model (Discriminative Appearance Model)
Muddamsetty, Satya Mahesh
2009-01-01
This thesis explores decriminative face alignment using Boosted Appearance Model (BAM). In this method face alignment is done by maximizing the score of the trained two classifier which learns both correct and incorrect alignment and is able to distinguish correct and incorrect alignment so that the correct alignment gets maximum positve score. During the training stage we trained Point Distribution Model (PDM) which acts as shape model and a boosting based classifier based on Haar like Recta...
Positive Semidefinite Metric Learning Using Boosting-like Algorithms
Shen, Chunhua; Kim, Junae; Wang, Lei; Hengel, Anton van den
2011-01-01
The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a quadratic Mahalanobis distance metric. Learning a valid Mahalanobis distance metric requires enforcing the co...
Three Phase High Power Quality Two- Stage Boost Rectifier
P.NAMMALVAR; S. ANNAPOORANI
2012-01-01
Three-phase two-stage boost rectifier with sinusoidal input current are presented and a novel topology with two active power devices is proposed. These contain a capacitor for pumping action in DC circuit. This gives twostage boost operation to obtain higher DC output voltage. The rectifier can be operated in the switch mode forpumping action and for forcing the input current to follow its sinusoidal reference independent of the working conditions. The results of the proposed rectifier are co...
Boosting the partial least square algorithm for regression modelling
Institute of Scientific and Technical Information of China (English)
Ling YU; Tiejun WU
2006-01-01
Boosting algorithms are a class of general methods used to improve the general performance of regression analysis. The main idea is to maintain a distribution over the train set. In order to use the given distribution directly,a modified PLS algorithm is proposed and used as the base learner to deal with the nonlinear multivariate regression problems. Experiments on gasoline octane number prediction demonstrate that boosting the modified PLS algorithm has better general performance over the PLS algorithm.
Searches with Boosted Objects at ATLAS and CMS
Behr, K; The ATLAS collaboration
2014-01-01
This talk presents an overview of searches for new physics in boosted final states conducted by the ATLAS and CMS experiments during Run-I of the LHC. An emphasis is put on techniques for the reconstruction and identification of both hadronic and leptonic decays of objects with large transverse momenta: Various substructure and grooming techniques as well as modified lepton isolation criteria are reviewed and their use in the most common algorithms for boosted top and boson tagging is discussed.
Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Berlendis, S.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.
2016-05-01
In the pp → t t bar process the angular distributions of top and anti-top quarks are expected to present a subtle difference, which could be enhanced by processes not included in the Standard Model. This Letter presents a measurement of the charge asymmetry in events where the top-quark pair is produced with a large invariant mass. The analysis is performed on 20.3 fb-1 of pp collision data at √{ s} = 8TeV collected by the ATLAS experiment at the LHC, using reconstruction techniques specifically designed for the decay topology of highly boosted top quarks. The charge asymmetry in a fiducial region with large invariant mass of the top-quark pair (mttbar > 0.75 TeV) and an absolute rapidity difference of the top and anti-top quark candidates within - 2 differential measurement in three t t bar mass bins is also presented.
Neutrino oscillations in a turbulent plasma
Energy Technology Data Exchange (ETDEWEB)
Mendonça, J. T. [Instituto de Física, Universidade de São Paulo, São Paulo, SP, CEP 05508-090 Brazil and IPFN, Instituto Superior Técnico, 1049-001 Lisboa (Portugal); Haas, F. [Departamento de Física, Universidade Federal do Paraná, Curitiba PR, CEP 81531-990 (Brazil)
2013-07-15
A new model for the joint neutrino flavor and plasma oscillations is introduced, in terms of the dynamics of the neutrino flavor polarization vector in a plasma background. Fundamental solutions are found for both time-invariant and time-dependent media, considering slow and fast variations of the electron plasma density. The model is shown to be described by a generalized Hamiltonian formalism. In the case of a broad spectrum of electron plasma waves, a statistical approach indicates the shift of both equilibrium value and frequency oscillation of flavor coherence, due to the existence of a turbulent plasma background.
Institute of Scientific and Technical Information of China (English)
陈映; 程臻; 文树梁
2011-01-01
It is meaningful to tracking ballistic missile in boost phase precisely by forward ground-based radar for the whole antimissile defensive system. The paper presents a new method to track ballistic missile in boost and post-boost phase based on prior database. At first, the paper extracts characteristic dynamic parameters of ballistic missile, and analyzes the sensitivities of these parameters and gives a time invariant dynamic model with parameters; then the paper simulates the performance for tracking ballistic missile in boost and post-boost phase with IMM and IUF algorithm. Compared with other dynamic models and algorithms, this new method has much higher tracking precision and by calculating the model transition prohabilities, it can classify the ballistic missiles and indicates the burnout time accurately. The simulation results validate the new method.%前置地基雷达跟踪助推段弹道导弹对整个反导防御系统有着重要意义.本文提出了一种以情报数据库为先验知识的弹道导弹助推段及后助推段跟踪方法.首先从动力学角度提取导弹助推段飞行的特征参量,并对参量的敏感度进行了分析,给出了一种参变的助推段弹道导弹时不变运动模型.然后结合交互式多模型(IMM)和迭代无敏滤波(IUF)算法进行助推段及后助推段弹道导弹跟踪仿真.与采用其他的运动模型和滤波算法相比,该方法能实现对弹道导弹助推段及后助推段更高精度的跟踪,同时结合情报数据库通过计算模型转移概率可完成导弹类型初判别,并准确指示导弹关机时刻.文章通过仿真验证了该算法的有效性.
The measurement invariance of schizotypy in Europe.
Fonseca-Pedrero, E; Ortuño-Sierra, J; Sierro, G; Daniel, C; Cella, M; Preti, A; Mohr, C; Mason, O J
2015-10-01
The short version of the Oxford-Liverpool Inventory of Feelings and Experiences (sO-LIFE) is a widely used measure assessing schizotypy. There is limited information, however, on how sO-LIFE scores compare across different countries. The main goal of the present study is to test the measurement invariance of the sO-LIFE scores in a large sample of non-clinical adolescents and young adults from four European countries (UK, Switzerland, Italy, and Spain). The scores were obtained from validated versions of the sO-LIFE in their respective languages. The sample comprised 4190 participants (M=20.87 years; SD=3.71 years). The study of the internal structure, using confirmatory factor analysis, revealed that both three (i.e., positive schizotypy, cognitive disorganisation, and introvertive anhedonia) and four-factor (i.e., positive schizotypy, cognitive disorganisation, introvertive anhedonia, and impulsive nonconformity) models fitted the data moderately well. Multi-group confirmatory factor analysis showed that the three-factor model had partial strong measurement invariance across countries. Eight items were non-invariant across samples. Significant statistical differences in the mean scores of the s-OLIFE were found by country. Reliability scores, estimated with Ordinal alpha ranged from 0.75 to 0.87. Using the Item Response Theory framework, the sO-LIFE provides more accuracy information at the medium and high end of the latent trait. The current results show further evidence in support of the psychometric proprieties of the sO-LIFE, provide new information about the cross-cultural equivalence of schizotypy and support the use of this measure to screen for psychotic-like features and liability to psychosis in general population samples from different European countries. PMID:26443051
Boosting jet power in black hole spacetimes
Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M; Garrett, Travis
2011-01-01
The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet tha...
Donaldson invariants for nonsimply connected manifolds
Marino, M; Marino, Marcos; Moore, Gregory
1999-01-01
We study Coulomb branch (``u-plane'') integrals for $\\CN=2$ supersymmetric $SU(2),SO(3)$ Yang-Mills theory on 4-manifolds $X$ of $b_1(X)>0, b_2^+(X)=1$. Using wall-crossing arguments we derive expressions for the Donaldson invariants for manifolds with $b_1(X)>0, b_2^+(X)>0$. Explicit expressions for $X=\\IC P^1 \\times F_g$, where $F_g$ is a Riemann surface of genus $g$ are obtained using Kronecker's double series identity. The result might be useful in future studies of quantum cohomology.
Invariant Regularization of Supersymmetric Chiral Gauge Theory
Suzuki, H
1999-01-01
We present a regularization scheme which respects the supersymmetry and the maximal background gauge covariance in supersymmetric chiral gauge theories. When the anomaly cancellation condition is satisfied, the effective action in the superfield background field method automatically restores the gauge invariance without counterterms. The scheme also provides a background gauge covariant definition of composite operators that is especially useful in analyzing anomalies. We present several applications: The minimal consistent gauge anomaly; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and an anomalous supersymmetric transformation law of the supercurrent (the ``central extension'' of N=1 supersymmetry algebra) and of the R-current.
Gauge invariant actions for string models
Energy Technology Data Exchange (ETDEWEB)
Banks, T.
1986-06-01
String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs.
Broken Lifshitz invariance, spin waves and hydrodynamics
Roychowdhury, Dibakar
2016-01-01
In this paper, based on the basic principles of thermodynamics, we explore the hydrodynamic regime of interacting Lifshitz field theories in the presence of broken rotational invariance. We compute the entropy current and discover new dissipative effects those are consistent with the principle of local entropy production in the fluid. In our analysis, we consider both the parity even as well as the parity odd sector upto first order in the derivative expansion. Finally, we argue that the present construction of the paper could be systematically identified as that of the hydrodynamic description associated with \\textit{spin waves} (away from the domain of quantum criticality) under certain limiting conditions.
Origin of gauge invariance in string theory
Horowitz, G. T.; Strominger, A.
1986-01-01
A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.
Higgs boson mass from gauge invariant operators
Jora, Renata
2016-01-01
We make the assumption that the vacuum correlators of the gauge invariant kinetic term of the Higgs doublet are the same before and after the spontaneous symmetry breaking of the theory. Based on this we determine the mass of the standard model Higgs boson at $m_h \\approx 125.07$ GeV by considering one loop and the most relevant two loop corrections. This result might suggest that there is a single Higgs boson doublet that contributes to the electroweak symmetry breaking.
Sheaves on Graphs and Their Homological Invariants
Friedman, Joel
2011-01-01
We introduce a notion of a sheaf of vector spaces on a graph, and develop the foundations of homology theories for such sheaves. One sheaf invariant, its "maximum excess," has a number of remarkable properties. It has a simple definition, with no reference to homology theory, that resembles graph expansion. Yet it is a "limit" of Betti numbers, and hence has a short/long exact sequence theory and resembles the $L^2$ Betti numbers of Atiyah. Also, the maximum excess is defined via a supermodul...
Translational invariant shell model for Λ hypernuclei
Directory of Open Access Journals (Sweden)
Jolos R.V.
2016-01-01
Full Text Available We extend shell model for Λ hypernuclei suggested by Gal and Millener by including 2ћω excitations in the translation invariant version to estimate yields of different hyperfragments from primary p-shell hypernuclei. We are inspired by the first successful experiment done at MAMI which opens way to study baryon decay of hypernuclei. We use quantum numbers of group SU(4, [f], and SU(3, (λμ, to classify basis wave functions and calculate coefficients of fractional parentage.
Gauge invariant actions for string models
International Nuclear Information System (INIS)
String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs
Neutrinos superluminality and Local Lorentz Invariance
Cardone, F; Petrucci, A
2011-01-01
The recent measurement of the neutrino velocity with the OPERA detector in the CNGS beam, on whose basis it was found that (v-c)/c = (2.48 \\pm 0.28 (stat.) \\pm 0.30 (sys.)) 10e-5, does not contain any significant violation of Local Lorentz Invariance (LLI), since the corresponding value of the parameter delta=(u/c)^2-1, that represents the upper limit of the breakdown of LLI, is at least three orders of magnitude higher than the known lower limit reported in literature and is compatible with the values estimated by other experiments carried out so far.
Gauge Invariance of Thermal Transport Coefficients
Ercole, Loris; Marcolongo, Aris; Umari, Paolo; Baroni, Stefano
2016-10-01
Thermal transport coefficients are independent of the specific microscopic expression for the energy density and current from which they can be derived through the Green-Kubo formula. We discuss this independence in terms of a kind of gauge invariance resulting from energy conservation and extensivity, and demonstrate it numerically for a Lennard-Jones fluid, where different forms of the microscopic energy density lead to different time correlation functions for the heat flux, all of them, however, resulting in the same value for the thermal conductivity.
The Axion Mass in Modular Invariant Supergravity
Butter, D; Butter, Daniel; Gaillard, Mary K.
2005-01-01
When supersymmetry is broken by condensates with a single condensing gauge group, there is a nonanomalous R-symmetry that prevents the universal axion from acquiring a mass. It has been argued that, in the context of supergravity, higher dimension operators will break this symmetry and may generate an axion mass too large to allow the identification of the universal axion with the QCD axion. We show that such contributions to the axion mass are highly suppressed in a class of models where the effective Lagrangian for gaugino and matter condensation respects modular invariance (T-duality).
Invariant quantities of a nondepolarizing Mueller matrix
Gil, Jose J
2016-01-01
Orthogonal Mueller matrices can be considered either as corresponding to retarders or to generalized transformations of the polarization basis for the representation of Stokes vectors, so that they constitute the only type of Mueller matrices that preserve the degree of polarization and the intensity of any partially-polarized input Stokes vector. The physical quantities which remain invariant when a nondepolarizing Mueller matrix is transformed through its product by different types of orthogonal Mueller matrices are identified and interpreted, providing a better knowledge of the information contained in a nondepolarizing Mueller matrix.
Invariant quantities of a nondepolarizing Mueller matrix.
Gil, José J; José, Ignacio San
2016-07-01
Orthogonal Mueller matrices can be considered as corresponding either to retarders or to generalized transformations of the polarization basis for the representation of Stokes vectors, so that they constitute the only type of Mueller matrices that preserve the degree of polarization and the intensity of any partially polarized input Stokes vector. The physical quantities that remain invariant when a nondepolarizing Mueller matrix is transformed through its product by different types of orthogonal Mueller matrices are identified and interpreted, providing a better knowledge of the information contained in a nondepolarizing Mueller matrix. PMID:27409687
Lower bounds for the strict invariance entropy
International Nuclear Information System (INIS)
In this paper, we present a new method for obtaining lower bounds of the strict invariance entropy by combining an approach from the theory of escape rates and geometric methods used in the dimension theory of dynamical systems. For uniformly expanding systems and for inhomogeneous bilinear systems we can describe the lower bounds in terms of uniform volume growth rates on subbundles of the tangent bundle. In particular, we obtain criteria for positive entropy. We also apply the estimates to bilinear systems on projective space
Modular invariance and covariant loop calculus
International Nuclear Information System (INIS)
The covariant loop calculus provides and efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit 2- and 3- loop results derived using analytic geometry (1 loop is known to be ok). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various non-trivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)
Lorentz boosted frame simulation technique in Particle-in-cell methods
Yu, Peicheng
In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT
Lorentz boosted frame simulation technique in Particle-in-cell methods
Yu, Peicheng
In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT
Geometric local invariants and pure three-qubit states
International Nuclear Information System (INIS)
We explore a geometric approach to generating local SU(2) and SL(2,C) invariants for a collection of qubits inspired by lattice gauge theory. Each local invariant or ''gauge'' invariant is associated with a distinct closed path (or plaquette) joining some or all of the qubits. In lattice gauge theory, the lattice points are the discrete space-time points, the transformations between the points of the lattice are defined by parallel transporters, and the gauge invariant observable associated with a particular closed path is given by the Wilson loop. In our approach the points of the lattice are qubits, the link transformations between the qubits are defined by the correlations between them, and the gauge invariant observable, the local invariants associated with a particular closed path, are also given by a Wilson looplike construction. The link transformations share many of the properties of parallel transporters, although they are not undone when one retraces one's steps through the lattice. This feature is used to generate many of the invariants. We consider a pure three-qubit state as a test case and find we can generate a complete set of algebraically independent local invariants in this way; however, the framework given here is applicable to generating local unitary invariants for mixed states composed of any number of d-level quantum systems. We give an operational interpretation of these invariants in terms of observables.
INVARIANT FORM AND INTEGRAL INVARIANTS ON K(A)HLER MANIFOLD
Institute of Scientific and Technical Information of China (English)
ZHANG Rong-ye
2006-01-01
The important notions and results of the integral invariants of Poincaré and lished first by E. Cartan in the classical mechanics are generalized to Hamilton mechanics on K(a)hler manifold, by the theory of modern geometry and advanced calculus, to get the corresponding wider and deeper results.
Natural Inflation with Hidden Scale Invariance
Barrie, Neil D; Liang, Shelley
2016-01-01
We propose a new class of natural inflation models based on a hidden scale invariance. In a very generic Wilsonian effective field theory with an arbitrary number of scalar fields, which exhibits scale invariance via the dilaton, the potential necessarily contains a flat direction in the classical limit. This flat direction is lifted by small quantum corrections and inflation is realised without need for an unnatural fine-tuning. In the conformal limit, the effective potential becomes linear in the inflaton field, yielding to specific predictions for the spectral index and the tensor-to-scalar ratio, being respectively: $n_s-1\\approx 0.025\\left(\\frac{N_{\\star}}{60}\\right)^{-1}$ and $r\\approx 0.0667\\left(\\frac{N_{\\star}}{60}\\right)^{-1}$, where $N_{\\star}\\approx 30-65$ is a number of efolds during observable inflation. This predictions are in reasonable agreement with cosmological measurements. Further improvement of the accuracy of these measurements may turn out to be critical in falsifying our scenario.
Hidden Supersymmetry May Imply Duality Invariance
Carrasco, John Joseph M
2013-01-01
We provide evidence that a particular hidden supersymmetry, when combined with half-maximal deformed global supersymmetry, implies that the theory is invariant under duality rotations of the vector and spinor fields. Based on a complete 8+8 supersymmetric model constructed recently, we argue that this hidden supersymmetry happens if and only if there is a Born-Infeld dependence on the Maxwell field strength and a Volkov-Akulov dependence on the Goldstino, up to local non-linear field redefinitions. We have tested our proposal for the N=2 superfield action with manifest N=2 supersymmetry and hidden N=2 supersymmetry at the level W^{10}, the highest level of deformation known for this model. We have established that it is N=2 self-dual, although the self-duality was not required in the original construction of this model. Highlighting the utility of considering duality-conserving sources of deformation, we can verify this invariance directly in an alternate construction of this very same action.
Noise-assisted estimation of attractor invariants
Restrepo, Juan F.; Schlotthauer, Gastón
2016-07-01
In this article, the noise-assisted correlation integral (NCI) is proposed. The purpose of the NCI is to estimate the invariants of a dynamical system, namely the correlation dimension (D ), the correlation entropy (K2), and the noise level (σ ). This correlation integral is induced by using random noise in a modified version of the correlation algorithm, i.e., the noise-assisted correlation algorithm. We demonstrate how the correlation integral by Grassberger et al. and the Gaussian kernel correlation integral (GCI) by Diks can be thought of as special cases of the NCI. A third particular case is the U -correlation integral proposed herein, from which we derived coarse-grained estimators of the correlation dimension (DmU), the correlation entropy (KmU), and the noise level (σmU). Using time series from the Henon map and the Mackey-Glass system, we analyze the behavior of these estimators under different noise conditions and data lengths. The results show that the estimators DmU and σmU behave in a similar manner to those based on the GCI. However, for the calculation of K2, the estimator KmU outperforms its GCI-based counterpart. On the basis of the behavior of these estimators, we have proposed an automatic algorithm to find D ,K2, and σ from a given time series. The results show that by using this approach, we are able to achieve statistically reliable estimations of those invariants.
Natural inflation with hidden scale invariance
Directory of Open Access Journals (Sweden)
Neil D. Barrie
2016-05-01
Full Text Available We propose a new class of natural inflation models based on a hidden scale invariance. In a very generic Wilsonian effective field theory with an arbitrary number of scalar fields, which exhibits scale invariance via the dilaton, the potential necessarily contains a flat direction in the classical limit. This flat direction is lifted by small quantum corrections and inflation is realised without need for an unnatural fine-tuning. In the conformal limit, the effective potential becomes linear in the inflaton field, yielding to specific predictions for the spectral index and the tensor-to-scalar ratio, being respectively: ns−1≈−0.025(N⋆60−1 and r≈0.0667(N⋆60−1, where N⋆≈30–65 is a number of efolds during observable inflation. This predictions are in reasonable agreement with cosmological measurements. Further improvement of the accuracy of these measurements may turn out to be critical in falsifying our scenario.
Test of Lorentz Invarience from Compton Scattering
Mohanmurthy, Prajwal; Narayan, Amrendra
2015-01-01
In the recent times, test of Lorentz Invariance has been used as a means to probe theories of physics beyond the standard model, especially those such as extensions to String Theory and Quantum Gravity. Tests of Lorentz invariance could go a long way in setting the stage for possible quantum gravity theories which are beyond the standard model. We describe a simple way of utilizing the polarimeters, which are a critical beam instrument at precision and intensity frontier nuclear physics labs such as Stanford Linear Accelerator Center (SLAC) and Jefferson Lab (JLab), to limit the dependence of speed of light with the energy of the photons. Furthermore, we also describe a way of limiting directional dependence of speed of light at previously unprecedented levels of precision by studying the sidereal variations. We obtain a limit of MSME parameters: $\\sqrt{\\kappa_X^2 + \\kappa_Y^2} < 2.4 \\times 10^{-17}$ and $\\sqrt{\\left( 2c_{TX} - (\\tilde{\\kappa}_{0^+}^{YZ} \\right)^2 + \\left( 2c_{TY} - (\\tilde{\\kappa}_{0^+}^{...
Quasi-Invariants of Complex Reflection Groups
Berest, Yuri
2009-01-01
We introduce quasi-invariant polynomials for an arbitrary finite complex reflection group W. Unlike in the Coxeter case, the space Q_k of quasi-invariants of a given multiplicity is not, in general, an algebra but a module over the coordinate ring of some (singular) affine variety X_k. We extend the main results of Etingof, Ginzburg and the first author (see [BEG]) to this setting: in particular, we show that the variety X_k and the module Q_k are Cohen-Macaulay, and the rings of differential operators on X_k and Q_k are simple rings, Morita equivalent to the Weyl algebra A_n(C), where n = dim X_k . Our approach relies on representation theory of complex Cherednik algebras and is parallel to that of [BEG]. As a by-product, we prove the existence of shift operators for an arbitrary complex reflection group, confirming a conjecture of Dunkl and Opdam. Another result is a proof of a conjecture of Opdam, concerning certain operations (KZ twists) on the set of irreducible representations of W.
The Manifestly Gauge Invariant Exact Renormalisation Group
Rosten, O J
2005-01-01
We construct a manifestly gauge invariant Exact Renormalisation Group (ERG) whose form is suitable for computation in SU(N) Yang-Mills theory, beyond one-loop. An effective cutoff is implemented by embedding the physical SU(N) theory in a spontaneously broken SU(N|N) Yang-Mills theory. To facilitate computations within this scheme, which proceed at every step without fixing the gauge, we develop a set of diagrammatic techniques. As an initial test of the formalism, the one-loop SU(N) Yang-Mills beta-function, beta_1, is computed, and the standard, universal answer is reproduced. It is recognised that the computational technique can be greatly simplified. Using these simplifications, a partial proof is given that, to all orders in perturbation theory, the explicit dependence of perturbative $\\beta$-function coefficients, beta_n, on certain non-universal elements of the manifestly gauge invariant ERG cancels out. This partial proof yields an extremely compact, diagrammatic form for the surviving contributions t...
LETTER: Test of Te profile invariance by sensitivity studies
Becker, G.
1992-06-01
The response of the electron temperature profile shape to variations of the electron heating and density profiles is investigated in different confinement regimes. It is shown that the changes in rTe = -Te/(dTe/dr) exceed the measurement error if the shape of the electron heat diffusivity χe(r) is kept fixed. The observed constancy of rTe(r) in the outer half of the plasma is incompatible with such a fixed χe(r) shape, i.e., a Te profile constraining mechanism must be present. Local transport laws of the form χe varies as rTe-α with α gtrsim 4 and χe propto (dTe/dr)α with α >= 2 yield the experimental stiffness of the Te(r) shape but conflict with empirical χe scalings. These results support the model of a self-organizing and adjusting χe(r) causing Te profile invariance
Scalar Controlled Boost PWM Rectifier for Micro Wind Energy Systems
Directory of Open Access Journals (Sweden)
J. Chelladurai
2015-05-01
Full Text Available Uses of Permanent Magnet Synchronous Generators (PMSG are increasing in variable speed micro-Wind Energy Conversion Systems (WECS. In stand-alone or grid-connected Micro-WECS, extraction of maximum power is vital. To extract maximum power output and to obtain a constant DC bus voltage from variable magnitude and variable frequency voltage output of PMSG and generally a two stage scheme namely i conventional diode bridge rectifier and ii DC-DC Boost/Buck/Buck-Boost converters are used. In this study, a single stage Scalar Controlled PWM (SCPWM Boost Rectifier is proposed in order to minimize the current harmonics and to improve the power factor on source side. The modeling and simulation of PMSG based wind generator and SCPWM Boost rectifier was developed in MATLAB. The harmonic content in the input current waveform of the proposed SCPWM rectifier is compared with the conventional three-phase bridge rectifier. The Simulation results show the effectiveness of the PWM Boost rectifier in terms of effective utilization of source, improved efficiency and harmonic mitigation for PMSG based Wind Generator. Simulation results demonstrate the effectiveness of the proposed system in reducing the current and voltage THD on source side.
Intake Manifold Boosting of Turbocharged Spark-Ignited Engines
Directory of Open Access Journals (Sweden)
Lino Guzzella
2013-03-01
Full Text Available Downsizing and turbocharging is a widely used approach to reduce the fuel consumption of spark ignited engines while retaining the maximum power output. However, a substantial loss in drivability must be expected due to the occurrence of the so-called turbo lag. The turbo lag results from the additional inertia that the turbocharger adds to the system. Supplying air by an additional valve, the boost valve, to the intake manifold can be used to overcome the turbo lag. This turbo lag compensationmethod is referred to as intakemanifold boosting. The aims of this study are to show the effectiveness of intake manifold boosting on a turbocharged spark-ignited engine and to show that intake manifold boosting can be used as an enabler of strong downsizing. Guidelines for the dimensioning of the boost valve are given and a control strategy is presented. The trade-off between additional fuel consumption and the consumption of pressurized air during the turbo lag compensation is discussed. For a load step at 2000 rpm the rise time can be reduced from 2.8 s to 124ms, requiring 11.8 g of pressurized air. The transient performance is verified experimentally by means of load steps at various engine speeds to various engine loads.
The impact of subsea boosting on deepwater field development
Energy Technology Data Exchange (ETDEWEB)
Ribeiro, O.J.S.; Camargo, R.M.T.; Paulo, C.A.S. [Petrobras, Rio de Janeiro (Brazil)
1996-12-31
This paper describes the impact that the use of a subsea boosting system will have on the development of a deepwater field. The analysis covers the technology demands and constraints encountered on screening studies executed for the fields of Marlim, Albacora and Barracuda, as well as an overview of the economic benefits encountered. The paper focuses on the technological demands and constraints identified as well as some considerations about possible alternatives. The demands and constraints identified in the study will provide the industry with some more input to guide the development of the subsea boosting technology, as well as a better understanding of how to apply this new tool on the development of deepwater prospects. The results of the screening study are showing that the subsea boosting systems are a valuable tool to reduce the costs of deepwater developments. The cost cutting possibilities through an integration between the conventional subsea hardware and the subsea boosting systems and the combination of boosting systems are promising alternatives. The encouraging economic results found, as well as the demands and constraints raised in the paper will be of use for those trying to apply these technologies in various areas of the world.
Conformal invariance in the long-range Ising model
Directory of Open Access Journals (Sweden)
Miguel F. Paulos
2016-01-01
Full Text Available We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.
Conformal Invariance in the Long-Range Ising Model
Paulos, Miguel F; van Rees, Balt C; Zan, Bernardo
2016-01-01
We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.
Topological invariants for interacting topological insulators with inversion symmetry
Wang, Zhong; Qi, Xiao-Liang; Zhang, Shou-Cheng
2012-01-01
For interacting Z_2 topological insulators with inversion symmetry, we propose a simple topological invariant expressed in terms of the parity eigenvalues of the interacting Green's function at time-reversal invariant momenta. We derive this result from our previous formula involving the integral over the frequency-momenta space. This formula greatly simplifies the explicit calculation of Z_2 topological invariants in inversion symmetric insulators with strong interactions.
Quantum Hyperbolic Invariants for Diffeomorphisms of Small Surfaces
Institute of Scientific and Technical Information of China (English)
Xiaobo LIU
2012-01-01
An earlier article [Bonahon,F.,Liu,X.B.:Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms.Geom. Topol.,11,889-937 (2007)] introduced new invariants for pseudo-Anosov diffeomorphisms of surface,based on the representation theory of the quantum Teichmüller space.We explicitly compute these quantum hyperbolic invariants in the case of the 1-puncture torus and the 4-puncture sphere.
Complex dynamical invariants for two-dimensional complex potentials
Indian Academy of Sciences (India)
J S Virdi; F Chand; C N Kumar; S C Mishra
2012-08-01
Complex dynamical invariants are searched out for two-dimensional complex potentials using rationalization method within the framework of an extended complex phase space characterized by $x = x_{1} + ip_{3}. y = x_{2} + ip_{4}, p_{x} = p_{1} + ix_{3}, p_{y} = p_{2} + ix_{4}$. It is found that the cubic oscillator and shifted harmonic oscillator admit quadratic complex invariants. THe obtained invariants may be useful for studying non-Hermitian Hamiltonian systems.
Form Invariance and Noether Symmetries of Rotational Relativistic Birkhoff Systems
Institute of Scientific and Technical Information of China (English)
LUOShao－Kai
2002-01-01
Under the infinitesimal transformations of groups,a form invariance of rotational relativistic Birkhoff systems is studied and the definition and criteria are given,In view of the invariance of rotational relativistic Pfaff-Birkhoff-D' Alembert principle under the infinitesimal transformations of groups,the theory of Noether symmetries of rotational relativistic Birkhoff systems are constructed.The relation between the form invariance and the Noether symmetries is studied ,and the conserved quantities of rotational relativistic Birkhoff systems are obtained.
Form Invariance and Noether Symmetries of Rotational Relativistic Birkhoff Systems
Institute of Scientific and Technical Information of China (English)
LUO Shao-Kai
2002-01-01
Under the infinitesimal transformations of groups, a form invariance of rotational relativistic Birkhoffsystems is studied and the definition and criteria are given. In view of the invariance of rotational relativistic PfaffBirkhoff D'Alcmbert principle under the infinitesimal transformations of groups, the theory of Noether symmetries ofrotational relativistic Birkhoff systems are constructed. The relation between the form invariance and the Noethersymmetries is studied, and the conserved quantities of rotational relativistic Birkhoff systems are obtained.
BIFURCATIONS OF INVARIANT CURVES OF A DIFFERENCE EQUATION
Institute of Scientific and Technical Information of China (English)
贺天兰
2001-01-01
Bifurcation of the invariant curves of a difference equation is studied. The system defined by the difference equation is integrable , so the study of the invariant curves of the difference system can become the study of topological classification of the planar phase portraits defined by a planar Hamiltonian system. By strict qualitative analysis, the classification of the invariant curves in parameter space can be obtained.
Graph Invariants of Finite Groups via a Theorem of Lagarias
Akman, Fusun
2006-01-01
We introduce a new graph invariant of finite groups that provides a complete characterization of the splitting types of unramified prime ideals in normal number field extensions entirely in terms of the Galois group. In particular, each connected component corresponds to a division (Abteilung) of the group. We compute the divisions of the alternating group, and compile a list of characteristics of groups that the invariant reveals. We conjecture that the invariant distinguishes finite groups....
Scale-invariant correlations and the distribution of prime numbers
International Nuclear Information System (INIS)
Negative correlations in the distribution of prime numbers are found to display a scale invariance. This occurs in conjunction with a nonstationary behavior. We compare the prime number series to a type of fractional Brownian motion which incorporates both the scale invariance and the nonstationary behavior. Interesting discrepancies remain. The scale invariance also appears to imply the Riemann hypothesis and we study the use of the former as a test of the latter.
Three-order form invariance and conserved quantity
Institute of Scientific and Technical Information of China (English)
Yang Xue-Hui; Ma Shan-Jun
2006-01-01
In this paper,the definition of three-order form invariance is given.Then the relation between the three-order form invariance and the three-order Lie symmetry is discussed and the sufficient and necessary condition of Lie symmetry, which comes from the three-order form invariance,is obtained.Finally a three-order Hojman conserved quantity isstudied and an example is given to illustrate the application of the obtained results.
Chern-Simons Invariants of Torus Knots and Links
Stevan, Sébastien
2010-01-01
We compute the vacuum expectation values of torus knot operators in Chern-Simons theory, and we obtain explicit formulae for all classical gauge groups and for arbitrary representations. We reproduce a known formula for the HOMFLY invariants of torus links and we obtain an analogous formula for Kauffman invariants. We also derive a formula for cable knots. We use our results to test a recently proposed conjecture that relates HOMFLY and Kauffman invariants.
Symplectic invariants, entropic measures and correlations of Gaussian states
Serafini, Alessio; Illuminati, Fabrizio; De Siena, Silvio
2003-01-01
We present a derivation of the Von Neumann entropy and mutual information of arbitrary two--mode Gaussian states, based on the explicit determination of the symplectic eigenvalues of a generic covariance matrix. The key role of the symplectic invariants in such a determination is pointed out. We show that the Von Neumann entropy depends on two symplectic invariants, while the purity (or the linear entropy) is determined by only one invariant, so that the two quantities provide two different h...
Vassiliev invariants a new framework for quantum gravity
Gambini, R; Pullin, J; Gambini, Rodolfo; Griego, Jorge; Pullin, Jorge
1998-01-01
We show that Vassiliev invariants of knots, appropriately generalized to the spin network context, are loop differentiable in spite of being diffeomorphism invariant. This opens the possibility of defining rigorously the constraints of quantum gravity as geometrical operators acting on the space of Vassiliev invariants of spin nets. We show how to explicitly realize the diffeomorphism constraint on this space and present proposals for the construction of Hamiltonian constraints.
Two Dimensional Hamiltonian with Generalized Shape Invariance Symmetry
Panahi-Talemi, H.; Jafarizadeh, M. A.
2002-01-01
The two dimensional Hamiltonian with generalized shape invariance symmetry over $S^2$, has been obtained via Fourier transformation over the three coordinates of the $SU(3)$ Casimir operator defined on $SU(3)/SU(2)$ symmetric space. It is shown that the generalized shape invariance is equivalent to $SU(3)$ symmetry and that there is one to one correspondence between the representations of the generalized shape invariance and $SU(3)$ Verma modules. Also the two dimensional Hamiltonian in $\\mat...
Search for New Light Higgs Bosons in Boosted Tau Final States with the CMS Experiment
AUTHOR|(CDS)2081769
In this dissertation, I present a search for non-standard decays of a Standard Model-likeHiggs boson to pairs of light bosons, as predicted in models with extended Higgs sectors.In two Higgs doublet models, including the next-to-minimal supersymmetric standardmodel, the Higgs boson can decay into a pair of light pseudoscalars a.In this search, the gluon fusion, W and Z associated Higgs, and vector boson fusionproduction channels for the Higgs are all considered, and the decay H →aa with a → τ τis reconstructed from the tau decay products. The ﬁnal state is characterized by oneisolated high pT muon plus at least one highly boosted pair of taus, of which one of thetaus is required to decay to a muon.Using 19.7 fb−1 of 8 TeV center of mass pp collision data recorded by the CompactMuon Solenoid experiment at the Large Hadron Collider, a counting experiment is performed in a region of high di-tau invariant mass. We have found no excess of events abovethe Standard Model backgrounds, and the observed data ...
Baer-invariants with Respect to Two Varieties of Groups
Institute of Scientific and Technical Information of China (English)
Mohammad Reza R. Moghaddam; Ali Reza Salemkar; Mostafa Taheri
2001-01-01
This paper is devoted to present some properties of the Baer-invariants of groups with respect to two varieties V and W of groups. We give some inequalities for such Baer-invariants of finite groups. A generalized version of the Stalling type theorem is presented. Also, if N is a normal subgroup of a group G in the variety W, then we give a necessary and sufficient condition for which the Baer-invariant of G can be embedded into the Baer-invariant of the factor group G/N.
Binary optical filters for scale invariant pattern recognition
Reid, Max B.; Downie, John D.; Hine, Butler P.
1992-01-01
Binary synthetic discriminant function (BSDF) optical filters which are invariant to scale changes in the target object of more than 50 percent are demonstrated in simulation and experiment. Efficient databases of scale invariant BSDF filters can be designed which discriminate between two very similar objects at any view scaled over a factor of 2 or more. The BSDF technique has considerable advantages over other methods for achieving scale invariant object recognition, as it also allows determination of the object's scale. In addition to scale, the technique can be used to design recognition systems invariant to other geometric distortions.