WorldWideScience

Sample records for boolean functions

  1. Geometric Operators on Boolean Functions

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Falster, Peter

    In truth-functional propositional logic, any propositional formula represents a Boolean function (according to some valuation of the formula). We describe operators based on Decartes' concept of constructing coordinate systems, for translation of a propositional formula to the image of a Boolean...... function. With this image of a Boolean function corresponding to a propositional formula, we prove that the orthogonal projection operator leads to a theorem describing all rules of inference in propositional reasoning. In other words, we can capture all kinds of inference in propositional logic by means...... of a few geometric operators working on the images of Boolean functions. The operators we describe, arise from the niche area of array-based logic and have previously been tightly bound to an array-based representation of Boolean functions. We redefine the operators in an abstract form to make them...

  2. Cryptographic Boolean functions and applications

    CERN Document Server

    Cusick, Thomas W

    2009-01-01

    Boolean functions are the building blocks of symmetric cryptographic systems. Symmetrical cryptographic algorithms are fundamental tools in the design of all types of digital security systems (i.e. communications, financial and e-commerce).Cryptographic Boolean Functions and Applications is a concise reference that shows how Boolean functions are used in cryptography. Currently, practitioners who need to apply Boolean functions in the design of cryptographic algorithms and protocols need to patch together needed information from a variety of resources (books, journal articles and other sources). This book compiles the key essential information in one easy to use, step-by-step reference. Beginning with the basics of the necessary theory the book goes on to examine more technical topics, some of which are at the frontier of current research.-Serves as a complete resource for the successful design or implementation of cryptographic algorithms or protocols using Boolean functions -Provides engineers and scient...

  3. Modular Decomposition of Boolean Functions

    NARCIS (Netherlands)

    J.C. Bioch (Cor)

    2002-01-01

    textabstractModular decomposition is a thoroughly investigated topic in many areas such as switching theory, reliability theory, game theory and graph theory. Most appli- cations can be formulated in the framework of Boolean functions. In this paper we give a uni_ed treatment of modular

  4. Quantum algorithms for testing Boolean functions

    Directory of Open Access Journals (Sweden)

    Erika Andersson

    2010-06-01

    Full Text Available We discuss quantum algorithms, based on the Bernstein-Vazirani algorithm, for finding which variables a Boolean function depends on. There are 2^n possible linear Boolean functions of n variables; given a linear Boolean function, the Bernstein-Vazirani quantum algorithm can deterministically identify which one of these Boolean functions we are given using just one single function query. The same quantum algorithm can also be used to learn which input variables other types of Boolean functions depend on, with a success probability that depends on the form of the Boolean function that is tested, but does not depend on the total number of input variables. We also outline a procedure to futher amplify the success probability, based on another quantum algorithm, the Grover search.

  5. Version Spaces and Generalized Monotone Boolean Functions

    NARCIS (Netherlands)

    J.C. Bioch (Cor); T. Ibaraki

    2002-01-01

    textabstractWe consider generalized monotone functions f: X --> {0,1} defined for an arbitrary binary relation <= on X by the property x <= y implies f(x) <= f(y). These include the standard monotone (or positive) Boolean functions, regular Boolean functions and other interesting functions as

  6. Boolean-Valued Belief Functions

    Czech Academy of Sciences Publication Activity Database

    Kramosil, Ivan

    2002-01-01

    Roč. 31, č. 2 (2002), s. 153-181 ISSN 0308-1079 R&D Projects: GA AV ČR IAA1030803 Institutional research plan: AV0Z1030915 Keywords : Dempster-Schafer theory * Boolean algebra Subject RIV: BA - General Mathematics Impact factor: 0.241, year: 2002

  7. Testing Properties of Boolean Functions

    Science.gov (United States)

    2012-01-01

    The JUNTATEST algorithm is based on two simple but powerful ideas. The first idea, initially presented by Fischer et al. [52], is that there is a very...Computer and System Sciences, 61(3):428 – 456, 2000. 12 [75] Subhash Khot. On the power of unique 2-prover 1-round games. In Proc. 34th ACM Symposium on...Sharpness of KKL on Schreier graphs, 2009. Manuscript. 6.4 [84] Michal Parnas, Dana Ron, and Alex Samorodnitsky. Testing basic boolean formu- lae . SIAM J

  8. Totally optimal decision trees for Boolean functions

    KAUST Repository

    Chikalov, Igor

    2016-07-28

    We study decision trees which are totally optimal relative to different sets of complexity parameters for Boolean functions. A totally optimal tree is an optimal tree relative to each parameter from the set simultaneously. We consider the parameters characterizing both time (in the worst- and average-case) and space complexity of decision trees, i.e., depth, total path length (average depth), and number of nodes. We have created tools based on extensions of dynamic programming to study totally optimal trees. These tools are applicable to both exact and approximate decision trees, and allow us to make multi-stage optimization of decision trees relative to different parameters and to count the number of optimal trees. Based on the experimental results we have formulated the following hypotheses (and subsequently proved): for almost all Boolean functions there exist totally optimal decision trees (i) relative to the depth and number of nodes, and (ii) relative to the depth and average depth.

  9. Generalized Boolean Functions as Combiners

    Science.gov (United States)

    2017-06-01

    backbone of many computer functions. Cryptography drives online commerce and allows privileged information safe transit between two parties as well as many...the backbone of many computer functions. Cryptography drives online commerce and allows privileged information safe transit be- tween two parties as...Functions 5 2.1 Linear Feedback Shift Registers . . . . . . . . . . . . . . . . . . 5 2.2 Combiners . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

  10. The Number of Monotone and Self-Dual Boolean Functions

    Directory of Open Access Journals (Sweden)

    Haviarova L.

    2014-12-01

    Full Text Available In the present paper we study properties of pre-complete class of Boolean functions - monotone Boolean functions. We discuss interval graph, the abbreviated d.n.f., a minimal d.n.f. and a shortest d.n.f. of this function. Then we present a d.n.f. with the highest number of conjunctionsand we determinate the exact number of them. We count the number of monotone Boolean functions with some special properties. In the end we estimate the number of Boolean functionthat are monotone and self-dual at the same time.

  11. Representing Boolean Functions by Decision Trees

    KAUST Repository

    Chikalov, Igor

    2011-01-01

    A Boolean or discrete function can be represented by a decision tree. A compact form of decision tree named binary decision diagram or branching program is widely known in logic design [2, 40]. This representation is equivalent to other forms, and in some cases it is more compact than values table or even the formula [44]. Representing a function in the form of decision tree allows applying graph algorithms for various transformations [10]. Decision trees and branching programs are used for effective hardware [15] and software [5] implementation of functions. For the implementation to be effective, the function representation should have minimal time and space complexity. The average depth of decision tree characterizes the expected computing time, and the number of nodes in branching program characterizes the number of functional elements required for implementation. Often these two criteria are incompatible, i.e. there is no solution that is optimal on both time and space complexity. © Springer-Verlag Berlin Heidelberg 2011.

  12. Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography.

    Science.gov (United States)

    Picek, Stjepan; Carlet, Claude; Guilley, Sylvain; Miller, Julian F; Jakobovic, Domagoj

    2016-01-01

    The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.

  13. On Kolmogorov's superpositions and Boolean functions

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    The paper overviews results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on an explicit numerical (i.e., constructive) algorithm for Kolmogorov's superpositions they will show that for obtaining minimum size neutral networks for implementing any Boolean function, the activation function of the neurons is the identity function. Because classical AND-OR implementations, as well as threshold gate implementations require exponential size (in the worst case), it will follow that size-optimal solutions for implementing arbitrary Boolean functions require analog circuitry. Conclusions and several comments on the required precision are ending the paper.

  14. Complexity of Identification and Dualization of Positive Boolean Functions

    NARCIS (Netherlands)

    J.C. Bioch (Cor); T. Ibaraki

    1995-01-01

    textabstractWe consider in this paper the problem of identifying min T(f{hook}) and max F(f{hook}) of a positive (i.e., monotone) Boolean function f{hook}, by using membership queries only, where min T(f{hook}) (max F(f{hook})) denotes the set of minimal true vectors (maximal false vectors) of

  15. Boolean Functions with a Simple Certificate for CNF Complexity

    Czech Academy of Sciences Publication Activity Database

    Čepek, O.; Kučera, P.; Savický, Petr

    2012-01-01

    Roč. 160, 4-5 (2012), s. 365-382 ISSN 0166-218X R&D Projects: GA MŠk(CZ) 1M0545 Grant - others:GA ČR(CZ) GP201/07/P168; GA ČR(CZ) GAP202/10/1188 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean functions * CNF representations Subject RIV: BA - General Mathematics Impact factor: 0.718, year: 2012

  16. Binary higher order neural networks for realizing Boolean functions.

    Science.gov (United States)

    Zhang, Chao; Yang, Jie; Wu, Wei

    2011-05-01

    In order to more efficiently realize Boolean functions by using neural networks, we propose a binary product-unit neural network (BPUNN) and a binary π-ς neural network (BPSNN). The network weights can be determined by one-step training. It is shown that the addition " σ," the multiplication " π," and two kinds of special weighting operations in BPUNN and BPSNN can implement the logical operators " ∨," " ∧," and " ¬" on Boolean algebra 〈Z(2),∨,∧,¬,0,1〉 (Z(2)={0,1}), respectively. The proposed two neural networks enjoy the following advantages over the existing networks: 1) for a complete truth table of N variables with both truth and false assignments, the corresponding Boolean function can be realized by accordingly choosing a BPUNN or a BPSNN such that at most 2(N-1) hidden nodes are needed, while O(2(N)), precisely 2(N) or at most 2(N), hidden nodes are needed by existing networks; 2) a new network BPUPS based on a collaboration of BPUNN and BPSNN can be defined to deal with incomplete truth tables, while the existing networks can only deal with complete truth tables; and 3) the values of the weights are all simply -1 or 1, while the weights of all the existing networks are real numbers. Supporting numerical experiments are provided as well. Finally, we present the risk bounds of BPUNN, BPSNN, and BPUPS, and then analyze their probably approximately correct learnability.

  17. Cryptographic Properties of Monotone Boolean Functions

    Science.gov (United States)

    2016-01-01

    of Fn 2 , we denote the inner product and the intersection, respectively, by x ⋅ y = x 1 y 1 + x 2 y 2 + ⋅ ⋅ ⋅ + xnyn , x ∗ y = (x1y1, x2y2...the subscript S, and write δ(u). For v ∈ Fn 2 , we use the usual multi-index notation xv for the product of variables, with indices running through the...distinct variables or not). Then, denoting g = (g 1 , . . . , gn), the vectorial composition f ∘ g (viewed as a function in the union of the vari- ables of

  18. A Construction of Boolean Functions with Good Cryptographic Properties

    Science.gov (United States)

    2014-01-01

    over Fn2 defined by Wf (u) = ∑ x∈Fn2 (−1)f(x)+u·x, where u ∈ Fn2 and u · x is an inner product , for instance, u · x = u1x1 + u2x3 + · · · + unxn, where u...later on for all these classes. We mention also the paper of Pasalic [27], which introduces the notion of high degree product (HDP) to mea- sure the...2008, LNCS 5350, Springer–Verlag, 2008, pp. 425–440. [10] C. Carlet and K. Feng, “An Infinite Class of Balanced Vectorial Boolean Functions with Optimum

  19. Chemical Visualization of Boolean Functions: A Simple Chemical Computer

    Science.gov (United States)

    Blittersdorf, R.; Müller, J.; Schneider, F. W.

    1995-08-01

    We present a chemical realization of the Boolean functions AND, OR, NAND, and NOR with a neutralization reaction carried out in three coupled continuous flow stirred tank reactors (CSTR). Two of these CSTR's are used as input reactors, the third reactor marks the output. The chemical reaction is the neutralization of hydrochloric acid (HCl) with sodium hydroxide (NaOH) in the presence of phenolphtalein as an indicator, which is red in alkaline solutions and colorless in acidic solutions representing the two binary states 1 and 0, respectively. The time required for a "chemical computation" is determined by the flow rate of reactant solutions into the reactors since the neutralization reaction itself is very fast. While the acid flow to all reactors is equal and constant, the flow rate of NaOH solution controls the states of the input reactors. The connectivities between the input and output reactors determine the flow rate of NaOH solution into the output reactor, according to the chosen Boolean function. Thus the state of the output reactor depends on the states of the input reactors.

  20. Proposed method to construct Boolean functions with maximum possible annihilator immunity

    Science.gov (United States)

    Goyal, Rajni; Panigrahi, Anupama; Bansal, Rohit

    2017-07-01

    Nonlinearity and Algebraic(annihilator) immunity are two core properties of a Boolean function because optimum values of Annihilator Immunity and nonlinearity are required to resist fast algebraic attack and differential cryptanalysis respectively. For a secure cypher system, Boolean function(S-Boxes) should resist maximum number of attacks. It is possible if a Boolean function has optimal trade-off among its properties. Before constructing Boolean functions, we fixed the criteria of our constructions based on its properties. In present work, our construction is based on annihilator immunity and nonlinearity. While keeping above facts in mind,, we have developed a multi-objective evolutionary approach based on NSGA-II and got the optimum value of annihilator immunity with good bound of nonlinearity. We have constructed balanced Boolean functions having the best trade-off among balancedness, Annihilator immunity and nonlinearity for 5, 6 and 7 variables by the proposed method.

  1. Totally Optimal Decision Trees for Monotone Boolean Functions with at Most Five Variables

    KAUST Repository

    Chikalov, Igor

    2013-01-01

    In this paper, we present the empirical results for relationships between time (depth) and space (number of nodes) complexity of decision trees computing monotone Boolean functions, with at most five variables. We use Dagger (a tool for optimization of decision trees and decision rules) to conduct experiments. We show that, for each monotone Boolean function with at most five variables, there exists a totally optimal decision tree which is optimal with respect to both depth and number of nodes.

  2. Interpolation of the discrete logarithm in a finite field of characteristic two by Boolean functions

    DEFF Research Database (Denmark)

    Brandstaetter, Nina; Lange, Tanja; Winterhof, Arne

    2005-01-01

    We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic.......We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic....

  3. Correlation Immunity, Avalanche Features, and Other Cryptographic Properties of Generalized Boolean Functions

    Science.gov (United States)

    2017-09-01

    duties due to Sailors, across the globe, who stand the watch. As Winston Churchill once said, “we sleep safely at night because rough men stand ready...Chapter 2 contains definitions and preliminary generalized Boolean function material. This is followed by Chapters 3–5, which contain the bulk of the...Generalized Boolean Functions Sic Parvis Magna Sir Francis DrakeA In this chapter we begin by covering some basic definitions and properties which we will make

  4. Exploring candidate biological functions by Boolean Function Networks for Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Maria Simak

    Full Text Available The great amount of gene expression data has brought a big challenge for the discovery of Gene Regulatory Network (GRN. For network reconstruction and the investigation of regulatory relations, it is desirable to ensure directness of links between genes on a map, infer their directionality and explore candidate biological functions from high-throughput transcriptomic data. To address these problems, we introduce a Boolean Function Network (BFN model based on techniques of hidden Markov model (HMM, likelihood ratio test and Boolean logic functions. BFN consists of two consecutive tests to establish links between pairs of genes and check their directness. We evaluate the performance of BFN through the application to S. cerevisiae time course data. BFN produces regulatory relations which show consistency with succession of cell cycle phases. Furthermore, it also improves sensitivity and specificity when compared with alternative methods of genetic network reverse engineering. Moreover, we demonstrate that BFN can provide proper resolution for GO enrichment of gene sets. Finally, the Boolean functions discovered by BFN can provide useful insights for the identification of control mechanisms of regulatory processes, which is the special advantage of the proposed approach. In combination with low computational complexity, BFN can serve as an efficient screening tool to reconstruct genes relations on the whole genome level. In addition, the BFN approach is also feasible to a wide range of time course datasets.

  5. Rates of Minimization of Error Functionals over Boolean Variable-Basis Functions

    Czech Academy of Sciences Publication Activity Database

    Kainen, P.C.; Kůrková, Věra; Sanguineti, M.

    2005-01-01

    Roč. 4, č. 4 (2005), s. 355-368 ISSN 1570-1166 R&D Projects: GA ČR GA201/02/0428; GA ČR GA201/05/0557 Grant - others:Area MC 6(EU) Project 22 Institutional research plan: CEZ:AV0Z10300504 Keywords : high-dimensional optimization * minimizing sequences * Boolean decision functions * decision tree Subject RIV: BA - General Mathematics

  6. Improving the quantum cost of reversible Boolean functions using reorder algorithm

    Science.gov (United States)

    Ahmed, Taghreed; Younes, Ahmed; Elsayed, Ashraf

    2018-05-01

    This paper introduces a novel algorithm to synthesize a low-cost reversible circuits for any Boolean function with n inputs represented as a Positive Polarity Reed-Muller expansion. The proposed algorithm applies a predefined rules to reorder the terms in the function to minimize the multi-calculation of common parts of the Boolean function to decrease the quantum cost of the reversible circuit. The paper achieves a decrease in the quantum cost and/or the circuit length, on average, when compared with relevant work in the literature.

  7. Mechanical system reliability analysis using a combination of graph theory and Boolean function

    International Nuclear Information System (INIS)

    Tang, J.

    2001-01-01

    A new method based on graph theory and Boolean function for assessing reliability of mechanical systems is proposed. The procedure for this approach consists of two parts. By using the graph theory, the formula for the reliability of a mechanical system that considers the interrelations of subsystems or components is generated. Use of the Boolean function to examine the failure interactions of two particular elements of the system, followed with demonstrations of how to incorporate such failure dependencies into the analysis of larger systems, a constructive algorithm for quantifying the genuine interconnections between the subsystems or components is provided. The combination of graph theory and Boolean function provides an effective way to evaluate the reliability of a large, complex mechanical system. A numerical example demonstrates that this method an effective approaches in system reliability analysis

  8. Boolean integral calculus

    Science.gov (United States)

    Tucker, Jerry H.; Tapia, Moiez A.; Bennett, A. Wayne

    1988-01-01

    The concept of Boolean integration is developed, and different Boolean integral operators are introduced. Given the changes in a desired function in terms of the changes in its arguments, the ways of 'integrating' (i.e. realizing) such a function, if it exists, are presented. The necessary and sufficient conditions for integrating, in different senses, the expression specifying the changes are obtained. Boolean calculus has applications in the design of logic circuits and in fault analysis.

  9. CIRCUIT IMPLEMENTATION OF VHDL-DESCRIPTIONS OF SYSTEMS OF PARTIAL BOOLEAN FUNCTIONS

    Directory of Open Access Journals (Sweden)

    P. N. Bibilo

    2016-01-01

    Full Text Available Method for description of incompletely specified (partial Boolean functions in VHDL is proposed. Examples of synthesized VHDL models of partial Boolean functions are presented; and the results of experiments on circuit implementation of VHDL descriptions of systems of partial functions. The realizability of original partial functions in logical circuits was verified by formal verification. The results of the experiments show that the preliminary minimization in DNF class and in the class of BDD representations for pseudo-random systems of completely specified functions does not improve practically (and in the case of BDD sometimes worsens the results of the subsequent synthesis in the basis of FPGA unlike the significant efficiency of these procedures for the synthesis of benchmark circuits taken from the practice of the design.

  10. Hypercontractive inequality for pseudo-Boolean functions of bounded Fourier width

    DEFF Research Database (Denmark)

    Gutin, Gregory; Yeo, Anders

    2012-01-01

    A function f: -1,1n→R is called pseudo-Boolean. It is well-known that each pseudo-Boolean function f can be written as f(x)=∑ I∈Ff̂(I) χI(x), where F⊆I:I⊆[n], [n]=1,2,...,n, χI(x)= ∏ i∈I xi and f̂(I) are non-zero reals. The degree of f is max|I|:I∈F and the width of f is the minimum integer ρ suc...... for each q>papplications, we prove a stronger inequality: || f||4≤( 2ρ+1)14|| f||2....

  11. Representations and Rates of Approximation of Real-Valued Boolean Functions by Neural Networks

    Czech Academy of Sciences Publication Activity Database

    Kůrková, Věra; Savický, Petr; Hlaváčková, Kateřina

    1998-01-01

    Roč. 11, č. 4 (1998), s. 651-659 ISSN 0893-6080 R&D Projects: GA AV ČR IAA2030602; GA AV ČR IAA2075606; GA ČR GA201/95/0976 Keywords : real-valued Boolean function * percepron network * rate of approximation * variation with respect to half-spaces * decision tree * Hadamard communication matrix Subject RIV: BA - General Mathematics Impact factor: 1.017, year: 1998

  12. On bent and semi-bent quadratic Boolean functions

    DEFF Research Database (Denmark)

    Charpin, P.; Pasalic, Enes; Tavernier, C.

    2005-01-01

    their results to even n. We further investigate the conditions on the choice of ci for explicit definitions of new infinite families having three and four trace terms. Also, a class of nonpermutation polynomials whose composition with a quadratic function yields again a quadratic semi-bent function is specified...... correlation and high nonlinearity. We say that such a sequence is generated by a semi-bent function. Some new families of such function, represented by f(x) = Sigma(i=1)(n-1/2) c(i)Tr(x(2t+1)), n odd and c(i) is an element of F-2, have recently (2002) been introduced by Khoo et al. We first generalize....... The treatment of semi-bent functions is then presented in a much wider framework. We show how bent and semi-bent functions are interlinked, that is, the concatenation of two suitably chosen semi-bent functions will yield a bent function and vice versa. Finally, this approach is generalized so...

  13. Approximating the Influence of a monotone Boolean function in O(\\sqrt{n}) query complexity

    OpenAIRE

    Ron, Dana; Rubinfeld, Ronitt; Safra, Muli; Weinstein, Omri

    2011-01-01

    The {\\em Total Influence} ({\\em Average Sensitivity) of a discrete function is one of its fundamental measures. We study the problem of approximating the total influence of a monotone Boolean function \\ifnum\\plusminus=1 $f: \\{\\pm1\\}^n \\longrightarrow \\{\\pm1\\}$, \\else $f: \\bitset^n \\to \\bitset$, \\fi which we denote by $I[f]$. We present a randomized algorithm that approximates the influence of such functions to within a multiplicative factor of $(1\\pm \\eps)$ by performing $O(\\frac{\\sqrt{n}\\log...

  14. On bent and semi-bent quadratic Boolean functions

    DEFF Research Database (Denmark)

    Charpin, P.; Pasalic, Enes; Tavernier, C.

    2005-01-01

    The maximum-length sequences, also called m-sequences, have received a lot of attention since the late 1960s. In terms of linear-feedback shift register (LFSR) synthesis they are usually generated by certain power polynomials over a finite field and in addition are characterized by a low cross...... their results to even n. We further investigate the conditions on the choice of ci for explicit definitions of new infinite families having three and four trace terms. Also, a class of nonpermutation polynomials whose composition with a quadratic function yields again a quadratic semi-bent function is specified...

  15. A quantum speedup in machine learning: finding an N-bit Boolean function for a classification

    International Nuclear Information System (INIS)

    Yoo, Seokwon; Lee, Jinhyoung; Bang, Jeongho; Lee, Changhyoup

    2014-01-01

    We compare quantum and classical machines designed for learning an N-bit Boolean function in order to address how a quantum system improves the machine learning behavior. The machines of the two types consist of the same number of operations and control parameters, but only the quantum machines utilize the quantum coherence naturally induced by unitary operators. We show that quantum superposition enables quantum learning that is faster than classical learning by expanding the approximate solution regions, i.e., the acceptable regions. This is also demonstrated by means of numerical simulations with a standard feedback model, namely random search, and a practical model, namely differential evolution. (paper)

  16. Robust Template Decomposition without Weight Restriction for Cellular Neural Networks Implementing Arbitrary Boolean Functions Using Support Vector Classifiers

    Directory of Open Access Journals (Sweden)

    Yih-Lon Lin

    2013-01-01

    Full Text Available If the given Boolean function is linearly separable, a robust uncoupled cellular neural network can be designed as a maximal margin classifier. On the other hand, if the given Boolean function is linearly separable but has a small geometric margin or it is not linearly separable, a popular approach is to find a sequence of robust uncoupled cellular neural networks implementing the given Boolean function. In the past research works using this approach, the control template parameters and thresholds are restricted to assume only a given finite set of integers, and this is certainly unnecessary for the template design. In this study, we try to remove this restriction. Minterm- and maxterm-based decomposition algorithms utilizing the soft margin and maximal margin support vector classifiers are proposed to design a sequence of robust templates implementing an arbitrary Boolean function. Several illustrative examples are simulated to demonstrate the efficiency of the proposed method by comparing our results with those produced by other decomposition methods with restricted weights.

  17. Boolean algebra

    CERN Document Server

    Goodstein, R L

    2007-01-01

    This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.

  18. Runtime analysis of the (mu+1) EA on simple Pseudo-Boolean functions.

    Science.gov (United States)

    Witt, Carsten

    2006-01-01

    Although Evolutionary Algorithms (EAs) have been successfully applied to optimization in discrete search spaces, theoretical developments remain weak, in particular for population-based EAs. This paper presents a first rigorous analysis of the (mu+1) EA on pseudo-Boolean functions. Using three well-known example functions from the analysis of the (1+1) EA, we derive bounds on the expected runtime and success probability. For two of these functions, upper and lower bounds on the expected runtime are tight, and on all three functions, the (mu+1) EA is never more efficient than the (1+1) EA. Moreover, all lower bounds grow with mu. On a more complicated function, however, a small increase of mu probably decreases the expected runtime drastically. This paper develops a new proof technique that bounds the runtime of the (mu+1) EA. It investigates the stochastic process for creating family trees of individuals; the depth of these trees is bounded. Thereby, the progress of the population towards the optimum is captured. This new technique is general enough to be applied to other population-based EAs.

  19. Realisation of all 16 Boolean logic functions in a single magnetoresistance memory cell

    Science.gov (United States)

    Gao, Shuang; Yang, Guang; Cui, Bin; Wang, Shouguo; Zeng, Fei; Song, Cheng; Pan, Feng

    2016-06-01

    Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future.Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis

  20. Boolean Dependence Logic and Partially-Ordered Connectives

    OpenAIRE

    Ebbing, Johannes; Hella, Lauri; Lohmann, Peter; Virtema, Jonni

    2014-01-01

    We introduce a new variant of dependence logic called Boolean dependence logic. In Boolean dependence logic dependence atoms are of the type =(x_1,...,x_n,\\alpha), where \\alpha is a Boolean variable. Intuitively, with Boolean dependence atoms one can express quantification of relations, while standard dependence atoms express quantification over functions. We compare the expressive power of Boolean dependence logic to dependence logic and first-order logic enriched by partially-ordered connec...

  1. Boolean reasoning the logic of boolean equations

    CERN Document Server

    Brown, Frank Markham

    2012-01-01

    A systematic treatment of Boolean reasoning, this concise, newly revised edition combines the works of early logicians with recent investigations, including previously unpublished research results. Brown begins with an overview of elementary mathematical concepts and outlines the theory of Boolean algebras. Two concluding chapters deal with applications. 1990 edition.

  2. Free Boolean Topological Groups

    Directory of Open Access Journals (Sweden)

    Ol’ga Sipacheva

    2015-11-01

    Full Text Available Known and new results on free Boolean topological groups are collected. An account of the properties that these groups share with free or free Abelian topological groups and properties specific to free Boolean groups is given. Special emphasis is placed on the application of set-theoretic methods to the study of Boolean topological groups.

  3. Boolean algebra essentials

    CERN Document Server

    Solomon, Alan D

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

  4. Algorithm for finding partitionings of hard variants of boolean satisfiability problem with application to inversion of some cryptographic functions.

    Science.gov (United States)

    Semenov, Alexander; Zaikin, Oleg

    2016-01-01

    In this paper we propose an approach for constructing partitionings of hard variants of the Boolean satisfiability problem (SAT). Such partitionings can be used for solving corresponding SAT instances in parallel. For the same SAT instance one can construct different partitionings, each of them is a set of simplified versions of the original SAT instance. The effectiveness of an arbitrary partitioning is determined by the total time of solving of all SAT instances from it. We suggest the approach, based on the Monte Carlo method, for estimating time of processing of an arbitrary partitioning. With each partitioning we associate a point in the special finite search space. The estimation of effectiveness of the particular partitioning is the value of predictive function in the corresponding point of this space. The problem of search for an effective partitioning can be formulated as a problem of optimization of the predictive function. We use metaheuristic algorithms (simulated annealing and tabu search) to move from point to point in the search space. In our computational experiments we found partitionings for SAT instances encoding problems of inversion of some cryptographic functions. Several of these SAT instances with realistic predicted solving time were successfully solved on a computing cluster and in the volunteer computing project SAT@home. The solving time agrees well with estimations obtained by the proposed method.

  5. Properties of Boolean orthoposets

    Science.gov (United States)

    Tkadlec, Josef

    1993-10-01

    A Boolean orthoposet is the orthoposet P fulfilling the following condition: If a, b ∈ P and a ∧ b = 0, then a ⊥ b. This condition seems to be a sound generalization of distributivity in orthoposets. Also, the class of (orthomodular) Boolean orthoposets may play an interesting role in quantum logic theory. This class is wide enough and, on the other hand, enjoys some properties of Boolean algebras. In this paper we summarize results on Boolean orthoposets involving distributivity, set representation, properties of the state space, existence of Jauch-Piron states, and results concerning orthocompleteness and completion.

  6. Bent and bent(4) spectra of Boolean functions over finite fields

    DEFF Research Database (Denmark)

    Anbar Meidl, Nurdagül; Meidl, Wilfried

    2017-01-01

    to the conventional Walsh transform, and hence a 0-bent4 function is bent. In this article we generalize the concept of partially bent functions to the transforms V-f(c). We show that every quadratic function is partially bent, and hence it is plateaued with respect to any of the transforms V-f(c). In detail we...... analyse two quadratic monomials. The first has values as small as possible in its spectra with respect to all transforms V-f(c), and the second has a flat spectrum for a large number of c. Moreover, we show that every quadratic function is c-bent4 for at least three distinct c. In the last part we analyse...... a cubic monomial. We show that it is c-bent(4) only for c = 1, the function is then called negabent, which shows that non-quadratic functions exhibit a different behaviour. (C) 2017 Elsevier Inc. All rights reserved....

  7. Boolean Differentiation Equations Applicable in Reconfigurable Computational Medium

    Directory of Open Access Journals (Sweden)

    Shidlovskiy Stanislav

    2016-01-01

    Full Text Available High performance computing environment synthesis with parallel architecture reconstructing throughout the process itself is described. Synthesized computational medium involving Boolean differential equation calculations so as to function in real-time image processing. Automaton imaging was illustrated involving the rearrangement of every processing medium element to calculate the partial differentials of n-th order in respect to Boolean function variables. The method of obtaining setting codes for each element was also described. An example in calculating 2nd -order Boolean derivative to two differentials in respect to Boolean functions, depending on three arguments within the reconstructible computational medium of 8×8 processing elements was given.

  8. Algebraic partial Boolean algebras

    CERN Document Server

    Smith, D

    2003-01-01

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial...

  9. Algebraic partial Boolean algebras

    Science.gov (United States)

    Smith, Derek

    2003-04-01

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space Script H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E8.

  10. Algebraic partial Boolean algebras

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Derek [Math Department, Lafayette College, Easton, PA 18042 (United States)

    2003-04-04

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A{sub 5} sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E{sub 8}.

  11. Approximate Reasoning with Fuzzy Booleans

    NARCIS (Netherlands)

    van den Broek, P.M.; Noppen, J.A.R.

    This paper introduces, in analogy to the concept of fuzzy numbers, the concept of fuzzy booleans, and examines approximate reasoning with the compositional rule of inference using fuzzy booleans. It is shown that each set of fuzzy rules is equivalent to a set of fuzzy rules with singleton crisp

  12. Equivalence Checking of Combinational Circuits using Boolean Expression Diagrams

    DEFF Research Database (Denmark)

    Hulgaard, Henrik; Williams, Poul Frederick; Andersen, Henrik Reif

    1999-01-01

    The combinational logic-level equivalence problem is to determine whether two given combinational circuits implement the same Boolean function. This problem arises in a number of CAD applications, for example when checking the correctness of incremental design changes (performed either manually...... or by a design automation tool).This paper introduces a data structure called Boolean Expression Diagrams (BEDs) and two algorithms for transforming a BED into a Reduced Ordered Binary Decision Diagram (OBDD). BEDs are capable of representing any Boolean circuit in linear space and can exploit structural...

  13. Development of Boolean calculus and its application

    Science.gov (United States)

    Tapia, M. A.

    1979-01-01

    Formal procedures for synthesis of asynchronous sequential system using commercially available edge-sensitive flip-flops are developed. Boolean differential is defined. The exact number of compatible integrals of a Boolean differential were calculated.

  14. A complexity theory based on Boolean algebra

    DEFF Research Database (Denmark)

    Skyum, Sven; Valiant, Leslie

    1985-01-01

    A projection of a Boolean function is a function obtained by substituting for each of its variables a variable, the negation of a variable, or a constant. Reducibilities among computational problems under this relation of projection are considered. It is shown that much of what is of everyday rel...... relevance in Turing-machine-based complexity theory can be replicated easily and naturally in this elementary framework. Finer distinctions about the computational relationships among natural problems can be made than in previous formulations and some negative results are proved....

  15. Complexity classifications for different equivalence and audit problems for Boolean circuits

    OpenAIRE

    Böhler, Elmar; Creignou, Nadia; Galota, Matthias; Reith, Steffen; Schnoor, Henning; Vollmer, Heribert

    2010-01-01

    We study Boolean circuits as a representation of Boolean functions and conskier different equivalence, audit, and enumeration problems. For a number of restricted sets of gate types (bases) we obtain efficient algorithms, while for all other gate types we show these problems are at least NP-hard.

  16. Constant-Overhead Secure Computation of Boolean Circuits using Preprocessing

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Zakarias, Sarah Nouhad Haddad

    We present a protocol for securely computing a Boolean circuit $C$ in presence of a dishonest and malicious majority. The protocol is unconditionally secure, assuming access to a preprocessing functionality that is not given the inputs to compute on. For a large number of players the work done by...... with an additional multiplication property. We also show a new algorithm for verifying the product of Boolean matrices in quadratic time with exponentially small error probability, where previous methods would only give a constant error....

  17. Boolean gates on actin filaments

    Energy Technology Data Exchange (ETDEWEB)

    Siccardi, Stefano, E-mail: ssiccardi@2ssas.it [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom); Tuszynski, Jack A., E-mail: jackt@ualberta.ca [Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Adamatzky, Andrew, E-mail: andrew.adamatzky@uwe.ac.uk [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom)

    2016-01-08

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.

  18. Reliable dynamics in Boolean and continuous networks

    International Nuclear Information System (INIS)

    Ackermann, Eva; Drossel, Barbara; Peixoto, Tiago P

    2012-01-01

    We investigate the dynamical behavior of a model of robust gene regulatory networks which possess ‘entirely reliable’ trajectories. In a Boolean representation, these trajectories are characterized by being insensitive to the order in which the nodes are updated, i.e. they always go through the same sequence of states. The Boolean model for gene activity is compared with a continuous description in terms of differential equations for the concentrations of mRNA and proteins. We found that entirely reliable Boolean trajectories can be reproduced perfectly in the continuous model when realistic Hill coefficients are used. We investigate to what extent this high correspondence between Boolean and continuous trajectories depends on the extent of reliability of the Boolean trajectories, and we identify simple criteria that enable the faithful reproduction of the Boolean dynamics in the continuous description. (paper)

  19. Boolean networks with robust and reliable trajectories

    International Nuclear Information System (INIS)

    Schmal, Christoph; Peixoto, Tiago P; Drossel, Barbara

    2010-01-01

    We construct and investigate Boolean networks that follow a given reliable trajectory in state space, which is insensitive to fluctuations in the updating schedule and which is also robust against noise. Robustness is quantified as the probability that the dynamics return to the reliable trajectory after a perturbation of the state of a single node. In order to achieve high robustness, we navigate through the space of possible update functions by using an evolutionary algorithm. We constrain the networks to those having the minimum number of connections required to obtain the reliable trajectory. Surprisingly, we find that robustness always reaches values close to 100% during the evolutionary optimization process. The set of update functions can be evolved such that it differs only slightly from that of networks that were not optimized with respect to robustness. The state space of the optimized networks is dominated by the basin of attraction of the reliable trajectory.

  20. Boolean gates on actin filaments

    Science.gov (United States)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  1. Noisy random Boolean formulae: a statistical physics perspective.

    Science.gov (United States)

    Mozeika, Alexander; Saad, David; Raymond, Jack

    2010-10-01

    Properties of computing Boolean circuits composed of noisy logical gates are studied using the statistical physics methodology. A formula-growth model that gives rise to random Boolean functions is mapped onto a spin system, which facilitates the study of their typical behavior in the presence of noise. Bounds on their performance, derived in the information theory literature for specific gates, are straightforwardly retrieved, generalized and identified as the corresponding macroscopic phase transitions. The framework is employed for deriving results on error-rates at various function-depths and function sensitivity, and their dependence on the gate-type and noise model used. These are difficult to obtain via the traditional methods used in this field.

  2. Elements of Boolean-Valued Dempster-Shafer Theory

    Czech Academy of Sciences Publication Activity Database

    Kramosil, Ivan

    2000-01-01

    Roč. 10, č. 5 (2000), s. 825-835 ISSN 1210-0552. [SOFSEM 2000 Workshop on Soft Computing. Milovy, 27.11.2000-28.11.2000] R&D Projects: GA ČR GA201/00/1489 Institutional research plan: AV0Z1030915 Keywords : Boolean algebra * belief function * Dempster-Shafer theory * Dempster combination rule * nonspecifity degree Subject RIV: BA - General Mathematics

  3. Random networks of Boolean cellular automata

    International Nuclear Information System (INIS)

    Miranda, Enrique

    1990-01-01

    Some recent results about random networks of Boolean automata -the Kauffman model- are reviewed. The structure of configuration space is explored. Ultrametricity between cycles is analyzed and the effects of noise in the dynamics are studied. (Author)

  4. SETS, Boolean Manipulation for Network Analysis and Fault Tree Analysis

    International Nuclear Information System (INIS)

    Worrell, R.B.

    1985-01-01

    Description of problem or function - SETS is used for symbolic manipulation of set (or Boolean) equations, particularly the reduction of set equations by the application of set identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze non-coherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protection requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access through nullification of sensors in its protection system. 4. Method of solution - The SETS program is used to read, interpret, and execute the statements of a SETS user program which is an algorithm that specifies the particular manipulations to be performed and the order in which they are to occur. 5. Restrictions on the complexity of the problem - Any properly formed set equation involving the set operations of union, intersection, and complement is acceptable for processing by the SETS program. Restrictions on the size of a set equation that can be processed are not absolute but rather are related to the number of terms in the disjunctive normal form of the equation, the number of literals in the equation, etc. Nevertheless, set equations involving thousands and even hundreds of thousands of terms can be processed successfully

  5. Boolean Models of Biological Processes Explain Cascade-Like Behavior

    Science.gov (United States)

    Chen, Hao; Wang, Guanyu; Simha, Rahul; Du, Chenghang; Zeng, Chen

    2016-01-01

    Biological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either “on” or “off” and along with the molecules interact with each other, their individual status changes from “on” to “off” or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process. In this paper, we examine the common perception that events in biomolecular networks occur sequentially, in a cascade-like manner, and ask whether this is likely to be an inherent property. In further investigations of the budding and fission yeast cell-cycle, we identify two generic dynamical rules. A Boolean system that complies with these rules will automatically have a certain robustness. By considering the biological requirements in robustness and designability, we show that those Boolean dynamical systems, compared to an arbitrary dynamical system, statistically present the characteristics of cascadeness and sequentiality, as observed in the budding and fission yeast cell- cycle. These results suggest that cascade-like behavior might be an intrinsic property of biological processes. PMID:26821940

  6. Boolean Networks in Inference and Dynamic Modeling of Biological Systems at the Molecular and Physiological Level

    Science.gov (United States)

    Thakar, Juilee; Albert, Réka

    The following sections are included: * Introduction * Boolean Network Concepts and History * Extensions of the Classical Boolean Framework * Boolean Inference Methods and Examples in Biology * Dynamic Boolean Models: Examples in Plant Biology, Developmental Biology and Immunology * Conclusions * References

  7. Forced synchronization of autonomous dynamical Boolean networks

    International Nuclear Information System (INIS)

    Rivera-Durón, R. R.; Campos-Cantón, E.; Campos-Cantón, I.; Gauthier, Daniel J.

    2015-01-01

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics

  8. Forced synchronization of autonomous dynamical Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx [División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Col. Lomas 4 Sección, C.P. 78216, San Luis Potosí, S.L.P. (Mexico); Campos-Cantón, I. [Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, C.P. 78000, San Luis Potosí, S.L.P. (Mexico); Gauthier, Daniel J. [Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Box 90305, Durham, North Carolina 27708 (United States)

    2015-08-15

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.

  9. A New Calculation for Boolean Derivative Using Cheng Product

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2012-01-01

    Full Text Available The matrix expression and relationships among several definitions of Boolean derivatives are given by using the Cheng product. We introduce several definitions of Boolean derivatives. By using the Cheng product, the matrix expressions of Boolean derivative are given, respectively. Furthermore, the relationships among different definitions are presented. The logical calculation is converted into matrix product. This helps to extend the application of Boolean derivative. At last, an example is given to illustrate the main results.

  10. The Permeability of Boolean Sets of Cylinders

    Directory of Open Access Journals (Sweden)

    Willot F.

    2016-07-01

    Full Text Available Numerical and analytical results on the permeability of Boolean models of randomly-oriented cylinders with circular cross-section are reported. The present work investigates cylinders of prolate (highly-elongated and oblate (nearly flat types. The fluid flows either inside or outside of the cylinders. The Stokes flow is solved using full-fields Fourier-based computations on 3D binarized microstructures. The permeability is given for varying volume fractions of pores. A new upper-bound is derived for the permeability of the Boolean model of oblate cylinders. The behavior of the permeability in the dilute limit is discussed.

  11. Evolutionary Algorithms for Boolean Queries Optimization

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Snášel, Václav; Neruda, Roman; Owais, S.S.J.; Krömer, P.

    2006-01-01

    Roč. 3, č. 1 (2006), s. 15-20 ISSN 1790-0832 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * information retrieval * Boolean query Subject RIV: BA - General Mathematics

  12. Boolean Queries Optimization by Genetic Algorithms

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Owais, S.S.J.; Krömer, P.; Snášel, Václav

    2005-01-01

    Roč. 15, - (2005), s. 395-409 ISSN 1210-0552 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * genetic programming * information retrieval * Boolean query Subject RIV: BB - Applied Statistics, Operational Research

  13. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    Science.gov (United States)

    Guo, Wensheng; Yang, Guowu; Wu, Wei; He, Lei; Sun, Mingyu

    2014-01-01

    In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  14. Digital clocks: simple Boolean models can quantitatively describe circadian systems.

    Science.gov (United States)

    Akman, Ozgur E; Watterson, Steven; Parton, Andrew; Binns, Nigel; Millar, Andrew J; Ghazal, Peter

    2012-09-07

    The gene networks that comprise the circadian clock modulate biological function across a range of scales, from gene expression to performance and adaptive behaviour. The clock functions by generating endogenous rhythms that can be entrained to the external 24-h day-night cycle, enabling organisms to optimally time biochemical processes relative to dawn and dusk. In recent years, computational models based on differential equations have become useful tools for dissecting and quantifying the complex regulatory relationships underlying the clock's oscillatory dynamics. However, optimizing the large parameter sets characteristic of these models places intense demands on both computational and experimental resources, limiting the scope of in silico studies. Here, we develop an approach based on Boolean logic that dramatically reduces the parametrization, making the state and parameter spaces finite and tractable. We introduce efficient methods for fitting Boolean models to molecular data, successfully demonstrating their application to synthetic time courses generated by a number of established clock models, as well as experimental expression levels measured using luciferase imaging. Our results indicate that despite their relative simplicity, logic models can (i) simulate circadian oscillations with the correct, experimentally observed phase relationships among genes and (ii) flexibly entrain to light stimuli, reproducing the complex responses to variations in daylength generated by more detailed differential equation formulations. Our work also demonstrates that logic models have sufficient predictive power to identify optimal regulatory structures from experimental data. By presenting the first Boolean models of circadian circuits together with general techniques for their optimization, we hope to establish a new framework for the systematic modelling of more complex clocks, as well as other circuits with different qualitative dynamics. In particular, we anticipate

  15. Digital clocks: simple Boolean models can quantitatively describe circadian systems

    Science.gov (United States)

    Akman, Ozgur E.; Watterson, Steven; Parton, Andrew; Binns, Nigel; Millar, Andrew J.; Ghazal, Peter

    2012-01-01

    The gene networks that comprise the circadian clock modulate biological function across a range of scales, from gene expression to performance and adaptive behaviour. The clock functions by generating endogenous rhythms that can be entrained to the external 24-h day–night cycle, enabling organisms to optimally time biochemical processes relative to dawn and dusk. In recent years, computational models based on differential equations have become useful tools for dissecting and quantifying the complex regulatory relationships underlying the clock's oscillatory dynamics. However, optimizing the large parameter sets characteristic of these models places intense demands on both computational and experimental resources, limiting the scope of in silico studies. Here, we develop an approach based on Boolean logic that dramatically reduces the parametrization, making the state and parameter spaces finite and tractable. We introduce efficient methods for fitting Boolean models to molecular data, successfully demonstrating their application to synthetic time courses generated by a number of established clock models, as well as experimental expression levels measured using luciferase imaging. Our results indicate that despite their relative simplicity, logic models can (i) simulate circadian oscillations with the correct, experimentally observed phase relationships among genes and (ii) flexibly entrain to light stimuli, reproducing the complex responses to variations in daylength generated by more detailed differential equation formulations. Our work also demonstrates that logic models have sufficient predictive power to identify optimal regulatory structures from experimental data. By presenting the first Boolean models of circadian circuits together with general techniques for their optimization, we hope to establish a new framework for the systematic modelling of more complex clocks, as well as other circuits with different qualitative dynamics. In particular, we

  16. Evolution of a designless nanoparticle network into reconfigurable Boolean logic.

    Science.gov (United States)

    Bose, S K; Lawrence, C P; Liu, Z; Makarenko, K S; van Damme, R M J; Broersma, H J; van der Wiel, W G

    2015-12-01

    Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on the other hand, are based on circuits of functional units that follow given design rules. Hence, potentially exploitable physical processes, such as capacitive crosstalk, to solve a problem are left out. Until now, designless nanoscale networks of inanimate matter that exhibit robust computational functionality had not been realized. Here we artificially evolve the electrical properties of a disordered nanomaterials system (by optimizing the values of control voltages using a genetic algorithm) to perform computational tasks reconfigurably. We exploit the rich behaviour that emerges from interconnected metal nanoparticles, which act as strongly nonlinear single-electron transistors, and find that this nanoscale architecture can be configured in situ into any Boolean logic gate. This universal, reconfigurable gate would require about ten transistors in a conventional circuit. Our system meets the criteria for the physical realization of (cellular) neural networks: universality (arbitrary Boolean functions), compactness, robustness and evolvability, which implies scalability to perform more advanced tasks. Our evolutionary approach works around device-to-device variations and the accompanying uncertainties in performance. Moreover, it bears a great potential for more energy-efficient computation, and for solving problems that are very hard to tackle in conventional architectures.

  17. Boolean Matching Filters Based on Row and Column Weights of Reed–Muller Polarity Coefficient Matrix

    Directory of Open Access Journals (Sweden)

    Chip-Hong Chang

    2002-01-01

    Full Text Available In this article, we have shown, by means of the EXOR Ternary Decision Diagram that the number of literals and product terms of the Fixed Polarity Reed–Muller (FPRM expansions can be used to fully classify all Boolean functions in NP equivalent class and NPN equivalent class, respectively. Efficient graph based algorithms to compute the complete weight vectors have been presented. The proof and computation method has led to the derivation of a set of characteristic signatures that has low probability of aliasing when used as the Boolean matching filters in library mapping.

  18. Boolean representations of simplicial complexes and matroids

    CERN Document Server

    Rhodes, John

    2015-01-01

    This self-contained monograph explores a new theory centered around boolean representations of simplicial complexes leading to a new class of complexes featuring matroids as central to the theory. The book illustrates these new tools to study the classical theory of matroids as well as their important geometric connections. Moreover, many geometric and topological features of the theory of matroids find their counterparts in this extended context.   Graduate students and researchers working in the areas of combinatorics, geometry, topology, algebra and lattice theory will find this monograph appealing due to the wide range of new problems raised by the theory. Combinatorialists will find this extension of the theory of matroids useful as it opens new lines of research within and beyond matroids. The geometric features and geometric/topological applications will appeal to geometers. Topologists who desire to perform algebraic topology computations will appreciate the algorithmic potential of boolean represent...

  19. Inference of a Probabilistic Boolean Network from a Single Observed Temporal Sequence

    Directory of Open Access Journals (Sweden)

    Le Yu

    2007-05-01

    Full Text Available The inference of gene regulatory networks is a key issue for genomic signal processing. This paper addresses the inference of probabilistic Boolean networks (PBNs from observed temporal sequences of network states. Since a PBN is composed of a finite number of Boolean networks, a basic observation is that the characteristics of a single Boolean network without perturbation may be determined by its pairwise transitions. Because the network function is fixed and there are no perturbations, a given state will always be followed by a unique state at the succeeding time point. Thus, a transition counting matrix compiled over a data sequence will be sparse and contain only one entry per line. If the network also has perturbations, with small perturbation probability, then the transition counting matrix would have some insignificant nonzero entries replacing some (or all of the zeros. If a data sequence is sufficiently long to adequately populate the matrix, then determination of the functions and inputs underlying the model is straightforward. The difficulty comes when the transition counting matrix consists of data derived from more than one Boolean network. We address the PBN inference procedure in several steps: (1 separate the data sequence into “pure” subsequences corresponding to constituent Boolean networks; (2 given a subsequence, infer a Boolean network; and (3 infer the probabilities of perturbation, the probability of there being a switch between constituent Boolean networks, and the selection probabilities governing which network is to be selected given a switch. Capturing the full dynamic behavior of probabilistic Boolean networks, be they binary or multivalued, will require the use of temporal data, and a great deal of it. This should not be surprising given the complexity of the model and the number of parameters, both transitional and static, that must be estimated. In addition to providing an inference algorithm

  20. Inference of a Probabilistic Boolean Network from a Single Observed Temporal Sequence

    Directory of Open Access Journals (Sweden)

    Xiao Yufei

    2007-01-01

    Full Text Available The inference of gene regulatory networks is a key issue for genomic signal processing. This paper addresses the inference of probabilistic Boolean networks (PBNs from observed temporal sequences of network states. Since a PBN is composed of a finite number of Boolean networks, a basic observation is that the characteristics of a single Boolean network without perturbation may be determined by its pairwise transitions. Because the network function is fixed and there are no perturbations, a given state will always be followed by a unique state at the succeeding time point. Thus, a transition counting matrix compiled over a data sequence will be sparse and contain only one entry per line. If the network also has perturbations, with small perturbation probability, then the transition counting matrix would have some insignificant nonzero entries replacing some (or all of the zeros. If a data sequence is sufficiently long to adequately populate the matrix, then determination of the functions and inputs underlying the model is straightforward. The difficulty comes when the transition counting matrix consists of data derived from more than one Boolean network. We address the PBN inference procedure in several steps: (1 separate the data sequence into "pure" subsequences corresponding to constituent Boolean networks; (2 given a subsequence, infer a Boolean network; and (3 infer the probabilities of perturbation, the probability of there being a switch between constituent Boolean networks, and the selection probabilities governing which network is to be selected given a switch. Capturing the full dynamic behavior of probabilistic Boolean networks, be they binary or multivalued, will require the use of temporal data, and a great deal of it. This should not be surprising given the complexity of the model and the number of parameters, both transitional and static, that must be estimated. In addition to providing an inference algorithm, this paper

  1. Quotients of Boolean algebras and regular subalgebras

    Czech Academy of Sciences Publication Activity Database

    Balcar, Bohuslav; Pazák, Tomáš

    2010-01-01

    Roč. 49, č. 3 (2010), s. 329-342 ISSN 1432-0665 R&D Projects: GA AV ČR IAA100190509; GA MŠk MEB060909 Institutional research plan: CEZ:AV0Z10190503; CEZ:AV0Z10750506 Keywords : Boolean algebra * sequential topology * ZFC extension * ideal Subject RIV: BA - General Mathematics Impact factor: 0.414, year: 2010 http://link.springer.com/article/10.1007%2Fs00153-010-0174-y

  2. Analysis and control of Boolean networks a semi-tensor product approach

    CERN Document Server

    Cheng, Daizhan; Li, Zhiqiang

    2010-01-01

    This book presents a new approach to the investigation of Boolean control networks, using the semi-tensor product (STP), which can express a logical function as a conventional discrete-time linear system. This makes it possible to analyze basic control problems.

  3. Synchronization Analysis of Master-Slave Probabilistic Boolean Networks.

    Science.gov (United States)

    Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W C; Cao, Jinde

    2015-08-28

    In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results.

  4. Optimal stabilization of Boolean networks through collective influence

    Science.gov (United States)

    Wang, Jiannan; Pei, Sen; Wei, Wei; Feng, Xiangnan; Zheng, Zhiming

    2018-03-01

    Boolean networks have attracted much attention due to their wide applications in describing dynamics of biological systems. During past decades, much effort has been invested in unveiling how network structure and update rules affect the stability of Boolean networks. In this paper, we aim to identify and control a minimal set of influential nodes that is capable of stabilizing an unstable Boolean network. For locally treelike Boolean networks with biased truth tables, we propose a greedy algorithm to identify influential nodes in Boolean networks by minimizing the largest eigenvalue of a modified nonbacktracking matrix. We test the performance of the proposed collective influence algorithm on four different networks. Results show that the collective influence algorithm can stabilize each network with a smaller set of nodes compared with other heuristic algorithms. Our work provides a new insight into the mechanism that determines the stability of Boolean networks, which may find applications in identifying virulence genes that lead to serious diseases.

  5. Reconfigurable Boolean logic using magnetic single-electron transistors.

    Directory of Open Access Journals (Sweden)

    M Fernando Gonzalez-Zalba

    Full Text Available We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET. The device consists of an aluminium single-electron transistor with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer, which induces a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network.

  6. Reconfigurable Boolean Logic Using Magnetic Single-Electron Transistors

    Science.gov (United States)

    Gonzalez-Zalba, M. Fernando; Ciccarelli, Chiara; Zarbo, Liviu P.; Irvine, Andrew C.; Campion, Richard C.; Gallagher, Bryan L.; Jungwirth, Tomas; Ferguson, Andrew J.; Wunderlich, Joerg

    2015-01-01

    We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET). The device consists of an aluminium single-electron transistor with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer, which induces a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network. PMID:25923789

  7. Unlimited multistability and Boolean logic in microbial signalling

    DEFF Research Database (Denmark)

    Kothamachu, Varun B; Feliu, Elisenda; Cardelli, Luca

    2015-01-01

    reactions. We develop a mathematical framework for analysing microbial systems with multi-domain HK receptors known as hybrid and unorthodox HKs. We show that these systems embed a simple core network that exhibits multistability, thereby unveiling a novel biochemical mechanism for multistability. We...... further prove that sharing of downstream components allows a system with n multi-domain hybrid HKs to attain 3n steady states. We find that such systems, when sensing distinct signals, can readily implement Boolean logic functions on these signals. Using two experimentally studied examples of two......-component systems implementing hybrid HKs, we show that bistability and implementation of logic functions are possible under biologically feasible reaction rates. Furthermore, we show that all sequenced microbial genomes contain significant numbers of hybrid and unorthodox HKs, and some genomes have a larger...

  8. Large Sets in Boolean and Non-Boolean Groups and Topology

    Directory of Open Access Journals (Sweden)

    Ol’ga V. Sipacheva

    2017-10-01

    Full Text Available Various notions of large sets in groups, including the classical notions of thick, syndetic, and piecewise syndetic sets and the new notion of vast sets in groups, are studied with emphasis on the interplay between such sets in Boolean groups. Natural topologies closely related to vast sets are considered; as a byproduct, interesting relations between vast sets and ultrafilters are revealed.

  9. The Boolean algebra and central Galois algebras

    Directory of Open Access Journals (Sweden)

    George Szeto

    2001-01-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb   for all   x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.

  10. Boolean Factor Analysis by Attractor Neural Network

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2007-01-01

    Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007

  11. GBL-2D Version 1.0: a 2D geometry boolean library.

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J. (Elemental Technologies, American Fort, UT)

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  12. An Efficient Algorithm for Computing Attractors of Synchronous And Asynchronous Boolean Networks

    Science.gov (United States)

    Zheng, Desheng; Yang, Guowu; Li, Xiaoyu; Wang, Zhicai; Liu, Feng; He, Lei

    2013-01-01

    Biological networks, such as genetic regulatory networks, often contain positive and negative feedback loops that settle down to dynamically stable patterns. Identifying these patterns, the so-called attractors, can provide important insights for biologists to understand the molecular mechanisms underlying many coordinated cellular processes such as cellular division, differentiation, and homeostasis. Both synchronous and asynchronous Boolean networks have been used to simulate genetic regulatory networks and identify their attractors. The common methods of computing attractors are that start with a randomly selected initial state and finish with exhaustive search of the state space of a network. However, the time complexity of these methods grows exponentially with respect to the number and length of attractors. Here, we build two algorithms to achieve the computation of attractors in synchronous and asynchronous Boolean networks. For the synchronous scenario, combing with iterative methods and reduced order binary decision diagrams (ROBDD), we propose an improved algorithm to compute attractors. For another algorithm, the attractors of synchronous Boolean networks are utilized in asynchronous Boolean translation functions to derive attractors of asynchronous scenario. The proposed algorithms are implemented in a procedure called geneFAtt. Compared to existing tools such as genYsis, geneFAtt is significantly faster in computing attractors for empirical experimental systems. Availability The software package is available at https://sites.google.com/site/desheng619/download. PMID:23585840

  13. Adapted Boolean network models for extracellular matrix formation

    Directory of Open Access Journals (Sweden)

    Wollbold Johannes

    2009-07-01

    Full Text Available Abstract Background Due to the rapid data accumulation on pathogenesis and progression of chronic inflammation, there is an increasing demand for approaches to analyse the underlying regulatory networks. For example, rheumatoid arthritis (RA is a chronic inflammatory disease, characterised by joint destruction and perpetuated by activated synovial fibroblasts (SFB. These abnormally express and/or secrete pro-inflammatory cytokines, collagens causing joint fibrosis, or tissue-degrading enzymes resulting in destruction of the extra-cellular matrix (ECM. We applied three methods to analyse ECM regulation: data discretisation to filter out noise and to reduce complexity, Boolean network construction to implement logic relationships, and formal concept analysis (FCA for the formation of minimal, but complete rule sets from the data. Results First, we extracted literature information to develop an interaction network containing 18 genes representing ECM formation and destruction. Subsequently, we constructed an asynchronous Boolean network with biologically plausible time intervals for mRNA and protein production, secretion, and inactivation. Experimental gene expression data was obtained from SFB stimulated by TGFβ1 or by TNFα and discretised thereafter. The Boolean functions of the initial network were improved iteratively by the comparison of the simulation runs to the experimental data and by exploitation of expert knowledge. This resulted in adapted networks for both cytokine stimulation conditions. The simulations were further analysed by the attribute exploration algorithm of FCA, integrating the observed time series in a fine-tuned and automated manner. The resulting temporal rules yielded new contributions to controversially discussed aspects of fibroblast biology (e.g., considerable expression of TNF and MMP9 by fibroblasts stimulation and corroborated previously known facts (e.g., co-expression of collagens and MMPs after TNF

  14. Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games

    NARCIS (Netherlands)

    Kant, Gijs; van de Pol, Jan Cornelis; Wijs, A.J.; Bošnački, D.; Edelkamp, S.

    Parameterised Boolean Equation Systems (PBESs) are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal μ-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then

  15. An adaptable Boolean net trainable to control a computing robot

    International Nuclear Information System (INIS)

    Lauria, F. E.; Prevete, R.; Milo, M.; Visco, S.

    1999-01-01

    We discuss a method to implement in a Boolean neural network a Hebbian rule so to obtain an adaptable universal control system. We start by presenting both the Boolean neural net and the Hebbian rule we have considered. Then we discuss, first, the problems arising when the latter is naively implemented in a Boolean neural net, second, the method consenting us to overcome them and the ensuing adaptable Boolean neural net paradigm. Next, we present the adaptable Boolean neural net as an intelligent control system, actually controlling a writing robot, and discuss how to train it in the execution of the elementary arithmetic operations on operands represented by numerals with an arbitrary number of digits

  16. Boolean orthoposets and two-valued states on them

    Science.gov (United States)

    Tkadlec, Josef

    1992-06-01

    A Boolean orthoposet (see e.g. [2]) is the orthoposet P fulfilling the following condition: If a, b ∈ P and a ∧ b = 0 then a⊥ b. This condition seems to be a sound generalization of distributivity in orthoposets (see e.g. [8]). Also, the class of (orthomodular) Boolean orthoposets may play an interesting role in quantum logic theory. This class is wide enough (see [4,3]) and on the other hand, enjoys some properties of Boolean algebras [4,8,5]. In quantum logic theory an important role is played by so-called Jauch-Piron states [1,6,7]. In this paper we clarify the connection between Boolean orthoposets and orthoposets with "enough" two-valued Jauch-Piron states. Further, we obtain a characterization of Boolean orthoposets in terms of two-valued states.

  17. Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles

    Directory of Open Access Journals (Sweden)

    Shah Imran

    2011-07-01

    Full Text Available Abstract Background With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate the physiological effect of chemicals, including potential toxicity. Here we investigate a biologically motivated model for estimating tissue level responses by aggregating the behavior of a cell population. We assume that the molecular state of individual cells is independently governed by discrete non-deterministic signaling mechanisms. This results in noisy but highly reproducible aggregate level responses that are consistent with experimental data. Results We developed an asynchronous threshold Boolean network simulation algorithm to model signal transduction in a single cell, and then used an ensemble of these models to estimate the aggregate response across a cell population. Using published data, we derived a putative crosstalk network involving growth factors and cytokines - i.e., Epidermal Growth Factor, Insulin, Insulin like Growth Factor Type 1, and Tumor Necrosis Factor α - to describe early signaling events in cell proliferation signal transduction. Reproducibility of the modeling technique across ensembles of Boolean networks representing cell populations is investigated. Furthermore, we compare our simulation results to experimental observations of hepatocytes reported in the literature. Conclusion A systematic analysis of the results following differential stimulation of this model by growth factors and cytokines suggests that: (a using Boolean network ensembles with asynchronous updating provides biologically plausible noisy individual cellular responses with reproducible mean behavior for large cell populations, and (b with sufficient data our model can estimate the response to different concentrations of extracellular ligands. Our

  18. Intervention in Context-Sensitive Probabilistic Boolean Networks Revisited

    Directory of Open Access Journals (Sweden)

    Faryabi Babak

    2009-01-01

    Full Text Available An approximate representation for the state space of a context-sensitive probabilistic Boolean network has previously been proposed and utilized to devise therapeutic intervention strategies. Whereas the full state of a context-sensitive probabilistic Boolean network is specified by an ordered pair composed of a network context and a gene-activity profile, this approximate representation collapses the state space onto the gene-activity profiles alone. This reduction yields an approximate transition probability matrix, absent of context, for the Markov chain associated with the context-sensitive probabilistic Boolean network. As with many approximation methods, a price must be paid for using a reduced model representation, namely, some loss of optimality relative to using the full state space. This paper examines the effects on intervention performance caused by the reduction with respect to various values of the model parameters. This task is performed using a new derivation for the transition probability matrix of the context-sensitive probabilistic Boolean network. This expression of transition probability distributions is in concert with the original definition of context-sensitive probabilistic Boolean network. The performance of optimal and approximate therapeutic strategies is compared for both synthetic networks and a real case study. It is observed that the approximate representation describes the dynamics of the context-sensitive probabilistic Boolean network through the instantaneously random probabilistic Boolean network with similar parameters.

  19. The Boolean algebra of Galois algebras

    Directory of Open Access Journals (Sweden)

    Lianyong Xue

    2003-02-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B|bx=g(xb for all x∈B} for each g∈G, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|g∈G}, e a nonzero element in Ba, and He={g∈G|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.

  20. Theory reduction and non-Boolean theories.

    Science.gov (United States)

    Primas, H

    1977-07-19

    It is suggested that biological theories should be embedded into the family of non-Boolean theories based on an orthomodular propositional calculus. The structure of universal theories that include quantal phenomena is investigated and it is shown that their subtheories form a directed set which cannot be totally orders. A precise definition of theory reduction is given; it turns out that hierarchically different descriptive levels are not related by a homomorphic map. A subtheory that is reducible to a more general theory can be associated with the emergence of novel concepts and is in general subject to a wider empirical clissification scheme than the reducing theory. The implications of these results for reductionism, holism, emergence, and their conceptual unification are discussed.

  1. Multipath Detection Using Boolean Satisfiability Techniques

    Directory of Open Access Journals (Sweden)

    Fadi A. Aloul

    2011-01-01

    Full Text Available A new technique for multipath detection in wideband mobile radio systems is presented. The proposed scheme is based on an intelligent search algorithm using Boolean Satisfiability (SAT techniques to search through the uncertainty region of the multipath delays. The SAT-based scheme utilizes the known structure of the transmitted wideband signal, for example, pseudo-random (PN code, to effectively search through the entire space by eliminating subspaces that do not contain a possible solution. The paper presents a framework for modeling the multipath detection problem as a SAT application. It also provides simulation results that demonstrate the effectiveness of the proposed scheme in detecting the multipath components in frequency-selective Rayleigh fading channels.

  2. A full bayesian approach for boolean genetic network inference.

    Directory of Open Access Journals (Sweden)

    Shengtong Han

    Full Text Available Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data.

  3. Attractor Transformation by Impulsive Control in Boolean Control Network

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2013-01-01

    Full Text Available Boolean control networks have recently been attracting considerable interests as computational models for genetic regulatory networks. In this paper, we present an approach of impulsive control for attractor transitions in Boolean control networks based on the recent developed matrix semitensor product theory. The reachability of attractors is estimated, and the controller is also obtained. The general derivation proposed here is exemplified with a kind of gene model, which is the protein-nucleic acid interactions network, on numerical simulations.

  4. Synchronization in an array of coupled Boolean networks

    International Nuclear Information System (INIS)

    Li, Rui; Chu, Tianguang

    2012-01-01

    This Letter presents an analytical study of synchronization in an array of coupled deterministic Boolean networks. A necessary and sufficient criterion for synchronization is established based on algebraic representations of logical dynamics in terms of the semi-tensor product of matrices. Some basic properties of a synchronized array of Boolean networks are then derived for the existence of transient states and the upper bound of the number of fixed points. Particularly, an interesting consequence indicates that a “large” mismatch between two coupled Boolean networks in the array may result in loss of synchrony in the entire system. Examples, including the Boolean model of coupled oscillations in the cell cycle, are given to illustrate the present results. -- Highlights: ► We analytically study synchronization in an array of coupled Boolean networks. ► The study is based on the algebraic representations of logical dynamics. ► A necessary and sufficient algebraic criterion for synchronization is established. ► It reveals some basic properties of a synchronized array of Boolean networks. ► A large mismatch between two coupled networks may result in the loss of synchrony.

  5. Complementing ODE-Based System Analysis Using Boolean Networks Derived from an Euler-Like Transformation.

    Science.gov (United States)

    Stötzel, Claudia; Röblitz, Susanna; Siebert, Heike

    2015-01-01

    In this paper, we present a systematic transition scheme for a large class of ordinary differential equations (ODEs) into Boolean networks. Our transition scheme can be applied to any system of ODEs whose right hand sides can be written as sums and products of monotone functions. It performs an Euler-like step which uses the signs of the right hand sides to obtain the Boolean update functions for every variable of the corresponding discrete model. The discrete model can, on one hand, be considered as another representation of the biological system or, alternatively, it can be used to further the analysis of the original ODE model. Since the generic transformation method does not guarantee any property conservation, a subsequent validation step is required. Depending on the purpose of the model this step can be based on experimental data or ODE simulations and characteristics. Analysis of the resulting Boolean model, both on its own and in comparison with the ODE model, then allows to investigate system properties not accessible in a purely continuous setting. The method is exemplarily applied to a previously published model of the bovine estrous cycle, which leads to new insights regarding the regulation among the components, and also indicates strongly that the system is tailored to generate stable oscillations.

  6. PATHLOGIC-S: a scalable Boolean framework for modelling cellular signalling.

    Directory of Open Access Journals (Sweden)

    Liam G Fearnley

    Full Text Available Curated databases of signal transduction have grown to describe several thousand reactions, and efficient use of these data requires the development of modelling tools to elucidate and explore system properties. We present PATHLOGIC-S, a Boolean specification for a signalling model, with its associated GPL-licensed implementation using integer programming techniques. The PATHLOGIC-S specification has been designed to function on current desktop workstations, and is capable of providing analyses on some of the largest currently available datasets through use of Boolean modelling techniques to generate predictions of stable and semi-stable network states from data in community file formats. PATHLOGIC-S also addresses major problems associated with the presence and modelling of inhibition in Boolean systems, and reduces logical incoherence due to common inhibitory mechanisms in signalling systems. We apply this approach to signal transduction networks including Reactome and two pathways from the Panther Pathways database, and present the results of computations on each along with a discussion of execution time. A software implementation of the framework and model is freely available under a GPL license.

  7. PARAMETER ESTIMATION IN NON-HOMOGENEOUS BOOLEAN MODELS: AN APPLICATION TO PLANT DEFENSE RESPONSE

    Directory of Open Access Journals (Sweden)

    Maria Angeles Gallego

    2014-11-01

    Full Text Available Many medical and biological problems require to extract information from microscopical images. Boolean models have been extensively used to analyze binary images of random clumps in many scientific fields. In this paper, a particular type of Boolean model with an underlying non-stationary point process is considered. The intensity of the underlying point process is formulated as a fixed function of the distance to a region of interest. A method to estimate the parameters of this Boolean model is introduced, and its performance is checked in two different settings. Firstly, a comparative study with other existent methods is done using simulated data. Secondly, the method is applied to analyze the longleaf data set, which is a very popular data set in the context of point processes included in the R package spatstat. Obtained results show that the new method provides as accurate estimates as those obtained with more complex methods developed for the general case. Finally, to illustrate the application of this model and this method, a particular type of phytopathological images are analyzed. These images show callose depositions in leaves of Arabidopsis plants. The analysis of callose depositions, is very popular in the phytopathological literature to quantify activity of plant immunity.

  8. Graphene-based non-Boolean logic circuits

    Science.gov (United States)

    Liu, Guanxiong; Ahsan, Sonia; Khitun, Alexander G.; Lake, Roger K.; Balandin, Alexander A.

    2013-10-01

    Graphene revealed a number of unique properties beneficial for electronics. However, graphene does not have an energy band-gap, which presents a serious hurdle for its applications in digital logic gates. The efforts to induce a band-gap in graphene via quantum confinement or surface functionalization have not resulted in a breakthrough. Here we show that the negative differential resistance experimentally observed in graphene field-effect transistors of "conventional" design allows for construction of viable non-Boolean computational architectures with the gapless graphene. The negative differential resistance—observed under certain biasing schemes—is an intrinsic property of graphene, resulting from its symmetric band structure. Our atomistic modeling shows that the negative differential resistance appears not only in the drift-diffusion regime but also in the ballistic regime at the nanometer-scale—although the physics changes. The obtained results present a conceptual change in graphene research and indicate an alternative route for graphene's applications in information processing.

  9. The stability of Boolean network with transmission sensitivity

    Science.gov (United States)

    Wang, Jiannan; Guo, Binghui; Wei, Wei; Mi, Zhilong; Yin, Ziqiao; Zheng, Zhiming

    2017-09-01

    Boolean network has been widely used in modeling biological systems and one of the key problems is its stability in response to small perturbations. Based on the hypothesis that the states of all nodes are homogenously updated, great progress has been made in previous works. In real biological networks, however, the updates of genes typically show much heterogeneity. To address such conditions, we introduce transmission sensitivity into Boolean network model. By the method of semi-annealed approximation, we illustrate that in a homogenous network, the critical condition of stability has no connection with its transmission sensitivity. As for heterogeneous networks, it reveals that correlations between network topology and transmission sensitivity can have profound effects on the its stability. This result shows a new mechanism that affects the stability of Boolean network, which could be used to control the dynamics in real biological systems.

  10. A comparison of hypertext and Boolean access to biomedical information.

    Science.gov (United States)

    Friedman, C P; Wildemuth, B M; Muriuki, M; Gant, S P; Downs, S M; Twarog, R G; de Bliek, R

    1996-01-01

    This study explored which of two modes of access to a biomedical database better supported problem solving in bacteriology. Boolean access, which allowed subjects to frame their queries as combinations of keywords, was compared to hypertext access, which allowed subjects to navigate from one database node to another. The accessible biomedical data were identical across systems. Data were collected from 42 first year medical students, each randomized to the Boolean or hypertext system, before and after their bacteriology course. Subjects worked eight clinical case problems, first using only their personal knowledge and, subsequently, with aid from the database. Database retrievals enabled students to answer questions they could not answer based on personal knowledge only. This effect was greater when personal knowledge of bacteriology was lower. The results also suggest that hypertext was superior to Boolean access in helping subjects identify possible infectious agents in these clinical case problems.

  11. Dynamic Network-Based Epistasis Analysis: Boolean Examples

    Science.gov (United States)

    Azpeitia, Eugenio; Benítez, Mariana; Padilla-Longoria, Pablo; Espinosa-Soto, Carlos; Alvarez-Buylla, Elena R.

    2011-01-01

    In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and

  12. Refinement monoids, equidecomposability types, and boolean inverse semigroups

    CERN Document Server

    Wehrung, Friedrich

    2017-01-01

    Adopting a new universal algebraic approach, this book explores and consolidates the link between Tarski's classical theory of equidecomposability types monoids, abstract measure theory (in the spirit of Hans Dobbertin's work on monoid-valued measures on Boolean algebras) and the nonstable K-theory of rings. This is done via the study of a monoid invariant, defined on Boolean inverse semigroups, called the type monoid. The new techniques contrast with the currently available topological approaches. Many positive results, but also many counterexamples, are provided.

  13. Equivalence Checking of Combinational Circuits using Boolean Expression Diagrams

    DEFF Research Database (Denmark)

    Hulgaard, Henrik; Williams, Poul Frederick; Andersen, Henrik Reif

    1999-01-01

    or by a design automation tool).This paper introduces a data structure called Boolean Expression Diagrams (BEDs) and two algorithms for transforming a BED into a Reduced Ordered Binary Decision Diagram (OBDD). BEDs are capable of representing any Boolean circuit in linear space and can exploit structural...... similarities between the two circuits that are compared. These properties make BEDs suitable for verifying the equivalence of combinational circuits. BEDs can be seen as an intermediate representation between circuits (which are compact) and OBDDs (which are canonical).Based on a large number of combinational...

  14. A Boolean Approach to Airline Business Model Innovation

    DEFF Research Database (Denmark)

    Hvass, Kristian Anders

    Research in business model innovation has identified its significance in creating a sustainable competitive advantage for a firm, yet there are few empirical studies identifying which combination of business model activities lead to success and therefore deserve innovative attention. This study...... analyzes the business models of North America low-cost carriers from 2001 to 2010 using a Boolean minimization algorithm to identify which combinations of business model activities lead to operational profitability. The research aim is threefold: complement airline literature in the realm of business model...... innovation, introduce Boolean minimization methods to the field, and propose alternative business model activities to North American carriers striving for positive operating results....

  15. Optimization-Based Approaches to Control of Probabilistic Boolean Networks

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2017-02-01

    Full Text Available Control of gene regulatory networks is one of the fundamental topics in systems biology. In the last decade, control theory of Boolean networks (BNs, which is well known as a model of gene regulatory networks, has been widely studied. In this review paper, our previously proposed methods on optimal control of probabilistic Boolean networks (PBNs are introduced. First, the outline of PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore, another finite-time optimal control problem, which can be reduced to an integer programming problem, is also explained.

  16. Unlimited multistability and Boolean logic in microbial signalling.

    Science.gov (United States)

    Kothamachu, Varun B; Feliu, Elisenda; Cardelli, Luca; Soyer, Orkun S

    2015-07-06

    The ability to map environmental signals onto distinct internal physiological states or programmes is critical for single-celled microbes. A crucial systems dynamics feature underpinning such ability is multistability. While unlimited multistability is known to arise from multi-site phosphorylation seen in the signalling networks of eukaryotic cells, a similarly universal mechanism has not been identified in microbial signalling systems. These systems are generally known as two-component systems comprising histidine kinase (HK) receptors and response regulator proteins engaging in phosphotransfer reactions. We develop a mathematical framework for analysing microbial systems with multi-domain HK receptors known as hybrid and unorthodox HKs. We show that these systems embed a simple core network that exhibits multistability, thereby unveiling a novel biochemical mechanism for multistability. We further prove that sharing of downstream components allows a system with n multi-domain hybrid HKs to attain 3n steady states. We find that such systems, when sensing distinct signals, can readily implement Boolean logic functions on these signals. Using two experimentally studied examples of two-component systems implementing hybrid HKs, we show that bistability and implementation of logic functions are possible under biologically feasible reaction rates. Furthermore, we show that all sequenced microbial genomes contain significant numbers of hybrid and unorthodox HKs, and some genomes have a larger fraction of these proteins compared with regular HKs. Microbial cells are thus theoretically unbounded in mapping distinct environmental signals onto distinct physiological states and perform complex computations on them. These findings facilitate the understanding of natural two-component systems and allow their engineering through synthetic biology.

  17. Document Ranking in E-Extended Boolean Logic

    Czech Academy of Sciences Publication Activity Database

    Holub, M.; Húsek, Dušan; Pokorný, J.

    1996-01-01

    Roč. 4, č. 7 (1996), s. 3-17 ISSN 1310-0513. [Annual Colloquium on IR Research /19./. Aberdeen, 08.04.1997-09.04.1997] R&D Projects: GA ČR GA102/94/0728 Keywords : information retrieval * document ranking * extended Boolean logic

  18. On the Road to Genetic Boolean Matrix Factorization

    Czech Academy of Sciences Publication Activity Database

    Snášel, V.; Platoš, J.; Krömer, P.; Húsek, Dušan; Frolov, A.

    2007-01-01

    Roč. 17, č. 6 (2007), s. 675-688 ISSN 1210-0552 Institutional research plan: CEZ:AV0Z10300504 Keywords : data mining * genetic algorithms * Boolean factorization * binary data * machine learning * feature extraction Subject RIV: IN - Informatics, Computer Science Impact factor: 0.280, year: 2007

  19. Free Boolean algebras over unions of two well orderings

    Czech Academy of Sciences Publication Activity Database

    Bonnet, R.; Faouzi, L.; Kubiś, Wieslaw

    2009-01-01

    Roč. 156, č. 7 (2009), s. 1177-1185 ISSN 0166-8641 Institutional research plan: CEZ:AV0Z10190503 Keywords : Well quasi orderings * Poset algebras * Superatomic Boolean algebras * Compact distributive lattices Subject RIV: BA - General Mathematics Impact factor: 0.441, year: 2009

  20. Development of Boolean calculus and its applications. [digital systems design

    Science.gov (United States)

    Tapia, M. A.

    1980-01-01

    The development of Boolean calculus for its application to developing digital system design methodologies that would reduce system complexity, size, cost, speed, power requirements, etc., is discussed. Synthesis procedures for logic circuits are examined particularly asynchronous circuits using clock triggered flip flops.

  1. Learning restricted Boolean network model by time-series data.

    Science.gov (United States)

    Ouyang, Hongjia; Fang, Jie; Shen, Liangzhong; Dougherty, Edward R; Liu, Wenbin

    2014-01-01

    Restricted Boolean networks are simplified Boolean networks that are required for either negative or positive regulations between genes. Higa et al. (BMC Proc 5:S5, 2011) proposed a three-rule algorithm to infer a restricted Boolean network from time-series data. However, the algorithm suffers from a major drawback, namely, it is very sensitive to noise. In this paper, we systematically analyze the regulatory relationships between genes based on the state switch of the target gene and propose an algorithm with which restricted Boolean networks may be inferred from time-series data. We compare the proposed algorithm with the three-rule algorithm and the best-fit algorithm based on both synthetic networks and a well-studied budding yeast cell cycle network. The performance of the algorithms is evaluated by three distance metrics: the normalized-edge Hamming distance [Formula: see text], the normalized Hamming distance of state transition [Formula: see text], and the steady-state distribution distance μ (ssd). Results show that the proposed algorithm outperforms the others according to both [Formula: see text] and [Formula: see text], whereas its performance according to μ (ssd) is intermediate between best-fit and the three-rule algorithms. Thus, our new algorithm is more appropriate for inferring interactions between genes from time-series data.

  2. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  3. Dynamic network-based epistasis analysis: Boolean examples

    Directory of Open Access Journals (Sweden)

    Eugenio eAzpeitia

    2011-12-01

    Full Text Available In this review we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the topologies of gene interactions infered. This has been acknowledged in several previous papers and reviews, but here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson (herein, classical epistasis, defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus. Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct gene interaction topologies are hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our review complements previous accounts, not

  4. Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Liang Jinghang

    2012-08-01

    network inferred from a T cell immune response dataset. An SBN can also implement the function of an asynchronous PBN and is potentially useful in a hybrid approach in combination with a continuous or single-molecule level stochastic model. Conclusions Stochastic Boolean networks (SBNs are proposed as an efficient approach to modelling gene regulatory networks (GRNs. The SBN approach is able to recover biologically-proven regulatory behaviours, such as the oscillatory dynamics of the p53-Mdm2 network and the dynamic attractors in a T cell immune response network. The proposed approach can further predict the network dynamics when the genes are under perturbation, thus providing biologically meaningful insights for a better understanding of the dynamics of GRNs. The algorithms and methods described in this paper have been implemented in Matlab packages, which are attached as Additional files.

  5. Continuous time boolean modeling for biological signaling: application of Gillespie algorithm

    Directory of Open Access Journals (Sweden)

    Stoll Gautier

    2012-08-01

    Full Text Available Abstract Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to validate a network that describes biological observations and predict the effect of perturbations. This article presents an algorithm for modeling biological networks in a discrete framework with continuous time. Background There exist two major types of mathematical modeling approaches: (1 quantitative modeling, representing various chemical species concentrations by real numbers, mainly based on differential equations and chemical kinetics formalism; (2 and qualitative modeling, representing chemical species concentrations or activities by a finite set of discrete values. Both approaches answer particular (and often different biological questions. Qualitative modeling approach permits a simple and less detailed description of the biological systems, efficiently describes stable state identification but remains inconvenient in describing the transient kinetics leading to these states. In this context, time is represented by discrete steps. Quantitative modeling, on the other hand, can describe more accurately the dynamical behavior of biological processes as it follows the evolution of concentration or activities of chemical species as a function of time, but requires an important amount of information on the parameters difficult to find in the literature. Results Here, we propose a modeling framework based on a qualitative approach that is intrinsically continuous in time. The algorithm presented in this article fills the gap between qualitative and quantitative modeling. It is based on continuous time Markov process applied on a Boolean state space. In order to describe the temporal evolution of the biological process we wish to model, we explicitly specify the transition rates for each node. For that purpose, we built a language that can be seen as a generalization of Boolean equations. Mathematically, this approach can be

  6. High Quality Test Pattern Generation and Boolean Satisfiability

    CERN Document Server

    Eggersglüß, Stephan

    2012-01-01

    This book provides an overview of automatic test pattern generation (ATPG) and introduces novel techniques to complement classical ATPG, based on Boolean Satisfiability (SAT).  A fast and highly fault efficient SAT-based ATPG framework is presented which is also able to generate high-quality delay tests such as robust path delay tests, as well as tests with long propagation paths to detect small delay defects. The aim of the techniques and methodologies presented in this book is to improve SAT-based ATPG, in order to make it applicable in industrial practice. Readers will learn to improve the performance and robustness of the overall test generation process, so that the ATPG algorithm reliably will generate test patterns for most targeted faults in acceptable run time to meet the high fault coverage demands of industry. The techniques and improvements presented in this book provide the following advantages: Provides a comprehensive introduction to test generation and Boolean Satisfiability (SAT); Describes a...

  7. Mapping knowledge to boolean dynamic systems in Bateson's epistemology.

    Science.gov (United States)

    Malloy, Thomas E; Jensen, Gary C; Song, Timothy

    2005-01-01

    Gregory Bateson (1972, 1979) established an epistemology that integrates mind and nature as a necessary unity, a unity in which learning and evolution share fundamental principles and in which criteria for mental process are explicitly specified. E42 is a suite of freely available Java applets that constitute an online research lab for creating and interacting with simulations of the Boolean systems developed by Kauffman (1993) in his study of evolution where he proposed that self-organization and natural selection are co-principles "weaving the tapestry of life." This paper maps Boolean systems, developed in the study of evolution, onto Bateson's epistemology in general and onto his criteria of mental process in particular.

  8. Approximating Attractors of Boolean Networks by Iterative CTL Model Checking.

    Science.gov (United States)

    Klarner, Hannes; Siebert, Heike

    2015-01-01

    This paper introduces the notion of approximating asynchronous attractors of Boolean networks by minimal trap spaces. We define three criteria for determining the quality of an approximation: "faithfulness" which requires that the oscillating variables of all attractors in a trap space correspond to their dimensions, "univocality" which requires that there is a unique attractor in each trap space, and "completeness" which requires that there are no attractors outside of a given set of trap spaces. Each is a reachability property for which we give equivalent model checking queries. Whereas faithfulness and univocality can be decided by model checking the corresponding subnetworks, the naive query for completeness must be evaluated on the full state space. Our main result is an alternative approach which is based on the iterative refinement of an initially poor approximation. The algorithm detects so-called autonomous sets in the interaction graph, variables that contain all their regulators, and considers their intersection and extension in order to perform model checking on the smallest possible state spaces. A benchmark, in which we apply the algorithm to 18 published Boolean networks, is given. In each case, the minimal trap spaces are faithful, univocal, and complete, which suggests that they are in general good approximations for the asymptotics of Boolean networks.

  9. Boolean models can explain bistability in the lac operon.

    Science.gov (United States)

    Veliz-Cuba, Alan; Stigler, Brandilyn

    2011-06-01

    The lac operon in Escherichia coli has been studied extensively and is one of the earliest gene systems found to undergo both positive and negative control. The lac operon is known to exhibit bistability, in the sense that the operon is either induced or uninduced. Many dynamical models have been proposed to capture this phenomenon. While most are based on complex mathematical formulations, it has been suggested that for other gene systems network topology is sufficient to produce the desired dynamical behavior. We present a Boolean network as a discrete model for the lac operon. Our model includes the two main glucose control mechanisms of catabolite repression and inducer exclusion. We show that this Boolean model is capable of predicting the ON and OFF steady states and bistability. Further, we present a reduced model which shows that lac mRNA and lactose form the core of the lac operon, and that this reduced model exhibits the same dynamics. This work suggests that the key to model qualitative dynamics of gene systems is the topology of the network and Boolean models are well suited for this purpose.

  10. Controllability and observability of Boolean networks arising from biology

    Science.gov (United States)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  11. Approximating attractors of Boolean networks by iterative CTL model checking

    Directory of Open Access Journals (Sweden)

    Hannes eKlarner

    2015-09-01

    Full Text Available This paper introduces the notion of approximating asynchronous attractors of Boolean networks by minimal trap spaces. We define three criteria for determining the quality of an approximation: faithfulness which requires that the oscillating variables of all attractors in a trapspace correspond to their dimensions, univocality which requires that there is a unique attractor in each trap space and completeness which requires that there are no attractors outside of a given set of trap spaces. Each is a reachability property for which we give equivalent model checking queries. Whereas faithfulness and univocality can be decided by model checking the corresponding subnetworks, the naive query for completeness must be evaluated on the full state space. Our main result is an alternative approach which is based on the iterative refinement of an initially poor approximation. The algorithm detects so-called autonomous sets in the interaction graph, variables that contain all their regulators, and considers their intersection and extension in order to perform model checking on the smallest possible state spaces. A benchmark, in which we apply the algorithm to 18 published Boolean networks, is given. In each case, the minimal trap spaces are faithful, univocal and complete which suggests that they are in general good approximations for the asymptotics of Boolean networks.

  12. An Extension of Proof Graphs for Disjunctive Parameterised Boolean Equation Systems

    Directory of Open Access Journals (Sweden)

    Yutaro Nagae

    2017-01-01

    Full Text Available A parameterised Boolean equation system (PBES is a set of equations that defines sets as the least and/or greatest fixed-points that satisfy the equations. This system is regarded as a declarative program defining functions that take a datum and returns a Boolean value. The membership problem of PBESs is a problem to decide whether a given element is in the defined set or not, which corresponds to an execution of the program. This paper introduces reduced proof graphs, and studies a technique to solve the membership problem of PBESs, which is undecidable in general, by transforming it into a reduced proof graph. A vertex X(v in a proof graph represents that the data v is in the set X, if the graph satisfies conditions induced from a given PBES. Proof graphs are, however, infinite in general. Thus we introduce vertices each of which stands for a set of vertices of the original ones, which possibly results in a finite graph. For a subclass of disjunctive PBESs, we clarify some conditions which reduced proof graphs should satisfy. We also show some examples having no finite proof graph except for reduced one. We further propose a reduced dependency space, which contains reduced proof graphs as sub-graphs if a proof graph exists. We provide a procedure to construct finite reduced dependency spaces, and show the soundness and completeness of the procedure.

  13. On the Computation of Comprehensive Boolean Gröbner Bases

    Science.gov (United States)

    Inoue, Shutaro

    We show that a comprehensive Boolean Gröbner basis of an ideal I in a Boolean polynomial ring B (bar A,bar X) with main variables bar X and parameters bar A can be obtained by simply computing a usual Boolean Gröbner basis of I regarding both bar X and bar A as variables with a certain block term order such that bar X ≫ bar A. The result together with a fact that a finite Boolean ring is isomorphic to a direct product of the Galois field mathbb{GF}_2 enables us to compute a comprehensive Boolean Gröbner basis by only computing corresponding Gröbner bases in a polynomial ring over mathbb{GF}_2. Our implementation in a computer algebra system Risa/Asir shows that our method is extremely efficient comparing with existing computation algorithms of comprehensive Boolean Gröbner bases.

  14. The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.

    Science.gov (United States)

    Dridi, G; Julien, R; Hliwa, M; Joachim, C

    2015-08-28

    The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.

  15. Affine Equivalence and Constructions of Cryptographically Strong Boolean Functions

    Science.gov (United States)

    2013-09-01

    3 (mod n) aiaj, . . . , n⊕ i, j=1 i+j≡n (mod n) aiaj, n⊕ i=1 i+j≡1 (mod n) aiaj  =  C(a1, adn /2e+1, a2, adn /2e+2, . . . , adn /2e) if...a3, . . . , ak, a2k+1, ak+1) = C(a1, adn /2e+1, a2, adn /2e+2, . . . , adn /2e). 46 If n = 2k for k = 0, 1, 2, ..., n⊕ i=1 i+j≡2 (mod n) aiaj = a1a1...3.4.5, C(a1, . . . , an) 2 = C(a1, adn /2e+1, a2, adn /2e+2, . . . , adn /2e) = C((a1, . . . , an)Pτ ) = C(aτ(1), . . . , aτ(n)). 64 Therefore, (a1

  16. On Weak and Strong 2k- bent Boolean Functions

    Science.gov (United States)

    2016-01-01

    s8 (u) + β2Wf⊕ s8 (ū) + β3Wf⊕s2⊕ s8 (u) + β4Wf⊕s2⊕ s8 (ū) + β5Wf⊕s4⊕ s8 (u) + β6Wf⊕s4⊕ s8 (ū...β7Wf⊕s2⊕s4⊕ s8 (u) + β8Wf⊕s2⊕s4⊕ s8 (ū), where β1 = 1 + ζ + ζ2 + ζ3 + ζ4 + ζ5 + ζ6 + ζ7, β2 = 1− ζ + ζ2 − ζ3 + ζ4 − ζ5 + ζ6 − ζ7, β3 = 1 + ζ − ζ2 − ζ3...n odd hold, where: (i) f⊕ s8 is bent-negabent-octabent with the conditions that (Wf⊕ s8 (u), Wf⊕ s8 (ū), Wf⊕s2⊕ s8 (u), Wf⊕s2⊕ s8 (ū), Wf⊕s4⊕ s8 (u), Wf⊕s4⊕ s8

  17. On a Conjecture for Balanced Symmetric Boolean Functions

    Science.gov (United States)

    2009-01-01

    Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law...Alexanderson, Sums of partition sets in generalized Pascal triangles I, Fibonacci Quarterly 14 (1976), pp. 117–125. [8] T. Lengyel, On the order of lacunary

  18. An Association Rule Mining Algorithm Based on a Boolean Matrix

    Directory of Open Access Journals (Sweden)

    Hanbing Liu

    2007-09-01

    Full Text Available Association rule mining is a very important research topic in the field of data mining. Discovering frequent itemsets is the key process in association rule mining. Traditional association rule algorithms adopt an iterative method to discovery, which requires very large calculations and a complicated transaction process. Because of this, a new association rule algorithm called ABBM is proposed in this paper. This new algorithm adopts a Boolean vector "relational calculus" method to discovering frequent itemsets. Experimental results show that this algorithm can quickly discover frequent itemsets and effectively mine potential association rules.

  19. A Boolean Approach to Airline Business Model Innovation

    DEFF Research Database (Denmark)

    Hvass, Kristian Anders

    Research in business model innovation has identified its significance in creating a sustainable competitive advantage for a firm, yet there are few empirical studies identifying which combination of business model activities lead to success and therefore deserve innovative attention. This study...... analyzes the business models of North America low-cost carriers from 2001 to 2010 using a Boolean minimization algorithm to identify which combinations of business model activities lead to operational profitability. The research aim is threefold: complement airline literature in the realm of business model...

  20. Bebop to the Boolean boogie an unconventional guide to electronics

    CERN Document Server

    Maxfield, Clive

    2003-01-01

    From reviews of the first edition:""If you want to be reminded of the joy of electronics, take a look at Clive (Max) Maxfield's book Bebop to the Boolean Boogie.""--Computer Design ""Lives up to its title as a useful and entertaining technical guide....well-suited for students, technical writers, technicians, and sales and marketing people.""--Electronic Design""Writing a book like this one takes audacity! ... Maxfield writes lucidly on a variety of complex topics without 'writing down' to his audience."" --EDN""A highly readable, well-illustrated guided tour

  1. Two Expectation-Maximization Algorithms for Boolean Factor Analysis

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.

    2014-01-01

    Roč. 130, 23 April (2014), s. 83-97 ISSN 0925-2312 R&D Projects: GA ČR GAP202/10/0262 Grant - others:GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Program:ED Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean Factor analysis * Binary Matrix factorization * Neural networks * Binary data model * Dimension reduction * Bars problem Subject RIV: IN - Informatics, Computer Science Impact factor: 2.083, year: 2014

  2. On the underlying assumptions of threshold Boolean networks as a model for genetic regulatory network behavior.

    Science.gov (United States)

    Tran, Van; McCall, Matthew N; McMurray, Helene R; Almudevar, Anthony

    2013-01-01

    Boolean networks (BoN) are relatively simple and interpretable models of gene regulatory networks. Specifying these models with fewer parameters while retaining their ability to describe complex regulatory relationships is an ongoing methodological challenge. Additionally, extending these models to incorporate variable gene decay rates, asynchronous gene response, and synergistic regulation while maintaining their Markovian nature increases the applicability of these models to genetic regulatory networks (GRN). We explore a previously-proposed class of BoNs characterized by linear threshold functions, which we refer to as threshold Boolean networks (TBN). Compared to traditional BoNs with unconstrained transition functions, these models require far fewer parameters and offer a more direct interpretation. However, the functional form of a TBN does result in a reduction in the regulatory relationships which can be modeled. We show that TBNs can be readily extended to permit self-degradation, with explicitly modeled degradation rates. We note that the introduction of variable degradation compromises the Markovian property fundamental to BoN models but show that a simple state augmentation procedure restores their Markovian nature. Next, we study the effect of assumptions regarding self-degradation on the set of possible steady states. Our findings are captured in two theorems relating self-degradation and regulatory feedback to the steady state behavior of a TBN. Finally, we explore assumptions of synchronous gene response and asynergistic regulation and show that TBNs can be easily extended to relax these assumptions. Applying our methods to the budding yeast cell-cycle network revealed that although the network is complex, its steady state is simplified by the presence of self-degradation and lack of purely positive regulatory cycles.

  3. Boolean models of biosurfactants production in Pseudomonas fluorescens.

    Directory of Open Access Journals (Sweden)

    Adrien Richard

    Full Text Available Cyclolipopeptides (CLPs are biosurfactants produced by numerous Pseudomonas fluorescens strains. CLP production is known to be regulated at least by the GacA/GacS two-component pathway, but the full regulatory network is yet largely unknown. In the clinical strain MFN1032, CLP production is abolished by a mutation in the phospholipase C gene (plcC and not restored by plcC complementation. Their production is also subject to phenotypic variation. We used a modelling approach with Boolean networks, which takes into account all these observations concerning CLP production without any assumption on the topology of the considered network. Intensive computation yielded numerous models that satisfy these properties. All models minimizing the number of components point to a bistability in CLP production, which requires the presence of a yet unknown key self-inducible regulator. Furthermore, all suggest that a set of yet unexplained phenotypic variants might also be due to this epigenetic switch. The simplest of these Boolean networks was used to propose a biological regulatory network for CLP production. This modelling approach has allowed a possible regulation to be unravelled and an unusual behaviour of CLP production in P. fluorescens to be explained.

  4. Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games

    Directory of Open Access Journals (Sweden)

    Gijs Kant

    2012-10-01

    Full Text Available Parameterised Boolean Equation Systems (PBESs are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal mu-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then solving the game. Practical game solvers exist, but the instantiation step is the bottleneck. We enhance the instantiation in two steps. First, we transform the PBES to a Parameterised Parity Game (PPG, a PBES with each equation either conjunctive or disjunctive. Then we use LTSmin, that offers transition caching, efficient storage of states and both distributed and symbolic state space generation, for generating the game graph. To that end we define a language module for LTSmin, consisting of an encoding of variables with parameters into state vectors, a grouped transition relation and a dependency matrix to indicate the dependencies between parts of the state vector and transition groups. Benchmarks on some large case studies, show that the method speeds up the instantiation significantly and decreases memory usage drastically.

  5. Comparison of Boolean analysis and standard phylogenetic methods using artificially evolved and natural mt-tRNA sequences from great apes.

    Science.gov (United States)

    Ari, Eszter; Ittzés, Péter; Podani, János; Thi, Quynh Chi Le; Jakó, Eena

    2012-04-01

    Boolean analysis (or BOOL-AN; Jakó et al., 2009. BOOL-AN: A method for comparative sequence analysis and phylogenetic reconstruction. Mol. Phylogenet. Evol. 52, 887-97.), a recently developed method for sequence comparison uses the Iterative Canonical Form of Boolean functions. It considers sequence information in a way entirely different from standard phylogenetic methods (i.e. Maximum Parsimony, Maximum-Likelihood, Neighbor-Joining, and Bayesian analysis). The performance and reliability of Boolean analysis were tested and compared with the standard phylogenetic methods, using artificially evolved - simulated - nucleotide sequences and the 22 mitochondrial tRNA genes of the great apes. At the outset, we assumed that the phylogeny of Hominidae is generally well established, and the guide tree of artificial sequence evolution can also be used as a benchmark. These offer a possibility to compare and test the performance of different phylogenetic methods. Trees were reconstructed by each method from 2500 simulated sequences and 22 mitochondrial tRNA sequences. We also introduced a special re-sampling method for Boolean analysis on permuted sequence sites, the P-BOOL-AN procedure. Considering the reliability values (branch support values of consensus trees and Robinson-Foulds distances) we used for simulated sequence trees produced by different phylogenetic methods, BOOL-AN appeared as the most reliable method. Although the mitochondrial tRNA sequences of great apes are relatively short (59-75 bases long) and the ratio of their constant characters is about 75%, BOOL-AN, P-BOOL-AN and the Bayesian approach produced the same tree-topology as the established phylogeny, while the outcomes of Maximum Parsimony, Maximum-Likelihood and Neighbor-Joining methods were equivocal. We conclude that Boolean analysis is a promising alternative to existing methods of sequence comparison for phylogenetic reconstruction and congruence analysis. Copyright © 2012 Elsevier Inc. All

  6. Griffin: A Tool for Symbolic Inference of Synchronous Boolean Molecular Networks

    Science.gov (United States)

    Muñoz, Stalin; Carrillo, Miguel; Azpeitia, Eugenio; Rosenblueth, David A.

    2018-01-01

    Boolean networks are important models of biochemical systems, located at the high end of the abstraction spectrum. A number of Boolean gene networks have been inferred following essentially the same method. Such a method first considers experimental data for a typically underdetermined “regulation” graph. Next, Boolean networks are inferred by using biological constraints to narrow the search space, such as a desired set of (fixed-point or cyclic) attractors. We describe Griffin, a computer tool enhancing this method. Griffin incorporates a number of well-established algorithms, such as Dubrova and Teslenko's algorithm for finding attractors in synchronous Boolean networks. In addition, a formal definition of regulation allows Griffin to employ “symbolic” techniques, able to represent both large sets of network states and Boolean constraints. We observe that when the set of attractors is required to be an exact set, prohibiting additional attractors, a naive Boolean coding of this constraint may be unfeasible. Such cases may be intractable even with symbolic methods, as the number of Boolean constraints may be astronomically large. To overcome this problem, we employ an Artificial Intelligence technique known as “clause learning” considerably increasing Griffin's scalability. Without clause learning only toy examples prohibiting additional attractors are solvable: only one out of seven queries reported here is answered. With clause learning, by contrast, all seven queries are answered. We illustrate Griffin with three case studies drawn from the Arabidopsis thaliana literature. Griffin is available at: http://turing.iimas.unam.mx/griffin. PMID:29559993

  7. Boolean modeling in systems biology: an overview of methodology and applications

    International Nuclear Information System (INIS)

    Wang, Rui-Sheng; Albert, Réka; Saadatpour, Assieh

    2012-01-01

    Mathematical modeling of biological processes provides deep insights into complex cellular systems. While quantitative and continuous models such as differential equations have been widely used, their use is obstructed in systems wherein the knowledge of mechanistic details and kinetic parameters is scarce. On the other hand, a wealth of molecular level qualitative data on individual components and interactions can be obtained from the experimental literature and high-throughput technologies, making qualitative approaches such as Boolean network modeling extremely useful. In this paper, we build on our research to provide a methodology overview of Boolean modeling in systems biology, including Boolean dynamic modeling of cellular networks, attractor analysis of Boolean dynamic models, as well as inferring biological regulatory mechanisms from high-throughput data using Boolean models. We finally demonstrate how Boolean models can be applied to perform the structural analysis of cellular networks. This overview aims to acquaint life science researchers with the basic steps of Boolean modeling and its applications in several areas of systems biology. (paper)

  8. Identification of Boolean Networks Using Premined Network Topology Information.

    Science.gov (United States)

    Zhang, Xiaohua; Han, Huaxiang; Zhang, Weidong

    2017-02-01

    This brief aims to reduce the data requirement for the identification of Boolean networks (BNs) by using the premined network topology information. First, a matching table is created and used for sifting the true from the false dependences among the nodes in the BNs. Then, a dynamic extension to matching table is developed to enable the dynamic locating of matching pairs to start as soon as possible. Next, based on the pseudocommutative property of the semitensor product, a position-transform mining is carried out to further improve data utilization. Combining the above, the topology of the BNs can be premined for the subsequent identification. Examples are given to illustrate the efficiency of reducing the data requirement. Some excellent features, such as the online and parallel processing ability, are also demonstrated.

  9. ZKBoo: Faster Zero-Knowledge for Boolean Circuits

    DEFF Research Database (Denmark)

    Giacomelli, Irene; Madsen, Jesper; Orlandi, Claudio

    2016-01-01

    variants of IKOS, which highlights their pros and cons for practically rele- vant soundness parameters; ◦ A generalization and simplification of their approach, which leads to faster Σ-protocols (that can be made non-interactive using the Fiat-Shamir heuristic) for state- ments of the form “I know x...... such that y = φ (x)” (where φ is a circuit and y a public value); ◦ A case study, where we provide explicit protocols, implementations and benchmarking of zero-knowledge protocols for the SHA-1 and SHA-256 circuits.......In this paper we describe ZKBoo, a proposal for practically efficient zero-knowledge arguments especially tailored for Boolean circuits and report on a proof-of- concept implementation. As an highlight, we can generate (resp. verify) a non-interactive proof for the SHA-1 circuit in approximately 13...

  10. Algebraic characteristics and satisfiability threshold of random Boolean equations

    Science.gov (United States)

    Guo, Binghui; Wei, Wei; Sun, Yifan; Zheng, Zhiming

    2010-03-01

    The satisfiability of a class of random Boolean equations named massive algebraic system septated to linear and nonlinear subproblems is studied in this paper. On one hand, the correlation between the magnetization of generators and the clustering of solutions of the linear subproblem is investigated by analyzing the Gaussian elimination process. On the other hand, the characteristics of maximal elements of solutions of the nonlinear subproblem are studied by introducing the partial order among solutions. Based on the algebraic characteristics of these two subproblems, the upper and lower bounds of satisfiability threshold of massive algebraic system are obtained by unit-clause propagation and leaf-removal process, and coincide as the ratio of nonlinear equations q>0.739 in which analytical values of the satisfiability threshold can be derived. Furthermore, a complete algorithm with heuristic decimation is proposed to observe the approximation of the satisfiability threshold, which performs more efficiently than the classical ones.

  11. Boolean Algebra Application in Analysis of Flight Accidents

    Directory of Open Access Journals (Sweden)

    Casandra Venera BALAN

    2015-12-01

    Full Text Available Fault tree analysis is a deductive approach for resolving an undesired event into its causes, identifying the causes of a failure and providing a framework for a qualitative and quantitative evaluation of the top event. An alternative approach to fault tree analysis methods calculus goes to logical expressions and it is based on a graphical representation of the data structure for a logic - based binary decision diagram representation. In this analysis, such sites will be reduced to a minimal size and arranged in the sense that the variables appear in the same order in each path. An event can be defined as a statement that can be true or false. Therefore, Boolean algebra rules allow restructuring of a Fault Tree into one equivalent to it, but simpler.

  12. Logical Attractors: a Boolean Approach to the Dynamics of Psychosis

    Science.gov (United States)

    Kupper, Z.; Hoffmann, H.

    A Boolean modeling approach to attractors in the dynamics of psychosis is presented: Kinetic Logic, originating from R. Thomas, describes systems on an intermediate level between a purely verbal, qualitative description and a description using nonlinear differential equations. With this method we may model impact, feedback and temporal evolution, as well as analyze the resulting attractors. In our previous research the method has been applied to general and more specific questions in the dynamics of psychotic disorders. In this paper a model is introduced that describes different dynamical patterns of chronic psychosis in the context of vocational rehabilitation. It also shows to be useful in formulating and exploring possible treatment strategies. Finally, some of the limitations and benefits of Kinetic Logic as a modeling tool for psychology and psychiatry are discussed.

  13. Boolean and advanced searching for EDGAR data on www.sec.gov

    Data.gov (United States)

    Securities and Exchange Commission — This search allows users to enter complex boolean queries to access all but the most recent day's EDGAR filings on www.sec.gov. Filings are from 1994 to present.

  14. Sensitivity analysis of efficient solution in vector MINMAX boolean programming problem

    Directory of Open Access Journals (Sweden)

    Vladimir A. Emelichev

    2002-11-01

    Full Text Available We consider a multiple criterion Boolean programming problem with MINMAX partial criteria. The extreme level of independent perturbations of partial criteria parameters such that efficient (Pareto optimal solution preserves optimality was obtained.

  15. A SAT-based algorithm for finding attractors in synchronous Boolean networks.

    Science.gov (United States)

    Dubrova, Elena; Teslenko, Maxim

    2011-01-01

    This paper addresses the problem of finding attractors in synchronous Boolean networks. The existing Boolean decision diagram-based algorithms have limited capacity due to the excessive memory requirements of decision diagrams. The simulation-based algorithms can be applied to larger networks, however, they are incomplete. We present an algorithm, which uses a SAT-based bounded model checking to find all attractors in a Boolean network. The efficiency of the presented algorithm is evaluated by analyzing seven networks models of real biological processes, as well as 150,000 randomly generated Boolean networks of sizes between 100 and 7,000. The results show that our approach has a potential to handle an order of magnitude larger models than currently possible.

  16. Constructivizability of the Boolean algebra B(ω) with a distinguished automorphism

    Czech Academy of Sciences Publication Activity Database

    Bazhenov, N. A.; Tukhbatullina, Regina

    2012-01-01

    Roč. 51, č. 5 (2012), s. 384-403 ISSN 0002-5232 Institutional support: PRVOUK-P23 Keywords : Boolean algebra * constructivizability * degree spectra of structures Subject RIV: AH - Economics Impact factor: 0.493, year: 2012

  17. A novel generalized design methodology and realization of Boolean operations using DNA.

    Science.gov (United States)

    Zoraida, B S E; Arock, Michael; Ronald, B S M; Ponalagusamy, R

    2009-09-01

    The biological deoxyribonucleic acid (DNA) strand has been increasingly seen as a promising computing unit. A new algorithm is formulated in this paper to design any DNA Boolean operator with molecular beacons (MBs) as its input. Boolean operators realized using the proposed design methodology is presented. The developed operators adopt a uniform representation for logical 0 and 1 for any Boolean operator. The Boolean operators designed in this work employ only a hybridization operation at each stage. Further, this paper for the first time brings out the realization of a binary adder and subtractor using molecular beacons. Simulation results of the DNA-based binary adder and subtractor are given to validate the design.

  18. Genomics and medicine: an anticipation. From Boolean Mendelian genetics to multifactorial molecular medicine.

    Science.gov (United States)

    Kaplan, J C; Junien, C

    2000-12-01

    The major impact of the completion of the human genome sequence will be the understanding of diseases, with deduced therapy. In the field of genetic disorders, we will complete the catalogue of monogenic diseases, also called Mendelian diseases because they obey the Boolean logic of Mendel's laws. The major challenge now is to decipher the polygenic and multifactorial etiology of common diseases, such as cancer, cardio-vascular, nutritional, allergic, auto-immune and degenerative diseases. In fact, every gene, when mutated, is a potential disease gene, and we end up with the new concept of 'reverse medicine'; i.e., deriving new diseases or pathogenic pathways from the knowledge of the structure and function of every gene. By going from sequence to function (functional genomics and proteomics) we will gain insight into basic mechanisms of major functions such as cell proliferation, differentiation and development, which are perturbed in many pathological processes. By learning the meaning of some non-coding and of regulatory sequences our understanding will gain in complexity, generating a molecular and supramolecular integrated physiology, helping to build a molecular patho-physiology of the different syndromes. Besides those cognitive advances, there are also other issues at stake, such as: progress in diagnostic and prediction (predictive medicine); progress in therapy (pharmacogenomics and gene-based therapy); ethical issues; impact on business.

  19. An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks

    Science.gov (United States)

    Cabessa, Jérémie; Villa, Alessandro E. P.

    2014-01-01

    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866

  20. Boolean network model of the Pseudomonas aeruginosa quorum sensing circuits.

    Science.gov (United States)

    Dallidis, Stylianos E; Karafyllidis, Ioannis G

    2014-09-01

    To coordinate their behavior and virulence and to synchronize attacks against their hosts, bacteria communicate by continuously producing signaling molecules (called autoinducers) and continuously monitoring the concentration of these molecules. This communication is controlled by biological circuits called quorum sensing (QS) circuits. Recently QS circuits and have been recognized as an alternative target for controlling bacterial virulence and infections without the use of antibiotics. Pseudomonas aeruginosa is a Gram-negative bacterium that infects insects, plants, animals and humans and can cause acute infections. This bacterium has three interconnected QS circuits that form a very complex and versatile QS system, the operation of which is still under investigation. Here we use Boolean networks to model the complete QS system of Pseudomonas aeruginosa and we simulate and analyze its operation in both synchronous and asynchronous modes. The state space of the QS system is constructed and it turned out to be very large, hierarchical, modular and scale-free. Furthermore, we developed a simulation tool that can simulate gene knock-outs and study their effect on the regulons controlled by the three QS circuits. The model and tools we developed will give to life scientists a deeper insight to this complex QS system.

  1. INCLUSION RATIO BASED ESTIMATOR FOR THE MEAN LENGTH OF THE BOOLEAN LINE SEGMENT MODEL WITH AN APPLICATION TO NANOCRYSTALLINE CELLULOSE

    Directory of Open Access Journals (Sweden)

    Mikko Niilo-Rämä

    2014-06-01

    Full Text Available A novel estimator for estimating the mean length of fibres is proposed for censored data observed in square shaped windows. Instead of observing the fibre lengths, we observe the ratio between the intensity estimates of minus-sampling and plus-sampling. It is well-known that both intensity estimators are biased. In the current work, we derive the ratio of these biases as a function of the mean length assuming a Boolean line segment model with exponentially distributed lengths and uniformly distributed directions. Having the observed ratio of the intensity estimators, the inverse of the derived function is suggested as a new estimator for the mean length. For this estimator, an approximation of its variance is derived. The accuracies of the approximations are evaluated by means of simulation experiments. The novel method is compared to other methods and applied to real-world industrial data from nanocellulose crystalline.

  2. Structures and Boolean Dynamics in Gene Regulatory Networks

    Science.gov (United States)

    Szedlak, Anthony

    This dissertation discusses the topological and dynamical properties of GRNs in cancer, and is divided into four main chapters. First, the basic tools of modern complex network theory are introduced. These traditional tools as well as those developed by myself (set efficiency, interset efficiency, and nested communities) are crucial for understanding the intricate topological properties of GRNs, and later chapters recall these concepts. Second, the biology of gene regulation is discussed, and a method for disease-specific GRN reconstruction developed by our collaboration is presented. This complements the traditional exhaustive experimental approach of building GRNs edge-by-edge by quickly inferring the existence of as of yet undiscovered edges using correlations across sets of gene expression data. This method also provides insight into the distribution of common mutations across GRNs. Third, I demonstrate that the structures present in these reconstructed networks are strongly related to the evolutionary histories of their constituent genes. Investigation of how the forces of evolution shaped the topology of GRNs in multicellular organisms by growing outward from a core of ancient, conserved genes can shed light upon the ''reverse evolution'' of normal cells into unicellular-like cancer states. Next, I simulate the dynamics of the GRNs of cancer cells using the Hopfield model, an infinite range spin-glass model designed with the ability to encode Boolean data as attractor states. This attractor-driven approach facilitates the integration of gene expression data into predictive mathematical models. Perturbations representing therapeutic interventions are applied to sets of genes, and the resulting deviations from their attractor states are recorded, suggesting new potential drug targets for experimentation. Finally, I extend the Hopfield model to modular networks, cyclic attractors, and complex attractors, and apply these concepts to simulations of the cell cycle

  3. Construction of a fuzzy and Boolean logic gates based on DNA.

    Science.gov (United States)

    Zadegan, Reza M; Jepsen, Mette D E; Hildebrandt, Lasse L; Birkedal, Victoria; Kjems, Jørgen

    2015-04-17

    Logic gates are devices that can perform logical operations by transforming a set of inputs into a predictable single detectable output. The hybridization properties, structure, and function of nucleic acids can be used to make DNA-based logic gates. These devices are important modules in molecular computing and biosensing. The ideal logic gate system should provide a wide selection of logical operations, and be integrable in multiple copies into more complex structures. Here we show the successful construction of a small DNA-based logic gate complex that produces fluorescent outputs corresponding to the operation of the six Boolean logic gates AND, NAND, OR, NOR, XOR, and XNOR. The logic gate complex is shown to work also when implemented in a three-dimensional DNA origami box structure, where it controlled the position of the lid in a closed or open position. Implementation of multiple microRNA sensitive DNA locks on one DNA origami box structure enabled fuzzy logical operation that allows biosensing of complex molecular signals. Integrating logic gates with DNA origami systems opens a vast avenue to applications in the fields of nanomedicine for diagnostics and therapeutics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The spruce budworm and forest: a qualitative comparison of ODE and Boolean models

    Directory of Open Access Journals (Sweden)

    Raina Robeva

    2016-01-01

    Full Text Available Boolean and polynomial models of biological systems have emerged recently as viable companions to differential equations models. It is not immediately clear however whether such models are capable of capturing the multi-stable behaviour of certain biological systems: this behaviour is often sensitive to changes in the values of the model parameters, while Boolean and polynomial models are qualitative in nature. In the past few years, Boolean models of gene regulatory systems have been shown to capture multi-stability at the molecular level, confirming that such models can be used to obtain information about the system’s qualitative dynamics when precise information regarding its parameters may not be available. In this paper, we examine Boolean approximations of a classical ODE model of budworm outbreaks in a forest and show that these models exhibit a qualitative behaviour consistent with that derived from the ODE models. In particular, we demonstrate that these models can capture the bistable nature of insect population outbreaks, thus showing that Boolean models can be successfully utilized beyond the molecular level.

  5. TESTING HISTOLOGICAL IMAGES OF MAMMARY TISSUES ON COMPATIBILITY WITH THE BOOLEAN MODEL OF RANDOM SETS

    Directory of Open Access Journals (Sweden)

    Tomáš Mrkvička

    2011-03-01

    Full Text Available Methods for testing the Boolean model assumption from binary images are briefly reviewed. Two hundred binary images of mammary cancer tissue and 200 images of mastopathic tissue were tested individually on the Boolean model assumption. In a previous paper, it had been found that a Monte Carlo method based on the approximation of the envelopes by a multi-normal distribution with the normalized intrinsic volume densities of parallel sets as a summary statistics had the highest power for this purpose. Hence, this method was used here as its first application to real biomedical data. It was found that mastopathic tissue deviates from the Boolean model significantly more strongly than mammary cancer tissue does.

  6. Polynomial-Time Algorithm for Controllability Test of a Class of Boolean Biological Networks

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2010-01-01

    Full Text Available In recent years, Boolean-network-model-based approaches to dynamical analysis of complex biological networks such as gene regulatory networks have been extensively studied. One of the fundamental problems in control theory of such networks is the problem of determining whether a given substance quantity can be arbitrarily controlled by operating the other substance quantities, which we call the controllability problem. This paper proposes a polynomial-time algorithm for solving this problem. Although the algorithm is based on a sufficient condition for controllability, it is easily computable for a wider class of large-scale biological networks compared with the existing approaches. A key to this success in our approach is to give up computing Boolean operations in a rigorous way and to exploit an adjacency matrix of a directed graph induced by a Boolean network. By applying the proposed approach to a neurotransmitter signaling pathway, it is shown that it is effective.

  7. Bent functions results and applications to cryptography

    CERN Document Server

    Tokareva, Natalia

    2015-01-01

    Bent Functions: Results and Applications to Cryptography offers a unique survey of the objects of discrete mathematics known as Boolean bent functions. As these maximal, nonlinear Boolean functions and their generalizations have many theoretical and practical applications in combinatorics, coding theory, and cryptography, the text provides a detailed survey of their main results, presenting a systematic overview of their generalizations and applications, and considering open problems in classification and systematization of bent functions. The text is appropriate for novices and advanced

  8. Ordinary differential equations and Boolean networks in application to modelling of 6-mercaptopurine metabolism.

    Science.gov (United States)

    Lavrova, Anastasia I; Postnikov, Eugene B; Zyubin, Andrey Yu; Babak, Svetlana V

    2017-04-01

    We consider two approaches to modelling the cell metabolism of 6-mercaptopurine, one of the important chemotherapy drugs used for treating acute lymphocytic leukaemia: kinetic ordinary differential equations, and Boolean networks supplied with one controlling node, which takes continual values. We analyse their interplay with respect to taking into account ATP concentration as a key parameter of switching between different pathways. It is shown that the Boolean networks, which allow avoiding the complexity of general kinetic modelling, preserve the possibility of reproducing the principal switching mechanism.

  9. A Boolean Consistent Fuzzy Inference System for Diagnosing Diseases and Its Application for Determining Peritonitis Likelihood

    Directory of Open Access Journals (Sweden)

    Ivana Dragović

    2015-01-01

    Full Text Available Fuzzy inference systems (FIS enable automated assessment and reasoning in a logically consistent manner akin to the way in which humans reason. However, since no conventional fuzzy set theory is in the Boolean frame, it is proposed that Boolean consistent fuzzy logic should be used in the evaluation of rules. The main distinction of this approach is that it requires the execution of a set of structural transformations before the actual values can be introduced, which can, in certain cases, lead to different results. While a Boolean consistent FIS could be used for establishing the diagnostic criteria for any given disease, in this paper it is applied for determining the likelihood of peritonitis, as the leading complication of peritoneal dialysis (PD. Given that patients could be located far away from healthcare institutions (as peritoneal dialysis is a form of home dialysis the proposed Boolean consistent FIS would enable patients to easily estimate the likelihood of them having peritonitis (where a high likelihood would suggest that prompt treatment is indicated, when medical experts are not close at hand.

  10. Complete ccc Boolean algebras, the order sequential topology, and a problem of von Neumann

    Czech Academy of Sciences Publication Activity Database

    Balcar, Bohuslav; Jech, Thomas; Pazák, Tomáš

    2005-01-01

    Roč. 37, č. 6 (2005), s. 885-898 ISSN 0024-6093 Institutional research plan: CEZ:AV0Z10750506; CEZ:AV0Z10190503 Keywords : Boolean algebras * Maharam submeasure * weak distributivity * independent reals Subject RIV: BA - General Mathematics Impact factor: 0.477, year: 2005

  11. Toxicological Tipping Points: Learning Boolean Networks from High-Content Imaging Data. (BOSC meeting)

    Science.gov (United States)

    The objective of this work is to elucidate biological networks underlying cellular tipping points using time-course data. We discretized the high-content imaging (HCI) data and inferred Boolean networks (BNs) that could accurately predict dynamic cellular trajectories. We found t...

  12. Characterization of Boolean Algebras in Terms of Certain States of Jauch-Piron Type

    Science.gov (United States)

    Matoušek, Milan; Pták, Pavel

    2015-12-01

    Suppose that L is an orthomodular lattice (a quantum logic). We show that L is Boolean exactly if L possesses a strongly unital set of weakly Jauch-Piron states, or if L possesses a unital set of weakly positive states. We also discuss some general properties of Jauch-Piron-like states.

  13. Yes/No/Maybe: A Boolean attempt at feedback | Louw | Journal for ...

    African Journals Online (AJOL)

    This paper describes an experiment in which Boolean feedback (a kind of checklist) was used to provide feedback on the paragraph structures of first year students in an Academic Literacy course. We begin by introducing the major problems with feedback on L2 writing and establishing why a focus on paragraph structures ...

  14. The Concept of the "Imploded Boolean Search": A Case Study with Undergraduate Chemistry Students

    Science.gov (United States)

    Tomaszewski, Robert

    2016-01-01

    Critical thinking and analytical problem-solving skills in research involves using different search strategies. A proposed concept for an "Imploded Boolean Search" combines three unique identifiable field types to perform a search: keyword(s), numerical value(s), and a chemical structure or reaction. The object of this type of search is…

  15. Computable categoricity of the Boolean algebra B(omega) with a distinguished automorphism

    Czech Academy of Sciences Publication Activity Database

    Bazhenov, N. A.; Tukhbatullina, Regina

    2013-01-01

    Roč. 52, č. 2 (2013), s. 89-97 ISSN 0002-5232 Institutional support: PRVOUK-P23 Keywords : Boolean algebra with distinguished automorphism * computable categoricity * categoricity spectrum Subject RIV: BA - General Mathematics Impact factor: 0.488, year: 2013

  16. Comparison of Detection and Classification Algorithms Using Boolean and Fuzzy Techniques

    Directory of Open Access Journals (Sweden)

    Rahul Dixit

    2012-01-01

    Full Text Available Modern military ranging, tracking, and classification systems are capable of generating large quantities of data. Conventional “brute-force” computational techniques, even with Moore’s law for processors, present a prohibitive computational challenge, and often, the system either fails to “lock onto” a target of interest within the available duty cycle, or the data stream is simply discarded because the system runs out of processing power or time. In searching for high-fidelity convergence, researchers have experimented with various reduction techniques, often using logic diagrams to make inferences from related signal data. Conventional Boolean and fuzzy logic systems generate a very large number of rules, which often are difficult to handle due to limitations in the processors. Published research has shown that reasonable approximations of the target are preferred over incomplete computations. This paper gives a figure of merit for comparing various logic analysis methods and presents results for a hypothetical target classification scenario. Novel multiquantization Boolean approaches also reduce the complexity of these multivariate analyses, making it possible to better use the available data to approximate target classification. This paper shows how such preprocessing can reasonably preserve result confidence and compares the results between Boolean, multi-quantization Boolean, and fuzzy techniques.

  17. Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory

    International Nuclear Information System (INIS)

    Li, Y.; Zhong, Y. P.; Deng, Y. F.; Zhou, Y. X.; Xu, L.; Miao, X. S.

    2013-01-01

    Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices

  18. A GA-P algorithm to automatically formulate extended Boolean queries for a fuzzy information retrieval system

    OpenAIRE

    Cordón García, Oscar; Moya Anegón, Félix de; Zarco Fernández, Carmen

    2000-01-01

    [ES] Although the fuzzy retrieval model constitutes a powerful extension of the boolean one, being able to deal with the imprecision and subjectivity existing in the Information Retrieval process, users are not usually able to express their query requirements in the form of an extended boolean query including weights. To solve this problem, different tools to assist the user in the query formulation have been proposed. In this paper, the genetic algorithm-programming technique is considered t...

  19. Complete CCC Boolean Algebras, the order Sequential Topology, and a Problem of von Neumann

    Czech Academy of Sciences Publication Activity Database

    Balcar, Bohuslav; Jech, Thomas; Pazák, Tomáš

    2005-01-01

    Roč. 37, č. 6 (2005), s. 885-898 ISSN 0024-6093 R&D Projects: GA ČR(CZ) GA201/02/0857; GA ČR(CZ) GA201/03/0933 Institutional research plan: CEZ:AV0Z10190503 Keywords : Boolean algebra * Maharam submeasure * weak distributivity Subject RIV: BA - General Mathematics Impact factor: 0.477, year: 2005

  20. Recurrent Neural Network Based Boolean Factor Analysis and its Application to Word Clustering

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.

    2009-01-01

    Roč. 20, č. 7 (2009), s. 1073-1086 ISSN 1045-9227 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.889, year: 2009

  1. Comparison of Seven Methods for Boolean Factor Analysis and Their Evaluation by Information Gain

    Czech Academy of Sciences Publication Activity Database

    Frolov, A.; Húsek, Dušan; Polyakov, P.Y.

    2016-01-01

    Roč. 27, č. 3 (2016), s. 538-550 ISSN 2162-237X R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:67985807 Keywords : associative memory * bars problem (BP) * Boolean factor analysis (BFA) * data mining * dimension reduction * Hebbian learning rule * information gain * likelihood maximization (LM) * neural network application * recurrent neural network * statistics Subject RIV: IN - Informatics, Computer Science Impact factor: 6.108, year: 2016

  2. Completely positive matrices over Boolean algebras and their CP-rank

    Directory of Open Access Journals (Sweden)

    Mohindru Preeti

    2015-04-01

    Full Text Available Drew, Johnson and Loewy conjectured that for n ≥ 4, the CP-rank of every n × n completely positive real matrix is at most [n2/4]. In this paper, we prove this conjecture for n × n completely positive matrices over Boolean algebras (finite or infinite. In addition,we formulate various CP-rank inequalities of completely positive matrices over special semirings using semiring homomorphisms.

  3. Using Common Table Expressions to Build a Scalable Boolean Query Generator for Clinical Data Warehouses

    Science.gov (United States)

    Harris, Daniel R.; Henderson, Darren W.; Kavuluru, Ramakanth; Stromberg, Arnold J.; Johnson, Todd R.

    2015-01-01

    We present a custom, Boolean query generator utilizing common-table expressions (CTEs) that is capable of scaling with big datasets. The generator maps user-defined Boolean queries, such as those interactively created in clinical-research and general-purpose healthcare tools, into SQL. We demonstrate the effectiveness of this generator by integrating our work into the Informatics for Integrating Biology and the Bedside (i2b2) query tool and show that it is capable of scaling. Our custom generator replaces and outperforms the default query generator found within the Clinical Research Chart (CRC) cell of i2b2. In our experiments, sixteen different types of i2b2 queries were identified by varying four constraints: date, frequency, exclusion criteria, and whether selected concepts occurred in the same encounter. We generated non-trivial, random Boolean queries based on these 16 types; the corresponding SQL queries produced by both generators were compared by execution times. The CTE-based solution significantly outperformed the default query generator and provided a much more consistent response time across all query types (M=2.03, SD=6.64 vs. M=75.82, SD=238.88 seconds). Without costly hardware upgrades, we provide a scalable solution based on CTEs with very promising empirical results centered on performance gains. The evaluation methodology used for this provides a means of profiling clinical data warehouse performance. PMID:25192572

  4. Reverse engineering Boolean networks: from Bernoulli mixture models to rule based systems.

    Directory of Open Access Journals (Sweden)

    Mehreen Saeed

    Full Text Available A Boolean network is a graphical model for representing and analyzing the behavior of gene regulatory networks (GRN. In this context, the accurate and efficient reconstruction of a Boolean network is essential for understanding the gene regulation mechanism and the complex relations that exist therein. In this paper we introduce an elegant and efficient algorithm for the reverse engineering of Boolean networks from a time series of multivariate binary data corresponding to gene expression data. We call our method ReBMM, i.e., reverse engineering based on Bernoulli mixture models. The time complexity of most of the existing reverse engineering techniques is quite high and depends upon the indegree of a node in the network. Due to the high complexity of these methods, they can only be applied to sparsely connected networks of small sizes. ReBMM has a time complexity factor, which is independent of the indegree of a node and is quadratic in the number of nodes in the network, a big improvement over other techniques and yet there is little or no compromise in accuracy. We have tested ReBMM on a number of artificial datasets along with simulated data derived from a plant signaling network. We also used this method to reconstruct a network from real experimental observations of microarray data of the yeast cell cycle. Our method provides a natural framework for generating rules from a probabilistic model. It is simple, intuitive and illustrates excellent empirical results.

  5. Integer programming-based method for designing synthetic metabolic networks by Minimum Reaction Insertion in a Boolean model.

    Science.gov (United States)

    Lu, Wei; Tamura, Takeyuki; Song, Jiangning; Akutsu, Tatsuya

    2014-01-01

    In this paper, we consider the Minimum Reaction Insertion (MRI) problem for finding the minimum number of additional reactions from a reference metabolic network to a host metabolic network so that a target compound becomes producible in the revised host metabolic network in a Boolean model. Although a similar problem for larger networks is solvable in a flux balance analysis (FBA)-based model, the solution of the FBA-based model tends to include more reactions than that of the Boolean model. However, solving MRI using the Boolean model is computationally more expensive than using the FBA-based model since the Boolean model needs more integer variables. Therefore, in this study, to solve MRI for larger networks in the Boolean model, we have developed an efficient Integer Programming formalization method in which the number of integer variables is reduced by the notion of feedback vertex set and minimal valid assignment. As a result of computer experiments conducted using the data of metabolic networks of E. coli and reference networks downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we have found that the developed method can appropriately solve MRI in the Boolean model and is applicable to large scale-networks for which an exhaustive search does not work. We have also compared the developed method with the existing connectivity-based methods and FBA-based methods, and show the difference between the solutions of our method and the existing methods. A theoretical analysis of MRI is also conducted, and the NP-completeness of MRI is proved in the Boolean model. Our developed software is available at "http://sunflower.kuicr.kyoto-u.ac.jp/~rogi/minRect/minRect.html."

  6. Adaptive Eager Boolean Encoding for Arithmetic Reasoning in Verification

    Science.gov (United States)

    2005-05-01

    satisfy E 0 , the following equality also holds: Y 2 (º 2 ( 0 ² (4.8) Note that for some # , tk , and $ ,up , if # $ , then we must have ô...equality with uninterpreted functions. In Correct Hardware Design and Veri- fication Methods (CHARME ’99), pages 37–53, September 1999. [159] Girish

  7. Bounds on the Average Sensitivity of Nested Canalizing Functions

    OpenAIRE

    Klotz, Johannes Georg; Heckel, Reinhard; Schober, Steffen

    2012-01-01

    Nested canalizing Boolean (NCF) functions play an important role in biological motivated regulative networks and in signal processing, in particular describing stack filters. It has been conjectured that NCFs have a stabilizing effect on the network dynamics. It is well known that the average sensitivity plays a central role for the stability of (random) Boolean networks. Here we provide a tight upper bound on the average sensitivity for NCFs as a function of the number of relevant input vari...

  8. NUMERICAL SIMULATION OF DIGITAL VLSI TOTAL DOSE FUNCTIONAL FAILURES

    Directory of Open Access Journals (Sweden)

    O. A. Kalashnikov

    2016-10-01

    Full Text Available The technique for numerical simulation of digital VLSI total dose failures is presented, based on fuzzy logic sets theory. It assumes transfer from boolean logic model of a VLSI with values {0,1} to fuzzy model with continuous interval [0,1], and from boolean logic functions to continuous minimax functions. The technique is realized as a calculation system and allows effective estimating of digital VLSI radiation behavior without experimental investigation.

  9. Cryptographic Properties of the Hidden Weighted Bit Function

    Science.gov (United States)

    2013-12-23

    is an inner product , for instance, ω ·x = ω1x1 +ω2x2 + · · ·+ωnxn. It is easy to see that a Boolean function f is balanced if and only if Wf (0) = 0...K. Feng, An Infinite Class of Balanced Vectorial Boolean Functions with Optimum Algebraic Immunity and Good Nonlinearity, in: IWCC 2009, In: LNCS

  10. An Efficient Steady-State Analysis Method for Large Boolean Networks with High Maximum Node Connectivity.

    Science.gov (United States)

    Hong, Changki; Hwang, Jeewon; Cho, Kwang-Hyun; Shin, Insik

    2015-01-01

    Boolean networks have been widely used to model biological processes lacking detailed kinetic information. Despite their simplicity, Boolean network dynamics can still capture some important features of biological systems such as stable cell phenotypes represented by steady states. For small models, steady states can be determined through exhaustive enumeration of all state transitions. As the number of nodes increases, however, the state space grows exponentially thus making it difficult to find steady states. Over the last several decades, many studies have addressed how to handle such a state space explosion. Recently, increasing attention has been paid to a satisfiability solving algorithm due to its potential scalability to handle large networks. Meanwhile, there still lies a problem in the case of large models with high maximum node connectivity where the satisfiability solving algorithm is known to be computationally intractable. To address the problem, this paper presents a new partitioning-based method that breaks down a given network into smaller subnetworks. Steady states of each subnetworks are identified by independently applying the satisfiability solving algorithm. Then, they are combined to construct the steady states of the overall network. To efficiently apply the satisfiability solving algorithm to each subnetwork, it is crucial to find the best partition of the network. In this paper, we propose a method that divides each subnetwork to be smallest in size and lowest in maximum node connectivity. This minimizes the total cost of finding all steady states in entire subnetworks. The proposed algorithm is compared with others for steady states identification through a number of simulations on both published small models and randomly generated large models with differing maximum node connectivities. The simulation results show that our method can scale up to several hundreds of nodes even for Boolean networks with high maximum node connectivity. The

  11. Variances as order parameter and complexity measure for random Boolean networks

    International Nuclear Information System (INIS)

    Luque, Bartolo; Ballesteros, Fernando J; Fernandez, Manuel

    2005-01-01

    Several order parameters have been considered to predict and characterize the transition between ordered and disordered phases in random Boolean networks, such as the Hamming distance between replicas or the stable core, which have been successfully used. In this work, we propose a natural and clear new order parameter: the temporal variance. We compute its value analytically and compare it with the results of numerical experiments. Finally, we propose a complexity measure based on the compromise between temporal and spatial variances. This new order parameter and its related complexity measure can be easily applied to other complex systems

  12. A new separation algorithm for the Boolean quadric and cut polytopes

    DEFF Research Database (Denmark)

    Sørensen, Michael Malmros; Letchford, Adam N.

    2014-01-01

    present a new algorithm, which separates over a class of valid inequalities that includes all odd bicycle wheel inequalities and (2p+1,2)(2p+1,2)-circulant inequalities. It exploits, in a non-trivial way, three known results in the literature: one on the separation of View the MathML source{0,12}-cuts......A separation algorithm is a procedure for generating cutting planes. Up to now, only a few polynomial-time separation algorithms were known for the Boolean quadric and cut polytopes. These polytopes arise in connection with zero–one quadratic programming and the max-cut problem, respectively. We...

  13. Efficient Multi-Valued Bounded Model Checking for LTL over Quasi-Boolean Algebras

    OpenAIRE

    Andrade, Jefferson O.; Kameyama, Yukiyoshi

    2012-01-01

    Multi-valued Model Checking extends classical, two-valued model checking to multi-valued logic such as Quasi-Boolean logic. The added expressivity is useful in dealing with such concepts as incompleteness and uncertainty in target systems, while it comes with the cost of time and space. Chechik and others proposed an efficient reduction from multi-valued model checking problems to two-valued ones, but to the authors' knowledge, no study was done for multi-valued bounded model checking. In thi...

  14. Assessment of Electronic Circuits Reliability Using Boolean Truth Table Modeling Method

    International Nuclear Information System (INIS)

    EI-Shanshoury, A.I.

    2011-01-01

    This paper explores the use of Boolean Truth Table modeling Method (BTTM) in the analysis of qualitative data. It is widely used in certain fields especially in the fields of electrical and electronic engineering. Our work focuses on the evaluation of power supply circuit reliability using (BTTM) which involves systematic attempts to falsify and identify hypotheses on the basis of truth tables constructed from qualitative data. Reliability parameters such as the system's failure rates for the power supply case study are estimated. All possible state combinations (operating and failed states) of the major components in the circuit were listed and their effects on overall system were studied

  15. Qubits and quantum Hamiltonian computing performances for operating a digital Boolean 1/2-adder

    Science.gov (United States)

    Dridi, Ghassen; Faizy Namarvar, Omid; Joachim, Christian

    2018-04-01

    Quantum Boolean (1 + 1) digits 1/2-adders are designed with 3 qubits for the quantum computing (Qubits) and 4 quantum states for the quantum Hamiltonian computing (QHC) approaches. Detailed analytical solutions are provided to analyse the time operation of those different 1/2-adder gates. QHC is more robust to noise than Qubits and requires about the same amount of energy for running its 1/2-adder logical operations. QHC is faster in time than Qubits but its logical output measurement takes longer.

  16. Construction of a fuzzy and all Boolean logic gates based on DNA

    DEFF Research Database (Denmark)

    M. Zadegan, Reza; Jepsen, Mette D E; Hildebrandt, Lasse

    2015-01-01

    to the operation of the six Boolean logic gates AND, NAND, OR, NOR, XOR, and XNOR. The logic gate complex is shown to work also when implemented in a three-dimensional DNA origami box structure, where it controlled the position of the lid in a closed or open position. Implementation of multiple microRNA sensitive...... DNA locks on one DNA origami box structure enabled fuzzy logical operation that allows biosensing of complex molecular signals. Integrating logic gates with DNA origami systems opens a vast avenue to applications in the fields of nanomedicine for diagnostics and therapeutics....

  17. Variances as order parameter and complexity measure for random Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Luque, Bartolo [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Ballesteros, Fernando J [Observatori Astronomic, Universitat de Valencia, Ed. Instituts d' Investigacio, Pol. La Coma s/n, E-46980 Paterna, Valencia (Spain); Fernandez, Manuel [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain)

    2005-02-04

    Several order parameters have been considered to predict and characterize the transition between ordered and disordered phases in random Boolean networks, such as the Hamming distance between replicas or the stable core, which have been successfully used. In this work, we propose a natural and clear new order parameter: the temporal variance. We compute its value analytically and compare it with the results of numerical experiments. Finally, we propose a complexity measure based on the compromise between temporal and spatial variances. This new order parameter and its related complexity measure can be easily applied to other complex systems.

  18. On a coverage process ranging from the Boolean model to the Poisson–Voronoi tessellation with applications to wireless communications

    OpenAIRE

    Baccelli, François; Błaszczyszyn, Bartłomiej

    2001-01-01

    Projet MCR; We define and analyze a random coverage process of the $d$-dimensional Euclidian space which allows one to describe a continuous spectrum that ranges from the Boolean model to the Poisson-Voronoi tessellation to the Johnson-Mehl model. Like for the Boolean model, the minimal stochastic setting consists of a Poisson point process on this Euclidian space and a sequence of real valued random variables considered as marks of this point process. In this coverage process, the cell attac...

  19. Finding optimal control policy in probabilistic Boolean Networks with hard constraints by using integer programming and dynamic programming.

    Science.gov (United States)

    Chen, Xi; Akutsu, Tatsuya; Tamura, Takeyuki; Ching, Wai-Ki

    2013-01-01

    Boolean Networks (BNs) and Probabilistic Boolean Networks (PBNs) are studied in this paper from the viewpoint of control problems. For BN CONTROL, by applying external control, we propose to derive the network to the desired state within a few time steps. For PBN CONTROL, we propose to find a control sequence such that the network will terminate in the desired state with a maximum probability. Also, we propose to minimise the maximum cost of the terminal state to which the network will enter. We also present a hardness result suggesting that PBN CONTROL is harder than BN CONTROL.

  20. Bistability and Asynchrony in a Boolean Model of the L-arabinose Operon in Escherichia coli.

    Science.gov (United States)

    Jenkins, Andy; Macauley, Matthew

    2017-08-01

    The lactose operon in Escherichia coli was the first known gene regulatory network, and it is frequently used as a prototype for new modeling paradigms. Historically, many of these modeling frameworks use differential equations. More recently, Stigler and Veliz-Cuba proposed a Boolean model that captures the bistability of the system and all of the biological steady states. In this paper, we model the well-known arabinose operon in E. coli with a Boolean network. This has several complex features not found in the lac operon, such as a protein that is both an activator and repressor, a DNA looping mechanism for gene repression, and the lack of inducer exclusion by glucose. For 11 out of 12 choices of initial conditions, we use computational algebra and Sage to verify that the state space contains a single fixed point that correctly matches the biology. The final initial condition, medium levels of arabinose and no glucose, successfully predicts the system's bistability. Finally, we compare the state space under synchronous and asynchronous update and see that the former has several artificial cycles that go away under a general asynchronous update.

  1. Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes.

    Directory of Open Access Journals (Sweden)

    Herman F Fumiã

    Full Text Available A Boolean dynamical system integrating the main signaling pathways involved in cancer is constructed based on the currently known protein-protein interaction network. This system exhibits stationary protein activation patterns--attractors--dependent on the cell's microenvironment. These dynamical attractors were determined through simulations and their stabilities against mutations were tested. In a higher hierarchical level, it was possible to group the network attractors into distinct cell phenotypes and determine driver mutations that promote phenotypic transitions. We find that driver nodes are not necessarily central in the network topology, but at least they are direct regulators of central components towards which converge or through which crosstalk distinct cancer signaling pathways. The predicted drivers are in agreement with those pointed out by diverse census of cancer genes recently performed for several human cancers. Furthermore, our results demonstrate that cell phenotypes can evolve towards full malignancy through distinct sequences of accumulated mutations. In particular, the network model supports routes of carcinogenesis known for some tumor types. Finally, the Boolean network model is employed to evaluate the outcome of molecularly targeted cancer therapies. The major find is that monotherapies were additive in their effects and that the association of targeted drugs is necessary for cancer eradication.

  2. Weights of Exact Threshold Functions

    DEFF Research Database (Denmark)

    Babai, László; Hansen, Kristoffer Arnsfelt; Podolskii, Vladimir V.

    2010-01-01

    We consider Boolean exact threshold functions defined by linear equations, and in general degree d polynomials. We give upper and lower bounds on the maximum magnitude (absolute value) of the coefficients required to represent such functions. These bounds are very close and in the linear case in ...... leave a substantial gap, a challenge for future work....

  3. On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study

    KAUST Repository

    Lima, Ricardo

    2016-06-16

    This paper addresses the solution of a cardinality Boolean quadratic programming problem using three different approaches. The first transforms the original problem into six mixed-integer linear programming (MILP) formulations. The second approach takes one of the MILP formulations and relies on the specific features of an MILP solver, namely using starting incumbents, polishing, and callbacks. The last involves the direct solution of the original problem by solvers that can accomodate the nonlinear combinatorial problem. Particular emphasis is placed on the definition of the MILP reformulations and their comparison with the other approaches. The results indicate that the data of the problem has a strong influence on the performance of the different approaches, and that there are clear-cut approaches that are better for some instances of the data. A detailed analysis of the results is made to identify the most effective approaches for specific instances of the data. © 2016 Springer Science+Business Media New York

  4. Dynamics of random Boolean networks under fully asynchronous stochastic update based on linear representation.

    Directory of Open Access Journals (Sweden)

    Chao Luo

    Full Text Available A novel algebraic approach is proposed to study dynamics of asynchronous random Boolean networks where a random number of nodes can be updated at each time step (ARBNs. In this article, the logical equations of ARBNs are converted into the discrete-time linear representation and dynamical behaviors of systems are investigated. We provide a general formula of network transition matrices of ARBNs as well as a necessary and sufficient algebraic criterion to determine whether a group of given states compose an attractor of length[Formula: see text] in ARBNs. Consequently, algorithms are achieved to find all of the attractors and basins in ARBNs. Examples are showed to demonstrate the feasibility of the proposed scheme.

  5. Super-transient scaling in time-delay autonomous Boolean network motifs

    Energy Technology Data Exchange (ETDEWEB)

    D' Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Lohmann, Johannes [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Gauthier, Daniel J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2016-09-15

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  6. The universal magnetic tunnel junction logic gates representing 16 binary Boolean logic operations

    Science.gov (United States)

    Lee, Junwoo; Suh, Dong Ik; Park, Wanjun

    2015-05-01

    The novel devices are expected to shift the paradigm of a logic operation by their own nature, replacing the conventional devices. In this study, the nature of our fabricated magnetic tunnel junction (MTJ) that responds to the two external inputs, magnetic field and voltage bias, demonstrated seven basic logic operations. The seven operations were obtained by the electric-field-assisted switching characteristics, where the surface magnetoelectric effect occurs due to a sufficiently thin free layer. The MTJ was transformed as a universal logic gate combined with three supplementary circuits: A multiplexer (MUX), a Wheatstone bridge, and a comparator. With these circuits, the universal logic gates demonstrated 16 binary Boolean logic operations in one logic stage. A possible further approach is parallel computations through a complimentary of MUX and comparator, capable of driving multiple logic gates. A reconfigurable property can also be realized when different logic operations are produced from different level of voltages applying to the same configuration of the logic gate.

  7. Ones and zeros understanding Boolean algebra digital circuits and the logic of sets

    CERN Document Server

    Gregg, John

    1998-01-01

    "Ones and Zeros explains, in lay terms, Boolean algebra, the suprisingly simple system of mathematical logic used in digital computer circuitry. Ones and Zeros follows the development of this logic system from its origins in Victorian England to its rediscovery in this century as the foundation of all modern computing machinery. Readers will learn about the interesting history of the development of symbolic logic in particular, and the often misunderstood process of mathematical invention and scientific discovery, in general. Ones and Zeros also features practical exercises with answers, real-world examples of digital circuit design, and a reading list." "Ones and Zeros will be of particular interest to software engineers who want to gain a comprehensive understanding of computer hardware." "Outstanding features include: a history of mathematical logic, an explanation of the logic of digital circuits, and hands-on exercises and examples."--Jacket.

  8. Integer programming-based method for observability of singleton attractors in Boolean networks.

    Science.gov (United States)

    Cheng, Xiaoqing; Qiu, Yushan; Hou, Wenpin; Ching, Wai-Ki

    2017-02-01

    Boolean network (BN) is a popular mathematical model for revealing the behaviour of a genetic regulatory network. Furthermore, observability, an important network feature, plays a significant role in understanding the underlying network. Several studies have been done on analysis of observability of BNs and complex networks. However, the observability of attractor cycles, which can serve as biomarker detection, has not yet been addressed in the literature. This is an important, interesting and challenging problem that deserves a detailed study. In this study, a novel problem was first proposed on attractor observability in BNs. Identification of the minimum set of consecutive nodes can be used to discriminate different attractors. Furthermore, it can serve as a biomarker for different disease types (represented as different attractor cycles). Then a novel integer programming method was developed to identify the desired set of nodes. The proposed approach is demonstrated and verified by numerical examples. The computational results further illustrates that the proposed model is effective and efficient.

  9. Order-to-chaos transition in the hardness of random Boolean satisfiability problems

    Science.gov (United States)

    Varga, Melinda; Sumi, Róbert; Toroczkai, Zoltán; Ercsey-Ravasz, Mária

    2016-05-01

    Transient chaos is a ubiquitous phenomenon characterizing the dynamics of phase-space trajectories evolving towards a steady-state attractor in physical systems as diverse as fluids, chemical reactions, and condensed matter systems. Here we show that transient chaos also appears in the dynamics of certain efficient algorithms searching for solutions of constraint satisfaction problems that include scheduling, circuit design, routing, database problems, and even Sudoku. In particular, we present a study of the emergence of hardness in Boolean satisfiability (k -SAT), a canonical class of constraint satisfaction problems, by using an analog deterministic algorithm based on a system of ordinary differential equations. Problem hardness is defined through the escape rate κ , an invariant measure of transient chaos of the dynamical system corresponding to the analog algorithm, and it expresses the rate at which the trajectory approaches a solution. We show that for a given density of constraints and fixed number of Boolean variables N , the hardness of formulas in random k -SAT ensembles has a wide variation, approximable by a lognormal distribution. We also show that when increasing the density of constraints α , hardness appears through a second-order phase transition at αχ in the random 3-SAT ensemble where dynamical trajectories become transiently chaotic. A similar behavior is found in 4-SAT as well, however, such a transition does not occur for 2-SAT. This behavior also implies a novel type of transient chaos in which the escape rate has an exponential-algebraic dependence on the critical parameter κ ˜NB |α - αχ|1-γ with 0 <γ <1 . We demonstrate that the transition is generated by the appearance of metastable basins in the solution space as the density of constraints α is increased.

  10. Recurrent-neural-network-based Boolean factor analysis and its application to word clustering.

    Science.gov (United States)

    Frolov, Alexander A; Husek, Dusan; Polyakov, Pavel Yu

    2009-07-01

    The objective of this paper is to introduce a neural-network-based algorithm for word clustering as an extension of the neural-network-based Boolean factor analysis algorithm (Frolov , 2007). It is shown that this extended algorithm supports even the more complex model of signals that are supposed to be related to textual documents. It is hypothesized that every topic in textual data is characterized by a set of words which coherently appear in documents dedicated to a given topic. The appearance of each word in a document is coded by the activity of a particular neuron. In accordance with the Hebbian learning rule implemented in the network, sets of coherently appearing words (treated as factors) create tightly connected groups of neurons, hence, revealing them as attractors of the network dynamics. The found factors are eliminated from the network memory by the Hebbian unlearning rule facilitating the search of other factors. Topics related to the found sets of words can be identified based on the words' semantics. To make the method complete, a special technique based on a Bayesian procedure has been developed for the following purposes: first, to provide a complete description of factors in terms of component probability, and second, to enhance the accuracy of classification of signals to determine whether it contains the factor. Since it is assumed that every word may possibly contribute to several topics, the proposed method might be related to the method of fuzzy clustering. In this paper, we show that the results of Boolean factor analysis and fuzzy clustering are not contradictory, but complementary. To demonstrate the capabilities of this attempt, the method is applied to two types of textual data on neural networks in two different languages. The obtained topics and corresponding words are at a good level of agreement despite the fact that identical topics in Russian and English conferences contain different sets of keywords.

  11. Computing the Algebraic Immunity of Boolean Functions on the SRC-6 Reconfigurable Computer

    Science.gov (United States)

    2012-03-01

    INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE...BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR...believing in me. I thank my mother-in- law , Denise, and her husband, Rodney, for their support during some critical times. Without the tireless efforts of

  12. APPLICATION OF THE OVERLAY WEIGHTED MODEL AND BOOLEAN LOGIC TO DETERMINE THE BEST LOCATIONS FOR ARTIFICIAL RECHARGE OF GROUNDWATER

    Directory of Open Access Journals (Sweden)

    Max Billib

    2011-12-01

    Full Text Available With population increase, lack of conventional fresh water resources and uncertainties due to climate change, there is growing interest in the arid and semi-arid areas to increase groundwater recharge with recycled water. Finding the best locations for artificial recharge of groundwater in such areas is one of the most crucial design steps to guarantee the long life and the sustainability of these projects. This study presents two ways to go about performing analysis; creating a suitability map to find out the suitability of every location on the map and another way is querying the created data sets to obtain a Boolean result of true or false map. These techniques have been applied on Sadat Industrial City which is located in a semi arid area in the western desert fringes of The Nile delta in the north west of Egypt. Thematic layers for number of parameters were prepared from some maps and satellite images and they have been classified, weighted and integrated in ArcGIS environment. By the means of the overlay weighted model in ArcGIS a suitability map which is classified into number of priority zones was obtained and it could be compared with the obtained true-false map of Boolean logic. Both methods suggested mostly the northern parts of the city for groundwater recharge; however the weighted model could give more accurate suitability map while Boolean logic suggested wider ranges of areas. This study recommends Boolean logic as a first estimator for locating the best locations as it is easier and not time consuming, while the overlay weighted model for more accurate results.

  13. APPLICATION OF THE OVERLAY WEIGHTED MODEL AND BOOLEAN LOGIC TO DETERMINE THE BEST LOCATIONS FOR ARTIFICIAL RECHARGE OF GROUNDWATER

    Directory of Open Access Journals (Sweden)

    Peter H.S. Riad

    2011-01-01

    Full Text Available With population increase, lack of conventional fresh water resources and uncertainties due to climate change, there is growing interest in the arid and semi-arid areas to increase groundwater recharge with recycled water. Finding the best locations for artificial recharge of groundwater in such areas is one of the most crucial design steps to guarantee the long life and the sustainability of these projects. This study presents two ways to go about performing analysis; creating a suitability map to find out the suitability of every location on the map and another way is querying the created data sets to obtain a Boolean result of true or false map. These techniques have been applied on Sadat Industrial City which is located in a semi arid area in the western desert fringes of The Nile delta in the north west of Egypt. Thematic layers for number of parameters were prepared from some maps and satellite images and they have been classified, weighted and integrated in ArcGIS environment. By the means of the overlay weighted model in ArcGIS a suitability map which is classified into number of priority zones was obtained and it could be compared with the obtained true-false map of Boolean logic. Both methods suggested mostly the northern parts of the city for groundwater recharge; however the weighted model could give more accurate suitability map while Boolean logic suggested wider ranges of areas. This study recommends Boolean logic as a first estimator for locating the best locations as it is easier and not time consuming, while the overlay weighted model for more accurate results.

  14. Origin and Elimination of Two Global Spurious Attractors in Hopfield-Like Neural Network Performing Boolean Factor Analysis

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2010-01-01

    Roč. 73, č. 7-9 (2010), s. 1394-1404 ISSN 0925-2312 R&D Projects: GA ČR GA205/09/1079; GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean factor analysis * Hopfield neural Network * unsupervised learning * dimension reduction * data mining Subject RIV: IN - Informatics, Computer Science Impact factor: 1.429, year: 2010

  15. Boolean modeling of neural systems with point-process inputs and outputs. Part I: theory and simulations.

    Science.gov (United States)

    Marmarelis, Vasilis Z; Zanos, Theodoros P; Berger, Theodore W

    2009-08-01

    This paper presents a new modeling approach for neural systems with point-process (spike) inputs and outputs that utilizes Boolean operators (i.e. modulo 2 multiplication and addition that correspond to the logical AND and OR operations respectively, as well as the AND_NOT logical operation representing inhibitory effects). The form of the employed mathematical models is akin to a "Boolean-Volterra" model that contains the product terms of all relevant input lags in a hierarchical order, where terms of order higher than first represent nonlinear interactions among the various lagged values of each input point-process or among lagged values of various inputs (if multiple inputs exist) as they reflect on the output. The coefficients of this Boolean-Volterra model are also binary variables that indicate the presence or absence of the respective term in each specific model/system. Simulations are used to explore the properties of such models and the feasibility of their accurate estimation from short data-records in the presence of noise (i.e. spurious spikes). The results demonstrate the feasibility of obtaining reliable estimates of such models, with excitatory and inhibitory terms, in the presence of considerable noise (spurious spikes) in the outputs and/or the inputs in a computationally efficient manner. A pilot application of this approach to an actual neural system is presented in the companion paper (Part II).

  16. An Improvement to a Multi-Client Searchable Encryption Scheme for Boolean Queries.

    Science.gov (United States)

    Jiang, Han; Li, Xue; Xu, Qiuliang

    2016-12-01

    The migration of e-health systems to the cloud computing brings huge benefits, as same as some security risks. Searchable Encryption(SE) is a cryptography encryption scheme that can protect the confidentiality of data and utilize the encrypted data at the same time. The SE scheme proposed by Cash et al. in Crypto2013 and its follow-up work in CCS2013 are most practical SE Scheme that support Boolean queries at present. In their scheme, the data user has to generate the search tokens by the counter number one by one and interact with server repeatedly, until he meets the correct one, or goes through plenty of tokens to illustrate that there is no search result. In this paper, we make an improvement to their scheme. We allow server to send back some information and help the user to generate exact search token in the search phase. In our scheme, there are only two round interaction between server and user, and the search token has [Formula: see text] elements, where n is the keywords number in query expression, and [Formula: see text] is the minimum documents number that contains one of keyword in query expression, and the computation cost of server is [Formula: see text] modular exponentiation operation.

  17. Damage Spreading in Spatial and Small-world Random Boolean Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qiming [Fermilab; Teuscher, Christof [Portland State U.

    2014-02-18

    The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean Networks (RBNs) are commonly used a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other non-random connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the relevant component at very low connectivities ($\\bar{K} \\ll 1$) and that the critical connectivity of stability $K_s$ changes compared to random networks. At higher $\\bar{K}$, this scaling remains unchanged. We also show that the relevant component of spatially local networks scales with a power-law as the system size N increases, but with a different exponent for local and small-world networks. The scaling behaviors are obtained by finite-size scaling. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.

  18. Prescribed burning impact on forest soil properties--a Fuzzy Boolean Nets approach.

    Science.gov (United States)

    Castro, Ana C Meira; Paulo Carvalho, Joao; Ribeiro, S

    2011-02-01

    The Portuguese northern forests are often and severely affected by wildfires during the Summer season. These occurrences significantly affect and negatively impact all ecosystems, namely soil, fauna and flora. In order to reduce the occurrences of natural wildfires, some measures to control the availability of fuel mass are regularly implemented. Those preventive actions concern mainly prescribed burnings and vegetation pruning. This work reports on the impact of a prescribed burning on several forest soil properties, namely pH, soil moisture, organic matter content and iron content, by monitoring the soil self-recovery capabilities during a one year span. The experiments were carried out in soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, Portugal, which was kept intact from prescribed burnings during a period of four years. Soil samples were collected from five plots at three different layers (0-3, 3-6 and 6-18) 1 day before prescribed fire and at regular intervals after the prescribed fire. This paper presents an approach where Fuzzy Boolean Nets (FBN) and Fuzzy reasoning are used to extract qualitative knowledge regarding the effect of prescribed fire burning on soil properties. FBN were chosen due to the scarcity on available quantitative data. The results showed that soil properties were affected by prescribed burning practice and were unable to recover their initial values after one year. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Efficient Multi-Valued Bounded Model Checking for LTL over Quasi-Boolean Algebras

    Science.gov (United States)

    Andrade, Jefferson O.; Kameyama, Yukiyoshi

    Multi-valued Model Checking extends classical, two-valued model checking to multi-valued logic such as Quasi-Boolean logic. The added expressivity is useful in dealing with such concepts as incompleteness and uncertainty in target systems, while it comes with the cost of time and space. Chechik and others proposed an efficient reduction from multi-valued model checking problems to two-valued ones, but to the authors' knowledge, no study was done for multi-valued bounded model checking. In this paper, we propose a novel, efficient algorithm for multi-valued bounded model checking. A notable feature of our algorithm is that it is not based on reduction of multi-values into two-values; instead, it generates a single formula which represents multi-valuedness by a suitable encoding, and asks a standard SAT solver to check its satisfiability. Our experimental results show a significant improvement in the number of variables and clauses and also in execution time compared with the reduction-based one.

  20. Steady-State Analysis of Genetic Regulatory Networks Modelled by Probabilistic Boolean Networks

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2006-04-01

    Full Text Available Probabilistic Boolean networks (PBNs have recently been introduced as a promising class of models of genetic regulatory networks. The dynamic behaviour of PBNs can be analysed in the context of Markov chains. A key goal is the determination of the steady-state (long-run behaviour of a PBN by analysing the corresponding Markov chain. This allows one to compute the long-term influence of a gene on another gene or determine the long-term joint probabilistic behaviour of a few selected genes. Because matrix-based methods quickly become prohibitive for large sizes of networks, we propose the use of Monte Carlo methods. However, the rate of convergence to the stationary distribution becomes a central issue. We discuss several approaches for determining the number of iterations necessary to achieve convergence of the Markov chain corresponding to a PBN. Using a recently introduced method based on the theory of two-state Markov chains, we illustrate the approach on a sub-network designed from human glioma gene expression data and determine the joint steadystate probabilities for several groups of genes.

  1. On control of singleton attractors in multiple Boolean networks: integer programming-based method.

    Science.gov (United States)

    Qiu, Yushan; Tamura, Takeyuki; Ching, Wai-Ki; Akutsu, Tatsuya

    2014-01-01

    Boolean network (BN) is a mathematical model for genetic network and control of genetic networks has become an important issue owing to their potential application in the field of drug discovery and treatment of intractable diseases. Early researches have focused primarily on the analysis of attractor control for a randomly generated BN. However, one may also consider how anti-cancer drugs act in both normal and cancer cells. Thus, the development of controls for multiple BNs is an important and interesting challenge. In this article, we formulate three novel problems about attractor control for two BNs (i.e., normal cell and cancer cell). The first is about finding a control that can significantly damage cancer cells but has a limited damage to normal cells. The second is about finding a control for normal cells with a guaranteed damaging effect on cancer cells. Finally, we formulate a definition for finding a control for cancer cells with limited damaging effect on normal cells. We propose integer programming-based methods for solving these problems in a unified manner, and we conduct computational experiments to illustrate the efficiency and the effectiveness of our method for our multiple-BN control problems. We present three novel control problems for multiple BNs that are realistic control models for gene regulation networks and adopt an integer programming approach to address these problems. Experimental results indicate that our proposed method is useful and effective for moderate size BNs.

  2. The boolean algebra with restricted variables as a tool for fault tree modularization

    International Nuclear Information System (INIS)

    Caldarola, L.; Wickenhaeuser, A.

    1981-08-01

    The number of minimal cut sets (m.c.s.) of very complex and highly interconnected fault trees can become extremely large (e.g. more than 10 7 ). In this case the usual analytical approach of dissecting the fault tree TOP variable into m.c.s. is not only computationally prohibitively expensive, but also meaningless because it does not offer any synthetic overview of system behavior. The method proposed in this paper overcomes the deficiencies of the analytical method. It is shown that, by applying boolean algebra with restricted variables (b.a.w.r.v.), the concept of fault tree modularization can be straightforwardly extended from a single gate to a set of gates. Thus, large fault trees are divided into smaller fault trees (modules), which are connected to each other according to a simple scheme. This scheme is represented by a block diagram in which each block is a module. The modules are analyzed separately by the m.c.s. method, and the results are combined according of the TOP event. The method allows the calculation of very large fault trees in a short time and offers a synthetic overview of systems behavior through the block diagram. Numerical examples are also included. Calculations have been carried out by using the computer code MUSTAMO, which is based on the theory developed in this paper. (orig.) [de

  3. Banach spaces of continuous functions as dual spaces

    CERN Document Server

    Dales, H G; Lau, A T -M; Strauss, D

    2016-01-01

    This book gives a coherent account of the theory of Banach spaces and Banach lattices, using the spaces C_0(K) of continuous functions on a locally compact space K as the main example. The study of C_0(K) has been an important area of functional analysis for many years. It gives several new constructions, some involving Boolean rings, of this space as well as many results on the Stonean space of Boolean rings. The book also discusses when Banach spaces of continuous functions are dual spaces and when they are bidual spaces.

  4. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    Science.gov (United States)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  5. Threshold Circuit Lower Bounds on Cryptographic Functions

    NARCIS (Netherlands)

    E. Kiltz (Eike); H.U. Simon

    2005-01-01

    textabstractIn this work, we are interested in non-trivial upper bounds on the spectral norm of binary matrices $M$ from {-1, 1} $^{N × N}$. It is known that the distributed Boolean function represented by $M$ is hard to compute in various restricted models of computation if the spectral norm is

  6. Concept locator: a client-server application for retrieval of UMLS metathesaurus concepts through complex boolean query.

    Science.gov (United States)

    Nadkarni, P M

    1997-08-01

    Concept Locator (CL) is a client-server application that accesses a Sybase relational database server containing a subset of the UMLS Metathesaurus for the purpose of retrieval of concepts corresponding to one or more query expressions supplied to it. CL's query grammar permits complex Boolean expressions, wildcard patterns, and parenthesized (nested) subexpressions. CL translates the query expressions supplied to it into one or more SQL statements that actually perform the retrieval. The generated SQL is optimized by the client to take advantage of the strengths of the server's query optimizer, and sidesteps its weaknesses, so that execution is reasonably efficient.

  7. Boolean Logic Tree of Label-Free Dual-Signal Electrochemical Aptasensor System for Biosensing, Three-State Logic Computation, and Keypad Lock Security Operation.

    Science.gov (United States)

    Lu, Jiao Yang; Zhang, Xin Xing; Huang, Wei Tao; Zhu, Qiu Yan; Ding, Xue Zhi; Xia, Li Qiu; Luo, Hong Qun; Li, Nian Bing

    2017-09-19

    The most serious and yet unsolved problems of molecular logic computing consist in how to connect molecular events in complex systems into a usable device with specific functions and how to selectively control branchy logic processes from the cascading logic systems. This report demonstrates that a Boolean logic tree is utilized to organize and connect "plug and play" chemical events DNA, nanomaterials, organic dye, biomolecule, and denaturant for developing the dual-signal electrochemical evolution aptasensor system with good resettability for amplification detection of thrombin, controllable and selectable three-state logic computation, and keypad lock security operation. The aptasensor system combines the merits of DNA-functionalized nanoamplification architecture and simple dual-signal electroactive dye brilliant cresyl blue for sensitive and selective detection of thrombin with a wide linear response range of 0.02-100 nM and a detection limit of 1.92 pM. By using these aforementioned chemical events as inputs and the differential pulse voltammetry current changes at different voltages as dual outputs, a resettable three-input biomolecular keypad lock based on sequential logic is established. Moreover, the first example of controllable and selectable three-state molecular logic computation with active-high and active-low logic functions can be implemented and allows the output ports to assume a high impediment or nothing (Z) state in addition to the 0 and 1 logic levels, effectively controlling subsequent branchy logic computation processes. Our approach is helpful in developing the advanced controllable and selectable logic computing and sensing system in large-scale integration circuits for application in biomedical engineering, intelligent sensing, and control.

  8. Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord.

    KAUST Repository

    Lovrics, Anna

    2014-11-14

    We have assembled a network of cell-fate determining transcription factors that play a key role in the specification of the ventral neuronal subtypes of the spinal cord on the basis of published transcriptional interactions. Asynchronous Boolean modelling of the network was used to compare simulation results with reported experimental observations. Such comparison highlighted the need to include additional regulatory connections in order to obtain the fixed point attractors of the model associated with the five known progenitor cell types located in the ventral spinal cord. The revised gene regulatory network reproduced previously observed cell state switches between progenitor cells observed in knock-out animal models or in experiments where the transcription factors were overexpressed. Furthermore the network predicted the inhibition of Irx3 by Nkx2.2 and this prediction was tested experimentally. Our results provide evidence for the existence of an as yet undescribed inhibitory connection which could potentially have significance beyond the ventral spinal cord. The work presented in this paper demonstrates the strength of Boolean modelling for identifying gene regulatory networks.

  9. A novel mutual information-based Boolean network inference method from time-series gene expression data.

    Directory of Open Access Journals (Sweden)

    Shohag Barman

    Full Text Available Inferring a gene regulatory network from time-series gene expression data in systems biology is a challenging problem. Many methods have been suggested, most of which have a scalability limitation due to the combinatorial cost of searching a regulatory set of genes. In addition, they have focused on the accurate inference of a network structure only. Therefore, there is a pressing need to develop a network inference method to search regulatory genes efficiently and to predict the network dynamics accurately.In this study, we employed a Boolean network model with a restricted update rule scheme to capture coarse-grained dynamics, and propose a novel mutual information-based Boolean network inference (MIBNI method. Given time-series gene expression data as an input, the method first identifies a set of initial regulatory genes using mutual information-based feature selection, and then improves the dynamics prediction accuracy by iteratively swapping a pair of genes between sets of the selected regulatory genes and the other genes. Through extensive simulations with artificial datasets, MIBNI showed consistently better performance than six well-known existing methods, REVEAL, Best-Fit, RelNet, CST, CLR, and BIBN in terms of both structural and dynamics prediction accuracy. We further tested the proposed method with two real gene expression datasets for an Escherichia coli gene regulatory network and a fission yeast cell cycle network, and also observed better results using MIBNI compared to the six other methods.Taken together, MIBNI is a promising tool for predicting both the structure and the dynamics of a gene regulatory network.

  10. Generalized Boolean logic Driven Markov Processes: A powerful modeling framework for Model-Based Safety Analysis of dynamic repairable and reconfigurable systems

    International Nuclear Information System (INIS)

    Piriou, Pierre-Yves; Faure, Jean-Marc; Lesage, Jean-Jacques

    2017-01-01

    This paper presents a modeling framework that permits to describe in an integrated manner the structure of the critical system to analyze, by using an enriched fault tree, the dysfunctional behavior of its components, by means of Markov processes, and the reconfiguration strategies that have been planned to ensure safety and availability, with Moore machines. This framework has been developed from BDMP (Boolean logic Driven Markov Processes), a previous framework for dynamic repairable systems. First, the contribution is motivated by pinpointing the limitations of BDMP to model complex reconfiguration strategies and the failures of the control of these strategies. The syntax and semantics of GBDMP (Generalized Boolean logic Driven Markov Processes) are then formally defined; in particular, an algorithm to analyze the dynamic behavior of a GBDMP model is developed. The modeling capabilities of this framework are illustrated on three representative examples. Last, qualitative and quantitative analysis of GDBMP models highlight the benefits of the approach.

  11. On algorithmic equivalence of instruction sequences for computing bit string functions

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2015-01-01

    Every partial function from bit strings of a given length to bit strings of a possibly different given length can be computed by a finite instruction sequence that contains only instructions to set and get the content of Boolean registers, forward jump instructions, and a termination instruction. We

  12. On algorithmic equivalence of instruction sequences for computing bit string functions

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2014-01-01

    Every partial function from bit strings of a given length to bit strings of a possibly different given length can be computed by a finite instruction sequence that contains only instructions to set and get the content of Boolean registers, forward jump instructions, and a termination instruction. We

  13. Bounds on the average sensitivity of nested canalizing functions.

    Directory of Open Access Journals (Sweden)

    Johannes Georg Klotz

    Full Text Available Nested canalizing Boolean functions (NCF play an important role in biologically motivated regulatory networks and in signal processing, in particular describing stack filters. It has been conjectured that NCFs have a stabilizing effect on the network dynamics. It is well known that the average sensitivity plays a central role for the stability of (random Boolean networks. Here we provide a tight upper bound on the average sensitivity of NCFs as a function of the number of relevant input variables. As conjectured in literature this bound is smaller than 4/3. This shows that a large number of functions appearing in biological networks belong to a class that has low average sensitivity, which is even close to a tight lower bound.

  14. Bounds on the average sensitivity of nested canalizing functions.

    Science.gov (United States)

    Klotz, Johannes Georg; Heckel, Reinhard; Schober, Steffen

    2013-01-01

    Nested canalizing Boolean functions (NCF) play an important role in biologically motivated regulatory networks and in signal processing, in particular describing stack filters. It has been conjectured that NCFs have a stabilizing effect on the network dynamics. It is well known that the average sensitivity plays a central role for the stability of (random) Boolean networks. Here we provide a tight upper bound on the average sensitivity of NCFs as a function of the number of relevant input variables. As conjectured in literature this bound is smaller than 4/3. This shows that a large number of functions appearing in biological networks belong to a class that has low average sensitivity, which is even close to a tight lower bound.

  15. A Generalized If-Then-Else Operator for the Representation of Multi-Output Functions

    Directory of Open Access Journals (Sweden)

    Ilya Levin

    2013-01-01

    Full Text Available The paper deals with fundamentals of systems of Boolean functions called multi-output functions (MOFs. A new approach to representing MOFs is introduced based on a Generalized If-Then-Else (GITE function. It is shown that known operations on MOFs may be expressed by a GITE function. The GITE forms the algebra of MOFs. We use the properties of this algebra to solve an MOF-decomposition problem. The solution provides a compact representation of MOFs.

  16. An efficient algorithm to identify the optimal one-bit perturbation based on the basin-of-state size of Boolean networks.

    Science.gov (United States)

    Hu, Mingxiao; Shen, Liangzhong; Zan, Xiangzhen; Shang, Xuequn; Liu, Wenbin

    2016-05-19

    Boolean networks are widely used to model gene regulatory networks and to design therapeutic intervention strategies to affect the long-term behavior of systems. In this paper, we investigate the less-studied one-bit perturbation, which falls under the category of structural intervention. Previous works focused on finding the optimal one-bit perturbation to maximally alter the steady-state distribution (SSD) of undesirable states through matrix perturbation theory. However, the application of the SSD is limited to Boolean networks with about ten genes. In 2007, Xiao et al. proposed to search the optimal one-bit perturbation by altering the sizes of the basin of attractions (BOAs). However, their algorithm requires close observation of the state-transition diagram. In this paper, we propose an algorithm that efficiently determines the BOA size after a perturbation. Our idea is that, if we construct the basin of states for all states, then the size of the BOA of perturbed networks can be obtained just by updating the paths of the states whose transitions have been affected. Results from both synthetic and real biological networks show that the proposed algorithm performs better than the exhaustive SSD-based algorithm and can be applied to networks with about 25 genes.

  17. Psychological state is related to the remission of the Boolean-based definition of patient global assessment in patients with rheumatoid arthritis.

    Science.gov (United States)

    Fusama, Mie; Miura, Yasushi; Yukioka, Kumiko; Kuroiwa, Takanori; Yukioka, Chikako; Inoue, Miyako; Nakanishi, Tae; Murata, Norikazu; Takai, Noriko; Higashi, Kayoko; Kuritani, Taro; Maeda, Keiji; Sano, Hajime; Yukioka, Masao; Nakahara, Hideko

    2015-09-01

    To evaluate whether the psychological state is related to the Boolean-based definition of patient global assessment (PGA) remission in patients with rheumatoid arthritis (RA). Patients with RA who met the criteria of swollen joint count (SJC) ≤ 1, tender joint count (TJC) ≤ 1 and C-reactive protein (CRP) ≤ 1 were divided into two groups, PGA remission group (PGA ≤ 1 cm) and non-remission group (PGA > 1 cm). Anxiety was evaluated utilizing the Hospital Anxiety and Depression Scale-Anxiety (HADS-A), while depression was evaluated with HADS-Depression (HADS-D) and the Center for Epidemiologic Studies Depression Scale (CES-D). Comparison analyses were done between the PGA remission and non-remission groups in HADS-A, HADS-D and CES-D. Seventy-eight patients met the criteria for SJC ≤ 1, TJC ≤ 1 and CRP ≤ 1. There were no significant differences between the PGA remission group (n = 45) and the non-remission group (n = 33) in age, sex, disease duration and Steinbrocker's class and stage. HADS-A, HADS-D and CES-D scores were significantly lower in the PGA remission group. Patients with RA who did not meet the PGA remission criteria despite good disease condition were in a poorer psychological state than those who satisfied the Boolean-based definition of clinical remission. Psychological support might be effective for improvement of PGA, resulting in the attainment of true remission.

  18. Using boolean and fuzzy logic combined with analytic hierarchy process for hazardous waste landfill site selection: A case study from Hormozgan province, Iran

    Directory of Open Access Journals (Sweden)

    Mahdieh Saadat Foomani

    2017-01-01

    Full Text Available Hazardous wastes include numerous kinds of discarded chemicals and other wastes generated from industrial, commercial, and institutional activities. These types of waste present immediate or long-term risks to humans, animals, plants, or the environment and therefore require special handling for safe disposal. Landfills that can accept hazardous wastes are excavated or engineered sites where these special types of waste can be disposed of securely. Since landfills are permanent sites, special attention must be afforded in selecting the location. This paper investigated the use of the Boolean theory and Fuzzy logic in combination with Analytic Hierarchy Process (AHP methods by applying GIS and IDRISI software for the selection of a hazardous waste landfill site in the Iranian province of Hormozgan. The best location was determined via the Fuzzy and the Boolean methodologies. By collating the area selected for the hazardous waste landfill, this study found that Fuzzy logic with an AND operator had the best options for this purpose. In the end, the most suitable area for a hazardous waste landfill was about 1.6 km2 which was obtained by employing Fuzzy in combination with AHP and by using an AND operator. In addition, all the fundamental criteria affecting the landfill location were considered.

  19. Spaces of continuous functions

    CERN Document Server

    Groenewegen, G L M

    2016-01-01

    The space C(X) of all continuous functions on a compact space X carries the structure of a normed vector space, an algebra and a lattice. On the one hand we study the relations between these structures and the topology of X, on the other hand we discuss a number of classical results according to which an algebra or a vector lattice can be represented as a C(X). Various applications of these theorems are given. Some attention is devoted to related theorems, e.g. the Stone Theorem for Boolean algebras and the Riesz Representation Theorem. The book is functional analytic in character. It does not presuppose much knowledge of functional analysis; it contains introductions into subjects such as the weak topology, vector lattices and (some) integration theory.

  20. Using of the Boolean Stochastic Generation method to target field investigations: the Mortisa landslide (eastern Italian Alps) case study

    Science.gov (United States)

    Bossi, Giulia; Marcato, Gianluca; Gottardi, Guido; Borgatti, Lisa

    2016-04-01

    When designing the geotechnical model of a landslide the information to define the soil profile within the slope is usually inferred from a small amount of data. This is particularly true for large landslides where the study area is vast and the variability of terrains is high. In this framework, a method allowing the best locations for further field investigation campaigns to be identified would be extremely useful. The Boolean Stochastic Generation method (BoSG), which randomly generates different soil distributions of two definite soil types in both 2D and 3D models, is a newly developed algorithm that can guide in this process. In this work the method has been applied to the Mortisa landslide case study, which is located in the Cortina d'Ampezzo valley (Veneto, Italy), part of the Dolomites UNESCO World Heritage list. The mudslide is 3.5 km long, stretching from 1750 to 1300 m a.s.l., and is located in a highly antrophized area where is damaging some buildings and a national road with its almost continuous movements. In fact, from year 2008, GNSS surveys recorded rates of displacements reaching 1.2 m/year in the most active parts of the landslide; the movements occur on a slip surfaces are located between 20 and 50 m below the surface. From the borecores some wooden samples were extracted allowing to reconstruct the sequence of events that led to the development of the present-day Mortisa slope. Interdigitated layers of gravel in a silty clay matrix originated from subsequent earth and debris flows events since the Lateglacial compose the landslide body, a condition that is particularly apt to be investigated with BoSG. A BoSG run for the Mortisa landslide was performed calculating 1200 soil configurations and using laboratory test parameters for the silty-clay matrix. The results were stacked in a tridimensional matrix in order to calculate the mean and the standard deviation (SD) of displacements for each element of the model mesh. In this way maps of the SD

  1. Satisfiability of logic programming based on radial basis function neural networks

    International Nuclear Information System (INIS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong

    2014-01-01

    In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems

  2. Satisfiability of logic programming based on radial basis function neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2014-07-10

    In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems.

  3. Modified planar functions and their components

    DEFF Research Database (Denmark)

    Anbar Meidl, Nurdagül; Meidl, Wilfried Meidl

    2017-01-01

    functions in odd characteristic as a vectorial bent function. We finally point out that though these components behave somewhat different than the multivariate bent4 functions, they are bent or semibent functions shifted by a certain quadratic term, a property which they share with their multivariate......Zhou ([20]) introduced modified planar functions in order to describe (2n; 2n; 2n; 1) relative difference sets R as a graph of a function on the finite field F2n, and pointed out that projections of R are difference sets that can be described by negabent or bent4 functions, which are Boolean...... functions given in multivariate form. One of the objectives of this paper is to contribute to the understanding of these component functions of modified planar functions. Moreover, we obtain a description of modified planar functions by their components which is similar to that of the classical planar...

  4. Comparison of Control Approaches in Genetic Regulatory Networks by Using Stochastic Master Equation Models, Probabilistic Boolean Network Models and Differential Equation Models and Estimated Error Analyzes

    Science.gov (United States)

    Caglar, Mehmet Umut; Pal, Ranadip

    2011-03-01

    Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.

  5. Functional

    Directory of Open Access Journals (Sweden)

    Fedoua Gandia

    2014-07-01

    Full Text Available The study was carried out to investigate the effects of inhaled Mg alone and associated with F in the treatment of bronchial hyperresponsiveness. 43 male Wistar rats were randomly divided into four groups and exposed to inhaled NaCl 0.9%, MeCh, MgSO4 and MgF2. Pulmonary changes were assessed by means of functional tests and quantitative histological examination of lungs and trachea. Results revealed that delivery of inhaled Mg associated with F led to a significant decrease of total lung resistance better than inhaled Mg alone (p < 0.05. Histological examinations illustrated that inhaled Mg associated with F markedly suppressed muscular hypertrophy (p = 0.034 and bronchoconstriction (p = 0.006 in MeCh treated rats better than inhaled Mg alone. No histological changes were found in the trachea. This study showed that inhaled Mg associated with F attenuated the main principle of the central components of changes in MeCh provoked experimental asthma better than inhaled Mg alone, potentially providing a new therapeutic approach against asthma.

  6. On the generalization of constraint programming and boolean satisfiability solving techniques to schedule a resource-constrained project consisting of multi-mode jobs

    Directory of Open Access Journals (Sweden)

    Alexander Schnell

    Full Text Available In our paper, we analyze new exact approaches for the multi-mode resource-constrained project scheduling (MRCPSP problem with the aim of makespan minimization. For the single-mode RCPSP (SRCPSP recent exact algorithms combine a Branch and Bound algorithm with principles from Constraint Programming (CP and Boolean Satisfiability Solving (SAT. We extend the above principles for the solution of MRCPSP instances. This generalization is on the one hand achieved on the modeling level. We propose three CP-based formulations of the MRCPSP for the G12 CP platform and the optimization framework SCIP which both provide solution techniques combining CP and SAT principles. For one of the latter we implemented a new global constraint for SCIP, which generalizes the domain propagation and explanation generation principles for renewable resources in the context of multi-mode jobs. Our constraint applies the above principles in a more general way than the existing global constraint in SCIP. We compare our approaches with the state-of-the-art exact algorithm from the literature on MRCPSP instances with 20 and 30 jobs. Our computational experiments show that we can outperform the latter approach on these instances. Furthermore, we are the first to close (find the optimal solution and prove its optimality for 628 open instances with 50 and 100 jobs from the literature. In addition, we improve the best known lower bound of 2815 instances and the best known upper bound of 151 instances. Keywords: Multi-mode resource-constrained project scheduling, Constraint programming, SAT solving, SCIP, Lazy clause generation, Exact algorithm

  7. Hospital status admission determination: the use of Boolean logic, set theory, and information theory to improve accuracy.

    Science.gov (United States)

    Cohen, Daniel H

    2012-01-01

    To evaluate methods of logic, set theory, and information theory in developing a conceptual framework that would be useful in an educational process as well as in developing a consistent and rational method for hospital status determination. To implement these methods on a daily basis in interaction with nurse case managers, physicians, and in documentation of the process. A tertiary private, not-for-profit institution within the department of case management and utilization review. These methods were well accepted by those involved in the decision process and allowed a Case Management Assignment Protocol to function well in the hospital environment with a low level of disagreement and conflict. Medical information can be processed effectively with conceptual models of logic and information theory. The used commercial screening systems are described well by set theory and are intersecting sets of patient variables and characteristics. These methods can be used in educational processes in practice settings apart from those using the Case Management Assignment Protocol. It provides a basis for evaluation of patients' presentations that use important factors such as clinical uncertainty, patient specific data, and reference to preexisting admission criteria.

  8. Any Monotone Function Is Realized by Interlocked Polygons

    Directory of Open Access Journals (Sweden)

    Erik D. Demaine

    2012-03-01

    Full Text Available Suppose there is a collection of n simple polygons in the plane, none of which overlap each other. The polygons are interlocked if no subset can be separated arbitrarily far from the rest. It is natural to ask the characterization of the subsets that makes the set of interlocked polygons free (not interlocked. This abstracts the essence of a kind of sliding block puzzle. We show that any monotone Boolean function ƒ on n variables can be described by m = O(n interlocked polygons. We also show that the decision problem that asks if given polygons are interlocked is PSPACE-complete.

  9. Stochastic Pseudo-Boolean Optimization

    Science.gov (United States)

    2011-07-31

    equivalence of (P1) and (P2). In the case r = 2, we explore how to improve the computational efficiency in terms of solving the proposed La - grangian...a general guideline for branching, our La - grangian relaxation method naturally lends itself to an efficient branching rule. For each xi, let wi = ∑ j...program- ming. Informatica , 3:225–240, 1992. [112] G. Palubeckis. Multistart tabu search strategies for the unconstrained binary quadratic opti

  10. Multi-Valued Logic Gates, Continuous Sensitivity, Reversibility, and Threshold Functions

    OpenAIRE

    İlhan, Aslı Güçlükan; Ünlü, Özgün

    2016-01-01

    We define an invariant of a multi-valued logic gate by considering the number of certain threshold functions associated with the gate. We call this invariant the continuous sensitivity of the gate. We discuss a method for analysing continuous sensitivity of a multi-valued logic gate by using experimental data about the gate. In particular, we will show that this invariant provides a lower bound for the sensitivity of a boolean function considered as a multi-valued logic gate. We also discuss ...

  11. Neuromorphic function learning with carbon nanotube based synapses

    International Nuclear Information System (INIS)

    Gacem, Karim; Filoramo, Arianna; Derycke, Vincent; Retrouvey, Jean-Marie; Chabi, Djaafar; Zhao, Weisheng; Klein, Jacques-Olivier

    2013-01-01

    The principle of using nanoscale memory devices as artificial synapses in neuromorphic circuits is recognized as a promising way to build ground-breaking circuit architectures tolerant to defects and variability. Yet, actual experimental demonstrations of the neural network type of circuits based on non-conventional/non-CMOS memory devices and displaying function learning capabilities remain very scarce. We show here that carbon-nanotube-based memory elements can be used as artificial synapses, combined with conventional neurons and trained to perform functions through the application of a supervised learning algorithm. The same ensemble of eight devices can notably be trained multiple times to code successively any three-input linearly separable Boolean logic function despite device-to-device variability. This work thus represents one of the very few demonstrations of actual function learning with synapses based on nanoscale building blocks. The potential of such an approach for the parallel learning of multiple and more complex functions is also evaluated. (paper)

  12. When do evolutionary algorithms optimize separable functions in parallel?

    DEFF Research Database (Denmark)

    Doerr, Benjamin; Sudholt, Dirk; Witt, Carsten

    2013-01-01

    is that evolutionary algorithms make progress on all subfunctions in parallel, so that optimizing a separable function does not take not much longer than optimizing the hardest subfunction-subfunctions are optimized "in parallel." We show that this is only partially true, already for the simple (1+1) evolutionary...... algorithm ((1+1) EA). For separable functions composed of k Boolean functions indeed the optimization time is the maximum optimization time of these functions times a small O(log k) overhead. More generally, for sums of weighted subfunctions that each attain non-negative integer values less than r = o(log1....../2 n), we get an overhead of O(r log n). However, the hoped for parallel optimization behavior does not always come true. We present a separable function with k ≤ √n subfunctions such that the (1+1) EA is likely to optimize many subfunctions sequentially. The reason is that standard mutation leads...

  13. The Arbitration–Extension Hypothesis: A Hierarchical Interpretation of the Functional Organization of the Basal Ganglia

    Science.gov (United States)

    Kamali Sarvestani, Iman; Lindahl, Mikael; Hellgren-Kotaleski, Jeanette; Ekeberg, Örjan

    2011-01-01

    Based on known anatomy and physiology, we present a hypothesis where the basal ganglia motor loop is hierarchically organized in two main subsystems: the arbitration system and the extension system. The arbitration system, comprised of the subthalamic nucleus, globus pallidus, and pedunculopontine nucleus, serves the role of selecting one out of several candidate actions as they are ascending from various brain stem motor regions and aggregated in the centromedian thalamus or descending from the extension system or from the cerebral cortex. This system is an action-input/action-output system whose winner-take-all mechanism finds the strongest response among several candidates to execute. This decision is communicated back to the brain stem by facilitating the desired action via cholinergic/glutamatergic projections and suppressing conflicting alternatives via GABAergic connections. The extension system, comprised of the striatum and, again, globus pallidus, can extend the repertoire of responses by learning to associate novel complex states to certain actions. This system is a state-input/action-output system, whose organization enables it to encode arbitrarily complex Boolean logic rules using striatal neurons that only fire given specific constellations of inputs (Boolean AND) and pallidal neurons that are silenced by any striatal input (Boolean OR). We demonstrate the capabilities of this hierarchical system by a computational model where a simulated generic “animal” interacts with an environment by selecting direction of movement based on combinations of sensory stimuli, some being appetitive, others aversive or neutral. While the arbitration system can autonomously handle conflicting actions proposed by brain stem motor nuclei, the extension system is required to execute learned actions not suggested by external motor centers. Being precise in the functional role of each component of the system, this hypothesis generates several readily testable

  14. Utilidade de regras booleanas aplicadas à liberação de resultados de exames hormonais e marcadores tumorais Usefulness of Boolean rules applied on the release of hormonal and tumor markers tests results

    Directory of Open Access Journals (Sweden)

    Murilo Rezende Melo

    2006-08-01

    review of results for adequate laboratory section test release. Analysis of these results using Boolean rules is an interesting alternative to reduce the number of results that require manual review. MATERIAL AND METHOD: We evaluated the utilization of Boolean rules using Instrument Manager software and Architect analyzer, mainly performing sex and thyroid hormones measurement. The intervention was evaluated on: a number of rules and its easiness of construction; b blind comparison of results evaluation by clinical pathologist (printed results and set of rules in 940 consecutive tests. RESULTS: Rule creation was a complex and arduous task, especially due to hormonal profiles with several different request patterns. It was necessary to use a set of 153 Boolean (if…then rules, in a specific order. This set of rules agreed with expert opinion in 97.9% (920 tests. Rules hold 25 tests (2.7% and the clinical pathologist only nine tests. There was discordance in 20 cases; rules did not hold only two cases: a beta-hCG in a male patient (that prompted the creation of a new rule and a complete thyroid profile lacking only TSH request (pathologist opted to review the original request. CONCLUSION: Creation of an efficient set of Boolean rules proved to be a complex task requiring both technical and logics knowledge, but allowing optimization of laboratory workload. We achieved excellent concordance between the set of rules and clinical pathologist manual review, in a safe, fast and low cost system.

  15. An analysis of simple computational strategies to facilitate the design of functional molecular information processors.

    Science.gov (United States)

    Lee, Yiling; Roslan, Rozieffa; Azizan, Shariza; Firdaus-Raih, Mohd; Ramlan, Effirul I

    2016-10-28

    Biological macromolecules (DNA, RNA and proteins) are capable of processing physical or chemical inputs to generate outputs that parallel conventional Boolean logical operators. However, the design of functional modules that will enable these macromolecules to operate as synthetic molecular computing devices is challenging. Using three simple heuristics, we designed RNA sensors that can mimic the function of a seven-segment display (SSD). Ten independent and orthogonal sensors representing the numerals 0 to 9 are designed and constructed. Each sensor has its own unique oligonucleotide binding site region that is activated uniquely by a specific input. Each operator was subjected to a stringent in silico filtering. Random sensors were selected and functionally validated via ribozyme self cleavage assays that were visualized via electrophoresis. By utilising simple permutation and randomisation in the sequence design phase, we have developed functional RNA sensors thus demonstrating that even the simplest of computational methods can greatly aid the design phase for constructing functional molecular devices.

  16. Boolean Approach to Dichotomic Quantum Measurement Theories

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, K. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Nakamura, T. [Keio University, Yokohama (Japan); Batle, J. [Universitat de les Illes Balears, Balearic Islands (Spain); Abdalla, S. [King Abdulaziz University Jeddah, Jeddah (Saudi Arabia); Farouk, A. [Al-Zahra College for Women, Muscat (Egypt)

    2017-02-15

    Recently, a new measurement theory based on truth values was proposed by Nagata and Nakamura [Int. J. Theor. Phys. 55, 3616 (2016)], that is, a theory where the results of measurements are either 0 or 1. The standard measurement theory accepts a hidden variable model for a single Pauli observable. Hence, we can introduce a classical probability space for the measurement theory in this particular case. Additionally, we discuss in the present contribution the fact that projective measurement theories (the results of which are either +1 or −1) imply the Bell, Kochen, and Specker (BKS) paradox for a single Pauli observable. To justify our assertion, we present the BKS theorem in almost all the two-dimensional states by using a projective measurement theory. As an example, we present the BKS theorem in two-dimensions with white noise. Our discussion provides new insight into the quantum measurement problem by using this measurement theory based on the truth values.

  17. On boolean combinations forming piecewise testable languages

    Czech Academy of Sciences Publication Activity Database

    Masopust, Tomáš; Thomazo, M.

    2017-01-01

    Roč. 682, June 19 (2017), s. 165-179 ISSN 0304-3975 Institutional support: RVO:67985840 Keywords : automata * languages * k-piecewise testability Subject RIV: BA - General Mathematics OBOR OECD: Computer science s, information science , bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.698, year: 2016 http://www. science direct.com/ science /article/pii/S030439751730066X

  18. Boolean-valued second-order logic

    NARCIS (Netherlands)

    Ikegami, D.; Väänänen, J.

    2015-01-01

    In so-called full second-order logic, the second-order variables range over all subsets and relations of the domain in question. In so-called Henkin second-order logic, every model is endowed with a set of subsets and relations which will serve as the range of the second-order variables. In our

  19. Probabilistic frames for non-Boolean phenomena.

    Science.gov (United States)

    Narens, Louis

    2016-01-13

    Classical probability theory, as axiomatized in 1933 by Andrey Kolmogorov, has provided a useful and almost universally accepted theory for describing and quantifying uncertainty in scientific applications outside quantum mechanics. Recently, cognitive psychologists and mathematical economists have provided examples where classical probability theory appears inadequate but the probability theory underlying quantum mechanics appears effective. Formally, quantum probability theory is a generalization of classical probability. This article explores relationships between generalized probability theories, in particular quantum-like probability theories and those that do not have full complementation operators (e.g. event spaces based on intuitionistic logic), and discusses how these generalizations bear on important issues in the foundations of probability and the development of non-classical probability theories for the behavioural sciences. © 2015 The Author(s).

  20. On boolean combinations forming piecewise testable languages

    Czech Academy of Sciences Publication Activity Database

    Masopust, Tomáš; Thomazo, M.

    2017-01-01

    Roč. 682, June 19 (2017), s. 165-179 ISSN 0304-3975 Institutional support: RVO:67985840 Keywords : automata * languages * k-piecewise testability Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.698, year: 2016 http://www.sciencedirect.com/science/article/pii/S030439751730066X

  1. Transfer Function Design for Scientific Discovery

    Energy Technology Data Exchange (ETDEWEB)

    Jian Huang

    2008-12-08

    As computation scales beyond terascale, the scientific problems under study through computing are increasingly pushing the boundaries of human knowledge about the physical world. It is more pivotal than ever to quickly and reliably extract new knowledge from these complex simulations of ultra scale. In this project, the PI expanded the traditional notion of transfer function, which maps physical quantities to visual cues via table look-ups, to include general temporal as well as multivariate patterns that can be described procedurally through specialty mini programming languages. Their efforts aimed at answering a perpetual question of fundamental importance. That is "what a visualization should show". Instead of waiting for application scientists to initiate the process, the team at University of Tennessee worked closely with scientists at ORNL in a proactive role to envision and design elegant, powerful, and reliable tools that a user can use to specify "what is interesting". Their new techniques include visualization operators that revolve around correlation and graph properties, relative patterns in statistical distribution, temporal regular expressions, concurrent attribute subspaces and traditional compound boolean range queries. The team also paid special attention to ensure that all visualization operators are inherently designed with great parallel scalability to handle tera-scale datasets in both homogeneous and heterogeneous environments. Success has been demonstrated with leading edge computational science areas include climate modeling, combustion and systems genetics.

  2. The Hardness of Finding Linear Ranking Functions for Lasso Programs

    Directory of Open Access Journals (Sweden)

    Amir M. Ben-Amram

    2014-08-01

    Full Text Available Finding whether a linear-constraint loop has a linear ranking function is an important key to understanding the loop behavior, proving its termination and establishing iteration bounds. If no preconditions are provided, the decision problem is known to be in coNP when variables range over the integers and in PTIME for the rational numbers, or real numbers. Here we show that deciding whether a linear-constraint loop with a precondition, specifically with partially-specified input, has a linear ranking function is EXPSPACE-hard over the integers, and PSPACE-hard over the rationals. The precise complexity of these decision problems is yet unknown. The EXPSPACE lower bound is derived from the reachability problem for Petri nets (equivalently, Vector Addition Systems, and possibly indicates an even stronger lower bound (subject to open problems in VAS theory. The lower bound for the rationals follows from a novel simulation of Boolean programs. Lower bounds are also given for the problem of deciding if a linear ranking-function supported by a particular form of inductive invariant exists. For loops over integers, the problem is PSPACE-hard for convex polyhedral invariants and EXPSPACE-hard for downward-closed sets of natural numbers as invariants.

  3. Model of the distribution of functional tasks in a decentralized system of information processing and management of an oil and gas production administration

    Energy Technology Data Exchange (ETDEWEB)

    Abdullayev, A.A.; Kaplan, G.A.; Shakhnazarov, I.V.

    1982-01-01

    Examined are questions about the creation of a decentralized control system for an oil and gas production admininstration. To determine the composition and the locations of the equipment, the number and quality of the functions fulfilled by them, the presence of communications channels with the required throughputs, a mathematic model of Boolean program is proposed. Examined in the model are the variables which determine the relation of the task being solved to the technical equipment and to the solution level in a heirarchical control system, as well as the variables which describe the presence of a specific class of linkage between levels. Used as the target function is the maximum of effectivness of the decentralized system, which is the difference between the effect from the functioning of the system (with consideration of losses formed as a result of a break down of the technical equipment and the communications channels, as well as expenditures for its creation.

  4. Functional Boxplots

    KAUST Repository

    Sun, Ying

    2011-01-01

    This article proposes an informative exploratory tool, the functional boxplot, for visualizing functional data, as well as its generalization, the enhanced functional boxplot. Based on the center outward ordering induced by band depth for functional data, the descriptive statistics of a functional boxplot are: the envelope of the 50% central region, the median curve, and the maximum non-outlying envelope. In addition, outliers can be detected in a functional boxplot by the 1.5 times the 50% central region empirical rule, analogous to the rule for classical boxplots. The construction of a functional boxplot is illustrated on a series of sea surface temperatures related to the El Niño phenomenon and its outlier detection performance is explored by simulations. As applications, the functional boxplot and enhanced functional boxplot are demonstrated on children growth data and spatio-temporal U.S. precipitation data for nine climatic regions, respectively. This article has supplementary material online. © 2011 American Statistical Association.

  5. Functionalized Calixpyrroles

    DEFF Research Database (Denmark)

    Vargas-Zúñiga, Gabriela; Sessler, Jonathan; Bähring, Steffen

    2016-01-01

    as the extraction and transport of anionic species and ion pairs including cesium halide and sulfate salts. It is divided into seven sections. The first section describes the synthetic methods employed to functionalized calix[4]pyrrole. The second section focuses on functionalized calix[4]pyrroles that display...... enhanced anion binding properties compared to the non-functionalized parent system, octamethylcalix[4]pyrrole. The use of functionalized calix[4]pyrroles containing a fluorescent group or functionalized calix[4]pyrroles as building blocks for the preparation of stimulus-responsive materials is discussed...... and the eventual development of therapeutics that function via the transport of anions across cell membranes, are discussed....

  6. Conference on Commutative rings, integer-valued polynomials and polynomial functions

    CERN Document Server

    Frisch, Sophie; Glaz, Sarah; Commutative Algebra : Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions

    2014-01-01

    This volume presents a multi-dimensional collection of articles highlighting recent developments in commutative algebra. It also includes an extensive bibliography and lists a substantial number of open problems that point to future directions of research in the represented subfields. The contributions cover areas in commutative algebra that have flourished in the last few decades and are not yet well represented in book form. Highlighted topics and research methods include Noetherian and non- Noetherian ring theory as well as integer-valued polynomials and functions. Specific topics include: ·    Homological dimensions of Prüfer-like rings ·    Quasi complete rings ·    Total graphs of rings ·    Properties of prime ideals over various rings ·    Bases for integer-valued polynomials ·    Boolean subrings ·    The portable property of domains ·    Probabilistic topics in Intn(D) ·    Closure operations in Zariski-Riemann spaces of valuation domains ·    Stability of do...

  7. Entire functions

    CERN Document Server

    Markushevich, A I

    1966-01-01

    Entire Functions focuses on complex numbers and the algebraic operations on them and the basic principles of mathematical analysis.The book first elaborates on the concept of an entire function, including the natural generalization of the concept of a polynomial and power series. The text then takes a look at the maximum absolute value and the order of an entire function, as well as calculations for the coefficients of power series representing a given function, use of integrals, and complex numbers. The publication elaborates on the zeros of an entire function and the fundamen

  8. A new construction of highly nonlinear S-boxes

    DEFF Research Database (Denmark)

    Beelen, Peter; Leander, Gregor

    2012-01-01

    In this paper we give a new construction of highly nonlinear vectorial Boolean functions. This construction is based on coding theory, more precisely we use concatenation to construct Boolean functions from codes over $\\mathbb{F}_q$ containing a first-order generalized Reed–Muller code. As it turns...... out this construction has a very compact description in terms of Boolean functions, which is of independent interest. The construction allows one to design functions with better nonlinearities than known before....

  9. Reconfigurable Boolean logic using magnetic single-electron transistors

    Czech Academy of Sciences Publication Activity Database

    Gonzalez-Zalba, M.F.; Ciccarelli, C.; Zarbo, Liviu; Irvine, A.C.; Campion, R.C.; Gallagher, B. L.; Jungwirth, Tomáš; Ferguson, A.J.; Wunderlich, Joerg

    2015-01-01

    Roč. 10, č. 4 (2015), e0125142 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : single-electron transitor * reconfigurable logic * ferromagnetic semiconductor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.057, year: 2015

  10. Fitting Boolean networks from steady state perturbation data.

    Science.gov (United States)

    Almudevar, Anthony; McCall, Matthew N; McMurray, Helene; Land, Hartmut

    2011-10-05

    Gene perturbation experiments are commonly used for the reconstruction of gene regulatory networks. Typical experimental methodology imposes persistent changes on the network. The resulting data must therefore be interpreted as a steady state from an altered gene regulatory network, rather than a direct observation of the original network. In this article an implicit modeling methodology is proposed in which the unperturbed network of interest is scored by first modeling the persistent perturbation, then predicting the steady state, which may then be compared to the observed data. This results in a many-to-one inverse problem, so a computational Bayesian approach is used to assess model uncertainty. The methodology is first demonstrated on a number of synthetic networks. It is shown that the Bayesian approach correctly assigns high posterior probability to the network structure and steady state behavior. Further, it is demonstrated that where uncertainty of model features is indicated, the uncertainty may be accurately resolved with further perturbation experiments. The methodology is then applied to the modeling of a gene regulatory network using perturbation data from nine genes which have been shown to respond synergistically to known oncogenic mutations. A hypothetical model emerges which conforms to reported regulatory properties of these genes. Furthermore, the Bayesian methodology is shown to be consistent in the sense that multiple randomized applications of the fitting algorithm converge to an approximately common posterior density on the space of models. Such consistency is generally not feasible for algorithms which report only single models. We conclude that fully Bayesian methods, coupled with models which accurately account for experimental constraints, are a suitable tool for the inference of gene regulatory networks, in terms of accuracy, estimation of model uncertainty, and experimental design.

  11. Novel Prostate Cancer Pathway Modeling using Boolean Implication

    Science.gov (United States)

    2012-09-01

    cause of cancer deaths in men. Diagnosis and pathogenesis of this disease is poorly understood. Prostate specific antigen (PSA) test is still the...cells (Supplementary Fig. 13a,b). We also noticed that MUC2+/TFF3high cells, for the most part, did not express CFTR, the gene mutated in cystic ... fibrosis . The differential expression of DLL4 is of potential rele- vance to the clinical development of novel anti-tumor therapeutic agents directed

  12. Marking for Structure using Boolean Feedback | Louw | Journal for ...

    African Journals Online (AJOL)

    This paper presents evidence that marking student texts with well considered checklists is more effective than marking by hand. An experiment conducted on first-year students illustrated that the checklists developed to mark introductions, conclusions and paragraphs yielded better revision results than handwritten ...

  13. Evolution of a designless nanoparticle network into reconfigurable Boolean logic

    NARCIS (Netherlands)

    Bose, Saurabh; Lawrence, Celestine Preetham; Liu, Zhihua; Makarenko, K.S.; van Damme, Rudolf M.J.; Broersma, Haitze J.; van der Wiel, Wilfred Gerard

    2015-01-01

    Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on

  14. Non-Boolean computing with nanomagnets for computer vision applications.

    Science.gov (United States)

    Bhanja, Sanjukta; Karunaratne, D K; Panchumarthy, Ravi; Rajaram, Srinath; Sarkar, Sudeep

    2016-02-01

    The field of nanomagnetism has recently attracted tremendous attention as it can potentially deliver low-power, high-speed and dense non-volatile memories. It is now possible to engineer the size, shape, spacing, orientation and composition of sub-100 nm magnetic structures. This has spurred the exploration of nanomagnets for unconventional computing paradigms. Here, we harness the energy-minimization nature of nanomagnetic systems to solve the quadratic optimization problems that arise in computer vision applications, which are computationally expensive. By exploiting the magnetization states of nanomagnetic disks as state representations of a vortex and single domain, we develop a magnetic Hamiltonian and implement it in a magnetic system that can identify the salient features of a given image with more than 85% true positive rate. These results show the potential of this alternative computing method to develop a magnetic coprocessor that might solve complex problems in fewer clock cycles than traditional processors.

  15. Functional analysis

    CERN Document Server

    Kantorovich, L V

    1982-01-01

    Functional Analysis examines trends in functional analysis as a mathematical discipline and the ever-increasing role played by its techniques in applications. The theory of topological vector spaces is emphasized, along with the applications of functional analysis to applied analysis. Some topics of functional analysis connected with applications to mathematical economics and control theory are also discussed. Comprised of 18 chapters, this book begins with an introduction to the elements of the theory of topological spaces, the theory of metric spaces, and the theory of abstract measure space

  16. Functionalized amphipols

    DEFF Research Database (Denmark)

    Della Pia, Eduardo Antonio; Hansen, Randi Westh; Zoonens, Manuela

    2014-01-01

    Amphipols are amphipathic polymers that stabilize membrane proteins isolated from their native membrane. They have been functionalized with various chemical groups in the past years for protein labeling and protein immobilization. This large toolbox of functionalized amphipols combined...... with their interesting physico-chemical properties give opportunities to selectively add multiple functionalities to membrane proteins and to tune them according to the needs. This unique combination of properties makes them one of the most versatile strategies available today for exploiting membrane proteins onto...... surfaces for various applications in synthetic biology. This review summarizes the properties of functionalized amphipols suitable for synthetic biology approaches....

  17. Proposal for an All-Spin Artificial Neural Network: Emulating Neural and Synaptic Functionalities Through Domain Wall Motion in Ferromagnets.

    Science.gov (United States)

    Sengupta, Abhronil; Shim, Yong; Roy, Kaushik

    2016-12-01

    Non-Boolean computing based on emerging post-CMOS technologies can potentially pave the way for low-power neural computing platforms. However, existing work on such emerging neuromorphic architectures have either focused on solely mimicking the neuron, or the synapse functionality. While memristive devices have been proposed to emulate biological synapses, spintronic devices have proved to be efficient at performing the thresholding operation of the neuron at ultra-low currents. In this work, we propose an All-Spin Artificial Neural Network where a single spintronic device acts as the basic building block of the system. The device offers a direct mapping to synapse and neuron functionalities in the brain while inter-layer network communication is accomplished via CMOS transistors. To the best of our knowledge, this is the first demonstration of a neural architecture where a single nanoelectronic device is able to mimic both neurons and synapses. The ultra-low voltage operation of low resistance magneto-metallic neurons enables the low-voltage operation of the array of spintronic synapses, thereby leading to ultra-low power neural architectures. Device-level simulations, calibrated to experimental results, was used to drive the circuit and system level simulations of the neural network for a standard pattern recognition problem. Simulation studies indicate energy savings by  ∼  100× in comparison to a corresponding digital/analog CMOS neuron implementation.

  18. Cognitive Function

    Science.gov (United States)

    Because chemicals can adversely affect cognitive function in humans, considerable effort has been made to characterize their effects using animal models. Information from such models will be necessary to: evaluate whether chemicals identified as potentially neurotoxic by screenin...

  19. Functional unparsing

    DEFF Research Database (Denmark)

    Danvy, Olivier

    2000-01-01

    A string-formatting function such as printf in C seemingly requires dependent types, because its control string determines the rest of its arguments. Examples: formula here We show how changing the representation of the control string makes it possible to program printf in ML (which does not allow...... dependent types). The result is well typed and perceptibly more efficient than the corresponding library functions in Standard ML of New Jersey and in Caml....

  20. Functional Unparsing

    DEFF Research Database (Denmark)

    Danvy, Olivier

    1998-01-01

    A string-formatting function such as printf in C seemingly requires dependent types, because its control string determines the rest of its arguments. We show how changing the representation of the control string makes it possible to program printf in ML (which does not allow dependent types......). The result is well typed and perceptibly more efficient than the corresponding library functions in Standard ML of New Jersey and in Caml....

  1. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis.

    Science.gov (United States)

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-12-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or 'expressology', thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  2. interval functions

    Directory of Open Access Journals (Sweden)

    J. A. Chatfield

    1978-01-01

    Full Text Available Suppose N is a Banach space of norm |•| and R is the set of real numbers. All integrals used are of the subdivision-refinement type. The main theorem [Theorem 3] gives a representation of TH where H is a function from R×R to N such that H(p+,p+, H(p,p+, H(p−,p−, and H(p−,p each exist for each p and T is a bounded linear operator on the space of all such functions H. In particular we show that TH=(I∫abfHdα+∑i=1∞[H(xi−1,xi−1+−H(xi−1+,xi−1+]β(xi−1+∑i=1∞[H(xi−,xi−H(xi−,xi−]Θ(xi−1,xiwhere each of α, β, and Θ depend only on T, α is of bounded variation, β and Θ are 0 except at a countable number of points, fH is a function from R to N depending on H and {xi}i=1∞ denotes the points P in [a,b]. for which [H(p,p+−H(p+,p+]≠0 or [H(p−,p−H(p−,p−]≠0. We also define an interior interval function integral and give a relationship between it and the standard interval function integral.

  3. Bessel functions

    CERN Document Server

    Nambudiripad, K B M

    2014-01-01

    After presenting the theory in engineers' language without the unfriendly abstraction of pure mathematics, several illustrative examples are discussed in great detail to see how the various functions of the Bessel family enter into the solution of technically important problems. Axisymmetric vibrations of a circular membrane, oscillations of a uniform chain, heat transfer in circular fins, buckling of columns of varying cross-section, vibrations of a circular plate and current density in a conductor of circular cross-section are considered. The problems are formulated purely from physical considerations (using, for example, Newton's law of motion, Fourier's law of heat conduction electromagnetic field equations, etc.) Infinite series expansions, recurrence relations, manipulation of expressions involving Bessel functions, orthogonality and expansion in Fourier-Bessel series are also covered in some detail. Some important topics such as asymptotic expansions, generating function and Sturm-Lioville theory are r...

  4. Effectiveness of Strengthening Exercises for the Elderly with Low Back Pain to Improve Symptoms and Functions: A Systematic Review.

    Science.gov (United States)

    Ishak, Nor Azizah; Zahari, Zarina; Justine, Maria

    2016-01-01

    Objective. To determine the effect of strengthening exercises for older people with low back pain (LBP). Methods. This study is a systematic review of experimental study which evaluated the evidence regarding exercises for older people with LBP by using EBSCO Academic Search Premier, EBSCO EconLit, Science Direct, PUBMED, and PEDro from 2006 to 2016. Search strategy for each database was conducted by using keywords such as "low back pain", "older people", and "strengthening exercise". Boolean operators were used to combine keywords and manual exclusion was conducted to verify studies which met the inclusion criteria. The articles reviewed were evaluated and critically appraised by using PEDro scale and SPSS version 20 was used to analyze the data. Results. Three articles were found regarding strengthening exercise for older people with LBP whereas one study was conducted on multicomponent exercise. The mean, standard deviation, and variance of the PEDro score of all the studies were 5.67, 2.33, and 1.528, respectively. Overall, the qualities of all studies reviewed were fair. Two articles showed significant results when compared to control group (p < 0.05). Conclusions. Strengthening exercise is a beneficial treatment for older people with LBP in reducing pain intensity, disability, and improved functional performances.

  5. Effectiveness of Strengthening Exercises for the Elderly with Low Back Pain to Improve Symptoms and Functions: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Nor Azizah Ishak

    2016-01-01

    Full Text Available Objective. To determine the effect of strengthening exercises for older people with low back pain (LBP. Methods. This study is a systematic review of experimental study which evaluated the evidence regarding exercises for older people with LBP by using EBSCO Academic Search Premier, EBSCO EconLit, Science Direct, PUBMED, and PEDro from 2006 to 2016. Search strategy for each database was conducted by using keywords such as “low back pain”, “older people”, and “strengthening exercise”. Boolean operators were used to combine keywords and manual exclusion was conducted to verify studies which met the inclusion criteria. The articles reviewed were evaluated and critically appraised by using PEDro scale and SPSS version 20 was used to analyze the data. Results. Three articles were found regarding strengthening exercise for older people with LBP whereas one study was conducted on multicomponent exercise. The mean, standard deviation, and variance of the PEDro score of all the studies were 5.67, 2.33, and 1.528, respectively. Overall, the qualities of all studies reviewed were fair. Two articles showed significant results when compared to control group (p<0.05. Conclusions. Strengthening exercise is a beneficial treatment for older people with LBP in reducing pain intensity, disability, and improved functional performances.

  6. Algebraic functions

    CERN Document Server

    Bliss, Gilbert Ames

    1933-01-01

    This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t

  7. Functional neurosurgery

    African Journals Online (AJOL)

    term saving of money are the reasons why developing countries should be investing in functional neurosurgery units. Surgery for medical refractory epilepsy can save large amounts of money in the long run if one considers the cost of second and thirdline antiepileptic drugs and the associated morbidity of uncontrolled ...

  8. Functional hyposplenism.

    Science.gov (United States)

    Kirkineska, L; Perifanis, V; Vasiliadis, T

    2014-01-01

    Functional hyposplenism is a condition accompanying many diseases such as sickle cell disease, celiac disease, alcoholic liver disease, hepatic cirrhosis, lymphomas and autoimmune disorders. It is characterised mostly by defective immune responses against infectious agents, especially encapsulated organisms, since the spleen is thought to play an important role in the production and maturation of B-memory lymphocytes and other substances like opsonins, both of which are considered crucial elements of the immune system for fighting infections. It is also associated with thrombocytosis, which might lead to thromboembolic events. Functional hyposplenism is diagnosed by the presence of Howell-Jolly bodies and pitted erythrocytes in the peripheral blood smear, and by nuclear imaging modalities such as spleen scintigraphy with the use of Technetium-99m and/or spleen scintigraphy with the use of heat-damaged Technetium-99m labeled erythrocytes. Severe infections accompanying functional hyposplenism can lead to the overwhelming post infection syndrome, which can often be fatal. Identifying patients with functional hyposplenism is important because simple measures such as vaccination against common infective microorganisms (e.g. Streptococcus pneumonia, Neisseria meningitides and Haemophilous influenzae) and antibiotic therapy when needed are considered beneficial in diminishing the frequency and gravity of the infections accompanying the syndrome.

  9. Functional dyspepsia

    NARCIS (Netherlands)

    Kleibeuker, JH; Thijs, JC

    2004-01-01

    Purpose of review Functional dyspepsia is a common disorder, most of the time of unknown etiology and with variable pathophysiology. Therapy has been and still is largely empirical. Data from recent studies provide new clues for targeted therapy based on knowledge of etiology and pathophysiologic

  10. Functional Credentials

    Directory of Open Access Journals (Sweden)

    Deuber Dominic

    2018-04-01

    Full Text Available A functional credential allows a user to anonymously prove possession of a set of attributes that fulfills a certain policy. The policies are arbitrary polynomially computable predicates that are evaluated over arbitrary attributes. The key feature of this primitive is the delegation of verification to third parties, called designated verifiers. The delegation protects the privacy of the policy: A designated verifier can verify that a user satisfies a certain policy without learning anything about the policy itself. We illustrate the usefulness of this property in different applications, including outsourced databases with access control. We present a new framework to construct functional credentials that does not require (non-interactive zero-knowledge proofs. This is important in settings where the statements are complex and thus the resulting zero-knowledge proofs are not efficient. Our construction is based on any predicate encryption scheme and the security relies on standard assumptions. A complexity analysis and an experimental evaluation confirm the practicality of our approach.

  11. Lung function

    International Nuclear Information System (INIS)

    Sorichter, S.

    2009-01-01

    The term lung function is often restricted to the assessment of volume time curves measured at the mouth. Spirometry includes the assessment of lung volumes which can be mobilised with the corresponding flow-volume curves. In addition, lung volumes that can not be mobilised, such as the residual volume, or only partially as FRC and TLC can be measured by body plethysmography combined with the determination of the airway resistance. Body plethysmography allows the correct positioning of forced breathing manoeuvres on the volume-axis, e.g. before and after pharmacotherapy. Adding the CO single breath transfer factor (T LCO ), which includes the measurement of the ventilated lung volume using He, enables a clear diagnosis of different obstructive, restrictive or mixed ventilatory defects with and without trapped air. Tests of reversibility and provocation, as well as the assessment of inspiratory mouth pressures (PI max , P 0.1 ) help to classify the underlying disorder and to clarify treatment strategies. For further information and to complete the diagnostic of disturbances of the ventilation, diffusion and/or perfusion (capillar-)arterial bloodgases at rest and under physical strain sometimes amended by ergospirometry are recommended. Ideally, lung function measurements are amended by radiological and nuclear medicine techniques. (orig.) [de

  12. Functional Angioplasty

    Directory of Open Access Journals (Sweden)

    Rohit Tewari

    2013-01-01

    Full Text Available Coronary angiography underestimates or overestimates lesion severity, but still remains the cornerstone in the decision making for revascularization for an overwhelming majority of interventional cardiologists. Guidelines recommend and endorse non invasive functional evaluation ought to precede revascularization. In real world practice, this is adopted in less than 50% of patients who go on to have some form of revascularization. Fractional flow reserve (FFR is the ratio of maximal blood flow in a stenotic coronary relative to maximal flow in the same vessel, were it normal. Being independent of changes in heart rate, BP or prior infarction; and take into account the contribution of collateral blood flow. It is a majorly specific index with a reasonably high sensitivity (88%, specificity (100%, positive predictive value (100%, and overall accuracy (93%. Whilst FFR provides objective determination of ischemia and helps select appropriate candidates for revascularization (for both CABG and PCI in to cath lab itself before intervention, whereas intravascular ultrasound/optical coherence tomography guidance in PCI can secure the procedure by optimizing stent expansion. Functional angioplasty simply is incorporating both intravascular ultrasound and FFR into our daily Intervention practices.

  13. Functional Myelography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. R.; Park, S. K.; Kim, J. J. [Hanyang University College of Medicine, Seoul (Korea, Republic of); Jeon, H. J.; Jeon, H. S.; Kim, D. Y. [Gang Nam Hospital, Seoul (Korea, Republic of)

    1984-09-15

    Morphologic changes of spinal canal and dural sac during spinal movement (flexion-extension) were analysed and reported with the base of cross sectional anatomy, as early as 1942. After that, this movement was emphasized and used in myelography in many countries under the name of functional myelography, for accurate diagnosis of spinal stenosis as herniated disc, but nor used commonly in Korea. Authors analysed functional myelographic findings of 78 cases, 37 of normal and 41 of surgically confirmed herniated disc, to intend to confirm the necessity of spinal movement during myelography. The results were as follows; 1. In normal group, anterior border of dural sac is stright with flexion, but indented in extension at the level of intervertebral space and this indentation is less prominent at L5-S1. 2. In normal group with extension, posterior indentation of dural sac is more prominent at the level of intervertebral space than body, A-P diameter of dural sac is narrowed all the level of intervertebral space except L5-S1,and dural sac moved anteriorly (near to the posterior portion of spinal body or intervertebral space) at the level L5-S1 and all spinal body. 3. In disc patient, anterior indentation of dural sac is persist in both views (flexion and extension) and much more exaggerated with extension, but less prominent at L5-S1. 4. In herniated disc patient with extension, anterior movement of anterior dural border at the level of L5-S1 is much decreased than normal.

  14. Functional Myelography

    International Nuclear Information System (INIS)

    Lee, S. R.; Park, S. K.; Kim, J. J.; Jeon, H. J.; Jeon, H. S.; Kim, D. Y.

    1984-01-01

    Morphologic changes of spinal canal and dural sac during spinal movement (flexion-extension) were analysed and reported with the base of cross sectional anatomy, as early as 1942. After that, this movement was emphasized and used in myelography in many countries under the name of functional myelography, for accurate diagnosis of spinal stenosis as herniated disc, but nor used commonly in Korea. Authors analysed functional myelographic findings of 78 cases, 37 of normal and 41 of surgically confirmed herniated disc, to intend to confirm the necessity of spinal movement during myelography. The results were as follows; 1. In normal group, anterior border of dural sac is stright with flexion, but indented in extension at the level of intervertebral space and this indentation is less prominent at L5-S1. 2. In normal group with extension, posterior indentation of dural sac is more prominent at the level of intervertebral space than body, A-P diameter of dural sac is narrowed all the level of intervertebral space except L5-S1,and dural sac moved anteriorly (near to the posterior portion of spinal body or intervertebral space) at the level L5-S1 and all spinal body. 3. In disc patient, anterior indentation of dural sac is persist in both views (flexion and extension) and much more exaggerated with extension, but less prominent at L5-S1. 4. In herniated disc patient with extension, anterior movement of anterior dural border at the level of L5-S1 is much decreased than normal.

  15. Functional Circuitry on Commercial Fabric via Textile-Compatible Nanoscale Film Coating Process for Fibertronics.

    Science.gov (United States)

    Bae, Hagyoul; Jang, Byung Chul; Park, Hongkeun; Jung, Soo-Ho; Lee, Hye Moon; Park, Jun-Young; Jeon, Seung-Bae; Son, Gyeongho; Tcho, Il-Woong; Yu, Kyoungsik; Im, Sung Gap; Choi, Sung-Yool; Choi, Yang-Kyu

    2017-10-11

    Fabric-based electronic textiles (e-textiles) are the fundamental components of wearable electronic systems, which can provide convenient hand-free access to computer and electronics applications. However, e-textile technologies presently face significant technical challenges. These challenges include difficulties of fabrication due to the delicate nature of the materials, and limited operating time, a consequence of the conventional normally on computing architecture, with volatile power-hungry electronic components, and modest battery storage. Here, we report a novel poly(ethylene glycol dimethacrylate) (pEGDMA)-textile memristive nonvolatile logic-in-memory circuit, enabling normally off computing, that can overcome those challenges. To form the metal electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al) using a solution dip coating method, and the pEGDMA was conformally applied using an initiated chemical vapor deposition process. The intersection of two Al/pEGDMA coated yarns becomes a unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar array, was interwoven using a grid of Al/pEGDMA coated yarns and untreated yarns. The former were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We experimentally demonstrated for the first time that the basic Boolean functions, including a half adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with the ETM crossbar array on a fabric substrate. This research may represent a breakthrough development for practical wearable and smart fibertronics.

  16. Functional analysis

    CERN Document Server

    Kesavan, S

    2009-01-01

    The material presented in this book is suited for a first course in Functional Analysis which can be followed by Masters students. While covering all the standard material expected of such a course, efforts have been made to illustrate the use of various theorems via examples taken from differential equations and the calculus of variations, either through brief sections or through exercises. In fact, this book will be particularly useful for students who would like to pursue a research career in the applications of mathematics. The book includes a chapter on weak and weak topologies and their applications to the notions of reflexivity, separability and uniform convexity. The chapter on the Lebesgue spaces also presents the theory of one of the simplest classes of Sobolev spaces. The book includes a chapter on compact operators and the spectral theory for compact self-adjoint operators on a Hilbert space. Each chapter has large collection of exercises at the end. These illustrate the results of the text, show ...

  17. Functional Kaolinite.

    Science.gov (United States)

    Detellier, Christian

    2018-01-04

    The world resources of all clays are extremely large. Among the various types of clays, the world mine production of kaolin in 2016 was 37.0 Mt, the largest mined clay. Kaolin is traditionally used in ceramics, refractories and as paper coating and filling. But kaolin, as it is demonstrated in this paper, has a bright potential for use in non-traditional, high value-added, applications. This is particularly true for its principal component: the mineral species kaolinite which has a chemical structure allowing its functionalization, leading to a variety of potential applications. Kaolinite is a layered 1 : 1 clay mineral, the layer being made of two different sheets, a tetrahedral silica sheet and an octahedral alumina sheet. Large dipole-dipole interactions, in addition to a network of H-bonds, link the siloxane surface of a layer to the aluminol surface of another layer, making intercalation of guest species in kaolinite challenging. There is however a limited number of molecular units (molecules or salts) that can directly intercalate in kaolinite to form "pre-intercalates". Once intercalated these molecular units can be exchanged by a large number and variety of guests, providing access to the interlayer space of kaolinite, and to its reactive aluminol internal surfaces. The intercalation of molecules of pharmacological interest showed the potential of kaolinite to act as a slow-releasing agent for drugs, and the intercalation of polymers resulted in the creation of intercalated nanocomposites. The intercalation of ionic liquids gave materials with ionic conductivity properties in the solid-state. Intercalates are however unstable in water. One needed to make these organo-inorgano nanohybrid materials resistant to hydrolysis and more thermally stable. The network of aluminol groups on the internal surfaces of kaolinite offers the opportunity to design and create controlled organo-inorgano nanohybrid materials, taking advantage of their reactivity, in

  18. Special functions & their applications

    CERN Document Server

    Lebedev, N N

    1972-01-01

    Famous Russian work discusses the application of cylinder functions and spherical harmonics; gamma function; probability integral and related functions; Airy functions; hyper-geometric functions; more. Translated by Richard Silverman.

  19. Functional Programming in R

    DEFF Research Database (Denmark)

    Mailund, Thomas

    Master functions and discover how to write functional programs in R. In this book, you'll make your functions pure by avoiding side-effects; you’ll write functions that manipulate other functions, and you’ll construct complex functions using simpler functions as building blocks. In Functional...... Programming in R, you’ll see how we can replace loops, which can have side-effects, with recursive functions that can more easily avoid them. In addition, the book covers why you shouldn't use recursion when loops are more efficient and how you can get the best of both worlds. Functional programming...... functions by combining simpler functions. You will: Write functions in R including infix operators and replacement functions Create higher order functions Pass functions to other functions and start using functions as data you can manipulate Use Filer, Map and Reduce functions to express the intent behind...

  20. A composition theorem for decision tree complexity

    OpenAIRE

    Montanaro, Ashley

    2013-01-01

    We completely characterise the complexity in the decision tree model of computing composite relations of the form h = g(f^1,...,f^n), where each relation f^i is boolean-valued. Immediate corollaries include a direct sum theorem for decision tree complexity and a tight characterisation of the decision tree complexity of iterated boolean functions.

  1. Functional Training Revisited.

    Science.gov (United States)

    Siff, Mel C.

    2002-01-01

    Asserts that though functional training is vital in all sporting preparation, it is only one aspect of the overall process. The paper defines functional training; discusses facets of functionality, functionality and balancing drills, and functional training and periodization; and concludes that functionality is best defined in terms of the outcome…

  2. Functional Programming in R

    DEFF Research Database (Denmark)

    Mailund, Thomas

    2017-01-01

    Master functions and discover how to write functional programs in R. In this book, you'll make your functions pure by avoiding side-effects; you’ll write functions that manipulate other functions, and you’ll construct complex functions using simpler functions as building blocks. In Functional...... Programming in R, you’ll see how we can replace loops, which can have side-effects, with recursive functions that can more easily avoid them. In addition, the book covers why you shouldn't use recursion when loops are more efficient and how you can get the best of both worlds. Functional programming...

  3. [Psychological function in aging].

    Science.gov (United States)

    Wada, Kenji; Yamamoto, Mikie; Nakashima, Kenji

    2013-10-01

    Physical function was declined in aging as well as sensory function in human. Motor slowness and unbalance gait occur as well as decline of ability visual acuity and hearing let elderly people live in limited daily activity. Psychological functions are also thought to be decline in aging. In International Classification of Functioning, Disability and Health(ICF), psychological functions are classified into attention, memory, psychomotor, emotion, perception, thought, higher-level cognitive functions, language, calculation, sequencing complex movements, experience of self and time functions and unspecified functions. It is difficult to assess an individual psychological function itself, because some functions may affect each other and results of evaluations of a psychological function may not represent the meaning of the function. There were numerous reports on physical function in aging in a cross sectional or a longitudinal study design. In this article, we review changes of psychological function in aging.

  4. Generalized Probability Functions

    Directory of Open Access Journals (Sweden)

    Alexandre Souto Martinez

    2009-01-01

    Full Text Available From the integration of nonsymmetrical hyperboles, a one-parameter generalization of the logarithmic function is obtained. Inverting this function, one obtains the generalized exponential function. Motivated by the mathematical curiosity, we show that these generalized functions are suitable to generalize some probability density functions (pdfs. A very reliable rank distribution can be conveniently described by the generalized exponential function. Finally, we turn the attention to the generalization of one- and two-tail stretched exponential functions. We obtain, as particular cases, the generalized error function, the Zipf-Mandelbrot pdf, the generalized Gaussian and Laplace pdf. Their cumulative functions and moments were also obtained analytically.

  5. Functionality and homogeneity.

    NARCIS (Netherlands)

    2011-01-01

    Functionality and homogeneity are two of the five Sustainable Safety principles. The functionality principle aims for roads to have but one exclusive function and distinguishes between traffic function (flow) and access function (residence). The homogeneity principle aims at differences in mass,

  6. Investigating body function

    International Nuclear Information System (INIS)

    Monks, R.; Riley, A.L.M.

    1981-01-01

    This invention relates to the investigation of body function, especially small bowel function but also liver function, using bile acids and bile salts or their metabolic precursors labelled with radio isotopes and selenium or tellurium. (author)

  7. VirPLC: a Methodology to Developing Capacities, Skills and Self-esteem by the Logical Stimulus with a Simple, Functional and Dynamic Tool

    Directory of Open Access Journals (Sweden)

    Antoni FERRER ROJAS

    2017-07-01

    Full Text Available The proliferation of programming environments such as Logo, Minecraft, Code or Scratch is a consequence of the effectiveness of a graphic language for the introduction of students in programming but, some of the newer systems, such as App Inventor, are slow in the basic interaction: “make it” / “test it”. I propose an alternative for students from the age of 15. It is called VirPLC and it is oriented to something as functional as the systems control, through two screens: one with software to program and, another one with animated hardware to simulate it. VirPLC does not pretend to turn the user into an expert in automation, but to facilitate a first contact between the student and the logic world, by posing problems in practical, near and real control systems such as: crane control; TV competition; alarm; supermarket door; garage door; traffic light; lift... The student raises both the logical operativity, as well as the hardware requirements (inputs and outputs. The software works in an evolutionary and repeated way: “make it” / “test it” and consolidate to improve it. It allows the evolution in levels of greater complexity, where it is debugged until acquiring a solid “product”, functional, safe, versatile and installable. VirPLC step by step “hooks” students who pursue challenges and offers an alternative to apply after some Boolean Algebra notions, and before written programming, with objects, events and classes. VirPLC is freeware, it works under Windows (from XP to W10 and can be downloaded from the author’s WEB. At install time, it adds a folder with more than 30 examples often deliberately incomplete, along with a mini-course with several proposed practices.

  8. Random functions and turbulence

    CERN Document Server

    Panchev, S

    1971-01-01

    International Series of Monographs in Natural Philosophy, Volume 32: Random Functions and Turbulence focuses on the use of random functions as mathematical methods. The manuscript first offers information on the elements of the theory of random functions. Topics include determination of statistical moments by characteristic functions; functional transformations of random variables; multidimensional random variables with spherical symmetry; and random variables and distribution functions. The book then discusses random processes and random fields, including stationarity and ergodicity of random

  9. Algorithms for Quantum Branching Programs Based on Fingerprinting

    Directory of Open Access Journals (Sweden)

    Farid Ablayev

    2009-11-01

    Full Text Available In the paper we develop a method for constructing quantum algorithms for computing Boolean functions by quantum ordered read-once branching programs (quantum OBDDs. Our method is based on fingerprinting technique and representation of Boolean functions by their characteristic polynomials. We use circuit notation for branching programs for desired algorithms presentation. For several known functions our approach provides optimal QOBDDs. Namely we consider such functions as Equality, Palindrome, and Permutation Matrix Test. We also propose a generalization of our method and apply it to the Boolean variant of the Hidden Subgroup Problem.

  10. Matrix formalism to describe functional states of transcriptional regulatory systems.

    Directory of Open Access Journals (Sweden)

    Erwin P Gianchandani

    2006-08-01

    Full Text Available Complex regulatory networks control the transcription state of a genome. These transcriptional regulatory networks (TRNs have been mathematically described using a Boolean formalism, in which the state of a gene is represented as either transcribed or not transcribed in response to regulatory signals. The Boolean formalism results in a series of regulatory rules for the individual genes of a TRN that in turn can be used to link environmental cues to the transcription state of a genome, thereby forming a complete transcriptional regulatory system (TRS. Herein, we develop a formalism that represents such a set of regulatory rules in a matrix form. Matrix formalism allows for the systemic characterization of the properties of a TRS and facilitates the computation of the transcriptional state of the genome under any given set of environmental conditions. Additionally, it provides a means to incorporate mechanistic detail of a TRS as it becomes available. In this study, the regulatory network matrix, R, for a prototypic TRS is characterized and the fundamental subspaces of this matrix are described. We illustrate how the matrix representation of a TRS coupled with its environment (R* allows for a sampling of all possible expression states of a given network, and furthermore, how the fundamental subspaces of the matrix provide a way to study key TRS features and may assist in experimental design.

  11. Every storage function is a state function

    NARCIS (Netherlands)

    Trentelman, H.L.; Willems, J.C.

    1997-01-01

    It is shown that for linear dynamical systems with quadratic supply rates, a storage function can always be written as a quadratic function of the state of an associated linear dynamical system. This dynamical system is obtained by combining the dynamics of the original system with the dynamics of

  12. The Interpretive Function

    DEFF Research Database (Denmark)

    Agerbo, Heidi

    2017-01-01

    Approximately a decade ago, it was suggested that a new function should be added to the lexicographical function theory: the interpretive function(1). However, hardly any research has been conducted into this function, and though it was only suggested that this new function was relevant to incorp......Approximately a decade ago, it was suggested that a new function should be added to the lexicographical function theory: the interpretive function(1). However, hardly any research has been conducted into this function, and though it was only suggested that this new function was relevant...... to incorporate into lexicographical theory, some scholars have since then assumed that this function exists(2), including the author of this contribution. In Agerbo (2016), I present arguments supporting the incorporation of the interpretive function into the function theory and suggest how non-linguistic signs...... can be treated in specific dictionary articles. However, in the current article, due to the results of recent research, I argue that the interpretive function should not be considered an individual main function. The interpretive function, contrary to some of its definitions, is not connected...

  13. Functional Object Analysis

    DEFF Research Database (Denmark)

    Raket, Lars Lau

    -effect formulations, where the observed functional signal is assumed to consist of both fixed and random functional effects. This thesis takes the initial steps toward the development of likelihood-based methodology for functional objects. We first consider analysis of functional data defined on high...

  14. Cryptographic Hash Functions

    DEFF Research Database (Denmark)

    Thomsen, Søren Steffen

    2009-01-01

    functions have received a huge amount of attention due to new attacks on widely used hash functions. This PhD thesis, having the title "Cryptographic Hash Functions", contains both a general description of cryptographic hash functions, including their applications and expected properties as well as some...

  15. Functional Programming in R

    DEFF Research Database (Denmark)

    Mailund, Thomas

    Master functions and discover how to write functional programs in R. In this book, you'll make your functions pure by avoiding side-effects; you’ll write functions that manipulate other functions, and you’ll construct complex functions using simpler functions as building blocks. In Functional...... Programming in R, you’ll see how we can replace loops, which can have side-effects, with recursive functions that can more easily avoid them. In addition, the book covers why you shouldn't use recursion when loops are more efficient and how you can get the best of both worlds. Functional programming...... is a style of programming, like object-oriented programming, but one that focuses on data transformations and calculations rather than objects and state. Where in object-oriented programming you model your programs by describing which states an object can be in and how methods will reveal or modify...

  16. The Interpretive Function

    DEFF Research Database (Denmark)

    Agerbo, Heidi

    2017-01-01

    to acting and therefore the only difference between reception and interpretation is that they work with different types of sign. However, the type of sign is not relevant for a function, or rather, it should not be a criterion for distinguishing between functions. The lemma selection for the communicative......Approximately a decade ago, it was suggested that a new function should be added to the lexicographical function theory: the interpretive function(1). However, hardly any research has been conducted into this function, and though it was only suggested that this new function was relevant...... to incorporate into lexicographical theory, some scholars have since then assumed that this function exists(2), including the author of this contribution. In Agerbo (2016), I present arguments supporting the incorporation of the interpretive function into the function theory and suggest how non-linguistic signs...

  17. Multilayer Neural Networks with Extensively Many Hidden Units

    International Nuclear Information System (INIS)

    Rosen-Zvi, Michal; Engel, Andreas; Kanter, Ido

    2001-01-01

    The information processing abilities of a multilayer neural network with a number of hidden units scaling as the input dimension are studied using statistical mechanics methods. The mapping from the input layer to the hidden units is performed by general symmetric Boolean functions, whereas the hidden layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the space of Boolean functions as order parameter, the storage capacity is found to scale with the logarithm of the number of implementable Boolean functions. The generalization behavior is smooth for continuous couplings and shows a discontinuous transition to perfect generalization for discrete ones

  18. Sampling functions for geophysics

    Science.gov (United States)

    Giacaglia, G. E. O.; Lunquist, C. A.

    1972-01-01

    A set of spherical sampling functions is defined such that they are related to spherical-harmonic functions in the same way that the sampling functions of information theory are related to sine and cosine functions. An orderly distribution of (N + 1) squared sampling points on a sphere is given, for which the (N + 1) squared spherical sampling functions span the same linear manifold as do the spherical-harmonic functions through degree N. The transformations between the spherical sampling functions and the spherical-harmonic functions are given by recurrence relations. The spherical sampling functions of two arguments are extended to three arguments and to nonspherical reference surfaces. Typical applications of this formalism to geophysical topics are sketched.

  19. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  20. A Blue Lagoon Function

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    2007-01-01

    We consider a specific function of two variables whose graph surface resembles a blue lagoon. The function has a saddle point $p$, but when the function is restricted to any given straight line through $p$ it has a {\\em{strict local minimum}} along that line at $p$.......We consider a specific function of two variables whose graph surface resembles a blue lagoon. The function has a saddle point $p$, but when the function is restricted to any given straight line through $p$ it has a {\\em{strict local minimum}} along that line at $p$....

  1. Scattering function S (Q, w), correlation functions

    International Nuclear Information System (INIS)

    Binder, K.

    1978-01-01

    The following subjects are dealt with in this paper: 1) Two-Particle problem in quantum mechanics and inelastic scattering 2) The doubly differential cross section for many-particle systems 3) The van Hove transformation and the scattering funktion S (Q, w) 4) Relation between scattering functions and correlation functions 5) Examples: ideal gas, liquids 6) Differential cross section, sum rules, convolution approximation. (orig.) [de

  2. Functional Median Polish

    KAUST Repository

    Sun, Ying

    2012-08-03

    This article proposes functional median polish, an extension of univariate median polish, for one-way and two-way functional analysis of variance (ANOVA). The functional median polish estimates the functional grand effect and functional main factor effects based on functional medians in an additive functional ANOVA model assuming no interaction among factors. A functional rank test is used to assess whether the functional main factor effects are significant. The robustness of the functional median polish is demonstrated by comparing its performance with the traditional functional ANOVA fitted by means under different outlier models in simulation studies. The functional median polish is illustrated on various applications in climate science, including one-way and two-way ANOVA when functional data are either curves or images. Specifically, Canadian temperature data, U. S. precipitation observations and outputs of global and regional climate models are considered, which can facilitate the research on the close link between local climate and the occurrence or severity of some diseases and other threats to human health. © 2012 International Biometric Society.

  3. Ecological Functions of Landscapes

    Science.gov (United States)

    Kiryushin, V. I.

    2018-01-01

    Ecological functions of landscapes are considered a system of processes ensuring the development, preservation, and evolution of ecosystems and the biosphere as a whole. The concept of biogeocenosis can be considered a model that integrates biotic and environmental functions. The most general biogeocenotic functions specify the biodiversity, biotic links, self-organization, and evolution of ecosystems. Close interaction between biocenosis and the biotope (ecotope) is ensured by the continuous exchange of matter, energy, and information. Ecotope determines the biocenosis. The group of ecotopic functions includes atmospheric (gas exchange, heat exchange, hydroatmospheric, climate-forming), lithospheric (geodynamic, geophysical, and geochemical), hydrologic and hydrogeologic functions of landscape and ecotopic functions of soils. Bioecological functions emerge as a result of the biotope and ecotope interaction; these are the bioproductive, destructive, organoaccumulative, biochemical (gas, concentration, redox, biochemical, biopedological), pedogenetic, and energy functions

  4. Functionalized diamond nanoparticles

    KAUST Repository

    Beaujuge, Pierre M.

    2014-10-21

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  5. Integrals of Bessel functions

    OpenAIRE

    Babusci, D.; Dattoli, G.; Germano, B.; Martinelli, M. R.; Ricci, P. E.

    2011-01-01

    We use the operator method to evaluate a class of integrals involving Bessel or Bessel-type functions. The technique we propose is based on the formal reduction of these family of functions to Gaussians.

  6. Adding functionality to garments

    CSIR Research Space (South Africa)

    Hunter, L

    2014-11-01

    Full Text Available various functionalities, such as retention of appearance, durability, comfort, handle and tailorability can be enhanced in garments. The tests used to assess and quantify the different functionalities are described....

  7. Smart hydrogel functional materials

    CERN Document Server

    Chu, Liang-Yin; Ju, Xiao-Jie

    2014-01-01

    This book systematically introduces smart hydrogel functional materials with the configurations ranging from hydrogels to microgels. It serves as an excellent reference for designing and fabricating artificial smart hydrogel functional materials.

  8. Functional Python programming

    CERN Document Server

    Lott, Steven

    2015-01-01

    This book is for developers who want to use Python to write programs that lean heavily on functional programming design patterns. You should be comfortable with Python programming, but no knowledge of functional programming paradigms is needed.

  9. and chebyshev functions

    Directory of Open Access Journals (Sweden)

    Mohsen Razzaghi

    2000-01-01

    Full Text Available A direct method for finding the solution of variational problems using a hybrid function is discussed. The hybrid functions which consist of block-pulse functions plus Chebyshev polynomials are introduced. An operational matrix of integration and the integration of the cross product of two hybrid function vectors are presented and are utilized to reduce a variational problem to the solution of an algebraic equation. Illustrative examples are included to demonstrate the validity and applicability of the technique.

  10. Pseudolinear functions and optimization

    CERN Document Server

    Mishra, Shashi Kant

    2015-01-01

    Pseudolinear Functions and Optimization is the first book to focus exclusively on pseudolinear functions, a class of generalized convex functions. It discusses the properties, characterizations, and applications of pseudolinear functions in nonlinear optimization problems.The book describes the characterizations of solution sets of various optimization problems. It examines multiobjective pseudolinear, multiobjective fractional pseudolinear, static minmax pseudolinear, and static minmax fractional pseudolinear optimization problems and their results. The authors extend these results to locally

  11. Degenerate Euler zeta function

    OpenAIRE

    Kim, Taekyun

    2015-01-01

    Recently, T. Kim considered Euler zeta function which interpolates Euler polynomials at negative integer (see [3]). In this paper, we study degenerate Euler zeta function which is holomorphic function on complex s-plane associated with degenerate Euler polynomials at negative integers.

  12. Managing Functional Power

    DEFF Research Database (Denmark)

    Rosenstand, Claus Andreas Foss; Laursen, Per Kyed

    2013-01-01

    How does one manage functional power relations between leading functions in vision driven digital media creation, and this from idea to master during the creation cycle? Functional power is informal, and it is understood as roles, e.g. project manager, that provide opportunities to contribute...

  13. On Functional Calculus Estimates

    NARCIS (Netherlands)

    Schwenninger, F.L.

    2015-01-01

    This thesis presents various results within the field of operator theory that are formulated in estimates for functional calculi. Functional calculus is the general concept of defining operators of the form $f(A)$, where f is a function and $A$ is an operator, typically on a Banach space. Norm

  14. Automatic differentiation of functions

    International Nuclear Information System (INIS)

    Douglas, S.R.

    1990-06-01

    Automatic differentiation is a method of computing derivatives of functions to any order in any number of variables. The functions must be expressible as combinations of elementary functions. When evaluated at specific numerical points, the derivatives have no truncation error and are automatically found. The method is illustrated by simple examples. Source code in FORTRAN is provided

  15. Operations Between Functions

    DEFF Research Database (Denmark)

    Gardner, Richard J.; Kiderlen, Markus

    A structural theory of operations between real-valued (or extended-real-valued) functions on a nonempty subset A of Rn is initiated. It is shown, for example, that any operation ∗ on a cone of functions containing the constant functions, which is pointwise, positively homogeneous, monotonic...

  16. Generating generic functions

    NARCIS (Netherlands)

    Jeuring, J.T.; Rodriquez, A.; Smeding, G.

    2006-01-01

    We present an approach to the generation of generic functions from user-provided specifications. The specifications consist of the type of a generic function, examples of instances that it should “match” when specialized, and properties that the generic function should satisfy. We use the

  17. Phylogenetic molecular function annotation

    International Nuclear Information System (INIS)

    Engelhardt, Barbara E; Jordan, Michael I; Repo, Susanna T; Brenner, Steven E

    2009-01-01

    It is now easier to discover thousands of protein sequences in a new microbial genome than it is to biochemically characterize the specific activity of a single protein of unknown function. The molecular functions of protein sequences have typically been predicted using homology-based computational methods, which rely on the principle that homologous proteins share a similar function. However, some protein families include groups of proteins with different molecular functions. A phylogenetic approach for predicting molecular function (sometimes called 'phylogenomics') is an effective means to predict protein molecular function. These methods incorporate functional evidence from all members of a family that have functional characterizations using the evolutionary history of the protein family to make robust predictions for the uncharacterized proteins. However, they are often difficult to apply on a genome-wide scale because of the time-consuming step of reconstructing the phylogenies of each protein to be annotated. Our automated approach for function annotation using phylogeny, the SIFTER (Statistical Inference of Function Through Evolutionary Relationships) methodology, uses a statistical graphical model to compute the probabilities of molecular functions for unannotated proteins. Our benchmark tests showed that SIFTER provides accurate functional predictions on various protein families, outperforming other available methods.

  18. Expanding Pseudorandom Functions

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Nielsen, Jesper Buus

    2002-01-01

    Given any weak pseudorandom function, we present a general and efficient technique transforming such a function to a new weak pseudorandom function with an arbitrary length output. This implies, among other things, an encryption mode for block ciphers. The mode is as efficient as known (and widely...

  19. Clinical functional MRI. Presurgical functional neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Stippich, C. (ed.) [Heidelberg Univ. (Germany). Div. of Neuroradiology

    2007-07-01

    Functional magnetic resonance imaging (fMRI) permits noninvasive imaging of the ''human brain at work'' under physiological conditions. This is the first textbook on clinical fMRI. It is devoted to preoperative fMRI in patients with brain tumors and epilepsies, which are the most well-established clinical applications. By localizing and lateralizing specific brain functions, as well as epileptogenic zones, fMRI facilitates the selection of a safe treatment and the planning and performance of function-preserving neurosurgery. State of the art fMRI procedures are presented, with detailed consideration of the physiological and methodological background, imaging and data processing, normal and pathological findings, diagnostic possibilities and limitations, and other related techniques. All chapters are written by recognized experts in their fields, and the book is designed to be of value to beginners, trained clinicians and experts alike. (orig.)

  20. Nonparametric Transfer Function Models

    Science.gov (United States)

    Liu, Jun M.; Chen, Rong; Yao, Qiwei

    2009-01-01

    In this paper a class of nonparametric transfer function models is proposed to model nonlinear relationships between ‘input’ and ‘output’ time series. The transfer function is smooth with unknown functional forms, and the noise is assumed to be a stationary autoregressive-moving average (ARMA) process. The nonparametric transfer function is estimated jointly with the ARMA parameters. By modeling the correlation in the noise, the transfer function can be estimated more efficiently. The parsimonious ARMA structure improves the estimation efficiency in finite samples. The asymptotic properties of the estimators are investigated. The finite-sample properties are illustrated through simulations and one empirical example. PMID:20628584

  1. Implementing function spreadsheets

    DEFF Research Database (Denmark)

    Sestoft, Peter

    2008-01-01

    : that of turning an expression into a named function. Hence they proposed a way to define a function in terms of a worksheet with designated input and output cells; we shall call it a function sheet. The goal of our work is to develop implementations of function sheets and study their application to realistic...... examples. Therefore, we are also developing a simple yet comprehensive spreadsheet core implementation for experimentation with this technology. Here we report briefly on our experiments with function sheets as well as other uses of our spreadsheet core implementation....

  2. Transfer function combinations

    KAUST Repository

    Zhou, Liang

    2012-10-01

    Direct volume rendering has been an active area of research for over two decades. Transfer function design remains a difficult task since current methods, such as traditional 1D and 2D transfer functions, are not always effective for all data sets. Various 1D or 2D transfer function spaces have been proposed to improve classification exploiting different aspects, such as using the gradient magnitude for boundary location and statistical, occlusion, or size metrics. In this paper, we present a novel transfer function method which can provide more specificity for data classification by combining different transfer function spaces. In this work, a 2D transfer function can be combined with 1D transfer functions which improve the classification. Specifically, we use the traditional 2D scalar/gradient magnitude, 2D statistical, and 2D occlusion spectrum transfer functions and combine these with occlusion and/or size-based transfer functions to provide better specificity. We demonstrate the usefulness of the new method by comparing to the following previous techniques: 2D gradient magnitude, 2D occlusion spectrum, 2D statistical transfer functions and 2D size based transfer functions. © 2012 Elsevier Ltd.

  3. Data structures theory and practice

    CERN Document Server

    Berztiss, A T

    1971-01-01

    Computer Science and Applied Mathematics: Data Structures: Theory and Practice focuses on the processes, methodologies, principles, and approaches involved in data structures, including algorithms, decision trees, Boolean functions, lattices, and matrices. The book first offers information on set theory, functions, and relations, and graph theory. Discussions focus on linear formulas of digraphs, isomorphism of digraphs, basic definitions in the theory of digraphs, Boolean functions and forms, lattices, indexed sets, algebra of sets, and order pair and related concepts. The text then examines

  4. Operator Lipschitz functions

    Science.gov (United States)

    Aleksandrov, A. B.; Peller, V. V.

    2016-08-01

    The goal of this survey is a comprehensive study of operator Lipschitz functions. A continuous function f on the real line {R} is said to be operator Lipschitz if \\Vert f(A)-f(B)\\Vert≤slant{const}\\Vert A-B\\Vert for arbitrary self-adjoint operators A and B. Sufficient conditions and necessary conditions are given for operator Lipschitzness. The class of operator differentiable functions on {R} is also studied. Further, operator Lipschitz functions on closed subsets of the plane are considered, and the class of commutator Lipschitz functions on such subsets is introduced. An important role for the study of such classes of functions is played by double operator integrals and Schur multipliers. Bibliography: 77 titles.

  5. Cryptographic Hash Functions

    DEFF Research Database (Denmark)

    Gauravaram, Praveen; Knudsen, Lars Ramkilde

    2010-01-01

    Cryptographic hash functions are an important tool of cryptography and play a fundamental role in efficient and secure information processing. A hash function processes an arbitrary finite length input message to a fixed length output referred to as the hash value. As a security requirement, a hash...... important applications has also been analysed. This successful cryptanalysis of the standard hash functions has made National Institute of Standards and Technology (NIST), USA to initiate an international public competition to select the most secure and efficient hash function as the future hash function...... value should not serve as an image for two distinct input messages and it should be difficult to find the input message from a given hash value. Secure hash functions serve data integrity, non-repudiation and authenticity of the source in conjunction with the digital signature schemes. Keyed hash...

  6. Pair Correlation Function Integrals

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; O'Connell, John P.; Peters, Günther H.J.

    2011-01-01

    We describe a method for extending radial distribution functions obtained from molecular simulations of pure and mixed molecular fluids to arbitrary distances. The method allows total correlation function integrals to be reliably calculated from simulations of relatively small systems. The long-d...... distribution function has structure beyond the sampling limit imposed by the system size, the integration is more reliable, and usually more accurate, than simple integral truncation.......We describe a method for extending radial distribution functions obtained from molecular simulations of pure and mixed molecular fluids to arbitrary distances. The method allows total correlation function integrals to be reliably calculated from simulations of relatively small systems. The long......, and J. Abildskov, Mol. Simul. 36, 1243 (2010); Fluid Phase Equilib. 302, 32 (2011)], but describe here its theoretical basis more thoroughly and derive long-distance approximations for the direct correlation functions. We describe the numerical implementation of the method in detail, and report...

  7. Time functions revisited

    Science.gov (United States)

    Fathi, Albert

    2015-07-01

    In this paper we revisit our joint work with Antonio Siconolfi on time functions. We will give a brief introduction to the subject. We will then show how to construct a Lipschitz time function in a simplified setting. We will end with a new result showing that the Aubry set is not an artifact of our proof of existence of time functions for stably causal manifolds.

  8. SPLINE, Spline Interpolation Function

    International Nuclear Information System (INIS)

    Allouard, Y.

    1977-01-01

    1 - Nature of physical problem solved: The problem is to obtain an interpolated function, as smooth as possible, that passes through given points. The derivatives of these functions are continuous up to the (2Q-1) order. The program consists of the following two subprograms: ASPLERQ. Transport of relations method for the spline functions of interpolation. SPLQ. Spline interpolation. 2 - Method of solution: The methods are described in the reference under item 10

  9. Functional Programming With Relations

    OpenAIRE

    Hutton, Graham

    1991-01-01

    While programming in a relational framework has much to offer over the functional style in terms of expressiveness, computing with relations is less efficient, and more semantically troublesome. In this paper we propose a novel blend of the functional and relational styles. We identify a class of "causal relations", which inherit some of the bi-directionality properties of relations, but retain the efficiency and semantic foundations of the functional style.

  10. Photon structure function

    International Nuclear Information System (INIS)

    Bardeen, W.A.

    1980-11-01

    Theoretical understanding of the photon structure function is reviewed. As an illustration of the pointlike component, the parton model is briefly discussed. However, the systematic study of the photon structure function is presented through the framework of the operator product expansion. Perturbative QCD is used as the theoretical basis for the calculation of leading contributions to the operator product expansion. The influence of higher order QCD effects on these results is discussed. Recent results for the polarized structure functions are discussed

  11. Normal Functions as a New Way of Defining Computable Functions

    Directory of Open Access Journals (Sweden)

    Leszek Dubiel

    2004-01-01

    Full Text Available Report sets new method of defining computable functions. This is formalization of traditional function descriptions, so it allows to define functions in very intuitive way. Discovery of Ackermann function proved that not all functions that can be easily computed can be so easily described with Hilbert's system of recursive functions. Normal functions lack this disadvantage.

  12. Normal Functions As A New Way Of Defining Computable Functions

    Directory of Open Access Journals (Sweden)

    Leszek Dubiel

    2004-01-01

    Full Text Available Report sets new method of defining computable functions. This is formalization of traditional function descriptions, so it allows to define functions in very intuitive way. Discovery of Ackermann function proved that not all functions that can be easily computed can be so easily described with Hilbert’s system of recursive functions. Normal functions lack this disadvantage.

  13. The gamma function

    CERN Document Server

    Artin, Emil

    2015-01-01

    This brief monograph on the gamma function was designed by the author to fill what he perceived as a gap in the literature of mathematics, which often treated the gamma function in a manner he described as both sketchy and overly complicated. Author Emil Artin, one of the twentieth century's leading mathematicians, wrote in his Preface to this book, ""I feel that this monograph will help to show that the gamma function can be thought of as one of the elementary functions, and that all of its basic properties can be established using elementary methods of the calculus."" Generations of teachers

  14. Coded Network Function Virtualization

    DEFF Research Database (Denmark)

    Al-Shuwaili, A.; Simone, O.; Kliewer, J.

    2016-01-01

    Network function virtualization (NFV) prescribes the instantiation of network functions on general-purpose network devices, such as servers and switches. While yielding a more flexible and cost-effective network architecture, NFV is potentially limited by the fact that commercial off-the-shelf ha......Network function virtualization (NFV) prescribes the instantiation of network functions on general-purpose network devices, such as servers and switches. While yielding a more flexible and cost-effective network architecture, NFV is potentially limited by the fact that commercial off...

  15. Perceptual Audio Hashing Functions

    Directory of Open Access Journals (Sweden)

    Emin Anarım

    2005-07-01

    Full Text Available Perceptual hash functions provide a tool for fast and reliable identification of content. We present new audio hash functions based on summarization of the time-frequency spectral characteristics of an audio document. The proposed hash functions are based on the periodicity series of the fundamental frequency and on singular-value description of the cepstral frequencies. They are found, on one hand, to perform very satisfactorily in identification and verification tests, and on the other hand, to be very resilient to a large variety of attacks. Moreover, we address the issue of security of hashes and propose a keying technique, and thereby a key-dependent hash function.

  16. Nonrespiratory lung function

    International Nuclear Information System (INIS)

    Isawa, Toyoharu

    1994-01-01

    The function of the lungs is primarily the function as a gas exchanger: the venous blood returning to the lungs is arterialized with oxygen in the lungs and the arterialized blood is sent back again to the peripheral tissues of the whole body to be utilized for metabolic oxygenation. Besides the gas exchanging function which we call ''respiratory lung function'' the lungs have functions that have little to do with gas exchange itself. We categorically call the latter function of the lungs as ''nonrespiratory lung function''. The lungs consist of the conductive airways, the gas exchanging units like the alveoli, and the interstitial space that surrounds the former two compartments. The interstitial space contains the blood and lymphatic capillaries, collagen and elastic fibers and cement substances. The conductive airways and the gas exchanging units are directly exposed to the atmosphere that contains various toxic and nontoxic gases, fume and biological or nonbiological particles. Because the conductive airways are equipped with defense mechanisms like mucociliary clearance or coughs to get rid of these toxic gases, particles or locally produced biological debris, we are usually free from being succumbed to ill effects of inhaled materials. By use of nuclear medicine techniques, we can now evaluate mucociliary clearance function, and other nonrespiratory lung functions as well in vivo

  17. Control functions in MFM

    DEFF Research Database (Denmark)

    Lind, Morten

    2011-01-01

    Multilevel Flow Modeling (MFM) has been proposed as a tool for representing goals and functions of complex industrial plants and suggested as a basis for reasoning about control situations. Lind presents an introduction to MFM but do not describe how control functions are used in the modeling....... The purpose of the present paper is to serve as a companion paper to this introduction by explaining the basic principles used in MFM for representation of control functions. A theoretical foundation for modeling control functions is presented and modeling examples are given for illustration....

  18. Subordination by convex functions

    Directory of Open Access Journals (Sweden)

    Rosihan M. Ali

    2006-01-01

    Full Text Available For a fixed analytic function g(z=z+∑n=2∞gnzn defined on the open unit disk and γ<1, let Tg(γ denote the class of all analytic functions f(z=z+∑n=2∞anzn satisfying ∑n=2∞|angn|≤1−γ. For functions in Tg(γ, a subordination result is derived involving the convolution with a normalized convex function. Our result includes as special cases several earlier works.

  19. Mapping Cognitive Function

    OpenAIRE

    Stufflebeam, Steven M.; Rosen, Bruce

    2007-01-01

    Cognitive functions are fundamental to being human. Although tremendous progress has been made in the science of cognition using neuroimaging, the clinical applications of neuroimaging are just beginning to be realized. A unifying theme of this chapter is the concept that a more complete understanding of cognition only comes through integration of multimodal structural and functional imaging technologies.

  20. Photon strength functions

    International Nuclear Information System (INIS)

    Bergqvist, I.

    1976-01-01

    Methods for extracting photon strength functions are briefly discussed. We follow the Brink-Axel approach to relate the strength functions to the giant resonances observed in photonuclear work and summarize the available data on the E1, E2 and M1 resonances. Some experimental and theoretical problems are outlined. (author)

  1. Marine functional food

    NARCIS (Netherlands)

    Luten, J.B.

    2009-01-01

    This book reviews the research on seafood and health, the use and quality aspects of marine lipids and seafood proteins as ingredients in functional foods and consumer acceptance of (marine) functional food. The first chapter covers novel merging areas where seafood may prevent disease and improve

  2. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  3. Who Researches Functional Literacy?

    Science.gov (United States)

    Shaw, Donita; Perry, Kristen H.; Ivanyuk, Lyudmyla; Tham, Sarah

    2017-01-01

    The purpose of our study was to discover who researches functional literacy. This study was situated within a larger systematic literature review. We searched seven electronic databases and identified 90 sources to answer our larger question regarding how functional literacy is defined and conceptualized as well as the specific question pertinent…

  4. Functional foods innovations

    Science.gov (United States)

    The aim of the Dairy and Functional Foods Research Unit (DFFRU), ERRC, ARS, USDA, is to improve human health and well being by developing functional food and consumer products that utilize milk and fruit and vegetable processing residues of specialty crops. Major research approaches involve: biotec...

  5. New Similarity Functions

    DEFF Research Database (Denmark)

    Yazdani, Hossein; Ortiz-Arroyo, Daniel; Kwasnicka, Halina

    2016-01-01

    In data science, there are important parameters that affect the accuracy of the algorithms used. Some of these parameters are: the type of data objects, the membership assignments, and distance or similarity functions. This paper discusses similarity functions as fundamental elements in membership...

  6. Functional polymer amphiphiles

    NARCIS (Netherlands)

    Loos, Femke de

    2009-01-01

    'The exact structures of large, biologically interesting molecules such as proteins are very important for the functions these molecules fulfill. In order to increase our understanding of the relationship between structure and function and to enhance the predictive power of theoretical models the

  7. Bandlimited Lipschitz functions

    OpenAIRE

    Lyubarskii, Yurii; Ortega Cerdà, Joaquim

    2014-01-01

    We study the space of bandlimited Lipschitz functions in one variable. In particular we provide a geometrical description of the natural interpolating and sampling sequences for this space. We also find a description of the trace of such functions to sequences of critical density in terms of a cancellation condition.

  8. Neurophysiology of functional imaging

    NARCIS (Netherlands)

    van Eijsden, Pieter; Hyder, Fahmeed; Rothman, Douglas L.; Shulman, Robert G.

    2009-01-01

    The successes of PET and fMRI in non-invasively localizing sensory functions had encouraged efforts to transform the subjective concepts of cognitive psychology into objective physical measures. The assumption was that mental functions could be decomposed into non-overlapping, context-independent

  9. Function spaces, 1

    CERN Document Server

    Pick, Luboš; John, Oldrich; Fucík, Svatopluk

    2012-01-01

    This is the first part of the second revised and extended edition of a well established monograph. It is an introduction to function spaces defined in terms of differentiability and integrability classes. It provides a catalogue of various spaces and benefits as a handbook for those who use function spaces to study other topics such as partial differential equations. Volum

  10. Functional Discourse Grammar

    NARCIS (Netherlands)

    Hengeveld, K.; Mackenzie, J.L.; Heine, B.; Narrog, H.

    2010-01-01

    Functional Discourse Grammar (FDG) is a typologically based structural-functional theory of language. It has a top-down organization to achieve psychological adequacy, and takes the Discourse Act as its basic unit of analysis to achieve pragmatic adequacy. Although itself strictly a model of

  11. The Functional C Experience

    NARCIS (Netherlands)

    Hartel, Pieter H.; Muller, Henk; Glaser, Hugh

    A functional programming language can be taught successfully as a First language, but if there is no follow up the students do not appreciate the functional approach. Following discussions concerning this issue at the 1995 FPLE conf. we decided to develop such a follow up by writing a book that

  12. Functional sensory symptoms

    NARCIS (Netherlands)

    Stone, J.; Vermeulen, M.

    2017-01-01

    Functional (psychogenic) sensory symptoms are those in which the patient genuinely experiences alteration or absence of normal sensation in the absence of neurologic disease. The hallmark of functional sensory symptoms is the presence of internal inconsistency revealing a pattern of symptoms

  13. A phased translation function

    International Nuclear Information System (INIS)

    Read, R.J.; Schierbeek, A.J.

    1988-01-01

    A phased translation function, which takes advantage of prior phase information to determine the position of an oriented mulecular replacement model, is examined. The function is the coefficient of correlation between the electron density computed with the prior phases and the electron density of the translated model, evaluated in reciprocal space as a Fourier transform. The correlation coefficient used in this work is closely related to an overlap function devised by Colman, Fehlhammer and Bartels. Tests with two protein structures, one of which was solved with the help of the phased translation function, show that little phase information is required to resolve the translation problem, and that the function is relatively insensitive to misorientation of the model. (orig.)

  14. Functional data analysis

    CERN Document Server

    Ramsay, J O

    1997-01-01

    Scientists today collect samples of curves and other functional observations. This monograph presents many ideas and techniques for such data. Included are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drwan from growth analysis, meterology, biomechanics, equine science, economics, and medicine. The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, to applied data analysts, and to experienced researc...

  15. On complex functions analyticity

    CERN Document Server

    Karavashkin, S B

    2002-01-01

    We analyse here the conventional definitions of analyticity and differentiability of functions of complex variable. We reveal the possibility to extend the conditions of analyticity and differentiability to the functions implementing the non-conformal mapping. On this basis we formulate more general definitions of analyticity and differentiability covering those conventional. We present some examples of such functions. By the example of a horizontal belt on a plane Z mapped non-conformally onto a crater-like harmonic vortex, we study the pattern of trajectory variation of a body motion in such field in case of field power function varying in time. We present the technique to solve the problems of such type with the help of dynamical functions of complex variable implementing the analytical non-conformal mapping

  16. A Functional HAZOP Methodology

    DEFF Research Database (Denmark)

    Liin, Netta; Lind, Morten; Jensen, Niels

    2010-01-01

    A HAZOP methodology is presented where a functional plant model assists in a goal oriented decomposition of the plant purpose into the means of achieving the purpose. This approach leads to nodes with simple functions from which the selection of process and deviation variables follow directly....... The functional HAZOP methodology lends itself directly for implementation into a computer aided reasoning tool to perform root cause and consequence analysis. Such a tool can facilitate finding causes and/or consequences far away from the site of the deviation. A functional HAZOP assistant is proposed...... and investigated in a HAZOP study of an industrial scale Indirect Vapor Recompression Distillation pilot Plant (IVaRDiP) at DTU-Chemical and Biochemical Engineering. The study shows that the functional HAZOP methodology provides a very efficient paradigm for facilitating HAZOP studies and for enabling reasoning...

  17. properties and luminosity functions

    Directory of Open Access Journals (Sweden)

    Hektor Monteiro

    2007-01-01

    Full Text Available In this article, we present an investigation of a sample of 1072 stars extracted from the Villanova Catalog of Spectroscopically Identified White Dwarfs (2005 on-line version, studying their distribution in the Galaxy, their physical properties and their luminosity functions. The distances and physical properties of the white dwarfs are determined through interpolation of their (B-V or (b-y colors in model grids. The solar position relative to the Galactic plane, luminosity function, as well as separate functions for each white dwarf spectral type are derived and discussed. We show that the binary fraction does not vary significantly as a function of distance from the Galactic disk out to 100 pc. We propose that the formation rates of DA and non-DAs have changed over time and/or that DAs evolve into non-DA types. The luminosity functions for DAs and DBs have peaks possibly related to a star burst event.

  18. Time Functions as Utilities

    Science.gov (United States)

    Minguzzi, E.

    2010-09-01

    Every time function on spacetime gives a (continuous) total preordering of the spacetime events which respects the notion of causal precedence. The problem of the existence of a (semi-)time function on spacetime and the problem of recovering the causal structure starting from the set of time functions are studied. It is pointed out that these problems have an analog in the field of microeconomics known as utility theory. In a chronological spacetime the semi-time functions correspond to the utilities for the chronological relation, while in a K-causal (stably causal) spacetime the time functions correspond to the utilities for the K + relation (Seifert’s relation). By exploiting this analogy, we are able to import some mathematical results, most notably Peleg’s and Levin’s theorems, to the spacetime framework. As a consequence, we prove that a K-causal (i.e. stably causal) spacetime admits a time function and that the time or temporal functions can be used to recover the K + (or Seifert) relation which indeed turns out to be the intersection of the time or temporal orderings. This result tells us in which circumstances it is possible to recover the chronological or causal relation starting from the set of time or temporal functions allowed by the spacetime. Moreover, it is proved that a chronological spacetime in which the closure of the causal relation is transitive (for instance a reflective spacetime) admits a semi-time function. Along the way a new proof avoiding smoothing techniques is given that the existence of a time function implies stable causality, and a new short proof of the equivalence between K-causality and stable causality is given which takes advantage of Levin’s theorem and smoothing techniques.

  19. Mapping cognitive function.

    Science.gov (United States)

    Stufflebeam, Steven M; Rosen, Bruce R

    2007-11-01

    Cognitive functions are fundamental to being human. Although tremendous progress has been made in the science of cognition using neuroimaging, the clinical applications of neuroimaging are just beginning to be realized. This article focuses on selected technologies, analysis techniques, and applications that have, or will soon have, direct clinical impact. The authors discuss how cognition can be imaged using MR imaging, functional MR imaging, positron emission tomography, magnetoencephalography and electroencephalography, and MR imaging diffusion tensor imaging. A unifying theme of this article is the concept that a more complete understanding of cognition only comes through integration of multimodal structural and functional imaging technologies.

  20. Functional Amyloids in Reproduction.

    Science.gov (United States)

    Hewetson, Aveline; Do, Hoa Quynh; Myers, Caitlyn; Muthusubramanian, Archana; Sutton, Roger Bryan; Wylie, Benjamin J; Cornwall, Gail A

    2017-06-29

    Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.

  1. Harmonic oscillator Green's function

    International Nuclear Information System (INIS)

    Macek, J.H.; Ovchinnikov, S.Yu.; Khrebtukov, D.B.

    2000-01-01

    The Green's function for the harmonic oscillator in three dimensions plays an important role in the theory of atomic collisions. One representation of low-energy ion-atom collisions involves harmonic oscillator potentials. A closed-form expression for the harmonic oscillator Green's function, needed to exploit this representation, is derived. This expression is similar to the expression for the Coulomb Green's function obtained by Hostler and Pratt. Calculations of electron distributions for a model system of ion-atom collisions are reported to illustrate the theory.

  2. Functionalized expanded porphyrins

    Science.gov (United States)

    Sessler, Jonathan L; Pantos, Patricia J

    2013-11-12

    Disclosed are functionalized expanded porphyrins that can be used as spectrometric sensors for high-valent actinide cations. The disclosed functionalized expanded porphyrins have the advantage over unfunctionalized systems in that they can be immobilized via covalent attachment to a solid support comprising an inorganic or organic polymer or other common substrates. Substrates comprising the disclosed functionalized expanded porphyrins are also disclosed. Further, disclosed are methods of making the disclosed compounds (immobilized and free), methods of using them as sensors to detect high valent actinides, devices that comprise the disclosed compounds, and kits.

  3. Polysheroidal periodic functions

    International Nuclear Information System (INIS)

    Truskova, N.F.

    1985-01-01

    Separation of variables in the Helmholtz N-dimensional (N≥4) equation in polyspheroidal coordinate systems leads to the necessity of solving equations going over into equations for polyspheroidal periodic functions used for solving the two-centre problem in quantum mechanics, the three-body problem with Coulomb interaction, etc. For these functions the expansions are derived in terms of the Jacobi polynomials and Bessel functions. Their basic properties, asymptotics are considered. The algorithm of their computer calculations is developed. The results of numerical calculations are given

  4. Choice probability generating functions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; McFadden, Daniel; Bierlaire, Michel

    2010-01-01

    This paper establishes that every random utility discrete choice model (RUM) has a representation that can be characterized by a choice-probability generating function (CPGF) with specific properties, and that every function with these specific properties is consistent with a RUM. The choice...... probabilities from the RUM are obtained from the gradient of the CPGF. Mixtures of RUM are characterized by logarithmic mixtures of their associated CPGF. The paper relates CPGF to multivariate extreme value distributions, and reviews and extends methods for constructing generating functions for applications...

  5. Skin barrier function

    DEFF Research Database (Denmark)

    2016-01-01

    barrier integrity, factors influencing the penetration of the skin, influence of wet work, and guidance for prevention and saving the barrier. Distinguished researchers have contributed to this book, providing a comprehensive and thorough overview of the skin barrier function. Researchers in the field...... on the subject. It covers new basic research on skin markers, including results on filaggrin and on methods for the assessment of the barrier function. Biological variation and aspects of skin barrier function restoration are discussed as well. Further sections are dedicated to clinical implications of skin...

  6. Lectures on Functional Analysis

    CERN Document Server

    Kurepa, Svetozar; Kraljević, Hrvoje

    1987-01-01

    This volume consists of a long monographic paper by J. Hoffmann-Jorgensen and a number of shorter research papers and survey articles covering different aspects of functional analysis and its application to probability theory and differential equations.

  7. Introduction to structure functions

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1996-07-01

    The theory of deep inelastic scattering structure functions is reviewed with an emphasis put on the QCD expectations of their behaviour in the region of small values of Bjorken parameter x. (author). 56 refs

  8. Reasoning about Function Objects

    Science.gov (United States)

    Nordio, Martin; Calcagno, Cristiano; Meyer, Bertrand; Müller, Peter; Tschannen, Julian

    Modern object-oriented languages support higher-order implementations through function objects such as delegates in C#, agents in Eiffel, or closures in Scala. Function objects bring a new level of abstraction to the object-oriented programming model, and require a comparable extension to specification and verification techniques. We introduce a verification methodology that extends function objects with auxiliary side-effect free (pure) methods to model logical artifacts: preconditions, postconditions and modifies clauses. These pure methods can be used to specify client code abstractly, that is, independently from specific instantiations of the function objects. To demonstrate the feasibility of our approach, we have implemented an automatic prover, which verifies several non-trivial examples.

  9. Functional Use Database (FUse)

    Data.gov (United States)

    U.S. Environmental Protection Agency — There are five different files for this dataset: 1. A dataset listing the reported functional uses of chemicals (FUse) 2. All 729 ToxPrint descriptors obtained from...

  10. Catalytic Functions of Standards

    NARCIS (Netherlands)

    K. Blind (Knut)

    2009-01-01

    textabstractThe three different areas and the examples have illustrated several catalytic functions of standards for innovation. First, the standardisation process reduces the time to market of inventions, research results and innovative technologies. Second, standards themselves promote the

  11. Contributing to Functionality

    DEFF Research Database (Denmark)

    Törpel, Bettina

    2006-01-01

    advocated in this paper, emerges in the specific dynamic interplay of actors, objectives, structures, practices and means. In this view, functionality is the result of creating, harnessing and inhabiting computer supported joint action spaces. The successful creation and further development of a computer......The objective of this paper is the design of computer supported joint action spaces. It is argued against a view of functionality as residing in computer applications. In such a view the creation of functionality is equivalent to the creation of computer applications. Functionality, in the view...... supported joint action space comprises a whole range of appropriate design contributions. The approach is illustrated by the example of the creation of the computer supported joint action space "exchange network of voluntary union educators". As part of the effort a group of participants created...

  12. Fundamentals of functional analysis

    CERN Document Server

    Farenick, Douglas

    2016-01-01

    This book provides a unique path for graduate or advanced undergraduate students to begin studying the rich subject of functional analysis with fewer prerequisites than is normally required. The text begins with a self-contained and highly efficient introduction to topology and measure theory, which focuses on the essential notions required for the study of functional analysis, and which are often buried within full-length overviews of the subjects. This is particularly useful for those in applied mathematics, engineering, or physics who need to have a firm grasp of functional analysis, but not necessarily some of the more abstruse aspects of topology and measure theory normally encountered. The reader is assumed to only have knowledge of basic real analysis, complex analysis, and algebra. The latter part of the text provides an outstanding treatment of Banach space theory and operator theory, covering topics not usually found together in other books on functional analysis. Written in a clear, concise manner,...

  13. Center for Functional Nanomaterials

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Functional Nanomaterials (CFN) explores the unique properties of materials and processes at the nanoscale. The CFN is a user-oriented research center...

  14. Assessment of splenic function

    NARCIS (Netherlands)

    de Porto, A.P.N.A.; Lammers, A.J.J.; Bennink, R.J.; ten Berge, R.J.M.; Speelman, P.; Hoekstra, J.B.L.

    2010-01-01

    Hyposplenic patients are at risk of overwhelming post-splenectomy infection (OPSI), which carries mortality of up to 70%. Therefore, preventive measures are warranted. However, patients with diminished splenic function are difficult to identify. In this review we discuss immunological,

  15. Haskell_#: Coordinating Functional Processes

    OpenAIRE

    Junior, Francisco Heron de Carvalho; Lins, Rafael Dueire

    2012-01-01

    This paper presents Haskell#, a coordination language targeted at the efficient implementation of parallel scientific applications on loosely coupled parallel architectures, using the functional language Haskell. Examples of applications, their implementation details and performance figures are presented.

  16. Normal Functioning Family

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Español Text Size Email Print Share Normal Functioning Family Page Content Article Body Is there any way ...

  17. Characterisation of Functional Surfaces

    DEFF Research Database (Denmark)

    Lonardo, P.M.; De Chiffre, Leonardo; Bruzzone, A.A.

    2004-01-01

    Characterisation of surfaces is of fundamental importance to control the manufacturing process and the functional performance of the part. Many applications concern contact and tribology problems, which include friction, wear and lubrication. This paper presents the techniques and instruments for...

  18. Safety performance functions.

    Science.gov (United States)

    2014-10-01

    This project developed safety performance functions for roadway segments and intersections for two-lane rural highways in : Pennsylvania. The statistical modeling methodology was consistent with that used in the first edition of the American : Associ...

  19. Smooth functions statistics

    International Nuclear Information System (INIS)

    Arnold, V.I.

    2006-03-01

    To describe the topological structure of a real smooth function one associates to it the graph, formed by the topological variety, whose points are the connected components of the level hypersurface of the function. For a Morse function, such a graph is a tree. Generically, it has T triple vertices, T + 2 endpoints, 2T + 2 vertices and 2T + 1 arrows. The main goal of the present paper is to study the statistics of the graphs, corresponding to T triple points: what is the growth rate of the number φ(T) of different graphs? Which part of these graphs is representable by the polynomial functions of corresponding degree? A generic polynomial of degree n has at most (n - 1) 2 critical points on R 2 , corresponding to 2T + 2 = (n - 1) 2 + 1, that is to T = 2k(k - 1) saddle-points for degree n = 2k

  20. Degenerate Gauss hypergeometric functions

    OpenAIRE

    Vidunas, Raimundas

    2004-01-01

    This is a study of terminating and ill-defined Gauss hypergeometric functions. Corresponding hypergeometric equations have a degenerate set of of 24 Kummer's solutions. We describe those solutions and relations between them.

  1. Finite lattice model for molecular aggregation equilibria. Boolean statistics, analytical approximations, and the macroscopic limit.

    Science.gov (United States)

    Rankin, Blake M; Ben-Amotz, Dor; Widom, B

    2015-09-14

    Molecular processes, ranging from hydrophobic aggregation and protein binding to mesoscopic self-assembly, are typically driven by a delicate balance of energetic and entropic non-covalent interactions. Here, we focus on a broad class of such processes in which multiple ligands bind to a central solute molecule as a result of solute-ligand (direct) and/or ligand-ligand (cooperative) interaction energies. Previously, we described a weighted random mixing (WRM) mean-field model for such processes and compared the resulting adsorption isotherms and aggregate size distributions with exact finite lattice (FL) predictions, for lattices with up to n = 20 binding sites. Here, we compare FL predictions obtained using both Bethe-Guggenheim (BG) and WRM approximations, and find that the latter two approximations are complementary, as they are each most accurate in different aggregation regimes. Moreover, we describe a computationally efficient method for exhaustively counting nearest neighbors in FL configurations, thus making it feasible to obtain FL predictions for systems with up n = 48 binding sites, whose properties approach the thermodynamic (infinite lattice) limit. We further illustrate the applicability of our results by comparing lattice model and molecular dynamics simulation predictions pertaining to the aggregation of methane around neopentane.

  2. Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure

    Czech Academy of Sciences Publication Activity Database

    Fränzle, M.; Herde, C.; Teige, T.; Ratschan, Stefan; Schubert, T.

    2007-01-01

    Roč. 1, - (2007), s. 209-236 ISSN 1574-0617 Grant - others:AVACS(DE) SFB/TR 14 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval-based arithmetic constraint solving * SAT modulo theories Subject RIV: BA - General Mathematics

  3. Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm.

    OpenAIRE

    Stoll, Gautier; Viara, Eric; Barillot, Emmanuel; Calzone, Laurence

    2012-01-01

    Abstract Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to validate a network that describes biological observations and predict the effect of perturbations. This article presents an algorithm for modeling biological networks in a discrete framework with continuous time. Background There exist two major types of mathematical modeling approaches: (1) quantitative modeling, representing various chemical species concentrations by real...

  4. A Boolean extension of a frame and a representation of discontinuity ...

    African Journals Online (AJOL)

    Point-free modeling of mappings that are not necessarily continuous has been so far based on the extension of a frame to its frame of sublocales, mimicking the replacement of a topological space by its discretization. This otherwise successful procedure has, however, certain disadvantages making it not quite parallel with ...

  5. Boolean Reasoning and Informed Search in the Minimization of Logic Circuits

    Science.gov (United States)

    1992-03-01

    prime implicants, and the set LABS of labels, the formula F is formed in the following manner: Step 1. Combine the sets PSoa ,,ch and PSu,,a of labels to...program. This allowed experimentation to determine the strengths and weaknesses of each program. Based on the experiments, the authors of the program

  6. Floating point only SIMD instruction set architecture including compare, select, Boolean, and alignment operations

    Science.gov (United States)

    Gschwind, Michael K [Chappaqua, NY

    2011-03-01

    Mechanisms for implementing a floating point only single instruction multiple data instruction set architecture are provided. A processor is provided that comprises an issue unit, an execution unit coupled to the issue unit, and a vector register file coupled to the execution unit. The execution unit has logic that implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA). The floating point vector registers of the vector register file store both scalar and floating point values as vectors having a plurality of vector elements. The processor may be part of a data processing system.

  7. LTREE - a lisp-based algorithm for cutset generation using Boolean reduction

    International Nuclear Information System (INIS)

    Finnicum, D.J.; Rzasa, P.W.

    1985-01-01

    Fault tree analysis is an important tool for evaluating the safety of nuclear power plants. The basic objective of fault tree analysis is to determine the probability that an undesired event or combination of events will occur. Fault tree analysis involves four main steps: (1) specifying the undesired event or events; (2) constructing the fault tree which represents the ways in which the postulated event(s) could occur; (3) qualitative evaluation of the logic model to identify the minimal cutsets; and (4) quantitative evaluation of the logic model to determine the probability that the postulated event(s) will occur given the probability of occurrence for each individual fault. This paper describes a LISP-based algorithm for the qualitative evaluation of fault trees. Development of this algorithm is the first step in a project to apply expert systems technology to the automation of the fault tree analysis process. The first section of this paper provides an overview of LISP and its capabilities, the second section describes the LTREE algorithm and the third section discusses the on-going research areas

  8. From Boolean logic to switching circuits and automata. Towards modern information technology

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, Radomir S. [Nis Univ. (RS). Dept. of Computer Science; Astola, Jaakko [Tampere Univ. of Technology (Finland). Dept. of Signal Processing

    2011-07-01

    Logic networks and automata are facets of digital systems. The change of the design of logic networks from skills and art into a scientific discipline was possible by the development of the underlying mathematical theory called the Switching Theory. The fundamentals of this theory come from the attempts towards an algebraic description of laws of thoughts presented in the works by George J. Boole and the works on logic by Augustus De Morgan. As often the case in engineering, when the importance of a problem and the need for solving it reach certain limits, the solutions are searched by many scholars in different parts of the word, simultaneously or at about the same time, however, quite independently and often unaware of the work by other scholars. The formulation and rise of Switching Theory is such an example. This book presents a brief account of the developments of Switching Theory and highlights some less known facts in the history of it. The readers will find the book a fresh look into the development of the field revealing how difficult it has been to arrive at many of the concepts that we now consider obvious. Researchers in the history or philosophy of computing will find this book a valuable source of information that complements the standard presentations of the topic. (orig.)

  9. MATLAB: Creating Functions

    OpenAIRE

    2003-01-01

    sim tut Simulation Tutorial Interactive Media Element This interactive tutorial on MATLAB covers the following: Create M-files, scripts, and functions., Write HELP comments for the functions., Determine the order in which MATLAB chooses to execute entities with identical names.The interactions involve entering MATLAB instructions and observing the outcomes. Self-check questions are provided to help learners determine their level of understanding of the content presented. EC1...

  10. On Transcendental Functions

    Indian Academy of Sciences (India)

    Functions like loge X, eX, x real, and eZ loge Z, Z complex are very important in mathematics and physics. The re- sults in this article are not new, but they are presented in a very natural way. It is observed that eZ is the one and only one complex analytic extension of the real analytic function eX with the preservation of ...

  11. Production Functions Behaving Badly

    DEFF Research Database (Denmark)

    Fredholm, Thomas

    This paper reconsiders Anwar Shaikh's critique of the neoclassical theory of growth and distribution based on its use of aggregate production functions. This is done by reconstructing and extending Franklin M. Fisher's 1971 computer simulations, which Shaikh used to support his critique. Together...... with other recent extensions to Shaikh's seminal work, my results support and strengthen the evidence against the use of aggregate production functions....

  12. Applied functional analysis

    CERN Document Server

    Griffel, DH

    2002-01-01

    A stimulating introductory text, this volume examines many important applications of functional analysis to mechanics, fluid mechanics, diffusive growth, and approximation. Detailed enough to impart a thorough understanding, the text is also sufficiently straightforward for those unfamiliar with abstract analysis. Its four-part treatment begins with distribution theory and discussions of Green's functions. Essentially independent of the preceding material, the second and third parts deal with Banach spaces, Hilbert space, spectral theory, and variational techniques. The final part outlines the

  13. Inequalities for Humbert functions

    Directory of Open Access Journals (Sweden)

    Ayman Shehata

    2014-04-01

    Full Text Available This paper is motivated by an open problem of Luke’s theorem. We consider the problem of developing a unified point of view on the theory of inequalities of Humbert functions and of their general ratios are obtained. Some particular cases and refinements are given. Finally, we obtain some important results involving inequalities of Bessel and Whittaker’s functions as applications.

  14. Purely Functional Structured Programming

    OpenAIRE

    Obua, Steven

    2010-01-01

    The idea of functional programming has played a big role in shaping today's landscape of mainstream programming languages. Another concept that dominates the current programming style is Dijkstra's structured programming. Both concepts have been successfully married, for example in the programming language Scala. This paper proposes how the same can be achieved for structured programming and PURELY functional programming via the notion of LINEAR SCOPE. One advantage of this proposal is that m...

  15. Exponential and Logarithmic Functions

    OpenAIRE

    Todorova, Tamara

    2010-01-01

    Exponential functions find applications in economics in relation to growth and economic dynamics. In these fields, quite often the choice variable is time and economists are trying to determine the best timing for certain economic activities to take place. An exponential function is one in which the independent variable appears in the exponent. Very often that exponent is time. In highly mathematical courses, it is a truism that students learn by doing, not by reading. Tamara Todorova’s Pr...

  16. Functionally graded materials

    CERN Document Server

    Mahamood, Rasheedat Modupe

    2017-01-01

    This book presents the concept of functionally graded materials as well as their use and different fabrication processes. The authors describe the use of additive manufacturing technology for the production of very complex parts directly from the three dimension computer aided design of the part by adding material layer after layer. A case study is also presented in the book on the experimental analysis of functionally graded material using laser metal deposition process.

  17. Confinement from correlation functions

    Science.gov (United States)

    Fister, Leonard; Pawlowski, Jan M.

    2013-08-01

    We compute the Polyakov loop potential in Yang-Mills theory from the fully dressed primitively divergent correlation functions only. This is done in a variety of functional approaches ranging from functional renormalization group equations over Dyson-Schwinger equations to two-particle irreducible functionals. We present a confinement criterion that links the infrared behavior of propagators and vertices to the Polyakov loop expectation value. The present work extends the works of [J. Braun , Phys. Lett. B 684, 262 (2010)PYLBAJ0370-2693; F. Marhauser and J. M. Pawlowski, arXiv:0812.1144; J. Braun , Eur. Phys. J. C 70, 689 (2010)EPCFFB1434-6044] to general functional methods and sharpens the confinement criterion presented there. The computations are based on the thermal correlation functions in the Landau gauge calculated in [L. Fister and J. M. Pawlowski, arXiv:1112.5440; L. Fister and J. M. Pawlowski, arXiv:1112.5429; L. Fister, Ph.D. thesis, Heidelberg University, 2012].

  18. Functional balance tests

    Directory of Open Access Journals (Sweden)

    Parvin Raji

    2012-12-01

    Full Text Available Background and Aim: All activities of daily living need to balance control in static and dynamic movements. In recent years, a numerous increase can be seen in the functional balance assessment tools. Functional balance tests emphasize on static and dynamic balance, balance in weight transfer, the equilibrium response to the imbalances, and functional mobility. These standardized and available tests assess performance and require minimal or no equipment and short time to run. Functional balance is prerequisite for the most static and dynamic activities in daily life and needs sufficient interaction between sensory and motor systems. According to the critical role of balance in everyday life, and wide application of functional balance tests in the diagnosis and assessment of patients, a review of the functional balance tests was performed.Methods: The Google Scholar, PubMed, Science Direct, Scopus, Magiran, Iran Medex, and IranDoc databases were reviewed and the reliable and valid tests which were mostly used by Iranian researchers were assessed.Conclusion: It seems that Berg balance scale (BBS have been studied by Iranian and foreign researches more than the other tests. This test has high reliability and validity in elderly and in the most neurological disorders.

  19. Handbook of functional equations functional inequalities

    CERN Document Server

    2014-01-01

    As Richard Bellman has so elegantly stated at the Second International Conference on General Inequalities (Oberwolfach, 1978), “There are three reasons for the study of inequalities: practical, theoretical, and aesthetic.” On the aesthetic aspects, he said, “As has been pointed out, beauty is in the eye of the beholder. However, it is generally agreed that certain pieces of music, art, or mathematics are beautiful. There is an elegance to inequalities that makes them very attractive.” The content of the Handbook focuses mainly on both old and recent developments on approximate homomorphisms, on a relation between the Hardy–Hilbert and the Gabriel inequality, generalized Hardy–Hilbert type inequalities on multiple weighted Orlicz spaces, half-discrete Hilbert-type inequalities, on affine mappings, on contractive operators, on multiplicative Ostrowski and trapezoid inequalities, Ostrowski type inequalities for the  Riemann–Stieltjes integral, means and related functional inequalities, Weighted G...

  20. Functional integration over geometries

    International Nuclear Information System (INIS)

    Mottola, E.

    1995-01-01

    The geometric construction of the functional integral over coset spaces M/G is reviewed. The inner product on the cotangent space of infinitesimal deformations of M defines an invariant distance and volume form, or functional integration measure on the full configuration space. Then, by a simple change of coordinates parameterizing the gauge fiber G, the functional measure on the coset space M/G is deduced. This change of integration variables leads to a Jacobian which is entirely equivalent to the Faddeev--Popov determinant of the more traditional gauge fixed approach in non-abelian gauge theory. If the general construction is applied to the case where G is the group of coordinate reparameterizations of spacetime, the continuum functional integral over geometries, i.e. metrics modulo coordinate reparameterizations may be defined. The invariant functional integration measure is used to derive the trace anomaly and effective action for the conformal part of the metric in two and four dimensional spacetime. In two dimensions this approach generates the Polyakov--Liouville action of closed bosonic non-critical string theory. In four dimensions the corresponding effective action leads to novel conclusions on the importance of quantum effects in gravity in the far infrared, and in particular, a dramatic modification of the classical Einstein theory at cosmological distance scales, signaled first by the quantum instability of classical de Sitter spacetime. Finite volume scaling relations for the functional integral of quantum gravity in two and four dimensions are derived, and comparison with the discretized dynamical triangulation approach to the integration over geometries are discussed. Outstanding unsolved problems in both the continuum definition and the simplicial approach to the functional integral over geometries are highlighted

  1. The Functions of Sleep

    Directory of Open Access Journals (Sweden)

    Samson Z Assefa

    2015-08-01

    Full Text Available Sleep is a ubiquitous component of animal life including birds and mammals. The exact function of sleep has been one of the mysteries of biology. A considerable number of theories have been put forward to explain the reason(s for the necessity of sleep. To date, while a great deal is known about what happens when animals sleep, there is no definitive comprehensive explanation as to the reason that sleep is an inevitable part of animal functioning. It is well known that sleep is a homeostatically regulated body process, and that prolonged sleep deprivation is fatal in animals. In this paper, we present some of the theories as to the functions of sleep and provide a review of some hypotheses as to the overall physiologic function of sleep. To better understand the purpose for sleeping, we review the effects of sleep deprivation on physical, neurocognitive and psychic function. A better understanding of the purpose for sleeping will be a great advance in our understanding of the nature of the animal kingdom, including our own.

  2. Sperm function test

    Directory of Open Access Journals (Sweden)

    Pankaj Talwar

    2015-01-01

    Full Text Available With absolute normal semen analysis parameters it may not be necessary to shift to specialized tests early but in cases with borderline parameters or with history of fertilization failure in past it becomes necessary to do a battery of tests to evaluate different parameters of spermatozoa. Various sperm function tests are proposed and endorsed by different researchers in addition to the routine evaluation of fertility. These tests detect function of a certain part of spermatozoon and give insight on the events in fertilization of the oocyte. The sperms need to get nutrition from the seminal plasma in the form of fructose and citrate (this can be assessed by fructose qualitative and quantitative estimation, citrate estimation. They should be protected from the bad effects of pus cells and reactive oxygen species (ROS (leukocyte detection test, ROS estimation. Their number should be in sufficient in terms of (count, structure normal to be able to fertilize eggs (semen morphology. Sperms should have intact and functioning membrane to survive harsh environment of vagina and uterine fluids (vitality and hypo-osmotic swelling test, should have good mitochondrial function to be able to provide energy (mitochondrial activity index test. They should also have satisfactory acrosome function to be able to burrow a hole in zona pellucida (acrosome intactness test, zona penetration test. Finally, they should have properly packed DNA in the nucleus to be able to transfer the male genes (nuclear chromatic decondensation test to the oocyte during fertilization.

  3. Renal Function in Hypothyroidism

    International Nuclear Information System (INIS)

    Khalid, S.; Khalid, M; Elfaki, M.; Hassan, N.; Suliman, S.M.

    2007-01-01

    Background Hypothyroidism induces significant changes in the function of organ systems such as the heart, muscles and brain. Renal function is also influenced by thyroid status. Physiological effects include changes in water and electrolyte metabolism, notably hyponatremia, and reliable alterations of renal hemodynamics, including decrements in renal blood flow, renal plasma flow, glomerular filtration rate (GFR). Objective Renal function is profoundly influenced by thyroid status; the purpose of the present study was to determine the relationship between renal function and thyroid status of patients with hypothyroidism. Design and Patients In 5 patients with primary hypothyroidism and control group renal functions are measured by serum creatinine and glomerular filtration rate (GFR) using modified in diet renal disease (MDRD) formula. Result In hypothyroidism, mean serum creatinine increased and mean estimated GFR decreased, compared to the control group mean serum creatinine decreased and mean estimated GFR Increased. The hypothyroid patients showed elevated serum creatinine levels (> 1.1mg/dl) compared to control group (p value .000). In patients mean estimated GFR decreased, compared to mean estimated GFR increased in the control group (p value= .002).

  4. Renal Function in Hypothyroidism

    International Nuclear Information System (INIS)

    Khalid, A. S; Ahmed, M.I; Elfaki, H.M; Hassan, N.; Suliman, S. M.

    2006-12-01

    Background hypothyroidism induces significant changes in the function of organ systems such as the heart, muscles and brain. Renal function is also influenced by thyroid status. Physiological effects include changes in water and electrolyte metabolism, notably hyponatraemia, and reliable alterations of renal hemodynamics, including decrements in renal blood flow, renal plasma flow, glomerular filtration rate (GFR). Objective renal function is profoundly influenced by thyroid status, the purpose of the present study was to determine the relationship between renal function and thyroid status of patients with hypothyroidism. Design and patients in 5 patients with primary hypothyroidism and control group renal functions are measured by serum creatinine and glomerular filtration rate(GFR) using modified in diet renal disease (MDRD) formula. Result in hypothyroidism, mean serum creatinine increased and mean estimated GFR decreased, compared to the control group mean serum creatinine decreased and mean estimated GFR increased. The hypothyroid patients showed elevated serum creatinine levels(>1.1 mg/d1) compared to control group (p value= 000). In patients mean estimated GFR increased in the control group (p value=.002).Conclusion thus the kidney, in addition to the brain, heart and muscle, is an important target of the action of thyroid hormones.(Author)

  5. Histamine and astrocyte function.

    Science.gov (United States)

    Jurič, Damijana M; Kržan, Mojca; Lipnik-Stangelj, Metoda

    2016-09-01

    Astrocytes support the brain through numerous functional interactions in health and disease. The recent advances in our knowledge of astrocyte involvement in various neurological disorders raised up several questions about their role and functioning in the central nervous system. From the evidence discussed in this review, we show that histamine importantly influences the main astrocytic activities such as ion homeostasis, energy metabolism, neurotransmitter clearance, neurotrophic activity and immune response. These processes are mediated through at least three histamine receptor subtypes, H1, H2 and H3, expressed on the astrocyte surface. Thus, we recognize histamine as an important player in the modulation of astrocytic functions that deserves further considerations in exploring involvement of astrocytes in neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.O.; Sutton; Ell, P.

    1986-01-01

    The object of this book is to discuss and evaluate an area of Nuclear Magnetic Resonance which to date has been less emphasized than it might be, namely the use of NMR for functional studies. The book commences with a discussion of the areas in which the NMR techniques might be needed due to deficiencies in other techniques. The physics of NMR especially relating to functional measurement are then explained. Technical factors in producing functional images are discussed and the use of paramagnetic substances for carrying out flow studies are detailed. Particular attention is paid to specific studies in the various organs. The book ends with a survey of imaging in each organ and the relation of NMR images to other techniques such as ultrasound, nuclear medicine and X-rays

  7. Tendon functional extracellular matrix.

    Science.gov (United States)

    Screen, Hazel R C; Berk, David E; Kadler, Karl E; Ramirez, Francesco; Young, Marian F

    2015-06-01

    This article is one of a series, summarizing views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the "Functional Extracellular Matrix" stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment, and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely varying extrinsic and intrinsic factors such as age, nutrition, exercise levels, and biomechanics. Consequently, tendon adapts dynamically during development, aging, and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  9. Ghrelin and Functional Dyspepsia

    Directory of Open Access Journals (Sweden)

    Takashi Akamizu

    2010-01-01

    Full Text Available The majority of patients with dyspepsia have no identifiable cause of their disease, leading to a diagnosis of functional dyspepsia (FD. While a number of different factors affect gut activity, components of the nervous and endocrine systems are essential for normal gut function. Communication between the brain and gut occurs via direct neural connections or endocrine signaling events. Ghrelin, a peptide produced by the stomach, affects gastric motility/emptying and secretion, suggesting it may play a pathophysiological role in FD. It is also possible that the functional abnormalities in FD may affect ghrelin production in the stomach. Plasma ghrelin levels are reported to be altered in FD, correlating with FD symptom score. Furthermore, some patients with FD suffer from anorexia with body-weight loss. As ghrelin increases gastric emptying and promotes feeding, ghrelin therapy may be a new approach to the treatment of FD.

  10. Quantal density functional theory

    CERN Document Server

    Sahni, Viraht

    2016-01-01

    This book deals with quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The treated time-independent QDFT constitutes a special case. In the 2nd edition, the theory is extended to include the presence of external magnetostatic fields. The theory is a description of matter based on the ‘quantal Newtonian’ first and second laws which is in terms of “classical” fields that pervade all space, and their quantal sources. The fields, which are explicitly defined, are separately representative of electron correlations due to the Pauli exclusion principle, Coulomb repulsion, correlation-kinetic, correlation-current-density, and correlation-magnetic effects. The book further describes Schrödinger theory from the new physical perspective of fields and quantal sources. It also describes traditional Hohenberg-Kohn-Sham DFT, and explains via QDFT the physics underlying the various energy functionals and functional derivatives o...

  11. Platelet function in dogs

    DEFF Research Database (Denmark)

    Nielsen, Line A.; Zois, Nora Elisabeth; Pedersen, Henrik D.

    2007-01-01

    Background: Clinical studies investigating platelet function in dogs have had conflicting results that may be caused by normal physiologic variation in platelet response to agonists. Objectives: The objective of this study was to investigate platelet function in clinically healthy dogs of 4...... different breeds by whole-blood aggregometry and with a point-of-care platelet function analyzer (PFA-100), and to evaluate the effect of acetylsalicylic acid (ASA) administration on the results from both methods. Methods: Forty-five clinically healthy dogs (12 Cavalier King Charles Spaniels [CKCS], 12...... applied. However, the importance of these breed differences remains to be investigated. The PFA-100 method with Col + Epi as agonists, and ADP-induced platelet aggregation appear to be sensitive to ASA in dogs....

  12. The triad value function

    DEFF Research Database (Denmark)

    Vedel, Mette

    2016-01-01

    the triad value function. Next, the applicability and validity of the concept is examined in a case study of four closed vertical supply chain triads. Findings - The case study demonstrates that the triad value function facilitates the analysis and understanding of an apparent paradox; that distributors...... expands exponentially with the number of ties in the network. Moreover, it must be applied in the study of service triads and open vertical supply chain triads to further verify the practical adequacy of the concept. Practical implications - The triad value function cannot be used normatively...... or prescriptively. It is a descriptive tool which indirectly supports managerial decision-making through the analysis of how the structural context of a triad influences the value of relationships. Originality/value - The paper offers an additional aspect for the study of value in and of triads. It illustrates...

  13. Functional Programming Using F#

    DEFF Research Database (Denmark)

    Hansen, Michael Reichhardt; Rischel, Hans

    This comprehensive introduction to the principles of functional programming using F# shows how to apply basic theoretical concepts to produce succinct and elegant programs. It demonstrates the role of functional programming in a wide spectrum of applications including databases and systems....... Coverage also includes advanced features in the .NET library, the imperative features of F# and topics such as text processing, sequences, computation expressions and asynchronous computation. With a broad spectrum of examples and exercises, the book is perfect for courses in functional programming...... and for self-study. Enhancing its use as a text is an accompanying website with downloadable programs, lecture slides, a mini-projects and links to further F# sources....

  14. Functional brain imaging

    International Nuclear Information System (INIS)

    Frackowiak, R.S.J.

    1996-01-01

    Major advances in computing and mathematics, especially the back-projection algorithms introduced for reconstructing tomographic data obtained by non-invasive imaging, have led to new opportunities for the study of the structure, function and structure-function relationships of the human brain. Functional neuro-imaging methods fall, broadly, into two classes. Those methods that provide information about synaptic activity and those that provide information of a chemical or neurochemical nature. The former methods usually depend on some form of perfusion mapping because of the tight coupling between local glucose metabolism and blood flow in the brain at rest and at times of altered synaptic activity. The latter methods depend on identification of a chemical species of interest by using an appropriate radioligand, or by using the intrinsic magnetic properties of a compound. (author)

  15. Functional illiteracy in Slovenia

    Directory of Open Access Journals (Sweden)

    Ester Možina

    1999-12-01

    Full Text Available The author draws attention to the fact that, in determining functional illiteracy, there remain many terminological disagreements and diverse opinions regarding illiteracy. Furthermore, there are also different methods for measuring writing abilities, thus leading to disparate results. The introductory section presents the dilemmas relating to the term of functional illiteracy, while the second part is concerned with the various methods for measuring literacy. Thus, the author also critically assesses the research studies aimed at evaluating the scope of literacy amongst adults in Slovenia during the past decade. ln this paper, she has adopted a methodology which would not determine what is functional and what is not in our society, in order to avoid limiting the richness of individual writing praxis.

  16. Nucleon structure functions

    International Nuclear Information System (INIS)

    Virchaux, M.

    1992-11-01

    The present status of experimental measurements of the nucleon structure functions is reviewed. The results from nearly all deep inelastic experiments are in good mutual agreement. Principles of the analysis of these structure function data in the framework of QCD are described. The specific features of the perturbative QCD predictions are observed in the data. This provides quantitative tests of the validity of QCD as well as determinations of the various parton distributions in the nucleon and some of the most precise measurements of the strong coupling constant αs. The future of this field of experimental physics is sketched

  17. The Functions of Sleep

    OpenAIRE

    Samson Z Assefa; Montserrat Diaz-Abad; Emerson M Wickwire; Steven M Scharf

    2015-01-01

    Sleep is a ubiquitous component of animal life including birds and mammals. The exact function of sleep has been one of the mysteries of biology. A considerable number of theories have been put forward to explain the reason(s) for the necessity of sleep. To date, while a great deal is known about what happens when animals sleep, there is no definitive comprehensive explanation as to the reason that sleep is an inevitable part of animal functioning. It is well known that sleep is a homeostatic...

  18. Ego functions in epilepsy

    DEFF Research Database (Denmark)

    Sørensen, A S; Hansen, H; Høgenhaven, H

    1988-01-01

    Two groups of epilepsy patients (28 patients with temporal lobe epilepsy and 15 patients with primary generalized epilepsy) entered a study of personality traits related to epilepsy, based on a modification of Bellak's semistructured interview for assessment of ego strength. Two groups of subjects...... than 15 years when the disease began. The number of anticonvulsants administered did not influence the results. No difference on adaptive level of ego functioning was found between the group with primary generalized epilepsy and the group with temporal lobe epilepsy. Similarly, the temporal lobe...... epilepsy group with predominantly right-sided and left-sided EEG changes, respectively, showed similar adaptive levels of ego functioning....

  19. Complex function theory

    CERN Document Server

    Sarason, Donald

    2007-01-01

    Complex Function Theory is a concise and rigorous introduction to the theory of functions of a complex variable. Written in a classical style, it is in the spirit of the books by Ahlfors and by Saks and Zygmund. Being designed for a one-semester course, it is much shorter than many of the standard texts. Sarason covers the basic material through Cauchy's theorem and applications, plus the Riemann mapping theorem. It is suitable for either an introductory graduate course or an undergraduate course for students with adequate preparation. The first edition was published with the title Notes on Co

  20. GADRAS Detector Response Function.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  1. Chromatin Structure and Function

    CERN Document Server

    Wolffe, Alan P

    1999-01-01

    The Third Edition of Chromatin: Structure and Function brings the reader up-to-date with the remarkable progress in chromatin research over the past three years. It has been extensively rewritten to cover new material on chromatin remodeling, histone modification, nuclear compartmentalization, DNA methylation, and transcriptional co-activators and co-repressors. The book is written in a clear and concise fashion, with 60 new illustrations. Chromatin: Structure and Function provides the reader with a concise and coherent account of the nature, structure, and assembly of chromatin and its active

  2. Importance analysis based on logical differential calculus and Binary Decision Diagram

    International Nuclear Information System (INIS)

    Zaitseva, Elena; Levashenko, Vitaly; Kostolny, Jozef

    2015-01-01

    System availability evaluation, sensitivity analysis, Importance Measures, and optimal design are important issues that have become research topics for reliability engineering. There are different mathematical approaches to the development of these topics. The structure function based approach is one of them. Structure function enables one to analyse a system of any complexity. But computational complexity of structure function based methods is time consuming for large-scale networks. We propose to use two mathematical approaches for decision to this problem for system importance analysis. The first of them is Direct Partial Boolean Derivative. New equations for calculating the Importance Measures are developed in terms of these derivatives. The second is Binary Decision Diagram (BDD), that supports efficient manipulation of Boolean algebra. Two algorithms for calculating Direct Partial Boolean Derivative based on BDD of structure function are proposed in this paper. The experimental results show the efficiency of new algorithms for calculating Direct Partial Boolean Derivative and Importance Measures. - Highlights: • New approach for calculation of Importance Measures is proposed. • Direct Partial Boolean Derivatives are used for calculation of Importance Measures. • New equations for Importance Measures are obtained. • New algorithm to calculate Direct Partial Boolean Derivatives by BDD is developed

  3. Integral inequalities under beta function and preinvex type functions.

    Science.gov (United States)

    Ahmad, Izhar

    2016-01-01

    In the present paper, the notion of P-preinvex function is introduced and new integral inequalities for this kind of function along with beta function are establised. The work extends the results appeared in the literature.

  4. Graphical functions in parametric space

    Science.gov (United States)

    Golz, Marcel; Panzer, Erik; Schnetz, Oliver

    2017-06-01

    Graphical functions are positive functions on the punctured complex plane C{\\setminus }{0,1} which arise in quantum field theory. We generalize a parametric integral representation for graphical functions due to Lam, Lebrun and Nakanishi, which implies the real analyticity of graphical functions. Moreover, we prove a formula that relates graphical functions of planar dual graphs.

  5. Diet and Endothelial Function

    Directory of Open Access Journals (Sweden)

    ADA M CUEVAS

    2004-01-01

    Full Text Available Endothelial dysfunction is one of the earliest events in atherogenesis. A consequence of endothelial damage is a lower availability of nitric oxide (NO, the most potent endogenous vasodilator. NO inhibits platelet aggregation, smooth muscle cell proliferation and adhesion of monocytes to endothelial cells. Endothelial dysfunction is present in patients with cardiovascular disease and/or coronary risk factors, such as hypertension, dyslipidemia, diabetes, smoking or hyperhomocysteinemia. At present, soluble markers and high resolution ultrasound of the brachial artery, have provided simple tools for the study of endothelial function and the effects of several interventions. It has been demonstrated that dietary factors may induce significant changes on vascular reactivity. Nutrients, such as fish oil, antioxidants, L-arginine, folic acid and soy protein have shown an improvement in endothelial function that can mediate, at least partially, the cardioprotective effects of these substances. Attention has been focused on dietary patterns in populations with lower prevalence of cardiovascular disease. There is some evidence suggesting that Mediterranean diet characterized by high consumption of vegetables, fish, olive oil and moderate wine consumption may have a positive effect on endothelial function. These results give us evidence on the significant role of diet on endothelial function and its impact on the pathogenesis of atherosclerosis

  6. Automatic Functional Harmonic Analysis

    NARCIS (Netherlands)

    de Haas, W.B.|info:eu-repo/dai/nl/304841250; Magalhães, J.P.; Wiering, F.|info:eu-repo/dai/nl/141928034; Veltkamp, R.C.|info:eu-repo/dai/nl/084742984

    2013-01-01

    Music scholars have been studying tonal harmony intensively for centuries, yielding numerous theories and models. Unfortunately, a large number of these theories are formulated in a rather informal fashion and lack mathematical precision. In this article we present HarmTrace, a functional model of

  7. Functions of public relations

    Directory of Open Access Journals (Sweden)

    Baranov G. V.

    2016-09-01

    Full Text Available the article reveals the importance of communication with the public in the implementation of human rights and the ideals of mankind; characterized by the specificity of public relations in the information culture of belief; PR functions are explained on the criterion of optimization of activity of social interactions on the basis of cultural ideals.

  8. Linear Classification Functions.

    Science.gov (United States)

    Huberty, Carl J.; Smith, Jerry D.

    Linear classification functions (LCFs) arise in a predictive discriminant analysis for the purpose of classifying experimental units into criterion groups. The relative contribution of the response variables to classification accuracy may be based on LCF-variable correlations for each group. It is proved that, if the raw response measures are…

  9. Fuss Over Function

    DEFF Research Database (Denmark)

    Elsmore, Matthew James

    is an inherent work-in-progress, and hence labelled ‘Draft’. Moreover, this precise point, and my intended wider audience, also helps explain the inclusion of this essay on SSRN. Note: This draft essay has not been reviewed. Thus, any comments on its form and function are welcome, either via the IPKat post...

  10. Executive functions in synesthesia

    NARCIS (Netherlands)

    Rouw, R.; van Driel, J.; Knip, K.; Ridderinkhof, K.R.

    2013-01-01

    In grapheme-color synesthesia, a number or letter can evoke two different and possibly conflicting (real and synesthetic) color sensations at the same time. In this study, we investigate the relationship between synesthesia and executive control functions. First, no general skill differences were

  11. Functional ingredients from microalgae

    NARCIS (Netherlands)

    Buono, S.; Langellotti, A.L.; Martello, A.; Rinna, F.; Fogliano, V.

    2014-01-01

    A wide variety of natural sources are under investigation to evaluate their possible use for new functional ingredient formulation. Some records attested the traditional and ancient use of wild harvested microalgae as human food but their cultivation for different purposes started about 40 years

  12. Gluing Nekrasov Partition Functions

    Science.gov (United States)

    Qiu, Jian; Tizzano, Luigi; Winding, Jacob; Zabzine, Maxim

    2015-07-01

    In this paper we summarise the localisation calculation of 5D super Yang-Mills on simply connected toric Sasaki-Einstein (SE) manifolds. We show how various aspects of the computation, including the equivariant index, the asymptotic behaviour and the factorisation property are governed by the combinatorial data of the toric geometry. We prove that the perturbative partition function on a simply connected SE manifold corresponding to an n-gon toric diagram factorises to n copies of perturbative part (zero instanton sector) of the Nekrasov partition function. This leads us to conjecture a prescription for the computation of the complete partition function, by gluing n copies of the full Nekrasov partition functions. This work is a generalisation of some earlier computation carried out on Y p, q manifolds, whose moment map cone has a quadrangle base and our result is valid for manifolds whose moment map cones have pentagon base, hexagon base, etc. The algorithm we used for dealing with general cones may also be of independent interest.

  13. Objectification and Semiotic Function

    Science.gov (United States)

    Santi, George

    2011-01-01

    The objective of this paper is to study students' difficulties when they have to ascribe the same meaning to different representations of the same mathematical object. We address two theoretical tools that are at the core of Radford's cultural semiotic and Godino's onto-semiotic approaches: objectification and the semiotic function. The analysis…

  14. The Grindahl Hash Functions

    DEFF Research Database (Denmark)

    Knudsen, Lars Ramkilde; Rechberger, Christian; Thomsen, Søren Steffen

    2007-01-01

    In this paper we propose the Grindahl hash functions, which are based on components of the Rijndael algorithm. To make collision search sufficiently difficult, this design has the important feature that no low-weight characteristics form collisions, and at the same time it limits access to the st...

  15. Functional System Dynamics

    NARCIS (Netherlands)

    Ligterink, N.E.

    2007-01-01

    Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The

  16. Nonlinear functional analysis

    CERN Document Server

    Deimling, Klaus

    1985-01-01

    topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider­ ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in § 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical languag...

  17. Functional Communication Training

    Science.gov (United States)

    Durand, V. Mark; Moskowitz, Lauren

    2015-01-01

    Thirty years ago, the first experimental demonstration was published showing that educators could improve significant challenging behavior in children with disabilities by replacing these behaviors with forms of communication that served the same purpose, a procedure called functional communication training (FCT). Since the publication of that…

  18. The function of ornaments

    DEFF Research Database (Denmark)

    Glaveanu, Vlad Petre

    2014-01-01

    of their manifold functions that integrates aesthetic and utilitarian, individual and social roles. Ornaments help us to identify and locate, tell or communicate, remind and organise our action, they guide our attention, express and individualise, can generate an experience, beautify as well as re...

  19. Automate functional testing

    Directory of Open Access Journals (Sweden)

    Ramesh Kalindri

    2014-06-01

    Full Text Available Currently, software engineers are increasingly turning to the option of automating functional tests, but not always have successful in this endeavor. Reasons range from low planning until over cost in the process. Some principles that can guide teams in automating these tests are described in this article.

  20. Density Functional Theory

    Indian Academy of Sciences (India)

    (1) The total energy of an electron system in an external potential is a unique functional of the total electron density; and. (2)The density that minimizes the energy is the ground-state density, and this minimum energy is the ground-state energy of the system.

  1. Functional consequences of hemispherectomy

    NARCIS (Netherlands)

    van Empelen, R; Jennekens-Schinkel, A; Buskens, E; Helders, PJM; van Nieuwenhuizen, O

    Using the International Classification of Functioning Disability and Health (ICF) (WHO, 2001), impairments, activities and social participation are reported in 12 children (mean age at surgery 5.9 years) who were investigated before and three times over a 2-year period after hemispherectomy.

  2. Laboratory Density Functionals

    OpenAIRE

    Giraud, B. G.

    2007-01-01

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  3. Choice probability generating functions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; McFadden, Daniel; Bierlaire, Michel

    2013-01-01

    This paper considers discrete choice, with choice probabilities coming from maximization of preferences from a random utility field perturbed by additive location shifters (ARUM). Any ARUM can be characterized by a choice-probability generating function (CPGF) whose gradient gives the choice...

  4. Choice Probability Generating Functions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; McFadden, Daniel L; Bierlaire, Michel

    This paper considers discrete choice, with choice probabilities coming from maximization of preferences from a random utility field perturbed by additive location shifters (ARUM). Any ARUM can be characterized by a choice-probability generating function (CPGF) whose gradient gives the choice...

  5. Mapping functional connectivity

    Science.gov (United States)

    Peter Vogt; Joseph R. Ferrari; Todd R. Lookingbill; Robert H. Gardner; Kurt H. Riitters; Katarzyna Ostapowicz

    2009-01-01

    An objective and reliable assessment of wildlife movement is important in theoretical and applied ecology. The identification and mapping of landscape elements that may enhance functional connectivity is usually a subjective process based on visual interpretations of species movement patterns. New methods based on mathematical morphology provide a generic, flexible,...

  6. Empirical microeconomics action functionals

    Science.gov (United States)

    Baaquie, Belal E.; Du, Xin; Tanputraman, Winson

    2015-06-01

    A statistical generalization of microeconomics has been made in Baaquie (2013), where the market price of every traded commodity, at each instant of time, is considered to be an independent random variable. The dynamics of commodity market prices is modeled by an action functional-and the focus of this paper is to empirically determine the action functionals for different commodities. The correlation functions of the model are defined using a Feynman path integral. The model is calibrated using the unequal time correlation of the market commodity prices as well as their cubic and quartic moments using a perturbation expansion. The consistency of the perturbation expansion is verified by a numerical evaluation of the path integral. Nine commodities drawn from the energy, metal and grain sectors are studied and their market behavior is described by the model to an accuracy of over 90% using only six parameters. The paper empirically establishes the existence of the action functional for commodity prices that was postulated to exist in Baaquie (2013).

  7. Functional genomics of tomato

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... very first challenge before scientists working on tomato functional biology is to exploit this high-quality reference sequence for tapping of the ... and exploitation of the genomic diversity present in Solanum genus, in general, and ..... associated with this tool retain its labour-intensive nature, ineffectiveness for ...

  8. Generalized elementary functions

    Czech Academy of Sciences Publication Activity Database

    Monteiro, Giselle Antunes; Slavík, A.

    2014-01-01

    Roč. 411, č. 2 (2014), s. 838-852 ISSN 0022-247X Institutional support: RVO:67985840 Keywords : elementary functions * Kurzweil-Stieltjes integral * generalized linear ordinary differential equations * time scale calculus Subject RIV: BA - General Mathematics Impact factor: 1.120, year: 2014 http://www.sciencedirect.com/science/article/pii/S0022247X13009141

  9. Functional Maximum Autocorrelation Factors

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg

    2005-01-01

    \\verb+~+\\$\\backslash\\$cite{ramsay97} to functional maximum autocorrelation factors (MAF)\\verb+~+\\$\\backslash\\$cite{switzer85,larsen2001d}. We apply the method to biological shapes as well as reflectance spectra. {\\$\\backslash\\$bf Methods}. MAF seeks linear combination of the original variables that maximize autocorrelation between...

  10. Cobham recursive set functions

    Czech Academy of Sciences Publication Activity Database

    Beckmann, A.; Buss, S.; Friedman, S.-D.; Müller, M.; Thapen, Neil

    2016-01-01

    Roč. 167, č. 3 (2016), s. 335-369 ISSN 0168-0072 R&D Projects: GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : set function * polynomial time * Cobham recursion Subject RIV: BA - General Mathematics Impact factor: 0.647, year: 2016 http://www.sciencedirect.com/science/article/pii/S0168007215001293

  11. density functional theory (DFT)

    Indian Academy of Sciences (India)

    Abstract. In the present investigation, interaction of ruthenium (Ru) atoms with fluorine (F) atoms was studied using the density functional theory utilizing B3LYP method. It was found that up to seven F atoms can bind to a single Ru atom which results in increase of electron affinities successively, reaching a peak value of ...

  12. Educating executive function.

    Science.gov (United States)

    Blair, Clancy

    2017-01-01

    Executive functions are thinking skills that assist with reasoning, planning, problem solving, and managing one's life. The brain areas that underlie these skills are interconnected with and influenced by activity in many different brain areas, some of which are associated with emotion and stress. One consequence of the stress-specific connections is that executive functions, which help us to organize our thinking, tend to be disrupted when stimulation is too high and we are stressed out, or too low when we are bored and lethargic. Given their central role in reasoning and also in managing stress and emotion, scientists have conducted studies, primarily with adults, to determine whether executive functions can be improved by training. By and large, results have shown that they can be, in part through computer-based videogame-like activities. Evidence of wider, more general benefits from such computer-based training, however, is mixed. Accordingly, scientists have reasoned that training will have wider benefits if it is implemented early, with very young children as the neural circuitry of executive functions is developing, and that it will be most effective if embedded in children's everyday activities. Evidence produced by this research, however, is also mixed. In sum, much remains to be learned about executive function training. Without question, however, continued research on this important topic will yield valuable information about cognitive development. WIREs Cogn Sci 2017, 8:e1403. doi: 10.1002/wcs.1403 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  13. Uniqueness property for quasiharmonic functions

    Directory of Open Access Journals (Sweden)

    Sevdiyor A. Imomkulov

    2014-10-01

    Full Text Available In this paper we consider a class of continuous functions, called quasiaharmonic functions, admitting best approximations by harmonic polynomials. In this class we prove a uniqueness theorem by analogy with the analytic functions.

  14. Quasi-extended asymptotic functions

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1979-01-01

    The class F of ''quasi-extended asymptotic functions'' is introduced. It contains all extended asymptotic functions as well as some new asymptotic functions very similar to the Schwartz distributions. On the other hand, every two quasiextended asymptotic functions can be multiplied as opposed to the Schwartz distributions; in particular, the square delta 2 of an asymptotic function delta similar to Dirac's delta-function, is constructed as an example

  15. The Relationships between Weight Functions, Geometric Functions,and Compliance Functions in Linear Elastic Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Rong [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Linear elastic fracture mechanics is widely used in industry because it established simple and explicit relationships between the permissible loading conditions and the critical crack size that is allowed in a structure. Stress intensity factors are the above-mentioned functional expressions that relate load with crack size through geometric functions or weight functions. Compliance functions are to determine the crack/flaw size in a structure when optical inspection is inconvenient. As a result, geometric functions, weight functions and compliance functions have been intensively studied to determine the stress intensity factor expressions for different geometries. However, the relations between these functions have received less attention. This work is therefore to investigate the intrinsic relationships between these functions. Theoretical derivation was carried out and the results were verified on single-edge cracked plate under tension and bending. It is found out that the geometric function is essentially the non-dimensional weight function at the loading point. The compliance function is composed of two parts: a varying part due to crack extension and a constant part from the intact structure if no crack exists. The derivative of the compliance function at any location is the product of the geometric function and the weight function at the evaluation point. Inversely, the compliance function can be acquired by the integration of the product of the geometric function and the weight function with respect to the crack size. The integral constant is just the unchanging compliance from the intact structure. Consequently, a special application of the relations is to obtain the compliance functions along a crack once the geometric function and weight functions are known. Any of the three special functions can be derived once the other two functions are known. These relations may greatly simplify the numerical process in obtaining either geometric functions, weight

  16. Density functional theory

    International Nuclear Information System (INIS)

    Das, M.P.

    1984-07-01

    The state of the art of the density functional formalism (DFT) is reviewed. The theory is quantum statistical in nature; its simplest version is the well-known Thomas-Fermi theory. The DFT is a powerful formalism in which one can treat the effect of interactions in inhomogeneous systems. After some introductory material, the DFT is outlined from the two basic theorems, and various generalizations of the theorems appropriate to several physical situations are pointed out. Next, various approximations to the density functionals are presented and some practical schemes, discussed; the approximations include an electron gas of almost constant density and an electron gas of slowly varying density. Then applications of DFT in various diverse areas of physics (atomic systems, plasmas, liquids, nuclear matter) are mentioned, and its strengths and weaknesses are pointed out. In conclusion, more recent developments of DFT are indicated

  17. Differentiation of real functions

    CERN Document Server

    Bruckner, Andrew

    1994-01-01

    Topics related to the differentiation of real functions have received considerable attention during the last few decades. This book provides an efficient account of the present state of the subject. Bruckner addresses in detail the problems that arise when dealing with the class \\Delta ' of derivatives, a class that is difficult to handle for a number of reasons. Several generalized forms of differentiation have assumed importance in the solution of various problems. Some generalized derivatives are excellent substitutes for the ordinary derivative when the latter is not known to exist; others are not. Bruckner studies generalized derivatives and indicates "geometric" conditions that determine whether or not a generalized derivative will be a good substitute for the ordinary derivative. There are a number of classes of functions closely linked to differentiation theory, and these are examined in some detail. The book unifies many important results from the literature as well as some results not previously pub...

  18. Process for functionalizing alkanes

    Science.gov (United States)

    Bergman, R.G.; Janowicz, A.H.; Periana-Pillai, R.A.

    1984-06-12

    Process for functionalizing saturated hydrocarbons selectively in the terminal position comprises: (a) reacting said saturated hydrocarbons with a metal complex CpRhPMe/sub 3/H/sub 2/ in the presence of ultraviolet radiation at -60/sup 0/ to -17/sup 0/C to form a hydridoalkyl complex CpRhPMe/sub 3/RH; (b) reacting said hydridoalkyl complex with a haloform CHX/sub 3/ at -60/sup 0/ to -17/sup 0/C to form the corresponding haloalkyl complex of step (a) CpRhPMe/sub 3/RX; and (c) reacting said haloalkyl complex with halogen -60 to 25/sup 0/C to form a functional haloalkyl compound.

  19. Nuclear Parton Distribution Functions

    Energy Technology Data Exchange (ETDEWEB)

    I. Schienbein, J.Y. Yu, C. Keppel, J.G. Morfin, F. Olness, J.F. Owens

    2009-06-01

    We study nuclear effects of charged current deep inelastic neutrino-iron scattering in the framework of a {chi}{sup 2} analysis of parton distribution functions (PDFs). We extract a set of iron PDFs which are used to compute x{sub Bj}-dependent and Q{sup 2}-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. We compare our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for charged-lepton--iron scattering. We find that, except for very high x{sub Bj}, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering.

  20. Ramanujan's theta functions

    CERN Document Server

    Cooper, Shaun

    2017-01-01

    Theta functions were studied extensively by Ramanujan. This book provides a systematic development of Ramanujan’s results and extends them to a general theory. The author’s treatment of the subject is comprehensive, providing a detailed study of theta functions and modular forms for levels up to 12. Aimed at advanced undergraduates, graduate students, and researchers, the organization, user-friendly presentation, and rich source of examples, lends this book to serve as a useful reference, a pedagogical tool, and a stimulus for further research. Topics, especially those discussed in the second half of the book, have been the subject of much recent research; many of which are appearing in book form for the first time. Further results are summarized in the numerous exercises at the end of each chapter.

  1. Functional foods in Europe

    DEFF Research Database (Denmark)

    Bech-Larsen, Tino; Scholderer, Joachim

    2007-01-01

    reading of the main principles of the harmonized regulation COM/2003/0424, this situation is about to change. This article reviews the regulatory aspects, the results of consumer research and the marketing strategies regarding the use of health claims for functional foods in Europe, and it comments......The fact that the European markets for functional foods generally are less developed, compared to the US and the Japanese markets, has often been attributed to a restrictive and inconsistent health claim legislation in and between the European countries. With the European Parliament's second...... on the lack of correspondence between the new regulation and the marketing experiences and research as regard consumer reactions to health claims....

  2. Functionalization of Carbon Nanotubes

    Science.gov (United States)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  3. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.; Ell, P.J.

    1987-01-01

    This volume is based on a series of lectures delivered at a one-day teaching symposium on functional and metabolic aspects of NMR measurements held at the Middlesex Hospital Medical School on 1st September 1985 as a part of the European Nuclear Medicine Society Congress. Currently the major emphasis in medical NMR in vivo is on its potential to image and display abnormalities in conventional radiological images, providing increased contrast between normal and abnormal tissue, improved definition of vasculature, and possibly an increased potential for differential diagnosis. Although these areas are undeniably of major importance, it is probable that NMR will continue to complement conventional measurement methods. The major potential benefits to be derived from in vivo NMR measurements are likely to arise from its use as an instrument for functional and metabolic studies in both clinical research and in the everyday management of patients. It is to this area that this volume is directed

  4. Sexual function and obesity

    DEFF Research Database (Denmark)

    Larsen, S H; Wagner, G; Heitmann, B L

    2007-01-01

    function and dysfunction. COMMENTS: Four prospective and seven cross-sectional studies were found describing association between obesity and erectile dysfunction (ED). One cross-sectional study was found describing obesity and female sexual dysfunction (FSD). The prospective studies on ED all demonstrated......OBJECTIVE: To review the literature on the relationship between obesity and sexual function. METHOD: A search in the medical literature from 1966 and onwards was carried out through Medline and Embase for publications on obesity, in combination with Medical Subject Heading words related to sexual...... a direct association and so did five of the seven cross-sectional studies. The single FSD study did not find any relationship. Eight intervention studies on weight loss and sexual difficulties were identified. All included few individuals and results were mixed even if most indicated an increase of sexual...

  5. Ego functions in epilepsy

    DEFF Research Database (Denmark)

    Sørensen, A S; Hansen, H; Høgenhaven, H

    1988-01-01

    Two groups of epilepsy patients (28 patients with temporal lobe epilepsy and 15 patients with primary generalized epilepsy) entered a study of personality traits related to epilepsy, based on a modification of Bellak's semistructured interview for assessment of ego strength. Two groups of subjects...... served as controls: 15 patients with a non-neurological but relapsing disorder, psoriasis, and 15 healthy volunteers. Compared with the group of healthy volunteers, a decreased adaptive level of ego functioning was found in the epilepsy groups, regardless of seizure types and EEG findings, and...... than 15 years when the disease began. The number of anticonvulsants administered did not influence the results. No difference on adaptive level of ego functioning was found between the group with primary generalized epilepsy and the group with temporal lobe epilepsy. Similarly, the temporal lobe...

  6. The Function of Sleep

    Directory of Open Access Journals (Sweden)

    Daniel A. Barone

    2015-06-01

    Full Text Available The importance of sleep can be ascertained by noting the effects of its loss, which tends to be chronic and partial, on cognition, mood, alertness, and overall health. Many theories have been put forth to explain the function of sleep in humans, including proposals based on energy conservation, ecological adaptations, neurocognitive function, neural plasticity, nervous system and physical health, and performance. Most account for only a portion of sleep behavior and few are based on strong experimental support. In this review, we present theories proposing why sleep is necessary and supporting data demonstrating the effects of inadequate sleep, with the intention of gleaning further information as to its necessity, which remains one of the most perplexing mysteries in biology.

  7. Pancreatic exocrine function testing

    International Nuclear Information System (INIS)

    Goff, J.S.

    1981-01-01

    It is important to understand which pancreatic function tests are available and how to interpret them when evaluating patients with malabsorption. Available direct tests are the secretin stimulation test, the Lundh test meal, and measurement of serum or fecal enzymes. Indirect tests assess pancreatic exocrine function by measuring the effect of pancreatic secretion on various nutrients. These include triglycerides labeled with carbon 14, cobalamin labeled with cobalt 57 and cobalt 58, and para-aminobenzoic acid bound to a dipeptide. Of all these tests the secretin stimulation test is the most accurate and reliable if done by experienced personnel. However, the indirect tests are simpler to do and appear to be comparable to the secretin test at detecting pancreatic exocrine insufficiency. These indirect tests are becoming clinically available and clinicians should familiarize themselves with the strengths and weaknesses of each

  8. Towards the Innovation Function

    Directory of Open Access Journals (Sweden)

    Paulo Antônio Zawislak

    2008-12-01

    Full Text Available This paper explores the main elements that influence innovation and the relationships among them. It is pointed out that innovation results from an entrepreneurial action inside an established institutional context, sustained by resources, abilities and competences and with the support of the necessary financial capital. Therefore, it is proposed that innovation is a function (just as the microeconomic production function composed of entrepreneurship, institutions, capabilities and capital. Each one of these elements is explored individually, so that later the relationships among them can be analyzed. It is still suggested that the size of the firm is a moderator in the relationship between these elements and innovation. The study’s contribution it is the development of a conceptual model.

  9. Vestibular function testing.

    LENUS (Irish Health Repository)

    Lang, E E

    2010-06-01

    Vestibular symptoms of vertigo, dizziness and dysequilibrium are common complaints which can be disabling both physically and psychologically. Routine examination of the ear nose and throat and neurological system are often normal in these patients. An accurate history and thorough clinical examination can provide a diagnosis in the majority of patients. However, in a subgroup of patients, vestibular function testing may be invaluable in arriving at a correct diagnosis and ultimately in the optimal treatment of these patients.

  10. Applied functional analysis

    CERN Document Server

    Oden, J Tinsley

    2010-01-01

    The textbook is designed to drive a crash course for beginning graduate students majoring in something besides mathematics, introducing mathematical foundations that lead to classical results in functional analysis. More specifically, Oden and Demkowicz want to prepare students to learn the variational theory of partial differential equations, distributions, and Sobolev spaces and numerical analysis with an emphasis on finite element methods. The 1996 first edition has been used in a rather intensive two-semester course. -Book News, June 2010

  11. Generalised twisted partition functions

    CERN Document Server

    Petkova, V B

    2001-01-01

    We consider the set of partition functions that result from the insertion of twist operators compatible with conformal invariance in a given 2D Conformal Field Theory (CFT). A consistency equation, which gives a classification of twists, is written and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation of Ocneanu's algebraic construction, and might offer a new route to the study of properties of CFT.

  12. Cobham recursive set functions

    Czech Academy of Sciences Publication Activity Database

    Beckmann, A.; Buss, S.; Friedman, S.-D.; Müller, M.; Thapen, Neil

    2016-01-01

    Roč. 167, č. 3 (2016), s. 335-369 ISSN 0168-0072 R&D Projects: GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : set function * polynomial time * Cobham recursion Subject RIV: BA - General Mathematics Impact factor: 0.647, year: 2016 http://www. science direct.com/ science /article/pii/S0168007215001293

  13. Function integrated track system

    OpenAIRE

    Hohnecker, Eberhard

    2010-01-01

    The paper discusses a function integrated track system that focuses on the reduction of acoustic emissions from railway lines. It is shown that the combination of an embedded rail system (ERS), a sound absorbing track surface, and an integrated mini sound barrier has significant acoustic advantages compared to a standard ballast superstructure. The acoustic advantages of an embedded rail system are particularly pronounced in the case of railway bridges. Finally, it is shown that a...

  14. Controlling Lipschitz functions

    OpenAIRE

    Kupavskii, Andrey; Pach, Janos; Tardos, Gabor

    2017-01-01

    Given any positive integers $m$ and $d$, we say the a sequence of points $(x_i)_{i\\in I}$ in $\\mathbb R^m$ is {\\em Lipschitz-$d$-controlling} if one can select suitable values $y_i\\; (i\\in I)$ such that for every Lipschitz function $f:\\mathbb R^m\\rightarrow \\mathbb R^d$ there exists $i$ with $|f(x_i)-y_i|

  15. Migrativity of aggregation functions

    Czech Academy of Sciences Publication Activity Database

    Bustince, H.; Montero, J.; Mesiar, Radko

    2009-01-01

    Roč. 160, č. 6 (2009), s. 766-777 ISSN 0165-0114 R&D Projects: GA ČR GA402/08/0618 Institutional research plan: CEZ:AV0Z10750506 Keywords : Aggregation functions * Associativity * Bisymmetry * Migrativity * Nullnorms * t-Norms * Uninorms Subject RIV: BA - General Mathematics Impact factor: 2.138, year: 2009 http://library.utia.cas.cz/separaty/2009/E/masiar-migrativityofaggregationfunctions.pdf

  16. Peroxisome Biogenesis and Function

    OpenAIRE

    Kaur, Navneet; Reumann, Sigrun; Hu, Jianping

    2009-01-01

    Peroxisomes are small and single membrane-delimited organelles that execute numerous metabolic reactions and have pivotal roles in plant growth and development. In recent years, forward and reverse genetic studies along with biochemical and cell biological analyses in Arabidopsis have enabled researchers to identify many peroxisome proteins and elucidate their functions. This review focuses on the advances in our understanding of peroxisome biogenesis and metabolism, and further explores the ...

  17. Functional organic thin films

    OpenAIRE

    Scharnberg, Michael

    2007-01-01

    Organic thin films are used in many technological and engineering applications nowadays. They find use as coatings, sensors, detectors, as matrix materials in nanocomposites, as self-assembled monolayers for surface functionalization, as low-k dielectrics in integrated circuits and in advanced organic electronic applications like organic light emitting diodes, organic field effect transistors and organic photovoltaics (esp. organic solar cells) and many other applications. OLED displays are n...

  18. Cybernetic functioning in stuttering

    Directory of Open Access Journals (Sweden)

    Ursula Zsilavecz

    1981-11-01

    Full Text Available The aim of this study was to evaluate different kinds of masking noise and DAF, in order to identify the condition which would elicit the highest incidence of fluency in a group of stutterers. The study demonstrates that masking noise and DAF can be effectively applied as an aid in a therapy programme, viz. noise can effectively be put to use so as to encourage and reinforce somesthesia. Stuttering is viewed as defective functioning in the cybernetic system.

  19. Engineering functional bladder tissues.

    Science.gov (United States)

    Horst, Maya; Madduri, Srinivas; Gobet, Rita; Sulser, Tullio; Milleret, Vinzent; Hall, Heike; Atala, Anthony; Eberli, Daniel

    2013-07-01

    End stage bladder disease can seriously affect patient quality of life and often requires surgical reconstruction with bowel tissue, which is associated with numerous complications. Bioengineering of functional bladder tissue using tissue-engineering techniques could provide new functional tissues for reconstruction. In this review, we discuss the current state of this field and address different approaches to enable physiologic voiding in engineered bladder tissues in the near future. In a collaborative effort, we gathered researchers from four institutions to discuss the current state of functional bladder engineering. A MEDLINE® and PubMed® search was conducted for articles related to tissue engineering of the bladder, with special focus on the cells and biomaterials employed as well as the microenvironment, vascularisation and innervation strategies used. Over the last decade, advances in tissue engineering technology have laid the groundwork for the development of a biological substitute for bladder tissue that can support storage of urine and restore physiologic voiding. Although many researchers have been able to demonstrate the formation of engineered tissue with a structure similar to that of native bladder tissue, restoration of physiologic voiding using these constructs has never been demonstrated. The main issues hindering the development of larger contractile tissues that allow physiologic voiding include the development of correct muscle alignment, proper innervation and vascularization. Tissue engineering of a construct that will support the contractile properties that allow physiologic voiding is a complex process. The combination of smart scaffolds with controlled topography, the ability to deliver multiple trophic factors and an optimal cell source will allow for the engineering of functional bladder tissues in the near future. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Hexagonalization of correlation functions

    International Nuclear Information System (INIS)

    Fleury, Thiago; Komatsu, Shota

    2017-01-01

    We propose a nonperturbative framework to study general correlation functions of single-trace operators in N=4 supersymmetric Yang-Mills theory at large N. The basic strategy is to decompose them into fundamental building blocks called the hexagon form factors, which were introduced earlier to study structure constants using integrability. The decomposition is akin to a triangulation of a Riemann surface, and we thus call it hexagonalization. We propose a set of rules to glue the hexagons together based on symmetry, which naturally incorporate the dependence on the conformal and the R-symmetry cross ratios. Our method is conceptually different from the conventional operator product expansion and automatically takes into account multi-trace operators exchanged in OPE channels. To illustrate the idea in simple set-ups, we compute four-point functions of BPS operators of arbitrary lengths and correlation functions of one Konishi operator and three short BPS operators, all at one loop. In all cases, the results are in perfect agreement with the perturbative data. We also suggest that our method can be a useful tool to study conformal integrals, and show it explicitly for the case of ladder integrals.