WorldWideScience

Sample records for boolean network models

  1. Boolean Networks in Inference and Dynamic Modeling of Biological Systems at the Molecular and Physiological Level

    Science.gov (United States)

    Thakar, Juilee; Albert, Réka

    The following sections are included: * Introduction * Boolean Network Concepts and History * Extensions of the Classical Boolean Framework * Boolean Inference Methods and Examples in Biology * Dynamic Boolean Models: Examples in Plant Biology, Developmental Biology and Immunology * Conclusions * References

  2. Approximating Attractors of Boolean Networks by Iterative CTL Model Checking.

    Science.gov (United States)

    Klarner, Hannes; Siebert, Heike

    2015-01-01

    This paper introduces the notion of approximating asynchronous attractors of Boolean networks by minimal trap spaces. We define three criteria for determining the quality of an approximation: "faithfulness" which requires that the oscillating variables of all attractors in a trap space correspond to their dimensions, "univocality" which requires that there is a unique attractor in each trap space, and "completeness" which requires that there are no attractors outside of a given set of trap spaces. Each is a reachability property for which we give equivalent model checking queries. Whereas faithfulness and univocality can be decided by model checking the corresponding subnetworks, the naive query for completeness must be evaluated on the full state space. Our main result is an alternative approach which is based on the iterative refinement of an initially poor approximation. The algorithm detects so-called autonomous sets in the interaction graph, variables that contain all their regulators, and considers their intersection and extension in order to perform model checking on the smallest possible state spaces. A benchmark, in which we apply the algorithm to 18 published Boolean networks, is given. In each case, the minimal trap spaces are faithful, univocal, and complete, which suggests that they are in general good approximations for the asymptotics of Boolean networks.

  3. Approximating attractors of Boolean networks by iterative CTL model checking

    Directory of Open Access Journals (Sweden)

    Hannes eKlarner

    2015-09-01

    Full Text Available This paper introduces the notion of approximating asynchronous attractors of Boolean networks by minimal trap spaces. We define three criteria for determining the quality of an approximation: faithfulness which requires that the oscillating variables of all attractors in a trapspace correspond to their dimensions, univocality which requires that there is a unique attractor in each trap space and completeness which requires that there are no attractors outside of a given set of trap spaces. Each is a reachability property for which we give equivalent model checking queries. Whereas faithfulness and univocality can be decided by model checking the corresponding subnetworks, the naive query for completeness must be evaluated on the full state space. Our main result is an alternative approach which is based on the iterative refinement of an initially poor approximation. The algorithm detects so-called autonomous sets in the interaction graph, variables that contain all their regulators, and considers their intersection and extension in order to perform model checking on the smallest possible state spaces. A benchmark, in which we apply the algorithm to 18 published Boolean networks, is given. In each case, the minimal trap spaces are faithful, univocal and complete which suggests that they are in general good approximations for the asymptotics of Boolean networks.

  4. Learning restricted Boolean network model by time-series data.

    Science.gov (United States)

    Ouyang, Hongjia; Fang, Jie; Shen, Liangzhong; Dougherty, Edward R; Liu, Wenbin

    2014-01-01

    Restricted Boolean networks are simplified Boolean networks that are required for either negative or positive regulations between genes. Higa et al. (BMC Proc 5:S5, 2011) proposed a three-rule algorithm to infer a restricted Boolean network from time-series data. However, the algorithm suffers from a major drawback, namely, it is very sensitive to noise. In this paper, we systematically analyze the regulatory relationships between genes based on the state switch of the target gene and propose an algorithm with which restricted Boolean networks may be inferred from time-series data. We compare the proposed algorithm with the three-rule algorithm and the best-fit algorithm based on both synthetic networks and a well-studied budding yeast cell cycle network. The performance of the algorithms is evaluated by three distance metrics: the normalized-edge Hamming distance [Formula: see text], the normalized Hamming distance of state transition [Formula: see text], and the steady-state distribution distance μ (ssd). Results show that the proposed algorithm outperforms the others according to both [Formula: see text] and [Formula: see text], whereas its performance according to μ (ssd) is intermediate between best-fit and the three-rule algorithms. Thus, our new algorithm is more appropriate for inferring interactions between genes from time-series data.

  5. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  6. Boolean network model of the Pseudomonas aeruginosa quorum sensing circuits.

    Science.gov (United States)

    Dallidis, Stylianos E; Karafyllidis, Ioannis G

    2014-09-01

    To coordinate their behavior and virulence and to synchronize attacks against their hosts, bacteria communicate by continuously producing signaling molecules (called autoinducers) and continuously monitoring the concentration of these molecules. This communication is controlled by biological circuits called quorum sensing (QS) circuits. Recently QS circuits and have been recognized as an alternative target for controlling bacterial virulence and infections without the use of antibiotics. Pseudomonas aeruginosa is a Gram-negative bacterium that infects insects, plants, animals and humans and can cause acute infections. This bacterium has three interconnected QS circuits that form a very complex and versatile QS system, the operation of which is still under investigation. Here we use Boolean networks to model the complete QS system of Pseudomonas aeruginosa and we simulate and analyze its operation in both synchronous and asynchronous modes. The state space of the QS system is constructed and it turned out to be very large, hierarchical, modular and scale-free. Furthermore, we developed a simulation tool that can simulate gene knock-outs and study their effect on the regulons controlled by the three QS circuits. The model and tools we developed will give to life scientists a deeper insight to this complex QS system.

  7. Adapted Boolean network models for extracellular matrix formation

    Directory of Open Access Journals (Sweden)

    Wollbold Johannes

    2009-07-01

    Full Text Available Abstract Background Due to the rapid data accumulation on pathogenesis and progression of chronic inflammation, there is an increasing demand for approaches to analyse the underlying regulatory networks. For example, rheumatoid arthritis (RA is a chronic inflammatory disease, characterised by joint destruction and perpetuated by activated synovial fibroblasts (SFB. These abnormally express and/or secrete pro-inflammatory cytokines, collagens causing joint fibrosis, or tissue-degrading enzymes resulting in destruction of the extra-cellular matrix (ECM. We applied three methods to analyse ECM regulation: data discretisation to filter out noise and to reduce complexity, Boolean network construction to implement logic relationships, and formal concept analysis (FCA for the formation of minimal, but complete rule sets from the data. Results First, we extracted literature information to develop an interaction network containing 18 genes representing ECM formation and destruction. Subsequently, we constructed an asynchronous Boolean network with biologically plausible time intervals for mRNA and protein production, secretion, and inactivation. Experimental gene expression data was obtained from SFB stimulated by TGFβ1 or by TNFα and discretised thereafter. The Boolean functions of the initial network were improved iteratively by the comparison of the simulation runs to the experimental data and by exploitation of expert knowledge. This resulted in adapted networks for both cytokine stimulation conditions. The simulations were further analysed by the attribute exploration algorithm of FCA, integrating the observed time series in a fine-tuned and automated manner. The resulting temporal rules yielded new contributions to controversially discussed aspects of fibroblast biology (e.g., considerable expression of TNF and MMP9 by fibroblasts stimulation and corroborated previously known facts (e.g., co-expression of collagens and MMPs after TNF

  8. Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Liang Jinghang

    2012-08-01

    Full Text Available Abstract Background Various computational models have been of interest due to their use in the modelling of gene regulatory networks (GRNs. As a logical model, probabilistic Boolean networks (PBNs consider molecular and genetic noise, so the study of PBNs provides significant insights into the understanding of the dynamics of GRNs. This will ultimately lead to advances in developing therapeutic methods that intervene in the process of disease development and progression. The applications of PBNs, however, are hindered by the complexities involved in the computation of the state transition matrix and the steady-state distribution of a PBN. For a PBN with n genes and N Boolean networks, the complexity to compute the state transition matrix is O(nN22n or O(nN2n for a sparse matrix. Results This paper presents a novel implementation of PBNs based on the notions of stochastic logic and stochastic computation. This stochastic implementation of a PBN is referred to as a stochastic Boolean network (SBN. An SBN provides an accurate and efficient simulation of a PBN without and with random gene perturbation. The state transition matrix is computed in an SBN with a complexity of O(nL2n, where L is a factor related to the stochastic sequence length. Since the minimum sequence length required for obtaining an evaluation accuracy approximately increases in a polynomial order with the number of genes, n, and the number of Boolean networks, N, usually increases exponentially with n, L is typically smaller than N, especially in a network with a large number of genes. Hence, the computational efficiency of an SBN is primarily limited by the number of genes, but not directly by the total possible number of Boolean networks. Furthermore, a time-frame expanded SBN enables an efficient analysis of the steady-state distribution of a PBN. These findings are supported by the simulation results of a simplified p53 network, several randomly generated networks and a

  9. Ordinary differential equations and Boolean networks in application to modelling of 6-mercaptopurine metabolism.

    Science.gov (United States)

    Lavrova, Anastasia I; Postnikov, Eugene B; Zyubin, Andrey Yu; Babak, Svetlana V

    2017-04-01

    We consider two approaches to modelling the cell metabolism of 6-mercaptopurine, one of the important chemotherapy drugs used for treating acute lymphocytic leukaemia: kinetic ordinary differential equations, and Boolean networks supplied with one controlling node, which takes continual values. We analyse their interplay with respect to taking into account ATP concentration as a key parameter of switching between different pathways. It is shown that the Boolean networks, which allow avoiding the complexity of general kinetic modelling, preserve the possibility of reproducing the principal switching mechanism.

  10. Reliable dynamics in Boolean and continuous networks

    International Nuclear Information System (INIS)

    Ackermann, Eva; Drossel, Barbara; Peixoto, Tiago P

    2012-01-01

    We investigate the dynamical behavior of a model of robust gene regulatory networks which possess ‘entirely reliable’ trajectories. In a Boolean representation, these trajectories are characterized by being insensitive to the order in which the nodes are updated, i.e. they always go through the same sequence of states. The Boolean model for gene activity is compared with a continuous description in terms of differential equations for the concentrations of mRNA and proteins. We found that entirely reliable Boolean trajectories can be reproduced perfectly in the continuous model when realistic Hill coefficients are used. We investigate to what extent this high correspondence between Boolean and continuous trajectories depends on the extent of reliability of the Boolean trajectories, and we identify simple criteria that enable the faithful reproduction of the Boolean dynamics in the continuous description. (paper)

  11. Reverse engineering Boolean networks: from Bernoulli mixture models to rule based systems.

    Directory of Open Access Journals (Sweden)

    Mehreen Saeed

    Full Text Available A Boolean network is a graphical model for representing and analyzing the behavior of gene regulatory networks (GRN. In this context, the accurate and efficient reconstruction of a Boolean network is essential for understanding the gene regulation mechanism and the complex relations that exist therein. In this paper we introduce an elegant and efficient algorithm for the reverse engineering of Boolean networks from a time series of multivariate binary data corresponding to gene expression data. We call our method ReBMM, i.e., reverse engineering based on Bernoulli mixture models. The time complexity of most of the existing reverse engineering techniques is quite high and depends upon the indegree of a node in the network. Due to the high complexity of these methods, they can only be applied to sparsely connected networks of small sizes. ReBMM has a time complexity factor, which is independent of the indegree of a node and is quadratic in the number of nodes in the network, a big improvement over other techniques and yet there is little or no compromise in accuracy. We have tested ReBMM on a number of artificial datasets along with simulated data derived from a plant signaling network. We also used this method to reconstruct a network from real experimental observations of microarray data of the yeast cell cycle. Our method provides a natural framework for generating rules from a probabilistic model. It is simple, intuitive and illustrates excellent empirical results.

  12. On the underlying assumptions of threshold Boolean networks as a model for genetic regulatory network behavior.

    Science.gov (United States)

    Tran, Van; McCall, Matthew N; McMurray, Helene R; Almudevar, Anthony

    2013-01-01

    Boolean networks (BoN) are relatively simple and interpretable models of gene regulatory networks. Specifying these models with fewer parameters while retaining their ability to describe complex regulatory relationships is an ongoing methodological challenge. Additionally, extending these models to incorporate variable gene decay rates, asynchronous gene response, and synergistic regulation while maintaining their Markovian nature increases the applicability of these models to genetic regulatory networks (GRN). We explore a previously-proposed class of BoNs characterized by linear threshold functions, which we refer to as threshold Boolean networks (TBN). Compared to traditional BoNs with unconstrained transition functions, these models require far fewer parameters and offer a more direct interpretation. However, the functional form of a TBN does result in a reduction in the regulatory relationships which can be modeled. We show that TBNs can be readily extended to permit self-degradation, with explicitly modeled degradation rates. We note that the introduction of variable degradation compromises the Markovian property fundamental to BoN models but show that a simple state augmentation procedure restores their Markovian nature. Next, we study the effect of assumptions regarding self-degradation on the set of possible steady states. Our findings are captured in two theorems relating self-degradation and regulatory feedback to the steady state behavior of a TBN. Finally, we explore assumptions of synchronous gene response and asynergistic regulation and show that TBNs can be easily extended to relax these assumptions. Applying our methods to the budding yeast cell-cycle network revealed that although the network is complex, its steady state is simplified by the presence of self-degradation and lack of purely positive regulatory cycles.

  13. Random networks of Boolean cellular automata

    International Nuclear Information System (INIS)

    Miranda, Enrique

    1990-01-01

    Some recent results about random networks of Boolean automata -the Kauffman model- are reviewed. The structure of configuration space is explored. Ultrametricity between cycles is analyzed and the effects of noise in the dynamics are studied. (Author)

  14. Integer programming-based method for designing synthetic metabolic networks by Minimum Reaction Insertion in a Boolean model.

    Science.gov (United States)

    Lu, Wei; Tamura, Takeyuki; Song, Jiangning; Akutsu, Tatsuya

    2014-01-01

    In this paper, we consider the Minimum Reaction Insertion (MRI) problem for finding the minimum number of additional reactions from a reference metabolic network to a host metabolic network so that a target compound becomes producible in the revised host metabolic network in a Boolean model. Although a similar problem for larger networks is solvable in a flux balance analysis (FBA)-based model, the solution of the FBA-based model tends to include more reactions than that of the Boolean model. However, solving MRI using the Boolean model is computationally more expensive than using the FBA-based model since the Boolean model needs more integer variables. Therefore, in this study, to solve MRI for larger networks in the Boolean model, we have developed an efficient Integer Programming formalization method in which the number of integer variables is reduced by the notion of feedback vertex set and minimal valid assignment. As a result of computer experiments conducted using the data of metabolic networks of E. coli and reference networks downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we have found that the developed method can appropriately solve MRI in the Boolean model and is applicable to large scale-networks for which an exhaustive search does not work. We have also compared the developed method with the existing connectivity-based methods and FBA-based methods, and show the difference between the solutions of our method and the existing methods. A theoretical analysis of MRI is also conducted, and the NP-completeness of MRI is proved in the Boolean model. Our developed software is available at "http://sunflower.kuicr.kyoto-u.ac.jp/~rogi/minRect/minRect.html."

  15. Steady-State Analysis of Genetic Regulatory Networks Modelled by Probabilistic Boolean Networks

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2006-04-01

    Full Text Available Probabilistic Boolean networks (PBNs have recently been introduced as a promising class of models of genetic regulatory networks. The dynamic behaviour of PBNs can be analysed in the context of Markov chains. A key goal is the determination of the steady-state (long-run behaviour of a PBN by analysing the corresponding Markov chain. This allows one to compute the long-term influence of a gene on another gene or determine the long-term joint probabilistic behaviour of a few selected genes. Because matrix-based methods quickly become prohibitive for large sizes of networks, we propose the use of Monte Carlo methods. However, the rate of convergence to the stationary distribution becomes a central issue. We discuss several approaches for determining the number of iterations necessary to achieve convergence of the Markov chain corresponding to a PBN. Using a recently introduced method based on the theory of two-state Markov chains, we illustrate the approach on a sub-network designed from human glioma gene expression data and determine the joint steadystate probabilities for several groups of genes.

  16. Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes.

    Directory of Open Access Journals (Sweden)

    Herman F Fumiã

    Full Text Available A Boolean dynamical system integrating the main signaling pathways involved in cancer is constructed based on the currently known protein-protein interaction network. This system exhibits stationary protein activation patterns--attractors--dependent on the cell's microenvironment. These dynamical attractors were determined through simulations and their stabilities against mutations were tested. In a higher hierarchical level, it was possible to group the network attractors into distinct cell phenotypes and determine driver mutations that promote phenotypic transitions. We find that driver nodes are not necessarily central in the network topology, but at least they are direct regulators of central components towards which converge or through which crosstalk distinct cancer signaling pathways. The predicted drivers are in agreement with those pointed out by diverse census of cancer genes recently performed for several human cancers. Furthermore, our results demonstrate that cell phenotypes can evolve towards full malignancy through distinct sequences of accumulated mutations. In particular, the network model supports routes of carcinogenesis known for some tumor types. Finally, the Boolean network model is employed to evaluate the outcome of molecularly targeted cancer therapies. The major find is that monotherapies were additive in their effects and that the association of targeted drugs is necessary for cancer eradication.

  17. Attractor Transformation by Impulsive Control in Boolean Control Network

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2013-01-01

    Full Text Available Boolean control networks have recently been attracting considerable interests as computational models for genetic regulatory networks. In this paper, we present an approach of impulsive control for attractor transitions in Boolean control networks based on the recent developed matrix semitensor product theory. The reachability of attractors is estimated, and the controller is also obtained. The general derivation proposed here is exemplified with a kind of gene model, which is the protein-nucleic acid interactions network, on numerical simulations.

  18. Intervention in Context-Sensitive Probabilistic Boolean Networks Revisited

    Directory of Open Access Journals (Sweden)

    Faryabi Babak

    2009-01-01

    Full Text Available An approximate representation for the state space of a context-sensitive probabilistic Boolean network has previously been proposed and utilized to devise therapeutic intervention strategies. Whereas the full state of a context-sensitive probabilistic Boolean network is specified by an ordered pair composed of a network context and a gene-activity profile, this approximate representation collapses the state space onto the gene-activity profiles alone. This reduction yields an approximate transition probability matrix, absent of context, for the Markov chain associated with the context-sensitive probabilistic Boolean network. As with many approximation methods, a price must be paid for using a reduced model representation, namely, some loss of optimality relative to using the full state space. This paper examines the effects on intervention performance caused by the reduction with respect to various values of the model parameters. This task is performed using a new derivation for the transition probability matrix of the context-sensitive probabilistic Boolean network. This expression of transition probability distributions is in concert with the original definition of context-sensitive probabilistic Boolean network. The performance of optimal and approximate therapeutic strategies is compared for both synthetic networks and a real case study. It is observed that the approximate representation describes the dynamics of the context-sensitive probabilistic Boolean network through the instantaneously random probabilistic Boolean network with similar parameters.

  19. A full bayesian approach for boolean genetic network inference.

    Directory of Open Access Journals (Sweden)

    Shengtong Han

    Full Text Available Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data.

  20. Forced synchronization of autonomous dynamical Boolean networks

    International Nuclear Information System (INIS)

    Rivera-Durón, R. R.; Campos-Cantón, E.; Campos-Cantón, I.; Gauthier, Daniel J.

    2015-01-01

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics

  1. Forced synchronization of autonomous dynamical Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx [División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Col. Lomas 4 Sección, C.P. 78216, San Luis Potosí, S.L.P. (Mexico); Campos-Cantón, I. [Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, C.P. 78000, San Luis Potosí, S.L.P. (Mexico); Gauthier, Daniel J. [Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Box 90305, Durham, North Carolina 27708 (United States)

    2015-08-15

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.

  2. Synchronization in an array of coupled Boolean networks

    International Nuclear Information System (INIS)

    Li, Rui; Chu, Tianguang

    2012-01-01

    This Letter presents an analytical study of synchronization in an array of coupled deterministic Boolean networks. A necessary and sufficient criterion for synchronization is established based on algebraic representations of logical dynamics in terms of the semi-tensor product of matrices. Some basic properties of a synchronized array of Boolean networks are then derived for the existence of transient states and the upper bound of the number of fixed points. Particularly, an interesting consequence indicates that a “large” mismatch between two coupled Boolean networks in the array may result in loss of synchrony in the entire system. Examples, including the Boolean model of coupled oscillations in the cell cycle, are given to illustrate the present results. -- Highlights: ► We analytically study synchronization in an array of coupled Boolean networks. ► The study is based on the algebraic representations of logical dynamics. ► A necessary and sufficient algebraic criterion for synchronization is established. ► It reveals some basic properties of a synchronized array of Boolean networks. ► A large mismatch between two coupled networks may result in the loss of synchrony.

  3. The stability of Boolean network with transmission sensitivity

    Science.gov (United States)

    Wang, Jiannan; Guo, Binghui; Wei, Wei; Mi, Zhilong; Yin, Ziqiao; Zheng, Zhiming

    2017-09-01

    Boolean network has been widely used in modeling biological systems and one of the key problems is its stability in response to small perturbations. Based on the hypothesis that the states of all nodes are homogenously updated, great progress has been made in previous works. In real biological networks, however, the updates of genes typically show much heterogeneity. To address such conditions, we introduce transmission sensitivity into Boolean network model. By the method of semi-annealed approximation, we illustrate that in a homogenous network, the critical condition of stability has no connection with its transmission sensitivity. As for heterogeneous networks, it reveals that correlations between network topology and transmission sensitivity can have profound effects on the its stability. This result shows a new mechanism that affects the stability of Boolean network, which could be used to control the dynamics in real biological systems.

  4. Optimization-Based Approaches to Control of Probabilistic Boolean Networks

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2017-02-01

    Full Text Available Control of gene regulatory networks is one of the fundamental topics in systems biology. In the last decade, control theory of Boolean networks (BNs, which is well known as a model of gene regulatory networks, has been widely studied. In this review paper, our previously proposed methods on optimal control of probabilistic Boolean networks (PBNs are introduced. First, the outline of PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore, another finite-time optimal control problem, which can be reduced to an integer programming problem, is also explained.

  5. Dynamic Network-Based Epistasis Analysis: Boolean Examples

    Science.gov (United States)

    Azpeitia, Eugenio; Benítez, Mariana; Padilla-Longoria, Pablo; Espinosa-Soto, Carlos; Alvarez-Buylla, Elena R.

    2011-01-01

    In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and

  6. Boolean Factor Analysis by Attractor Neural Network

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2007-01-01

    Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007

  7. Optimal stabilization of Boolean networks through collective influence

    Science.gov (United States)

    Wang, Jiannan; Pei, Sen; Wei, Wei; Feng, Xiangnan; Zheng, Zhiming

    2018-03-01

    Boolean networks have attracted much attention due to their wide applications in describing dynamics of biological systems. During past decades, much effort has been invested in unveiling how network structure and update rules affect the stability of Boolean networks. In this paper, we aim to identify and control a minimal set of influential nodes that is capable of stabilizing an unstable Boolean network. For locally treelike Boolean networks with biased truth tables, we propose a greedy algorithm to identify influential nodes in Boolean networks by minimizing the largest eigenvalue of a modified nonbacktracking matrix. We test the performance of the proposed collective influence algorithm on four different networks. Results show that the collective influence algorithm can stabilize each network with a smaller set of nodes compared with other heuristic algorithms. Our work provides a new insight into the mechanism that determines the stability of Boolean networks, which may find applications in identifying virulence genes that lead to serious diseases.

  8. Comparison of Control Approaches in Genetic Regulatory Networks by Using Stochastic Master Equation Models, Probabilistic Boolean Network Models and Differential Equation Models and Estimated Error Analyzes

    Science.gov (United States)

    Caglar, Mehmet Umut; Pal, Ranadip

    2011-03-01

    Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.

  9. Dynamic network-based epistasis analysis: Boolean examples

    Directory of Open Access Journals (Sweden)

    Eugenio eAzpeitia

    2011-12-01

    Full Text Available In this review we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the topologies of gene interactions infered. This has been acknowledged in several previous papers and reviews, but here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson (herein, classical epistasis, defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus. Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct gene interaction topologies are hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our review complements previous accounts, not

  10. Controllability and observability of Boolean networks arising from biology

    Science.gov (United States)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  11. Boolean networks with robust and reliable trajectories

    International Nuclear Information System (INIS)

    Schmal, Christoph; Peixoto, Tiago P; Drossel, Barbara

    2010-01-01

    We construct and investigate Boolean networks that follow a given reliable trajectory in state space, which is insensitive to fluctuations in the updating schedule and which is also robust against noise. Robustness is quantified as the probability that the dynamics return to the reliable trajectory after a perturbation of the state of a single node. In order to achieve high robustness, we navigate through the space of possible update functions by using an evolutionary algorithm. We constrain the networks to those having the minimum number of connections required to obtain the reliable trajectory. Surprisingly, we find that robustness always reaches values close to 100% during the evolutionary optimization process. The set of update functions can be evolved such that it differs only slightly from that of networks that were not optimized with respect to robustness. The state space of the optimized networks is dominated by the basin of attraction of the reliable trajectory.

  12. A SAT-based algorithm for finding attractors in synchronous Boolean networks.

    Science.gov (United States)

    Dubrova, Elena; Teslenko, Maxim

    2011-01-01

    This paper addresses the problem of finding attractors in synchronous Boolean networks. The existing Boolean decision diagram-based algorithms have limited capacity due to the excessive memory requirements of decision diagrams. The simulation-based algorithms can be applied to larger networks, however, they are incomplete. We present an algorithm, which uses a SAT-based bounded model checking to find all attractors in a Boolean network. The efficiency of the presented algorithm is evaluated by analyzing seven networks models of real biological processes, as well as 150,000 randomly generated Boolean networks of sizes between 100 and 7,000. The results show that our approach has a potential to handle an order of magnitude larger models than currently possible.

  13. Griffin: A Tool for Symbolic Inference of Synchronous Boolean Molecular Networks

    Science.gov (United States)

    Muñoz, Stalin; Carrillo, Miguel; Azpeitia, Eugenio; Rosenblueth, David A.

    2018-01-01

    Boolean networks are important models of biochemical systems, located at the high end of the abstraction spectrum. A number of Boolean gene networks have been inferred following essentially the same method. Such a method first considers experimental data for a typically underdetermined “regulation” graph. Next, Boolean networks are inferred by using biological constraints to narrow the search space, such as a desired set of (fixed-point or cyclic) attractors. We describe Griffin, a computer tool enhancing this method. Griffin incorporates a number of well-established algorithms, such as Dubrova and Teslenko's algorithm for finding attractors in synchronous Boolean networks. In addition, a formal definition of regulation allows Griffin to employ “symbolic” techniques, able to represent both large sets of network states and Boolean constraints. We observe that when the set of attractors is required to be an exact set, prohibiting additional attractors, a naive Boolean coding of this constraint may be unfeasible. Such cases may be intractable even with symbolic methods, as the number of Boolean constraints may be astronomically large. To overcome this problem, we employ an Artificial Intelligence technique known as “clause learning” considerably increasing Griffin's scalability. Without clause learning only toy examples prohibiting additional attractors are solvable: only one out of seven queries reported here is answered. With clause learning, by contrast, all seven queries are answered. We illustrate Griffin with three case studies drawn from the Arabidopsis thaliana literature. Griffin is available at: http://turing.iimas.unam.mx/griffin. PMID:29559993

  14. An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks

    Science.gov (United States)

    Cabessa, Jérémie; Villa, Alessandro E. P.

    2014-01-01

    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866

  15. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    Science.gov (United States)

    Guo, Wensheng; Yang, Guowu; Wu, Wei; He, Lei; Sun, Mingyu

    2014-01-01

    In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  16. Boolean models can explain bistability in the lac operon.

    Science.gov (United States)

    Veliz-Cuba, Alan; Stigler, Brandilyn

    2011-06-01

    The lac operon in Escherichia coli has been studied extensively and is one of the earliest gene systems found to undergo both positive and negative control. The lac operon is known to exhibit bistability, in the sense that the operon is either induced or uninduced. Many dynamical models have been proposed to capture this phenomenon. While most are based on complex mathematical formulations, it has been suggested that for other gene systems network topology is sufficient to produce the desired dynamical behavior. We present a Boolean network as a discrete model for the lac operon. Our model includes the two main glucose control mechanisms of catabolite repression and inducer exclusion. We show that this Boolean model is capable of predicting the ON and OFF steady states and bistability. Further, we present a reduced model which shows that lac mRNA and lactose form the core of the lac operon, and that this reduced model exhibits the same dynamics. This work suggests that the key to model qualitative dynamics of gene systems is the topology of the network and Boolean models are well suited for this purpose.

  17. Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles

    Directory of Open Access Journals (Sweden)

    Shah Imran

    2011-07-01

    Full Text Available Abstract Background With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate the physiological effect of chemicals, including potential toxicity. Here we investigate a biologically motivated model for estimating tissue level responses by aggregating the behavior of a cell population. We assume that the molecular state of individual cells is independently governed by discrete non-deterministic signaling mechanisms. This results in noisy but highly reproducible aggregate level responses that are consistent with experimental data. Results We developed an asynchronous threshold Boolean network simulation algorithm to model signal transduction in a single cell, and then used an ensemble of these models to estimate the aggregate response across a cell population. Using published data, we derived a putative crosstalk network involving growth factors and cytokines - i.e., Epidermal Growth Factor, Insulin, Insulin like Growth Factor Type 1, and Tumor Necrosis Factor α - to describe early signaling events in cell proliferation signal transduction. Reproducibility of the modeling technique across ensembles of Boolean networks representing cell populations is investigated. Furthermore, we compare our simulation results to experimental observations of hepatocytes reported in the literature. Conclusion A systematic analysis of the results following differential stimulation of this model by growth factors and cytokines suggests that: (a using Boolean network ensembles with asynchronous updating provides biologically plausible noisy individual cellular responses with reproducible mean behavior for large cell populations, and (b with sufficient data our model can estimate the response to different concentrations of extracellular ligands. Our

  18. Polynomial-Time Algorithm for Controllability Test of a Class of Boolean Biological Networks

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2010-01-01

    Full Text Available In recent years, Boolean-network-model-based approaches to dynamical analysis of complex biological networks such as gene regulatory networks have been extensively studied. One of the fundamental problems in control theory of such networks is the problem of determining whether a given substance quantity can be arbitrarily controlled by operating the other substance quantities, which we call the controllability problem. This paper proposes a polynomial-time algorithm for solving this problem. Although the algorithm is based on a sufficient condition for controllability, it is easily computable for a wider class of large-scale biological networks compared with the existing approaches. A key to this success in our approach is to give up computing Boolean operations in a rigorous way and to exploit an adjacency matrix of a directed graph induced by a Boolean network. By applying the proposed approach to a neurotransmitter signaling pathway, it is shown that it is effective.

  19. Boolean Models of Biological Processes Explain Cascade-Like Behavior

    Science.gov (United States)

    Chen, Hao; Wang, Guanyu; Simha, Rahul; Du, Chenghang; Zeng, Chen

    2016-01-01

    Biological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either “on” or “off” and along with the molecules interact with each other, their individual status changes from “on” to “off” or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process. In this paper, we examine the common perception that events in biomolecular networks occur sequentially, in a cascade-like manner, and ask whether this is likely to be an inherent property. In further investigations of the budding and fission yeast cell-cycle, we identify two generic dynamical rules. A Boolean system that complies with these rules will automatically have a certain robustness. By considering the biological requirements in robustness and designability, we show that those Boolean dynamical systems, compared to an arbitrary dynamical system, statistically present the characteristics of cascadeness and sequentiality, as observed in the budding and fission yeast cell- cycle. These results suggest that cascade-like behavior might be an intrinsic property of biological processes. PMID:26821940

  20. Boolean modeling in systems biology: an overview of methodology and applications

    International Nuclear Information System (INIS)

    Wang, Rui-Sheng; Albert, Réka; Saadatpour, Assieh

    2012-01-01

    Mathematical modeling of biological processes provides deep insights into complex cellular systems. While quantitative and continuous models such as differential equations have been widely used, their use is obstructed in systems wherein the knowledge of mechanistic details and kinetic parameters is scarce. On the other hand, a wealth of molecular level qualitative data on individual components and interactions can be obtained from the experimental literature and high-throughput technologies, making qualitative approaches such as Boolean network modeling extremely useful. In this paper, we build on our research to provide a methodology overview of Boolean modeling in systems biology, including Boolean dynamic modeling of cellular networks, attractor analysis of Boolean dynamic models, as well as inferring biological regulatory mechanisms from high-throughput data using Boolean models. We finally demonstrate how Boolean models can be applied to perform the structural analysis of cellular networks. This overview aims to acquaint life science researchers with the basic steps of Boolean modeling and its applications in several areas of systems biology. (paper)

  1. Inference of a Probabilistic Boolean Network from a Single Observed Temporal Sequence

    Directory of Open Access Journals (Sweden)

    Le Yu

    2007-05-01

    Full Text Available The inference of gene regulatory networks is a key issue for genomic signal processing. This paper addresses the inference of probabilistic Boolean networks (PBNs from observed temporal sequences of network states. Since a PBN is composed of a finite number of Boolean networks, a basic observation is that the characteristics of a single Boolean network without perturbation may be determined by its pairwise transitions. Because the network function is fixed and there are no perturbations, a given state will always be followed by a unique state at the succeeding time point. Thus, a transition counting matrix compiled over a data sequence will be sparse and contain only one entry per line. If the network also has perturbations, with small perturbation probability, then the transition counting matrix would have some insignificant nonzero entries replacing some (or all of the zeros. If a data sequence is sufficiently long to adequately populate the matrix, then determination of the functions and inputs underlying the model is straightforward. The difficulty comes when the transition counting matrix consists of data derived from more than one Boolean network. We address the PBN inference procedure in several steps: (1 separate the data sequence into “pure” subsequences corresponding to constituent Boolean networks; (2 given a subsequence, infer a Boolean network; and (3 infer the probabilities of perturbation, the probability of there being a switch between constituent Boolean networks, and the selection probabilities governing which network is to be selected given a switch. Capturing the full dynamic behavior of probabilistic Boolean networks, be they binary or multivalued, will require the use of temporal data, and a great deal of it. This should not be surprising given the complexity of the model and the number of parameters, both transitional and static, that must be estimated. In addition to providing an inference algorithm

  2. Inference of a Probabilistic Boolean Network from a Single Observed Temporal Sequence

    Directory of Open Access Journals (Sweden)

    Xiao Yufei

    2007-01-01

    Full Text Available The inference of gene regulatory networks is a key issue for genomic signal processing. This paper addresses the inference of probabilistic Boolean networks (PBNs from observed temporal sequences of network states. Since a PBN is composed of a finite number of Boolean networks, a basic observation is that the characteristics of a single Boolean network without perturbation may be determined by its pairwise transitions. Because the network function is fixed and there are no perturbations, a given state will always be followed by a unique state at the succeeding time point. Thus, a transition counting matrix compiled over a data sequence will be sparse and contain only one entry per line. If the network also has perturbations, with small perturbation probability, then the transition counting matrix would have some insignificant nonzero entries replacing some (or all of the zeros. If a data sequence is sufficiently long to adequately populate the matrix, then determination of the functions and inputs underlying the model is straightforward. The difficulty comes when the transition counting matrix consists of data derived from more than one Boolean network. We address the PBN inference procedure in several steps: (1 separate the data sequence into "pure" subsequences corresponding to constituent Boolean networks; (2 given a subsequence, infer a Boolean network; and (3 infer the probabilities of perturbation, the probability of there being a switch between constituent Boolean networks, and the selection probabilities governing which network is to be selected given a switch. Capturing the full dynamic behavior of probabilistic Boolean networks, be they binary or multivalued, will require the use of temporal data, and a great deal of it. This should not be surprising given the complexity of the model and the number of parameters, both transitional and static, that must be estimated. In addition to providing an inference algorithm, this paper

  3. Binary higher order neural networks for realizing Boolean functions.

    Science.gov (United States)

    Zhang, Chao; Yang, Jie; Wu, Wei

    2011-05-01

    In order to more efficiently realize Boolean functions by using neural networks, we propose a binary product-unit neural network (BPUNN) and a binary π-ς neural network (BPSNN). The network weights can be determined by one-step training. It is shown that the addition " σ," the multiplication " π," and two kinds of special weighting operations in BPUNN and BPSNN can implement the logical operators " ∨," " ∧," and " ¬" on Boolean algebra 〈Z(2),∨,∧,¬,0,1〉 (Z(2)={0,1}), respectively. The proposed two neural networks enjoy the following advantages over the existing networks: 1) for a complete truth table of N variables with both truth and false assignments, the corresponding Boolean function can be realized by accordingly choosing a BPUNN or a BPSNN such that at most 2(N-1) hidden nodes are needed, while O(2(N)), precisely 2(N) or at most 2(N), hidden nodes are needed by existing networks; 2) a new network BPUPS based on a collaboration of BPUNN and BPSNN can be defined to deal with incomplete truth tables, while the existing networks can only deal with complete truth tables; and 3) the values of the weights are all simply -1 or 1, while the weights of all the existing networks are real numbers. Supporting numerical experiments are provided as well. Finally, we present the risk bounds of BPUNN, BPSNN, and BPUPS, and then analyze their probably approximately correct learnability.

  4. Identification of Boolean Networks Using Premined Network Topology Information.

    Science.gov (United States)

    Zhang, Xiaohua; Han, Huaxiang; Zhang, Weidong

    2017-02-01

    This brief aims to reduce the data requirement for the identification of Boolean networks (BNs) by using the premined network topology information. First, a matching table is created and used for sifting the true from the false dependences among the nodes in the BNs. Then, a dynamic extension to matching table is developed to enable the dynamic locating of matching pairs to start as soon as possible. Next, based on the pseudocommutative property of the semitensor product, a position-transform mining is carried out to further improve data utilization. Combining the above, the topology of the BNs can be premined for the subsequent identification. Examples are given to illustrate the efficiency of reducing the data requirement. Some excellent features, such as the online and parallel processing ability, are also demonstrated.

  5. Boolean models of biosurfactants production in Pseudomonas fluorescens.

    Directory of Open Access Journals (Sweden)

    Adrien Richard

    Full Text Available Cyclolipopeptides (CLPs are biosurfactants produced by numerous Pseudomonas fluorescens strains. CLP production is known to be regulated at least by the GacA/GacS two-component pathway, but the full regulatory network is yet largely unknown. In the clinical strain MFN1032, CLP production is abolished by a mutation in the phospholipase C gene (plcC and not restored by plcC complementation. Their production is also subject to phenotypic variation. We used a modelling approach with Boolean networks, which takes into account all these observations concerning CLP production without any assumption on the topology of the considered network. Intensive computation yielded numerous models that satisfy these properties. All models minimizing the number of components point to a bistability in CLP production, which requires the presence of a yet unknown key self-inducible regulator. Furthermore, all suggest that a set of yet unexplained phenotypic variants might also be due to this epigenetic switch. The simplest of these Boolean networks was used to propose a biological regulatory network for CLP production. This modelling approach has allowed a possible regulation to be unravelled and an unusual behaviour of CLP production in P. fluorescens to be explained.

  6. Digital clocks: simple Boolean models can quantitatively describe circadian systems.

    Science.gov (United States)

    Akman, Ozgur E; Watterson, Steven; Parton, Andrew; Binns, Nigel; Millar, Andrew J; Ghazal, Peter

    2012-09-07

    The gene networks that comprise the circadian clock modulate biological function across a range of scales, from gene expression to performance and adaptive behaviour. The clock functions by generating endogenous rhythms that can be entrained to the external 24-h day-night cycle, enabling organisms to optimally time biochemical processes relative to dawn and dusk. In recent years, computational models based on differential equations have become useful tools for dissecting and quantifying the complex regulatory relationships underlying the clock's oscillatory dynamics. However, optimizing the large parameter sets characteristic of these models places intense demands on both computational and experimental resources, limiting the scope of in silico studies. Here, we develop an approach based on Boolean logic that dramatically reduces the parametrization, making the state and parameter spaces finite and tractable. We introduce efficient methods for fitting Boolean models to molecular data, successfully demonstrating their application to synthetic time courses generated by a number of established clock models, as well as experimental expression levels measured using luciferase imaging. Our results indicate that despite their relative simplicity, logic models can (i) simulate circadian oscillations with the correct, experimentally observed phase relationships among genes and (ii) flexibly entrain to light stimuli, reproducing the complex responses to variations in daylength generated by more detailed differential equation formulations. Our work also demonstrates that logic models have sufficient predictive power to identify optimal regulatory structures from experimental data. By presenting the first Boolean models of circadian circuits together with general techniques for their optimization, we hope to establish a new framework for the systematic modelling of more complex clocks, as well as other circuits with different qualitative dynamics. In particular, we anticipate

  7. Digital clocks: simple Boolean models can quantitatively describe circadian systems

    Science.gov (United States)

    Akman, Ozgur E.; Watterson, Steven; Parton, Andrew; Binns, Nigel; Millar, Andrew J.; Ghazal, Peter

    2012-01-01

    The gene networks that comprise the circadian clock modulate biological function across a range of scales, from gene expression to performance and adaptive behaviour. The clock functions by generating endogenous rhythms that can be entrained to the external 24-h day–night cycle, enabling organisms to optimally time biochemical processes relative to dawn and dusk. In recent years, computational models based on differential equations have become useful tools for dissecting and quantifying the complex regulatory relationships underlying the clock's oscillatory dynamics. However, optimizing the large parameter sets characteristic of these models places intense demands on both computational and experimental resources, limiting the scope of in silico studies. Here, we develop an approach based on Boolean logic that dramatically reduces the parametrization, making the state and parameter spaces finite and tractable. We introduce efficient methods for fitting Boolean models to molecular data, successfully demonstrating their application to synthetic time courses generated by a number of established clock models, as well as experimental expression levels measured using luciferase imaging. Our results indicate that despite their relative simplicity, logic models can (i) simulate circadian oscillations with the correct, experimentally observed phase relationships among genes and (ii) flexibly entrain to light stimuli, reproducing the complex responses to variations in daylength generated by more detailed differential equation formulations. Our work also demonstrates that logic models have sufficient predictive power to identify optimal regulatory structures from experimental data. By presenting the first Boolean models of circadian circuits together with general techniques for their optimization, we hope to establish a new framework for the systematic modelling of more complex clocks, as well as other circuits with different qualitative dynamics. In particular, we

  8. Structures and Boolean Dynamics in Gene Regulatory Networks

    Science.gov (United States)

    Szedlak, Anthony

    This dissertation discusses the topological and dynamical properties of GRNs in cancer, and is divided into four main chapters. First, the basic tools of modern complex network theory are introduced. These traditional tools as well as those developed by myself (set efficiency, interset efficiency, and nested communities) are crucial for understanding the intricate topological properties of GRNs, and later chapters recall these concepts. Second, the biology of gene regulation is discussed, and a method for disease-specific GRN reconstruction developed by our collaboration is presented. This complements the traditional exhaustive experimental approach of building GRNs edge-by-edge by quickly inferring the existence of as of yet undiscovered edges using correlations across sets of gene expression data. This method also provides insight into the distribution of common mutations across GRNs. Third, I demonstrate that the structures present in these reconstructed networks are strongly related to the evolutionary histories of their constituent genes. Investigation of how the forces of evolution shaped the topology of GRNs in multicellular organisms by growing outward from a core of ancient, conserved genes can shed light upon the ''reverse evolution'' of normal cells into unicellular-like cancer states. Next, I simulate the dynamics of the GRNs of cancer cells using the Hopfield model, an infinite range spin-glass model designed with the ability to encode Boolean data as attractor states. This attractor-driven approach facilitates the integration of gene expression data into predictive mathematical models. Perturbations representing therapeutic interventions are applied to sets of genes, and the resulting deviations from their attractor states are recorded, suggesting new potential drug targets for experimentation. Finally, I extend the Hopfield model to modular networks, cyclic attractors, and complex attractors, and apply these concepts to simulations of the cell cycle

  9. Evolution of a designless nanoparticle network into reconfigurable Boolean logic.

    Science.gov (United States)

    Bose, S K; Lawrence, C P; Liu, Z; Makarenko, K S; van Damme, R M J; Broersma, H J; van der Wiel, W G

    2015-12-01

    Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on the other hand, are based on circuits of functional units that follow given design rules. Hence, potentially exploitable physical processes, such as capacitive crosstalk, to solve a problem are left out. Until now, designless nanoscale networks of inanimate matter that exhibit robust computational functionality had not been realized. Here we artificially evolve the electrical properties of a disordered nanomaterials system (by optimizing the values of control voltages using a genetic algorithm) to perform computational tasks reconfigurably. We exploit the rich behaviour that emerges from interconnected metal nanoparticles, which act as strongly nonlinear single-electron transistors, and find that this nanoscale architecture can be configured in situ into any Boolean logic gate. This universal, reconfigurable gate would require about ten transistors in a conventional circuit. Our system meets the criteria for the physical realization of (cellular) neural networks: universality (arbitrary Boolean functions), compactness, robustness and evolvability, which implies scalability to perform more advanced tasks. Our evolutionary approach works around device-to-device variations and the accompanying uncertainties in performance. Moreover, it bears a great potential for more energy-efficient computation, and for solving problems that are very hard to tackle in conventional architectures.

  10. Exploring candidate biological functions by Boolean Function Networks for Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Maria Simak

    Full Text Available The great amount of gene expression data has brought a big challenge for the discovery of Gene Regulatory Network (GRN. For network reconstruction and the investigation of regulatory relations, it is desirable to ensure directness of links between genes on a map, infer their directionality and explore candidate biological functions from high-throughput transcriptomic data. To address these problems, we introduce a Boolean Function Network (BFN model based on techniques of hidden Markov model (HMM, likelihood ratio test and Boolean logic functions. BFN consists of two consecutive tests to establish links between pairs of genes and check their directness. We evaluate the performance of BFN through the application to S. cerevisiae time course data. BFN produces regulatory relations which show consistency with succession of cell cycle phases. Furthermore, it also improves sensitivity and specificity when compared with alternative methods of genetic network reverse engineering. Moreover, we demonstrate that BFN can provide proper resolution for GO enrichment of gene sets. Finally, the Boolean functions discovered by BFN can provide useful insights for the identification of control mechanisms of regulatory processes, which is the special advantage of the proposed approach. In combination with low computational complexity, BFN can serve as an efficient screening tool to reconstruct genes relations on the whole genome level. In addition, the BFN approach is also feasible to a wide range of time course datasets.

  11. Synchronization Analysis of Master-Slave Probabilistic Boolean Networks.

    Science.gov (United States)

    Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W C; Cao, Jinde

    2015-08-28

    In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results.

  12. A Boolean Approach to Airline Business Model Innovation

    DEFF Research Database (Denmark)

    Hvass, Kristian Anders

    Research in business model innovation has identified its significance in creating a sustainable competitive advantage for a firm, yet there are few empirical studies identifying which combination of business model activities lead to success and therefore deserve innovative attention. This study...... analyzes the business models of North America low-cost carriers from 2001 to 2010 using a Boolean minimization algorithm to identify which combinations of business model activities lead to operational profitability. The research aim is threefold: complement airline literature in the realm of business model...... innovation, introduce Boolean minimization methods to the field, and propose alternative business model activities to North American carriers striving for positive operating results....

  13. An Efficient Steady-State Analysis Method for Large Boolean Networks with High Maximum Node Connectivity.

    Science.gov (United States)

    Hong, Changki; Hwang, Jeewon; Cho, Kwang-Hyun; Shin, Insik

    2015-01-01

    Boolean networks have been widely used to model biological processes lacking detailed kinetic information. Despite their simplicity, Boolean network dynamics can still capture some important features of biological systems such as stable cell phenotypes represented by steady states. For small models, steady states can be determined through exhaustive enumeration of all state transitions. As the number of nodes increases, however, the state space grows exponentially thus making it difficult to find steady states. Over the last several decades, many studies have addressed how to handle such a state space explosion. Recently, increasing attention has been paid to a satisfiability solving algorithm due to its potential scalability to handle large networks. Meanwhile, there still lies a problem in the case of large models with high maximum node connectivity where the satisfiability solving algorithm is known to be computationally intractable. To address the problem, this paper presents a new partitioning-based method that breaks down a given network into smaller subnetworks. Steady states of each subnetworks are identified by independently applying the satisfiability solving algorithm. Then, they are combined to construct the steady states of the overall network. To efficiently apply the satisfiability solving algorithm to each subnetwork, it is crucial to find the best partition of the network. In this paper, we propose a method that divides each subnetwork to be smallest in size and lowest in maximum node connectivity. This minimizes the total cost of finding all steady states in entire subnetworks. The proposed algorithm is compared with others for steady states identification through a number of simulations on both published small models and randomly generated large models with differing maximum node connectivities. The simulation results show that our method can scale up to several hundreds of nodes even for Boolean networks with high maximum node connectivity. The

  14. Complementing ODE-Based System Analysis Using Boolean Networks Derived from an Euler-Like Transformation.

    Science.gov (United States)

    Stötzel, Claudia; Röblitz, Susanna; Siebert, Heike

    2015-01-01

    In this paper, we present a systematic transition scheme for a large class of ordinary differential equations (ODEs) into Boolean networks. Our transition scheme can be applied to any system of ODEs whose right hand sides can be written as sums and products of monotone functions. It performs an Euler-like step which uses the signs of the right hand sides to obtain the Boolean update functions for every variable of the corresponding discrete model. The discrete model can, on one hand, be considered as another representation of the biological system or, alternatively, it can be used to further the analysis of the original ODE model. Since the generic transformation method does not guarantee any property conservation, a subsequent validation step is required. Depending on the purpose of the model this step can be based on experimental data or ODE simulations and characteristics. Analysis of the resulting Boolean model, both on its own and in comparison with the ODE model, then allows to investigate system properties not accessible in a purely continuous setting. The method is exemplarily applied to a previously published model of the bovine estrous cycle, which leads to new insights regarding the regulation among the components, and also indicates strongly that the system is tailored to generate stable oscillations.

  15. Super-transient scaling in time-delay autonomous Boolean network motifs

    Energy Technology Data Exchange (ETDEWEB)

    D' Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Lohmann, Johannes [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Gauthier, Daniel J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2016-09-15

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  16. Integer programming-based method for observability of singleton attractors in Boolean networks.

    Science.gov (United States)

    Cheng, Xiaoqing; Qiu, Yushan; Hou, Wenpin; Ching, Wai-Ki

    2017-02-01

    Boolean network (BN) is a popular mathematical model for revealing the behaviour of a genetic regulatory network. Furthermore, observability, an important network feature, plays a significant role in understanding the underlying network. Several studies have been done on analysis of observability of BNs and complex networks. However, the observability of attractor cycles, which can serve as biomarker detection, has not yet been addressed in the literature. This is an important, interesting and challenging problem that deserves a detailed study. In this study, a novel problem was first proposed on attractor observability in BNs. Identification of the minimum set of consecutive nodes can be used to discriminate different attractors. Furthermore, it can serve as a biomarker for different disease types (represented as different attractor cycles). Then a novel integer programming method was developed to identify the desired set of nodes. The proposed approach is demonstrated and verified by numerical examples. The computational results further illustrates that the proposed model is effective and efficient.

  17. A Boolean Approach to Airline Business Model Innovation

    DEFF Research Database (Denmark)

    Hvass, Kristian Anders

    Research in business model innovation has identified its significance in creating a sustainable competitive advantage for a firm, yet there are few empirical studies identifying which combination of business model activities lead to success and therefore deserve innovative attention. This study...... analyzes the business models of North America low-cost carriers from 2001 to 2010 using a Boolean minimization algorithm to identify which combinations of business model activities lead to operational profitability. The research aim is threefold: complement airline literature in the realm of business model...

  18. PATHLOGIC-S: a scalable Boolean framework for modelling cellular signalling.

    Directory of Open Access Journals (Sweden)

    Liam G Fearnley

    Full Text Available Curated databases of signal transduction have grown to describe several thousand reactions, and efficient use of these data requires the development of modelling tools to elucidate and explore system properties. We present PATHLOGIC-S, a Boolean specification for a signalling model, with its associated GPL-licensed implementation using integer programming techniques. The PATHLOGIC-S specification has been designed to function on current desktop workstations, and is capable of providing analyses on some of the largest currently available datasets through use of Boolean modelling techniques to generate predictions of stable and semi-stable network states from data in community file formats. PATHLOGIC-S also addresses major problems associated with the presence and modelling of inhibition in Boolean systems, and reduces logical incoherence due to common inhibitory mechanisms in signalling systems. We apply this approach to signal transduction networks including Reactome and two pathways from the Panther Pathways database, and present the results of computations on each along with a discussion of execution time. A software implementation of the framework and model is freely available under a GPL license.

  19. Damage Spreading in Spatial and Small-world Random Boolean Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qiming [Fermilab; Teuscher, Christof [Portland State U.

    2014-02-18

    The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean Networks (RBNs) are commonly used a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other non-random connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the relevant component at very low connectivities ($\\bar{K} \\ll 1$) and that the critical connectivity of stability $K_s$ changes compared to random networks. At higher $\\bar{K}$, this scaling remains unchanged. We also show that the relevant component of spatially local networks scales with a power-law as the system size N increases, but with a different exponent for local and small-world networks. The scaling behaviors are obtained by finite-size scaling. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.

  20. Recurrent-neural-network-based Boolean factor analysis and its application to word clustering.

    Science.gov (United States)

    Frolov, Alexander A; Husek, Dusan; Polyakov, Pavel Yu

    2009-07-01

    The objective of this paper is to introduce a neural-network-based algorithm for word clustering as an extension of the neural-network-based Boolean factor analysis algorithm (Frolov , 2007). It is shown that this extended algorithm supports even the more complex model of signals that are supposed to be related to textual documents. It is hypothesized that every topic in textual data is characterized by a set of words which coherently appear in documents dedicated to a given topic. The appearance of each word in a document is coded by the activity of a particular neuron. In accordance with the Hebbian learning rule implemented in the network, sets of coherently appearing words (treated as factors) create tightly connected groups of neurons, hence, revealing them as attractors of the network dynamics. The found factors are eliminated from the network memory by the Hebbian unlearning rule facilitating the search of other factors. Topics related to the found sets of words can be identified based on the words' semantics. To make the method complete, a special technique based on a Bayesian procedure has been developed for the following purposes: first, to provide a complete description of factors in terms of component probability, and second, to enhance the accuracy of classification of signals to determine whether it contains the factor. Since it is assumed that every word may possibly contribute to several topics, the proposed method might be related to the method of fuzzy clustering. In this paper, we show that the results of Boolean factor analysis and fuzzy clustering are not contradictory, but complementary. To demonstrate the capabilities of this attempt, the method is applied to two types of textual data on neural networks in two different languages. The obtained topics and corresponding words are at a good level of agreement despite the fact that identical topics in Russian and English conferences contain different sets of keywords.

  1. Toxicological Tipping Points: Learning Boolean Networks from High-Content Imaging Data. (BOSC meeting)

    Science.gov (United States)

    The objective of this work is to elucidate biological networks underlying cellular tipping points using time-course data. We discretized the high-content imaging (HCI) data and inferred Boolean networks (BNs) that could accurately predict dynamic cellular trajectories. We found t...

  2. Fitting Boolean networks from steady state perturbation data.

    Science.gov (United States)

    Almudevar, Anthony; McCall, Matthew N; McMurray, Helene; Land, Hartmut

    2011-10-05

    Gene perturbation experiments are commonly used for the reconstruction of gene regulatory networks. Typical experimental methodology imposes persistent changes on the network. The resulting data must therefore be interpreted as a steady state from an altered gene regulatory network, rather than a direct observation of the original network. In this article an implicit modeling methodology is proposed in which the unperturbed network of interest is scored by first modeling the persistent perturbation, then predicting the steady state, which may then be compared to the observed data. This results in a many-to-one inverse problem, so a computational Bayesian approach is used to assess model uncertainty. The methodology is first demonstrated on a number of synthetic networks. It is shown that the Bayesian approach correctly assigns high posterior probability to the network structure and steady state behavior. Further, it is demonstrated that where uncertainty of model features is indicated, the uncertainty may be accurately resolved with further perturbation experiments. The methodology is then applied to the modeling of a gene regulatory network using perturbation data from nine genes which have been shown to respond synergistically to known oncogenic mutations. A hypothetical model emerges which conforms to reported regulatory properties of these genes. Furthermore, the Bayesian methodology is shown to be consistent in the sense that multiple randomized applications of the fitting algorithm converge to an approximately common posterior density on the space of models. Such consistency is generally not feasible for algorithms which report only single models. We conclude that fully Bayesian methods, coupled with models which accurately account for experimental constraints, are a suitable tool for the inference of gene regulatory networks, in terms of accuracy, estimation of model uncertainty, and experimental design.

  3. SETS, Boolean Manipulation for Network Analysis and Fault Tree Analysis

    International Nuclear Information System (INIS)

    Worrell, R.B.

    1985-01-01

    Description of problem or function - SETS is used for symbolic manipulation of set (or Boolean) equations, particularly the reduction of set equations by the application of set identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze non-coherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protection requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access through nullification of sensors in its protection system. 4. Method of solution - The SETS program is used to read, interpret, and execute the statements of a SETS user program which is an algorithm that specifies the particular manipulations to be performed and the order in which they are to occur. 5. Restrictions on the complexity of the problem - Any properly formed set equation involving the set operations of union, intersection, and complement is acceptable for processing by the SETS program. Restrictions on the size of a set equation that can be processed are not absolute but rather are related to the number of terms in the disjunctive normal form of the equation, the number of literals in the equation, etc. Nevertheless, set equations involving thousands and even hundreds of thousands of terms can be processed successfully

  4. An Efficient Algorithm for Computing Attractors of Synchronous And Asynchronous Boolean Networks

    Science.gov (United States)

    Zheng, Desheng; Yang, Guowu; Li, Xiaoyu; Wang, Zhicai; Liu, Feng; He, Lei

    2013-01-01

    Biological networks, such as genetic regulatory networks, often contain positive and negative feedback loops that settle down to dynamically stable patterns. Identifying these patterns, the so-called attractors, can provide important insights for biologists to understand the molecular mechanisms underlying many coordinated cellular processes such as cellular division, differentiation, and homeostasis. Both synchronous and asynchronous Boolean networks have been used to simulate genetic regulatory networks and identify their attractors. The common methods of computing attractors are that start with a randomly selected initial state and finish with exhaustive search of the state space of a network. However, the time complexity of these methods grows exponentially with respect to the number and length of attractors. Here, we build two algorithms to achieve the computation of attractors in synchronous and asynchronous Boolean networks. For the synchronous scenario, combing with iterative methods and reduced order binary decision diagrams (ROBDD), we propose an improved algorithm to compute attractors. For another algorithm, the attractors of synchronous Boolean networks are utilized in asynchronous Boolean translation functions to derive attractors of asynchronous scenario. The proposed algorithms are implemented in a procedure called geneFAtt. Compared to existing tools such as genYsis, geneFAtt is significantly faster in computing attractors for empirical experimental systems. Availability The software package is available at https://sites.google.com/site/desheng619/download. PMID:23585840

  5. Recurrent Neural Network Based Boolean Factor Analysis and its Application to Word Clustering

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.

    2009-01-01

    Roč. 20, č. 7 (2009), s. 1073-1086 ISSN 1045-9227 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.889, year: 2009

  6. Analysis and control of Boolean networks a semi-tensor product approach

    CERN Document Server

    Cheng, Daizhan; Li, Zhiqiang

    2010-01-01

    This book presents a new approach to the investigation of Boolean control networks, using the semi-tensor product (STP), which can express a logical function as a conventional discrete-time linear system. This makes it possible to analyze basic control problems.

  7. Continuous time boolean modeling for biological signaling: application of Gillespie algorithm

    Directory of Open Access Journals (Sweden)

    Stoll Gautier

    2012-08-01

    Full Text Available Abstract Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to validate a network that describes biological observations and predict the effect of perturbations. This article presents an algorithm for modeling biological networks in a discrete framework with continuous time. Background There exist two major types of mathematical modeling approaches: (1 quantitative modeling, representing various chemical species concentrations by real numbers, mainly based on differential equations and chemical kinetics formalism; (2 and qualitative modeling, representing chemical species concentrations or activities by a finite set of discrete values. Both approaches answer particular (and often different biological questions. Qualitative modeling approach permits a simple and less detailed description of the biological systems, efficiently describes stable state identification but remains inconvenient in describing the transient kinetics leading to these states. In this context, time is represented by discrete steps. Quantitative modeling, on the other hand, can describe more accurately the dynamical behavior of biological processes as it follows the evolution of concentration or activities of chemical species as a function of time, but requires an important amount of information on the parameters difficult to find in the literature. Results Here, we propose a modeling framework based on a qualitative approach that is intrinsically continuous in time. The algorithm presented in this article fills the gap between qualitative and quantitative modeling. It is based on continuous time Markov process applied on a Boolean state space. In order to describe the temporal evolution of the biological process we wish to model, we explicitly specify the transition rates for each node. For that purpose, we built a language that can be seen as a generalization of Boolean equations. Mathematically, this approach can be

  8. On control of singleton attractors in multiple Boolean networks: integer programming-based method.

    Science.gov (United States)

    Qiu, Yushan; Tamura, Takeyuki; Ching, Wai-Ki; Akutsu, Tatsuya

    2014-01-01

    Boolean network (BN) is a mathematical model for genetic network and control of genetic networks has become an important issue owing to their potential application in the field of drug discovery and treatment of intractable diseases. Early researches have focused primarily on the analysis of attractor control for a randomly generated BN. However, one may also consider how anti-cancer drugs act in both normal and cancer cells. Thus, the development of controls for multiple BNs is an important and interesting challenge. In this article, we formulate three novel problems about attractor control for two BNs (i.e., normal cell and cancer cell). The first is about finding a control that can significantly damage cancer cells but has a limited damage to normal cells. The second is about finding a control for normal cells with a guaranteed damaging effect on cancer cells. Finally, we formulate a definition for finding a control for cancer cells with limited damaging effect on normal cells. We propose integer programming-based methods for solving these problems in a unified manner, and we conduct computational experiments to illustrate the efficiency and the effectiveness of our method for our multiple-BN control problems. We present three novel control problems for multiple BNs that are realistic control models for gene regulation networks and adopt an integer programming approach to address these problems. Experimental results indicate that our proposed method is useful and effective for moderate size BNs.

  9. Bistability and Asynchrony in a Boolean Model of the L-arabinose Operon in Escherichia coli.

    Science.gov (United States)

    Jenkins, Andy; Macauley, Matthew

    2017-08-01

    The lactose operon in Escherichia coli was the first known gene regulatory network, and it is frequently used as a prototype for new modeling paradigms. Historically, many of these modeling frameworks use differential equations. More recently, Stigler and Veliz-Cuba proposed a Boolean model that captures the bistability of the system and all of the biological steady states. In this paper, we model the well-known arabinose operon in E. coli with a Boolean network. This has several complex features not found in the lac operon, such as a protein that is both an activator and repressor, a DNA looping mechanism for gene repression, and the lack of inducer exclusion by glucose. For 11 out of 12 choices of initial conditions, we use computational algebra and Sage to verify that the state space contains a single fixed point that correctly matches the biology. The final initial condition, medium levels of arabinose and no glucose, successfully predicts the system's bistability. Finally, we compare the state space under synchronous and asynchronous update and see that the former has several artificial cycles that go away under a general asynchronous update.

  10. Representations and Rates of Approximation of Real-Valued Boolean Functions by Neural Networks

    Czech Academy of Sciences Publication Activity Database

    Kůrková, Věra; Savický, Petr; Hlaváčková, Kateřina

    1998-01-01

    Roč. 11, č. 4 (1998), s. 651-659 ISSN 0893-6080 R&D Projects: GA AV ČR IAA2030602; GA AV ČR IAA2075606; GA ČR GA201/95/0976 Keywords : real-valued Boolean function * percepron network * rate of approximation * variation with respect to half-spaces * decision tree * Hadamard communication matrix Subject RIV: BA - General Mathematics Impact factor: 1.017, year: 1998

  11. Evolution of a designless nanoparticle network into reconfigurable Boolean logic

    NARCIS (Netherlands)

    Bose, Saurabh; Lawrence, Celestine Preetham; Liu, Zhihua; Makarenko, K.S.; van Damme, Rudolf M.J.; Broersma, Haitze J.; van der Wiel, Wilfred Gerard

    2015-01-01

    Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on

  12. Finding optimal control policy in probabilistic Boolean Networks with hard constraints by using integer programming and dynamic programming.

    Science.gov (United States)

    Chen, Xi; Akutsu, Tatsuya; Tamura, Takeyuki; Ching, Wai-Ki

    2013-01-01

    Boolean Networks (BNs) and Probabilistic Boolean Networks (PBNs) are studied in this paper from the viewpoint of control problems. For BN CONTROL, by applying external control, we propose to derive the network to the desired state within a few time steps. For PBN CONTROL, we propose to find a control sequence such that the network will terminate in the desired state with a maximum probability. Also, we propose to minimise the maximum cost of the terminal state to which the network will enter. We also present a hardness result suggesting that PBN CONTROL is harder than BN CONTROL.

  13. A novel mutual information-based Boolean network inference method from time-series gene expression data.

    Directory of Open Access Journals (Sweden)

    Shohag Barman

    Full Text Available Inferring a gene regulatory network from time-series gene expression data in systems biology is a challenging problem. Many methods have been suggested, most of which have a scalability limitation due to the combinatorial cost of searching a regulatory set of genes. In addition, they have focused on the accurate inference of a network structure only. Therefore, there is a pressing need to develop a network inference method to search regulatory genes efficiently and to predict the network dynamics accurately.In this study, we employed a Boolean network model with a restricted update rule scheme to capture coarse-grained dynamics, and propose a novel mutual information-based Boolean network inference (MIBNI method. Given time-series gene expression data as an input, the method first identifies a set of initial regulatory genes using mutual information-based feature selection, and then improves the dynamics prediction accuracy by iteratively swapping a pair of genes between sets of the selected regulatory genes and the other genes. Through extensive simulations with artificial datasets, MIBNI showed consistently better performance than six well-known existing methods, REVEAL, Best-Fit, RelNet, CST, CLR, and BIBN in terms of both structural and dynamics prediction accuracy. We further tested the proposed method with two real gene expression datasets for an Escherichia coli gene regulatory network and a fission yeast cell cycle network, and also observed better results using MIBNI compared to the six other methods.Taken together, MIBNI is a promising tool for predicting both the structure and the dynamics of a gene regulatory network.

  14. The spruce budworm and forest: a qualitative comparison of ODE and Boolean models

    Directory of Open Access Journals (Sweden)

    Raina Robeva

    2016-01-01

    Full Text Available Boolean and polynomial models of biological systems have emerged recently as viable companions to differential equations models. It is not immediately clear however whether such models are capable of capturing the multi-stable behaviour of certain biological systems: this behaviour is often sensitive to changes in the values of the model parameters, while Boolean and polynomial models are qualitative in nature. In the past few years, Boolean models of gene regulatory systems have been shown to capture multi-stability at the molecular level, confirming that such models can be used to obtain information about the system’s qualitative dynamics when precise information regarding its parameters may not be available. In this paper, we examine Boolean approximations of a classical ODE model of budworm outbreaks in a forest and show that these models exhibit a qualitative behaviour consistent with that derived from the ODE models. In particular, we demonstrate that these models can capture the bistable nature of insect population outbreaks, thus showing that Boolean models can be successfully utilized beyond the molecular level.

  15. Variances as order parameter and complexity measure for random Boolean networks

    International Nuclear Information System (INIS)

    Luque, Bartolo; Ballesteros, Fernando J; Fernandez, Manuel

    2005-01-01

    Several order parameters have been considered to predict and characterize the transition between ordered and disordered phases in random Boolean networks, such as the Hamming distance between replicas or the stable core, which have been successfully used. In this work, we propose a natural and clear new order parameter: the temporal variance. We compute its value analytically and compare it with the results of numerical experiments. Finally, we propose a complexity measure based on the compromise between temporal and spatial variances. This new order parameter and its related complexity measure can be easily applied to other complex systems

  16. Variances as order parameter and complexity measure for random Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Luque, Bartolo [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Ballesteros, Fernando J [Observatori Astronomic, Universitat de Valencia, Ed. Instituts d' Investigacio, Pol. La Coma s/n, E-46980 Paterna, Valencia (Spain); Fernandez, Manuel [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain)

    2005-02-04

    Several order parameters have been considered to predict and characterize the transition between ordered and disordered phases in random Boolean networks, such as the Hamming distance between replicas or the stable core, which have been successfully used. In this work, we propose a natural and clear new order parameter: the temporal variance. We compute its value analytically and compare it with the results of numerical experiments. Finally, we propose a complexity measure based on the compromise between temporal and spatial variances. This new order parameter and its related complexity measure can be easily applied to other complex systems.

  17. Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord.

    KAUST Repository

    Lovrics, Anna

    2014-11-14

    We have assembled a network of cell-fate determining transcription factors that play a key role in the specification of the ventral neuronal subtypes of the spinal cord on the basis of published transcriptional interactions. Asynchronous Boolean modelling of the network was used to compare simulation results with reported experimental observations. Such comparison highlighted the need to include additional regulatory connections in order to obtain the fixed point attractors of the model associated with the five known progenitor cell types located in the ventral spinal cord. The revised gene regulatory network reproduced previously observed cell state switches between progenitor cells observed in knock-out animal models or in experiments where the transcription factors were overexpressed. Furthermore the network predicted the inhibition of Irx3 by Nkx2.2 and this prediction was tested experimentally. Our results provide evidence for the existence of an as yet undescribed inhibitory connection which could potentially have significance beyond the ventral spinal cord. The work presented in this paper demonstrates the strength of Boolean modelling for identifying gene regulatory networks.

  18. TESTING HISTOLOGICAL IMAGES OF MAMMARY TISSUES ON COMPATIBILITY WITH THE BOOLEAN MODEL OF RANDOM SETS

    Directory of Open Access Journals (Sweden)

    Tomáš Mrkvička

    2011-03-01

    Full Text Available Methods for testing the Boolean model assumption from binary images are briefly reviewed. Two hundred binary images of mammary cancer tissue and 200 images of mastopathic tissue were tested individually on the Boolean model assumption. In a previous paper, it had been found that a Monte Carlo method based on the approximation of the envelopes by a multi-normal distribution with the normalized intrinsic volume densities of parallel sets as a summary statistics had the highest power for this purpose. Hence, this method was used here as its first application to real biomedical data. It was found that mastopathic tissue deviates from the Boolean model significantly more strongly than mammary cancer tissue does.

  19. Dynamics of random Boolean networks under fully asynchronous stochastic update based on linear representation.

    Directory of Open Access Journals (Sweden)

    Chao Luo

    Full Text Available A novel algebraic approach is proposed to study dynamics of asynchronous random Boolean networks where a random number of nodes can be updated at each time step (ARBNs. In this article, the logical equations of ARBNs are converted into the discrete-time linear representation and dynamical behaviors of systems are investigated. We provide a general formula of network transition matrices of ARBNs as well as a necessary and sufficient algebraic criterion to determine whether a group of given states compose an attractor of length[Formula: see text] in ARBNs. Consequently, algorithms are achieved to find all of the attractors and basins in ARBNs. Examples are showed to demonstrate the feasibility of the proposed scheme.

  20. Robust Template Decomposition without Weight Restriction for Cellular Neural Networks Implementing Arbitrary Boolean Functions Using Support Vector Classifiers

    Directory of Open Access Journals (Sweden)

    Yih-Lon Lin

    2013-01-01

    Full Text Available If the given Boolean function is linearly separable, a robust uncoupled cellular neural network can be designed as a maximal margin classifier. On the other hand, if the given Boolean function is linearly separable but has a small geometric margin or it is not linearly separable, a popular approach is to find a sequence of robust uncoupled cellular neural networks implementing the given Boolean function. In the past research works using this approach, the control template parameters and thresholds are restricted to assume only a given finite set of integers, and this is certainly unnecessary for the template design. In this study, we try to remove this restriction. Minterm- and maxterm-based decomposition algorithms utilizing the soft margin and maximal margin support vector classifiers are proposed to design a sequence of robust templates implementing an arbitrary Boolean function. Several illustrative examples are simulated to demonstrate the efficiency of the proposed method by comparing our results with those produced by other decomposition methods with restricted weights.

  1. An efficient algorithm to identify the optimal one-bit perturbation based on the basin-of-state size of Boolean networks.

    Science.gov (United States)

    Hu, Mingxiao; Shen, Liangzhong; Zan, Xiangzhen; Shang, Xuequn; Liu, Wenbin

    2016-05-19

    Boolean networks are widely used to model gene regulatory networks and to design therapeutic intervention strategies to affect the long-term behavior of systems. In this paper, we investigate the less-studied one-bit perturbation, which falls under the category of structural intervention. Previous works focused on finding the optimal one-bit perturbation to maximally alter the steady-state distribution (SSD) of undesirable states through matrix perturbation theory. However, the application of the SSD is limited to Boolean networks with about ten genes. In 2007, Xiao et al. proposed to search the optimal one-bit perturbation by altering the sizes of the basin of attractions (BOAs). However, their algorithm requires close observation of the state-transition diagram. In this paper, we propose an algorithm that efficiently determines the BOA size after a perturbation. Our idea is that, if we construct the basin of states for all states, then the size of the BOA of perturbed networks can be obtained just by updating the paths of the states whose transitions have been affected. Results from both synthetic and real biological networks show that the proposed algorithm performs better than the exhaustive SSD-based algorithm and can be applied to networks with about 25 genes.

  2. PARAMETER ESTIMATION IN NON-HOMOGENEOUS BOOLEAN MODELS: AN APPLICATION TO PLANT DEFENSE RESPONSE

    Directory of Open Access Journals (Sweden)

    Maria Angeles Gallego

    2014-11-01

    Full Text Available Many medical and biological problems require to extract information from microscopical images. Boolean models have been extensively used to analyze binary images of random clumps in many scientific fields. In this paper, a particular type of Boolean model with an underlying non-stationary point process is considered. The intensity of the underlying point process is formulated as a fixed function of the distance to a region of interest. A method to estimate the parameters of this Boolean model is introduced, and its performance is checked in two different settings. Firstly, a comparative study with other existent methods is done using simulated data. Secondly, the method is applied to analyze the longleaf data set, which is a very popular data set in the context of point processes included in the R package spatstat. Obtained results show that the new method provides as accurate estimates as those obtained with more complex methods developed for the general case. Finally, to illustrate the application of this model and this method, a particular type of phytopathological images are analyzed. These images show callose depositions in leaves of Arabidopsis plants. The analysis of callose depositions, is very popular in the phytopathological literature to quantify activity of plant immunity.

  3. Origin and Elimination of Two Global Spurious Attractors in Hopfield-Like Neural Network Performing Boolean Factor Analysis

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2010-01-01

    Roč. 73, č. 7-9 (2010), s. 1394-1404 ISSN 0925-2312 R&D Projects: GA ČR GA205/09/1079; GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean factor analysis * Hopfield neural Network * unsupervised learning * dimension reduction * data mining Subject RIV: IN - Informatics, Computer Science Impact factor: 1.429, year: 2010

  4. Efficient Multi-Valued Bounded Model Checking for LTL over Quasi-Boolean Algebras

    OpenAIRE

    Andrade, Jefferson O.; Kameyama, Yukiyoshi

    2012-01-01

    Multi-valued Model Checking extends classical, two-valued model checking to multi-valued logic such as Quasi-Boolean logic. The added expressivity is useful in dealing with such concepts as incompleteness and uncertainty in target systems, while it comes with the cost of time and space. Chechik and others proposed an efficient reduction from multi-valued model checking problems to two-valued ones, but to the authors' knowledge, no study was done for multi-valued bounded model checking. In thi...

  5. Boolean algebra

    CERN Document Server

    Goodstein, R L

    2007-01-01

    This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.

  6. Assessment of Electronic Circuits Reliability Using Boolean Truth Table Modeling Method

    International Nuclear Information System (INIS)

    EI-Shanshoury, A.I.

    2011-01-01

    This paper explores the use of Boolean Truth Table modeling Method (BTTM) in the analysis of qualitative data. It is widely used in certain fields especially in the fields of electrical and electronic engineering. Our work focuses on the evaluation of power supply circuit reliability using (BTTM) which involves systematic attempts to falsify and identify hypotheses on the basis of truth tables constructed from qualitative data. Reliability parameters such as the system's failure rates for the power supply case study are estimated. All possible state combinations (operating and failed states) of the major components in the circuit were listed and their effects on overall system were studied

  7. Boolean gates on actin filaments

    Energy Technology Data Exchange (ETDEWEB)

    Siccardi, Stefano, E-mail: ssiccardi@2ssas.it [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom); Tuszynski, Jack A., E-mail: jackt@ualberta.ca [Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Adamatzky, Andrew, E-mail: andrew.adamatzky@uwe.ac.uk [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom)

    2016-01-08

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.

  8. On a coverage process ranging from the Boolean model to the Poisson–Voronoi tessellation with applications to wireless communications

    OpenAIRE

    Baccelli, François; Błaszczyszyn, Bartłomiej

    2001-01-01

    Projet MCR; We define and analyze a random coverage process of the $d$-dimensional Euclidian space which allows one to describe a continuous spectrum that ranges from the Boolean model to the Poisson-Voronoi tessellation to the Johnson-Mehl model. Like for the Boolean model, the minimal stochastic setting consists of a Poisson point process on this Euclidian space and a sequence of real valued random variables considered as marks of this point process. In this coverage process, the cell attac...

  9. Efficient Multi-Valued Bounded Model Checking for LTL over Quasi-Boolean Algebras

    Science.gov (United States)

    Andrade, Jefferson O.; Kameyama, Yukiyoshi

    Multi-valued Model Checking extends classical, two-valued model checking to multi-valued logic such as Quasi-Boolean logic. The added expressivity is useful in dealing with such concepts as incompleteness and uncertainty in target systems, while it comes with the cost of time and space. Chechik and others proposed an efficient reduction from multi-valued model checking problems to two-valued ones, but to the authors' knowledge, no study was done for multi-valued bounded model checking. In this paper, we propose a novel, efficient algorithm for multi-valued bounded model checking. A notable feature of our algorithm is that it is not based on reduction of multi-values into two-values; instead, it generates a single formula which represents multi-valuedness by a suitable encoding, and asks a standard SAT solver to check its satisfiability. Our experimental results show a significant improvement in the number of variables and clauses and also in execution time compared with the reduction-based one.

  10. Boolean modeling of neural systems with point-process inputs and outputs. Part I: theory and simulations.

    Science.gov (United States)

    Marmarelis, Vasilis Z; Zanos, Theodoros P; Berger, Theodore W

    2009-08-01

    This paper presents a new modeling approach for neural systems with point-process (spike) inputs and outputs that utilizes Boolean operators (i.e. modulo 2 multiplication and addition that correspond to the logical AND and OR operations respectively, as well as the AND_NOT logical operation representing inhibitory effects). The form of the employed mathematical models is akin to a "Boolean-Volterra" model that contains the product terms of all relevant input lags in a hierarchical order, where terms of order higher than first represent nonlinear interactions among the various lagged values of each input point-process or among lagged values of various inputs (if multiple inputs exist) as they reflect on the output. The coefficients of this Boolean-Volterra model are also binary variables that indicate the presence or absence of the respective term in each specific model/system. Simulations are used to explore the properties of such models and the feasibility of their accurate estimation from short data-records in the presence of noise (i.e. spurious spikes). The results demonstrate the feasibility of obtaining reliable estimates of such models, with excitatory and inhibitory terms, in the presence of considerable noise (spurious spikes) in the outputs and/or the inputs in a computationally efficient manner. A pilot application of this approach to an actual neural system is presented in the companion paper (Part II).

  11. APPLICATION OF THE OVERLAY WEIGHTED MODEL AND BOOLEAN LOGIC TO DETERMINE THE BEST LOCATIONS FOR ARTIFICIAL RECHARGE OF GROUNDWATER

    Directory of Open Access Journals (Sweden)

    Max Billib

    2011-12-01

    Full Text Available With population increase, lack of conventional fresh water resources and uncertainties due to climate change, there is growing interest in the arid and semi-arid areas to increase groundwater recharge with recycled water. Finding the best locations for artificial recharge of groundwater in such areas is one of the most crucial design steps to guarantee the long life and the sustainability of these projects. This study presents two ways to go about performing analysis; creating a suitability map to find out the suitability of every location on the map and another way is querying the created data sets to obtain a Boolean result of true or false map. These techniques have been applied on Sadat Industrial City which is located in a semi arid area in the western desert fringes of The Nile delta in the north west of Egypt. Thematic layers for number of parameters were prepared from some maps and satellite images and they have been classified, weighted and integrated in ArcGIS environment. By the means of the overlay weighted model in ArcGIS a suitability map which is classified into number of priority zones was obtained and it could be compared with the obtained true-false map of Boolean logic. Both methods suggested mostly the northern parts of the city for groundwater recharge; however the weighted model could give more accurate suitability map while Boolean logic suggested wider ranges of areas. This study recommends Boolean logic as a first estimator for locating the best locations as it is easier and not time consuming, while the overlay weighted model for more accurate results.

  12. APPLICATION OF THE OVERLAY WEIGHTED MODEL AND BOOLEAN LOGIC TO DETERMINE THE BEST LOCATIONS FOR ARTIFICIAL RECHARGE OF GROUNDWATER

    Directory of Open Access Journals (Sweden)

    Peter H.S. Riad

    2011-01-01

    Full Text Available With population increase, lack of conventional fresh water resources and uncertainties due to climate change, there is growing interest in the arid and semi-arid areas to increase groundwater recharge with recycled water. Finding the best locations for artificial recharge of groundwater in such areas is one of the most crucial design steps to guarantee the long life and the sustainability of these projects. This study presents two ways to go about performing analysis; creating a suitability map to find out the suitability of every location on the map and another way is querying the created data sets to obtain a Boolean result of true or false map. These techniques have been applied on Sadat Industrial City which is located in a semi arid area in the western desert fringes of The Nile delta in the north west of Egypt. Thematic layers for number of parameters were prepared from some maps and satellite images and they have been classified, weighted and integrated in ArcGIS environment. By the means of the overlay weighted model in ArcGIS a suitability map which is classified into number of priority zones was obtained and it could be compared with the obtained true-false map of Boolean logic. Both methods suggested mostly the northern parts of the city for groundwater recharge; however the weighted model could give more accurate suitability map while Boolean logic suggested wider ranges of areas. This study recommends Boolean logic as a first estimator for locating the best locations as it is easier and not time consuming, while the overlay weighted model for more accurate results.

  13. Boolean gates on actin filaments

    Science.gov (United States)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  14. Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm.

    OpenAIRE

    Stoll, Gautier; Viara, Eric; Barillot, Emmanuel; Calzone, Laurence

    2012-01-01

    Abstract Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to validate a network that describes biological observations and predict the effect of perturbations. This article presents an algorithm for modeling biological networks in a discrete framework with continuous time. Background There exist two major types of mathematical modeling approaches: (1) quantitative modeling, representing various chemical species concentrations by real...

  15. Boolean reasoning the logic of boolean equations

    CERN Document Server

    Brown, Frank Markham

    2012-01-01

    A systematic treatment of Boolean reasoning, this concise, newly revised edition combines the works of early logicians with recent investigations, including previously unpublished research results. Brown begins with an overview of elementary mathematical concepts and outlines the theory of Boolean algebras. Two concluding chapters deal with applications. 1990 edition.

  16. Free Boolean Topological Groups

    Directory of Open Access Journals (Sweden)

    Ol’ga Sipacheva

    2015-11-01

    Full Text Available Known and new results on free Boolean topological groups are collected. An account of the properties that these groups share with free or free Abelian topological groups and properties specific to free Boolean groups is given. Special emphasis is placed on the application of set-theoretic methods to the study of Boolean topological groups.

  17. Boolean algebra essentials

    CERN Document Server

    Solomon, Alan D

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

  18. Discrete dynamic modeling of cellular signaling networks.

    Science.gov (United States)

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  19. Generalized Boolean logic Driven Markov Processes: A powerful modeling framework for Model-Based Safety Analysis of dynamic repairable and reconfigurable systems

    International Nuclear Information System (INIS)

    Piriou, Pierre-Yves; Faure, Jean-Marc; Lesage, Jean-Jacques

    2017-01-01

    This paper presents a modeling framework that permits to describe in an integrated manner the structure of the critical system to analyze, by using an enriched fault tree, the dysfunctional behavior of its components, by means of Markov processes, and the reconfiguration strategies that have been planned to ensure safety and availability, with Moore machines. This framework has been developed from BDMP (Boolean logic Driven Markov Processes), a previous framework for dynamic repairable systems. First, the contribution is motivated by pinpointing the limitations of BDMP to model complex reconfiguration strategies and the failures of the control of these strategies. The syntax and semantics of GBDMP (Generalized Boolean logic Driven Markov Processes) are then formally defined; in particular, an algorithm to analyze the dynamic behavior of a GBDMP model is developed. The modeling capabilities of this framework are illustrated on three representative examples. Last, qualitative and quantitative analysis of GDBMP models highlight the benefits of the approach.

  20. Boolean integral calculus

    Science.gov (United States)

    Tucker, Jerry H.; Tapia, Moiez A.; Bennett, A. Wayne

    1988-01-01

    The concept of Boolean integration is developed, and different Boolean integral operators are introduced. Given the changes in a desired function in terms of the changes in its arguments, the ways of 'integrating' (i.e. realizing) such a function, if it exists, are presented. The necessary and sufficient conditions for integrating, in different senses, the expression specifying the changes are obtained. Boolean calculus has applications in the design of logic circuits and in fault analysis.

  1. Properties of Boolean orthoposets

    Science.gov (United States)

    Tkadlec, Josef

    1993-10-01

    A Boolean orthoposet is the orthoposet P fulfilling the following condition: If a, b ∈ P and a ∧ b = 0, then a ⊥ b. This condition seems to be a sound generalization of distributivity in orthoposets. Also, the class of (orthomodular) Boolean orthoposets may play an interesting role in quantum logic theory. This class is wide enough and, on the other hand, enjoys some properties of Boolean algebras. In this paper we summarize results on Boolean orthoposets involving distributivity, set representation, properties of the state space, existence of Jauch-Piron states, and results concerning orthocompleteness and completion.

  2. INCLUSION RATIO BASED ESTIMATOR FOR THE MEAN LENGTH OF THE BOOLEAN LINE SEGMENT MODEL WITH AN APPLICATION TO NANOCRYSTALLINE CELLULOSE

    Directory of Open Access Journals (Sweden)

    Mikko Niilo-Rämä

    2014-06-01

    Full Text Available A novel estimator for estimating the mean length of fibres is proposed for censored data observed in square shaped windows. Instead of observing the fibre lengths, we observe the ratio between the intensity estimates of minus-sampling and plus-sampling. It is well-known that both intensity estimators are biased. In the current work, we derive the ratio of these biases as a function of the mean length assuming a Boolean line segment model with exponentially distributed lengths and uniformly distributed directions. Having the observed ratio of the intensity estimators, the inverse of the derived function is suggested as a new estimator for the mean length. For this estimator, an approximation of its variance is derived. The accuracies of the approximations are evaluated by means of simulation experiments. The novel method is compared to other methods and applied to real-world industrial data from nanocellulose crystalline.

  3. An adaptable Boolean net trainable to control a computing robot

    International Nuclear Information System (INIS)

    Lauria, F. E.; Prevete, R.; Milo, M.; Visco, S.

    1999-01-01

    We discuss a method to implement in a Boolean neural network a Hebbian rule so to obtain an adaptable universal control system. We start by presenting both the Boolean neural net and the Hebbian rule we have considered. Then we discuss, first, the problems arising when the latter is naively implemented in a Boolean neural net, second, the method consenting us to overcome them and the ensuing adaptable Boolean neural net paradigm. Next, we present the adaptable Boolean neural net as an intelligent control system, actually controlling a writing robot, and discuss how to train it in the execution of the elementary arithmetic operations on operands represented by numerals with an arbitrary number of digits

  4. Algebraic partial Boolean algebras

    CERN Document Server

    Smith, D

    2003-01-01

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial...

  5. Algebraic partial Boolean algebras

    Science.gov (United States)

    Smith, Derek

    2003-04-01

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space Script H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E8.

  6. Algebraic partial Boolean algebras

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Derek [Math Department, Lafayette College, Easton, PA 18042 (United States)

    2003-04-04

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A{sub 5} sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E{sub 8}.

  7. The Permeability of Boolean Sets of Cylinders

    Directory of Open Access Journals (Sweden)

    Willot F.

    2016-07-01

    Full Text Available Numerical and analytical results on the permeability of Boolean models of randomly-oriented cylinders with circular cross-section are reported. The present work investigates cylinders of prolate (highly-elongated and oblate (nearly flat types. The fluid flows either inside or outside of the cylinders. The Stokes flow is solved using full-fields Fourier-based computations on 3D binarized microstructures. The permeability is given for varying volume fractions of pores. A new upper-bound is derived for the permeability of the Boolean model of oblate cylinders. The behavior of the permeability in the dilute limit is discussed.

  8. Finite lattice model for molecular aggregation equilibria. Boolean statistics, analytical approximations, and the macroscopic limit.

    Science.gov (United States)

    Rankin, Blake M; Ben-Amotz, Dor; Widom, B

    2015-09-14

    Molecular processes, ranging from hydrophobic aggregation and protein binding to mesoscopic self-assembly, are typically driven by a delicate balance of energetic and entropic non-covalent interactions. Here, we focus on a broad class of such processes in which multiple ligands bind to a central solute molecule as a result of solute-ligand (direct) and/or ligand-ligand (cooperative) interaction energies. Previously, we described a weighted random mixing (WRM) mean-field model for such processes and compared the resulting adsorption isotherms and aggregate size distributions with exact finite lattice (FL) predictions, for lattices with up to n = 20 binding sites. Here, we compare FL predictions obtained using both Bethe-Guggenheim (BG) and WRM approximations, and find that the latter two approximations are complementary, as they are each most accurate in different aggregation regimes. Moreover, we describe a computationally efficient method for exhaustively counting nearest neighbors in FL configurations, thus making it feasible to obtain FL predictions for systems with up n = 48 binding sites, whose properties approach the thermodynamic (infinite lattice) limit. We further illustrate the applicability of our results by comparing lattice model and molecular dynamics simulation predictions pertaining to the aggregation of methane around neopentane.

  9. Two Expectation-Maximization Algorithms for Boolean Factor Analysis

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.

    2014-01-01

    Roč. 130, 23 April (2014), s. 83-97 ISSN 0925-2312 R&D Projects: GA ČR GAP202/10/0262 Grant - others:GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Program:ED Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean Factor analysis * Binary Matrix factorization * Neural networks * Binary data model * Dimension reduction * Bars problem Subject RIV: IN - Informatics, Computer Science Impact factor: 2.083, year: 2014

  10. Approximate Reasoning with Fuzzy Booleans

    NARCIS (Netherlands)

    van den Broek, P.M.; Noppen, J.A.R.

    This paper introduces, in analogy to the concept of fuzzy numbers, the concept of fuzzy booleans, and examines approximate reasoning with the compositional rule of inference using fuzzy booleans. It is shown that each set of fuzzy rules is equivalent to a set of fuzzy rules with singleton crisp

  11. Geometric Operators on Boolean Functions

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Falster, Peter

    In truth-functional propositional logic, any propositional formula represents a Boolean function (according to some valuation of the formula). We describe operators based on Decartes' concept of constructing coordinate systems, for translation of a propositional formula to the image of a Boolean...... function. With this image of a Boolean function corresponding to a propositional formula, we prove that the orthogonal projection operator leads to a theorem describing all rules of inference in propositional reasoning. In other words, we can capture all kinds of inference in propositional logic by means...... of a few geometric operators working on the images of Boolean functions. The operators we describe, arise from the niche area of array-based logic and have previously been tightly bound to an array-based representation of Boolean functions. We redefine the operators in an abstract form to make them...

  12. Cryptographic Boolean functions and applications

    CERN Document Server

    Cusick, Thomas W

    2009-01-01

    Boolean functions are the building blocks of symmetric cryptographic systems. Symmetrical cryptographic algorithms are fundamental tools in the design of all types of digital security systems (i.e. communications, financial and e-commerce).Cryptographic Boolean Functions and Applications is a concise reference that shows how Boolean functions are used in cryptography. Currently, practitioners who need to apply Boolean functions in the design of cryptographic algorithms and protocols need to patch together needed information from a variety of resources (books, journal articles and other sources). This book compiles the key essential information in one easy to use, step-by-step reference. Beginning with the basics of the necessary theory the book goes on to examine more technical topics, some of which are at the frontier of current research.-Serves as a complete resource for the successful design or implementation of cryptographic algorithms or protocols using Boolean functions -Provides engineers and scient...

  13. On Kolmogorov's superpositions and Boolean functions

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    The paper overviews results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on an explicit numerical (i.e., constructive) algorithm for Kolmogorov's superpositions they will show that for obtaining minimum size neutral networks for implementing any Boolean function, the activation function of the neurons is the identity function. Because classical AND-OR implementations, as well as threshold gate implementations require exponential size (in the worst case), it will follow that size-optimal solutions for implementing arbitrary Boolean functions require analog circuitry. Conclusions and several comments on the required precision are ending the paper.

  14. Development of Boolean calculus and its application

    Science.gov (United States)

    Tapia, M. A.

    1979-01-01

    Formal procedures for synthesis of asynchronous sequential system using commercially available edge-sensitive flip-flops are developed. Boolean differential is defined. The exact number of compatible integrals of a Boolean differential were calculated.

  15. Boolean-Valued Belief Functions

    Czech Academy of Sciences Publication Activity Database

    Kramosil, Ivan

    2002-01-01

    Roč. 31, č. 2 (2002), s. 153-181 ISSN 0308-1079 R&D Projects: GA AV ČR IAA1030803 Institutional research plan: AV0Z1030915 Keywords : Dempster-Schafer theory * Boolean algebra Subject RIV: BA - General Mathematics Impact factor: 0.241, year: 2002

  16. Modular Decomposition of Boolean Functions

    NARCIS (Netherlands)

    J.C. Bioch (Cor)

    2002-01-01

    textabstractModular decomposition is a thoroughly investigated topic in many areas such as switching theory, reliability theory, game theory and graph theory. Most appli- cations can be formulated in the framework of Boolean functions. In this paper we give a uni_ed treatment of modular

  17. Quantum algorithms for testing Boolean functions

    Directory of Open Access Journals (Sweden)

    Erika Andersson

    2010-06-01

    Full Text Available We discuss quantum algorithms, based on the Bernstein-Vazirani algorithm, for finding which variables a Boolean function depends on. There are 2^n possible linear Boolean functions of n variables; given a linear Boolean function, the Bernstein-Vazirani quantum algorithm can deterministically identify which one of these Boolean functions we are given using just one single function query. The same quantum algorithm can also be used to learn which input variables other types of Boolean functions depend on, with a success probability that depends on the form of the Boolean function that is tested, but does not depend on the total number of input variables. We also outline a procedure to futher amplify the success probability, based on another quantum algorithm, the Grover search.

  18. Modeling Epidemic Network Failures

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova

    2013-01-01

    This paper presents the implementation of a failure propagation model for transport networks when multiple failures occur resulting in an epidemic. We model the Susceptible Infected Disabled (SID) epidemic model and validate it by comparing it to analytical solutions. Furthermore, we evaluate...... to evaluate multiple epidemic scenarios in various network types....

  19. Modeling the citation network by network cosmology.

    Science.gov (United States)

    Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing

    2015-01-01

    Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.

  20. Brain Network Modelling

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther

    Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state f...... for their ability to reproduce node clustering and predict unseen data. Comparing the models on whole brain networks, BCD and IRM showed better reproducibility and predictability than IDM, suggesting that resting state networks exhibit community structure. This also points to the importance of using models, which...... allow for complex interactions between all pairs of clusters. In addition, it is demonstrated how the IRM can be used for segmenting brain structures into functionally coherent clusters. A new nonparametric Bayesian network model is presented. The model builds upon the IRM and can be used to infer...

  1. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  2. Testing Properties of Boolean Functions

    Science.gov (United States)

    2012-01-01

    The JUNTATEST algorithm is based on two simple but powerful ideas. The first idea, initially presented by Fischer et al. [52], is that there is a very...Computer and System Sciences, 61(3):428 – 456, 2000. 12 [75] Subhash Khot. On the power of unique 2-prover 1-round games. In Proc. 34th ACM Symposium on...Sharpness of KKL on Schreier graphs, 2009. Manuscript. 6.4 [84] Michal Parnas, Dana Ron, and Alex Samorodnitsky. Testing basic boolean formu- lae . SIAM J

  3. Learning Boolean Networks in HepG2 cells using ToxCast High-Content Imaging Data (SOT annual meeting)

    Science.gov (United States)

    Cells adapt to their environment via homeostatic processes that are regulated by complex molecular networks. Our objective was to learn key elements of these networks in HepG2 cells using ToxCast High-content imaging (HCI) measurements taken over three time points (1, 24, and 72h...

  4. Version Spaces and Generalized Monotone Boolean Functions

    NARCIS (Netherlands)

    J.C. Bioch (Cor); T. Ibaraki

    2002-01-01

    textabstractWe consider generalized monotone functions f: X --> {0,1} defined for an arbitrary binary relation <= on X by the property x <= y implies f(x) <= f(y). These include the standard monotone (or positive) Boolean functions, regular Boolean functions and other interesting functions as

  5. Multipath Detection Using Boolean Satisfiability Techniques

    Directory of Open Access Journals (Sweden)

    Fadi A. Aloul

    2011-01-01

    Full Text Available A new technique for multipath detection in wideband mobile radio systems is presented. The proposed scheme is based on an intelligent search algorithm using Boolean Satisfiability (SAT techniques to search through the uncertainty region of the multipath delays. The SAT-based scheme utilizes the known structure of the transmitted wideband signal, for example, pseudo-random (PN code, to effectively search through the entire space by eliminating subspaces that do not contain a possible solution. The paper presents a framework for modeling the multipath detection problem as a SAT application. It also provides simulation results that demonstrate the effectiveness of the proposed scheme in detecting the multipath components in frequency-selective Rayleigh fading channels.

  6. Network-based identification of biomarkers coexpressed with multiple pathways.

    Science.gov (United States)

    Guo, Nancy Lan; Wan, Ying-Wooi

    2014-01-01

    Unraveling complex molecular interactions and networks and incorporating clinical information in modeling will present a paradigm shift in molecular medicine. Embedding biological relevance via modeling molecular networks and pathways has become increasingly important for biomarker identification in cancer susceptibility and metastasis studies. Here, we give a comprehensive overview of computational methods used for biomarker identification, and provide a performance comparison of several network models used in studies of cancer susceptibility, disease progression, and prognostication. Specifically, we evaluated implication networks, Boolean networks, Bayesian networks, and Pearson's correlation networks in constructing gene coexpression networks for identifying lung cancer diagnostic and prognostic biomarkers. The results show that implication networks, implemented in Genet package, identified sets of biomarkers that generated an accurate prediction of lung cancer risk and metastases; meanwhile, implication networks revealed more biologically relevant molecular interactions than Boolean networks, Bayesian networks, and Pearson's correlation networks when evaluated with MSigDB database.

  7. Network-Based Identification of Biomarkers Coexpressed with Multiple Pathways

    Science.gov (United States)

    Guo, Nancy Lan; Wan, Ying-Wooi

    2014-01-01

    Unraveling complex molecular interactions and networks and incorporating clinical information in modeling will present a paradigm shift in molecular medicine. Embedding biological relevance via modeling molecular networks and pathways has become increasingly important for biomarker identification in cancer susceptibility and metastasis studies. Here, we give a comprehensive overview of computational methods used for biomarker identification, and provide a performance comparison of several network models used in studies of cancer susceptibility, disease progression, and prognostication. Specifically, we evaluated implication networks, Boolean networks, Bayesian networks, and Pearson’s correlation networks in constructing gene coexpression networks for identifying lung cancer diagnostic and prognostic biomarkers. The results show that implication networks, implemented in Genet package, identified sets of biomarkers that generated an accurate prediction of lung cancer risk and metastases; meanwhile, implication networks revealed more biologically relevant molecular interactions than Boolean networks, Bayesian networks, and Pearson’s correlation networks when evaluated with MSigDB database. PMID:25392692

  8. Boolean Dependence Logic and Partially-Ordered Connectives

    OpenAIRE

    Ebbing, Johannes; Hella, Lauri; Lohmann, Peter; Virtema, Jonni

    2014-01-01

    We introduce a new variant of dependence logic called Boolean dependence logic. In Boolean dependence logic dependence atoms are of the type =(x_1,...,x_n,\\alpha), where \\alpha is a Boolean variable. Intuitively, with Boolean dependence atoms one can express quantification of relations, while standard dependence atoms express quantification over functions. We compare the expressive power of Boolean dependence logic to dependence logic and first-order logic enriched by partially-ordered connec...

  9. Noisy random Boolean formulae: a statistical physics perspective.

    Science.gov (United States)

    Mozeika, Alexander; Saad, David; Raymond, Jack

    2010-10-01

    Properties of computing Boolean circuits composed of noisy logical gates are studied using the statistical physics methodology. A formula-growth model that gives rise to random Boolean functions is mapped onto a spin system, which facilitates the study of their typical behavior in the presence of noise. Bounds on their performance, derived in the information theory literature for specific gates, are straightforwardly retrieved, generalized and identified as the corresponding macroscopic phase transitions. The framework is employed for deriving results on error-rates at various function-depths and function sensitivity, and their dependence on the gate-type and noise model used. These are difficult to obtain via the traditional methods used in this field.

  10. Models of educational institutions' networking

    OpenAIRE

    Shilova Olga Nikolaevna

    2015-01-01

    The importance of educational institutions' networking in modern sociocultural conditions and a definition of networking in education are presented in the article. The results of research levels, methods and models of educational institutions' networking are presented and substantially disclosed.

  11. Statistical Models for Social Networks

    NARCIS (Netherlands)

    Snijders, Tom A. B.; Cook, KS; Massey, DS

    2011-01-01

    Statistical models for social networks as dependent variables must represent the typical network dependencies between tie variables such as reciprocity, homophily, transitivity, etc. This review first treats models for single (cross-sectionally observed) networks and then for network dynamics. For

  12. Discrete dynamic modeling of T cell survival signaling networks

    Science.gov (United States)

    Zhang, Ranran

    2009-03-01

    Biochemistry-based frameworks are often not applicable for the modeling of heterogeneous regulatory systems that are sparsely documented in terms of quantitative information. As an alternative, qualitative models assuming a small set of discrete states are gaining acceptance. This talk will present a discrete dynamic model of the signaling network responsible for the survival and long-term competence of cytotoxic T cells in the blood cancer T-LGL leukemia. We integrated the signaling pathways involved in normal T cell activation and the known deregulations of survival signaling in leukemic T-LGL, and formulated the regulation of each network element as a Boolean (logic) rule. Our model suggests that the persistence of two signals is sufficient to reproduce all known deregulations in leukemic T-LGL. It also indicates the nodes whose inactivity is necessary and sufficient for the reversal of the T-LGL state. We have experimentally validated several model predictions, including: (i) Inhibiting PDGF signaling induces apoptosis in leukemic T-LGL. (ii) Sphingosine kinase 1 and NFκB are essential for the long-term survival of T cells in T-LGL leukemia. (iii) T box expressed in T cells (T-bet) is constitutively activated in the T-LGL state. The model has identified potential therapeutic targets for T-LGL leukemia and can be used for generating long-term competent CTL necessary for tumor and cancer vaccine development. The success of this model, and of other discrete dynamic models, suggests that the organization of signaling networks has an determining role in their dynamics. Reference: R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, T. P. Loughran, Jr., Network Model of Survival Signaling in LGL Leukemia, PNAS 105, 16308-16313 (2008).

  13. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim

    2014-12-03

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  14. A New Calculation for Boolean Derivative Using Cheng Product

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2012-01-01

    Full Text Available The matrix expression and relationships among several definitions of Boolean derivatives are given by using the Cheng product. We introduce several definitions of Boolean derivatives. By using the Cheng product, the matrix expressions of Boolean derivative are given, respectively. Furthermore, the relationships among different definitions are presented. The logical calculation is converted into matrix product. This helps to extend the application of Boolean derivative. At last, an example is given to illustrate the main results.

  15. Modeling online social signed networks

    Science.gov (United States)

    Li, Le; Gu, Ke; Zeng, An; Fan, Ying; Di, Zengru

    2018-04-01

    People's online rating behavior can be modeled by user-object bipartite networks directly. However, few works have been devoted to reveal the hidden relations between users, especially from the perspective of signed networks. We analyze the signed monopartite networks projected by the signed user-object bipartite networks, finding that the networks are highly clustered with obvious community structure. Interestingly, the positive clustering coefficient is remarkably higher than the negative clustering coefficient. Then, a Signed Growing Network model (SGN) based on local preferential attachment is proposed to generate a user's signed network that has community structure and high positive clustering coefficient. Other structural properties of the modeled networks are also found to be similar to the empirical networks.

  16. A neighbourhood evolving network model

    International Nuclear Information System (INIS)

    Cao, Y.J.; Wang, G.Z.; Jiang, Q.Y.; Han, Z.X.

    2006-01-01

    Many social, technological, biological and economical systems are best described by evolved network models. In this short Letter, we propose and study a new evolving network model. The model is based on the new concept of neighbourhood connectivity, which exists in many physical complex networks. The statistical properties and dynamics of the proposed model is analytically studied and compared with those of Barabasi-Albert scale-free model. Numerical simulations indicate that this network model yields a transition between power-law and exponential scaling, while the Barabasi-Albert scale-free model is only one of its special (limiting) cases. Particularly, this model can be used to enhance the evolving mechanism of complex networks in the real world, such as some social networks development

  17. Evolutionary Algorithms for Boolean Queries Optimization

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Snášel, Václav; Neruda, Roman; Owais, S.S.J.; Krömer, P.

    2006-01-01

    Roč. 3, č. 1 (2006), s. 15-20 ISSN 1790-0832 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * information retrieval * Boolean query Subject RIV: BA - General Mathematics

  18. Boolean Queries Optimization by Genetic Algorithms

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Owais, S.S.J.; Krömer, P.; Snášel, Václav

    2005-01-01

    Roč. 15, - (2005), s. 395-409 ISSN 1210-0552 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * genetic programming * information retrieval * Boolean query Subject RIV: BB - Applied Statistics, Operational Research

  19. Comparison of Seven Methods for Boolean Factor Analysis and Their Evaluation by Information Gain

    Czech Academy of Sciences Publication Activity Database

    Frolov, A.; Húsek, Dušan; Polyakov, P.Y.

    2016-01-01

    Roč. 27, č. 3 (2016), s. 538-550 ISSN 2162-237X R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:67985807 Keywords : associative memory * bars problem (BP) * Boolean factor analysis (BFA) * data mining * dimension reduction * Hebbian learning rule * information gain * likelihood maximization (LM) * neural network application * recurrent neural network * statistics Subject RIV: IN - Informatics, Computer Science Impact factor: 6.108, year: 2016

  20. A GA-P algorithm to automatically formulate extended Boolean queries for a fuzzy information retrieval system

    OpenAIRE

    Cordón García, Oscar; Moya Anegón, Félix de; Zarco Fernández, Carmen

    2000-01-01

    [ES] Although the fuzzy retrieval model constitutes a powerful extension of the boolean one, being able to deal with the imprecision and subjectivity existing in the Information Retrieval process, users are not usually able to express their query requirements in the form of an extended boolean query including weights. To solve this problem, different tools to assist the user in the query formulation have been proposed. In this paper, the genetic algorithm-programming technique is considered t...

  1. Simple model for directed networks

    Science.gov (United States)

    Morelli, Luis G.

    2003-06-01

    We study a model for directed networks based on the Watts-Stogatz model for small-world phenomena. We focus on some topological aspects of directed networks inspired in food web theory, namely, the fraction of basal and top nodes in the network and node level distributions. We argue that in directed networks basal nodes play an important role, collecting information or resources from the environment. We give analytical expressions for the fraction of basal and top nodes for the model, and study the node level distributions with numerical simulations.

  2. Boolean representations of simplicial complexes and matroids

    CERN Document Server

    Rhodes, John

    2015-01-01

    This self-contained monograph explores a new theory centered around boolean representations of simplicial complexes leading to a new class of complexes featuring matroids as central to the theory. The book illustrates these new tools to study the classical theory of matroids as well as their important geometric connections. Moreover, many geometric and topological features of the theory of matroids find their counterparts in this extended context.   Graduate students and researchers working in the areas of combinatorics, geometry, topology, algebra and lattice theory will find this monograph appealing due to the wide range of new problems raised by the theory. Combinatorialists will find this extension of the theory of matroids useful as it opens new lines of research within and beyond matroids. The geometric features and geometric/topological applications will appeal to geometers. Topologists who desire to perform algebraic topology computations will appreciate the algorithmic potential of boolean represent...

  3. Totally optimal decision trees for Boolean functions

    KAUST Repository

    Chikalov, Igor

    2016-07-28

    We study decision trees which are totally optimal relative to different sets of complexity parameters for Boolean functions. A totally optimal tree is an optimal tree relative to each parameter from the set simultaneously. We consider the parameters characterizing both time (in the worst- and average-case) and space complexity of decision trees, i.e., depth, total path length (average depth), and number of nodes. We have created tools based on extensions of dynamic programming to study totally optimal trees. These tools are applicable to both exact and approximate decision trees, and allow us to make multi-stage optimization of decision trees relative to different parameters and to count the number of optimal trees. Based on the experimental results we have formulated the following hypotheses (and subsequently proved): for almost all Boolean functions there exist totally optimal decision trees (i) relative to the depth and number of nodes, and (ii) relative to the depth and average depth.

  4. Quotients of Boolean algebras and regular subalgebras

    Czech Academy of Sciences Publication Activity Database

    Balcar, Bohuslav; Pazák, Tomáš

    2010-01-01

    Roč. 49, č. 3 (2010), s. 329-342 ISSN 1432-0665 R&D Projects: GA AV ČR IAA100190509; GA MŠk MEB060909 Institutional research plan: CEZ:AV0Z10190503; CEZ:AV0Z10750506 Keywords : Boolean algebra * sequential topology * ZFC extension * ideal Subject RIV: BA - General Mathematics Impact factor: 0.414, year: 2010 http://link.springer.com/article/10.1007%2Fs00153-010-0174-y

  5. Complex Networks in Psychological Models

    Science.gov (United States)

    Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.

    We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.

  6. Developing Personal Network Business Models

    DEFF Research Database (Denmark)

    Saugstrup, Dan; Henten, Anders

    2006-01-01

    The aim of the paper is to examine the issue of business modeling in relation to personal networks, PNs. The paper builds on research performed on business models in the EU 1ST MAGNET1 project (My personal Adaptive Global NET). The paper presents the Personal Network concept and briefly reports...... on the 'state of the art' in the field of business modeling. Furthermore, the paper suggests three generic business models for PNs: a service oriented model, a self-organized model, and a combination model. Finally, examples of relevant services and applications in relation to three different cases...... are presented and analyzed in light of business modeling of PN....

  7. Reconfigurable Boolean logic using magnetic single-electron transistors.

    Directory of Open Access Journals (Sweden)

    M Fernando Gonzalez-Zalba

    Full Text Available We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET. The device consists of an aluminium single-electron transistor with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer, which induces a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network.

  8. Reconfigurable Boolean Logic Using Magnetic Single-Electron Transistors

    Science.gov (United States)

    Gonzalez-Zalba, M. Fernando; Ciccarelli, Chiara; Zarbo, Liviu P.; Irvine, Andrew C.; Campion, Richard C.; Gallagher, Bryan L.; Jungwirth, Tomas; Ferguson, Andrew J.; Wunderlich, Joerg

    2015-01-01

    We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET). The device consists of an aluminium single-electron transistor with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer, which induces a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network. PMID:25923789

  9. Unlimited multistability and Boolean logic in microbial signalling

    DEFF Research Database (Denmark)

    Kothamachu, Varun B; Feliu, Elisenda; Cardelli, Luca

    2015-01-01

    reactions. We develop a mathematical framework for analysing microbial systems with multi-domain HK receptors known as hybrid and unorthodox HKs. We show that these systems embed a simple core network that exhibits multistability, thereby unveiling a novel biochemical mechanism for multistability. We...... further prove that sharing of downstream components allows a system with n multi-domain hybrid HKs to attain 3n steady states. We find that such systems, when sensing distinct signals, can readily implement Boolean logic functions on these signals. Using two experimentally studied examples of two......-component systems implementing hybrid HKs, we show that bistability and implementation of logic functions are possible under biologically feasible reaction rates. Furthermore, we show that all sequenced microbial genomes contain significant numbers of hybrid and unorthodox HKs, and some genomes have a larger...

  10. A model of coauthorship networks

    Science.gov (United States)

    Zhou, Guochang; Li, Jianping; Xie, Zonglin

    2017-10-01

    A natural way of representing the coauthorship of authors is to use a generalization of graphs known as hypergraphs. A random geometric hypergraph model is proposed here to model coauthorship networks, which is generated by placing nodes on a region of Euclidean space randomly and uniformly, and connecting some nodes if the nodes satisfy particular geometric conditions. Two kinds of geometric conditions are designed to model the collaboration patterns of academic authorities and basic researches respectively. The conditions give geometric expressions of two causes of coauthorship: the authority and similarity of authors. By simulation and calculus, we show that the forepart of the degree distribution of the network generated by the model is mixture Poissonian, and the tail is power-law, which are similar to these of some coauthorship networks. Further, we show more similarities between the generated network and real coauthorship networks: the distribution of cardinalities of hyperedges, high clustering coefficient, assortativity, and small-world property

  11. Telecommunications network modelling, planning and design

    CERN Document Server

    Evans, Sharon

    2003-01-01

    Telecommunication Network Modelling, Planning and Design addresses sophisticated modelling techniques from the perspective of the communications industry and covers some of the major issues facing telecommunications network engineers and managers today. Topics covered include network planning for transmission systems, modelling of SDH transport network structures and telecommunications network design and performance modelling, as well as network costs and ROI modelling and QoS in 3G networks.

  12. Boolean Differentiation Equations Applicable in Reconfigurable Computational Medium

    Directory of Open Access Journals (Sweden)

    Shidlovskiy Stanislav

    2016-01-01

    Full Text Available High performance computing environment synthesis with parallel architecture reconstructing throughout the process itself is described. Synthesized computational medium involving Boolean differential equation calculations so as to function in real-time image processing. Automaton imaging was illustrated involving the rearrangement of every processing medium element to calculate the partial differentials of n-th order in respect to Boolean function variables. The method of obtaining setting codes for each element was also described. An example in calculating 2nd -order Boolean derivative to two differentials in respect to Boolean functions, depending on three arguments within the reconstructible computational medium of 8×8 processing elements was given.

  13. The Number of Monotone and Self-Dual Boolean Functions

    Directory of Open Access Journals (Sweden)

    Haviarova L.

    2014-12-01

    Full Text Available In the present paper we study properties of pre-complete class of Boolean functions - monotone Boolean functions. We discuss interval graph, the abbreviated d.n.f., a minimal d.n.f. and a shortest d.n.f. of this function. Then we present a d.n.f. with the highest number of conjunctionsand we determinate the exact number of them. We count the number of monotone Boolean functions with some special properties. In the end we estimate the number of Boolean functionthat are monotone and self-dual at the same time.

  14. Campus network security model study

    Science.gov (United States)

    Zhang, Yong-ku; Song, Li-ren

    2011-12-01

    Campus network security is growing importance, Design a very effective defense hacker attacks, viruses, data theft, and internal defense system, is the focus of the study in this paper. This paper compared the firewall; IDS based on the integrated, then design of a campus network security model, and detail the specific implementation principle.

  15. Logical Attractors: a Boolean Approach to the Dynamics of Psychosis

    Science.gov (United States)

    Kupper, Z.; Hoffmann, H.

    A Boolean modeling approach to attractors in the dynamics of psychosis is presented: Kinetic Logic, originating from R. Thomas, describes systems on an intermediate level between a purely verbal, qualitative description and a description using nonlinear differential equations. With this method we may model impact, feedback and temporal evolution, as well as analyze the resulting attractors. In our previous research the method has been applied to general and more specific questions in the dynamics of psychotic disorders. In this paper a model is introduced that describes different dynamical patterns of chronic psychosis in the context of vocational rehabilitation. It also shows to be useful in formulating and exploring possible treatment strategies. Finally, some of the limitations and benefits of Kinetic Logic as a modeling tool for psychology and psychiatry are discussed.

  16. Energy Efficient Wireless Sensor Network Modelling Based on Complex Networks

    OpenAIRE

    Xiao, Lin; Wu, Fahui; Yang, Dingcheng; Zhang, Tiankui; Zhu, Xiaoya

    2016-01-01

    The power consumption and energy efficiency of wireless sensor network are the significant problems in Internet of Things network. In this paper, we consider the network topology optimization based on complex network theory to solve the energy efficiency problem of WSN. We propose the energy efficient model of WSN according to the basic principle of small world from complex networks. Small world network has clustering features that are similar to that of the rules of the network but also has ...

  17. Generalized Network Psychometrics : Combining Network and Latent Variable Models

    NARCIS (Netherlands)

    Epskamp, S.; Rhemtulla, M.; Borsboom, D.

    2017-01-01

    We introduce the network model as a formal psychometric model, conceptualizing the covariance between psychometric indicators as resulting from pairwise interactions between observable variables in a network structure. This contrasts with standard psychometric models, in which the covariance between

  18. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  19. Modeling semiflexible polymer networks

    NARCIS (Netherlands)

    Broedersz, C.P.; MacKintosh, F.C.

    2014-01-01

    This is an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have

  20. Large Sets in Boolean and Non-Boolean Groups and Topology

    Directory of Open Access Journals (Sweden)

    Ol’ga V. Sipacheva

    2017-10-01

    Full Text Available Various notions of large sets in groups, including the classical notions of thick, syndetic, and piecewise syndetic sets and the new notion of vast sets in groups, are studied with emphasis on the interplay between such sets in Boolean groups. Natural topologies closely related to vast sets are considered; as a byproduct, interesting relations between vast sets and ultrafilters are revealed.

  1. A complexity theory based on Boolean algebra

    DEFF Research Database (Denmark)

    Skyum, Sven; Valiant, Leslie

    1985-01-01

    A projection of a Boolean function is a function obtained by substituting for each of its variables a variable, the negation of a variable, or a constant. Reducibilities among computational problems under this relation of projection are considered. It is shown that much of what is of everyday rel...... relevance in Turing-machine-based complexity theory can be replicated easily and naturally in this elementary framework. Finer distinctions about the computational relationships among natural problems can be made than in previous formulations and some negative results are proved....

  2. The Boolean algebra and central Galois algebras

    Directory of Open Access Journals (Sweden)

    George Szeto

    2001-01-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb   for all   x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.

  3. Comment on the Berkeley kinetic network model

    NARCIS (Netherlands)

    Doeksen, D.K.; Jongschaap, R.J.J.; Kamphuis, H.

    1985-01-01

    A kinetic model for the rheological behavior of polymeric systems, i.e. the Berkeley kinetic network model, is compared with a generalized transient-network model. It turns out that the Berkeley kinetic network model fits quite well in the framework of the transient-network model. From the point of

  4. Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games

    NARCIS (Netherlands)

    Kant, Gijs; van de Pol, Jan Cornelis; Wijs, A.J.; Bošnački, D.; Edelkamp, S.

    Parameterised Boolean Equation Systems (PBESs) are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal μ-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then

  5. GBL-2D Version 1.0: a 2D geometry boolean library.

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J. (Elemental Technologies, American Fort, UT)

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  6. Boolean orthoposets and two-valued states on them

    Science.gov (United States)

    Tkadlec, Josef

    1992-06-01

    A Boolean orthoposet (see e.g. [2]) is the orthoposet P fulfilling the following condition: If a, b ∈ P and a ∧ b = 0 then a⊥ b. This condition seems to be a sound generalization of distributivity in orthoposets (see e.g. [8]). Also, the class of (orthomodular) Boolean orthoposets may play an interesting role in quantum logic theory. This class is wide enough (see [4,3]) and on the other hand, enjoys some properties of Boolean algebras [4,8,5]. In quantum logic theory an important role is played by so-called Jauch-Piron states [1,6,7]. In this paper we clarify the connection between Boolean orthoposets and orthoposets with "enough" two-valued Jauch-Piron states. Further, we obtain a characterization of Boolean orthoposets in terms of two-valued states.

  7. Network model of security system

    Directory of Open Access Journals (Sweden)

    Adamczyk Piotr

    2016-01-01

    Full Text Available The article presents the concept of building a network security model and its application in the process of risk analysis. It indicates the possibility of a new definition of the role of the network models in the safety analysis. Special attention was paid to the development of the use of an algorithm describing the process of identifying the assets, vulnerability and threats in a given context. The aim of the article is to present how this algorithm reduced the complexity of the problem by eliminating from the base model these components that have no links with others component and as a result and it was possible to build a real network model corresponding to reality.

  8. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  9. PREDICTING THE EFFECTIVENESS OF WEB INFORMATION SYSTEMS USING NEURAL NETWORKS MODELING: FRAMEWORK & EMPIRICAL TESTING

    Directory of Open Access Journals (Sweden)

    Dr. Kamal Mohammed Alhendawi

    2018-02-01

    Full Text Available The information systems (IS assessment studies have still used the commonly traditional tools such as questionnaires in evaluating the dependent variables and specially effectiveness of systems. Artificial neural networks have been recently accepted as an effective alternative tool for modeling the complicated systems and widely used for forecasting. A very few is known about the employment of Artificial Neural Network (ANN in the prediction IS effectiveness. For this reason, this study is considered as one of the fewest studies to investigate the efficiency and capability of using ANN for forecasting the user perceptions towards IS effectiveness where MATLAB is utilized for building and training the neural network model. A dataset of 175 subjects collected from international organization are utilized for ANN learning where each subject consists of 6 features (5 quality factors as inputs and one Boolean output. A percentage of 75% o subjects are used in the training phase. The results indicate an evidence on the ANN models has a reasonable accuracy in forecasting the IS effectiveness. For prediction, ANN with PURELIN (ANNP and ANN with TANSIG (ANNTS transfer functions are used. It is found that both two models have a reasonable prediction, however, the accuracy of ANNTS model is better than ANNP model (88.6% and 70.4% respectively. As the study proposes a new model for predicting IS dependent variables, it could save the considerably high cost that might be spent in sample data collection in the quantitative studies in the fields science, management, education, arts and others.

  10. Target-Centric Network Modeling

    DEFF Research Database (Denmark)

    Mitchell, Dr. William L.; Clark, Dr. Robert M.

    In Target-Centric Network Modeling: Case Studies in Analyzing Complex Intelligence Issues, authors Robert Clark and William Mitchell take an entirely new approach to teaching intelligence analysis. Unlike any other book on the market, it offers case study scenarios using actual intelligence...... reporting formats, along with a tested process that facilitates the production of a wide range of analytical products for civilian, military, and hybrid intelligence environments. Readers will learn how to perform the specific actions of problem definition modeling, target network modeling......, and collaborative sharing in the process of creating a high-quality, actionable intelligence product. The case studies reflect the complexity of twenty-first century intelligence issues by dealing with multi-layered target networks that cut across political, economic, social, technological, and military issues...

  11. Target-Centric Network Modeling

    DEFF Research Database (Denmark)

    Mitchell, Dr. William L.; Clark, Dr. Robert M.

    reporting formats, along with a tested process that facilitates the production of a wide range of analytical products for civilian, military, and hybrid intelligence environments. Readers will learn how to perform the specific actions of problem definition modeling, target network modeling......, and collaborative sharing in the process of creating a high-quality, actionable intelligence product. The case studies reflect the complexity of twenty-first century intelligence issues by dealing with multi-layered target networks that cut across political, economic, social, technological, and military issues...

  12. Ising model for distribution networks

    Science.gov (United States)

    Hooyberghs, H.; Van Lombeek, S.; Giuraniuc, C.; Van Schaeybroeck, B.; Indekeu, J. O.

    2012-01-01

    An elementary Ising spin model is proposed for demonstrating cascading failures (breakdowns, blackouts, collapses, avalanches, etc.) that can occur in realistic networks for distribution and delivery by suppliers to consumers. A ferromagnetic Hamiltonian with quenched random fields results from policies that maximize the gap between demand and delivery. Such policies can arise in a competitive market where firms artificially create new demand, or in a solidarity environment where too high a demand cannot reasonably be met. Network failure in the context of a policy of solidarity is possible when an initially active state becomes metastable and decays to a stable inactive state. We explore the characteristics of the demand and delivery, as well as the topological properties, which make the distribution network susceptible of failure. An effective temperature is defined, which governs the strength of the activity fluctuations which can induce a collapse. Numerical results, obtained by Monte Carlo simulations of the model on (mainly) scale-free networks, are supplemented with analytic mean-field approximations to the geometrical random field fluctuations and the thermal spin fluctuations. The role of hubs versus poorly connected nodes in initiating the breakdown of network activity is illustrated and related to model parameters.

  13. Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography.

    Science.gov (United States)

    Picek, Stjepan; Carlet, Claude; Guilley, Sylvain; Miller, Julian F; Jakobovic, Domagoj

    2016-01-01

    The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.

  14. The Boolean algebra of Galois algebras

    Directory of Open Access Journals (Sweden)

    Lianyong Xue

    2003-02-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B|bx=g(xb for all x∈B} for each g∈G, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|g∈G}, e a nonzero element in Ba, and He={g∈G|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.

  15. Theory reduction and non-Boolean theories.

    Science.gov (United States)

    Primas, H

    1977-07-19

    It is suggested that biological theories should be embedded into the family of non-Boolean theories based on an orthomodular propositional calculus. The structure of universal theories that include quantal phenomena is investigated and it is shown that their subtheories form a directed set which cannot be totally orders. A precise definition of theory reduction is given; it turns out that hierarchically different descriptive levels are not related by a homomorphic map. A subtheory that is reducible to a more general theory can be associated with the emergence of novel concepts and is in general subject to a wider empirical clissification scheme than the reducing theory. The implications of these results for reductionism, holism, emergence, and their conceptual unification are discussed.

  16. Representing Boolean Functions by Decision Trees

    KAUST Repository

    Chikalov, Igor

    2011-01-01

    A Boolean or discrete function can be represented by a decision tree. A compact form of decision tree named binary decision diagram or branching program is widely known in logic design [2, 40]. This representation is equivalent to other forms, and in some cases it is more compact than values table or even the formula [44]. Representing a function in the form of decision tree allows applying graph algorithms for various transformations [10]. Decision trees and branching programs are used for effective hardware [15] and software [5] implementation of functions. For the implementation to be effective, the function representation should have minimal time and space complexity. The average depth of decision tree characterizes the expected computing time, and the number of nodes in branching program characterizes the number of functional elements required for implementation. Often these two criteria are incompatible, i.e. there is no solution that is optimal on both time and space complexity. © Springer-Verlag Berlin Heidelberg 2011.

  17. Equivalence Checking of Combinational Circuits using Boolean Expression Diagrams

    DEFF Research Database (Denmark)

    Hulgaard, Henrik; Williams, Poul Frederick; Andersen, Henrik Reif

    1999-01-01

    The combinational logic-level equivalence problem is to determine whether two given combinational circuits implement the same Boolean function. This problem arises in a number of CAD applications, for example when checking the correctness of incremental design changes (performed either manually...... or by a design automation tool).This paper introduces a data structure called Boolean Expression Diagrams (BEDs) and two algorithms for transforming a BED into a Reduced Ordered Binary Decision Diagram (OBDD). BEDs are capable of representing any Boolean circuit in linear space and can exploit structural...

  18. Polymer networks: Modeling and applications

    Science.gov (United States)

    Masoud, Hassan

    Polymer networks are an important class of materials that are ubiquitously found in natural, biological, and man-made systems. The complex mesoscale structure of these soft materials has made it difficult for researchers to fully explore their properties. In this dissertation, we introduce a coarse-grained computational model for permanently cross-linked polymer networks than can properly capture common properties of these materials. We use this model to study several practical problems involving dry and solvated networks. Specifically, we analyze the permeability and diffusivity of polymer networks under mechanical deformations, we examine the release of encapsulated solutes from microgel capsules during volume transitions, and we explore the complex tribological behavior of elastomers. Our simulations reveal that the network transport properties are defined by the network porosity and by the degree of network anisotropy due to mechanical deformations. In particular, the permeability of mechanically deformed networks can be predicted based on the alignment of network filaments that is characterized by a second order orientation tensor. Moreover, our numerical calculations demonstrate that responsive microcapsules can be effectively utilized for steady and pulsatile release of encapsulated solutes. We show that swollen gel capsules allow steady, diffusive release of nanoparticles and polymer chains, whereas gel deswelling causes burst-like discharge of solutes driven by an outward flow of the solvent initially enclosed within a shrinking capsule. We further demonstrate that this hydrodynamic release can be regulated by introducing rigid microscopic rods in the capsule interior. We also probe the effects of velocity, temperature, and normal load on the sliding of elastomers on smooth and corrugated substrates. Our friction simulations predict a bell-shaped curve for the dependence of the friction coefficient on the sliding velocity. Our simulations also illustrate

  19. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Jensen Paul A

    2011-09-01

    Full Text Available Abstract Background Several methods have been developed for analyzing genome-scale models of metabolism and transcriptional regulation. Many of these methods, such as Flux Balance Analysis, use constrained optimization to predict relationships between metabolic flux and the genes that encode and regulate enzyme activity. Recently, mixed integer programming has been used to encode these gene-protein-reaction (GPR relationships into a single optimization problem, but these techniques are often of limited generality and lack a tool for automating the conversion of rules to a coupled regulatory/metabolic model. Results We present TIGER, a Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation. TIGER converts a series of generalized, Boolean or multilevel rules into a set of mixed integer inequalities. The package also includes implementations of existing algorithms to integrate high-throughput expression data with genome-scale models of metabolism and transcriptional regulation. We demonstrate how TIGER automates the coupling of a genome-scale metabolic model with GPR logic and models of transcriptional regulation, thereby serving as a platform for algorithm development and large-scale metabolic analysis. Additionally, we demonstrate how TIGER's algorithms can be used to identify inconsistencies and improve existing models of transcriptional regulation with examples from the reconstructed transcriptional regulatory network of Saccharomyces cerevisiae. Conclusion The TIGER package provides a consistent platform for algorithm development and extending existing genome-scale metabolic models with regulatory networks and high-throughput data.

  20. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  1. Model checking optimal finite-horizon control for probabilistic gene regulatory networks.

    Science.gov (United States)

    Wei, Ou; Guo, Zonghao; Niu, Yun; Liao, Wenyuan

    2017-12-14

    Probabilistic Boolean networks (PBNs) have been proposed for analyzing external control in gene regulatory networks with incorporation of uncertainty. A context-sensitive PBN with perturbation (CS-PBNp), extending a PBN with context-sensitivity to reflect the inherent biological stability and random perturbations to express the impact of external stimuli, is considered to be more suitable for modeling small biological systems intervened by conditions from the outside. In this paper, we apply probabilistic model checking, a formal verification technique, to optimal control for a CS-PBNp that minimizes the expected cost over a finite control horizon. We first describe a procedure of modeling a CS-PBNp using the language provided by a widely used probabilistic model checker PRISM. We then analyze the reward-based temporal properties and the computation in probabilistic model checking; based on the analysis, we provide a method to formulate the optimal control problem as minimum reachability reward properties. Furthermore, we incorporate control and state cost information into the PRISM code of a CS-PBNp such that automated model checking a minimum reachability reward property on the code gives the solution to the optimal control problem. We conduct experiments on two examples, an apoptosis network and a WNT5A network. Preliminary experiment results show the feasibility and effectiveness of our approach. The approach based on probabilistic model checking for optimal control avoids explicit computation of large-size state transition relations associated with PBNs. It enables a natural depiction of the dynamics of gene regulatory networks, and provides a canonical form to formulate optimal control problems using temporal properties that can be automated solved by leveraging the analysis power of underlying model checking engines. This work will be helpful for further utilization of the advances in formal verification techniques in system biology.

  2. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.

    2013-01-01

    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.

  3. Research on the model of home networking

    Science.gov (United States)

    Yun, Xiang; Feng, Xiancheng

    2007-11-01

    It is the research hotspot of current broadband network to combine voice service, data service and broadband audio-video service by IP protocol to transport various real time and mutual services to terminal users (home). Home Networking is a new kind of network and application technology which can provide various services. Home networking is called as Digital Home Network. It means that PC, home entertainment equipment, home appliances, Home wirings, security, illumination system were communicated with each other by some composing network technology, constitute a networking internal home, and connect with WAN by home gateway. It is a new network technology and application technology, and can provide many kinds of services inside home or between homes. Currently, home networking can be divided into three kinds: Information equipment, Home appliances, Communication equipment. Equipment inside home networking can exchange information with outer networking by home gateway, this information communication is bidirectional, user can get information and service which provided by public networking by using home networking internal equipment through home gateway connecting public network, meantime, also can get information and resource to control the internal equipment which provided by home networking internal equipment. Based on the general network model of home networking, there are four functional entities inside home networking: HA, HB, HC, and HD. (1) HA (Home Access) - home networking connects function entity; (2) HB (Home Bridge) Home networking bridge connects function entity; (3) HC (Home Client) - Home networking client function entity; (4) HD (Home Device) - decoder function entity. There are many physical ways to implement four function entities. Based on theses four functional entities, there are reference model of physical layer, reference model of link layer, reference model of IP layer and application reference model of high layer. In the future home network

  4. Energy modelling in sensor networks

    Directory of Open Access Journals (Sweden)

    D. Schmidt

    2007-06-01

    Full Text Available Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  5. Generalization performance of regularized neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1994-01-01

    Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...

  6. Inference in hybrid Bayesian networks

    DEFF Research Database (Denmark)

    Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2009-01-01

    Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees a...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....... and reliability block diagrams). However, limitations in the BNs' calculation engine have prevented BNs from becoming equally popular for domains containing mixtures of both discrete and continuous variables (so-called hybrid domains). In this paper we focus on these difficulties, and summarize some of the last...

  7. Hybrid modeling of the crosstalk between signaling and transcriptional networks using ordinary differential equations and multi-valued logic.

    Science.gov (United States)

    Khan, Faiz M; Schmitz, Ulf; Nikolov, Svetoslav; Engelmann, David; Pützer, Brigitte M; Wolkenhauer, Olaf; Vera, Julio

    2014-01-01

    A decade of successful results indicates that systems biology is the appropriate approach to investigate the regulation of complex biochemical networks involving transcriptional and post-transcriptional regulations. It becomes mandatory when dealing with highly interconnected biochemical networks, composed of hundreds of compounds, or when networks are enriched in non-linear motifs like feedback and feedforward loops. An emerging dilemma is to conciliate models of massive networks and the adequate description of non-linear dynamics in a suitable modeling framework. Boolean networks are an ideal representation of massive networks that are humble in terms of computational complexity and data demand. However, they are inappropriate when dealing with nested feedback/feedforward loops, structural motifs common in biochemical networks. On the other hand, models of ordinary differential equations (ODEs) cope well with these loops, but they require enormous amounts of quantitative data for a full characterization of the model. Here we propose hybrid models, composed of ODE and logical sub-modules, as a strategy to handle large scale, non-linear biochemical networks that include transcriptional and post-transcriptional regulations. We illustrate the construction of this kind of models using as example a regulatory network centered on E2F1, a transcription factor involved in cancer. The hybrid modeling approach proposed is a good compromise between quantitative/qualitative accuracy and scalability when considering large biochemical networks with a small highly interconnected core, and module of transcriptionally regulated genes that are not part of critical regulatory loops. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications. Guest Editor: Yudong Cai. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. CIRCUIT IMPLEMENTATION OF VHDL-DESCRIPTIONS OF SYSTEMS OF PARTIAL BOOLEAN FUNCTIONS

    Directory of Open Access Journals (Sweden)

    P. N. Bibilo

    2016-01-01

    Full Text Available Method for description of incompletely specified (partial Boolean functions in VHDL is proposed. Examples of synthesized VHDL models of partial Boolean functions are presented; and the results of experiments on circuit implementation of VHDL descriptions of systems of partial functions. The realizability of original partial functions in logical circuits was verified by formal verification. The results of the experiments show that the preliminary minimization in DNF class and in the class of BDD representations for pseudo-random systems of completely specified functions does not improve practically (and in the case of BDD sometimes worsens the results of the subsequent synthesis in the basis of FPGA unlike the significant efficiency of these procedures for the synthesis of benchmark circuits taken from the practice of the design.

  9. Brand Marketing Model on Social Networks

    Directory of Open Access Journals (Sweden)

    Jolita Jezukevičiūtė

    2014-04-01

    Full Text Available The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalysis of a single case study revealed a brand marketingsocial networking tools that affect consumers the most. Basedon information analysis and methodological studies, develop abrand marketing model on social networks.

  10. Modeling the Dynamics of Compromised Networks

    Energy Technology Data Exchange (ETDEWEB)

    Soper, B; Merl, D M

    2011-09-12

    Accurate predictive models of compromised networks would contribute greatly to improving the effectiveness and efficiency of the detection and control of network attacks. Compartmental epidemiological models have been applied to modeling attack vectors such as viruses and worms. We extend the application of these models to capture a wider class of dynamics applicable to cyber security. By making basic assumptions regarding network topology we use multi-group epidemiological models and reaction rate kinetics to model the stochastic evolution of a compromised network. The Gillespie Algorithm is used to run simulations under a worst case scenario in which the intruder follows the basic connection rates of network traffic as a method of obfuscation.

  11. A novel Direct Small World network model

    Directory of Open Access Journals (Sweden)

    LIN Tao

    2016-10-01

    Full Text Available There is a certain degree of redundancy and low efficiency of existing computer networks.This paper presents a novel Direct Small World network model in order to optimize networks.In this model,several nodes construct a regular network.Then,randomly choose and replot some nodes to generate Direct Small World network iteratively.There is no change in average distance and clustering coefficient.However,the network performance,such as hops,is improved.The experiments prove that compared to traditional small world network,the degree,average of degree centrality and average of closeness centrality are lower in Direct Small World network.This illustrates that the nodes in Direct Small World networks are closer than Watts-Strogatz small world network model.The Direct Small World can be used not only in the communication of the community information,but also in the research of epidemics.

  12. Unlimited multistability and Boolean logic in microbial signalling.

    Science.gov (United States)

    Kothamachu, Varun B; Feliu, Elisenda; Cardelli, Luca; Soyer, Orkun S

    2015-07-06

    The ability to map environmental signals onto distinct internal physiological states or programmes is critical for single-celled microbes. A crucial systems dynamics feature underpinning such ability is multistability. While unlimited multistability is known to arise from multi-site phosphorylation seen in the signalling networks of eukaryotic cells, a similarly universal mechanism has not been identified in microbial signalling systems. These systems are generally known as two-component systems comprising histidine kinase (HK) receptors and response regulator proteins engaging in phosphotransfer reactions. We develop a mathematical framework for analysing microbial systems with multi-domain HK receptors known as hybrid and unorthodox HKs. We show that these systems embed a simple core network that exhibits multistability, thereby unveiling a novel biochemical mechanism for multistability. We further prove that sharing of downstream components allows a system with n multi-domain hybrid HKs to attain 3n steady states. We find that such systems, when sensing distinct signals, can readily implement Boolean logic functions on these signals. Using two experimentally studied examples of two-component systems implementing hybrid HKs, we show that bistability and implementation of logic functions are possible under biologically feasible reaction rates. Furthermore, we show that all sequenced microbial genomes contain significant numbers of hybrid and unorthodox HKs, and some genomes have a larger fraction of these proteins compared with regular HKs. Microbial cells are thus theoretically unbounded in mapping distinct environmental signals onto distinct physiological states and perform complex computations on them. These findings facilitate the understanding of natural two-component systems and allow their engineering through synthetic biology.

  13. Network bandwidth utilization forecast model on high bandwidth networks

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-30

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  14. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  15. Modeling of wavelength multiplexing networks for storage area networking

    Science.gov (United States)

    Carranza, Aparicio; DeCusatis, Casimer M.

    2004-09-01

    Recently, there has been increased interest in the use of optical networks for disaster recovery of large computer systems by extending storage area networks (SANs) over hundreds of kilometers or more. These optical datacom networks, which incorporate wavelength division multiplexing (WDM), have several unique requirements. The purpose of this work has been to develop computer simulation tools for optical datacom networks. The models are capable of automatically designing a WDM network configuration based on minimal input; validating the design against any protocol-specific requirements; suggesting alternative configurations; and optimizing the design based on metrics including performance of the network (efficient use of bandwidth to support the attached computing devices), reliability (searching the proposed topology for single points of failure), scalability (based on user input of potential future upgrade paths), and cost of the associated networking equipment. The model incorporates typical computer performance data, which allows the prediction of system performance before the network is implemented. We present simulation results for a variety of MAN topologies, using currently available WDM networking equipment. These results have been validated by comparison with an enterprise optical networking testbed constructed for storage area networks.

  16. Pilot Model Using Neural Networks

    Science.gov (United States)

    Kato, Akio; Matsubara, Genyo; Nakamura, Takeshi

    The motion of an aircraft controlled by a pilot is decided depending on the characteristics of a man-machine system. Although analysis and investigation are usually performed using a mathematical model of the aircraft including the control system, a method for making a mathematical model of the pilot, which is necessary for the analysis and study of man-machine systems, has not been established. Although a method for constructing a mathematical model of a pilot using a transfer function 1) has been reported, it is thought that a more accurate and more flexible pilot model may be obtained by applying a neural network (NN). Therefore, various studies have examined a pilot model to which a NN has been applied. As a result, it has been clarified that the application of a NN to a pilot model provides better performance compared to the case of applying a transfer function. Moreover, it has also been clarified that a single versatile pilot model, which can deal with various conditions, can be obtained by applying a NN and studying the control results under various conditions.

  17. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  18. An adaptive complex network model for brain functional networks.

    Directory of Open Access Journals (Sweden)

    Ignacio J Gomez Portillo

    Full Text Available Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution.

  19. Eight challenges for network epidemic models

    Directory of Open Access Journals (Sweden)

    Lorenzo Pellis

    2015-03-01

    Full Text Available Networks offer a fertile framework for studying the spread of infection in human and animal populations. However, owing to the inherent high-dimensionality of networks themselves, modelling transmission through networks is mathematically and computationally challenging. Even the simplest network epidemic models present unanswered questions. Attempts to improve the practical usefulness of network models by including realistic features of contact networks and of host–pathogen biology (e.g. waning immunity have made some progress, but robust analytical results remain scarce. A more general theory is needed to understand the impact of network structure on the dynamics and control of infection. Here we identify a set of challenges that provide scope for active research in the field of network epidemic models.

  20. Energy Efficient Wireless Sensor Network Modelling Based on Complex Networks

    Directory of Open Access Journals (Sweden)

    Lin Xiao

    2016-01-01

    Full Text Available The power consumption and energy efficiency of wireless sensor network are the significant problems in Internet of Things network. In this paper, we consider the network topology optimization based on complex network theory to solve the energy efficiency problem of WSN. We propose the energy efficient model of WSN according to the basic principle of small world from complex networks. Small world network has clustering features that are similar to that of the rules of the network but also has similarity to random networks of small average path length. It can be utilized to optimize the energy efficiency of the whole network. Optimal number of multiple sink nodes of the WSN topology is proposed for optimizing energy efficiency. Then, the hierarchical clustering analysis is applied to implement this clustering of the sensor nodes and pick up the sink nodes from the sensor nodes as the clustering head. Meanwhile, the update method is proposed to determine the sink node when the death of certain sink node happened which can cause the paralysis of network. Simulation results verify the energy efficiency of the proposed model and validate the updating of the sink nodes to ensure the normal operation of the WSN.

  1. Introducing Synchronisation in Deterministic Network Models

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens Frederik D.

    2006-01-01

    to the suggestion of suitable network models. An existing model for flow control is presented and an inherent weakness is revealed and remedied. Examples are given and numerically analysed through deterministic network modelling. Results are presented to highlight the properties of the suggested models......The paper addresses performance analysis for distributed real time systems through deterministic network modelling. Its main contribution is the introduction and analysis of models for synchronisation between tasks and/or network elements. Typical patterns of synchronisation are presented leading...

  2. Entropy Characterization of Random Network Models

    Directory of Open Access Journals (Sweden)

    Pedro J. Zufiria

    2017-06-01

    Full Text Available This paper elaborates on the Random Network Model (RNM as a mathematical framework for modelling and analyzing the generation of complex networks. Such framework allows the analysis of the relationship between several network characterizing features (link density, clustering coefficient, degree distribution, connectivity, etc. and entropy-based complexity measures, providing new insight on the generation and characterization of random networks. Some theoretical and computational results illustrate the utility of the proposed framework.

  3. The model of social crypto-network

    Directory of Open Access Journals (Sweden)

    Марк Миколайович Орел

    2015-06-01

    Full Text Available The article presents the theoretical model of social network with the enhanced mechanism of privacy policy. It covers the problems arising in the process of implementing the mentioned type of network. There are presented the methods of solving problems arising in the process of building the social network with privacy policy. It was built a theoretical model of social networks with enhanced information protection methods based on information and communication blocks

  4. The model of social crypto-network

    OpenAIRE

    Марк Миколайович Орел

    2015-01-01

    The article presents the theoretical model of social network with the enhanced mechanism of privacy policy. It covers the problems arising in the process of implementing the mentioned type of network. There are presented the methods of solving problems arising in the process of building the social network with privacy policy. It was built a theoretical model of social networks with enhanced information protection methods based on information and communication blocks

  5. Compensatory interactions to stabilize multiple steady states or mitigate the effects of multiple deregulations in biological networks

    Science.gov (United States)

    Yang, Gang; Campbell, Colin; Albert, RéKa

    Complex diseases can be modeled as damage to intra-cellular networks that results in abnormal cell behaviors. Network-based dynamic models such as Boolean models have been employed to model a variety of biological systems including those corresponding to disease. Previous work designed compensatory interactions to stabilize an attractor of a Boolean network after single node damage. We generalize this method to a multi-node damage scenario and to the simultaneous stabilization of multiple steady state attractors. We presents three key results. First, we use analytical and computational methods to study how network structure and regulatory logic affect the resilience of the network's steady states to single node perturbation. Second, we present an algorithm to design compensatory interventions to stabilize a steady state of the network after double node damage and evaluate it on random Boolean networks and two intra-cellular network models relevant to cancer. Third, we apply the algorithm on stabilizing two steady states simultaneously after a single node damage and discuss the emerging situations and their corresponding frequencies. We also apply the algorithm to the biological examples.

  6. Modeling Diagnostic Assessments with Bayesian Networks

    Science.gov (United States)

    Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego

    2007-01-01

    This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…

  7. Information Dynamics in Networks: Models and Algorithms

    Science.gov (United States)

    2016-09-13

    Information Dynamics in Networks: Models and Algorithms In this project, we investigated how network structure interplays with higher level processes in...Models and Algorithms Report Title In this project, we investigated how network structure interplays with higher level processes in online social...Received Paper 1.00 2.00 3.00 . A Note on Modeling Retweet Cascades on Twitter, Workshop on Algorithms and Models for the Web Graph. 09-DEC-15

  8. Graphene-based non-Boolean logic circuits

    Science.gov (United States)

    Liu, Guanxiong; Ahsan, Sonia; Khitun, Alexander G.; Lake, Roger K.; Balandin, Alexander A.

    2013-10-01

    Graphene revealed a number of unique properties beneficial for electronics. However, graphene does not have an energy band-gap, which presents a serious hurdle for its applications in digital logic gates. The efforts to induce a band-gap in graphene via quantum confinement or surface functionalization have not resulted in a breakthrough. Here we show that the negative differential resistance experimentally observed in graphene field-effect transistors of "conventional" design allows for construction of viable non-Boolean computational architectures with the gapless graphene. The negative differential resistance—observed under certain biasing schemes—is an intrinsic property of graphene, resulting from its symmetric band structure. Our atomistic modeling shows that the negative differential resistance appears not only in the drift-diffusion regime but also in the ballistic regime at the nanometer-scale—although the physics changes. The obtained results present a conceptual change in graphene research and indicate an alternative route for graphene's applications in information processing.

  9. Bayesian Network Webserver: a comprehensive tool for biological network modeling.

    Science.gov (United States)

    Ziebarth, Jesse D; Bhattacharya, Anindya; Cui, Yan

    2013-11-01

    The Bayesian Network Webserver (BNW) is a platform for comprehensive network modeling of systems genetics and other biological datasets. It allows users to quickly and seamlessly upload a dataset, learn the structure of the network model that best explains the data and use the model to understand relationships between network variables. Many datasets, including those used to create genetic network models, contain both discrete (e.g. genotype) and continuous (e.g. gene expression traits) variables, and BNW allows for modeling hybrid datasets. Users of BNW can incorporate prior knowledge during structure learning through an easy-to-use structural constraint interface. After structure learning, users are immediately presented with an interactive network model, which can be used to make testable hypotheses about network relationships. BNW, including a downloadable structure learning package, is available at http://compbio.uthsc.edu/BNW. (The BNW interface for adding structural constraints uses HTML5 features that are not supported by current version of Internet Explorer. We suggest using other browsers (e.g. Google Chrome or Mozilla Firefox) when accessing BNW). ycui2@uthsc.edu. Supplementary data are available at Bioinformatics online.

  10. A comparison of hypertext and Boolean access to biomedical information.

    Science.gov (United States)

    Friedman, C P; Wildemuth, B M; Muriuki, M; Gant, S P; Downs, S M; Twarog, R G; de Bliek, R

    1996-01-01

    This study explored which of two modes of access to a biomedical database better supported problem solving in bacteriology. Boolean access, which allowed subjects to frame their queries as combinations of keywords, was compared to hypertext access, which allowed subjects to navigate from one database node to another. The accessible biomedical data were identical across systems. Data were collected from 42 first year medical students, each randomized to the Boolean or hypertext system, before and after their bacteriology course. Subjects worked eight clinical case problems, first using only their personal knowledge and, subsequently, with aid from the database. Database retrievals enabled students to answer questions they could not answer based on personal knowledge only. This effect was greater when personal knowledge of bacteriology was lower. The results also suggest that hypertext was superior to Boolean access in helping subjects identify possible infectious agents in these clinical case problems.

  11. Social insect colony as a biological regulatory system: modelling information flow in dominance networks.

    Science.gov (United States)

    Nandi, Anjan K; Sumana, Annagiri; Bhattacharya, Kunal

    2014-12-06

    Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the 'feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Network class superposition analyses.

    Directory of Open Access Journals (Sweden)

    Carl A B Pearson

    Full Text Available Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., ≈ 10(30 for the yeast cell cycle process, considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix T, which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for T derived from boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying T to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with T. We show how to generate Derrida plots based on T. We show that T-based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on T. We motivate all of these results in terms of a popular molecular biology boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for T, for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses.

  13. Refinement monoids, equidecomposability types, and boolean inverse semigroups

    CERN Document Server

    Wehrung, Friedrich

    2017-01-01

    Adopting a new universal algebraic approach, this book explores and consolidates the link between Tarski's classical theory of equidecomposability types monoids, abstract measure theory (in the spirit of Hans Dobbertin's work on monoid-valued measures on Boolean algebras) and the nonstable K-theory of rings. This is done via the study of a monoid invariant, defined on Boolean inverse semigroups, called the type monoid. The new techniques contrast with the currently available topological approaches. Many positive results, but also many counterexamples, are provided.

  14. Equivalence Checking of Combinational Circuits using Boolean Expression Diagrams

    DEFF Research Database (Denmark)

    Hulgaard, Henrik; Williams, Poul Frederick; Andersen, Henrik Reif

    1999-01-01

    or by a design automation tool).This paper introduces a data structure called Boolean Expression Diagrams (BEDs) and two algorithms for transforming a BED into a Reduced Ordered Binary Decision Diagram (OBDD). BEDs are capable of representing any Boolean circuit in linear space and can exploit structural...... similarities between the two circuits that are compared. These properties make BEDs suitable for verifying the equivalence of combinational circuits. BEDs can be seen as an intermediate representation between circuits (which are compact) and OBDDs (which are canonical).Based on a large number of combinational...

  15. Constant-Overhead Secure Computation of Boolean Circuits using Preprocessing

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Zakarias, Sarah Nouhad Haddad

    We present a protocol for securely computing a Boolean circuit $C$ in presence of a dishonest and malicious majority. The protocol is unconditionally secure, assuming access to a preprocessing functionality that is not given the inputs to compute on. For a large number of players the work done by...... with an additional multiplication property. We also show a new algorithm for verifying the product of Boolean matrices in quadratic time with exponentially small error probability, where previous methods would only give a constant error....

  16. Model checking mobile ad hoc networks

    NARCIS (Netherlands)

    Ghassemi, Fatemeh; Fokkink, Wan

    2016-01-01

    Modeling arbitrary connectivity changes within mobile ad hoc networks (MANETs) makes application of automated formal verification challenging. We use constrained labeled transition systems as a semantic model to represent mobility. To model check MANET protocols with respect to the underlying

  17. How to model wireless mesh networks topology

    International Nuclear Information System (INIS)

    Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M

    2013-01-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

  18. Object Oriented Modeling Of Social Networks

    NARCIS (Netherlands)

    Zeggelink, Evelien P.H.; Oosten, Reinier van; Stokman, Frans N.

    1996-01-01

    The aim of this paper is to explain principles of object oriented modeling in the scope of modeling dynamic social networks. As such, the approach of object oriented modeling is advocated within the field of organizational research that focuses on networks. We provide a brief introduction into the

  19. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  20. Queuing theory models for computer networks

    Science.gov (United States)

    Galant, David C.

    1989-01-01

    A set of simple queuing theory models which can model the average response of a network of computers to a given traffic load has been implemented using a spreadsheet. The impact of variations in traffic patterns and intensities, channel capacities, and message protocols can be assessed using them because of the lack of fine detail in the network traffic rates, traffic patterns, and the hardware used to implement the networks. A sample use of the models applied to a realistic problem is included in appendix A. Appendix B provides a glossary of terms used in this paper. This Ames Research Center computer communication network is an evolving network of local area networks (LANs) connected via gateways and high-speed backbone communication channels. Intelligent planning of expansion and improvement requires understanding the behavior of the individual LANs as well as the collection of networks as a whole.

  1. Nonparametric Bayesian Modeling of Complex Networks

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Mørup, Morten

    2013-01-01

    an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models......Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...

  2. Network structure exploration via Bayesian nonparametric models

    International Nuclear Information System (INIS)

    Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z

    2015-01-01

    Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)

  3. A quantum speedup in machine learning: finding an N-bit Boolean function for a classification

    International Nuclear Information System (INIS)

    Yoo, Seokwon; Lee, Jinhyoung; Bang, Jeongho; Lee, Changhyoup

    2014-01-01

    We compare quantum and classical machines designed for learning an N-bit Boolean function in order to address how a quantum system improves the machine learning behavior. The machines of the two types consist of the same number of operations and control parameters, but only the quantum machines utilize the quantum coherence naturally induced by unitary operators. We show that quantum superposition enables quantum learning that is faster than classical learning by expanding the approximate solution regions, i.e., the acceptable regions. This is also demonstrated by means of numerical simulations with a standard feedback model, namely random search, and a practical model, namely differential evolution. (paper)

  4. Document Ranking in E-Extended Boolean Logic

    Czech Academy of Sciences Publication Activity Database

    Holub, M.; Húsek, Dušan; Pokorný, J.

    1996-01-01

    Roč. 4, č. 7 (1996), s. 3-17 ISSN 1310-0513. [Annual Colloquium on IR Research /19./. Aberdeen, 08.04.1997-09.04.1997] R&D Projects: GA ČR GA102/94/0728 Keywords : information retrieval * document ranking * extended Boolean logic

  5. On the Road to Genetic Boolean Matrix Factorization

    Czech Academy of Sciences Publication Activity Database

    Snášel, V.; Platoš, J.; Krömer, P.; Húsek, Dušan; Frolov, A.

    2007-01-01

    Roč. 17, č. 6 (2007), s. 675-688 ISSN 1210-0552 Institutional research plan: CEZ:AV0Z10300504 Keywords : data mining * genetic algorithms * Boolean factorization * binary data * machine learning * feature extraction Subject RIV: IN - Informatics, Computer Science Impact factor: 0.280, year: 2007

  6. Free Boolean algebras over unions of two well orderings

    Czech Academy of Sciences Publication Activity Database

    Bonnet, R.; Faouzi, L.; Kubiś, Wieslaw

    2009-01-01

    Roč. 156, č. 7 (2009), s. 1177-1185 ISSN 0166-8641 Institutional research plan: CEZ:AV0Z10190503 Keywords : Well quasi orderings * Poset algebras * Superatomic Boolean algebras * Compact distributive lattices Subject RIV: BA - General Mathematics Impact factor: 0.441, year: 2009

  7. Complexity of Identification and Dualization of Positive Boolean Functions

    NARCIS (Netherlands)

    J.C. Bioch (Cor); T. Ibaraki

    1995-01-01

    textabstractWe consider in this paper the problem of identifying min T(f{hook}) and max F(f{hook}) of a positive (i.e., monotone) Boolean function f{hook}, by using membership queries only, where min T(f{hook}) (max F(f{hook})) denotes the set of minimal true vectors (maximal false vectors) of

  8. Development of Boolean calculus and its applications. [digital systems design

    Science.gov (United States)

    Tapia, M. A.

    1980-01-01

    The development of Boolean calculus for its application to developing digital system design methodologies that would reduce system complexity, size, cost, speed, power requirements, etc., is discussed. Synthesis procedures for logic circuits are examined particularly asynchronous circuits using clock triggered flip flops.

  9. Network interconnections: an architectural reference model

    NARCIS (Netherlands)

    Butscher, B.; Lenzini, L.; Morling, R.; Vissers, C.A.; Popescu-Zeletin, R.; van Sinderen, Marten J.; Heger, D.; Krueger, G.; Spaniol, O.; Zorn, W.

    1985-01-01

    One of the major problems in understanding the different approaches in interconnecting networks of different technologies is the lack of reference to a general model. The paper develops the rationales for a reference model of network interconnection and focuses on the architectural implications for

  10. Spinal Cord Injury Model System Information Network

    Science.gov (United States)

    ... the UAB-SCIMS Contact the UAB-SCIMS UAB Spinal Cord Injury Model System Newly Injured Health Daily Living Consumer ... Information Network The University of Alabama at Birmingham Spinal Cord Injury Model System (UAB-SCIMS) maintains this Information Network ...

  11. Radio Channel Modeling in Body Area Networks

    NARCIS (Netherlands)

    An, L.; Bentum, Marinus Jan; Meijerink, Arjan; Scanlon, W.G.

    2009-01-01

    A body area network (BAN) is a network of bodyworn or implanted electronic devices, including wireless sensors which can monitor body parameters or to de- tect movements. One of the big challenges in BANs is the propagation channel modeling. Channel models can be used to understand wave propagation

  12. Radio channel modeling in body area networks

    NARCIS (Netherlands)

    An, L.; Bentum, Marinus Jan; Meijerink, Arjan; Scanlon, W.G.

    2010-01-01

    A body area network (BAN) is a network of bodyworn or implanted electronic devices, including wireless sensors which can monitor body parameters or to detect movements. One of the big challenges in BANs is the propagation channel modeling. Channel models can be used to understand wave propagation in

  13. Performance modeling of network data services

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, R.A.; Pierson, L.G.

    1997-01-01

    Networks at major computational organizations are becoming increasingly complex. The introduction of large massively parallel computers and supercomputers with gigabyte memories are requiring greater and greater bandwidth for network data transfers to widely dispersed clients. For networks to provide adequate data transfer services to high performance computers and remote users connected to them, the networking components must be optimized from a combination of internal and external performance criteria. This paper describes research done at Sandia National Laboratories to model network data services and to visualize the flow of data from source to sink when using the data services.

  14. Network models in economics and finance

    CERN Document Server

    Pardalos, Panos; Rassias, Themistocles

    2014-01-01

    Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena. This volume presents contributions by known experts and active researchers in economic and financial network modeling. Readers are provided with an understanding of the latest advances in network analysis as applied to economics, finance, corporate governance, and investments. Moreover, recent advances in market network analysis  that focus on influential techniques for market graph analysis are also examined. Young researchers will find this volume particularly useful in facilitating their introduction to this new and fascinating field. Professionals in economics, financial management, various technologies, and network analysis, will find the network models presented in this book beneficial in analyzing the interconnectivity in modern economic systems.

  15. Evaluation of EOR Processes Using Network Models

    DEFF Research Database (Denmark)

    Winter, Anatol; Larsen, Jens Kjell; Krogsbøll, Anette

    1998-01-01

    The report consists of the following parts: 1) Studies of wetting properties of model fluids and fluid mixtures aimed at an optimal selection of candidates for micromodel experiments. 2) Experimental studies of multiphase transport properties using physical models of porous networks (micromodels......) including estimation of their "petrophysical" properties (e.g. absolute permeability). 3) Mathematical modelling and computer studies of multiphase transport through pore space using mathematical network models. 4) Investigation of link between pore-scale and macroscopic recovery mechanisms....

  16. Synergistic effects in threshold models on networks

    Science.gov (United States)

    Juul, Jonas S.; Porter, Mason A.

    2018-01-01

    Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

  17. Gossip spread in social network Models

    Science.gov (United States)

    Johansson, Tobias

    2017-04-01

    Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.

  18. Towards reproducible descriptions of neuronal network models.

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2009-08-01

    Full Text Available Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing--and thinking about--complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain.

  19. Improved Maximum Parsimony Models for Phylogenetic Networks.

    Science.gov (United States)

    Van Iersel, Leo; Jones, Mark; Scornavacca, Celine

    2018-05-01

    Phylogenetic networks are well suited to represent evolutionary histories comprising reticulate evolution. Several methods aiming at reconstructing explicit phylogenetic networks have been developed in the last two decades. In this article, we propose a new definition of maximum parsimony for phylogenetic networks that permits to model biological scenarios that cannot be modeled by the definitions currently present in the literature (namely, the "hardwired" and "softwired" parsimony). Building on this new definition, we provide several algorithmic results that lay the foundations for new parsimony-based methods for phylogenetic network reconstruction.

  20. Characterization and Modeling of Network Traffic

    DEFF Research Database (Denmark)

    Shawky, Ahmed; Bergheim, Hans; Ragnarsson, Olafur

    2011-01-01

    This paper attempts to characterize and model backbone network traffic, using a small number of statistics. In order to reduce cost and processing power associated with traffic analysis. The parameters affecting the behaviour of network traffic are investigated and the choice is that inter......-arrival time, IP addresses, port numbers and transport protocol are the only necessary parameters to model network traffic behaviour. In order to recreate this behaviour, a complex model is needed which is able to recreate traffic behaviour based on a set of statistics calculated from the parameters values....... The model investigates the traffic generation mechanisms, and grouping traffic into flows and applications....

  1. A Model of Network Porosity

    Science.gov (United States)

    2016-11-09

    standpoint remains more of an art than a science. Even when well executed, the ongoing evolution of the network may violate initial, security-critical design...publications/2009_12_09_Ingols_ACSAC_FP.pdf. [3] R.P. Lippmann, J.F. Riordan, T.H. Yu, and K.K. Watson , “Continuous Security Metrics for Prevalent Network...from a security standpoint remains more of an art than a science. Even when well executed, the ongoing evolution of the network may violate initial

  2. A Network Disruption Modeling Tool

    National Research Council Canada - National Science Library

    Leinart, James

    1998-01-01

    Given that network disruption has been identified as a military objective and C2-attack has been identified as the mechanism to accomplish this objective, a target set must be acquired and priorities...

  3. Modeling Epidemics Spreading on Social Contact Networks.

    Science.gov (United States)

    Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua

    2015-09-01

    Social contact networks and the way people interact with each other are the key factors that impact on epidemics spreading. However, it is challenging to model the behavior of epidemics based on social contact networks due to their high dynamics. Traditional models such as susceptible-infected-recovered (SIR) model ignore the crowding or protection effect and thus has some unrealistic assumption. In this paper, we consider the crowding or protection effect and develop a novel model called improved SIR model. Then, we use both deterministic and stochastic models to characterize the dynamics of epidemics on social contact networks. The results from both simulations and real data set conclude that the epidemics are more likely to outbreak on social contact networks with higher average degree. We also present some potential immunization strategies, such as random set immunization, dominating set immunization, and high degree set immunization to further prove the conclusion.

  4. Role models for complex networks

    Science.gov (United States)

    Reichardt, J.; White, D. R.

    2007-11-01

    We present a framework for automatically decomposing (“block-modeling”) the functional classes of agents within a complex network. These classes are represented by the nodes of an image graph (“block model”) depicting the main patterns of connectivity and thus functional roles in the network. Using a first principles approach, we derive a measure for the fit of a network to any given image graph allowing objective hypothesis testing. From the properties of an optimal fit, we derive how to find the best fitting image graph directly from the network and present a criterion to avoid overfitting. The method can handle both two-mode and one-mode data, directed and undirected as well as weighted networks and allows for different types of links to be dealt with simultaneously. It is non-parametric and computationally efficient. The concepts of structural equivalence and modularity are found as special cases of our approach. We apply our method to the world trade network and analyze the roles individual countries play in the global economy.

  5. Contractile network models for adherent cells.

    Science.gov (United States)

    Guthardt Torres, P; Bischofs, I B; Schwarz, U S

    2012-01-01

    Cells sense the geometry and stiffness of their adhesive environment by active contractility. For strong adhesion to flat substrates, two-dimensional contractile network models can be used to understand how force is distributed throughout the cell. Here we compare the shape and force distribution for different variants of such network models. In contrast to Hookean networks, cable networks reflect the asymmetric response of biopolymers to tension versus compression. For passive networks, contractility is modeled by a reduced resting length of the mechanical links. In actively contracting networks, a constant force couple is introduced into each link in order to model contraction by molecular motors. If combined with fixed adhesion sites, all network models lead to invaginated cell shapes, but only actively contracting cable networks lead to the circular arc morphology typical for strongly adhering cells. In this case, shape and force distribution are determined by local rather than global determinants and thus are suited to endow the cell with a robust sense of its environment. We also discuss nonlinear and adaptive linker mechanics as well as the relation to tissue shape. © 2012 American Physical Society

  6. Modeling the interdependent network based on two-mode networks

    Science.gov (United States)

    An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian

    2017-10-01

    Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.

  7. Introducing Synchronisation in Deterministic Network Models

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens Frederik D.

    2006-01-01

    The paper addresses performance analysis for distributed real time systems through deterministic network modelling. Its main contribution is the introduction and analysis of models for synchronisation between tasks and/or network elements. Typical patterns of synchronisation are presented leading....... The suggested models are intended for incorporation into an existing analysis tool a.k.a. CyNC based on the MATLAB/SimuLink framework for graphical system analysis and design....

  8. Homophyly/Kinship Model: Naturally Evolving Networks

    Science.gov (United States)

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-10-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network.

  9. Tensor network models of multiboundary wormholes

    Science.gov (United States)

    Peach, Alex; Ross, Simon F.

    2017-05-01

    We study the entanglement structure of states dual to multiboundary wormhole geometries using tensor network models. Perfect and random tensor networks tiling the hyperbolic plane have been shown to provide good models of the entanglement structure in holography. We extend this by quotienting the plane by discrete isometries to obtain models of the multiboundary states. We show that there are networks where the entanglement structure is purely bipartite, extending results obtained in the large temperature limit. We analyse the entanglement structure in a range of examples.

  10. Designing Network-based Business Model Ontology

    DEFF Research Database (Denmark)

    Hashemi Nekoo, Ali Reza; Ashourizadeh, Shayegheh; Zarei, Behrouz

    2015-01-01

    is going to propose e-business model ontology from the network point of view and its application in real world. The suggested ontology for network-based businesses is composed of individuals` characteristics and what kind of resources they own. also, their connections and pre-conceptions of connections...... such as shared-mental model and trust. However, it mostly covers previous business model elements. To confirm the applicability of this ontology, it has been implemented in business angel network and showed how it works....

  11. Modelling and designing electric energy networks

    International Nuclear Information System (INIS)

    Retiere, N.

    2003-11-01

    The author gives an overview of his research works in the field of electric network modelling. After a brief overview of technological evolutions from the telegraph to the all-electric fly-by-wire aircraft, he reports and describes various works dealing with a simplified modelling of electric systems and with fractal simulation. Then, he outlines the challenges for the design of electric networks, proposes a design process, gives an overview of various design models, methods and tools, and reports an application in the design of electric networks for future jumbo jets

  12. A Model for Telestrok Network Evaluation

    DEFF Research Database (Denmark)

    Storm, Anna; Günzel, Franziska; Theiss, Stephan

    2011-01-01

    was developed from the third-party payer perspective. In principle, it enables telestroke networks to conduct cost-effectiveness studies, because the majority of the required data can be extracted from health insurance companies’ databases and the telestroke network itself. The model presents a basis...

  13. Queueing Models for Mobile Ad Hoc Networks

    NARCIS (Netherlands)

    de Haan, Roland

    2009-01-01

    This thesis presents models for the performance analysis of a recent communication paradigm: \\emph{mobile ad hoc networking}. The objective of mobile ad hoc networking is to provide wireless connectivity between stations in a highly dynamic environment. These dynamics are driven by the mobility of

  14. Network Design Models for Container Shipping

    DEFF Research Database (Denmark)

    Reinhardt, Line Blander; Kallehauge, Brian; Nielsen, Anders Nørrelund

    This paper presents a study of the network design problem in container shipping. The paper combines the network design and fleet assignment problem into a mixed integer linear programming model minimizing the overall cost. The major contributions of this paper is that the time of a vessel route...

  15. Modeling trust context in networks

    CERN Document Server

    Adali, Sibel

    2013-01-01

    We make complex decisions every day, requiring trust in many different entities for different reasons. These decisions are not made by combining many isolated trust evaluations. Many interlocking factors play a role, each dynamically impacting the others.? In this brief, 'trust context' is defined as the system level description of how the trust evaluation process unfolds.Networks today are part of almost all human activity, supporting and shaping it. Applications increasingly incorporate new interdependencies and new trust contexts. Social networks connect people and organizations throughout

  16. Mathematical model of highways network optimization

    Science.gov (United States)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.

    2017-12-01

    The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.

  17. Model for rumor spreading over networks.

    Science.gov (United States)

    Trpevski, Daniel; Tang, Wallace K S; Kocarev, Ljupco

    2010-05-01

    An alternate model for rumor spreading over networks is suggested, in which two rumors (termed rumor 1 and rumor 2) with different probabilities of acceptance may propagate among nodes. The propagation is not symmetric in the sense that when deciding which rumor to adopt, nodes always consider rumor 1 first. The model is a natural generalization of the well-known epidemic SIS (susceptible-infective-susceptible) model and reduces to it when some of the parameters of this model are zero. We find that preferred rumor 1 is dominant in the network when the degree of nodes is high enough and/or when the network contains large clustered groups of nodes, expelling rumor 2. However, numerical simulations on synthetic networks show that it is possible for rumor 2 to occupy a nonzero fraction of the nodes in many cases as well. Specifically, in the Watts-Strogatz small-world model a moderate level of clustering supports its adoption, while increasing randomness reduces it. For Erdos-Renyi networks, a low average degree allows the coexistence of the two types of rumors. In Barabasi-Albert networks generated with a low m , where m is the number of links when a new node is added, it is also possible for rumor 2 to spread over the network.

  18. High Quality Test Pattern Generation and Boolean Satisfiability

    CERN Document Server

    Eggersglüß, Stephan

    2012-01-01

    This book provides an overview of automatic test pattern generation (ATPG) and introduces novel techniques to complement classical ATPG, based on Boolean Satisfiability (SAT).  A fast and highly fault efficient SAT-based ATPG framework is presented which is also able to generate high-quality delay tests such as robust path delay tests, as well as tests with long propagation paths to detect small delay defects. The aim of the techniques and methodologies presented in this book is to improve SAT-based ATPG, in order to make it applicable in industrial practice. Readers will learn to improve the performance and robustness of the overall test generation process, so that the ATPG algorithm reliably will generate test patterns for most targeted faults in acceptable run time to meet the high fault coverage demands of industry. The techniques and improvements presented in this book provide the following advantages: Provides a comprehensive introduction to test generation and Boolean Satisfiability (SAT); Describes a...

  19. Mapping knowledge to boolean dynamic systems in Bateson's epistemology.

    Science.gov (United States)

    Malloy, Thomas E; Jensen, Gary C; Song, Timothy

    2005-01-01

    Gregory Bateson (1972, 1979) established an epistemology that integrates mind and nature as a necessary unity, a unity in which learning and evolution share fundamental principles and in which criteria for mental process are explicitly specified. E42 is a suite of freely available Java applets that constitute an online research lab for creating and interacting with simulations of the Boolean systems developed by Kauffman (1993) in his study of evolution where he proposed that self-organization and natural selection are co-principles "weaving the tapestry of life." This paper maps Boolean systems, developed in the study of evolution, onto Bateson's epistemology in general and onto his criteria of mental process in particular.

  20. Modeling Network Traffic in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Sheng Ma

    2004-12-01

    Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.

  1. Graphical Model Theory for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Davis, William B.

    2002-01-01

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm

  2. Modeling tensorial conductivity of particle suspension networks.

    Science.gov (United States)

    Olsen, Tyler; Kamrin, Ken

    2015-05-21

    Significant microstructural anisotropy is known to develop during shearing flow of attractive particle suspensions. These suspensions, and their capacity to form conductive networks, play a key role in flow-battery technology, among other applications. Herein, we present and test an analytical model for the tensorial conductivity of attractive particle suspensions. The model utilizes the mean fabric of the network to characterize the structure, and the relationship to the conductivity is inspired by a lattice argument. We test the accuracy of our model against a large number of computer-generated suspension networks, based on multiple in-house generation protocols, giving rise to particle networks that emulate the physical system. The model is shown to adequately capture the tensorial conductivity, both in terms of its invariants and its mean directionality.

  3. Graphical Model Theory for Wireless Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Davis, William B.

    2002-12-08

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm.

  4. Boolean Functions with a Simple Certificate for CNF Complexity

    Czech Academy of Sciences Publication Activity Database

    Čepek, O.; Kučera, P.; Savický, Petr

    2012-01-01

    Roč. 160, 4-5 (2012), s. 365-382 ISSN 0166-218X R&D Projects: GA MŠk(CZ) 1M0545 Grant - others:GA ČR(CZ) GP201/07/P168; GA ČR(CZ) GAP202/10/1188 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean functions * CNF representations Subject RIV: BA - General Mathematics Impact factor: 0.718, year: 2012

  5. Elements of Boolean-Valued Dempster-Shafer Theory

    Czech Academy of Sciences Publication Activity Database

    Kramosil, Ivan

    2000-01-01

    Roč. 10, č. 5 (2000), s. 825-835 ISSN 1210-0552. [SOFSEM 2000 Workshop on Soft Computing. Milovy, 27.11.2000-28.11.2000] R&D Projects: GA ČR GA201/00/1489 Institutional research plan: AV0Z1030915 Keywords : Boolean algebra * belief function * Dempster-Shafer theory * Dempster combination rule * nonspecifity degree Subject RIV: BA - General Mathematics

  6. Road maintenance planning using network flow modelling

    OpenAIRE

    Yang, Chao; Remenyte-Prescott, Rasa; Andrews, John

    2015-01-01

    This paper presents a road maintenance planning model that can be used to balance out maintenance cost and road user cost, since performing road maintenance at night can be convenient for road users but costly for highway agency. Based on the platform of the network traffic flow modelling, the traffic through the worksite and its adjacent road links is evaluated. Thus, maintenance arrangements at a worksite can be optimized considering the overall network performance. In addition, genetic alg...

  7. Model of cap-dependent translation initiation in sea urchin: a step towards the eukaryotic translation regulation network.

    Science.gov (United States)

    Bellé, Robert; Prigent, Sylvain; Siegel, Anne; Cormier, Patrick

    2010-03-01

    The large and rapid increase in the rate of protein synthesis following fertilization of the sea urchin egg has long been a paradigm of translational control, an important component of the regulation of gene expression in cells. This translational up-regulation is linked to physiological changes that occur upon fertilization and is necessary for entry into first cell division cycle. Accumulated knowledge on cap-dependent initiation of translation makes it suited and timely to start integrating the data into a system view of biological functions. Using a programming environment for system biology coupled with model validation (named Biocham), we have built an integrative model for cap-dependent initiation of translation. The model is described by abstract rules. It contains 51 reactions involved in 74 molecular complexes. The model proved to be coherent with existing knowledge by using queries based on computational tree logic (CTL) as well as Boolean simulations. The model could simulate the change in translation occurring at fertilization in the sea urchin model. It could also be coupled with an existing model designed for cell-cycle control. Therefore, the cap-dependent translation initiation model can be considered a first step towards the eukaryotic translation regulation network.

  8. Posterior Predictive Model Checking in Bayesian Networks

    Science.gov (United States)

    Crawford, Aaron

    2014-01-01

    This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…

  9. Network reconstruction using nonparametric additive ODE models.

    Science.gov (United States)

    Henderson, James; Michailidis, George

    2014-01-01

    Network representations of biological systems are widespread and reconstructing unknown networks from data is a focal problem for computational biologists. For example, the series of biochemical reactions in a metabolic pathway can be represented as a network, with nodes corresponding to metabolites and edges linking reactants to products. In a different context, regulatory relationships among genes are commonly represented as directed networks with edges pointing from influential genes to their targets. Reconstructing such networks from data is a challenging problem receiving much attention in the literature. There is a particular need for approaches tailored to time-series data and not reliant on direct intervention experiments, as the former are often more readily available. In this paper, we introduce an approach to reconstructing directed networks based on dynamic systems models. Our approach generalizes commonly used ODE models based on linear or nonlinear dynamics by extending the functional class for the functions involved from parametric to nonparametric models. Concomitantly we limit the complexity by imposing an additive structure on the estimated slope functions. Thus the submodel associated with each node is a sum of univariate functions. These univariate component functions form the basis for a novel coupling metric that we define in order to quantify the strength of proposed relationships and hence rank potential edges. We show the utility of the method by reconstructing networks using simulated data from computational models for the glycolytic pathway of Lactocaccus Lactis and a gene network regulating the pluripotency of mouse embryonic stem cells. For purposes of comparison, we also assess reconstruction performance using gene networks from the DREAM challenges. We compare our method to those that similarly rely on dynamic systems models and use the results to attempt to disentangle the distinct roles of linearity, sparsity, and derivative

  10. A simple model for studying interacting networks

    Science.gov (United States)

    Liu, Wenjia; Jolad, Shivakumar; Schmittmann, Beate; Zia, R. K. P.

    2011-03-01

    Many specific physical networks (e.g., internet, power grid, interstates), have been characterized in considerable detail, but in isolation from each other. Yet, each of these networks supports the functions of the others, and so far, little is known about how their interactions affect their structure and functionality. To address this issue, we consider two coupled model networks. Each network is relatively simple, with a fixed set of nodes, but dynamically generated set of links which has a preferred degree, κ . In the stationary state, the degree distribution has exponential tails (far from κ), an attribute which we can explain. Next, we consider two such networks with different κ 's, reminiscent of two social groups, e.g., extroverts and introverts. Finally, we let these networks interact by establishing a controllable fraction of cross links. The resulting distribution of links, both within and across the two model networks, is investigated and discussed, along with some potential consequences for real networks. Supported in part by NSF-DMR-0705152 and 1005417.

  11. Neural network approaches for noisy language modeling.

    Science.gov (United States)

    Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid

    2013-11-01

    Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.

  12. Thermal conductivity model for nanofiber networks

    Science.gov (United States)

    Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui

    2018-02-01

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  13. Thermal conductivity model for nanofiber networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinpeng [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Huang, Congliang [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; Liu, Qingkun [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Smalyukh, Ivan I. [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Buildings and Thermal Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA

    2018-02-28

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  14. A quantum-implementable neural network model

    Science.gov (United States)

    Chen, Jialin; Wang, Lingli; Charbon, Edoardo

    2017-10-01

    A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.

  15. The Network Performance Assessment Model - Regulation with a Reference Network

    International Nuclear Information System (INIS)

    Larsson, Mats B.O.

    2003-11-01

    A new model - the Network Performance Assessment Model - has been developed gradually since 1998, in order to evaluate and benchmark local electricity grids. The model is intended to be a regulation tool for the Swedish local electricity networks, used by the Swedish Energy Agency. At spring 2004 the Network Performance Assessment Model will run into operation, based on the companies' results for 2003. The mission of the Network Performance Assessment Model is to evaluate the networks from a costumers' point of view and establish a fair price level. In order to do that, the performance of the operator is evaluated. The performances are assessed in correspondence to a price level that the consumer is considered to accept, can agree to as fair and is prepared to pay. This price level is based on an average cost, based on the cost of an efficient grid that will be built today, with already known technology. The performances are accounted in Customer Values. Those Customer Values are what can be created by someone but can't be created better by someone else. The starting point is to look upon the companies from a customers' point of view. The factors that can't be influenced by the companies are evaluated by fixed rules, valid to all companies. The rules reflect the differences. The cost for a connection is evaluated from the actual facts, i.e. the distances between the subscribers and the demanded capacity by the subscriber. This is done by the creation of a reference network, with a capacity to fulfill the demand from the subscriber. This is an efficient grid with no spare capacity and no excess capacity. The companies' existing grid are without importance, as well as holds for dimensioning as technology. Those factors which the company can influence, for an example connection reliability, are evaluated from a customer perspective by measuring the actual reliability, measured as the number and length of the interruption. When implemented to the regulation the Network

  16. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  17. On the Computation of Comprehensive Boolean Gröbner Bases

    Science.gov (United States)

    Inoue, Shutaro

    We show that a comprehensive Boolean Gröbner basis of an ideal I in a Boolean polynomial ring B (bar A,bar X) with main variables bar X and parameters bar A can be obtained by simply computing a usual Boolean Gröbner basis of I regarding both bar X and bar A as variables with a certain block term order such that bar X ≫ bar A. The result together with a fact that a finite Boolean ring is isomorphic to a direct product of the Galois field mathbb{GF}_2 enables us to compute a comprehensive Boolean Gröbner basis by only computing corresponding Gröbner bases in a polynomial ring over mathbb{GF}_2. Our implementation in a computer algebra system Risa/Asir shows that our method is extremely efficient comparing with existing computation algorithms of comprehensive Boolean Gröbner bases.

  18. Performance modeling, stochastic networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi R

    2013-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the importan

  19. Model Predictive Control of Sewer Networks

    DEFF Research Database (Denmark)

    Pedersen, Einar B.; Herbertsson, Hannes R.; Niemann, Henrik

    2016-01-01

    The developments in solutions for management of urban drainage are of vital importance, as the amount of sewer water from urban areas continues to increase due to the increase of the world’s population and the change in the climate conditions. How a sewer network is structured, monitored and cont...... benchmark model. Due to the inherent constraints the applied approach is based on Model Predictive Control....... and controlled have thus become essential factors for efficient performance of waste water treatment plants. This paper examines methods for simplified modelling and controlling a sewer network. A practical approach to the problem is used by analysing simplified design model, which is based on the Barcelona...

  20. Modeling acquaintance networks based on balance theory

    Directory of Open Access Journals (Sweden)

    Vukašinović Vida

    2014-09-01

    Full Text Available An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network model called the Interaction-Based (IB model that involves well-known sociological principles. The connections between the actors and the strength of the connections are influenced by the continuous positive and negative interactions between the actors and, vice versa, the future interactions are more likely to happen between the actors that are connected with stronger ties. The model is also inspired by the social behavior of animal species, particularly that of ants in their colony. A model evaluation showed that the IB model turned out to be sparse. The model has a small diameter and an average path length that grows in proportion to the logarithm of the number of vertices. The clustering coefficient is relatively high, and its value stabilizes in larger networks. The degree distributions are slightly right-skewed. In the mature phase of the IB model, i.e., when the number of edges does not change significantly, most of the network properties do not change significantly either. The IB model was found to be the best of all the compared models in simulating the e-mail URV (University Rovira i Virgili of Tarragona network because the properties of the IB model more closely matched those of the e-mail URV network than the other models

  1. Optimal transportation networks models and theory

    CERN Document Server

    Bernot, Marc; Morel, Jean-Michel

    2009-01-01

    The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

  2. Linear approximation model network and its formation via ...

    Indian Academy of Sciences (India)

    To overcome the deficiency of `local model network' (LMN) techniques, an alternative `linear approximation model' (LAM) network approach is proposed. Such a network models a nonlinear or practical system with multiple linear models fitted along operating trajectories, where individual models are simply networked ...

  3. Methodically Modeling the Tor Network

    Science.gov (United States)

    2012-08-01

    such well- intentioned research might have a negative impact on real Tor users’ quality of service or privacy [25].1 In an effort to enhance the...software within the virtual network. Also unlike Shadow, ExperimenTor does not endeavor to account for the effects of unrelated back- ground Internet...and down D 1 for i← 0 to getRelayCount()−1 do 2 if B[i]> 0 then 3 ifR [i]> 0 andW[i]> 0 then 4 ratio← R[i]W[i] ; 5 if ratio > 1 then 6 U [i]←B[i]; 7 D[i

  4. The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.

    Science.gov (United States)

    Dridi, G; Julien, R; Hliwa, M; Joachim, C

    2015-08-28

    The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.

  5. Modelling complex networks by random hierarchical graphs

    Directory of Open Access Journals (Sweden)

    M.Wróbel

    2008-06-01

    Full Text Available Numerous complex networks contain special patterns, called network motifs. These are specific subgraphs, which occur oftener than in randomized networks of Erdős-Rényi type. We choose one of them, the triangle, and build a family of random hierarchical graphs, being Sierpiński gasket-based graphs with random "decorations". We calculate the important characteristics of these graphs - average degree, average shortest path length, small-world graph family characteristics. They depend on probability of decorations. We analyze the Ising model on our graphs and describe its critical properties using a renormalization-group technique.

  6. A Network Model of Credit Risk Contagion

    Directory of Open Access Journals (Sweden)

    Ting-Qiang Chen

    2012-01-01

    Full Text Available A network model of credit risk contagion is presented, in which the effect of behaviors of credit risk holders and the financial market regulators and the network structure are considered. By introducing the stochastic dominance theory, we discussed, respectively, the effect mechanisms of the degree of individual relationship, individual attitude to credit risk contagion, the individual ability to resist credit risk contagion, the monitoring strength of the financial market regulators, and the network structure on credit risk contagion. Then some derived and proofed propositions were verified through numerical simulations.

  7. Spatial Models and Networks of Living Systems

    DEFF Research Database (Denmark)

    Juul, Jeppe Søgaard

    . Such systems are known to be stabilized by spatial structure. Finally, I analyse data from a large mobile phone network and show that people who are topologically close in the network have similar communication patterns. This main part of the thesis is based on six different articles, which I have co...... with interactions defined by network topology. In this thesis I first describe three different biological models of ageing and cancer, in which spatial structure is important for the system dynamics. I then turn to describe characteristics of ecosystems consisting of three cyclically interacting species...

  8. Continuum Modeling of Biological Network Formation

    KAUST Repository

    Albi, Giacomo

    2017-04-10

    We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes the pressure field using a Darcy type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. We first introduce micro- and mesoscopic models and show how they are connected to the macroscopic PDE system. Then, we provide an overview of analytical results for the PDE model, focusing mainly on the existence of weak and mild solutions and analysis of the steady states. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on finite elements and study the qualitative properties of network structures for various parameter values.

  9. Green Network Planning Model for Optical Backbones

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Jensen, Michael

    2010-01-01

    Communication networks are becoming more essential for our daily lives and critically important for industry and governments. The intense growth in the backbone traffic implies an increment of the power demands of the transmission systems. This power usage might have a significant negative effect...... on the environment in general. In network planning there are existing planning models focused on QoS provisioning, investment minimization or combinations of both and other parameters. But there is a lack of a model for designing green optical backbones. This paper presents novel ideas to be able to define...... an analytical model to consider environmental aspects in the planning stage of backbones design....

  10. Neural network models of learning and adaptation

    Science.gov (United States)

    Denker, John S.

    1986-10-01

    Recent work has applied ideas from many fields including biology, physics and computer science, in order to understand how a highly interconnected network of simple processing elements can perform useful computation. Such networks can be used as associative memories, or as analog computers to solve optimization problems. This article reviews the workings of a standard model with particular emphasis on various schemes for learning and adaptation.

  11. Artificial Immune Networks: Models and Applications

    Directory of Open Access Journals (Sweden)

    Xian Shen

    2008-06-01

    Full Text Available Artificial Immune Systems (AIS, which is inspired by the nature immune system, has been applied for solving complex computational problems in classification, pattern rec- ognition, and optimization. In this paper, the theory of the natural immune system is first briefly introduced. Next, we compare some well-known AIS and their applications. Several representative artificial immune networks models are also dis- cussed. Moreover, we demonstrate the applications of artificial immune networks in various engineering fields.

  12. Decomposed Implicit Models of Piecewise - Linear Networks

    Directory of Open Access Journals (Sweden)

    J. Brzobohaty

    1992-05-01

    Full Text Available The general matrix form of the implicit description of a piecewise-linear (PWL network and the symbolic block diagram of the corresponding circuit model are proposed. Their decomposed forms enable us to determine quite separately the existence of the individual breakpoints of the resultant PWL characteristic and their coordinates using independent network parameters. For the two-diode and three-diode cases all the attainable types of the PWL characteristic are introduced.

  13. The International Trade Network: weighted network analysis and modelling

    International Nuclear Information System (INIS)

    Bhattacharya, K; Mukherjee, G; Manna, S S; Saramäki, J; Kaski, K

    2008-01-01

    Tools of the theory of critical phenomena, namely the scaling analysis and universality, are argued to be applicable to large complex web-like network structures. Using a detailed analysis of the real data of the International Trade Network we argue that the scaled link weight distribution has an approximate log-normal distribution which remains robust over a period of 53 years. Another universal feature is observed in the power-law growth of the trade strength with gross domestic product, the exponent being similar for all countries. Using the 'rich-club' coefficient measure of the weighted networks it has been shown that the size of the rich-club controlling half of the world's trade is actually shrinking. While the gravity law is known to describe well the social interactions in the static networks of population migration, international trade, etc, here for the first time we studied a non-conservative dynamical model based on the gravity law which excellently reproduced many empirical features of the ITN

  14. Phenomenological network models: Lessons for epilepsy surgery.

    Science.gov (United States)

    Hebbink, Jurgen; Meijer, Hil; Huiskamp, Geertjan; van Gils, Stephan; Leijten, Frans

    2017-10-01

    The current opinion in epilepsy surgery is that successful surgery is about removing pathological cortex in the anatomic sense. This contrasts with recent developments in epilepsy research, where epilepsy is seen as a network disease. Computational models offer a framework to investigate the influence of networks, as well as local tissue properties, and to explore alternative resection strategies. Here we study, using such a model, the influence of connections on seizures and how this might change our traditional views of epilepsy surgery. We use a simple network model consisting of four interconnected neuronal populations. One of these populations can be made hyperexcitable, modeling a pathological region of cortex. Using model simulations, the effect of surgery on the seizure rate is studied. We find that removal of the hyperexcitable population is, in most cases, not the best approach to reduce the seizure rate. Removal of normal populations located at a crucial spot in the network, the "driver," is typically more effective in reducing seizure rate. This work strengthens the idea that network structure and connections may be more important than localizing the pathological node. This can explain why lesionectomy may not always be sufficient. © 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.

  15. Dynamic load modeling using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.; Silva, A.P. Alves da; Torres, G. Lambert [Escola Federal de Engenharia de Itajuba, MG (Brazil). Inst. de Engenharia Eletrica

    1996-07-01

    Accurate dynamic load models allow more precise calculations of power system controls and stability limits. System identification methods can be applied to estimate load models based on measurements. Parametric and nonparametric are the two classes in system identification methods. The parametric approach has been the only one used for load modeling so far. In this paper, the performance of a nonparametric load model based on the functional polynomial artificial neural network is compared with a linear model and with the popular Zip model. The impact of clustering different load compositions is also investigated. Substation buses (138 kV) from the Brazilian system feeding important industrial consumers have been modeled. (author)

  16. Personalized Learning Network Teaching Model

    Science.gov (United States)

    Feng, Zhou

    Adaptive learning system on the salient features, expounded personalized learning is adaptive learning system adaptive to learners key to learning. From the perspective of design theory, put forward an adaptive learning system to learn design thinking individual model, and using data mining techniques, the initial establishment of personalized adaptive systems model of learning.

  17. Delay and Disruption Tolerant Networking MACHETE Model

    Science.gov (United States)

    Segui, John S.; Jennings, Esther H.; Gao, Jay L.

    2011-01-01

    To verify satisfaction of communication requirements imposed by unique missions, as early as 2000, the Communications Networking Group at the Jet Propulsion Laboratory (JPL) saw the need for an environment to support interplanetary communication protocol design, validation, and characterization. JPL's Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in Simulator of Space Communication Networks (NPO-41373) NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various commercial, non-commercial, and in-house custom tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. As NASA is expanding its Space Communications and Navigation (SCaN) capabilities to support planned and future missions, building infrastructure to maintain services and developing enabling technologies, an important and broader role is seen for MACHETE in design-phase evaluation of future SCaN architectures. To support evaluation of the developing Delay Tolerant Networking (DTN) field and its applicability for space networks, JPL developed MACHETE models for DTN Bundle Protocol (BP) and Licklider/Long-haul Transmission Protocol (LTP). DTN is an Internet Research Task Force (IRTF) architecture providing communication in and/or through highly stressed networking environments such as space exploration and battlefield networks. Stressed networking environments include those with intermittent (predictable and unknown) connectivity, large and/or variable delays, and high bit error rates. To provide its services over existing domain specific protocols, the DTN protocols reside at the application layer of the TCP/IP stack, forming a store-and-forward overlay network. The key capabilities of the Bundle Protocol include custody-based reliability, the ability to cope with intermittent connectivity

  18. A comprehensive Network Security Risk Model for process control networks.

    Science.gov (United States)

    Henry, Matthew H; Haimes, Yacov Y

    2009-02-01

    The risk of cyber attacks on process control networks (PCN) is receiving significant attention due to the potentially catastrophic extent to which PCN failures can damage the infrastructures and commodity flows that they support. Risk management addresses the coupled problems of (1) reducing the likelihood that cyber attacks would succeed in disrupting PCN operation and (2) reducing the severity of consequences in the event of PCN failure or manipulation. The Network Security Risk Model (NSRM) developed in this article provides a means of evaluating the efficacy of candidate risk management policies by modeling the baseline risk and assessing expectations of risk after the implementation of candidate measures. Where existing risk models fall short of providing adequate insight into the efficacy of candidate risk management policies due to shortcomings in their structure or formulation, the NSRM provides model structure and an associated modeling methodology that captures the relevant dynamics of cyber attacks on PCN for risk analysis. This article develops the NSRM in detail in the context of an illustrative example.

  19. Boolean-valued second-order logic

    NARCIS (Netherlands)

    Ikegami, D.; Väänänen, J.

    2015-01-01

    In so-called full second-order logic, the second-order variables range over all subsets and relations of the domain in question. In so-called Henkin second-order logic, every model is endowed with a set of subsets and relations which will serve as the range of the second-order variables. In our

  20. Modelling students' knowledge organisation: Genealogical conceptual networks

    Science.gov (United States)

    Koponen, Ismo T.; Nousiainen, Maija

    2018-04-01

    Learning scientific knowledge is largely based on understanding what are its key concepts and how they are related. The relational structure of concepts also affects how concepts are introduced in teaching scientific knowledge. We model here how students organise their knowledge when they represent their understanding of how physics concepts are related. The model is based on assumptions that students use simple basic linking-motifs in introducing new concepts and mostly relate them to concepts that were introduced a few steps earlier, i.e. following a genealogical ordering. The resulting genealogical networks have relatively high local clustering coefficients of nodes but otherwise resemble networks obtained with an identical degree distribution of nodes but with random linking between them (i.e. the configuration-model). However, a few key nodes having a special structural role emerge and these nodes have a higher than average communicability betweenness centralities. These features agree with the empirically found properties of students' concept networks.

  1. Irreversibility of T-Cell Specification: Insights from Computational Modelling of a Minimal Network Architecture.

    Directory of Open Access Journals (Sweden)

    Erica Manesso

    possible in a Boolean network.

  2. PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    R. Hadapiningradja Kusumodestoni

    2015-11-01

    Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.

  3. Modelling dendritic ecological networks in space: An integrated network perspective

    Science.gov (United States)

    Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...

  4. Thermodynamically Feasible Kinetic Models of Reaction Networks

    OpenAIRE

    Ederer, Michael; Gilles, Ernst Dieter

    2007-01-01

    The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic understanding of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken. Detailed balance demands that in thermodynamic equilibrium all fluxes vanish. We introduce a thermodynamic-kinetic modeling (TKM) formalism that adapts th...

  5. Artificial neural network cardiopulmonary modeling and diagnosis

    Science.gov (United States)

    Kangas, Lars J.; Keller, Paul E.

    1997-01-01

    The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.

  6. Modeling, Optimization & Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat

    2014-01-01

    Water supply systems consist of a number of pumping stations, which deliver water to the customers via pipeline networks and elevated reservoirs. A huge amount of drinking water is lost before it reaches to end-users due to the leakage in pipe networks. A cost effective solution to reduce leakage...... systems. To have better understanding of water leakage, to control pressure and leakage effectively and for optimal design of water supply system, suitable modeling is an important prerequisite. Therefore a model with the main objective of pressure control and consequently leakage reduction is presented...

  7. An Association Rule Mining Algorithm Based on a Boolean Matrix

    Directory of Open Access Journals (Sweden)

    Hanbing Liu

    2007-09-01

    Full Text Available Association rule mining is a very important research topic in the field of data mining. Discovering frequent itemsets is the key process in association rule mining. Traditional association rule algorithms adopt an iterative method to discovery, which requires very large calculations and a complicated transaction process. Because of this, a new association rule algorithm called ABBM is proposed in this paper. This new algorithm adopts a Boolean vector "relational calculus" method to discovering frequent itemsets. Experimental results show that this algorithm can quickly discover frequent itemsets and effectively mine potential association rules.

  8. A Construction of Boolean Functions with Good Cryptographic Properties

    Science.gov (United States)

    2014-01-01

    over Fn2 defined by Wf (u) = ∑ x∈Fn2 (−1)f(x)+u·x, where u ∈ Fn2 and u · x is an inner product , for instance, u · x = u1x1 + u2x3 + · · · + unxn, where u...later on for all these classes. We mention also the paper of Pasalic [27], which introduces the notion of high degree product (HDP) to mea- sure the...2008, LNCS 5350, Springer–Verlag, 2008, pp. 425–440. [10] C. Carlet and K. Feng, “An Infinite Class of Balanced Vectorial Boolean Functions with Optimum

  9. Bebop to the Boolean boogie an unconventional guide to electronics

    CERN Document Server

    Maxfield, Clive

    2003-01-01

    From reviews of the first edition:""If you want to be reminded of the joy of electronics, take a look at Clive (Max) Maxfield's book Bebop to the Boolean Boogie.""--Computer Design ""Lives up to its title as a useful and entertaining technical guide....well-suited for students, technical writers, technicians, and sales and marketing people.""--Electronic Design""Writing a book like this one takes audacity! ... Maxfield writes lucidly on a variety of complex topics without 'writing down' to his audience."" --EDN""A highly readable, well-illustrated guided tour

  10. PROJECT ACTIVITY ANALYSIS WITHOUT THE NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    S. Munapo

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper presents a new procedure for analysing and managing activity sequences in projects. The new procedure determines critical activities, critical path, start times, free floats, crash limits, and other useful information without the use of the network model. Even though network models have been successfully used in project management so far, there are weaknesses associated with the use. A network is not easy to generate, and dummies that are usually associated with it make the network diagram complex – and dummy activities have no meaning in the original project management problem. The network model for projects can be avoided while still obtaining all the useful information that is required for project management. What are required are the activities, their accurate durations, and their predecessors.

    AFRIKAANSE OPSOMMING: Die navorsing beskryf ’n nuwerwetse metode vir die ontleding en bestuur van die sekwensiële aktiwiteite van projekte. Die voorgestelde metode bepaal kritiese aktiwiteite, die kritieke pad, aanvangstye, speling, verhasing, en ander groothede sonder die gebruik van ’n netwerkmodel. Die metode funksioneer bevredigend in die praktyk, en omseil die administratiewe rompslomp van die tradisionele netwerkmodelle.

  11. Boolean Approach to Dichotomic Quantum Measurement Theories

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, K. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Nakamura, T. [Keio University, Yokohama (Japan); Batle, J. [Universitat de les Illes Balears, Balearic Islands (Spain); Abdalla, S. [King Abdulaziz University Jeddah, Jeddah (Saudi Arabia); Farouk, A. [Al-Zahra College for Women, Muscat (Egypt)

    2017-02-15

    Recently, a new measurement theory based on truth values was proposed by Nagata and Nakamura [Int. J. Theor. Phys. 55, 3616 (2016)], that is, a theory where the results of measurements are either 0 or 1. The standard measurement theory accepts a hidden variable model for a single Pauli observable. Hence, we can introduce a classical probability space for the measurement theory in this particular case. Additionally, we discuss in the present contribution the fact that projective measurement theories (the results of which are either +1 or −1) imply the Bell, Kochen, and Specker (BKS) paradox for a single Pauli observable. To justify our assertion, we present the BKS theorem in almost all the two-dimensional states by using a projective measurement theory. As an example, we present the BKS theorem in two-dimensions with white noise. Our discussion provides new insight into the quantum measurement problem by using this measurement theory based on the truth values.

  12. Mobility Models for Next Generation Wireless Networks Ad Hoc, Vehicular and Mesh Networks

    CERN Document Server

    Santi, Paolo

    2012-01-01

    Mobility Models for Next Generation Wireless Networks: Ad Hoc, Vehicular and Mesh Networks provides the reader with an overview of mobility modelling, encompassing both theoretical and practical aspects related to the challenging mobility modelling task. It also: Provides up-to-date coverage of mobility models for next generation wireless networksOffers an in-depth discussion of the most representative mobility models for major next generation wireless network application scenarios, including WLAN/mesh networks, vehicular networks, wireless sensor networks, and

  13. Distributed Bayesian Networks for User Modeling

    DEFF Research Database (Denmark)

    Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang

    2006-01-01

    The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used...... by such adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... of Web-based eLearning platforms. The scenario we are tackling assumes learners who use several systems over time, which are able to create partial Bayesian Networks for user models based on the local system context. In particular, we focus on how to merge these partial user models. Our merge mechanism...

  14. Bayesian Joint Modeling of Multiple Brain Functional Networks

    OpenAIRE

    Lukemire, Joshua; Kundu, Suprateek; Pagnoni, Giuseppe; Guo, Ying

    2017-01-01

    Brain function is organized in coordinated modes of spatio-temporal activity (functional networks) exhibiting an intrinsic baseline structure with variations under different experimental conditions. Existing approaches for uncovering such network structures typically do not explicitly model shared and differential patterns across networks, thus potentially reducing the detection power. We develop an integrative modeling approach for jointly modeling multiple brain networks across experimental...

  15. Complexity classifications for different equivalence and audit problems for Boolean circuits

    OpenAIRE

    Böhler, Elmar; Creignou, Nadia; Galota, Matthias; Reith, Steffen; Schnoor, Henning; Vollmer, Heribert

    2010-01-01

    We study Boolean circuits as a representation of Boolean functions and conskier different equivalence, audit, and enumeration problems. For a number of restricted sets of gate types (bases) we obtain efficient algorithms, while for all other gate types we show these problems are at least NP-hard.

  16. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Massive small unmanned aerial vehicles are envisioned to operate in the near future. While there are lots of research problems need to be addressed before dense operations can happen, trajectory modeling remains as one of the keys to understand and develop policies, regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The fidelity requirement of a small unmanned vehicle trajectory model is high because these vehicles are sensitive to winds due to their small size and low operational altitude. Both vehicle control systems and dynamic models are needed for trajectory modeling, which makes the modeling a great challenge, especially considering the fact that manufactures are not willing to share their control systems. This work proposed to use a neural network approach for modelling small unmanned vehicle's trajectory without knowing its control system and bypassing exhaustive efforts for aerodynamic parameter identification. As a proof of concept, instead of collecting data from flight tests, this work used the trajectory data generated by a mathematical vehicle model for training and testing the neural network. The results showed great promise because the trained neural network can predict 4D trajectories accurately, and prediction errors were less than 2:0 meters in both temporal and spatial dimensions.

  17. A Model of Mental State Transition Network

    Science.gov (United States)

    Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo

    Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.

  18. The Kuramoto model in complex networks

    Science.gov (United States)

    Rodrigues, Francisco A.; Peron, Thomas K. DM.; Ji, Peng; Kurths, Jürgen

    2016-01-01

    Synchronization of an ensemble of oscillators is an emergent phenomenon present in several complex systems, ranging from social and physical to biological and technological systems. The most successful approach to describe how coherent behavior emerges in these complex systems is given by the paradigmatic Kuramoto model. This model has been traditionally studied in complete graphs. However, besides being intrinsically dynamical, complex systems present very heterogeneous structure, which can be represented as complex networks. This report is dedicated to review main contributions in the field of synchronization in networks of Kuramoto oscillators. In particular, we provide an overview of the impact of network patterns on the local and global dynamics of coupled phase oscillators. We cover many relevant topics, which encompass a description of the most used analytical approaches and the analysis of several numerical results. Furthermore, we discuss recent developments on variations of the Kuramoto model in networks, including the presence of noise and inertia. The rich potential for applications is discussed for special fields in engineering, neuroscience, physics and Earth science. Finally, we conclude by discussing problems that remain open after the last decade of intensive research on the Kuramoto model and point out some promising directions for future research.

  19. Computational Modeling of Complex Protein Activity Networks

    NARCIS (Netherlands)

    Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude

    2017-01-01

    Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a

  20. Modeling of Aggregate Attacks on Complex Networks

    Directory of Open Access Journals (Sweden)

    F. Galindo

    2010-09-01

    Full Text Available An order factor in combinations of random and targeted attacks on modern scale free network model has been explored. Protection concepts based on timely restructuring of topologies have been discussed. Vulnerability parameter defined by investment value has been introduced, and protection financing strategies depending on node connectivity has been analyzed.

  1. An architectural model for network interconnection

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Vissers, C.A.; Kalin, T.

    1983-01-01

    This paper presents a technique of successive decomposition of a common users' activity to illustrate the problems of network interconnection. The criteria derived from this approach offer a structuring principle which is used to develop an architectural model that embeds heterogeneous subnetworks

  2. Phenomenological network models : Lessons for epilepsy surgery

    NARCIS (Netherlands)

    Hebbink, Jurgen; Meijer, Hil; Huiskamp, Geertjan; van Gils, Stephanus A.; Leijten, Frans

    2017-01-01

    The current opinion in epilepsy surgery is that successful surgery is about removing pathological cortex in the anatomic sense. This contrasts with recent developments in epilepsy research, where epilepsy is seen as a network disease. Computational models offer a framework to investigate the

  3. Modeling Insurgent Network Structure and Dynamics

    Science.gov (United States)

    Gabbay, Michael; Thirkill-Mackelprang, Ashley

    2010-03-01

    We present a methodology for mapping insurgent network structure based on their public rhetoric. Indicators of cooperative links between insurgent groups at both the leadership and rank-and-file levels are used, such as joint policy statements or joint operations claims. In addition, a targeting policy measure is constructed on the basis of insurgent targeting claims. Network diagrams which integrate these measures of insurgent cooperation and ideology are generated for different periods of the Iraqi and Afghan insurgencies. The network diagrams exhibit meaningful changes which track the evolution of the strategic environment faced by insurgent groups. Correlations between targeting policy and network structure indicate that insurgent targeting claims are aimed at establishing a group identity among the spectrum of rank-and-file insurgency supporters. A dynamical systems model of insurgent alliance formation and factionalism is presented which evolves the relationship between insurgent group dyads as a function of their ideological differences and their current relationships. The ability of the model to qualitatively and quantitatively capture insurgent network dynamics observed in the data is discussed.

  4. Hybrid simulation models of production networks

    CERN Document Server

    Kouikoglou, Vassilis S

    2001-01-01

    This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.

  5. Proposed method to construct Boolean functions with maximum possible annihilator immunity

    Science.gov (United States)

    Goyal, Rajni; Panigrahi, Anupama; Bansal, Rohit

    2017-07-01

    Nonlinearity and Algebraic(annihilator) immunity are two core properties of a Boolean function because optimum values of Annihilator Immunity and nonlinearity are required to resist fast algebraic attack and differential cryptanalysis respectively. For a secure cypher system, Boolean function(S-Boxes) should resist maximum number of attacks. It is possible if a Boolean function has optimal trade-off among its properties. Before constructing Boolean functions, we fixed the criteria of our constructions based on its properties. In present work, our construction is based on annihilator immunity and nonlinearity. While keeping above facts in mind,, we have developed a multi-objective evolutionary approach based on NSGA-II and got the optimum value of annihilator immunity with good bound of nonlinearity. We have constructed balanced Boolean functions having the best trade-off among balancedness, Annihilator immunity and nonlinearity for 5, 6 and 7 variables by the proposed method.

  6. Modeling Network Transition Constraints with Hypergraphs

    DEFF Research Database (Denmark)

    Harrod, Steven

    2011-01-01

    Discrete time dynamic graphs are frequently used to model multicommodity flows or activity paths through constrained resources, but simple graphs fail to capture the interaction effects of resource transitions. The resulting schedules are not operationally feasible, and return inflated objective...... values. A directed hypergraph formulation is derived to address railway network sequencing constraints, and an experimental problem sample solved to estimate the magnitude of objective inflation when interaction effects are ignored. The model is used to demonstrate the value of advance scheduling...

  7. Chemical Visualization of Boolean Functions: A Simple Chemical Computer

    Science.gov (United States)

    Blittersdorf, R.; Müller, J.; Schneider, F. W.

    1995-08-01

    We present a chemical realization of the Boolean functions AND, OR, NAND, and NOR with a neutralization reaction carried out in three coupled continuous flow stirred tank reactors (CSTR). Two of these CSTR's are used as input reactors, the third reactor marks the output. The chemical reaction is the neutralization of hydrochloric acid (HCl) with sodium hydroxide (NaOH) in the presence of phenolphtalein as an indicator, which is red in alkaline solutions and colorless in acidic solutions representing the two binary states 1 and 0, respectively. The time required for a "chemical computation" is determined by the flow rate of reactant solutions into the reactors since the neutralization reaction itself is very fast. While the acid flow to all reactors is equal and constant, the flow rate of NaOH solution controls the states of the input reactors. The connectivities between the input and output reactors determine the flow rate of NaOH solution into the output reactor, according to the chosen Boolean function. Thus the state of the output reactor depends on the states of the input reactors.

  8. Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games

    Directory of Open Access Journals (Sweden)

    Gijs Kant

    2012-10-01

    Full Text Available Parameterised Boolean Equation Systems (PBESs are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal mu-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then solving the game. Practical game solvers exist, but the instantiation step is the bottleneck. We enhance the instantiation in two steps. First, we transform the PBES to a Parameterised Parity Game (PPG, a PBES with each equation either conjunctive or disjunctive. Then we use LTSmin, that offers transition caching, efficient storage of states and both distributed and symbolic state space generation, for generating the game graph. To that end we define a language module for LTSmin, consisting of an encoding of variables with parameters into state vectors, a grouped transition relation and a dependency matrix to indicate the dependencies between parts of the state vector and transition groups. Benchmarks on some large case studies, show that the method speeds up the instantiation significantly and decreases memory usage drastically.

  9. Modelling dendritic ecological networks in space: anintegrated network perspective

    Science.gov (United States)

    Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of ecological networks, or in 2-D space, may be inadequate for studying the influence of structure and connectivity on ecological processes within DENs. We propose a conceptual taxonomy of network analysis methods that account for DEN characteristics to varying degrees and provide a synthesis of the different approaches within

  10. On traffic modelling in GPRS networks

    DEFF Research Database (Denmark)

    Madsen, Tatiana Kozlova; Schwefel, Hans-Peter; Prasad, Ramjee

    2005-01-01

    Optimal design and dimensioning of wireless data networks, such as GPRS, requires the knowledge of traffic characteristics of different data services. This paper presents an in-detail analysis of an IP-level traffic measurements taken in an operational GPRS network. The data measurements reported...... here are done at the Gi interface. The aim of this paper is to reveal some key statistics of GPRS data applications and to validate if the existing traffic models can adequately describe traffic volume and inter-arrival time distribution for different services. Additionally, we present a method of user...

  11. Distance distribution in configuration-model networks

    Science.gov (United States)

    Nitzan, Mor; Katzav, Eytan; Kühn, Reimer; Biham, Ofer

    2016-06-01

    We present analytical results for the distribution of shortest path lengths between random pairs of nodes in configuration model networks. The results, which are based on recursion equations, are shown to be in good agreement with numerical simulations for networks with degenerate, binomial, and power-law degree distributions. The mean, mode, and variance of the distribution of shortest path lengths are also evaluated. These results provide expressions for central measures and dispersion measures of the distribution of shortest path lengths in terms of moments of the degree distribution, illuminating the connection between the two distributions.

  12. A improved Network Security Situation Awareness Model

    Directory of Open Access Journals (Sweden)

    Li Fangwei

    2015-08-01

    Full Text Available In order to reflect the situation of network security assessment performance fully and accurately, a new network security situation awareness model based on information fusion was proposed. Network security situation is the result of fusion three aspects evaluation. In terms of attack, to improve the accuracy of evaluation, a situation assessment method of DDoS attack based on the information of data packet was proposed. In terms of vulnerability, a improved Common Vulnerability Scoring System (CVSS was raised and maked the assessment more comprehensive. In terms of node weights, the method of calculating the combined weights and optimizing the result by Sequence Quadratic Program (SQP algorithm which reduced the uncertainty of fusion was raised. To verify the validity and necessity of the method, a testing platform was built and used to test through evaluating 2000 DAPRA data sets. Experiments show that the method can improve the accuracy of evaluation results.

  13. Fractional virus epidemic model on financial networks

    Directory of Open Access Journals (Sweden)

    Balci Mehmet Ali

    2016-01-01

    Full Text Available In this study, we present an epidemic model that characterizes the behavior of a financial network of globally operating stock markets. Since the long time series have a global memory effect, we represent our model by using the fractional calculus. This model operates on a network, where vertices are the stock markets and edges are constructed by the correlation distances. Thereafter, we find an analytical solution to commensurate system and use the well-known differential transform method to obtain the solution of incommensurate system of fractional differential equations. Our findings are confirmed and complemented by the data set of the relevant stock markets between 2006 and 2016. Rather than the hypothetical values, we use the Hurst Exponent of each time series to approximate the fraction size and graph theoretical concepts to obtain the variables.

  14. Characterizing Attention with Predictive Network Models.

    Science.gov (United States)

    Rosenberg, M D; Finn, E S; Scheinost, D; Constable, R T; Chun, M M

    2017-04-01

    Recent work shows that models based on functional connectivity in large-scale brain networks can predict individuals' attentional abilities. While being some of the first generalizable neuromarkers of cognitive function, these models also inform our basic understanding of attention, providing empirical evidence that: (i) attention is a network property of brain computation; (ii) the functional architecture that underlies attention can be measured while people are not engaged in any explicit task; and (iii) this architecture supports a general attentional ability that is common to several laboratory-based tasks and is impaired in attention deficit hyperactivity disorder (ADHD). Looking ahead, connectivity-based predictive models of attention and other cognitive abilities and behaviors may potentially improve the assessment, diagnosis, and treatment of clinical dysfunction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. SIHR rumor spreading model in social networks

    Science.gov (United States)

    Zhao, Laijun; Wang, Jiajia; Chen, Yucheng; Wang, Qin; Cheng, Jingjing; Cui, Hongxin

    2012-04-01

    There are significant differences between rumor spreading and epidemic spreading in social networks, especially with consideration of the mutual effect of forgetting and remembering mechanisms. In this paper, a new rumor spreading model, Susceptible-Infected-Hibernator-Removed (SIHR) model, is developed. The model extends the classical Susceptible-Infected-Removed (SIR) rumor spreading model by adding a direct link from ignorants to stiflers and a new kind of people-Hibernators. We derive mean-field equations that describe the dynamics of the SIHR model in social networks. Then a steady-state analysis is conducted to investigate the final size of the rumor spreading under various spreading rate, stifling rate, forgetting rate, and average degree of the network. We discuss the spreading threshold and find the relationship between the final size of the rumor and two probabilities. Also Runge-Kutta method is used for numerical simulation which shows that the direct link from the ignorants to the stiflers advances the rumor terminal time and reduces the maximum rumor influence. Moreover, the forgetting and remembering mechanisms of hibernators postpone the rumor terminal time and reduce the maximum rumor influence.

  16. A Network Model to Explore the Effect of the Micro-environment on Endothelial Cell Behavior during Angiogenesis.

    Science.gov (United States)

    Weinstein, Nathan; Mendoza, Luis; Gitler, Isidoro; Klapp, Jaime

    2017-01-01

    Angiogenesis is an important adaptation mechanism of the blood vessels to the changing requirements of the body during development, aging, and wound healing. Angiogenesis allows existing blood vessels to form new connections or to reabsorb existing ones. Blood vessels are composed of a layer of endothelial cells (ECs) covered by one or more layers of mural cells (smooth muscle cells or pericytes). We constructed a computational Boolean model of the molecular regulatory network involved in the control of angiogenesis. Our model includes the ANG/TIE, HIF, AMPK/mTOR, VEGF, IGF, FGF, PLCγ/Calcium, PI3K/AKT, NO, NOTCH, and WNT signaling pathways, as well as the mechanosensory components of the cytoskeleton. The dynamical behavior of our model recovers the patterns of molecular activation observed in Phalanx, Tip, and Stalk ECs. Furthermore, our model is able to describe the modulation of EC behavior due to extracellular micro-environments, as well as the effect due to loss- and gain-of-function mutations. These properties make our model a suitable platform for the understanding of the molecular mechanisms underlying some pathologies. For example, it is possible to follow the changes in the activation patterns caused by mutations that promote Tip EC behavior and inhibit Phalanx EC behavior, that lead to the conditions associated with retinal vascular disorders and tumor vascularization. Moreover, the model describes how mutations that promote Phalanx EC behavior are associated with the development of arteriovenous and venous malformations. These results suggest that the network model that we propose has the potential to be used in the study of how the modulation of the EC extracellular micro-environment may improve the outcome of vascular disease treatments.

  17. A Network Model to Explore the Effect of the Micro-environment on Endothelial Cell Behavior during Angiogenesis

    Directory of Open Access Journals (Sweden)

    Nathan Weinstein

    2017-11-01

    Full Text Available Angiogenesis is an important adaptation mechanism of the blood vessels to the changing requirements of the body during development, aging, and wound healing. Angiogenesis allows existing blood vessels to form new connections or to reabsorb existing ones. Blood vessels are composed of a layer of endothelial cells (ECs covered by one or more layers of mural cells (smooth muscle cells or pericytes. We constructed a computational Boolean model of the molecular regulatory network involved in the control of angiogenesis. Our model includes the ANG/TIE, HIF, AMPK/mTOR, VEGF, IGF, FGF, PLCγ/Calcium, PI3K/AKT, NO, NOTCH, and WNT signaling pathways, as well as the mechanosensory components of the cytoskeleton. The dynamical behavior of our model recovers the patterns of molecular activation observed in Phalanx, Tip, and Stalk ECs. Furthermore, our model is able to describe the modulation of EC behavior due to extracellular micro-environments, as well as the effect due to loss- and gain-of-function mutations. These properties make our model a suitable platform for the understanding of the molecular mechanisms underlying some pathologies. For example, it is possible to follow the changes in the activation patterns caused by mutations that promote Tip EC behavior and inhibit Phalanx EC behavior, that lead to the conditions associated with retinal vascular disorders and tumor vascularization. Moreover, the model describes how mutations that promote Phalanx EC behavior are associated with the development of arteriovenous and venous malformations. These results suggest that the network model that we propose has the potential to be used in the study of how the modulation of the EC extracellular micro-environment may improve the outcome of vascular disease treatments.

  18. Network theory model of the United States Patent citation network

    Science.gov (United States)

    Tobochnik, Jan; Erdi, Peter; Strandburg, Katherine; Csardi, Gabor; Zalanyi, Laszlo

    2006-03-01

    We report results of a network theory approach to the study of the United States patent system. We model the patent citation network as a discrete time, discrete space stochastic dynamic system. From data on more than two million patents and their citations, we extract an attractiveness function, A(k,l), which determines the likelihood that a patent will be cited. A(k,l) is approximately separable into a product of a function Ak(k) and a function Al(l), where k is the number of citations already received (in-degree) and l is the age measured in patent number units. Al(l) displays a peak at low l and a long power law tail, suggesting that some patented technologies have very long-term effects. Ak(k) exhibits super-linear preferential attachment. The preferential attachment exponent has been increasing since 1991, suggesting that patent citations are increasingly concentrated on a relatively small number of patents. The overall average probability that a new patent will be cited by a given patent has increased slightly during the same period.

  19. Performance modeling, loss networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi

    2009-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of understanding the phenomenon of statistical multiplexing. The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in performance measures. Also presented are recent ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. I

  20. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  1. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural

  2. Mapping and modeling of physician collaboration network.

    Science.gov (United States)

    Uddin, Shahadat; Hamra, Jafar; Hossain, Liaquat

    2013-09-10

    Effective provisioning of healthcare services during patient hospitalization requires collaboration involving a set of interdependent complex tasks, which needs to be carried out in a synergistic manner. Improved patients' outcome during and after hospitalization has been attributed to how effective different health services provisioning groups carry out their tasks in a coordinated manner. Previous studies have documented the underlying relationships between collaboration among physicians on the effective outcome in delivering health services for improved patient outcomes. However, there are very few systematic empirical studies with a focus on the effect of collaboration networks among healthcare professionals and patients' medical condition. On the basis of the fact that collaboration evolves among physicians when they visit a common hospitalized patient, in this study, we first propose an approach to map collaboration network among physicians from their visiting information to patients. We termed this network as physician collaboration network (PCN). Then, we use exponential random graph (ERG) models to explore the microlevel network structures of PCNs and their impact on hospitalization cost and hospital readmission rate. ERG models are probabilistic models that are presented by locally determined explanatory variables and can effectively identify structural properties of networks such as PCN. It simplifies a complex structure down to a combination of basic parameters such as 2-star, 3-star, and triangle. By applying our proposed mapping approach and ERG modeling technique to the electronic health insurance claims dataset of a very large Australian health insurance organization, we construct and model PCNs. We notice that the 2-star (subset of 3 nodes in which 1 node is connected to each of the other 2 nodes) parameter of ERG has significant impact on hospitalization cost. Further, we identify that triangle (subset of 3 nodes in which each node is connected to

  3. Systems biology of plant molecular networks: from networks to models

    NARCIS (Netherlands)

    Valentim, F.L.

    2015-01-01

    Developmental processes are controlled by regulatory networks (GRNs), which are tightly coordinated networks of transcription factors (TFs) that activate and repress gene expression within a spatial and temporal context. In Arabidopsis thaliana, the key components and network structures of the GRNs

  4. Different Epidemic Models on Complex Networks

    International Nuclear Information System (INIS)

    Zhang Haifeng; Small, Michael; Fu Xinchu

    2009-01-01

    Models for diseases spreading are not just limited to SIS or SIR. For instance, for the spreading of AIDS/HIV, the susceptible individuals can be classified into different cases according to their immunity, and similarly, the infected individuals can be sorted into different classes according to their infectivity. Moreover, some diseases may develop through several stages. Many authors have shown that the individuals' relation can be viewed as a complex network. So in this paper, in order to better explain the dynamical behavior of epidemics, we consider different epidemic models on complex networks, and obtain the epidemic threshold for each case. Finally, we present numerical simulations for each case to verify our results.

  5. Modeling In-Network Aggregation in VANETs

    NARCIS (Netherlands)

    Dietzel, Stefan; Kargl, Frank; Heijenk, Geert; Schaub, Florian

    2011-01-01

    The multitude of applications envisioned for vehicular ad hoc networks requires efficient communication and dissemination mechanisms to prevent network congestion. In-network data aggregation promises to reduce bandwidth requirements and enable scalability in large vehicular networks. However, most

  6. Centralized Bayesian reliability modelling with sensor networks

    Czech Academy of Sciences Publication Activity Database

    Dedecius, Kamil; Sečkárová, Vladimíra

    2013-01-01

    Roč. 19, č. 5 (2013), s. 471-482 ISSN 1387-3954 R&D Projects: GA MŠk 7D12004 Grant - others:GA MŠk(CZ) SVV-265315 Keywords : Bayesian modelling * Sensor network * Reliability Subject RIV: BD - Theory of Information Impact factor: 0.984, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0392551.pdf

  7. GPSS and Modeling of Computer Communication Networks.

    Science.gov (United States)

    1982-04-01

    Project Manager _A SACDIN - Stragetic Air Command Digital Network * SIGMA - Name of force level maneuver control system -’ SINSCRIPT - Generic name of...SEIZE "facility" in GPSS. The SEIZE block is then a model statement that can be readily understood by managers as weil as program- mers. The majority of...1 Director, BRL Information Exchange Building 328 US Army Logistics Management Center 1 Director, BRL ATTN: DRXNC-D ATTN: DRDAR-TSB-S (STINFO Br) Fort

  8. Advances in dynamic network modeling in complex transportation systems

    CERN Document Server

    Ukkusuri, Satish V

    2013-01-01

    This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.

  9. A High-Level Petri Net Framework for Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Banks Richard

    2007-12-01

    Full Text Available To understand the function of genetic regulatory networks in the development of cellular systems, we must not only realise the individual network entities, but also the manner by which they interact. Multi-valued networks are a promising qualitative approach for modelling such genetic regulatory networks, however, at present they have limited formal analysis techniques and tools. We present a flexible formal framework for modelling and analysing multi-valued genetic regulatory networks using high-level Petri nets and logic minimization techniques. We demonstrate our approach with a detailed case study in which part of the genetic regulatory network responsible for the carbon starvation stress response in Escherichia coli is modelled and analysed. We then compare and contrast this multivalued model to a corresponding Boolean model and consider their formal relationship.

  10. Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms.

    Directory of Open Access Journals (Sweden)

    Alan E Bilsland

    2014-02-01

    Full Text Available Cancer cells depend on transcription of telomerase reverse transcriptase (TERT. Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3'-oxime (BIO predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several

  11. ZKBoo: Faster Zero-Knowledge for Boolean Circuits

    DEFF Research Database (Denmark)

    Giacomelli, Irene; Madsen, Jesper; Orlandi, Claudio

    2016-01-01

    variants of IKOS, which highlights their pros and cons for practically rele- vant soundness parameters; ◦ A generalization and simplification of their approach, which leads to faster Σ-protocols (that can be made non-interactive using the Fiat-Shamir heuristic) for state- ments of the form “I know x...... such that y = φ (x)” (where φ is a circuit and y a public value); ◦ A case study, where we provide explicit protocols, implementations and benchmarking of zero-knowledge protocols for the SHA-1 and SHA-256 circuits.......In this paper we describe ZKBoo, a proposal for practically efficient zero-knowledge arguments especially tailored for Boolean circuits and report on a proof-of- concept implementation. As an highlight, we can generate (resp. verify) a non-interactive proof for the SHA-1 circuit in approximately 13...

  12. Algebraic characteristics and satisfiability threshold of random Boolean equations

    Science.gov (United States)

    Guo, Binghui; Wei, Wei; Sun, Yifan; Zheng, Zhiming

    2010-03-01

    The satisfiability of a class of random Boolean equations named massive algebraic system septated to linear and nonlinear subproblems is studied in this paper. On one hand, the correlation between the magnetization of generators and the clustering of solutions of the linear subproblem is investigated by analyzing the Gaussian elimination process. On the other hand, the characteristics of maximal elements of solutions of the nonlinear subproblem are studied by introducing the partial order among solutions. Based on the algebraic characteristics of these two subproblems, the upper and lower bounds of satisfiability threshold of massive algebraic system are obtained by unit-clause propagation and leaf-removal process, and coincide as the ratio of nonlinear equations q>0.739 in which analytical values of the satisfiability threshold can be derived. Furthermore, a complete algorithm with heuristic decimation is proposed to observe the approximation of the satisfiability threshold, which performs more efficiently than the classical ones.

  13. Boolean Algebra Application in Analysis of Flight Accidents

    Directory of Open Access Journals (Sweden)

    Casandra Venera BALAN

    2015-12-01

    Full Text Available Fault tree analysis is a deductive approach for resolving an undesired event into its causes, identifying the causes of a failure and providing a framework for a qualitative and quantitative evaluation of the top event. An alternative approach to fault tree analysis methods calculus goes to logical expressions and it is based on a graphical representation of the data structure for a logic - based binary decision diagram representation. In this analysis, such sites will be reduced to a minimal size and arranged in the sense that the variables appear in the same order in each path. An event can be defined as a statement that can be true or false. Therefore, Boolean algebra rules allow restructuring of a Fault Tree into one equivalent to it, but simpler.

  14. A proposed "osi based" network troubles identification model

    OpenAIRE

    Kayri, Murat; Kayri, İsmail

    2010-01-01

    The OSI model, developed by ISO in 1984, attempts to summarize complicated network cases on layers. Moreover, network troubles are expressed by taking the model into account. However, there has been no standardization for network troubles up to now. Network troubles have only been expressed by the name of the related layer. In this paper, it is pointed out that possible troubles on the related layer vary and possible troubles on each layer are categorized for functional network administration...

  15. A Comparison of Geographic Information Systems, Complex Networks, and Other Models for Analyzing Transportation Network Topologies

    Science.gov (United States)

    Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher

    2005-01-01

    This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.

  16. Model parameter updating using Bayesian networks

    Energy Technology Data Exchange (ETDEWEB)

    Treml, C. A. (Christine A.); Ross, Timothy J.

    2004-01-01

    This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.

  17. Mathematical model for spreading dynamics of social network worms

    International Nuclear Information System (INIS)

    Sun, Xin; Liu, Yan-Heng; Han, Jia-Wei; Liu, Xue-Jie; Li, Bin; Li, Jin

    2012-01-01

    In this paper, a mathematical model for social network worm spreading is presented from the viewpoint of social engineering. This model consists of two submodels. Firstly, a human behavior model based on game theory is suggested for modeling and predicting the expected behaviors of a network user encountering malicious messages. The game situation models the actions of a user under the condition that the system may be infected at the time of opening a malicious message. Secondly, a social network accessing model is proposed to characterize the dynamics of network users, by which the number of online susceptible users can be determined at each time step. Several simulation experiments are carried out on artificial social networks. The results show that (1) the proposed mathematical model can well describe the spreading dynamics of social network worms; (2) weighted network topology greatly affects the spread of worms; (3) worms spread even faster on hybrid social networks

  18. Dynamic Interbank Network Analysis Using Latent Space Models

    NARCIS (Netherlands)

    Linardi, F.; Diks, C.; van der Leij, M.; Lazier, I.

    2017-01-01

    Longitudinal network data are increasingly available, allowing researchers to model how networks evolve over time and to make inference on their dependence structure. In this paper, a dynamic latent space approach is used to model directed networks of monthly interbank exposures. In this model, each

  19. Artificial Neural Network Modeling of an Inverse Fluidized Bed ...

    African Journals Online (AJOL)

    The application of neural networks to model a laboratory scale inverse fluidized bed reactor has been studied. A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological ...

  20. Modeling social influence through network autocorrelation : constructing the weight matrix

    NARCIS (Netherlands)

    Leenders, Roger Th. A. J.

    Many physical and social phenomena are embedded within networks of interdependencies, the so-called 'context' of these phenomena. In network analysis, this type of process is typically modeled as a network autocorrelation model. Parameter estimates and inferences based on autocorrelation models,

  1. Specification and Estimation of Network Formation and Network Interaction Models with the Exponential Probability Distribution

    OpenAIRE

    Hsieh, Chih-Sheng; Lee, Lung fei

    2017-01-01

    In this paper, we model network formation and network interactions under a unified framework. The key feature of our model is to allow individuals to respond to incentives stemming from interaction benefits on certain activities when they choose friends (network links), while capturing homophily in terms of unobserved characteristic variables in network formation and activities. There are two advantages of this modeling approach: first, one can evaluate whether incentives from certain interac...

  2. Complex networks-based energy-efficient evolution model for wireless sensor networks

    International Nuclear Information System (INIS)

    Zhu Hailin; Luo Hong; Peng Haipeng; Li Lixiang; Luo Qun

    2009-01-01

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  3. Modeling online social networks based on preferential linking

    International Nuclear Information System (INIS)

    Hu Hai-Bo; Chen Jun; Guo Jin-Li

    2012-01-01

    We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment. Based on the linear preference, we propose an analyzable model, which illustrates the mechanism of network growth and reproduces the process of network evolution. Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network. This work provides a possible bridge between the micro-mechanisms of network growth and the macrostructures of online social networks

  4. Stochastic ecological network occupancy (SENO) models: a new tool for modeling ecological networks across spatial scales

    Science.gov (United States)

    Lafferty, Kevin D.; Dunne, Jennifer A.

    2010-01-01

    Stochastic ecological network occupancy (SENO) models predict the probability that species will occur in a sample of an ecological network. In this review, we introduce SENO models as a means to fill a gap in the theoretical toolkit of ecologists. As input, SENO models use a topological interaction network and rates of colonization and extinction (including consumer effects) for each species. A SENO model then simulates the ecological network over time, resulting in a series of sub-networks that can be used to identify commonly encountered community modules. The proportion of time a species is present in a patch gives its expected probability of occurrence, whose sum across species gives expected species richness. To illustrate their utility, we provide simple examples of how SENO models can be used to investigate how topological complexity, species interactions, species traits, and spatial scale affect communities in space and time. They can categorize species as biodiversity facilitators, contributors, or inhibitors, making this approach promising for ecosystem-based management of invasive, threatened, or exploited species.

  5. Logic integer programming models for signaling networks.

    Science.gov (United States)

    Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert

    2009-05-01

    We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.

  6. Spatial Models and Networks of Living Systems

    DEFF Research Database (Denmark)

    Juul, Jeppe Søgaard

    with interactions defined by network topology. In this thesis I first describe three different biological models of ageing and cancer, in which spatial structure is important for the system dynamics. I then turn to describe characteristics of ecosystems consisting of three cyclically interacting species......When studying the dynamics of living systems, insight can often be gained by developing a mathematical model that can predict future behaviour of the system or help classify system characteristics. However, in living cells, organisms, and especially groups of interacting individuals, a large number...... of different factors influence the time development of the system. This often makes it challenging to construct a mathematical model from which to draw conclusions. One traditional way of capturing the dynamics in a mathematical model is to formulate a set of coupled differential equations for the essential...

  7. Modelling dependable systems using hybrid Bayesian networks

    International Nuclear Information System (INIS)

    Neil, Martin; Tailor, Manesh; Marquez, David; Fenton, Norman; Hearty, Peter

    2008-01-01

    A hybrid Bayesian network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment, the models are invariably hybrid and the need for efficient and accurate computation is paramount. We apply a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction tree structures to perform inference in hybrid BNs. We illustrate its use in the field of dependability with two example of reliability estimation. Firstly we estimate the reliability of a simple single system and next we implement a hierarchical Bayesian model. In the hierarchical model we compute the reliability of two unknown subsystems from data collected on historically similar subsystems and then input the result into a reliability block model to compute system level reliability. We conclude that dynamic discretisation can be used as an alternative to analytical or Monte Carlo methods with high precision and can be applied to a wide range of dependability problems

  8. Empirical generalization assessment of neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1995-01-01

    competing models. Since all models are trained on the same data, a key issue is to take this dependency into account. The optimal split of the data set of size N into a cross-validation set of size Nγ and a training set of size N(1-γ) is discussed. Asymptotically (large data sees), γopt→1......This paper addresses the assessment of generalization performance of neural network models by use of empirical techniques. We suggest to use the cross-validation scheme combined with a resampling technique to obtain an estimate of the generalization performance distribution of a specific model....... This enables the formulation of a bulk of new generalization performance measures. Numerical results demonstrate the viability of the approach compared to the standard technique of using algebraic estimates like the FPE. Moreover, we consider the problem of comparing the generalization performance of different...

  9. Neural Network Program Package for Prosody Modeling

    Directory of Open Access Journals (Sweden)

    J. Santarius

    2004-04-01

    Full Text Available This contribution describes the programme for one part of theautomatic Text-to-Speech (TTS synthesis. Some experiments (for example[14] documented the considerable improvement of the naturalness ofsynthetic speech, but this approach requires completing the inputfeature values by hand. This completing takes a lot of time for bigfiles. We need to improve the prosody by other approaches which useonly automatically classified features (input parameters. Theartificial neural network (ANN approach is used for the modeling ofprosody parameters. The program package contains all modules necessaryfor the text and speech signal pre-processing, neural network training,sensitivity analysis, result processing and a module for the creationof the input data protocol for Czech speech synthesizer ARTIC [1].

  10. Aeronautical telecommunications network advances, challenges, and modeling

    CERN Document Server

    Musa, Sarhan M

    2015-01-01

    Addresses the Challenges of Modern-Day Air Traffic Air traffic control (ATC) directs aircraft in the sky and on the ground to safety, while the Aeronautical Telecommunications Network (ATN) comprises all systems and phases that assist in aircraft departure and landing. The Aeronautical Telecommunications Network: Advances, Challenges, and Modeling focuses on the development of ATN and examines the role of the various systems that link aircraft with the ground. The book places special emphasis on ATC-introducing the modern ATC system from the perspective of the user and the developer-and provides a thorough understanding of the operating mechanism of the ATC system. It discusses the evolution of ATC, explaining its structure and how it works; includes design examples; and describes all subsystems of the ATC system. In addition, the book covers relevant tools, techniques, protocols, and architectures in ATN, including MIPv6, air traffic control (ATC), security of air traffic management (ATM), very-high-frequenc...

  11. Modeling of regional warehouse network generation

    Directory of Open Access Journals (Sweden)

    Popov Pavel Vladimirovich

    2016-08-01

    Full Text Available One of the factors that has a significant impact on the socio-economic development of the Russian Federation’s regions is the logistics infrastructure. It provides integrated transportation and distribution service of material flows. One of the main elements of logistics infrastructure is a storage infrastructure, which includes distribution center, distribution-and-sortout and sortout warehouses. It is the most expedient to place distribution center in the vicinity of the regional center. One of the tasks of the distribution network creation within the regions of the Russian Federation is to determine the location, capacity and number of stores. When determining regional network location of general purpose warehouses methodological approaches to solving the problems of location of production and non-production can be used which depend on various economic factors. The mathematical models for solving relevant problems are the deployment models. However, the existing models focus on the dimensionless power storage. The purpose of the given work is to develop a model to determine the optimal location of general-purpose warehouses on the Russian Federation area. At the first stage of the work, the authors assess the main economic indicators influencing the choice of the location of general purpose warehouses. An algorithm for solving the first stage, based on ABC, discriminant and cluster analysis were proposed by the authors in earlier papers. At the second stage the specific locations of general purpose warehouses and their power is chosen to provide the cost minimization for the construction and subsequent maintenance of warehouses and transportation heterogeneous products. In order to solve this problem the authors developed a mathematical model that takes into account the possibility of delivery in heterogeneous goods from suppliers and manufacturers in the distribution and storage sorting with specified set of capacities. The model allows

  12. Contributions and challenges for network models in cognitive neuroscience.

    Science.gov (United States)

    Sporns, Olaf

    2014-05-01

    The confluence of new approaches in recording patterns of brain connectivity and quantitative analytic tools from network science has opened new avenues toward understanding the organization and function of brain networks. Descriptive network models of brain structural and functional connectivity have made several important contributions; for example, in the mapping of putative network hubs and network communities. Building on the importance of anatomical and functional interactions, network models have provided insight into the basic structures and mechanisms that enable integrative neural processes. Network models have also been instrumental in understanding the role of structural brain networks in generating spatially and temporally organized brain activity. Despite these contributions, network models are subject to limitations in methodology and interpretation, and they face many challenges as brain connectivity data sets continue to increase in detail and complexity.

  13. A neural network model of harmonic detection

    Science.gov (United States)

    Lewis, Clifford F.

    2003-04-01

    Harmonic detection theories postulate that a virtual pitch is perceived when a sufficient number of harmonics is present. The harmonics need not be consecutive, but higher harmonics contribute less than lower harmonics [J. Raatgever and F. A. Bilsen, in Auditory Physiology and Perception, edited by Y. Cazals, K. Horner, and L. Demany (Pergamon, Oxford, 1992), pp. 215-222 M. K. McBeath and J. F. Wayand, Abstracts of the Psychonom. Soc. 3, 55 (1998)]. A neural network model is presented that has the potential to simulate this operation. Harmonics are first passed through a bank of rounded exponential filters with lateral inhibition. The results are used as inputs for an autoassociator neural network. The model is trained using harmonic data for symphonic musical instruments, in order to test whether it can self-organize by learning associations between co-occurring harmonics. It is shown that the trained model can complete the pattern for missing-fundamental sounds. The Performance of the model in harmonic detection will be compared with experimental results for humans.

  14. Bayesian Recurrent Neural Network for Language Modeling.

    Science.gov (United States)

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  15. Parsimonious modeling with information filtering networks

    Science.gov (United States)

    Barfuss, Wolfram; Massara, Guido Previde; Di Matteo, T.; Aste, Tomaso

    2016-12-01

    We introduce a methodology to construct parsimonious probabilistic models. This method makes use of information filtering networks to produce a robust estimate of the global sparse inverse covariance from a simple sum of local inverse covariances computed on small subparts of the network. Being based on local and low-dimensional inversions, this method is computationally very efficient and statistically robust, even for the estimation of inverse covariance of high-dimensional, noisy, and short time series. Applied to financial data our method results are computationally more efficient than state-of-the-art methodologies such as Glasso producing, in a fraction of the computation time, models that can have equivalent or better performances but with a sparser inference structure. We also discuss performances with sparse factor models where we notice that relative performances decrease with the number of factors. The local nature of this approach allows us to perform computations in parallel and provides a tool for dynamical adaptation by partial updating when the properties of some variables change without the need of recomputing the whole model. This makes this approach particularly suitable to handle big data sets with large numbers of variables. Examples of practical application for forecasting, stress testing, and risk allocation in financial systems are also provided.

  16. Research on network information security model and system construction

    OpenAIRE

    Wang Haijun

    2016-01-01

    It briefly describes the impact of large data era on China’s network policy, but also brings more opportunities and challenges to the network information security. This paper reviews for the internationally accepted basic model and characteristics of network information security, and analyses the characteristics of network information security and their relationship. On the basis of the NIST security model, this paper describes three security control schemes in safety management model and the...

  17. A Complex Network Approach to Distributional Semantic Models.

    Directory of Open Access Journals (Sweden)

    Akira Utsumi

    Full Text Available A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.

  18. Inferring gene regression networks with model trees

    Directory of Open Access Journals (Sweden)

    Aguilar-Ruiz Jesus S

    2010-10-01

    Full Text Available Abstract Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear

  19. A dynamic genetic-hormonal regulatory network model explains multiple cellular behaviors of the root apical meristem of Arabidopsis thaliana.

    Science.gov (United States)

    García-Gómez, Mónica L; Azpeitia, Eugenio; Álvarez-Buylla, Elena R

    2017-04-01

    The study of the concerted action of hormones and transcription factors is fundamental to understand cell differentiation and pattern formation during organ development. The root apical meristem of Arabidopsis thaliana is a useful model to address this. It has a stem cell niche near its tip conformed of a quiescent organizer and stem or initial cells around it, then a proliferation domain followed by a transition domain, where cells diminish division rate before transiting to the elongation zone; here, cells grow anisotropically prior to their final differentiation towards the plant base. A minimal model of the gene regulatory network that underlies cell-fate specification and patterning at the root stem cell niche was proposed before. In this study, we update and couple such network with both the auxin and cytokinin hormone signaling pathways to address how they collectively give rise to attractors that correspond to the genetic and hormonal activity profiles that are characteristic of different cell types along A. thaliana root apical meristem. We used a Boolean model of the genetic-hormonal regulatory network to integrate known and predicted regulatory interactions into alternative models. Our analyses show that, after adding some putative missing interactions, the model includes the necessary and sufficient components and regulatory interactions to recover attractors characteristic of the root cell types, including the auxin and cytokinin activity profiles that correlate with different cellular behaviors along the root apical meristem. Furthermore, the model predicts the existence of activity configurations that could correspond to the transition domain. The model also provides a possible explanation for apparently paradoxical cellular behaviors in the root meristem. For example, how auxin may induce and at the same time inhibit WOX5 expression. According to the model proposed here the hormonal regulation of WOX5 might depend on the cell type. Our results

  20. A dynamic genetic-hormonal regulatory network model explains multiple cellular behaviors of the root apical meristem of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Mónica L García-Gómez

    2017-04-01

    Full Text Available The study of the concerted action of hormones and transcription factors is fundamental to understand cell differentiation and pattern formation during organ development. The root apical meristem of Arabidopsis thaliana is a useful model to address this. It has a stem cell niche near its tip conformed of a quiescent organizer and stem or initial cells around it, then a proliferation domain followed by a transition domain, where cells diminish division rate before transiting to the elongation zone; here, cells grow anisotropically prior to their final differentiation towards the plant base. A minimal model of the gene regulatory network that underlies cell-fate specification and patterning at the root stem cell niche was proposed before. In this study, we update and couple such network with both the auxin and cytokinin hormone signaling pathways to address how they collectively give rise to attractors that correspond to the genetic and hormonal activity profiles that are characteristic of different cell types along A. thaliana root apical meristem. We used a Boolean model of the genetic-hormonal regulatory network to integrate known and predicted regulatory interactions into alternative models. Our analyses show that, after adding some putative missing interactions, the model includes the necessary and sufficient components and regulatory interactions to recover attractors characteristic of the root cell types, including the auxin and cytokinin activity profiles that correlate with different cellular behaviors along the root apical meristem. Furthermore, the model predicts the existence of activity configurations that could correspond to the transition domain. The model also provides a possible explanation for apparently paradoxical cellular behaviors in the root meristem. For example, how auxin may induce and at the same time inhibit WOX5 expression. According to the model proposed here the hormonal regulation of WOX5 might depend on the cell

  1. Modeling and analysis of modular structure in diverse biological networks.

    Science.gov (United States)

    Al-Anzi, Bader; Gerges, Sherif; Olsman, Noah; Ormerod, Christopher; Piliouras, Georgios; Ormerod, John; Zinn, Kai

    2017-06-07

    Biological networks, like most engineered networks, are not the product of a singular design but rather are the result of a long process of refinement and optimization. Many large real-world networks are comprised of well-defined and meaningful smaller modules. While engineered networks are designed and refined by humans with particular goals in mind, biological networks are created by the selective pressures of evolution. In this paper, we seek to define aspects of network architecture that are shared among different types of evolved biological networks. First, we developed a new mathematical model, the Stochastic Block Model with Path Selection (SBM-PS) that simulates biological network formation based on the selection of edges that increase clustering. SBM-PS can produce modular networks whose properties resemble those of real networks. Second, we analyzed three real networks of very different types, and showed that all three can be fit well by the SBM-PS model. Third, we showed that modular elements within the three networks correspond to meaningful biological structures. The networks chosen for analysis were a proteomic network composed of all proteins required for mitochondrial function in budding yeast, a mesoscale anatomical network composed of axonal connections among regions of the mouse brain, and the connectome of individual neurons in the nematode C. elegans. We find that the three networks have common architectural features, and each can be divided into subnetworks with characteristic topologies that control specific phenotypic outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Neural Networks For Electrohydrodynamic Effect Modelling

    Directory of Open Access Journals (Sweden)

    Wiesław Wajs

    2004-01-01

    Full Text Available This paper presents currently achieved results concerning methods of electrohydrodynamiceffect used in geophysics simulated with feedforward networks trained with backpropagation algorithm, radial basis function networks and generalized regression networks.

  3. Social network models predict movement and connectivity in ecological landscapes

    Science.gov (United States)

    Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  4. Social network models predict movement and connectivity in ecological landscapes.

    Science.gov (United States)

    Fletcher, Robert J; Acevedo, Miguel A; Reichert, Brian E; Pias, Kyle E; Kitchens, Wiley M

    2011-11-29

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  5. Boolean and advanced searching for EDGAR data on www.sec.gov

    Data.gov (United States)

    Securities and Exchange Commission — This search allows users to enter complex boolean queries to access all but the most recent day's EDGAR filings on www.sec.gov. Filings are from 1994 to present.

  6. Sensitivity analysis of efficient solution in vector MINMAX boolean programming problem

    Directory of Open Access Journals (Sweden)

    Vladimir A. Emelichev

    2002-11-01

    Full Text Available We consider a multiple criterion Boolean programming problem with MINMAX partial criteria. The extreme level of independent perturbations of partial criteria parameters such that efficient (Pareto optimal solution preserves optimality was obtained.

  7. Constructivizability of the Boolean algebra B(ω) with a distinguished automorphism

    Czech Academy of Sciences Publication Activity Database

    Bazhenov, N. A.; Tukhbatullina, Regina

    2012-01-01

    Roč. 51, č. 5 (2012), s. 384-403 ISSN 0002-5232 Institutional support: PRVOUK-P23 Keywords : Boolean algebra * constructivizability * degree spectra of structures Subject RIV: AH - Economics Impact factor: 0.493, year: 2012

  8. A novel generalized design methodology and realization of Boolean operations using DNA.

    Science.gov (United States)

    Zoraida, B S E; Arock, Michael; Ronald, B S M; Ponalagusamy, R

    2009-09-01

    The biological deoxyribonucleic acid (DNA) strand has been increasingly seen as a promising computing unit. A new algorithm is formulated in this paper to design any DNA Boolean operator with molecular beacons (MBs) as its input. Boolean operators realized using the proposed design methodology is presented. The developed operators adopt a uniform representation for logical 0 and 1 for any Boolean operator. The Boolean operators designed in this work employ only a hybridization operation at each stage. Further, this paper for the first time brings out the realization of a binary adder and subtractor using molecular beacons. Simulation results of the DNA-based binary adder and subtractor are given to validate the design.

  9. Modeling regulatory networks with weight matrices

    DEFF Research Database (Denmark)

    Weaver, D.C.; Workman, Christopher; Stormo, Gary D.

    1999-01-01

    Systematic gene expression analyses provide comprehensive information about the transcriptional responseto different environmental and developmental conditions. With enough gene expression data points,computational biologists may eventually generate predictive computer models of transcription...... and observed various alterations ingene expression patterns in response to environmental input. Finally, we use a derivation of this modelsystem to predict the regulatory network from simulated input/output data sets and find that it accuratelypredicts all components of the model, even with noisy expression...... regulation.Such models will require computational methodologies consistent with the behavior of known biologicalsystems that remain tractable. We represent regulatory relationships between genes as linear coefficients orweights, with the "net" regulation influence on a gene's expression being...

  10. Communications network design and costing model users manual

    Science.gov (United States)

    Logan, K. P.; Somes, S. S.; Clark, C. A.

    1983-01-01

    The information and procedures needed to exercise the communications network design and costing model for performing network analysis are presented. Specific procedures are included for executing the model on the NASA Lewis Research Center IBM 3033 computer. The concepts, functions, and data bases relating to the model are described. Model parameters and their format specifications for running the model are detailed.

  11. Combination of Bayesian Network and Overlay Model in User Modeling

    Directory of Open Access Journals (Sweden)

    Loc Nguyen

    2009-12-01

    Full Text Available The core of adaptive system is user model containing personal information such as knowledge, learning styles, goals… which is requisite for learning personalized process. There are many modeling approaches, for example: stereotype, overlay, plan recognition… but they don’t bring out the solid method for reasoning from user model. This paper introduces the statistical method that combines Bayesian network and overlay modeling so that it is able to infer user’s knowledge from evidences collected during user’s learning process.

  12. Quantum Random Networks for Type 2 Quantum Computers

    National Research Council Canada - National Science Library

    Allara, David L; Hasslacher, Brosl

    2006-01-01

    Random boolean networks (RBNs) have been studied theoretically and computationally in order to be able to use their remarkable self-healing and large basins of altercation properties as quantum computing architectures, especially...

  13. Compartmentalization analysis using discrete fracture network models

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  14. Networks model of the East Turkistan terrorism

    Science.gov (United States)

    Li, Ben-xian; Zhu, Jun-fang; Wang, Shun-guo

    2015-02-01

    The presence of the East Turkistan terrorist network in China can be traced back to the rebellions on the BAREN region in Xinjiang in April 1990. This article intends to research the East Turkistan networks in China and offer a panoramic view. The events, terrorists and their relationship are described using matrices. Then social network analysis is adopted to reveal the network type and the network structure characteristics. We also find the crucial terrorist leader. Ultimately, some results show that the East Turkistan network has big hub nodes and small shortest path, and that the network follows a pattern of small world network with hierarchical structure.

  15. Degree distribution of a new model for evolving networks

    Indian Academy of Sciences (India)

    Research Articles Volume 74 Issue 3 March 2010 pp 469-474 ... Evolving networks; degree distribution; Markov chain; scale-free network. ... Based on the concept of Markov chain, we provide the exact solution of the degree distribution of this model and show that the model can generate scale-free evolving network.

  16. Degree distribution of a new model for evolving networks

    Indian Academy of Sciences (India)

    on intuitive but realistic consideration that nodes are added to the network with both preferential and random attachments. The degree distribution of the model is between a power-law and an exponential decay. Motivated by the features of network evolution, we introduce a new model of evolving networks, incorporating the ...

  17. Totally Optimal Decision Trees for Monotone Boolean Functions with at Most Five Variables

    KAUST Repository

    Chikalov, Igor

    2013-01-01

    In this paper, we present the empirical results for relationships between time (depth) and space (number of nodes) complexity of decision trees computing monotone Boolean functions, with at most five variables. We use Dagger (a tool for optimization of decision trees and decision rules) to conduct experiments. We show that, for each monotone Boolean function with at most five variables, there exists a totally optimal decision tree which is optimal with respect to both depth and number of nodes.

  18. Interpolation of the discrete logarithm in a finite field of characteristic two by Boolean functions

    DEFF Research Database (Denmark)

    Brandstaetter, Nina; Lange, Tanja; Winterhof, Arne

    2005-01-01

    We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic.......We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic....

  19. Correlation Immunity, Avalanche Features, and Other Cryptographic Properties of Generalized Boolean Functions

    Science.gov (United States)

    2017-09-01

    duties due to Sailors, across the globe, who stand the watch. As Winston Churchill once said, “we sleep safely at night because rough men stand ready...Chapter 2 contains definitions and preliminary generalized Boolean function material. This is followed by Chapters 3–5, which contain the bulk of the...Generalized Boolean Functions Sic Parvis Magna Sir Francis DrakeA In this chapter we begin by covering some basic definitions and properties which we will make

  20. Fundamentals of complex networks models, structures and dynamics

    CERN Document Server

    Chen, Guanrong; Li, Xiang

    2014-01-01

    Complex networks such as the Internet, WWW, transportationnetworks, power grids, biological neural networks, and scientificcooperation networks of all kinds provide challenges for futuretechnological development. In particular, advanced societies havebecome dependent on large infrastructural networks to an extentbeyond our capability to plan (modeling) and to operate (control).The recent spate of collapses in power grids and ongoing virusattacks on the Internet illustrate the need for knowledge aboutmodeling, analysis of behaviors, optimized planning and performancecontrol in such networks. F

  1. VEPCO network model reconciliation of LANL and MZA model data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-15

    The LANL DC load flow model of the VEPCO transmission network shows 210 more substations than the AC load flow model produced by MZA utility Consultants. MZA was requested to determine the source of the difference. The AC load flow model used for this study utilizes 2 standard network algorithms (Decoupled or Newton). The solution time of each is affected by the number of substations. The more substations included, the longer the model will take to solve. In addition, the ability of the algorithms to converge to a solution is affected by line loadings and characteristics. Convergence is inhibited by numerous lightly loaded and electrically short lines. The MZA model reduces the total substations to 343 by creating equivalent loads and generation. Most of the omitted substations are lightly loaded and rated at 115 kV. The MZA model includes 16 substations not included in the LANL model. These represent new generation including Non-Utility Generator (NUG) sites, additional substations and an intertie (Wake, to CP and L). This report also contains data from the Italian State AC power flow model and the Duke Power Company AC flow model.

  2. Mathematical approaches for complexity/predictivity trade-offs in complex system models : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Goldsby, Michael E.; Mayo, Jackson R.; Bhattacharyya, Arnab (Massachusetts Institute of Technology, Cambridge, MA); Armstrong, Robert C.; Vanderveen, Keith

    2008-09-01

    The goal of this research was to examine foundational methods, both computational and theoretical, that can improve the veracity of entity-based complex system models and increase confidence in their predictions for emergent behavior. The strategy was to seek insight and guidance from simplified yet realistic models, such as cellular automata and Boolean networks, whose properties can be generalized to production entity-based simulations. We have explored the usefulness of renormalization-group methods for finding reduced models of such idealized complex systems. We have prototyped representative models that are both tractable and relevant to Sandia mission applications, and quantified the effect of computational renormalization on the predictive accuracy of these models, finding good predictivity from renormalized versions of cellular automata and Boolean networks. Furthermore, we have theoretically analyzed the robustness properties of certain Boolean networks, relevant for characterizing organic behavior, and obtained precise mathematical constraints on systems that are robust to failures. In combination, our results provide important guidance for more rigorous construction of entity-based models, which currently are often devised in an ad-hoc manner. Our results can also help in designing complex systems with the goal of predictable behavior, e.g., for cybersecurity.

  3. A network of networks model to study phase synchronization using structural connection matrix of human brain

    Science.gov (United States)

    Ferrari, F. A. S.; Viana, R. L.; Reis, A. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.

    2018-04-01

    The cerebral cortex plays a key role in complex cortical functions. It can be divided into areas according to their function (motor, sensory and association areas). In this paper, the cerebral cortex is described as a network of networks (cortex network), we consider that each cortical area is composed of a network with small-world property (cortical network). The neurons are assumed to have bursting properties with the dynamics described by the Rulkov model. We study the phase synchronization of the cortex network and the cortical networks. In our simulations, we verify that synchronization in cortex network is not homogeneous. Besides, we focus on the suppression of neural phase synchronization. Synchronization can be related to undesired and pathological abnormal rhythms in the brain. For this reason, we consider the delayed feedback control to suppress the synchronization. We show that delayed feedback control is efficient to suppress synchronous behavior in our network model when an appropriate signal intensity and time delay are defined.

  4. QSAR modelling using combined simple competitive learning networks and RBF neural networks.

    Science.gov (United States)

    Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E

    2018-04-01

    The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.

  5. Novel Prostate Cancer Pathway Modeling using Boolean Implication

    Science.gov (United States)

    2012-09-01

    cause of cancer deaths in men. Diagnosis and pathogenesis of this disease is poorly understood. Prostate specific antigen (PSA) test is still the...cells (Supplementary Fig. 13a,b). We also noticed that MUC2+/TFF3high cells, for the most part, did not express CFTR, the gene mutated in cystic ... fibrosis . The differential expression of DLL4 is of potential rele- vance to the clinical development of novel anti-tumor therapeutic agents directed

  6. Related work on reference modeling for collaborative networks

    NARCIS (Netherlands)

    Afsarmanesh, H.; Camarinha-Matos, L.M.; Camarinha-Matos, L.M.; Afsarmanesh, H.

    2008-01-01

    Several international research and development initiatives have led to development of models for organizations and organization interactions. These models and their approaches constitute a background for development of reference models for collaborative networks. A brief survey of work on modeling

  7. A random spatial network model based on elementary postulates

    Science.gov (United States)

    Karlinger, Michael R.; Troutman, Brent M.

    1989-01-01

    A model for generating random spatial networks that is based on elementary postulates comparable to those of the random topology model is proposed. In contrast to the random topology model, this model ascribes a unique spatial specification to generated drainage networks, a distinguishing property of some network growth models. The simplicity of the postulates creates an opportunity for potential analytic investigations of the probabilistic structure of the drainage networks, while the spatial specification enables analyses of spatially dependent network properties. In the random topology model all drainage networks, conditioned on magnitude (number of first-order streams), are equally likely, whereas in this model all spanning trees of a grid, conditioned on area and drainage density, are equally likely. As a result, link lengths in the generated networks are not independent, as usually assumed in the random topology model. For a preliminary model evaluation, scale-dependent network characteristics, such as geometric diameter and link length properties, and topologic characteristics, such as bifurcation ratio, are computed for sets of drainage networks generated on square and rectangular grids. Statistics of the bifurcation and length ratios fall within the range of values reported for natural drainage networks, but geometric diameters tend to be relatively longer than those for natural networks.

  8. Interference minimization in physical model of wireless networks

    OpenAIRE

    Aslanyan, Hakob

    2011-01-01

    Interference minimization problem in wireless sensor and ad-hoc networks is considered. That is to assign a transmission power to each node of a network such that the network is connected and at the same time the maximum of accumulated signal straight on network nodes is minimum. Previous works on interference minimization in wireless networks mainly consider the disk graph model of network. For disk graph model two approximation algorithms with $O(\\sqrt{n})$ and $O((opt\\ln{n})^{2})$ upper bo...

  9. PageRank model of opinion formation on Ulam networks

    Science.gov (United States)

    Chakhmakhchyan, L.; Shepelyansky, D.

    2013-12-01

    We consider a PageRank model of opinion formation on Ulam networks, generated by the intermittency map and the typical Chirikov map. The Ulam networks generated by these maps have certain similarities with such scale-free networks as the World Wide Web (WWW), showing an algebraic decay of the PageRank probability. We find that the opinion formation process on Ulam networks has certain similarities but also distinct features comparing to the WWW. We attribute these distinctions to internal differences in network structure of the Ulam and WWW networks. We also analyze the process of opinion formation in the frame of generalized Sznajd model which protects opinion of small communities.

  10. Marketing communications model for innovation networks

    Directory of Open Access Journals (Sweden)

    Tiago João Freitas Correia

    2015-10-01

    Full Text Available Innovation is an increasingly relevant concept for the success of any organization, but it also represents a set of internal and external considerations, barriers and challenges to overcome. Along the concept of innovation, new paradigms emerge such as open innovation and co-creation that are simultaneously innovation modifiers and intensifiers in organizations, promoting organizational openness and stakeholder integration within the value creation process. Innovation networks composed by a multiplicity of agents in co-creative work perform as innovation mechanisms to face the increasingly complexity of products, services and markets. Technology, especially the Internet, is an enabler of all process among organizations supported by co-creative platforms for innovation. The definition of marketing communication strategies that promote motivation and involvement of all stakeholders in synergic creation and external promotion is the central aspect of this research. The implementation of the projects is performed by participative workshops with stakeholders from Madan Parque through IDEAS(REVOLUTION methodology and the operational model LinkUp parameterized for the project. The project is divided into the first part, the theoretical framework, and the second part where a model is developed for the marketing communication strategies that appeal to the Madan Parque case study. Keywords: Marketing Communication; Open Innovation, Technology; Innovation Networks; Incubator; Co-Creation.

  11. A graph model for opportunistic network coding

    KAUST Repository

    Sorour, Sameh

    2015-08-12

    © 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase in complexity. In this paper, we design a simple IDNC-like graph model for a specific subclass of ONC, by introducing a more generalized definition of its vertices and the notion of vertex aggregation in order to represent the storage of non-instantly-decodable packets in ONC. Based on this representation, we determine the set of pairwise vertex adjacency conditions that can populate this graph with edges so as to guarantee decodability or aggregation for the vertices of each clique in this graph. We then develop the algorithmic procedures that can be applied on the designed graph model to optimize any performance metric for this ONC subclass. A case study on reducing the completion time shows that the proposed framework improves on the performance of IDNC and gets very close to the optimal performance.

  12. Modeling management of research and education networks

    NARCIS (Netherlands)

    Galagan, D.V.

    2004-01-01

    Computer networks and their services have become an essential part of research and education. Nowadays every modern R&E institution must have a computer network and provide network services to its students and staff. In addition to its internal computer network, every R&E institution must have a

  13. A scale-free neural network for modelling neurogenesis

    Science.gov (United States)

    Perotti, Juan I.; Tamarit, Francisco A.; Cannas, Sergio A.

    2006-11-01

    In this work we introduce a neural network model for associative memory based on a diluted Hopfield model, which grows through a neurogenesis algorithm that guarantees that the final network is a small-world and scale-free one. We also analyze the storage capacity of the network and prove that its performance is larger than that measured in a randomly dilute network with the same connectivity.

  14. SUSTAIN: a network model of category learning.

    Science.gov (United States)

    Love, Bradley C; Medin, Douglas L; Gureckis, Todd M

    2004-04-01

    SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a model of how humans learn categories from examples. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g., it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising event. Newly recruited clusters are available to explain future events and can themselves evolve into prototypes-attractors-rules. SUSTAIN's discovery of category substructure is affected not only by the structure of the world but by the nature of the learning task and the learner's goals. SUSTAIN successfully extends category learning models to studies of inference learning, unsupervised learning, category construction, and contexts in which identification learning is faster than classification learning.

  15. Multiplicative Attribute Graph Model of Real-World Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myunghwan [Stanford Univ., CA (United States); Leskovec, Jure [Stanford Univ., CA (United States)

    2010-10-20

    Large scale real-world network data, such as social networks, Internet andWeb graphs, is ubiquitous in a variety of scientific domains. The study of such social and information networks commonly finds patterns and explain their emergence through tractable models. In most networks, especially in social networks, nodes also have a rich set of attributes (e.g., age, gender) associatedwith them. However, most of the existing network models focus only on modeling the network structure while ignoring the features of nodes in the network. Here we present a class of network models that we refer to as the Multiplicative Attribute Graphs (MAG), which naturally captures the interactions between the network structure and node attributes. We consider a model where each node has a vector of categorical features associated with it. The probability of an edge between a pair of nodes then depends on the product of individual attributeattribute similarities. The model yields itself to mathematical analysis as well as fit to real data. We derive thresholds for the connectivity, the emergence of the giant connected component, and show that the model gives rise to graphs with a constant diameter. Moreover, we analyze the degree distribution to show that the model can produce networks with either lognormal or power-law degree distribution depending on certain conditions.

  16. Multilevel method for modeling large-scale networks.

    Energy Technology Data Exchange (ETDEWEB)

    Safro, I. M. (Mathematics and Computer Science)

    2012-02-24

    Understanding the behavior of real complex networks is of great theoretical and practical significance. It includes developing accurate artificial models whose topological properties are similar to the real networks, generating the artificial networks at different scales under special conditions, investigating a network dynamics, reconstructing missing data, predicting network response, detecting anomalies and other tasks. Network generation, reconstruction, and prediction of its future topology are central issues of this field. In this project, we address the questions related to the understanding of the network modeling, investigating its structure and properties, and generating artificial networks. Most of the modern network generation methods are based either on various random graph models (reinforced by a set of properties such as power law distribution of node degrees, graph diameter, and number of triangles) or on the principle of replicating an existing model with elements of randomization such as R-MAT generator and Kronecker product modeling. Hierarchical models operate at different levels of network hierarchy but with the same finest elements of the network. However, in many cases the methods that include randomization and replication elements on the finest relationships between network nodes and modeling that addresses the problem of preserving a set of simplified properties do not fit accurately enough the real networks. Among the unsatisfactory features are numerically inadequate results, non-stability of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incorrect behavior at different scales. One reason is that randomization and replication of existing structures can create conflicts between fine and coarse scales of the real network geometry. Moreover, the randomization and satisfying of some attribute at the same time can abolish those topological attributes that have been undefined or hidden from

  17. Topological evolution of virtual social networks by modeling social activities

    Science.gov (United States)

    Sun, Xin; Dong, Junyu; Tang, Ruichun; Xu, Mantao; Qi, Lin; Cai, Yang

    2015-09-01

    With the development of Internet and wireless communication, virtual social networks are becoming increasingly important in the formation of nowadays' social communities. Topological evolution model is foundational and critical for social network related researches. Up to present most of the related research experiments are carried out on artificial networks, however, a study of incorporating the actual social activities into the network topology model is ignored. This paper first formalizes two mathematical abstract concepts of hobbies search and friend recommendation to model the social actions people exhibit. Then a social activities based topology evolution simulation model is developed to satisfy some well-known properties that have been discovered in real-world social networks. Empirical results show that the proposed topology evolution model has embraced several key network topological properties of concern, which can be envisioned as signatures of real social networks.

  18. A fusion networking model for smart grid power distribution backbone communication network based on PTN

    Directory of Open Access Journals (Sweden)

    Wang Hao

    2016-01-01

    Full Text Available In current communication network for distribution in Chinese power grid systems, the fiber communication backbone network for distribution and TD-LTE power private wireless backhaul network of power grid are both bearing by the SDH optical transmission network, which also carries the communication network of transformer substation and main electric. As the data traffic of the distribution communication and TD-LTE power private wireless network grow rapidly in recent years, it will have a big impact with the SDH network’s bearing capacity which is mainly used for main electric communication in high security level. This paper presents a fusion networking model which use a multiple-layer PTN network as the unified bearing of the TD-LTE power private wireless backhaul network and fiber communication backbone network for distribution. Network dataflow analysis shows that this model can greatly reduce the capacity pressure of the traditional SDH network as well as ensure the reliability of the transmission of the communication network for distribution and TD-LTE power private wireless network.

  19. Road network safety evaluation using Bayesian hierarchical joint model.

    Science.gov (United States)

    Wang, Jie; Huang, Helai

    2016-05-01

    Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Optimal traffic control in highway transportation networks using linear programming

    KAUST Repository

    Li, Yanning

    2014-06-01

    This article presents a framework for the optimal control of boundary flows on transportation networks. The state of the system is modeled by a first order scalar conservation law (Lighthill-Whitham-Richards PDE). Based on an equivalent formulation of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can be extended to an arbitrary transportation network, preserving linear constraints. Unlike previously investigated transportation network control schemes, this framework leverages the intrinsic properties of the Halmilton-Jacobi equation, and does not require any discretization or boolean variables on the link. Hence this framework is very computational efficient and provides the globally optimal solution. The feasibility of this framework is illustrated by an on-ramp metering control example.

  1. A comparative study of two neural networks for document retrieval

    International Nuclear Information System (INIS)

    Hui, S.C.; Goh, A.

    1997-01-01

    In recent years there has been specific interest in adopting advanced computer techniques in the field of document retrieval. This interest is generated by the fact that classical methods such as the Boolean search, the vector space model or even probabilistic retrieval cannot handle the increasing demands of end-users in satisfying their needs. The most recent attempt is the application of the neural network paradigm as a means of providing end-users with a more powerful retrieval mechanism. Neural networks are not only good pattern matchers but also highly versatile and adaptable. In this paper, we demonstrate how to apply two neural networks, namely Adaptive Resonance Theory and Fuzzy Kohonen Neural Network, for document retrieval. In addition, a comparison of these two neural networks based on performance is also given

  2. A Search Model with a Quasi-Network

    DEFF Research Database (Denmark)

    Ejarque, Joao Miguel

    This paper adds a quasi-network to a search model of the labor market. Fitting the model to an average unemployment rate and to other moments in the data implies the presence of the network is not noticeable in the basic properties of the unemployment and job finding rates. However, the network...... creates downward sloping reemployment hazards which the basic model does not, and under increasing network returns these hazards are significantly convex as we see in the data. Going into more detail we find that the network gets partially destroyed in periods of high unemployment and generates less job...

  3. Resolving structural variability in network models and the brain.

    Directory of Open Access Journals (Sweden)

    Florian Klimm

    2014-03-01

    Full Text Available Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling--in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity do not in general simultaneously display a second (e.g., hierarchy. This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful

  4. A last updating evolution model for online social networks

    Science.gov (United States)

    Bu, Zhan; Xia, Zhengyou; Wang, Jiandong; Zhang, Chengcui

    2013-05-01

    As information technology has advanced, people are turning to electronic media more frequently for communication, and social relationships are increasingly found on online channels. However, there is very limited knowledge about the actual evolution of the online social networks. In this paper, we propose and study a novel evolution network model with the new concept of “last updating time”, which exists in many real-life online social networks. The last updating evolution network model can maintain the robustness of scale-free networks and can improve the network reliance against intentional attacks. What is more, we also found that it has the “small-world effect”, which is the inherent property of most social networks. Simulation experiment based on this model show that the results and the real-life data are consistent, which means that our model is valid.

  5. Robustness and backbone motif of a cancer network regulated by miR-17-92 cluster during the G1/S transition.

    Directory of Open Access Journals (Sweden)

    Lijian Yang

    Full Text Available Based on interactions among transcription factors, oncogenes, tumor suppressors and microRNAs, a Boolean model of cancer network regulated by miR-17-92 cluster is constructed, and the network is associated with the control of G1/S transition in the mammalian cell cycle. The robustness properties of this regulatory network are investigated by virtue of the Boolean network theory. It is found that, during G1/S transition in the cell cycle process, the regulatory networks are robustly constructed, and the robustness property is largely preserved with respect to small perturbations to the network. By using the unique process-based approach, the structure of this network is analyzed. It is shown that the network can be decomposed into a backbone motif which provides the main biological functions, and a remaining motif which makes the regulatory system more stable. The critical role of miR-17-92 in suppressing the G1/S cell cycle checkpoint and increasing the uncontrolled proliferation of the cancer cells by targeting a genetic network of interacting proteins is displayed with our model.

  6. Structural equation models from paths to networks

    CERN Document Server

    Westland, J Christopher

    2015-01-01

    This compact reference surveys the full range of available structural equation modeling (SEM) methodologies.  It reviews applications in a broad range of disciplines, particularly in the social sciences where many key concepts are not directly observable.  This is the first book to present SEM’s development in its proper historical context–essential to understanding the application, strengths and weaknesses of each particular method.  This book also surveys the emerging path and network approaches that complement and enhance SEM, and that will grow in importance in the near future.  SEM’s ability to accommodate unobservable theory constructs through latent variables is of significant importance to social scientists.  Latent variable theory and application are comprehensively explained, and methods are presented for extending their power, including guidelines for data preparation, sample size calculation, and the special treatment of Likert scale data.  Tables of software, methodologies and fit st...

  7. Modelling crime linkage with Bayesian networks.

    Science.gov (United States)

    de Zoete, Jacob; Sjerps, Marjan; Lagnado, David; Fenton, Norman

    2015-05-01

    When two or more crimes show specific similarities, such as a very distinct modus operandi, the probability that they were committed by the same offender becomes of interest. This probability depends on the degree of similarity and distinctiveness. We show how Bayesian networks can be used to model different evidential structures that can occur when linking crimes, and how they assist in understanding the complex underlying dependencies. That is, how evidence that is obtained in one case can be used in another and vice versa. The flip side of this is that the intuitive decision to "unlink" a case in which exculpatory evidence is obtained leads to serious overestimation of the strength of the remaining cases. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Adaptive Networks Theory, Models and Applications

    CERN Document Server

    Gross, Thilo

    2009-01-01

    With adaptive, complex networks, the evolution of the network topology and the dynamical processes on the network are equally important and often fundamentally entangled. Recent research has shown that such networks can exhibit a plethora of new phenomena which are ultimately required to describe many real-world networks. Some of those phenomena include robust self-organization towards dynamical criticality, formation of complex global topologies based on simple, local rules, and the spontaneous division of "labor" in which an initially homogenous population of network nodes self-organizes into functionally distinct classes. These are just a few. This book is a state-of-the-art survey of those unique networks. In it, leading researchers set out to define the future scope and direction of some of the most advanced developments in the vast field of complex network science and its applications.

  9. A hyperstable neural network for the modelling and control of ...

    Indian Academy of Sciences (India)

    A hyperstable neural network for the modelling and control of nonlinear systems ... Computer control; neural networks; nonlinear systems; adaptive control. ... control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure.

  10. Multiple Social Networks, Data Models and Measures for

    DEFF Research Database (Denmark)

    Magnani, Matteo; Rossi, Luca

    2017-01-01

    Multiple Social Network Analysis is a discipline defining models, measures, methodologies, and algorithms to study multiple social networks together as a single social system. It is particularly valuable when the networks are interconnected, e.g., the same actors are present in more than one...

  11. Neural networks in economic modelling : An empirical study

    NARCIS (Netherlands)

    Verkooijen, W.J.H.

    1996-01-01

    This dissertation addresses the statistical aspects of neural networks and their usability for solving problems in economics and finance. Neural networks are discussed in a framework of modelling which is generally accepted in econometrics. Within this framework a neural network is regarded as a

  12. UML modelling of network warfare examples

    CSIR Research Space (South Africa)

    Veerasamy, N

    2011-08-01

    Full Text Available will be determined by arguing their application to Network Warfare A. Consideration of Network Warfare Attributes Network Warfare can be seen as taking place over Information and Communication Technology (ICT) networks to affect information processing... the works of Theohandou, Tipton and Sowa, the following information security techniques emerge: Risk Analysis, Physical Security, Incident Response, Disaster Recovery Planning, Security Awareness, Legal, Regulations and Compliance [15] [16] [17...

  13. Learning Analytics for Networked Learning Models

    Science.gov (United States)

    Joksimovic, Srecko; Hatala, Marek; Gaševic, Dragan

    2014-01-01

    Teaching and learning in networked settings has attracted significant attention recently. The central topic of networked learning research is human-human and human-information interactions occurring within a networked learning environment. The nature of these interactions is highly complex and usually requires a multi-dimensional approach to…

  14. Spectral Modelling for Spatial Network Analysis

    NARCIS (Netherlands)

    Nourian, P.; Rezvani, S.; Sariyildiz, I.S.; van der Hoeven, F.D.; Attar, Ramtin; Chronis, Angelos; Hanna, Sean; Turrin, Michela

    2016-01-01

    Spatial Networks represent the connectivity structure between units of space as a weighted graph whose links are weighted as to the strength of connections. In case of urban spatial networks, the units of space correspond closely to streets and in architectural spatial networks the units correspond

  15. Stochastic actor-oriented models for network change

    NARCIS (Netherlands)

    Snijders, T.A.B.

    1996-01-01

    A class of models is proposed for longitudinal network data. These models are along the lines of methodological individualism: actors use heuristics to try to achieve their individual goals, subject to constraints. The current network structure is among these constraints. The models are continuous

  16. A Cascade-Based Emergency Model for Water Distribution Network

    Directory of Open Access Journals (Sweden)

    Qing Shuang

    2015-01-01

    Full Text Available Water distribution network is important in the critical physical infrastructure systems. The paper studies the emergency resource strategies on water distribution network with the approach of complex network and cascading failures. The model of cascade-based emergency for water distribution network is built. The cascade-based model considers the network topology analysis and hydraulic analysis to provide a more realistic result. A load redistribution function with emergency recovery mechanisms is established. From the aspects of uniform distribution, node betweenness, and node pressure, six recovery strategies are given to reflect the network topology and the failure information, respectively. The recovery strategies are evaluated with the complex network indicators to describe the failure scale and failure velocity. The proposed method is applied by an illustrative example. The results showed that the recovery strategy considering the node pressure can enhance the network robustness effectively. Besides, this strategy can reduce the failure nodes and generate the least failure nodes per time.

  17. Modeling the reemergence of information diffusion in social network

    Science.gov (United States)

    Yang, Dingda; Liao, Xiangwen; Shen, Huawei; Cheng, Xueqi; Chen, Guolong

    2018-01-01

    Information diffusion in networks is an important research topic in various fields. Existing studies either focus on modeling the process of information diffusion, e.g., independent cascade model and linear threshold model, or investigate information diffusion in networks with certain structural characteristics such as scale-free networks and small world networks. However, there are still several phenomena that have not been captured by existing information diffusion models. One of the prominent phenomena is the reemergence of information diffusion, i.e., a piece of information reemerges after the completion of its initial diffusion process. In this paper, we propose an optimized information diffusion model by introducing a new informed state into traditional susceptible-infected-removed model. We verify the proposed model via simulations in real-world social networks, and the results indicate that the model can reproduce the reemergence of information during the diffusion process.

  18. Infinite Multiple Membership Relational Modeling for Complex Networks

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel Nørgaard; Hansen, Lars Kai

    Learning latent structure in complex networks has become an important problem fueled by many types of networked data originating from practically all fields of science. In this paper, we propose a new non-parametric Bayesian multiplemembership latent feature model for networks. Contrary to existing...... multiplemembership models that scale quadratically in the number of vertices the proposedmodel scales linearly in the number of links admittingmultiple-membership analysis in large scale networks. We demonstrate a connection between the single membership relational model and multiple membership models and show...

  19. Image-Based Structural Modeling of the Cardiac Purkinje Network

    Directory of Open Access Journals (Sweden)

    Benjamin R. Liu

    2015-01-01

    Full Text Available The Purkinje network is a specialized conduction system within the heart that ensures the proper activation of the ventricles to produce effective contraction. Its role during ventricular arrhythmias is less clear, but some experimental studies have suggested that the Purkinje network may significantly affect the genesis and maintenance of ventricular arrhythmias. Despite its importance, few structural models of the Purkinje network have been developed, primarily because current physical limitations prevent examination of the intact Purkinje network. In previous modeling efforts Purkinje-like structures have been developed through either automated or hand-drawn procedures, but these networks have been created according to general principles rather than based on real networks. To allow for greater realism in Purkinje structural models, we present a method for creating three-dimensional Purkinje networks based directly on imaging data. Our approach uses Purkinje network structures extracted from photographs of dissected ventricles and projects these flat networks onto realistic endocardial surfaces. Using this method, we create models for the combined ventricle-Purkinje system that can fully activate the ventricles through a stimulus delivered to the Purkinje network and can produce simulated activation sequences that match experimental observations. The combined models have the potential to help elucidate Purkinje network contributions during ventricular arrhythmias.

  20. A neural network model which combines unsupervised and supervised learning.

    Science.gov (United States)

    Hsieh, K R; Chen, W T

    1993-01-01

    A neural network that combines unsupervised and supervised learning for pattern recognition is proposed. The network is a hierarchical self-organization map, which is trained by unsupervised learning at first. When the network fails to recognize similar patterns, supervised learning is applied to teach the network to give different scaling factors for different features so as to discriminate similar patterns. Simulation results show that the model obtains good generalization capability as well as sharp discrimination between similar patterns.

  1. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  2. Conceptual and methodological biases in network models.

    Science.gov (United States)

    Lamm, Ehud

    2009-10-01

    Many natural and biological phenomena can be depicted as networks. Theoretical and empirical analyses of networks have become prevalent. I discuss theoretical biases involved in the delineation of biological networks. The network perspective is shown to dissolve the distinction between regulatory architecture and regulatory state, consistent with the theoretical impossibility of distinguishing a priori between "program" and "data." The evolutionary significance of the dynamics of trans-generational and interorganism regulatory networks is explored and implications are presented for understanding the evolution of the biological categories development-heredity, plasticity-evolvability, and epigenetic-genetic.

  3. Modeling Aircraft Wing Loads from Flight Data Using Neural Networks

    Science.gov (United States)

    Allen, Michael J.; Dibley, Ryan P.

    2003-01-01

    Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.

  4. Heterogeneous information network model for equipment-standard system

    Science.gov (United States)

    Yin, Liang; Shi, Li-Chen; Zhao, Jun-Yan; Du, Song-Yang; Xie, Wen-Bo; Yuan, Fei; Chen, Duan-Bing

    2018-01-01

    Entity information network is used to describe structural relationships between entities. Taking advantage of its extension and heterogeneity, entity information network is more and more widely applied to relationship modeling. Recent years, lots of researches about entity information network modeling have been proposed, while seldom of them concentrate on equipment-standard system with properties of multi-layer, multi-dimension and multi-scale. In order to efficiently deal with some complex issues in equipment-standard system such as standard revising, standard controlling, and production designing, a heterogeneous information network model for equipment-standard system is proposed in this paper. Three types of entities and six types of relationships are considered in the proposed model. Correspondingly, several different similarity-measuring methods are used in the modeling process. The experiments show that the heterogeneous information network model established in this paper can reflect relationships between entities accurately. Meanwhile, the modeling process has a good performance on time consumption.

  5. Investigating accident causation through information network modelling.

    Science.gov (United States)

    Griffin, T G C; Young, M S; Stanton, N A

    2010-02-01

    Management of risk in complex domains such as aviation relies heavily on post-event investigations, requiring complex approaches to fully understand the integration of multi-causal, multi-agent and multi-linear accident sequences. The Event Analysis of Systemic Teamwork methodology (EAST; Stanton et al. 2008) offers such an approach based on network models. In this paper, we apply EAST to a well-known aviation accident case study, highlighting communication between agents as a central theme and investigating the potential for finding agents who were key to the accident. Ultimately, this work aims to develop a new model based on distributed situation awareness (DSA) to demonstrate that the risk inherent in a complex system is dependent on the information flowing within it. By identifying key agents and information elements, we can propose proactive design strategies to optimize the flow of information and help work towards avoiding aviation accidents. Statement of Relevance: This paper introduces a novel application of an holistic methodology for understanding aviation accidents. Furthermore, it introduces an ongoing project developing a nonlinear and prospective method that centralises distributed situation awareness and communication as themes. The relevance of findings are discussed in the context of current ergonomic and aviation issues of design, training and human-system interaction.

  6. Modelling the impact of social network on energy savings

    International Nuclear Information System (INIS)

    Du, Feng; Zhang, Jiangfeng; Li, Hailong; Yan, Jinyue; Galloway, Stuart; Lo, Kwok L.

    2016-01-01

    Highlights: • Energy saving propagation along a social network is modelled. • This model consists of a time evolving weighted directed network. • Network weights and information decay are applied in savings calculation. - Abstract: It is noted that human behaviour changes can have a significant impact on energy consumption, however, qualitative study on such an impact is still very limited, and it is necessary to develop the corresponding mathematical models to describe how much energy savings can be achieved through human engagement. In this paper a mathematical model of human behavioural dynamic interactions on a social network is derived to calculate energy savings. This model consists of a weighted directed network with time evolving information on each node. Energy savings from the whole network is expressed as mathematical expectation from probability theory. This expected energy savings model includes both direct and indirect energy savings of individuals in the network. The savings model is obtained by network weights and modified by the decay of information. Expected energy savings are calculated for cases where individuals in the social network are treated as a single information source or multiple sources. This model is tested on a social network consisting of 40 people. The results show that the strength of relations between individuals is more important to information diffusion than the number of connections individuals have. The expected energy savings of optimally chosen node can be 25.32% more than randomly chosen nodes at the end of the second month for the case of single information source in the network, and 16.96% more than random nodes for the case of multiple information sources. This illustrates that the model presented in this paper can be used to determine which individuals will have the most influence on the social network, which in turn provides a useful guide to identify targeted customers in energy efficiency technology rollout

  7. Multilayer Neural Networks with Extensively Many Hidden Units

    International Nuclear Information System (INIS)

    Rosen-Zvi, Michal; Engel, Andreas; Kanter, Ido

    2001-01-01

    The information processing abilities of a multilayer neural network with a number of hidden units scaling as the input dimension are studied using statistical mechanics methods. The mapping from the input layer to the hidden units is performed by general symmetric Boolean functions, whereas the hidden layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the space of Boolean functions as order parameter, the storage capacity is found to scale with the logarithm of the number of implementable Boolean functions. The generalization behavior is smooth for continuous couplings and shows a discontinuous transition to perfect generalization for discrete ones

  8. Communications network design and costing model technical manual

    Science.gov (United States)

    Logan, K. P.; Somes, S. S.; Clark, C. A.

    1983-01-01

    This computer model provides the capability for analyzing long-haul trunking networks comprising a set of user-defined cities, traffic conditions, and tariff rates. Networks may consist of all terrestrial connectivity, all satellite connectivity, or a combination of terrestrial and satellite connectivity. Network solutions provide the least-cost routes between all cities, the least-cost network routing configuration, and terrestrial and satellite service cost totals. The CNDC model allows analyses involving three specific FCC-approved tariffs, which are uniquely structured and representative of most existing service connectivity and pricing philosophies. User-defined tariffs that can be variations of these three tariffs are accepted as input to the model and allow considerable flexibility in network problem specification. The resulting model extends the domain of network analysis from traditional fixed link cost (distance-sensitive) problems to more complex problems involving combinations of distance and traffic-sensitive tariffs.

  9. Hybrid neural network bushing model for vehicle dynamics simulation

    International Nuclear Information System (INIS)

    Sohn, Jeong Hyun; Lee, Seung Kyu; Yoo, Wan Suk

    2008-01-01

    Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers

  10. Model for the growth of the world airline network

    Science.gov (United States)

    Verma, T.; Araújo, N. A. M.; Nagler, J.; Andrade, J. S.; Herrmann, H. J.

    2016-06-01

    We propose a probabilistic growth model for transport networks which employs a balance between popularity of nodes and the physical distance between nodes. By comparing the degree of each node in the model network and the World Airline Network (WAN), we observe that the difference between the two is minimized for α≈2. Interestingly, this is the value obtained for the node-node correlation function in the WAN. This suggests that our model explains quite well the growth of airline networks.

  11. An image segmentation method based on network clustering model

    Science.gov (United States)

    Jiao, Yang; Wu, Jianshe; Jiao, Licheng

    2018-01-01

    Network clustering phenomena are ubiquitous in nature and human society. In this paper, a method involving a network clustering model is proposed for mass segmentation in mammograms. First, the watershed transform is used to divide an image into regions, and features of the image are computed. Then a graph is constructed from the obtained regions and features. The network clustering model is applied to realize clustering of nodes in the graph. Compared with two classic methods, the algorithm based on the network clustering model performs more effectively in experiments.

  12. Small is beautiful: models of small neuronal networks.

    Science.gov (United States)

    Lamb, Damon G; Calabrese, Ronald L

    2012-08-01

    Modeling has contributed a great deal to our understanding of how individual neurons and neuronal networks function. In this review, we focus on models of the small neuronal networks of invertebrates, especially rhythmically active CPG networks. Models have elucidated many aspects of these networks, from identifying key interacting membrane properties to pointing out gaps in our understanding, for example missing neurons. Even the complex CPGs of vertebrates, such as those that underlie respiration, have been reduced to small network models to great effect. Modeling of these networks spans from simplified models, which are amenable to mathematical analyses, to very complicated biophysical models. Some researchers have now adopted a population approach, where they generate and analyze many related models that differ in a few to several judiciously chosen free parameters; often these parameters show variability across animals and thus justify the approach. Models of small neuronal networks will continue to expand and refine our understanding of how neuronal networks in all animals program motor output, process sensory information and learn. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Model Checking for Energy Efficient Scheduling in Wireless Sensor Networks

    OpenAIRE

    Schmitt, Peter H.; Werner, Frank

    2006-01-01

    Networking and power management of wireless energy - conscious sensor networks is an important area of current research. We investigate a network of MicaZ sensor motes using the ZigBee protocol for communication, and provide a model using Timed Safety Automata. Our analysis focuses on estimating energy consumption by model checking in different scenarios using the Uppaal tool. Special interest is devoted to the energy use in margi...

  14. A genetic algorithm for solving supply chain network design model

    Science.gov (United States)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  15. Stochastic Online Learning in Dynamic Networks under Unknown Models

    Science.gov (United States)

    2016-08-02

    Stochastic Online Learning in Dynamic Networks under Unknown Models This research aims to develop fundamental theories and practical algorithms for...12211 Research Triangle Park, NC 27709-2211 Online learning , multi-armed bandit, dynamic networks REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S... Online Learning in Dynamic Networks under Unknown Models Report Title This research aims to develop fundamental theories and practical algorithms for

  16. Runoff Modelling in Urban Storm Drainage by Neural Networks

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Brorsen, Michael; Schaarup-Jensen, Kjeld

    1995-01-01

    network is used to compute flow or water level at selected points in the sewer system, and to forecast the flow from a small residential area. The main advantages of the neural network are the build-in self calibration procedure and high speed performance, but the neural network cannot be used to extract......A neural network is used to simulate folw and water levels in a sewer system. The calibration of th neural network is based on a few measured events and the network is validated against measureed events as well as flow simulated with the MOUSE model (Lindberg and Joergensen, 1986). The neural...... knowledge of the runoff process. The neural network was found to simulate 150 times faster than e.g. the MOUSE model....

  17. Communications network design and costing model programmers manual

    Science.gov (United States)

    Logan, K. P.; Somes, S. S.; Clark, C. A.

    1983-01-01

    Otpimization algorithms and techniques used in the communications network design and costing model for least cost route and least cost network problems are examined from the programmer's point of view. All system program modules, the data structures within the model, and the files which make up the data base are described.

  18. A control model for district heating networks with storage

    NARCIS (Netherlands)

    Scholten, Tjeert; De Persis, Claudio; Tesi, Pietro

    2014-01-01

    In [1] pressure control of hydraulic networks is investigated. We extend this work to district heating systems with storage capabilities and derive a model taking the topology of the network into account. The goal for the derived model is that it should allow for control of the storage level and

  19. Travel Time Reliability for Urban Networks : Modelling and Empirics

    NARCIS (Netherlands)

    Zheng, F.; Liu, Xiaobo; van Zuylen, H.J.; Li, Jie; Lu, Chao

    2017-01-01

    The importance of travel time reliability in traffic management, control, and network design has received a lot of attention in the past decade. In this paper, a network travel time distribution model based on the Johnson curve system is proposed. The model is applied to field travel time data

  20. Modeling service discovery in ad-hoc networks

    NARCIS (Netherlands)

    Liu, F.; Goering, P.T.H.; Heijenk, Geert

    2007-01-01

    A protocol for service discovery using attenuated Bloom filters has been proposed for ad-hoc networks. Based on our study, it can well save network bandwidth compared to conventional approaches. We have built both an analytical model and a simulation model to evaluate the performance of our novel

  1. Degree distribution of a new model for evolving networks

    Indian Academy of Sciences (India)

    networks was first addressed by Barabási, Albert and Jeong (BA model) [5]. In this model, there are two main ingredients. First, the networks develop by the addition of new nodes. Second, the new node links to the old ones with preferential attachment rule. The two mechanisms, growth and preferential attachment, lead to.

  2. Systems and methods for modeling and analyzing networks

    Science.gov (United States)

    Hill, Colin C; Church, Bruce W; McDonagh, Paul D; Khalil, Iya G; Neyarapally, Thomas A; Pitluk, Zachary W

    2013-10-29

    The systems and methods described herein utilize a probabilistic modeling framework for reverse engineering an ensemble of causal models, from data and then forward simulating the ensemble of models to analyze and predict the behavior of the network. In certain embodiments, the systems and methods described herein include data-driven techniques for developing causal models for biological networks. Causal network models include computational representations of the causal relationships between independent variables such as a compound of interest and dependent variables such as measured DNA alterations, changes in mRNA, protein, and metabolites to phenotypic readouts of efficacy and toxicity.

  3. Modeling geomagnetic induced currents in Australian power networks

    Science.gov (United States)

    Marshall, R. A.; Kelly, A.; Van Der Walt, T.; Honecker, A.; Ong, C.; Mikkelsen, D.; Spierings, A.; Ivanovich, G.; Yoshikawa, A.

    2017-07-01

    Geomagnetic induced currents (GICs) have been considered an issue for high-latitude power networks for some decades. More recently, GICs have been observed and studied in power networks located in lower latitude regions. This paper presents the results of a model aimed at predicting and understanding the impact of geomagnetic storms on power networks in Australia, with particular focus on the Queensland and Tasmanian networks. The model incorporates a "geoelectric field" determined using a plane wave magnetic field incident on a uniform conducting Earth, and the network model developed by Lehtinen and Pirjola (1985). Model results for two intense geomagnetic storms of solar cycle 24 are compared with transformer neutral monitors at three locations within the Queensland network and one location within the Tasmanian network. The model is then used to assess the impacts of the superintense geomagnetic storm of 29-31 October 2003 on the flow of GICs within these networks. The model results show good correlation with the observations with coefficients ranging from 0.73 to 0.96 across the observing sites. For Queensland, modeled GIC magnitudes during the superstorm of 29-31 October 2003 exceed 40 A with the larger GICs occurring in the south-east section of the network. Modeled GICs in Tasmania for the same storm do not exceed 30 A. The larger distance spans and general east-west alignment of the southern section of the Queensland network, in conjunction with some relatively low branch resistance values, result in larger modeled GICs despite Queensland being a lower latitude network than Tasmania.

  4. Mathematical modelling of complex contagion on clustered networks

    Science.gov (United States)

    O'sullivan, David J.; O'Keeffe, Gary; Fennell, Peter; Gleeson, James

    2015-09-01

    The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010), adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the “complex contagion” effects of social reinforcement are important in such diffusion, in contrast to “simple” contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory) regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010), to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.

  5. A small-world network model of facial emotion recognition.

    Science.gov (United States)

    Takehara, Takuma; Ochiai, Fumio; Suzuki, Naoto

    2016-01-01

    Various models have been proposed to increase understanding of the cognitive basis of facial emotions. Despite those efforts, interactions between facial emotions have received minimal attention. If collective behaviours relating to each facial emotion in the comprehensive cognitive system could be assumed, specific facial emotion relationship patterns might emerge. In this study, we demonstrate that the frameworks of complex networks can effectively capture those patterns. We generate 81 facial emotion images (6 prototypes and 75 morphs) and then ask participants to rate degrees of similarity in 3240 facial emotion pairs in a paired comparison task. A facial emotion network constructed on the basis of similarity clearly forms a small-world network, which features an extremely short average network distance and close connectivity. Further, even if two facial emotions have opposing valences, they are connected within only two steps. In addition, we show that intermediary morphs are crucial for maintaining full network integration, whereas prototypes are not at all important. These results suggest the existence of collective behaviours in the cognitive systems of facial emotions and also describe why people can efficiently recognize facial emotions in terms of information transmission and propagation. For comparison, we construct three simulated networks--one based on the categorical model, one based on the dimensional model, and one random network. The results reveal that small-world connectivity in facial emotion networks is apparently different from those networks, suggesting that a small-world network is the most suitable model for capturing the cognitive basis of facial emotions.

  6. Ocean wave prediction using numerical and neural network models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...

  7. Mechanical system reliability analysis using a combination of graph theory and Boolean function

    International Nuclear Information System (INIS)

    Tang, J.

    2001-01-01

    A new method based on graph theory and Boolean function for assessing reliability of mechanical systems is proposed. The procedure for this approach consists of two parts. By using the graph theory, the formula for the reliability of a mechanical system that considers the interrelations of subsystems or components is generated. Use of the Boolean function to examine the failure interactions of two particular elements of the system, followed with demonstrations of how to incorporate such failure dependencies into the analysis of larger systems, a constructive algorithm for quantifying the genuine interconnections between the subsystems or components is provided. The combination of graph theory and Boolean function provides an effective way to evaluate the reliability of a large, complex mechanical system. A numerical example demonstrates that this method an effective approaches in system reliability analysis

  8. An information spreading model based on online social networks

    Science.gov (United States)

    Wang, Tao; He, Juanjuan; Wang, Xiaoxia

    2018-01-01

    Online social platforms are very popular in recent years. In addition to spreading information, users could review or collect information on online social platforms. According to the information spreading rules of online social network, a new information spreading model, namely IRCSS model, is proposed in this paper. It includes sharing mechanism, reviewing mechanism, collecting mechanism and stifling mechanism. Mean-field equations are derived to describe the dynamics of the IRCSS model. Moreover, the steady states of reviewers, collectors and stiflers and the effects of parameters on the peak values of reviewers, collectors and sharers are analyzed. Finally, numerical simulations are performed on different networks. Results show that collecting mechanism and reviewing mechanism, as well as the connectivity of the network, make information travel wider and faster, and compared to WS network and ER network, the speed of reviewing, sharing and collecting information is fastest on BA network.

  9. SIRaRu rumor spreading model in complex networks

    Science.gov (United States)

    Wang, Jiajia; Zhao, Laijun; Huang, Rongbing

    2014-03-01

    Compared with the epidemic spreading, rumor spreading has some specific characteristics. In this paper, we supplement some realistic conditions on previous rumor spreading models, then develop a new rumor spreading model called SIRaRu model. The mean-field equations are derived to describe the dynamics of the SIRaRu rumor spreading in complex networks, associated with which the steady-state analysis is carried out, indicating the spreading threshold existing in both homogeneous networks and inhomogeneous networks. Meanwhile, we discuss the rumor immunization strategy and obtain the immunization threshold and spreading thresholds in homogeneous and inhomogeneous networks, respectively. Numerical simulations are conducted in complex networks, showing that the network topology exerts significant influence on the rumor spreading. The final size of the rumor is greatly impacted by the forgetting rate.

  10. Forecasting of Market Clearing Price by Using GA Based Neural Network

    Science.gov (United States)

    Yang, Bo; Chen, Yun-Ping; Zhao, Zun-Lian; Han, Qi-Ye

    Forecasting of Market Clearing Price (MCP) is important to economic benefits of electricity market participants. To accurately forecast MCP, a novel two-stage GA-based neural network model (GA-NN) is proposed. In the first stage, GA chromosome is designed into two parts: boolean coding part for neural network topology and real coding part for connection weights. By hybrid genetic operation of selection, crossover and mutation under the criterion of error minimization between the actual output and the desired output, optimal architecture of neural network is obtained. In the second stage, gradient learning algorithm with momentum rate is imposed on neural network with optimal architecture. After learning process, optimal connection weights are obtained. The proposed model is tested on MCP forecasting in California electricity market. The test results show that GA-NN has self-adaptive ability in its topology and connection weights and can obtain more accurate MCP forecasting values than BP neural network.

  11. A Network Contention Model for the Extreme-scale Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, Christian [ORNL; Naughton III, Thomas J [ORNL

    2015-01-01

    The Extreme-scale Simulator (xSim) is a performance investigation toolkit for high-performance computing (HPC) hardware/software co-design. It permits running a HPC application with millions of concurrent execution threads, while observing its performance in a simulated extreme-scale system. This paper details a newly developed network modeling feature for xSim, eliminating the shortcomings of the existing network modeling capabilities. The approach takes a different path for implementing network contention and bandwidth capacity modeling using a less synchronous and accurate enough model design. With the new network modeling feature, xSim is able to simulate on-chip and on-node networks with reasonable accuracy and overheads.

  12. A Mathematical Model to Improve the Performance of Logistics Network

    Directory of Open Access Journals (Sweden)

    Muhammad Izman Herdiansyah

    2012-01-01

    Full Text Available The role of logistics nowadays is expanding from just providing transportation and warehousing to offering total integrated logistics. To remain competitive in the global market environment, business enterprises need to improve their logistics operations performance. The improvement will be achieved when we can provide a comprehensive analysis and optimize its network performances. In this paper, a mixed integer linier model for optimizing logistics network performance is developed. It provides a single-product multi-period multi-facilities model, as well as the multi-product concept. The problem is modeled in form of a network flow problem with the main objective to minimize total logistics cost. The problem can be solved using commercial linear programming package like CPLEX or LINDO. Even in small case, the solver in Excel may also be used to solve such model.Keywords: logistics network, integrated model, mathematical programming, network optimization

  13. Application Interaction Model for Opportunistic Networking

    NARCIS (Netherlands)

    de Souza Schwartz, Ramon; van Dijk, H.W.; Scholten, Johan

    In Opportunistic Networks, autonomous nodes discover, assess and potentially seize opportunities for communication and distributed processing whenever these emerge. In this paper, we consider prerequisites for a successful implementation of such a way of processing in networks that consist mainly of

  14. Network Data: Statistical Theory and New Models

    Science.gov (United States)

    2016-02-17

    systems biology, neuroscience, remote sensing, document summarization, and social networks. For example, she has been collaborating with Dr. Frise et...post- stratification in randomized experiments, (09 2011) Antony Joseph, Bin Yu. Impact of regularization on Spectral Clustering, http://arxiv.org...interdisciplinary research in areas including systems biology, neuroscience, remote sensing, document summarization, and social networks. 1 Sparse and

  15. Modelling traffic congestion using queuing networks

    Indian Academy of Sciences (India)

    In Delhi and Mumbai, Metro Rail Services have been introduced, and at many places a Bus Rapid ... network of queues where service times and inter-arrival times in all queues of the network are exponentially .... This is the well-known flow-density diagram used widely by transport engineers (Daganzo. 1997). Here we ...

  16. Model and simulation of Krause model in dynamic open network

    Science.gov (United States)

    Zhu, Meixia; Xie, Guangqiang

    2017-08-01

    The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.

  17. A comprehensive multi-local-world model for complex networks

    International Nuclear Information System (INIS)

    Fan Zhengping; Chen Guanrong; Zhang Yunong

    2009-01-01

    The nodes in a community within a network are much more connected to each other than to the others outside the community in the same network. This phenomenon has been commonly observed from many real-world networks, ranging from social to biological even to technical networks. Meanwhile, the number of communities in some real-world networks, such as the Internet and most social networks, are evolving with time. To model this kind of networks, the present Letter proposes a multi-local-world (MLW) model to capture and describe their essential topological properties. Based on the mean-field theory, the degree distribution of this model is obtained analytically, showing that the generated network has a novel topological feature as being not completely random nor completely scale-free but behaving somewhere between them. As a typical application, the MLW model is applied to characterize the Internet against some other models such as the BA, GBA, Fitness and HOT models, demonstrating the superiority of the new model.

  18. Rumor spreading model with noise interference in complex social networks

    Science.gov (United States)

    Zhu, Liang; Wang, Youguo

    2017-03-01

    In this paper, a modified susceptible-infected-removed (SIR) model has been proposed to explore rumor diffusion on complex social networks. We take variation of connectivity into consideration and assume the variation as noise. On the basis of related literature on virus networks, the noise is described as standard Brownian motion while stochastic differential equations (SDE) have been derived to characterize dynamics of rumor diffusion both on homogeneous networks and heterogeneous networks. Then, theoretical analysis on homogeneous networks has been demonstrated to investigate the solution of SDE model and the steady state of rumor diffusion. Simulations both on Barabási-Albert (BA) network and Watts-Strogatz (WS) network display that the addition of noise accelerates rumor diffusion and expands diffusion size, meanwhile, the spreading speed on BA network is much faster than on WS network under the same noise intensity. In addition, there exists a rumor diffusion threshold in statistical average meaning on homogeneous network which is absent on heterogeneous network. Finally, we find a positive correlation between peak value of infected individuals and noise intensity while a negative correlation between rumor lifecycle and noise intensity overall.

  19. Improving the quantum cost of reversible Boolean functions using reorder algorithm

    Science.gov (United States)

    Ahmed, Taghreed; Younes, Ahmed; Elsayed, Ashraf

    2018-05-01

    This paper introduces a novel algorithm to synthesize a low-cost reversible circuits for any Boolean function with n inputs represented as a Positive Polarity Reed-Muller expansion. The proposed algorithm applies a predefined rules to reorder the terms in the function to minimize the multi-calculation of common parts of the Boolean function to decrease the quantum cost of the reversible circuit. The paper achieves a decrease in the quantum cost and/or the circuit length, on average, when compared with relevant work in the literature.

  20. Boolean Matching Filters Based on Row and Column Weights of Reed–Muller Polarity Coefficient Matrix

    Directory of Open Access Journals (Sweden)

    Chip-Hong Chang

    2002-01-01

    Full Text Available In this article, we have shown, by means of the EXOR Ternary Decision Diagram that the number of literals and product terms of the Fixed Polarity Reed–Muller (FPRM expansions can be used to fully classify all Boolean functions in NP equivalent class and NPN equivalent class, respectively. Efficient graph based algorithms to compute the complete weight vectors have been presented. The proof and computation method has led to the derivation of a set of characteristic signatures that has low probability of aliasing when used as the Boolean matching filters in library mapping.

  1. Transcriptional Network growing Models using Motif-based Preferential Attachment

    Directory of Open Access Journals (Sweden)

    Ahmed Farouk Abdelzaher

    2015-10-01

    Full Text Available Understanding relationships between architectural properties of gene-regulatory networks (GRNs has been one of the major goals in systems biology and bioinformatics, as it can provide insights into, e.g., disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs--i.e., small-node subgraphs that occur more abundantly in GRNs than expected from chance alone. Because these transcriptional modules represent ``building blocks'' of complex networks and exhibit a wide range of functional and dynamical properties, they may contribute to the remarkable robustness and dynamical stability associated with the whole of GRNs. Here we developed network-construction models to better understand this relationship, which produce randomized GRNs by using transcriptional motifs as the fundamental growth unit in contrast to other methods that construct similar networks on a node-by-node basis. Because this model produces networks with a prescribed lower bound on the number of choice transcriptional motifs (e.g., downlinks, feed-forward loops, its fidelity to the motif distributions observed in model organisms represents an improvement over existing methods, which we validated by contrasting their resultant motif and degree distributions against existing network-growth models and data from the model organism of the bacterium Escherichia coli. These models may therefore serve as novel testbeds for further elucidating relationships between the topology of transcriptional motifs and network-wide dynamical properties.

  2. Modeling Temporal Evolution and Multiscale Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2013-01-01

    Many real-world networks exhibit both temporal evolution and multiscale structure. We propose a model for temporally correlated multifurcating hierarchies in complex networks which jointly capture both effects. We use the Gibbs fragmentation tree as prior over multifurcating trees and a change......-point model to account for the temporal evolution of each vertex. We demonstrate that our model is able to infer time-varying multiscale structure in synthetic as well as three real world time-evolving complex networks. Our modeling of the temporal evolution of hierarchies brings new insights...

  3. Analyzing toys models of Arabidopsis and Drosphila using Z3 SMT-LIB

    Science.gov (United States)

    Rodríguez Vega, Martín.

    2014-05-01

    Toy models for the Arabidopsis Thaliana flower and the Drosophila are analyzed using Microsoft SMT-Solver Z3 with the SMT-LIB language. The models are formulated as Boolean networks which describe the metabolic cycles for Arabidopsis and Drosophila. The dynamic activation of the different bio macromolecules is described by the variables and laws of Boolean transition. Specifically, bitvectors and assertions, which describe the change of state of bitvectors from a sampling time to the next, are used. The dynamic feasibility problem of the biological network is translated to a Boolean satisfiability problem. The corresponding dynamic attractors are represented as a model of satisfiability. The Z3 software allows all required computations in a friendly and efficient manner. It is expected that the SMT-solvers, such as Z3, will become a routine tool in system biology and that they will provide bio-nanosystem design techniques. As a line for future research, the study of the models for Arabidopsis and Drosophila using different SMT-solvers such as CVC4, Mathsat and Yices, is proposed.

  4. Network Statistical Models for Language Learning Contexts: Exponential Random Graph Models and Willingness to Communicate

    Science.gov (United States)

    Gallagher, H. Colin; Robins, Garry

    2015-01-01

    As part of the shift within second language acquisition (SLA) research toward complex systems thinking, researchers have called for investigations of social network structure. One strand of social network analysis yet to receive attention in SLA is network statistical models, whereby networks are explained in terms of smaller substructures of…

  5. SPLAI: Computational Finite Element Model for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ruzana Ishak

    2006-01-01

    Full Text Available Wireless sensor network refers to a group of sensors, linked by a wireless medium to perform distributed sensing task. The primary interest is their capability in monitoring the physical environment through the deployment of numerous tiny, intelligent, wireless networked sensor nodes. Our interest consists of a sensor network, which includes a few specialized nodes called processing elements that can perform some limited computational capabilities. In this paper, we propose a model called SPLAI that allows the network to compute a finite element problem where the processing elements are modeled as the nodes in the linear triangular approximation problem. Our model also considers the case of some failures of the sensors. A simulation model to visualize this network has been developed using C++ on the Windows environment.

  6. A novel interacting multiple model based network intrusion detection scheme

    Science.gov (United States)

    Xin, Ruichi; Venkatasubramanian, Vijay; Leung, Henry

    2006-04-01

    In today's information age, information and network security are of primary importance to any organization. Network intrusion is a serious threat to security of computers and data networks. In internet protocol (IP) based network, intrusions originate in different kinds of packets/messages contained in the open system interconnection (OSI) layer 3 or higher layers. Network intrusion detection and prevention systems observe the layer 3 packets (or layer 4 to 7 messages) to screen for intrusions and security threats. Signature based methods use a pre-existing database that document intrusion patterns as perceived in the layer 3 to 7 protocol traffics and match the incoming traffic for potential intrusion attacks. Alternately, network traffic data can be modeled and any huge anomaly from the established traffic pattern can be detected as network intrusion. The latter method, also known as anomaly based detection is gaining popularity for its versatility in learning new patterns and discovering new attacks. It is apparent that for a reliable performance, an accurate model of the network data needs to be established. In this paper, we illustrate using collected data that network traffic is seldom stationary. We propose the use of multiple models to accurately represent the traffic data. The improvement in reliability of the proposed model is verified by measuring the detection and false alarm rates on several datasets.

  7. A latent parameter node-centric model for spatial networks.

    Directory of Open Access Journals (Sweden)

    Nicholas D Larusso

    Full Text Available Spatial networks, in which nodes and edges are embedded in space, play a vital role in the study of complex systems. For example, many social networks attach geo-location information to each user, allowing the study of not only topological interactions between users, but spatial interactions as well. The defining property of spatial networks is that edge distances are associated with a cost, which may subtly influence the topology of the network. However, the cost function over distance is rarely known, thus developing a model of connections in spatial networks is a difficult task. In this paper, we introduce a novel model for capturing the interaction between spatial effects and network structure. Our approach represents a unique combination of ideas from latent variable statistical models and spatial network modeling. In contrast to previous work, we view the ability to form long/short-distance connections to be dependent on the individual nodes involved. For example, a node's specific surroundings (e.g. network structure and node density may make it more likely to form a long distance link than other nodes with the same degree. To capture this information, we attach a latent variable to each node which represents a node's spatial reach. These variables are inferred from the network structure using a Markov Chain Monte Carlo algorithm. We experimentally evaluate our proposed model on 4 different types of real-world spatial networks (e.g. transportation, biological, infrastructure, and social. We apply our model to the task of link prediction and achieve up to a 35% improvement over previous approaches in terms of the area under the ROC curve. Additionally, we show that our model is particularly helpful for predicting links between nodes with low degrees. In these cases, we see much larger improvements over previous models.

  8. Dynamical complexity in the perception-based network formation model

    Science.gov (United States)

    Jo, Hang-Hyun; Moon, Eunyoung

    2016-12-01

    Many link formation mechanisms for the evolution of social networks have been successful to reproduce various empirical findings in social networks. However, they have largely ignored the fact that individuals make decisions on whether to create links to other individuals based on cost and benefit of linking, and the fact that individuals may use perception of the network in their decision making. In this paper, we study the evolution of social networks in terms of perception-based strategic link formation. Here each individual has her own perception of the actual network, and uses it to decide whether to create a link to another individual. An individual with the least perception accuracy can benefit from updating her perception using that of the most accurate individual via a new link. This benefit is compared to the cost of linking in decision making. Once a new link is created, it affects the accuracies of other individuals' perceptions, leading to a further evolution of the actual network. As for initial actual networks, we consider both homogeneous and heterogeneous cases. The homogeneous initial actual network is modeled by Erdős-Rényi (ER) random networks, while we take a star network for the heterogeneous case. In any cases, individual perceptions of the actual network are modeled by ER random networks with controllable linking probability. Then the stable link density of the actual network is found to show discontinuous transitions or jumps according to the cost of linking. As the number of jumps is the consequence of the dynamical complexity, we discuss the effect of initial conditions on the number of jumps to find that the dynamical complexity strongly depends on how much individuals initially overestimate or underestimate the link density of the actual network. For the heterogeneous case, the role of the highly connected individual as an information spreader is also discussed.

  9. Learning Maneuvers Using Neural Network Models

    Science.gov (United States)

    1994-08-07

    parametric function approximators such as neural networks ( Tesauro 1991). The prediction process runs in a series of epochs. Each epoch ends when a...function approximator such as a neural network. This technique has recently been used successfully on a large complex problem, Backgammon, by Tesauro (1991...Morgan Kaufman. Tesauro , G. J. (1991). Practical Issues in Temporal Difference Learning. Report RC 17223 (76307), IBM T. J. Watson Research Center

  10. Analysis and Comparison of Typical Models within Distribution Network Design

    DEFF Research Database (Denmark)

    Jørgensen, Hans Jacob; Larsen, Allan; Madsen, Oli B.G.

    This paper investigates the characteristics of typical optimisation models within Distribution Network Design. During the paper fourteen models known from the literature will be thoroughly analysed. Through this analysis a schematic approach to categorisation of distribution network design models...... for educational purposes. Furthermore, the paper can be seen as a practical introduction to network design modelling as well as a being an art manual or recipe when constructing such a model....... are covered in the categorisation include fixed vs. general networks, specialised vs. general nodes, linear vs. nonlinear costs, single vs. multi commodity, uncapacitated vs. capacitated activities, single vs. multi modal and static vs. dynamic. The models examined address both strategic and tactical planning...

  11. Home-Network Security Model in Ubiquitous Environment

    OpenAIRE

    Dong-Young Yoo; Jong-Whoi Shin; Jin-Young Choi

    2007-01-01

    Social interest and demand on Home-Network has been increasing greatly. Although various services are being introduced to respond to such demands, they can cause serious security problems when linked to the open network such as Internet. This paper reviews the security requirements to protect the service users with assumption that the Home-Network environment is connected to Internet and then proposes the security model based on the requirement. The proposed security mode...

  12. Hybrid network defense model based on fuzzy evaluation.

    Science.gov (United States)

    Cho, Ying-Chiang; Pan, Jen-Yi

    2014-01-01

    With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.

  13. A Secure Network Coding-based Data Gathering Model and Its Protocol in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qian Xiao

    2012-09-01

    Full Text Available To provide security for data gathering based on network coding in wireless sensor networks (WSNs, a secure network coding-based data gathering model is proposed, and a data-privacy preserving and pollution preventing (DPPaamp;PP protocol using network coding is designed. DPPaamp;PP makes use of a new proposed pollution symbol selection and pollution (PSSP scheme based on a new obfuscation idea to pollute existing symbols. Analyses of DPPaamp;PP show that it not only requires low overhead on computation and communication, but also provides high security on resisting brute-force attacks.

  14. Modeling of Bandwidth Aggregation over Heterogeneous Wireless Access Networks

    DEFF Research Database (Denmark)

    Popovska Avramova, Andrijana; Dittmann, Lars

    2012-01-01

    Motivated by the multihomming capability of the mobile devices and the fact that the heterogeneous wireless access networks overlap in coverage, mobile operators are looking for solutions that will benefit by simultaneous use of the available multiple access interfaces. Multipath or multilink...... applications. The analysis is performed on a multipath model developed with OPNET Modeler, which is an advanced research tool that supports modeling and integration of various kinds of built-in networks....

  15. Threat model framework and methodology for personal networks (PNs)

    DEFF Research Database (Denmark)

    Prasad, Neeli R.

    2007-01-01

    To be able to build a secure network, it is essential to model the threats to the network. A methodology for building a threat model has been proposed in the paper. Several existing threat models and methodologies will be compared to the proposed methodology. The aim of the proposed methodology i...... been used. Also risk assessment methods will be discussed. Threat profiles and vulnerability profiles have been presented....

  16. Dynamic Modeling of Systemic Risk in Financial Networks

    Science.gov (United States)

    Avakian, Adam

    Modern financial networks are complicated structures that can contain multiple types of nodes and connections between those nodes. Banks, governments and even individual people weave into an intricate network of debt, risk correlations and many other forms of interconnectedness. We explore multiple types of financial network models with a focus on understanding the dynamics and causes of cascading failures in such systems. In particular, we apply real-world data from multiple sources to these models to better understand real-world financial networks. We use the results of the Federal Reserve "Banking Organization Systemic Risk Report" (FR Y-15), which surveys the largest US banks on their level of interconnectedness, to find relationships between various measures of network connectivity and systemic risk in the US financial sector. This network model is then stress-tested under a number of scenarios to determine systemic risks inherent in the various network structures. We also use detailed historical balance sheet data from the Venezuelan banking system to build a bipartite network model and find relationships between the changing network structure over time and the response of the system to various shocks. We find that the relationship between interconnectedness and systemic risk is highly dependent on the system and model but that it is always a significant one. These models are useful tools that add value to regulators in creating new measurements of systemic risk in financial networks. These models could be used as macroprudential tools for monitoring the health of the entire banking system as a whole rather than only of individual banks.

  17. Mathematics of epidemics on networks from exact to approximate models

    CERN Document Server

    Kiss, István Z; Simon, Péter L

    2017-01-01

    This textbook provides an exciting new addition to the area of network science featuring a stronger and more methodical link of models to their mathematical origin and explains how these relate to each other with special focus on epidemic spread on networks. The content of the book is at the interface of graph theory, stochastic processes and dynamical systems. The authors set out to make a significant contribution to closing the gap between model development and the supporting mathematics. This is done by: Summarising and presenting the state-of-the-art in modeling epidemics on networks with results and readily usable models signposted throughout the book; Presenting different mathematical approaches to formulate exact and solvable models; Identifying the concrete links between approximate models and their rigorous mathematical representation; Presenting a model hierarchy and clearly highlighting the links between model assumptions and model complexity; Providing a reference source for advanced undergraduate...

  18. Exponential random graph models for networks with community structure.

    Science.gov (United States)

    Fronczak, Piotr; Fronczak, Agata; Bujok, Maksymilian

    2013-09-01

    Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop an exponential random graph approach to networks with community structure. To this end we mainly built upon the idea of blockmodels. We consider both the classical blockmodel and its degree-corrected counterpart and study many of their properties analytically. We show that in the degree-corrected blockmodel, node degrees display an interesting scaling property, which is reminiscent of what is observed in real-world fractal networks. A short description of Monte Carlo simulations of the models is also given in the hope of being useful to others working in the field.

  19. Rumor spreading model considering hesitating mechanism in complex social networks

    Science.gov (United States)

    Xia, Ling-Ling; Jiang, Guo-Ping; Song, Bo; Song, Yu-Rong

    2015-11-01

    The study of rumor spreading has become an important issue on complex social networks. On the basis of prior studies, we propose a modified ​susceptible-exposed-infected-removed (SEIR) model with hesitating mechanism by considering the attractiveness and fuzziness of the content of rumors. We derive mean-field equations to characterize the dynamics of SEIR model on both homogeneous and heterogeneous networks. Then a steady-state analysis is conducted to investigate the spreading threshold and the final rumor size. Simulations on both artificial and real networks show that a decrease of fuzziness can effectively increase the spreading threshold of the SEIR model and reduce the maximum rumor influence. In addition, the spreading threshold is independent of the attractiveness of rumor. Simulation results also show that the speed of rumor spreading obeys the relation ;BA network > WS network;, whereas the final scale of spreading obeys the opposite relation.

  20. Literature Review on Modeling Cyber Networks and Evaluating Cyber Risks.

    Energy Technology Data Exchange (ETDEWEB)

    Kelic, Andjelka; Campbell, Philip L

    2018-04-01

    The National Infrastructure Simulations and Analysis Center (NISAC) conducted a literature review on modeling cyber networks and evaluating cyber risks. The literature review explores where modeling is used in the cyber regime and ways that consequence and risk are evaluated. The relevant literature clusters in three different spaces: network security, cyber-physical, and mission assurance. In all approaches, some form of modeling is utilized at varying levels of detail, while the ability to understand consequence varies, as do interpretations of risk. This document summarizes the different literature viewpoints and explores their applicability to securing enterprise networks.