Comparing standard Bonner spheres and high-sensitivity Bonner cylinders
International Nuclear Information System (INIS)
Standard Bonner spheres and proposed high-sensitivity Bonner cylinders were calibrated in a neutron calibration room, using a 252Cf source. The Bonner sphere system consists of 11 polyethylene (PE) spheres of various diameters and 4 extended spheres that comprise embedded metal shells. Similar to the design of Bonner spheres, a set of Bonner cylinders was assembled using a large cylindrical 3He tube as the central probe, which was wrapped using various thicknesses of PE. A layer of lead was employed inside one of the PE cylinders to increase the detection efficiency of high-energy neutrons. The central neutron probe used in the Bonner cylinders exhibited an efficiency of ∼17.9 times higher than that of the Bonner spheres. However, compared with the Bonner spheres, the Bonner cylinders are not fully symmetric in their geometry, exhibiting angular dependence in their responses to incoming neutrons. Using a series of calculations and measurements, this study presents a systematic comparison between Bonner spheres and cylinders in terms of their response functions, detection efficiencies, angular dependences and spectrum unfolding. A high-sensitivity Bonner cylinder spectrometer was developed to facilitate neutron spectrum measurement in low-intensity environments such as the site boundaries of nuclear facilities or accelerators. The proposed spectrometer system comprises 11 cylinders of various PE thicknesses and an extended cylinder with an embedded lead shell. Compared with the standard Bonner spheres, the detection efficiency of the device increased by a factor of >10 because a large 3He tube was employed. However, the Bonner cylinders are not symmetric in their polar angle, and this causes the advantage of isotropic response to be lost. A systematic comparison was conducted between the standard Bonner spheres and the proposed Bonner cylinders, examining their response functions, calibration measurements, angular dependences and spectrum unfolding. (authors)
Response matrix of an extended Bonner sphere system
International Nuclear Information System (INIS)
We have developed a system of Bonner spheres designed for use around high-energy accelerators. The upper energy limit of the system was extended using a lead radiator, which acts as an energy converter via the (n,xn) reaction. In addition, we use 11C activation as an additional component integrated into the system and the spectra unfolding process. In the first version of the system, the lead radiator was present in only one sphere with diameter of 30.48 cm. The object of the present work was to investigate the geometry of the lead radiator and its use in moderators of several different sizes. As a result, we have developed a modular design and calculated the response matrix of the new system
International Nuclear Information System (INIS)
The artificial neural networks (RN) have been used successfully to solve a wide variety of problems. However to determine an appropriate set of values of the structural parameters and of learning of these, it continues being even a difficult task. Contrary to previous works, here a set of neural networks is designed to reconstruct neutron spectra starting from the counting rates coming from the detectors of the Bonner spheres system, using a systematic and experimental strategy for the robust design of multilayer neural networks of the feed forward type of inverse propagation. The robust design is formulated as a design problem of Taguchi parameters. It was selected a set of 53 neutron spectra, compiled by the International Atomic Energy Agency, the counting rates were calculated that would take place in a Bonner spheres system, the set was arranged according to the wave form of those spectra. With these data and applying the Taguchi methodology to determine the best parameters of the network topology, it was trained and it proved the same one with the spectra. (Author)
Bonner sphere spectrometer: A CONRAD project intercomparison
International Nuclear Information System (INIS)
The most widely used system in neutrons measurements for radiological protection is the Bonner Sphere Spectrometer (BSS). The BSS is applied to characterise neutron fields from thermal to hundreds of MeVs. The Nuclear Regulatory Authority of Argentina has developed and calibrated its own BSS system, which has been used in many Argentine facilities during the last eleven years when the regulatory activities have been carried out. Following this line of work, the present development has been done in the framework of the International Intercomparison ''Uncertainty Assessment in Computational Dosimetry: A Comparison of Approaches'', organised by the CONRAD project (Coordinated Network for Radiation Dosimetry). The aim of intercomparison was to study the response of a proposed widespread neutron spectrometer exposed to arbitrary neutron sources. With this goal in mind, the experimental system has been modelled in detail according to the provided layout. The modelled neutron spectrometer consists of 8 Bonner spheres made of high-density polyethylene (δ=0.95gc/m3). The spheres diameter range between 2' and 12' in addition to a 12' diameter leadloaded sphere. The defined active thermal neutron detector, a 6LiI(Eu) scintillation crystal, was according to provided dimensions (4 mm (diameter) by 4 mm (height)), and located at each sphere centre. Irradiation geometry has been according to measurements carried out during the experimental part of the intercomparison. The theoretical neutron response has been calculated applying the well-known MCNPX code. The complete response matrix of the system has been obtained in the energy range between thermal neutron and 17.77 MeV. The obtained system theoretical response to ISO standard 241Am-Be and 252Cf sources shows an excellent agreement with experimental results provided by EURADOS. This response can be used to calibrate the system. The obtained matrix response can be coupled to any unfolding code to complete the BSS system used in
Neutron measurements in the Vandellos II nuclear power plant with a Bonner sphere system
International Nuclear Information System (INIS)
In some Spanish nuclear power plants of pressurised water reactor (PWR) type, albedo thermoluminescence dosemeters are used for personal dosimetry while survey meters, based on a thermal-neutron detector inside a cylindrical or spherical moderator, are used for dose rate assessment in routine monitoring. The response of both systems is highly dependent on the energy of the existing neutron fields. They are usually calibrated by means of ISO neutron sources with energy distributions quite different from those encountered at these installations. Spectrometric measurements with a Bonner sphere system (BSS) allow us to determine the reference dosimetric values. The UAB group, under request from the National Coordinated Research Action, was in charge of characterising the neutron fields and evaluating the response of personal dosemeters at several measurement points inside the containment building of the Catalan Nuclear Power Plant Vandellos II. The neutron fields were characterised at five places using the UAB-BSS and a home made unfolding code called MITOM. The results obtained confirm the presence of low-energy components in the neutron field in most of the selected points. Moreover, we have found no influence of the nuclear fuel burning on the shape of the spectrum. (authors)
Müller, H; Bouassoule, T; Fernández, F; Pochat, J L; Tomas, M; Van Ryckeghem, L
2002-01-01
The experimental results on neutron energy spectra, integral fluences and equivalent dose measurements performed by means of a Bonner sphere system placed inside the containment building of the Vandellos II Nuclear Power Plant (Tarragona, Spain) are presented. The equivalent dose results obtained with this system are compared to those measured with different neutron area detectors (Berthold, Dineutron, Harwell). A realistic geometry model of the Bonner sphere system with a new cylindrical counter type 'F' (0,5NH1/1KI--Eurisys Mesures) and with a set of eight polyethylene moderating spheres is described in detail. The response function in fluence of this new device, to mono-energetic neutrons from thermal energy to 20 MeV, is calculated by the MCNP-4B code for each moderator sphere. The system has been calibrated at IPSN Cadarache facility for ISO Am-Be calibrated source and thermal neutron field, then the response functions were confirmed by measurements at PTB (Germany) for ISO recommended energies of mono-e...
International Nuclear Information System (INIS)
This research thesis first describes the problematic of the effects of natural radiation on micro- and nano-electronic components, and the atmospheric-radiative stress of atmospheric neutrons from cosmic origin: issue of 'Single event upsets', present knowledge of the atmospheric radiative environment induced by cosmic rays. The author then presents the neutron-based detection and spectrometry by using the Bonner sphere technique: principle of moderating spheres, definition and mathematical formulation of neutron spectrometry using Bonner spheres, active sensors of thermal neutrons, response of a system to conventional Bonner spheres, extension to the range of high energies. Then, he reports the development of a Bonner sphere system extended to the high-energy range for the spectrometry of atmospheric neutrons: definition of a conventional system, Monte Carlo calculation of response functions, development of the response matrix, representation and semi-empirical verification of fluence response, uncertainty analysis, extension to high energies, and measurement tests of the spectrometer. He reports the use of a Monte Carlo simulation to characterize the spectrometer response in the high-energy range
A Bonner Sphere Spectrometer for pulsed fields.
Aza, E; Dinar, N; Manessi, G P; Silari, M
2016-02-01
The use of conventional Bonner Sphere Spectrometers (BSS) in pulsed neutron fields (PNF) is limited by the fact that proportional counters, usually employed as the thermal neutron detectors, suffer from dead time losses and show severe underestimation of the neutron interaction rate, which leads to strong distortion of the calculated spectrum. In order to avoid these limitations, an innovative BSS, called BSS-LUPIN, has been developed for measuring in PNF. This paper describes the physical characteristics of the device and its working principle, together with the results of Monte Carlo simulations of its response matrix. The BSS-LUPIN has been tested in the stray neutron field at the CERN Proton Synchrotron, by comparing the spectra obtained with the new device, the conventional CERN BSS and via Monte Carlo simulations. PMID:25948828
Photoneutron spectrum measured with Bonner Spheres in Planetary method mode
Energy Technology Data Exchange (ETDEWEB)
Benites R, J. [Centro Estatal de Cancerologia de Nayarit, Servicio de Seguridad Radiologica, Calz. de la Cruz 118 Sur, 63000 Tepic, Nayarit (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico); Velazquez F, J., E-mail: jlbenitesr@prodigy.net.mx [Universidad Autonoma de Nayarit, Posgrado en Ciencias Biologico Agropecuarias, Carretera Tepic-Compostela Km 9, 63780 Jalisco-Nayarit (Mexico)
2012-10-15
We measured the spectrum of photoneutrons at 100 cm isocenter linear accelerator (Linac) Varian ix operating at 15 MV Bremsstrahlung mode. In this process was used a radiation field of 20 x 20 cm{sup 2} at a depth of 5 cm in a solid water phantom with dimensions of 30 x 30 x 15 cm{sup 3}. The measurement was performed with a system using it Bonner Spheres spectrometric method Planetary mode. As neutron detector of the spectrometer is used thermoluminescent dosimeters pairs of type 600 and 700. (Author)
Energy Technology Data Exchange (ETDEWEB)
Ortiz R, J.M.; Martinez B, M.R.; Arteaga A, T.; Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico)
2005-07-01
The artificial neural networks (RN) have been used successfully to solve a wide variety of problems. However to determine an appropriate set of values of the structural parameters and of learning of these, it continues being even a difficult task. Contrary to previous works, here a set of neural networks is designed to reconstruct neutron spectra starting from the counting rates coming from the detectors of the Bonner spheres system, using a systematic and experimental strategy for the robust design of multilayer neural networks of the feed forward type of inverse propagation. The robust design is formulated as a design problem of Taguchi parameters. It was selected a set of 53 neutron spectra, compiled by the International Atomic Energy Agency, the counting rates were calculated that would take place in a Bonner spheres system, the set was arranged according to the wave form of those spectra. With these data and applying the Taguchi methodology to determine the best parameters of the network topology, it was trained and it proved the same one with the spectra. (Author)
Real-Time Bonner Sphere Spectrometry on the HL-2A Tokamak
Jiang, Chunyu; Cao, Jing; Jiang, Xiaofei; Zhao, Yanfeng; Song, Xianying; Yin, Zejie
2016-06-01
Real-time Bonner sphere spectrometry (BSS) at the HL-2A tokamak for the neutron spectrum diagnostic is described. The spectrometer consists of eight different size Bonner spheres made of polyethylene and with a 3helium-filled detector in the center, pre-amplifiers, and parallel-processing data acquisition system (DAQ). Dynamic neutrons from plasma discharges of the HL-2A tokamak were measured and the real-time neutron spectrum was presented. supported by National Natural Science Foundation of China (No. 11375195) and the National Magnetic Confinement Fusion Science Program of China (No. 2013GB104003)
International Nuclear Information System (INIS)
An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)
Energy Technology Data Exchange (ETDEWEB)
Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde No. 801, 98000 Zacatecas (Mexico)
2006-07-01
An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)
Measurement with Bonner spheres spectrometer in pulsed neutron fields
Czech Academy of Sciences Publication Activity Database
Králik, M.; Turek, Karel; Vondráček, V.; Krása, Josef; Velyhan, Andriy; Scholz, M.; Ivanova-Stanik, I.M.
2010-01-01
Roč. 45, č. 10 (2010), s. 1245-1249. ISSN 1350-4487. [Neutron and Ion Dosimetry Symposium /11./. Cape Town, 12.10.2009-16.10.2009] Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100523 Keywords : neutron spectrometry * bonner spheres * track detector s Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.019, year: 2010
International Nuclear Information System (INIS)
Neutron spectra unfolding and dose equivalent calculation are complicated tasks in radiation protection, are highly dependent of the neutron energy, and a precise knowledge on neutron spectrometry is essential for all dosimetry-related studies as well as many nuclear physics experiments. In previous works have been reported neutron spectrometry and dosimetry results, by using the artificial neural networks (Ann) technology as alternative solution, starting from the count rates of a Bonner spheres system with a 6LiI(Eu) thermal neutrons detector, 7 polyethylene spheres and the UTA4 response matrix with 31 energy bins. In this work, an Ann was designed and optimized by using the RDAnn methodology for the Bonner spheres system used at CIEMAT Spain, which is composed of a 3He neutron detector, 12 moderator spheres and a response matrix for 72 energy bins. For the Ann design process a neutrons spectra catalogue compiled by the IAEA was used. From this compilation, the neutrons spectra were converted from lethargy to energy spectra. Then, the resulting energy fluence spectra were re-bin ned by using the MCNP code to the corresponding energy bins of the 3He response matrix before mentioned. With the response matrix and the re-bin ned spectra the counts rate of the Bonner spheres system were calculated and the resulting re-bin ned neutrons spectra and calculated counts rate were used as the Ann training data set. (Author)
International Nuclear Information System (INIS)
A realistic geometry model of a Bonner sphere system with a spherical 3He-filled proportional counter and 12 polyethylene moderating spheres with diameters ranging from 7,62 cm (3'') to 45,72 cm (18'') is introduced. The MCNP Monte Carlo computer code is used to calculate the responses of this Bonner sphere system to monoenergetic neutrons in the energy range between 1 meV to 20 MeV. The relative uncertainties of the responses due to the Monte Carlo calculations are less than 1% for spheres up to 30,48 cm (12'') in diameter and less than 2% for the 15'' and 18'' spheres. Resonances in the carbon cross section are seen as significant structures in the response functions. Additional calculations were made to study the influence of the 3He number density and the polyethylene mass density on the response as well as the angular dependence of the Bonner sphere system. The calculated responses can be adjusted to a large set of calibration measurements with only a single fit factor common to all sphere diameters and energies. (orig.)
International Nuclear Information System (INIS)
Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire
The response of a Bonner sphere spectrometer to charged hadrons
International Nuclear Information System (INIS)
Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy neutrons via (n,xn) reactions. A BSS can be used to measure neutron spectra both outside accelerator shielding and from an unshielded target. Measurements were recently performed at CERN of the neutron yield and spectral fluence at various angles from unshielded, semi-thick copper, silver and lead targets, bombarded by a mixed proton/pion beam with 40 GeV per c momentum. These experiments have provided evidence that under certain circumstances, the use of lead-enriched moderators may present a problem: these detectors were found to have a significant response to the charged hadron component accompanying the neutrons emitted from the target. Conventional polyethylene moderators show a similar behaviour but less pronounced. These secondary hadrons interact with the moderator and generate neutrons, which are in turn detected by the counter. To investigate this effect and determine a correction factor to be applied to the unfolding procedure, a series of Monte Carlo simulations were performed with the FLUKA code. These simulations aimed at determining the response of the BSS to charged hadrons under the specific experimental situation. Following these results, a complete response matrix of the extended BSS to charged pions and protons was calculated with FLUKA. An experimental verification was carried out with a 120 GeV per c hadron beam at the CERF facility at CERN. (authors)
Measurement of spectrum and dose rate of natural neuron using Bonner spheres
International Nuclear Information System (INIS)
The natural neutron spectrum indoor was measured by using Bonner spheres spectrometer in Hefei. A Bonner sphere spectrometer with maximum entropy method was used to unfold neutron spectrum. Then according to the fluence to dose coefficient, the dose rate was calculated. The software EXPACS Ver2.21 based on the analytic methods for simulating the natural neutron spectrum was adopted to verify the neutron spectrum, and the BF3 natural neutron monitors were used to confirm the effective dose rate. The verification and analysis indicated that the results from Bonner spheres spectrometer consistent with others. The ambient dose equivalent rate of neutron in Hefei was between 2.6 nSv · h-1 and 14.38 nSv · h-1. (authors)
NEMUS--the PTB Neutron Multisphere Spectrometer Bonner spheres and more
Wiegel, B
2002-01-01
The original Bonner sphere spectrometer as it is used and characterized by PTB consists of 12 polyethylene spheres with diameters from 7.62 cm (3'') to 45.72 cm (18'') and a sup 3 He-filled spherical proportional counter used as a central thermal-neutron-sensitive detector and as a bare or cadmium-shielded bare detector. In this paper, a set of four new spheres made of polyethylene with copper or lead inlets is introduced. All spheres are less than 18 kg in mass and their responses to high energy neutrons increase with energy as a result of the increasing (n,xn) cross-sections of copper and lead. The fluence response matrix was calculated up to 10 GeV using an extended neutron cross-section library (LA150) and the MCNP(X) Monte Carlo code. Calibration measurements with neutron energies up to 60 MeV were used to compare the calculated response functions to measured values. For measurements outside the laboratory, a miniaturized, battery-powered electronic set-up was developed. This system with the additional, ...
International Nuclear Information System (INIS)
In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of 252Cf, 241AmBe and 239PuBe neutron sources measured with a Bonner spheres system
Energy Technology Data Exchange (ETDEWEB)
Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solis Sanches, L. O.; Miranda, R. Castaneda; Cervantes Viramontes, J. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica. Av. Ramon Lopez Velarde 801. Col. Centro Zacatecas, Zac (Mexico); Vega-Carrillo, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica. Av. Ramon Lopez Velarde 801. Col. Centro Zacatecas, Zac., Mexico. and Unidad Academica de Estudios Nucleares. C. Cip (Mexico)
2013-07-03
In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of {sup 252}Cf, {sup 241}AmBe and {sup 239}PuBe neutron sources measured with a Bonner spheres system.
Spectral analysis of some fission neutron sources with the SOHO code from BONNER sphere data
International Nuclear Information System (INIS)
For several tests fission neutron sources particularly 252Cf bare and D2O moderated, we present some spectral analysis results obtained with the new iterative code SOHO from BONNER spheres data. The approximative solutions are obtained upon discretization of the Fredholm Equation of the first kind whose Resolution Function is experimentally known and mathematically defined by the Log-Normal Hypothesis given in our previous reports CEA-N--2241 (1981) and CEA-R--5181 (1982). The iterative procedure solve systems of non-exact homogeneous linear equations QX = e (by optimum liquidation of the residuals esub(i) with positivity constraint and absolute convergence, leading to an appropriate physical solution with a relative error in our tests typically of the order of a fraction of one percent for the INPUT - OUTPUT Data. For the applications to Health Physics the SOHO Code has been programmed for use with a HP-41 CV calculator
Experimental tests of the Bonner Sphere spectrometer using filtered neutron beams
International Nuclear Information System (INIS)
The operation of a Bonner Sphere neutron detector system has been tested using several unqiue neutron sources. Filtered neutron beams at beamport F at the University of Missouri Research Reactor (MURR) were used as a source of known quasi-monoenergetic neutrons for precise energy spectra analysis and calibration. A PuBe neutron source was used for absolute flux magnitude and spectral verification. Two computer codes, SWIFT and Least Squares Unfolding Techniques (LSUT), were used to unfold the experimental data. Several operational problems were encountered during these tests. First, many of the measurements involved neutron beam measurements in which the beams had a smaller diameter than the moderating spheres. This caused partial illumination of the spheres for which correction factors had to be developed. A partial illumination correction factor has been proposed and tested to account for this problem. Second, reactor core gamma-ray contamination in the neutron beams was of sufficient magnitude to interfere with some measurements. Gamma-ray background subtraction techniques using a multi-channel analyzer were used to alleviate this problem. After correcting for gamma-ray background and applying partial illumination correction factors, unfolded neutron spectra from the unfolding codes gave good results for most neutron sources. In particular the SWIFT results were quite good, exceeding expectations in terms of energy resolution and spectral accuracy. (orig.)
Bonner sphere neutron spectrometry at spent fuel casks
Rimpler, A
2002-01-01
For transport and interim storage of spent fuel elements from power reactors and vitrified highly active waste (HAW) from reprocessing, various types of casks are used. The radiation exposure of the personnel during transportation and storage of these casks is caused by mixed photon-neutron fields and, frequently, the neutron dose is predominant. In operational radiation protection, survey meters and even personal dosemeters with imperfect energy dependence of the dose-equivalent response are used, i.e. the fluence response of the devices does not match the fluence-to-dose equivalent conversion function. In order to achieve more accurate dosimetric information and to investigate the performance of dosemeters, spectrometric investigations of the neutron fields are necessary. Therefore, fluence spectra and dose rates were measured by means of a simple portable Bonner multisphere spectrometer (BSS). The paper describes briefly the experimental set-up and evaluation procedure. Measured spectra for different locat...
Application of Neural Networks for unfolding neutron spectra measured by means of Bonner Spheres
International Nuclear Information System (INIS)
A Neural Network structure has been used for unfolding neutron spectra measured by means of a Bonner Sphere Spectrometer set. The present work used the 'Stuttgart Neural Network Simulator' as the interface for designing, training and validation of a MultiLayer Perceptron network. The back-propagation algorithm was applied. The Bonner Sphere set chosen has been calibrated at the National Physical Laboratory, United Kingdom, and uses gold activation foils as thermal neutron detectors. The neutron energy covered by the response functions goes from 0.0001 eV to 10 MeV. Two types of neutron spectra were numerically investigated: monoenergetic and continuous. Good results were obtained, indicating that the Neural Network can be considered an interesting alternative among the neutron spectrum unfolding methodologies
Photoneutron spectrum measured with a Bonner sphere spectrometer in planetary method mode
International Nuclear Information System (INIS)
The spectrum of photoneutrons produced by a 15 MV VARIAN iX linac working in Bremsstrahlung mode was measured a 100 cm from the IC located 5 cm-depth of a solid water phantom. The spectrum was measured with a Bonner spheres spectrometer with pairs of TLDs as thermal neutron detector. The measurements were carried out using the spectrometer in planetary method mode where a single shoot of the LINAC was required. - Highlights: • The photoneutrons spectrum of a 15 MV LINAC was measured. • A Bonner sphere spectrometer with pairs of TLDs were used. • Measurements were carried out with the BSS in Planetary method mode. • Measured spectrum is compared with calculated spectrum
Determining the neutron spectrum of 241Am-Be and 252Cf sources using bonner sphere spectrometer
Directory of Open Access Journals (Sweden)
M.A Varshabi
2016-06-01
Full Text Available Bonner spheres system is one of the ways of measuring neutron energy distribution which is often applied in spectrometry and neutron dosimetry. This system includes a thermal neutron detector, being located in the center of several polyethylene spheres, and it is still workable due to the isotropic response of the system which in turn is derived from the spherical symmetry of moderators and the broad measurable range of the energy. In order to practically use this spectrometer, it is necessary to calibrate this system using standard neutron sources. This research aimed to determine the calibration factor of Bonner spheres spectrometry system and energy spectrum of two standard 241Am-Be and 252Cf sources in the atomic energy organization. Calibration and experimental measurement were done via the two standard sources. The response vector of each detector was derived by using MCNPX simulation code, based on the Monte Carlo method. The spectra unfolding of this system was performed through iterative method using the SPUNIT code done in software NSDUAZ6LiI and BUMS.
NSDUAZ unfolding package for neutron spectrometry and dosimetry with Bonner spheres
International Nuclear Information System (INIS)
NSDUAZ (Neutron Spectrometry and Dosimetry for the Universidad Autonoma de Zacatecas) is a user friendly neutron unfolding package for Bonner sphere spectrometer with 6Lil(Eu) developed under Lab View environment. Unfolding is carried out using a recursive iterative procedure with the SPUNIT algorithm, where the starting spectrum is obtained from a library initial guess spectrum to start the iterations, the package include a statistical procedure based on the count rates relative to the count rate in the 8 inches-diameter sphere to select the initial spectrum. Neutron spectrum is unfolded in 32 energy groups ranging from 10-8 up to 231.2 MeV. (Author)
NSDUAZ unfolding package for neutron spectrometry and dosimetry with Bonner spheres
Energy Technology Data Exchange (ETDEWEB)
Vega C, H. R.; Martinez B, M. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Ortiz R, J. M., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas (Mexico)
2011-10-15
NSDUAZ (Neutron Spectrometry and Dosimetry for the Universidad Autonoma de Zacatecas) is a user friendly neutron unfolding package for Bonner sphere spectrometer with {sup 6}Lil(Eu) developed under Lab View environment. Unfolding is carried out using a recursive iterative procedure with the SPUNIT algorithm, where the starting spectrum is obtained from a library initial guess spectrum to start the iterations, the package include a statistical procedure based on the count rates relative to the count rate in the 8 inches-diameter sphere to select the initial spectrum. Neutron spectrum is unfolded in 32 energy groups ranging from 10{sup -8} up to 231.2 MeV. (Author)
Iterative code for the reconstruction of the neutrons spectrum using the Bonner spheres
International Nuclear Information System (INIS)
The neutrons are the particles more difficult of detecting for their intrinsic nature. The absence of the neutrons charge makes that an interaction exists with the matter in a different way. The term radiation spectrometry can use to describe the measurement of the intensity of a radiation field with regard to the energy. The intensity distribution with relationship to the energy is commonly known as spectrum. A method to know the neutrons spectrum in the radiation fields to those that people are exposed is the use of the known system as spectrometry system of Bonner spheres, being the more used for the purposes of the radiological protection. The current interest in the electrons spectrometry has stimulated the development of several procedures to carry out the reconstruction of the spectra. During the last decades new codes have been developed such as BUNKIUT, Bums, Fruit, UMG, etc., however, these methods still present several inconveniences as the complexity in their use, the necessity of an expert user and a very near initial spectrum to the spectrum that is wanted to obtain. To solve the mentioned problems it was development the program NSDUAZ (Neutron Spectrometry and Dosimetry from Autonomous University of Zacatecas). The objective of the present work is to prove and to validate the code before mentioned making an analysis of likeness and differences and of advantages and disadvantages with relationship to the codes used at the present time. (Author)
Monte Carlo calculation of the response matrix of a Bonner spheres spectrometer
International Nuclear Information System (INIS)
The Bonner spheres spectrometer is utilized to estimate the neutron spectrum of neutrons from thermal up to several MeV neutrons. Its response is increased to few GeV neutrons by introducing large Z materials as inner shells. To use the spectrometer a matrix response and an unfolding method are required; these are crucial to assure the quality of spectrometer output. The response matrix of a Bonner sphere spectrometer was calculated by use of the MCNP code. As thermal neutron counter the spectrometer has a 0.4 θ x 0.4 cm2 6LiI(Eu) scintillator which is located at the centre of a set of polyethylene spheres. The response functions were calculated for 0, 2, 3, 5, 8, 10, and 12 inches-diameter polyethylene spheres for neutrons whose energy goes from 10-8 to 100 MeV. For energies from 10-8 to 20 MeV the MCNP4C code was utilized while for neutrons from 20 to 100 MeV calculations were carried out with MCNPX code. The response functions were compared with those reported in the literature. (author)
Braga, C C
2001-01-01
A neural network structure has been used for unfolding neutron spectra measured by means of a Bonner Sphere Spectrometer set and a foil activation set using several neutron induced reactions. The present work used the SNNS (Stuttgart Neural Network Simulator) as the interface for designing, training and validation of the Multilayer Perceptron network. The back-propagation algorithm was applied. The Bonner Sphere set chosen has been calibrated at the National Physical Laboratory, United Kingdom, and uses gold activation foils as thermal neutron detectors. The neutron energy covered by the response functions goes from 0.0001 eV to 14 MeV. The foil activation set chosen has been irradiated at the IEA-R1 research reactor and measured at the Nuclear Metrology Laboratory of IPEN-CNEN/SP. Two types of neutron spectra were numerically investigated: monoenergetic and continuous The unfolded spectra were compared to a conventional method using code SAND-II as part of the neutron dosimetry system SAIPS. Good results wer...
International Nuclear Information System (INIS)
A neural network structure has been used for unfolding neutron spectra measured by means of a Bonner Sphere Spectrometer set and a foil activation set using several neutron induced reactions. The present work used the SNNS (Stuttgart Neural Network Simulator) as the interface for designing, training and validation of the Multilayer Perceptron network. The back-propagation algorithm was applied. The Bonner Sphere set chosen has been calibrated at the National Physical Laboratory, United Kingdom, and uses gold activation foils as thermal neutron detectors. The neutron energy covered by the response functions goes from 0.0001 eV to 14 MeV. The foil activation set chosen has been irradiated at the IEA-R1 research reactor and measured at the Nuclear Metrology Laboratory of IPEN-CNEN/SP. Two types of neutron spectra were numerically investigated: monoenergetic and continuous The unfolded spectra were compared to a conventional method using code SAND-II as part of the neutron dosimetry system SAIPS. Good results were obtained, indicating that the Neural Network can be considered an interesting alternative among the neutron spectrum unfolding methodologies. (author)
International Nuclear Information System (INIS)
A conventional Bonner Sphere (BS) set consisting of six polyethylene spheres was modified to enhance its response to a high-energy neutron by putting a lead shell inside a polyethylene moderator. The response matrix of an extended BS was calculated using the MCNPX code and calibrated using a 252Cf neutron source. In order to survey the unknown photon and neutron mixed field, a spherical tissue equivalent proportional counter (TEPC) was constructed and assembled as a portable measurement system. The extended BS and the self-constructed TEPC were employed to determine the dosimetric quantities of the neutron field produced from the thick lead target bombarded by the 2.5 GeV electron beam of Pohang Accelerator Laboratory (PAL) and the neutron calibration field of Korea Atomic Energy Research Inst. (KAERI). (authors)
Comparison between standard unfolding and Bayesian methods in Bonner spheres neutron spectrometry
Energy Technology Data Exchange (ETDEWEB)
Medkour Ishak-Boushaki, G., E-mail: gmedkour@yahoo.com [Laboratoire SNIRM-Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia BabEzzouar, Algiers (Algeria); Allab, M. [Laboratoire SNIRM-Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia BabEzzouar, Algiers (Algeria)
2012-10-11
This paper compares the use of both standard unfolding and Bayesian methods to analyze data extracted from neutron spectrometric measurements with a view to deriving some integral quantities characterizing a neutron field. We consider, as an example, the determination of the total neutron fluence and dose in the vicinity of an Am-Be source from Bonner spheres measurements. It is shown that the Bayesian analysis provides a rigorous estimation of these quantities and their correlated uncertainties and overcomes difficulties encountered in the standard unfolding methods.
Comparison between standard unfolding and Bayesian methods in Bonner spheres neutron spectrometry
International Nuclear Information System (INIS)
This paper compares the use of both standard unfolding and Bayesian methods to analyze data extracted from neutron spectrometric measurements with a view to deriving some integral quantities characterizing a neutron field. We consider, as an example, the determination of the total neutron fluence and dose in the vicinity of an Am–Be source from Bonner spheres measurements. It is shown that the Bayesian analysis provides a rigorous estimation of these quantities and their correlated uncertainties and overcomes difficulties encountered in the standard unfolding methods.
Quantification of neutron field at the neutron therapy room of KCCH using a Bonner sphere
International Nuclear Information System (INIS)
In order to quantify the neutron fields at the neutron therapy room of KCCH the Bonner Sphere spectrometry system (BS) was used for the measurement of neutron spectra produced from two kinds of Be targets (1.0 and 10.5 mm bombarded by protons of 35 and 45 MeV. It was found that additional neutrons produced from the beam line tube and the beam stopper, which are made of Aluminum, were included considerably as a part of neutron spectrum in the neutron field made from the thin (1.0 mm) Be target. Neutrons from the thick (10.5 mm) Be were hardened by a iron filter of 2.6 cm and collimated by the gantry, and the beam size was fitted 26 x 16 cm2) to cover the cross sectional area of a BS used in this measurement. Six kinds of neutron spectra were measured and the dosimetric quantities such as the fluence averaged energy (Eave.), the spectrum weighted dose conversion coefficient (h*) and the dose equivalent rate (H) per nano ampere were determined. These were ranged as follows, Eave. was from 4.3 to 15.1 MeV, and h* was from 326 to 447 pSv.cm2, and H was from 0.17 to 5.66 mSv.h-1.nA-1. The MXDFC31 code was used to unfold the measured data of BS and the MCNPX code (Ver. 2.4) implemented to calculate the default spectra which are necessary for unfolding as a prior information
Energy Technology Data Exchange (ETDEWEB)
Reyes H, A.; Ortiz R, J. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)
2012-10-15
The neutrons are the particles more difficult of detecting for their intrinsic nature. The absence of the neutrons charge makes that an interaction exists with the matter in a different way. The term radiation spectrometry can use to describe the measurement of the intensity of a radiation field with regard to the energy. The intensity distribution with relationship to the energy is commonly known as spectrum. A method to know the neutrons spectrum in the radiation fields to those that people are exposed is the use of the known system as spectrometry system of Bonner spheres, being the more used for the purposes of the radiological protection. The current interest in the electrons spectrometry has stimulated the development of several procedures to carry out the reconstruction of the spectra. During the last decades new codes have been developed such as BUNKIUT, Bums, Fruit, UMG, etc., however, these methods still present several inconveniences as the complexity in their use, the necessity of an expert user and a very near initial spectrum to the spectrum that is wanted to obtain. To solve the mentioned problems it was development the program NSDUAZ (Neutron Spectrometry and Dosimetry from Autonomous University of Zacatecas). The objective of the present work is to prove and to validate the code before mentioned making an analysis of likeness and differences and of advantages and disadvantages with relationship to the codes used at the present time. (Author)
Response Matrix of a Bonner Spheres Spectrometer with 3 He Detector
International Nuclear Information System (INIS)
Using MCNP code the response matrix of a Bonner spheres spectrometer was calculated. The spectrometer has a 3.2 cm-diameter thermal neutron detector; this is a 3 He-filled proportional counter that is located at the center of a set of polyethylene spheres. The response was calculated for 0, 3, 5, 6, 8, 10, 12 and 16 inches-diameter polyethylene spheres for neutrons whose energy goes from 10-9 to 20 MeV. The response matrix was compared with a set of responses measured with several monoenergetic neutron sources, from this comparison calculated matrix is in agreement with the experimental results. Also this matrix was compared against the response matrix calculated for the PTB C spectrometer, Nevertheless that calculation was carried out using a detailed model to describe the proportional counter both matrices were in agreement, small differences are observed in the bare case because the difference in the model used during calculations. Other differences are in some spheres for 14.8 and 20 MeV neutrons probable due to the differences in the cross sections used during both calculations. (Author)
NSDUAZ unfolding package for neutron spectrometry and dosimetry with Bonner spheres
International Nuclear Information System (INIS)
NSDUAZ (Neutron Spectrometry and Dosimetry from the Universidad Autónoma de Zacatecas) is a user friendly neutron unfolding package for Bonner sphere spectrometer with 6LiI(Eu) developed under LabView® environment. Unfolding is carried out using a recursive iterative procedure with the SPUNIT algorithm, where the starting spectrum is obtained from a library initial guess spectra to start the iterations. The NSDUAZ performance was evaluated using 252Cf, 252Cf/D2O, 241AmBe neutron sources and the neutrons outside the radial beam port of a TRIGA Mark III nuclear reactor running to 10 W. - Highlights: ► This paper presents the NSDUAZ unfolding package. ► Advantages and drawbacks of NSDUAZ package are pointed out. ► NSDUAZ is evaluated with neutrons from a nuclear reactor and isotopic neutron sources.
Investigation of the neutron spectrum of americium–beryllium sources by Bonner sphere spectrometry
International Nuclear Information System (INIS)
Americium–beryllium neutron sources are certainly the most widely used in neutron dosimetry laboratories, basically due to their long half-life and their energy distribution, which covers the energy domain of interest for many applications in ambient and personal dosimetry. Nevertheless, the spectrum of this source depends on the materials and dimension of the capsule and on the amount and physical–chemical properties of the active material, thus affecting relevant quantities such as the spectrum-averaged fluence-to-dose equivalent conversion coefficient. A EURAMET (European Association of National Metrology Institutes) project (n. 1104) was initiated to experimentally investigate how the neutron spectrum changes for different source sizes and encapsulations with a view to providing improved data for a planned revision of the ISO 8529 Standard Series. The experimental campaign was carried out in the low scatter facility at NPL. Here three different Bonner sphere spectrometers, BSSs, were exposed to the neutron fields produced by three different neutron sources formats: one X3 capsule (1 Ci) and two X14 capsules (10 Ci and 15 Ci). The specific advantage of the BSS is the large sensitivity to low-energy neutrons (E<0.1 MeV) which is the component expected to be most affected by the capsule-to-capsule variations and the component which is least well known. This paper summarises the results of the campaign with emphasis on (1) estimating the low-energy component of the Am–Be neutron spectrum, according to the encapsulation type; (2) evaluating the coherence between the Bonner spheres data and the previous studies performed with high-resolution spectrometers but limited in energy to E>0.1 MeV; (3) understanding whether the ISO-recommended Am–Be spectrum needs to be amended, and for which source formats
Investigation of the neutron spectrum of americium–beryllium sources by Bonner sphere spectrometry
Energy Technology Data Exchange (ETDEWEB)
Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN—LNF (Frascati National Laboratories), Via E. Fermi n. 40, 00044 Frascati (Italy); Domingo, C. [GRRI, Departament de Fisica, Universitat Autónoma de Barcelona, E-08193 Bellaterra (Spain); Roberts, N.; Thomas, D.J. [National Physical Laboratory, Hampton Road, TW11 0LW Teddington, Middlesex (United Kingdom); Chiti, M.; Esposito, A. [INFN—LNF (Frascati National Laboratories), Via E. Fermi n. 40, 00044 Frascati (Italy); Garcia, M.J. [GRRI, Departament de Fisica, Universitat Autónoma de Barcelona, E-08193 Bellaterra (Spain); Gentile, A [INFN—LNF (Frascati National Laboratories), Via E. Fermi n. 40, 00044 Frascati (Italy); Liu, Z.Z. [National Physical Laboratory, Hampton Road, TW11 0LW Teddington, Middlesex (United Kingdom); San-Pedro, M. de [GRRI, Departament de Fisica, Universitat Autónoma de Barcelona, E-08193 Bellaterra (Spain)
2014-11-01
Americium–beryllium neutron sources are certainly the most widely used in neutron dosimetry laboratories, basically due to their long half-life and their energy distribution, which covers the energy domain of interest for many applications in ambient and personal dosimetry. Nevertheless, the spectrum of this source depends on the materials and dimension of the capsule and on the amount and physical–chemical properties of the active material, thus affecting relevant quantities such as the spectrum-averaged fluence-to-dose equivalent conversion coefficient. A EURAMET (European Association of National Metrology Institutes) project (n. 1104) was initiated to experimentally investigate how the neutron spectrum changes for different source sizes and encapsulations with a view to providing improved data for a planned revision of the ISO 8529 Standard Series. The experimental campaign was carried out in the low scatter facility at NPL. Here three different Bonner sphere spectrometers, BSSs, were exposed to the neutron fields produced by three different neutron sources formats: one X3 capsule (1 Ci) and two X14 capsules (10 Ci and 15 Ci). The specific advantage of the BSS is the large sensitivity to low-energy neutrons (E<0.1 MeV) which is the component expected to be most affected by the capsule-to-capsule variations and the component which is least well known. This paper summarises the results of the campaign with emphasis on (1) estimating the low-energy component of the Am–Be neutron spectrum, according to the encapsulation type; (2) evaluating the coherence between the Bonner spheres data and the previous studies performed with high-resolution spectrometers but limited in energy to E>0.1 MeV; (3) understanding whether the ISO-recommended Am–Be spectrum needs to be amended, and for which source formats.
Ueda, H; Tanaka, H; Sakurai, Y
2015-12-01
Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated. PMID:26508275
Ueda, H; Tanaka, H; Sakurai, Y
2015-10-01
Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated. PMID:26133664
Test of the Bonner Sphere Spectrometer Response Matrix in the 252Cf Neutron Field
International Nuclear Information System (INIS)
Full text: Since its development in 1960, a Bonner sphere spectrometer (BSS) has been the only instrument, which enables the spectral neutron fluence to be measured in a wide range of energies from thermal up to 20 MeV. Its resolution is poor but sufficient for dosimetric specification of neutron fields at workplaces. Experimentally determined BSS count rates depends mainly on the accuracy of the response matrix characterising certain type of BSS. At presemt the BSS response matrices are calculate by neutron transport Monte Carlo codes which allow detailed description of the BSS setup. The best verification of calculated response matrix is a calibration of the BSS in fields of monoenergetic neutrons. As so as these fields are not simply achievable a simple method how to test quality of BSS response matrix in the neutron field of 252Cf source is described. Applying distance variation method we get count rates of the BSS in the 252Cf field from which contributions of scattered neutrons and influence of finite detector and source dimensions were removed. These count rates are compared with the integrals of pure 252Cf spectrum and responses for individual spheres of the BSS. Disagreement indicates for which sphere the response is not properly determined. (author)
Energy Technology Data Exchange (ETDEWEB)
Guerrero Araque, J. E.; Mendez Villafane, R.
2013-07-01
This work intends to heavily describe simulation steps used in code MCNPX for calculation for Neutron response of a BSS with passive or active detector. Has it been calculated with MCNPX the matrix response of a system of Bonner spheres, with passive or active detector, which described in detail the steps to be followed by the code are part of the solution. (Author)
International Nuclear Information System (INIS)
Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated. - Highlights: • Boric acid solution is useful to improve the energy resolution of Bonner sphere. • Uncertainty of the device configuration is critical for neutron spectrometry. • It is important to reduce and evaluate the uncertainty
International Nuclear Information System (INIS)
A new multisphere neutron spectrometer unfolding package, Bonner sphere Unfolding Made Simple (BUMS) has been developed that uses an HTML interface to simplify data input and code execution for the novice and the advanced user. This new unfolding package combines the unfolding algorithms contained in other popular unfolding codes under one easy to use interface. The interface makes use of web browsing software to provide a graphical user interface to the unfolding algorithms. BUMS integrates the SPUNIT, BON, MAXIET, and SAND-II unfolding algorithms into a single package. This package also includes a library of 14 response matrices, 58 starting spectra, and 24 dose and detector responses. BUMS has several improvements beyond the addition of unfolding algorithms. It has the ability to search for the most appropriate starting spectra. Also, plots of the unfolded neutron spectra are automatically generated. The BUMS package runs via a web server and may be accessed by any computer with access to the Internet at http://nukeisit.gatech.edu/bums
Mazrou, H; Nedjar, A; Seguini, T
2016-08-01
This paper describes the measurement campaign held around the neutron radiography (NR) facility of the Algerian 1MW NUR research reactor. The main objective of this work is to characterize accurately the neutron beam provided at one of the radial channels of the NUR research reactor taking benefit of the acquired CRNA Bonner spheres spectrometer (BSS). The specific objective was to improve the image quality of the NR facility. The spectrometric system in use is based on a central spherical (3)He thermal neutron proportional counter combined with high density polyethylene spheres of different diameters ranging from 3 to 12in. This counting system has good gamma ray discrimination and is able to cover an energy range from thermal to 20MeV. The measurements were performed at the sample distance of 0.6m from the beam port and at a height of 1.2m from the facility floor. During the BSS measurements, the reactor was operating at low power (100W) to avoid large dead times, pulse pileup and high level radiation exposures, in particular, during spheres handling. Thereafter, the neutron spectrum at the sample position was unfolded by means of GRAVEL and MAXED computer codes. The thermal, epithermal and fast neutron fluxes, the total neutron flux, the mean energy and the Cadmium ratio (RCd) were provided. A sensitivity analysis was performed taking into account various defaults spectra and ultimately a different response functions in the unfolding procedure. Overall, from the obtained results it reveals, unexpectedly, that the measured neutron spectrum at the sample position of the neutron radiography of the NUR reactor is being harder with a predominance of fast neutrons (>100keV) by about 60%. Finally, those results were compared to previous and more recent measurements obtained by activation foils detectors. The agreement was fairly good highlighting thereby the consistency of our findings. PMID:27203706
Hu, Z M; Xie, X F; Chen, Z J; Peng, X Y; Du, T F; Cui, Z Q; Ge, L J; Li, T; Yuan, X; Zhang, X; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Gorini, G; Li, X Q; Zhang, G H; Chen, J X; Fan, T S
2014-11-01
To assess the neutron energy spectra and the neutron dose for different positions around the Experimental Advanced Superconducting Tokamak (EAST) device, a Bonner Sphere Spectrometer (BSS) was developed at Peking University, with totally nine polyethylene spheres and a SP9 (3)He counter. The response functions of the BSS were calculated by the Monte Carlo codes MCNP and GEANT4 with dedicated models, and good agreement was found between these two codes. A feasibility study was carried out with a simulated neutron energy spectrum around EAST, and the simulated "experimental" result of each sphere was obtained by calculating the response with MCNP, which used the simulated neutron energy spectrum as the input spectrum. With the deconvolution of the "experimental" measurement, the neutron energy spectrum was retrieved and compared with the preset one. Good consistence was found which offers confidence for the application of the BSS system for dose and spectrum measurements around a fusion device. PMID:25430324
Measurement of cosmic ray neutrons with Bonner sphere spectrometer and neutron monitor at 79{sup o}N
Energy Technology Data Exchange (ETDEWEB)
Pioch, C., E-mail: christian.pioch@helmholtz-muenchen.d [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Radiation Protection, Ingolstaedter Landstr. 1, 85764 Neuherberg (Germany); Mares, V. [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Radiation Protection, Ingolstaedter Landstr. 1, 85764 Neuherberg (Germany); Vashenyuk, E.V.; Balabin, Yu.V. [Polar Geophysical Institute, Kola Science Center, Russian Academy of Sciences, Apatity (Russian Federation); Ruehm, W. [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Radiation Protection, Ingolstaedter Landstr. 1, 85764 Neuherberg (Germany)
2011-01-21
In 2007, a Bonner spheres spectrometer (BSS) was installed in Ny-Alesund, Spitsbergen, at about 79{sup o}N. The spectrometer allows continuous measurement of the spectral fluence rate distribution of secondary neutrons from cosmic radiation in absolute terms. In this way, the system complements a neutron monitor (NM) that was installed in 2005, in Barentsburg, Spitsbergen, at about 78{sup o}N. To compare the readings of both systems, the NM response functions to neutrons and protons were calculated by means of the GEANT4 code, in the energy range between 10 meV and 100 GeV, and between 40 MeV and 10 GeV, respectively, using different intra-nuclear cascade (INC) models at energies above 20 MeV. Sample spectral fluence distributions as measured by means of the BSS system for neutrons in November and December 2007 were used and folded with the calculated GEANT4 NM response. The resulting calculated NM count rates were then compared to those actually measured by the NM system and a reasonable agreement between 7% and 43% was obtained, depending on the nuclear models used in the GEANT4 calculations and the assumed {sup 10}B enrichment of the NM counters used to detect the neutrons.
Energy Technology Data Exchange (ETDEWEB)
Lemos Junior, Roberto Mendonca de
2004-07-01
This paper aims to define a procedure to use the Bonner Multisphere Spectrometer with a {sup 6}LiI(Eu) detector in order to determine of neutron spectra. It was measured {sup 238}PuBe spectra and same of reference ({sup 241}AmBe, {sup 252}Cf e {sup 252}Cf+D{sub 2}O) published in ISO 8529-1 (2001) Norm. The data were processed by a computer program (BUNKI), which presents the results in neutrons energy fluency. Each input parameter of the program was studied in order to establish their influence in the adjustment result. The environment dose equivalent rate obtained placing the detector 1 m from the {sup 241}AmBe source was 122 {+-} 4 {mu}Sv/h with 7% of uncertainty and 95% of confidence level. The procedure established in this work was tested with the {sup 238}PuBe spectrum, obtaining an environment dose equivalent rate of 286 {+-} 9 {mu}Sv/h, 8% lower than the value measured experimentally used as reference. Through this procedure will be possible to measure neutron spectra in different work places where neutrons sources are used. Knowing these spectra, it will be possible to evaluate which area monitors, are more suitable, as well as, to study better the response of individual neutron monitors, as for instance, to obtain a conversion coefficient more appropriate to the albedo dosimeter used in different work places. As the measurements need a long time to be accomplished, the work optimization is fundamental to reduce the exposing time of the Bonner spectrometer operator. For this reason, an important parameter examined in this paper was the possibility of reducing the number of spheres used during the measurement without changing the final result. Considering the radiation protection standards, this parameter has a huge importance when the measurements are performed in work places where the neutron fluency and gamma rate offer risks to the operator's health, as for instance, in nuclear centrals. Studying this parameter, it was possible to conclude that
International Nuclear Information System (INIS)
Experimental activities are underway at INFN Legnaro National Laboratories (LNL) (Padua, Italy) and Pisa University aimed at angular-dependent neutron energy spectra measurements produced by the 9Be(p,xn) reaction, under a 5 MeV proton beam. This work has been performed in the framework of INFN TRASCO-BNCT project. Bonner Sphere Spectrometer (BSS), based on 6LiI (Eu) scintillator, was used with the shadow-cone technique. Proper unfolding codes, coupled to BSS response function calculated by Monte Carlo code, were finally used. The main results are reported here. - Highlights: • Bonner sphere spectrometer is used to determine the angular neutron energy spectrum of an accelerator-based BNCT facility. • The shadow-cone technique is a method used with Bonner sphere spectrometer to remove the neutron scattered contribution. • The response function matrix for the set of Bonner sphere spectrometer is calculated by Monte Carlo code. • Unfolding codes are used to obtain neutron spectra at different neutron emission angles (0°, 40°, 80° and 120°)
International Nuclear Information System (INIS)
The NESCOFI@BTF (2011–2013) international collaboration was established to develop realtime neutron spectrometers to simultaneously cover all energy components of neutron fields, from thermal up to hundreds MeV. This communication concerns a new spherical spectrometer, called SP^2, which condenses the functionality of an Extended Range Bonner Sphere Spectrometer (ERBSS) into a single moderator embedding multiple active thermal neutron detectors. The possibility of achieving the complete spectrometric information in a single exposure constitutes a great advantage compared to the ERBSS. The first experimental test of the instrument, performed with a reference 241Am–Be source in different irradiation geometries, is described. The agreement between observed and simulated response is satisfactory for all tested geometries
International Nuclear Information System (INIS)
The European Commission has funded within its 6th Framework Programme a three-year project (2005-2007) called CONRAD, COordinated Network for RAdiation Dosimetry. A major task of the CONRAD Work Package 'complex mixed radiation fields at workplaces' was to organise a benchmark exercise in a workplace field at a high-energy particle accelerator where neutrons are the dominant radiation component. The CONRAD benchmark exercise took place at the Gesellschaft fuer Schwerionenforschung mbH (GSI) in Darmstadt, Germany in July 2006. In this paper, the results of the spectrometry using four extended -range Bonner sphere spectrometers of four different institutes are reported. Outside Cave A the neutron spectra were measured with three spectrometers at six selected positions and ambient dose equivalent values were derived for use in the intercomparison with other area monitors and dosemeters. At a common position all three spectrometers were used to allow a direct comparison of their results which acts as an internal quality assurance. The comparison of the neutron spectra measured by the different groups shows very good agreement. A detailed analysis presents some differences between the shapes of the spectra and possible sources of these differences are discussed. However, the ability of Bonner sphere spectrometers to provide reliable integral quantities like fluence and ambient dose equivalent is well demonstrated in this exercise. The fluence and dose results derived by the three groups agree very well within the given uncertainties, not only with respect to the total energy region present in this environment but also for selected energy regions which contribute in certain strength to the total values. In addition to the positions outside Cave A one spectrometer was used to measure the neutron spectrum at one position in the entry maze of Cave A. In this case a comparison was possible to earlier measurements.
International Nuclear Information System (INIS)
One of the more actual and promising fields of applied neutron physics is the investigation of the malfunctions induced by high-energy neutrons naturally present in the atmosphere in electronic devices, called single event effects (SEE). These studies are of primary importance for the design of devices that have to fulfill high reliability requirements and those that are likely to be exposed to enhanced levels of cosmic rays background, e.g. in aerospace and avionic applications. Particle accelerators-driven neutron sources constitute valuable irradiation facilities for these purposes as they provide an opportunity for accelerated testing of the effects of these naturally occurring neutrons, provided the neutron spectrum is comparable with the atmospheric one and the neutron fields are known with high accuracy. The latter can be achieved through the use of appropriate radiation transport codes and neutron spectrometry techniques. In view of the design and construction of CHIPIR, a dedicated beam line for SEE studies at the ISIS pulsed neutron source second target station (UK) ((http://ts-2.isis.rl.ac.uk/instruments/phase2/index.htm)), a spectrometric characterization was performed on the VESUVIO beamline (Senesi et al.,2000). The spectrometric technique was the bonner sphere spectrometer (BSS), widely used to determine neutron spectra and dose quantities around high-energy accelerators. The experimental campaign provided a complete spectrometric investigation of the VESUVIO neutron beam, allowing the integral quantities (total fluence rate, fraction of fluence in given energy intervals) to be estimated with uncertainties lower than 10%.
Wiegel, B; Bedogni, R; Caresana, M; Esposito, A; Fehrenbacher, G; Ferrarini, M; Hohmann, E; Hranitzky, C; Kasper, A; Khurana, S; Mares, V; Reginatto, M; Rollet, S; Rühm, W; Schardt, D; Silari, M; Simmer, G; Weitzenegger, E
2009-01-01
The European Commission has funded within its 6th Framework Programme a three-year project (2005–2007) called CONRAD, COordinated Network for RAdiation Dosimetry. A major task of the CONRAD Work Package “complex mixed radiation fields at workplaces” was to organise a benchmark exercise in a workplace field at a high-energy particle accelerator where neutrons are the dominant radiation component. The CONRAD benchmark exercise took place at the Gesellschaft für Schwerionenforschung mbH (GSI) in Darmstadt, Germany in July 2006. In this paper, the results of the spectrometry using four extended -range Bonner sphere spectrometers of four different institutes are reported. Outside Cave A the neutron spectra were measured with three spectrometers at six selected positions and ambient dose equivalent values were derived for use in the intercomparison with other area monitors and dosemeters. At a common position all three spectrometers were used to allow a direct comparison of their results which acts as an int...
International Nuclear Information System (INIS)
The accurate determination of the ambient dose equivalent in the mixed neutron–photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an “in-field” calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H⁎(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well
Agosteo, S.; Bedogni, R.; Caresana, M.; Charitonidis, N.; Chiti, M.; Esposito, A.; Ferrarini, M.; Severino, C.; Silari, M.
2012-12-01
The accurate determination of the ambient dose equivalent in the mixed neutron-photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an "in-field" calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H*(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well
International Nuclear Information System (INIS)
The AECL Bonner Sphere Spectrometer (BSS) was taken to National Physical Laboratory (NPL) for calibration in mono-energetic neutron fields and bare 252Cf neutron fields. The mono-energetic radiations were performed using ISO-8529 prescribed neutron energies: 0.071, 0.144, 0.565, 1.2, 5 and 17 MeV. A central SP9 proportional counter was also evaluated at the NPL thermal neutron calibration facility in order to assess an effective pressure of 3He inside the counter, i.e. number density of 3He atoms. Based on these measurements and methods outlined by Thomas and Soochak, a new BSS response matrix was generated. The response matrix is then verified by unfolding spectra corresponding to various neutron fields. Those are NPL bare 252Cf source, National Institute of Standards and Technology bare and heavy water moderated 252Cf source and 241AmBe calibration source located at National Research Council. A good agreement was observed with expected neutron fluence rates, as well as derived dosimetric quantities, such as International Commission on Radiological Protection-74 ambient dose equivalent. The AECL BSS response matrix was created based on methods proposed by Wiegel et al., Thomas and Thomas and Soochak. The response matrix was further corrected for the mono-energetic neutron measurements taken and NPL. In order to experimentally verify the response matrix, four neutron measurements were taken at three laboratories: NPL, NIST and NRC. Good agreement with expected values both for integrated neutron fluence and derived dosimetric quantities was observed in all four cases. (authors)
International Nuclear Information System (INIS)
The spectra of neutrons outside the plasma focus device PF-1000 with an upper energy limit of ≅1 MJ was measured using a Bonner spheres spectrometer in which the active detector of thermal neutrons was replaced by nine thermoluminescent chips. As an a priori spectrum for the unfolding procedure, the spectrum calculated by means of the Monte Carlo method with a simplified model of the discharge chamber was selected. Differences between unfolded and calculated spectra are discussed with respect to properties of the discharge vessel and the laboratory layout.
Energy Technology Data Exchange (ETDEWEB)
Bedogni, R. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Bortot, D. [Politecnico di Milano—Dipartimento di Energia, Via Ponzio 34/3, 20133 Milano (Italy); INFN—sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Buonomo, B.; Esposito, A. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Gómez-Ros, J.M. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Introini, M.V.; Lorenzoli, M.; Pola, A. [Politecnico di Milano—Dipartimento di Energia, Via Ponzio 34/3, 20133 Milano (Italy); INFN—sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Sacco, D. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); INAIL—DPIA Via di Fontana Candida n.1, 00040 Monteporzio C. (Italy)
2014-12-11
The NESCOFI@BTF (2011–2013) international collaboration was established to develop realtime neutron spectrometers to simultaneously cover all energy components of neutron fields, from thermal up to hundreds MeV. This communication concerns a new spherical spectrometer, called SP^2, which condenses the functionality of an Extended Range Bonner Sphere Spectrometer (ERBSS) into a single moderator embedding multiple active thermal neutron detectors. The possibility of achieving the complete spectrometric information in a single exposure constitutes a great advantage compared to the ERBSS. The first experimental test of the instrument, performed with a reference 241Am–Be source in different irradiation geometries, is described. The agreement between observed and simulated response is satisfactory for all tested geometries.
Rühm, W; Pioch, C; Agosteo, S; Endo, A; Ferrarini, M; Rakhno, I; Rollet, S; Satoh, D; Vincke, H
2014-01-01
Bonner Spheres Spectrometry in its high-energy extended version is an established method to quantify neutrons at a wide energy range from several meV up to more than 1 GeV. In order to allow for quantitative measurements, the responses of the various spheres used in a Bonner Sphere Spectrometer (BSS) are usually simulated by Monte Carlo (MC) codes over the neutron energy range of interest. Because above 20 MeV experimental cross section data are scarce, intra-nuclear cascade (INC) and evaporation models are applied in these MC codes. It was suspected that this lack of data above 20 MeV may translate to differences in simulated BSS response functions depending on the MC code and nuclear models used, which in turn may add to the uncertainty involved in Bonner Sphere Spectrometry, in particular for neutron energies above 20 MeV. In order to investigate this issue in a systematic way, EURADOS (European Radiation Dosimetry Group) initiated an exercise where six groups having experience in neutron transport calcula...
International Nuclear Information System (INIS)
The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to Eo and 90o with respect to the beam-line. Here the ERBSS of UAB (Universidad Autonoma de Barcelona-Grup de Fisica de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were exposed to characterize the 'forward' and 'sideward' proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and calibrated, is important for guaranteeing the robustness of the measured spectra and estimating their overall uncertainties.
Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo
2010-03-01
Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.
Energy Technology Data Exchange (ETDEWEB)
Amgarou, K. [Grup de Recerca en Radiacions Ionitzants, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN-Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy); Domingo, C. [Grup de Recerca en Radiacions Ionitzants, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Esposito, A.; Gentile, A.; Carinci, G. [INFN-Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy); Russo, S. [INFN-Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 44, 95123 Catania (Italy)
2011-10-21
The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to E<20 MeV if only polyethylene spheres are used, but can be extended to hundreds of MeV by including metal-loaded spheres (extended range BSS, indicated with ERBSS). With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, an ERBSS experiment was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a proton beam routinely used for ophthalmic cancer treatments is available. The 62 MeV beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0{sup o} and 90{sup o} with respect to the beam-line. Here the ERBSS of UAB (Universidad Autonoma de Barcelona-Grup de Fisica de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were exposed to characterize the 'forward' and 'sideward' proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and
International Nuclear Information System (INIS)
Neutron spectrometry and subsequent dosimetry measurements were undertaken at the McMaster Nuclear Reactor (MNR) and AECL Chalk River National Research Universal (NRU) Reactor. The instruments used were a Bonner sphere spectrometer (BSS), a cylindrical nested neutron spectrometer (NNS) and a commercially available rotational proton recoil spectrometer. The purposes of these measurements were to: (1) compare the results obtained by three different neutron measuring instruments and (2) quantify neutron fields of interest. The results showed vastly different neutron spectral shapes for the two different reactors. This is not surprising, considering the type of the reactors and the locations where the measurements were performed. MNR is a heavily shielded light water moderated reactor, while NRU is a heavy water moderated reactor. The measurements at MNR were taken at the base of the reactor pool, where a large amount of water and concrete shielding is present, while measurements at NRU were taken at the top of the reactor (TOR) plate, where there is only heavy water and steel between the reactor core and the measuring instrument. As a result, a large component of the thermal neutron fluence was measured at MNR, while a negligible amount of thermal neutrons was measured at NRU. The neutron ambient dose rates at NRU TOR were measured to be between 0.03 and 0.06 mSv h-1, while at MNR, these values were between 0.07 and 2.8 mSv h-1 inside the beam port and -1 between two operating beam ports. The conservative uncertainty of these values is 15 %. The conservative uncertainty of the measured integral neutron fluence is 5 %. It was also found that BSS over-responded slightly due to a non-calibrated response matrix. (authors)
International Nuclear Information System (INIS)
High-resolution neutron energy spectra, covering the entire energy range of interest, for two standard radionuclide neutron sources (241Am-B and 241Am-F) have been derived from Bonner sphere measurements by using high-resolution a priori data in the unfolding process. In each case, two a priori spectra were used, one from a two-stage calculation and also one from a combination of the calculated spectrum with a high-resolution measured spectrum. The unfolded spectra are compared with those published elsewhere and show significant differences from the ISO- and IAEA-recommended spectra for 241Am-B and 241Am-F, respectively. Values for the fluence-average energy and fluence-to-dose-equivalent conversion coefficients are presented for the new spectra, and the implications of the new spectra for the emission rates of the sources when measured by the manganese bath technique are also determined. A combination of calculations and measurements has been performed to determine the spectral fluence from two reference neutron sources over the entire energy range of interest. For the Am-B source, this approach has supported the spectra of Marsh et al. and Zimbal and reduced confidence in the ISO 8529 spectrum. However, in terms of derived quantities, there is a good agreement between all the available spectra. In contrast, the new Am-F spectrum presented here is significantly different from those already published. The fluence to dose conversion coefficients derived from the new spectrum are 9 % lower than the currently accepted values, and the emission rates of Am-F sources measured by the manganese bath technique may need to be increased by up to 0.5 %. (authors)
Cheng, Hongbo
2013-01-01
The Casimir energies for plate-sphere system and sphere-sphere system under PFA in the presence of one extra compactified universal dimension are analyzed. We find that the Casimir energy between a plate and a sphere in the case of sphere-based PFA is divergent. The Casimir energy of plate-sphere system in the case of plate-based PFA is finite and keeps negative. The extra-dimension corrections to the Casimir energy will be more manifest if the sphere is larger or farther away from the plate. It is shown that the negative Casimir energy for two spheres is also associated with the sizes of spheres and extra space. The larger spheres and the longer distance between them make the influence from the additional dimension stronger.
Cheng, Hongbo
2015-08-01
The Casimir energies for plate-sphere system and sphere-sphere systems under PFA in the presence of one extra compactified universal dimension are analyzed. We find that the Casimir energy between a plate and a sphere in the case of sphere-based PFA is divergent. The Casimir energy of plate-sphere system in the case of plate-based PFA is finite and keeps negative. The extra-dimension corrections to the Casimir energy will be more manifest if the sphere is larger or farther away from the plate. It is shown that the negative Casimir energy for two spheres is also associated with the sizes of spheres and extra space. The larger spheres and the longer distance between them make the influence from the additional dimension stronger.
Transport properties of the Fermi hard-sphere system
Mecca, Angela; Benhar, Omar; Polls, Artur
2015-01-01
The transport properties of neutron star matter play an important role in a variety of astrophysical processes. We report the results of a calculation of the shear viscosity and thermal conductivity coefficients of the hard-sphere fermion system of degeneracy $\
Regularized image system for Stokes flow outside a solid sphere
Wróbel, Jacek K.; Cortez, Ricardo; Varela, Douglas; Fauci, Lisa
2016-07-01
The image system for a three-dimensional flow generated by regularized forces outside a solid sphere is formulated and implemented as an extension of the method of regularized Stokeslets. The method is based on replacing a point force given by a delta distribution with a smooth localized function and deriving the exact velocity field produced by the forcing. In order to satisfy zero-flow boundary conditions at a solid sphere, the image system for singular Stokeslets is generalized to give exact cancellation of the regularized flow at the surface of the sphere. The regularized image system contains the same elements as the singular counterpart but with coefficients that depend on a regularization parameter. As this parameter vanishes, the expressions reduce to the image system of the singular Stokeslet. The expression relating force and velocity can be inverted to compute the forces that generate a given velocity boundary condition elsewhere in the flow. We present several examples within the context of biological flows at the microscale in order to validate and highlight the usefulness of the image system in computations.
SPHERE DAQ and off-line systems: implementation based on the qdpb system
International Nuclear Information System (INIS)
Design of the on-line data acquisition (DAQ) system for the SPHERE setup (LHE, JINR) is described. SPHERE DAQ is based on the qdpb (Data Processing with Branchpoints) system and configurable experimental data and CAMAC hardware representations. Implementation of the DAQ and off-line program code, depending on the SPHERE setup's hardware layout and experimental data contents, is explained as well as software modules specific for such implementation
Monodisperse PEGylated spheres: an aqueous colloidal model system.
Ulama, Jeanette; Zackrisson Oskolkova, Malin; Bergenholtz, Johan
2014-03-01
Fluorinated core-shell spheres have been synthesized using a novel semibatch emulsion polymerization protocol employing slow feeding of the initiator. The synthesis results in aqueous dispersions of highly monodisperse spheres bearing a well-defined poly(ethylene glycol) graft (PEGylation). Measurements are consistent with the synthesis achieving a high grafting density that moreover consists of a single PEG layer with the polymer significantly elongated beyond its radius of gyration in bulk. The fluorination of the core of the particles confers a low index of refraction such that the particles can be refractive index matched in water through addition of relatively small amounts of a cosolvent, which enables the use of optical and laser-based methods for studies of concentrated systems. The systems exhibit an extreme stability in NaCl solutions, but attractions among particles can be introduced by addition of other salts, in which case aggregation is shown to be reversible. The PEGylated sphere dispersions are expected to be ideally suited as model systems for studies of the effect of PEG-mediated interactions on, for instance, structure, dynamics, phase behavior, and rheology. PMID:24533774
Nuclear spin relaxation in systems of magnetic spheres
International Nuclear Information System (INIS)
A new approach to the NMR relaxation theory for a system of magnetic spheres (sufficiently big spherical molecules) is presented. In this paper the NMR spin-lattice relaxation time T1 and spin-spin relaxation time T2 are calculated for nuclear spins I→j, taking into account intermolecular dipole-dipole interactions between the spins I→j, and spins S→k in the magnetic spheres. By an expansion of the dipole-dipole interaction in a series of spherical harmonics, it is possible to separate spatial variables of the interacting spins in a laboratory frame. A simultaneous effect of isotropic rotational and translation diffusion of the spins and relaxation rate of spins S→k is also taken into account
Ion sphere model for Yukawa systems (dusty plasmas)
Energy Technology Data Exchange (ETDEWEB)
Khrapak, S. A. [Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen (Germany); Joint Institute for High Temperatures RAS, Moscow (Russian Federation); Khrapak, A. G. [Joint Institute for High Temperatures RAS, Moscow (Russian Federation); Ivlev, A. V. [Max-Planck-Institut für extraterrestrische Physik, Garching (Germany); Thomas, H. M. [Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen (Germany)
2014-12-15
Application of the ion sphere model (ISM), well known in the context of the one-component-plasma, to estimate thermodynamic properties of model Yukawa systems is discussed. It is shown that the ISM approximation provides fairly good estimate of the internal energy of the strongly coupled Yukawa systems, in both fluid and solid phases. Simple expressions for the excess pressure and isothermal compressibility are derived, which can be particularly useful in connection to wave phenomena in strongly coupled dusty plasmas. It is also shown that in the regime of strong screening a simple consideration of neighboring particles interactions can be sufficient to obtain quite accurate estimates of thermodynamic properties of Yukawa systems.
Ion sphere model for Yukawa systems (dusty plasmas)
International Nuclear Information System (INIS)
Application of the ion sphere model (ISM), well known in the context of the one-component-plasma, to estimate thermodynamic properties of model Yukawa systems is discussed. It is shown that the ISM approximation provides fairly good estimate of the internal energy of the strongly coupled Yukawa systems, in both fluid and solid phases. Simple expressions for the excess pressure and isothermal compressibility are derived, which can be particularly useful in connection to wave phenomena in strongly coupled dusty plasmas. It is also shown that in the regime of strong screening a simple consideration of neighboring particles interactions can be sufficient to obtain quite accurate estimates of thermodynamic properties of Yukawa systems
Ion sphere model for Yukawa systems (dusty plasmas)
Khrapak, S A; Ivlev, A V; Thomas, H M
2014-01-01
Application of the ion sphere model (ISM), well known in the context of the one-component-plasma, to estimate thermodynamic properties of model Yukawa systems is discussed. It is shown that the ISM approximation provides fairly good estimate of the internal energy of the strongly coupled Yukawa systems, in both fluid and solid phases. Simple expressions for the excess pressure and isothermal compressibility are derived, which can be particularly useful in connection to wave phenomena in strongly coupled dusty plasmas. It is also shown that in the regime of strong screening a simple consideration of neighboring particles interactions can be sufficient to obtain quite accurate estimates of thermodynamic properties of Yukawa systems.
Comparison of measurements with active and passive Bonner sphere spectrometers
Hajek, M; Schoner, W; Vana, N
2000-01-01
Because of its high biological efficiency, neutron radiation can be a serious source-and not only around accelerators and nuclear fusion reactors. Roughly half of the radiation exposure of aircrew members is caused by cosmic ray-induced neutrons in a wide energy range. Therefore, following the International Commission on Radiological Protection's recommendations, aircrew are treated as occupationally exposed workers by a recent directive of the European Council, which implies various safety precautions including the dosimetric surveillance. The accurate assessment of operational and limiting quantities such as ambient dose equivalent H*(10) and effective dose E requires the knowledge of the neutron energy spectrum. The CERN-CEC neutron reference field has been designed to resemble the neutron spectrum at an average subsonic aviation altitude. Therefore, it provides an excellent calibration facility for all instruments with intended applications in this field. The stray radiation field is created by a mixed be...
Dynamical study of a polydisperse hard-sphere system
Nogawa, Tomoaki
2010-08-10
We study the interplay between the fluid-crystal transition and the glass transition of elastic sphere system with polydispersity using nonequilibrium molecular dynamics simulations. It is found that the end point of the crystal-fluid transition line, which corresponds to the critical polydispersity above which the crystal state is unstable, is on the glass transition line. This means that crystal and fluid states at the melting point becomes less distinguishable as polydispersity increases and finally they become identical state, i.e., marginal glass state, at critical polydispersity. © 2010 The American Physical Society.
The hard-sphere model of strongly interacting fermion systems
Mecca, Angela
2016-01-01
The formalism based on Correlated Basis Functions (CBF) and the cluster-expansion technique has been recently employed to derive an effective interaction from a realistic nuclear Hamiltonian. One of the main objectives of the work described in this Thesis is establishing the accuracy of this novel approach--that allows to combine the flexibility of perturbation theory in the basis of eigenstates of the noninteracting system with a realistic description of short-range correlations in coordinate space--by focusing on the hard-sphere fermion system. As a first application of the formalism, the quasiparticle properties of hard spheres of degeneracy four have been determined from the two-point Green's function. The calculation has been performed carrying out a perturbative expansion of the self-energy, up to the second order in the CBF effective interaction. The main results of this study are the momentum distributions, the quasiparticle spectra and their description in terms of effective mass. The investigation o...
International Nuclear Information System (INIS)
An implementation of the experimental data configurable representation for using in the DAQ and offline systems of the SPHERE setup at the LHE, JINR is described. A software scheme of the SPHERE CAMAC hardware's configurable description, intended to online data acquisition (DAQ) implementation based on the qdpb system, is issued
Low complexity Breadth First Search Sphere Detector for MIMO Systems
Directory of Open Access Journals (Sweden)
Shirly Edward.A
2015-12-01
Full Text Available Multiple Input Multiple Output (MIMO technology is the key to meet the demands for data rate and link reliability of modern wireless communication system, such as 3GPP-LTE.The full potential of such a system can be achieved only by high performance detection algorithms, which exhibit prohibitive computational complexity. Therefore, in this paper, a low complexity and highly parallel Breadth First search Sphere Detector (BFSD is proposed for MIMO detection, which takes forward only the symbol set with minimum partial Euclidean distances (PEDs of the expanded node in the tree search process. We had designed a BFSD scheme for 16QAM modulation with 2 x 2 and 4 x4 antenna configurations and implemented on a state-of-the-art Xilinx Virtex 5 FPGA device. The results indicate that with less computational complexity compared with the literature the detector can achieve a throughput of up to 98Mbps which makes it suitable for 3GPP-LTE uplink transmission.
International Nuclear Information System (INIS)
The neutron response functions for a Bonner Sphere Spectrometer (BSS) with 3He proportional counter were calculated employing the MCNP and LAHET Monte Carlo codes for the neutron energy range from 10 MeV to 1 GeV. The MCNP calculations were extended up to 100 MeV using the neutron cross-sections from the transport data libraries LA-100 of LANL. The effect of the different physics models implemented in the LAHET code on the response of the Bonner spectrometer are documented and the possible reasons are discussed. The MCNP and LAHET results are also compared with calculations using the Monte Carlo high energy transport code HADRON. Verification experiments were conducted at the CERN high energy calibration facility which gave some insight to the question how appropriate the physical models are which are used for the calculation of the BSS responses. (author)
Double integrating sphere system for optical parameter determination of industrial suspensions
Keränen, Ville T. J.; Mäkynen, Anssi J.
2008-06-01
The main objective of this study was to construct a double integrating sphere system and to verify its performance using Intralipid fat emulsion. The final goal was to be able to determine optical properties of various turbid suspensions with the proposed system. Online measurements even would have been possible as backscattering and forward scattering were measured simultaneously. The measured suspension was injected in a cuvette placed between two integrating spheres and illuminated with a laser through the first sphere. The diameter of the spheres was 8" and the diameter of the sample port could have been varied up to 2.5". The cuvette was made of plastic and optical grade glass and its diameter was sufficient to cover the sample port area. The sample thickness in the measurement cuvette was 5 mm. Optical powers were detected using fiber coupled photodiodes. There was one diode for each sphere and one for the unscattered light at the opposite end of the sphere system facing towards the laser. The measured optical powers were converted to absorption coefficient, scattering coefficient and if possible to anisotropy using an inverse adding-doubling method. The results measured for the Intralipid using the described system corresponded with those documented in published literature. A number of pulp samples with unknown optical properties were measured with encouraging results. However, the differences between different pulps and fillers are so small that, in the future, the focus will be in error source elimination to achieve reasonable accuracy.
Solano-Altamirano, J M; Goldman, Saul
2015-12-01
We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another. PMID:26701708
Signature of the celestial spheres discovering order in the solar system
Warm, Harmut
2010-01-01
"A milestone in modern research on the the harmony of the spheres." - Novalis magazine "This book reignites the debate on the harmony of the spheres." - Das Goetheanum Is the solar system ordered, or is it simply the result of random and chaotic accidents? This book takes us on a powerful and compelling journey of discovery, revealing the celestial spheres' astonishingly complex patterns. The movements of the planets are found to correspond accurately with simple geometric figures and musical intervals, pointing to an exciting new perspective on the ancient idea of a "harmony of the spheres". Hartmut Warm's detailed presentation incorporates the distances, velocities and periods of conjunction of the planets, as well as the rotations of the Sun, Moon and Venus. Numerous graphics - including colour plates - illustrate the extraordinary beauty of the geometrical forms that result when the movements of several planets are viewed in relation to one another. In addition, the author describes and analyses the conce...
Thomas N Bonner (1923-2003), medical historian.
Bickel, Marcel H
2016-05-01
Thomas Bonner made a long academic career, teaching medical history and higher education at several American universities and presiding over three of these. He engaged in politics for 2 years. As a historian of medicine, he published important books on topics including Midwestern medicine, medical education in the United States and in European countries, the entry of women into medicine in the 19th century and on the educator Abraham Flexner. His works were based on exhaustive research, penetrating analysis, language skills and the ability to explain complex information in understandable terms. Bonner lived a passionate life of commitment and devotion to various worthwhile causes. PMID:24986396
Sauvage, Jean-Francois; Fusco, Thierry; Petit, Cyril; Costille, Anne; Mouillet, David; Beuzit, Jean-Luc; Dohlen, Kjetil; Kasper, Markus; Suarez, Marcos; Soenke, Christian; Baruffolo, Andrea; Salasnich, Bernardo; Rochat, Sylvain; Fedrigo, Enrico; Baudoz, Pierre; Hugot, Emmanuel; Sevin, Arnaud; Perret, Denis; Wildi, Francois; Downing, Mark; Feautrier, Philippe; Puget, Pascal; Vigan, Arthur; O'Neal, Jared; Girard, Julien; Mawet, Dimitri; Schmid, Hans Martin; Roelfsema, Ronald
2016-04-01
The direct imaging of exoplanet is a leading field of today's astronomy. The photons coming from the planet carry precious information on the chemical composition of its atmosphere. The second-generation instrument, Spectro-Polarimetric High contrast Exoplanet Research (SPHERE), dedicated to detection, photometry and spectral characterization of Jovian-like planets, is now in operation on the European very large telescope. This instrument relies on an extreme adaptive optics (XAO) system to compensate for atmospheric turbulence as well as for internal errors with an unprecedented accuracy. We demonstrate the high level of performance reached by the SPHERE XAO system (SAXO) during the assembly integration and test (AIT) period. In order to fully characterize the instrument quality, two AIT periods have been mandatory. In the first phase at Observatoire de Paris, the performance of SAXO itself was assessed. In the second phase at IPAG Grenoble Observatory, the operation of SAXO in interaction with the overall instrument has been optimized. In addition to the first two phases, a final check has been performed after the reintegration of the instrument at Paranal Observatory, in the New Integration Hall before integration at the telescope focus. The final performance aimed by the SPHERE instrument with the help of SAXO is among the highest Strehl ratio pretended for an operational instrument (90% in H band, 43% in V band in a realistic turbulence r0, and wind speed condition), a limit R magnitude for loop closure at 15, and a robustness to high wind speeds. The full-width at half-maximum reached by the instrument is 40 mas for infrared in H band and unprecedented 18.5 mas in V band.
The Bannai–Ito algebra and a superintegrable system with reflections on the two-sphere
International Nuclear Information System (INIS)
A quantum superintegrable model with reflections on the two-sphere is introduced. Its two algebraically independent constants of motion generate a central extension of the Bannai–Ito algebra. The Schrödinger equation separates in spherical coordinates and its exact solutions are presented. It is further observed that the Hamiltonian of the system arises in addition of three representations of the sl−1(2) algebra (the dynamical algebra of the one-dimensional parabosonic oscillator). The contraction from the two-sphere to the Euclidean plane yields the Dunkl oscillator in two dimensions and its Schwinger–Dunkl symmetry algebra sd(2). (paper)
Zhang, Yu-Feng; Dai, Jing-Min; Zhang, Yu; Pan, Wei-Dong; Zhang, Lei
2013-08-01
In view of the influence of non-ideal reference standard on spectral emissivity measurement, by analyzing the principle of infrared emissivity measurement system based on integrating sphere reflectometer, a calibration method suitable for measuring spectral emissivity system using the reflection measurement was proposed. By fitting a spectral reflectance curve of the reference standard sample to the given reflectance data, the correction coefficient of measurement system was computed. Then the output voltage curve of reference standard sample was corrected by this coefficient. The system error caused by the imperfection of reference standard was eliminated. The correction method was applied to the spectral emissivity measurement system based on integrating sphere reflectometer. The results measured by the corrected system and the results measured by energy comparison measurement were compared to verify the feasibility and effectivity of this correction method in improving the accuracy of spectral emissivity measurement. PMID:24159891
Albumin-based nanocomposite spheres for advanced drug delivery systems.
Misak, Heath E; Asmatulu, Ramazan; Gopu, Janani S; Man, Ka-Poh; Zacharias, Nora M; Wooley, Paul H; Yang, Shang-You
2014-01-01
A novel drug delivery system incorporating human serum albumin, poly(lactic-co-glycolic acid, magnetite nanoparticles, and therapeutic agent(s) was developed for potential application in the treatment of diseases such as rheumatoid arthritis and skin cancer. An oil-in-oil emulsion/solvent evaporation (O/OSE) method was modified to produce a drug delivery system with a diameter of 0.5–2 μm. The diameter was mainly controlled by adjusting the viscosity of albumin in the discontinuous phase of the O/OSE method. The drug-release study showed that the release of drug and albumin was mostly dependent on the albumin content of the drug delivery system, which is very similar to the drug occlusion-mesopore model. Cytotoxicity tests indicated that increasing the albumin content in the drug delivery system increased cell viability, possibly due to the improved biocompatibility of the system. Overall, these studies show that the proposed system could be a viable option as a drug delivery system in the treatment of many illnesses, such as rheumatoid arthritis, and skin and breast cancers. PMID:24106002
Single Camera System for Position and Dimension Measuremenrt of Spheres
Czech Academy of Sciences Publication Activity Database
Hošek, Jan
Bukurešť: INCDMF, 2008, s. 67-77. ISSN 1584-5982. [WESIC´08. Bukurešť (RO), 25.09.2008-26.09.2008] R&D Projects: GA ČR(CZ) GA101/07/1612 Institutional research plan: CEZ:AV0Z20760514 Keywords : single camera system * space spherical objects Subject RIV: BH - Optics, Masers, Lasers
Playing with Marbles: Structural and Thermodynamic Properties of Hard-Sphere Systems
Santos, Andrés
2013-01-01
These lecture notes present an overview of equilibrium statistical mechanics of classical fluids, with special applications to the structural and thermodynamic properties of systems made of particles interacting via the hard-sphere potential or closely related model potentials. The exact statistical-mechanical properties of one-dimensional systems, the issue of thermodynamic (in)consistency among different routes in the context of several approximate theories, and the construction of analytic...
The dynamics of localized spot patterns for reaction-diffusion systems on the sphere
Trinh, Philippe H.; Ward, Michael J.
2016-03-01
In the singularly perturbed limit corresponding to a large diffusivity ratio between two components in a reaction-diffusion (RD) system, quasi-equilibrium spot patterns are often admitted, producing a solution that concentrates at a discrete set of points in the domain. In this paper, we derive and study the differential algebraic equation (DAE) that characterizes the slow dynamics for such spot patterns for the Brusselator RD model on the surface of a sphere. Asymptotic and numerical solutions are presented for the system governing the spot strengths, and we describe the complex bifurcation structure and demonstrate the occurrence of imperfection sensitivity due to higher order effects. Localized spot patterns can undergo a fast time instability and we derive the conditions for this phenomena, which depend on the spatial configuration of the spots and the parameters in the system. In the absence of these instabilities, our numerical solutions of the DAE system for N = 2 to N = 8 spots suggest a large basin of attraction to a small set of possible steady-state configurations. We discuss the connections between our results and the study of point vortices on the sphere, as well as the problem of determining a set of elliptic Fekete points, which correspond to globally minimizing the discrete logarithmic energy for N points on the sphere.
Thermodynamics and dynamics of the hard-sphere system: From stable to metastable states
International Nuclear Information System (INIS)
Highlights: • Three different scaling laws, devoted to transport properties of hard-sphere system, are investigated over a wide range of packing fractions. • A new semiempirical relation linking the transport properties to the excess pressure is derived. • The present relation allows to better understand the link between the thermodynamic and the dynamic properties of the hard-sphere system. - Abstract: A set of three different scaling laws is investigated, which are devoted to link the transport properties, i.e. diffusion coefficient, shear viscosity, bulk viscosity and thermal conductivity, to the thermodynamic properties for the athermal hard-sphere system, over the wider range of packing fraction covering the stable and metastable regimes. Except for the thermal conductivity, the Rosenfeld (1999) [15] relation is found to be applicable to the stable states while the Adam and Gibbs (1965) [24] relation holds well for the metastable states. In contrast, the modified Cohen and Turnbull (1959) [25] relation proposed here gives sound support for a universal scaling law connecting the dynamic and thermodynamic properties, over the domain of packing fraction including the stable and metastable states. In particular, it is found that the most relevant control parameter is not the excess entropy, but the logarithm derivative of the excess entropy with respect to the packing fraction. In the same context, the Stokes–Einstein relation between the diffusion coefficient and the shear viscosity is also examined. The possible violation of the Stokes–Einstein relation is investigated over a large domain of packing fractions
Study of reproducibility of measurements with the spectrometer of Bonner multispheres
Energy Technology Data Exchange (ETDEWEB)
Azevedo, G.A.; Pereira, W.W.; Patrao, K.C.S.; Fonseca, E.S., E-mail: geisadeazevedo@gmail.com, E-mail: walsan@ird.gov.br, E-mail: karla@ird.gov.br, E-mail: evaldo@ird.gov.br [Instituto de Radionprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2013-07-01
This work aims to study the metrological behavior of the Bonner Multisphere Spectrometer (BMS) of the LN / LNMRI / IRD - Laboratorio Metrologia de Neutrons / Laboratorio Nacional de Metrologia e Radiacao Ionizante / Instituto de Radioprotecao e Dosimetria, for measurements in repeatability and reproducibility conditions. Initially, a simulation was done by applying the Monte Carlo method, using the MCNP code and respecting the ISO 8529-1 (2001), using the sources of Californium ({sup 252} Cf), Americium-Beryllium ({sup 241} AmBe) and californium in heavy water (Cf + D{sub 2}O), all located at a distance of 100 cm from the neutron detector ({sup 6}Li (Eu) - crystal scintillator). In this program, the counting of neutrons that are captured by the detector was made. The source is located in the center of a sphere of radius 300 cm. Analyzes the impact of these neutrons in a point of the sphere wall, which in this case acted as a neutron detector and from there, it is estimated the number of neutrons that collide in the whole sphere. The purpose is to obtain the neutron count for different energy bands in a solid field of neutrons, since they have a spectrum ranging from a low to a high energy that can also vary within a particular environment. Wishes to obtain new fields with different sources and moderators materials to be used as new reference fields. Measurements are being conducted for these fields, with the aim of analyzing the variability conditions of the measurement (repeatability and reproducibility) in LEN - Laboratorio de Espectrometria de Neutrons of the LN/LMNRI/IRD. Thus, the spectrometer will be used to improve both the knowledge of the spectrum as the standard of neutrons of the lab, proving that a spectrometry is essential for correct measurement.
The quantization of the radii of coordination spheres cubic crystals and cluster systems
Melnikov, G.; Emelyanov, S.; Ignatenko, N.; Ignatenko, G.
2016-02-01
The article deals with the creation of an algorithm for calculating the radii of coordination spheres and coordination numbers cubic crystal structure and cluster systems in liquids. Solution has important theoretical value since it allows us to calculate the amount of coordination in the interparticle interaction potentials, to predict the processes of growth of the crystal structures and processes of self-organization of particles in the cluster system. One option accounting geometrical and quantum factors is the use of the Fibonacci series to construct a consistent number of focal areas for cubic crystals and cluster formation in the liquid.
Discrete ordinates method for homogeneous spheres and for two-region spherical systems
International Nuclear Information System (INIS)
In the present work the development of a discrete ordinates method is described. It is based on the work of Lewis and Miller and is applied to homogeneous spheres and two-region spherical systems. The neutrons are assumed to have one speed and to scatter isotropically. A remarkable feature of the calculation method is that it can be used for negative values of the criticality factor which corresponds to complex decay constants in the region beyond the so called Corngold limit. The number of discrete values of the direction cosine can be extended up to N=96 while the ANISIN code uses N=16 as a maximum. 7 refs
Design of a system for neutrons dosimetry
International Nuclear Information System (INIS)
At the present time diverse systems of detection of neutrons exist, as proportional counters based on BF3, He3 and spectrometers of Bonner spheres. However, the cost and the complexity of the implementation of these systems put them far from the reach for dosimetric purposes. For these reasons a system of neutrons detection composed by a medium paraffin moderator that forms a 4π (spheres) arrangement and of several couples of thermoluminescent dosimeters TLD 600/TLD 700. The response of the system presents a minor repeatability to 5% in several assays when being irradiated with a 239PuBe source and a deviation of 13.8% in the Tl readings of four different spheres. The calibration factor of the system with regard to the neutrons source which was of 56.2 p Sv/nc also was calculated. These detectors will be used as passive monitors of photoneutrons in a radiotherapy room with lineal accelerator of high energy. (Author)
A Study of Journal Publication Diversity within the Australian Information Systems Sphere
Directory of Open Access Journals (Sweden)
Carmine Sellitto
2007-09-01
Full Text Available This study reports on research that examined DEST data from 14 Australian universities to identify the diversity of journal outlets in the information systems (IS area. Across a total of 60 years of academic publishing output, 1449 journal articles were evaluated to identify 649 different journals in which IS-related articles were published. The most popular journals used by Australian academics to publish IS-related articles were the Lecture Notes in Computer Science (N=94 in the computer science area, with the Australasian Journal of Information Systems (N=25 being the most popular journal in the pure and business IS sphere. The study also examined publishing output against a set of 50 previously highly rated IS journals and concluded that the average annual publication of articles in these highly rated journals occurred at a very low rate. The research appears to be one of the first studies to use historical DEST data to report journal diversity in the Australian IS-sphere.
Ogarko, Vitaliy; Luding, Stefan
2013-03-01
Polydisperse hard sphere mixtures have equilibrium properties which essentially depend on the number density and a reduced number K of moments of the size distribution function. Such systems are equivalent to other systems with different size distributions if the K moments are matched. In particular, a small number s of components, such that 2 s - 1 = K is sufficient to mimic systems with continuous size distributions. For most of the fluid phase K = 3 moments (s = 2 components) are enough to define an equivalent system, while in the glassy states one needs K = 5 moments (s = 3 components) to achieve good agreement between the polydisperse and its maximally-equivalent tridisperse system. With K = 5 matched moments they are also close in number- and volume-fractions of rattlers. Finally, also the jamming density of maximally-equivalent jammed packings is very close, where the tiny differences can be explained by the distribution of rattlers. This research is supported by the Dutch Technology Foundation STW, which is the applied science division of NWO, and the Technology Programme of the Ministry of Economic Affairs, project Nr. STW-MUST 10120.
Indian Academy of Sciences (India)
Vimla Vyas
2008-04-01
Speeds of sound and densities of three ternary liquid systems namely, toluene + -heptane + -hexane (I), cyclohexane + -heptane + -hexane (II) and -hexane + - heptane + -decane (III) have been measured as a function of the composition at 298.15 K at atmospheric pressure. The experimental isothermal compressibility has been evaluated from measured values of speeds of sound and density. The isothermal compressibility of these mixtures has also been computed theoretically using different models for hard sphere equations of state and Flory's statistical theory. Computed values of isothermal compressibility have been compared with experimental findings. A satisfactory agreement has been observed. The superiority of Flory's statistical theory has been established quite reasonably over hard sphere models.
ORGANIZATION IN CONTEMPORARY PUBLIC SPHERE
Directory of Open Access Journals (Sweden)
Rosemarie HAINES
2013-12-01
Full Text Available The critical analysis of Habermas’ Public Sphere Theory and the comparative undertaking to the current day enables us to assert that in contemporary society, public sphere is no longer a political public sphere, this dimension being completed by a societal dimension, the public sphere has extended and now we can talk about partial public spheres in an ever more commercial environment. The new rebuilding and communication technologies create a new type of public character: the visible sphere – non-located, non-dialogical and open. Information and communication are more and more involved in the restructuring of capitalism on an international scale and the reorganization of leadership and management systems. The reevaluation of the public sphere, public opinion, communication allows us to define public sphere according to the profound mutations from today’s democratic societies.
Applicability of a Bonner Shere technique for pulsed neutron in 120 GeV proton facility
Energy Technology Data Exchange (ETDEWEB)
Sanami, T.; Hagiwara, M.; Iwase, H.; /KEK, Tsukuba; Iwamoto, Y.; Sakamoto, Y.; Nakashima, H.; /JAEA, Ibaraki; Arakawa, H.; Shigyo, N.; /Kyushu U.; Leveling, A.F.; Boehnlein, D.J.; Vaziri, K.; /Fermilab
2008-02-01
The data on neutron spectra and intensity behind shielding are important for radiation safety design of high-energy accelerators since neutrons are capable of penetrating thick shielding and activating materials. Corresponding particle transport codes--that involve physics models of neutron and other particle production, transportation, and interaction--have been developed and used world-wide [1-8]. The results of these codes have been ensured through plenty of comparisons with experimental results taken in simple geometries. For neutron generation and transport, several related experiments have been performed to measure neutron spectra, attenuation length and reaction rates behind shielding walls of various thicknesses and materials in energy range up to several hundred of MeV [9-11]. The data have been used to benchmark--and modify if needed--the simulation modes and parameters in the codes, as well as the reference data for radiation safety design. To obtain such kind of data above several hundred of MeV, Japan-Fermi National Accelerator Laboratory (FNAL) collaboration for shielding experiments has been started in 2007, based on suggestion from the specialist meeting of shielding, Shielding Aspects of Target, Irradiation Facilities (SATIF), because of very limited data available in high-energy region (see, for example, [12]). As a part of this shielding experiment, a set of Bonner sphere (BS) was tested at the antiproton production target facility (pbar target station) at FNAL to obtain neutron spectra induced by a 120-GeV proton beam in concrete and iron shielding. Generally, utilization of an active detector around high-energy accelerators requires an improvement on its readout to overcome burst of secondary radiation since the accelerator delivers an intense beam to a target in a short period after relatively long acceleration period. In this paper, we employ BS for a spectrum measurement of neutrons that penetrate the shielding wall of the pbar target
Fang, Zhen-huan; Fu, Xia-ping; He, Xue-ming
2016-01-01
For a quantitative understanding of light interaction with fruit tissue, it is critical to obtain two fundamental parameters: the absorption coefficient and the scattering coefficient of the tissue. This study was to investigate the optical properties of kiwifruit tissue at the wavelength of 632.8 nm. The total reflectance and total transmittance of kiwifruit tissue from three parts (including the flesh part, the seed part, and the seed-base part) were measured using a single integrating sphere system. Based on the measured spectral signals, the absorption coefficient μ a and the reduced scattering coefficient μ s' of kiwifruit tissue were calculated using the inverse adding-doubling (IAD) method. Phantoms made from Intralipid 20% and India ink as well as a Biomimic solid phantom were used for system validation. The mean values of μ a and μ s' of different parts of the kiwifruit were 0.031–0.308 mm−1 and 0.120–0.946 mm−1, respectively. The results showed significant differences among the μ a and μ s' of the three parts of the kiwifruit. The results of this study confirmed the importance of studying the optical properties for a quantitative understanding of light interaction with fruit tissue. Further investigation of fruit optical properties will be extended to a broader spectral region and different kinds of fruits. PMID:27256682
Fang, Zhen-Huan; Fu, Xia-Ping; He, Xue-Ming
2016-06-01
For a quantitative understanding of light interaction with fruit tissue, it is critical to obtain two fundamental parameters: the absorption coefficient and the scattering coefficient of the tissue. This study was to investigate the optical properties of kiwifruit tissue at the wavelength of 632.8 nm. The total reflectance and total transmittance of kiwifruit tissue from three parts (including the flesh part, the seed part, and the seed-base part) were measured using a single integrating sphere system. Based on the measured spectral signals, the absorption coefficient μa and the reduced scattering coefficient μs' of kiwifruit tissue were calculated using the inverse adding-doubling (IAD) method. Phantoms made from Intralipid 20% and India ink as well as a Biomimic solid phantom were used for system validation. The mean values of μa and μs' of different parts of the kiwifruit were 0.031-0.308 mm(-1) and 0.120-0.946 mm(-1), respectively. The results showed significant differences among the μa and μs' of the three parts of the kiwifruit. The results of this study confirmed the importance of studying the optical properties for a quantitative understanding of light interaction with fruit tissue. Further investigation of fruit optical properties will be extended to a broader spectral region and different kinds of fruits. PMID:27256682
The Police System Reform in Georgia (Informal Power its Forms, Types and Spheres of Influence
Directory of Open Access Journals (Sweden)
Charkviani Tamar
2014-12-01
Full Text Available It is a widely accepted notion that the major change brought by the 2003 November revolution in Georgia was the reform of the public services. Two major tasks were to be achieved for the state institutions: to monopolize the use of legitimate power on the state territory and to start providing services to the citizens. Police reform was at the heart of both these objectives. The major obstacle identified on the way of this reform was corruption. Indeed it was widely known that posts in police forces were to be purchased; policemen were involved in organized crime, extortion, and other illegal pursuits. But the corruption itself was the effect of the broader system in which patrimonial system of not distinguishing between the public office and private sphere was hybridized with the legal-rational rule, having its origin in the Soviet Union. The main subject of our research is to analyze the model of informal power network in Georgian police, to describe its configurations and identify its social actors.
A Three-Dimensional Variational Data Assimilation System on a Cubed Sphere Grid
Kwon, In-Hyuk; Song, Hyo-Jong; Kwun, Jihye; Kim, Sangil; Ha, Ji-Hyun
2015-04-01
A 3DVAR system has been developed for a cubed-sphere grid (CSG) model and recently implemented to Korea Institute of Atmospheric Prediction systems (KIAPS) Integrated Model based on HOMME dynamical core (KIM-SH). We devised a spectral transformation method which enables spherical harmonic functions to be represented on the CSG points without horizontal interpolation. The 3DVAR system contains a background error covariance model which generates a static or ensemble background error covariance to represent uncertainty of background. In the background error covariance modeling, the spectral transformation and Eigen decomposition play roles as horizontal and vertical filters, respectively. The parameter transformation using linear and nonlinear balances and Helmholtz decomposition is conducted directly on CGS as well. As a result of the parameter transformation, the model variables such as zonal wind, meridional wind, temperature, specific humidity and surface pressure are respectively transformed to control variables such as streamfunction, velocity potential, unbalanced temperature, specific humidity, and unbalanced surface pressure. To evaluate the performance of the 3DVAR system, observing system simulation experiments (OSSEs) were conducted using KIM-SH with ne30np4 (about 1 degree resolution). We assumed that the model run of KIM-SH with a year spin-up is true and designated as a nature. The root mean square differences (RMSD) between model results and the nature show significant reduction in the analysis compared to the background, and the results also show better forecast skill during 72 h forecast period. The assimilation results of real observation with conventional data such as Sonde, surface wind, temperature and pressure, and aircraft also will be represented at conference.
Crystal nucleation in the hard-sphere system revisited: a critical test of theoretical approaches.
Tóth, Gyula I; Gránásy, László
2009-04-16
The hard-sphere system is the best known fluid that crystallizes: the solid-liquid interfacial free energy, the equations of state, and the height of the nucleation barrier are known accurately, offering a unique possibility for a quantitative validation of nucleation theories. A recent significant downward revision of the interfacial free energy from approximately 0.61kT/sigma(2) to (0.56 +/- 0.02)kT/sigma(2) [Davidchack, R.; Morris, J. R.; Laird, B. B. J. Chem. Phys. 2006, 125, 094710] necessitates a re-evaluation of theoretical approaches to crystal nucleation. This has been carried out for the droplet model of the classical nucleation theory (CNT), the self-consistent classical theory (SCCT), a phenomenological diffuse interface theory (DIT), and single- and two-field variants of the phase field theory that rely on either the usual double-well and interpolation functions (PFT/S1 and PFT/S2, respectively) or on a Ginzburg-Landau expanded free energy that reflects the crystal symmetries (PFT/GL1 and PFT/GL2). We find that the PFT/GL1, PFT/GL2, and DIT models predict fairly accurately the height of the nucleation barrier known from Monte Carlo simulations in the volume fraction range of 0.52 SCCT, PFT/S1, and PFT/S2 models underestimate it significantly. PMID:19320450
DEFF Research Database (Denmark)
Trenz, Hans-Jörg
2015-01-01
In modern societies, the public sphere represents the intermediary realm that supports the communication of opinions, the discovery of problems that need to be dealt with collectively, the channeling of these problems through the filter of the media and political institutions, and the realization......, public spheres have undergone structural transformations that were closely connected to the emergence of different mass media. More recently, they are subject to trends of transnationalization and digitalization in politics and society....... of the collective will of the people in the act of democratic self-government. The concept of the public sphere is used across the fields of media and communication research, cultural studies and the humanities, the history of ideas, legal and constitutional studies as well as democracy studies. Historically...
Development of a system for passive spectrometry characterization neutron of a cyclotron
International Nuclear Information System (INIS)
The most widely used for Neutron spectrometry system is formed by the Bonner spheres with an active sensor sensitive to thermal neutrons in its Center. But, the presence of strong electromagnetic fields and the hold character around a cyclotron radiation detectors active employment make unviable so it is necessary to replace it with other liabilities. In this case it has resorted to the use of Au foils such as thermal neutron detectors, found the matrix the new spectrometer response and has been validated with a source of 252Cf for later measurements in the interior of the bunker of a cyclotron production of radioisotopes for PET. (Author)
Crystallization on a sphere using the simulated annealing algorithm implemented on H.P.C. systems
de Voogd, J. M.; Sloot, P. M. A.; Verbraeck, A.; Kerckhoffs, E.J.H.
1993-01-01
The research presented here is a comparison of the scalability of the simulated annealing algorithm on a vector super computer (CRAY Y-MP) with the scalability of a parallel implementation on a massively parallel transputer surface (Parsytec GCel with 512 nodes of typeT805). Some results of the annealing procedure applied to thecrystallization of Lennard-Jones particles on a sphere arepresented.
International Nuclear Information System (INIS)
In this work, we study superintegrable quantum systems in two-dimensional Euclidean space and on a complex two-sphere with second-order constants of motion. We show that these constants of motion satisfy the deformed oscillator algebra. Then, we easily calculate the energy eigenvalues in an algebraic way by solving of a system of two equations satisfied by its structure function. The results are in agreement to the ones obtained from the solution of the relevant Schrödinger equation
Energy Technology Data Exchange (ETDEWEB)
Mendez, R.; Guerrero, J. E.; Lagares, J. I.; Sansaloni, F.; Perez, J. M.; Llop, J.; Kralik, M.
2013-07-01
The most widely used for Neutron spectrometry system is formed by the Bonner spheres with an active sensor sensitive to thermal neutrons in its Center. But, the presence of strong electromagnetic fields and the hold character around a cyclotron radiation detectors active employment make unviable so it is necessary to replace it with other liabilities. In this case it has resorted to the use of Au foils such as thermal neutron detectors, found the matrix the new spectrometer response and has been validated with a source of {sup 2}52Cf for later measurements in the interior of the bunker of a cyclotron production of radioisotopes for PET. (Author)
A new method of researching fermion tunneling from the Vaidya-Bonner de Sitter black hole
Institute of Scientific and Technical Information of China (English)
Lin Kai; Yang Shu-Zheng
2009-01-01
Using the general tortoise coordinate transformation, we research the fermion tunneling of the Vaidya-Bonner de Sitter black hole via a semi-classical method and finally obtain the right surface gravity, Hawking temperature and tunneling rate near the event horizon and cosmical horizon.
A new method of researching fermion tunneling from the Vaidya–Bonner de Sitter black hole
International Nuclear Information System (INIS)
Using the general tortoise coordinate transformation, we research the fermion tunneling of the Vaidya–Bonner de Sitter black hole via a semi-classical method and finally obtain the right surface gravity, Hawking temperature and tunneling rate near the event horizon and cosmical horizon
Zurlo, A.; Vigan, A.; Galicher, R.; Maire, A.-L.; Mesa, D.; Gratton, R.; Chauvin, G.; Kasper, M.; Moutou, C.; Bonnefoy, M.; Desidera, S.; Abe, L.; Apai, D.; Baruffolo, A.; Baudoz, P.; Baudrand, J.; Beuzit, J.-L.; Blancard, P.; Boccaletti, A.; Cantalloube, F.; Carle, M.; Cascone, E.; Charton, J.; Claudi, R. U.; Costille, A.; de Caprio, V.; Dohlen, K.; Dominik, C.; Fantinel, D.; Feautrier, P.; Feldt, M.; Fusco, T.; Gigan, P.; Girard, J. H.; Gisler, D.; Gluck, L.; Gry, C.; Henning, T.; Hugot, E.; Janson, M.; Jaquet, M.; Lagrange, A.-M.; Langlois, M.; Llored, M.; Madec, F.; Magnard, Y.; Martinez, P.; Maurel, D.; Mawet, D.; Meyer, M. R.; Milli, J.; Moeller-Nilsson, O.; Mouillet, D.; Origné, A.; Pavlov, A.; Petit, C.; Puget, P.; Quanz, S. P.; Rabou, P.; Ramos, J.; Rousset, G.; Roux, A.; Salasnich, B.; Salter, G.; Sauvage, J.-F.; Schmid, H. M.; Soenke, C.; Stadler, E.; Suarez, M.; Turatto, M.; Udry, S.; Vakili, F.; Wahhaj, Z.; Wildi, F.; Antichi, J.
2016-03-01
Context. The planetary system discovered around the young A-type HR 8799 provides a unique laboratory to: a) test planet formation theories; b) probe the diversity of system architectures at these separations, and c) perform comparative (exo)planetology. Aims: We present and exploit new near-infrared images and integral-field spectra of the four gas giants surrounding HR 8799 obtained with SPHERE, the new planet finder instrument at the Very Large Telescope, during the commissioning and science verification phase of the instrument (July-December 2014). With these new data, we contribute to completing the spectral energy distribution (SED) of these bodies in the 1.0-2.5 μm range. We also provide new astrometric data, in particular for planet e, to further constrain the orbits. Methods: We used the infrared dual-band imager and spectrograph (IRDIS) subsystem to obtain pupil-stabilized, dual-band H2H3 (1.593 μm, 1.667 μm), K1K2 (2.110 μm, 2.251 μm), and broadband J (1.245 μm) images of the four planets. IRDIS was operated in parallel with the integral field spectrograph (IFS) of SPHERE to collect low-resolution (R ~ 30), near-infrared (0.94-1.64 μm) spectra of the two innermost planets HR 8799 d and e. The data were reduced with dedicated algorithms, such as the Karhunen-Loève image projection (KLIP), to reveal the planets. We used the so-called negative planets injection technique to extract their photometry, spectra, and measure their positions. We illustrate the astrometric performance of SPHERE through sample orbital fits compatible with SPHERE and literature data. Results: We demonstrated the ability of SPHERE to detect and characterize planets in this kind of systems, providing spectra and photometry of its components. The spectra improve upon the signal-to-noise ratio of previously obtained data and increase the spectral coverage down to the Y band. In addition, we provide the first detection of planet e in the J band. Astrometric positions for planets
Fassò, Francesco; Sansonetto, Nicola
2016-04-01
Energy is in general not conserved for mechanical nonholonomic systems with affine constraints. In this article we point out that, nevertheless, in certain cases, there is a modification of the energy that is conserved. Such a function is the pull-back of the energy of the system written in a system of time-dependent coordinates in which the constraint is linear, and for this reason will be called a `moving' energy. After giving sufficient conditions for the existence of a conserved, time-independent moving energy, we point out the role of symmetry in this mechanism. Lastly, we apply these ideas to prove that the motions of a heavy homogeneous solid sphere that rolls inside a convex surface of revolution in uniform rotation about its vertical figure axis, are (at least for certain parameter values and in open regions of the phase space) quasi-periodic on tori of dimension up to three.
Isentropic Spheres in General Relativity
Humi, Mayer
2016-01-01
Astrophysical gas clouds undergo thermodynamically irreversible processes and emit heat to their surroundings. Due the emission of this heat one can envision an idealized situation in which gas entropy remains (almost) constant. With this motivation in mind we derive in this paper interior solutions to the Einstein equations of General Relativity for spheres which consist of isentropic gas. In particular we investigate solutions in which the mass distribution inside the sphere has several shells. Such spheres might be considered an early stage for the formation of a "solar system".
Public Sphere as Digital Assemblage
DEFF Research Database (Denmark)
Salovaara-Moring, Inka
the 1990s onwards digitalization brought concepts of network and complexity into the theoretical discourse. This relational turn changed the social ontology of the public sphere into a dynamic and complex system, erasing the division between the fields of reality (the world), representation (discourse......), and subjectivity (agency). This changed the public sphere into an assemblage consisting of both human and non-human actors interactingin a highly dynamic, networked environment. This paper proposes a framework for considering this new materiality in the field of the public sphere: the assemblage and complexity...
International Nuclear Information System (INIS)
The project 252Cf-D2O is articulated upon the utilization of a 200μg nominal 252Cf spontaneous neutron fission source, used bare and under D2O spherical moderators, giving leakage neutron spectra experimentally known and/or calculated. This project has for objective the applications of those sources to Health Physics, in dosimetry (calibration of ''rad'' and ''rem-meters'') and in spectrometry, associated with the experimental system of measurements made by the generalization of the BONNER Spheres, known as ''the Multisphere System''. This communication describes the normalization method used and the results obtained leading to the adoption of a reference matrix called ''the Log-Normal Multisphere Matrix'' (LN-MM) giving the energies response functions of the generalized system for all the spheres diameters between 40 and 400 millimeters and for all the energies between 0.4eV and 15MeV
International Nuclear Information System (INIS)
We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformed oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals
International Nuclear Information System (INIS)
A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).
Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.
2012-08-01
A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).
Zurlo, A; Galicher, R; Maire, A -L; Mesa, D; Gratton, R; Chauvin, G; Kasper, M; Moutou, C; Bonnefoy, M; Desidera, S; Abe, L; Apai, D; Baruffolo, A; Baudoz, P; Baudrand, J; Beuzit, J -L; Blancard, P; Boccaletti, A; Cantalloube, F; Carle, M; Charton, J; Claudi, R U; Costille, A; de Caprio, V; Dohlen, K; Dominik, C; Fantinel, D; Feautrier, P; Feldt, M; Fusco, T; Gascone, E; Gigan, P; Girard, J H; Gissler, D; Gluck, L; Gry, C; Henning, T; Hugot, E; Janson, M; Jacquet, M; Lagrange, A -M; Langlois, M; Llored, M; Made, F; Magnard, Y; Martinez, P; Maurel, D; Mawet, D; Meyer, M R; Milli, J; Moeller-Nilsson, O; Mouillet, D; Origné, A; Pavlov, A; Petit, C; Puget, P; Quanz, S P; Rabou, P; Ramos, J; Roux, A; Salasnich, B; Salter, G; Sauvage, J -F; Schmid, H M; Soenke, C; Stadler, E; Suarez, M; Turatto, M; Udry, S; Vakili, F; Wahhaj, Z; Wildi, F
2015-01-01
The planetary system discovered around the young A-type HR8799 provides a unique laboratory to: a) test planet formation theories, b) probe the diversity of system architectures at these separations, and c) perform comparative (exo)planetology. We present and exploit new near-infrared images and integral-field spectra of the four gas giants surrounding HR8799 obtained with SPHERE, the new planet finder instrument at the Very Large Telescope, during the commissioning and science verification phase of the instrument (July-December 2014). With these new data, we contribute to completing the spectral energy distribution of these bodies in the 1.0-2.5 $\\mu$m range. We also provide new astrometric data, in particular for planet e, to further constrain the orbits. We used the infrared dual-band imager and spectrograph (IRDIS) subsystem to obtain pupil-stabilized, dual-band $H2H3$ (1.593 $\\mu$m, 1.667 $\\mu$m), $K1K2$ (2.110 $\\mu$m, 2.251 $\\mu$m), and broadband $J$ (1.245 $\\mu$m) images of the four planets. IRDIS was ...
Kudryavtseva, A. I.; Chikin, A. A.; Кудрявцева, А. И.; Чикин, А. А.
2014-01-01
The article considers the features of the dual system of vocational education and the possibility of use of elements of dual system in the course of additional training of specialists in the sphere of design of style and image Рассмотрены особенности дуальной системы профессионального образования, выявлена возможность использования элементов дуальной системы в процессе дополнительной подготовки специалистов сферы дизайна стиля и имиджа...
Reclaiming the community public sphere: communal individuals, communities and the lebanese system
di Ricco, Massimo
2008-01-01
The Lebanese confessional system, besides the continuous reshapes assisted since its establishment, finds its peculiarity in the institutional recognition of various confessional communities and in its structure based on the idea of the power-sharing. Each recognized Lebanese community enjoys of political quotas in the national Parliament, and the system provides them with prerogatives in managing the personal status law of their own members, making the community autonomous from state interfe...
Fiber optic inclination detector system having a weighted sphere with reference points
Cwalinski, Jeffrey P.
1995-01-01
A fiber optic inclination detector system for determining the angular displacement of an object from a reference surface includes a simple mechanical transducer which requires a minimum number of parts and no electrical components. The system employs a single light beam which is split into two light beams and provided to the transducer. Each light beam is amplitude modulated upon reflecting off the transducer to detect inclination. The power values associated with each of the reflected light beams are converted by a pair of photodetectors into voltage signals, and a microprocessor manipulates the voltage signals to provide a measure of the angular displacement between the object and the reference surface.
Polydispersity effect on solid-fluid transition in hard sphere systems
Nogawa, T.
2010-02-01
The solid-fluid transition of the hard elastic particle system with size polydispersity is studied by molecular dynamics simulations. Using nonequilibrium relaxation from the mixed initial condition we determines the melting point where the first order transition between the solid, fcc crystal, and fluid states occurs. It is found that the density gap between the bistable states decreases with increasing the strength of the polydispersity and continuously approaches to zero at the critical point. © 2010.
Entropy-based separation of yeast cells using a microfluidic system of conjoined spheres
International Nuclear Information System (INIS)
A physical model is derived to create a biological cell separator that is based on controlling the entropy in a microfluidic system having conjoined spherical structures. A one-dimensional simplified model of this three-dimensional problem in terms of the corresponding effects of entropy on the Brownian motion of particles is presented. This dynamic mechanism is based on the Langevin equation from statistical thermodynamics and takes advantage of the characteristics of the Fokker-Planck equation. This mechanism can be applied to manipulate biological particles inside a microfluidic system with identical, conjoined, spherical compartments. This theoretical analysis is verified by performing a rapid and a simple technique for separating yeast cells in these conjoined, spherical microfluidic structures. The experimental results basically match with our theoretical model and we further analyze the parameters which can be used to control this separation mechanism. Both numerical simulations and experimental results show that the motion of the particles depends on the geometrical boundary conditions of the microfluidic system and the initial concentration of the diffusing material. This theoretical model can be implemented in future biophysics devices for the optimized design of passive cell sorters
DECISION MAKING SUPPORT INFORMATION SYSTEM IN SPHERE OF SMALL AND MEDIUM BUSINESS COMPANIES SOLVENCY
Directory of Open Access Journals (Sweden)
Pelipenko Y. Y.
2015-04-01
Full Text Available Destabilization of the economic situation in Russia at the end of 2014 and in early 2015 has influenced small and medium businesses (SMB landing at first. One of the most important reason of high lending risks and, as a result, high lending rates is absence of reliable information systems for assessment of SMB enterprise default according to total analysis of their financial activities. Thus nowadays the reliable assessment of SMB enterprises solvency is the fundamental scientific problem, which one is highly actual for each credit organization because the bankruptcy of a credit institution is depended on it. At the same time high competition at the landing market leads to necessity of individual credit conditions existing, which takes into account borrower’s and lender’s benefits. In the present work the creating of reliable information and analytical systems for assessment of SMB company default method is suggested. This one is based on integration of probabilistic and statistical classification analysis methods (discriminant analysis, logistic regression, and classification trees, heuristic procedures (neural network and interactive shell of the system using cloud technology. By the authors, there was solved the problem of small data amount, exception anomalous values and discrepancy normal distribution of sample by the generation of enterprises financial activity model database
Most, Sebastian; Nowak, Wolfgang; Bijeljic, Branko
2016-04-01
For understanding non-Fickian transport in porous media, thorough understanding of pore-scale processes is required. When using particle methods as research instruments, we need a detailed understanding of the dependence and memory between subsequent increments in particle motion. We are especially interested in the dependence and memory of the spatial increments (size and direction) at consecutive time steps. Understanding the increment statistics is crucial for the upscaling that always becomes essential for transport simulations at larger scales. Upscaling means averaging over a (representative elementary) volume to save limited computational resources. However, this averaging means a loss of detail and therefore dispersion models should compensate for this loss. Formulating an appropriate dispersion model requires a detailed understanding of the dependencies and memory effects in the transport process. Particle-based simulations for transport in porous media are usually conducted and analyzed in a Cartesian coordinate system. We will show that, for understanding the process physically and representing the process statistically, it is more appropriate to switch to a spherical coordinate system that moves with each particle. Increment statistics in a Cartesian coordinate system usually reveal that a large displacement in longitudinal direction triggers a large displacement in transverse direction as fast flow channels are not perfectly aligned with the Cartesian axis along the main flow direction. We can overcome this inherent link, typical for the Cartesian description by using the absolute displacements together with the direction of the particle movement, where the direction is determined by the angles azimuth and elevation. This can be understood as a Lagrangian spherical process description. The root of the dependence of the transport process is in the complex pore geometry. For some time past, high-resolution micro-CT scans of pore space geometry became the
Features of the chemical equilibrium of dimerization in a system of solid spheres
Tkachev, N. K.; Zinatullina, A. R.
2013-09-01
Statistical and thermodynamic analyses of the equilibrium of dimerization in solid-phase systems is performed for a model of the Van der Waals type and the Perkus-Yevik approximation. For the model of Van der Waals type, the simple equation γ = exp[ p 0(2-λ3)] is obtained for an average activity coefficient ( p 0 is reduced pressure and λ is bond length in dimer) that describes both positive and negative deviations from the ideal, depending on the change in volume after the elementary act of chemical reaction. It is found that the Perkus-Yevik approximation predicts similar results with more pronounced deviations from the ideal, and the activity coefficient depends on the degree of dissociation as well.
Development of solid phase radioimmunoassay system using new polymeric magnetic micro-spheres
International Nuclear Information System (INIS)
Magnetic particles were locally prepared by co-precipitation of Fe2+ and Fe3+ in an ammonia solution. The prepared microsphere were grafted with polyacrylamide acrylic acid by using gamma irradiation polymerization in presence of MBA as a cross linker. AFP antibody was immobilized on these beads and used as a solid phase in radioimmunoassay technique. The immunoreactivity of the developed assay was found to be influenced by different factors such as solid phase volume, incubation time, incubation temperature and storage period. A comparative study was performed between the developed assay system and others two ones. The maximum binding percent attained the value of 19.5% while the sensitivity was observed to be 1.3 IU/mL. The developed assay displayed acceptable precision estimated by repeated analysis of the quality control samples and the clinical samples analyzed by this assay showed a good correlation with that commercial kit (r = 0.998). (author)
Hawking radiation of the Vaidya-Bonner-de Sitter black hole
Energy Technology Data Exchange (ETDEWEB)
Chen Deyou; Yang Shuzheng [Institute of Theoretical Physics, China West Normal University, Nanchong, Sichuan 637002 (China)
2007-08-15
Considering the unfixed background space-time and the self-gravitational interaction, we view the Hawking radiation of the Vaidya-Bonner- de Sitter black hole by the Hamilton-Jacobi method and the radial geodesic method. The result shows the tunneling rate is related not only to the change of Bekenstein-Hawking entropy but also to the integral of the black hole mass and charge, which does not satisfy the unitary theory and is not in accordance with the known result.
Petit, C.; Sauvage, J.-F.; Fusco, T.; Sevin, A.; Suarez, M.; Costille, A.; Vigan, A.; Soenke, C.; Perret, D.; Rochat, S.; Barrufolo, A.; Salasnich, B.; Beuzit, J.-L.; Dohlen, K.; Mouillet, D.; Puget, P.; Wildi, F.; Kasper, M.; Conan, J.-M.; Kulcsár, C.; Raynaud, H.-F.
2014-08-01
The SPHERE (Spectro-Polarimetry High-contrast Exoplanet Research) instrument is an ESO project aiming at the direct detection of extra-solar planets. SPHERE has been successfully integrated and tested in Europe end 2013 and has been re-integrated at Paranal in Chile early 2014 for a first light at the beginning of May. The heart of the SPHERE instrument is its eXtreme Adaptive Optics (XAO) SAXO (SPHERE AO for eXoplanet Observation) subsystem that provides extremely high correction of turbulence and very accurate stabilization of images for coronagraphic purpose. However, SAXO, as well as the overall instrument, must also provide constant operability overnights, ensuring robustness and autonomy. An original control scheme has been developed to satisfy this challenging dichotomy. It includes in particular both an Optimized Modal Gain Integrator (OMGI) to control the Deformable Mirror (DM) and a Linear Quadratic Gaussian (LQG) control law to manage the tip-tilt (TT) mirror. LQG allows optimal estimation and prediction of turbulent angle of arrival but also of possible vibrations. A specific and unprecedented control scheme has been developed to continuously adapt and optimize LQG control ensuring a constant match to turbulence and vibrations characteristics. SPHERE is thus the first operational system implementing LQG, with automatic adjustment of its models. SAXO has demonstrated performance beyond expectations during tests in Europe, in spite of internal limitations. Very first results have been obtained on sky last May. We thus come back to SAXO control scheme, focusing in particular on the LQG based TT control and the various upgrades that have been made to enhance further the performance ensuring constant operability and robustness. We finally propose performance assessment based on in lab performance and first on sky results and discuss further possible improvements.
Energy Technology Data Exchange (ETDEWEB)
Mandev, P.
1984-01-01
The hydrocarbon sphere is understood to be the area in which hydrocarbon compounds are available. It is believed that the lower boundary on the hydrocarbon sphere is most probably located at a depth where the predominant temperatures aid in the destruction of hydrocarbons (300 to 400 degrees centigrade). The upper limit on the hydrocarbon sphere obviously occurs at the earth's surface, where hydrocarbons oxidize to H20 and CO2. Within these ranges, the occurrence of the hydrocarbon sphere may vary from the first few hundred meters to 15 kilometers or more. The hydrocarbon sphere is divided into the external (mantle) sphere in which the primary gas, oil and solid hydrocarbon fields are located, and the internal (metamorphic) sphere containing primarily noncommercial accumulations of hydrocarbon gases and solid carbon containing compounds (anthraxilite, shungite, graphite, etc.) based on the nature and scale of hydrocarbon compound concentrations (natural gas, oil, maltha, asphalt, asphaltite, etc.).
International Nuclear Information System (INIS)
The laboratory type of an active single sphere albedo dosemeter system using three 3He proportional counters in a polyethylene sphere for the measurement of neutron dose equivalent rates and the field calibration of personnel neutron dosemeters was optimized with respect to the detector-moderator combination by means of calibration exposures. One detector is located in the centre of the sphere to measure the neutron dose equivalent rate and the other two detectors near the moderator surface, in order to simulate the response of the albedo neutron detector and the thermal neutron detector. The response of the detectors to neutrons in the range between thermal and 14 MeV neutrons was investigated for various moderator-absorber combinations. Comparison was made between the system response and the response of the passive detector system. After completion the active system could be used for comprehensive neutron field measurements in radiation protection. By means of a microprocessor the linear combination of the three detector readings gives energy independent readings of the neutron dose equivalent rate, the absorbed dose rate and the neutron flux density at particle accelerators and nuclear facilities. (orig./HP)
Directory of Open Access Journals (Sweden)
Tkachenko Serhii A.
2016-02-01
Full Text Available The given article highlights features of solving retrospective (successive tasks of monitoring production and economic activity of the territorial-production system through a profound using of scientific principles in the developed and introduced enlarged block diagram of the control system for a functionally advanced solution of the task of monitoring labour force turnover at the entity in the agri-food sphere. Solving the task of monitoring the labour force turnover in the territorial-production system by means of electronic digital machines allows: to reduce the complexity of calculations performed by employees of Human Resources Department and make time for other research and control functions; to accelerate submission of necessary accounting and economic as well as analytical information on the labour force turnover at the entity in the agri-food sphere to consumers; increase the quality of accounting and economic as well as analytical information by eliminating errors, which occur at manual calculation; to build a real scientific basis for developing measures of technical, organizational and socio-economic nature aimed at reducing the labour force turnover. The given list of issues solved at development of the monitoring subsystem in strategic control systems of the regional structure and territorial organization of the agri-food sphere is not complete, the use of industrial methods for creating a monitoring subsystem, training specialists and a number of other issues, which are no less important, should be mentioned as well.
Saccomandi, Paola; Larocca, Enza Stefania; Rendina, Veneranda; Schena, Emiliano; D'Ambrosio, Roberto; Crescenzi, Anna; Di Matteo, Francesco Maria; Silvestri, Sergio
2016-08-01
The investigation of laser-tissue interaction is crucial for diagnostics and therapeutics. In particular, the estimation of tissue optical properties allows developing predictive models for defining organ-specific treatment planning tool. With regard to laser ablation (LA), optical properties are among the main responsible for the therapy efficacy, as they globally affect the heating process of the tissue, due to its capability to absorb and scatter laser energy. The recent introduction of LA for pancreatic tumor treatment in clinical studies has fostered the need to assess the laser-pancreas interaction and hence to find its optical properties in the wavelength of interest. This work aims at estimating optical properties (i.e., absorption, μ a , scattering, μ s , anisotropy, g, coefficients) of neuroendocrine pancreas tumor at 1064 nm. Experiments were performed using two popular sample storage methods; the optical properties of frozen and paraffin-embedded neuroendocrine tumor of the pancreas are estimated by employing a double-integrating-sphere system and inverse Monte Carlo algorithm. Results show that paraffin-embedded tissue is characterized by absorption and scattering coefficients significantly higher than frozen samples (μ a of 56 cm(-1) vs 0.9 cm(-1), μ s of 539 cm(-1) vs 130 cm(-1), respectively). Simulations show that such different optical features strongly influence the pancreas temperature distribution during LA. This result may affect the prediction of therapeutic outcome. Therefore, the choice of the appropriate preparation technique of samples for optical property estimation is crucial for the performances of the mathematical models which predict LA thermal outcome on the tissue and lead the selection of optimal LA settings. PMID:27147075
Institute of Scientific and Technical Information of China (English)
杨波
2007-01-01
采用新的Tortoise坐标变换,将Vaidya-Bonner-de Sitter黑洞中的Klein-Gordon方程,在黑洞视界面附近化成典型的波动方程,得到在视界面附近Hawking辐射温度,导出了Hawking热辐射谱.
Institute of Scientific and Technical Information of China (English)
邓娟; 蒋青权; 冯中文; 李国平
2012-01-01
采用一种新的广义乌龟坐标变换对Vaidya-Bonner-de Sitter黑洞的熵进行研究,同时对其在旧乌龟坐标变换下的情况也做了对比分析.其结果表明两种情况下熵的形式相近,但是,新的广义乌龟坐标的结果对Vaidya-Bonner-de Sitter黑洞的熵做了相应的修正,新的乌龟坐标变换显得更加合理.%The principal focus of this paper is to study the entropy of Vaidya-Bonner-de Sitter black hole under a new general tortoise coordinate transformation, and then, to make the contrast and analysis of it with the old tortoise coordinates. It is found that the entropies obtained from both the new and old tortoise coordinate transformations are close to each other. The new general tortoise coordinate transformation makes the corresponding modification for the entropy of Vaidya-Bonner-de Sitter black hole and appears to be more reasonable.
Institute of Scientific and Technical Information of China (English)
孙鸣超
2005-01-01
在Tortoise坐标系中,利用brick-wall模型研究了电磁场对Vaidya-Bonner-de Sitter黑洞熵的量子修正. 当黑洞事件视界不随超前时间变化时,结果与Reissner-Nordstrm-de Sitter黑洞的量子熵完全相同.
International Nuclear Information System (INIS)
The generated neutron field varies considerably and depends on the beam energy, on the shielding of the accelerator, on the filters for beam homogeneity, and also on the mobile collimators and geometry of irradiation. The estimation of the component relative to the photoneutrons has practical interest for evaluation of the radiological risks for the workers and for the patient as well. Due to the high frequency magnetic field, and to the photon abundance resulting of the escape and scattering at treatment room, those measurements present some difficulties. Measurements of the neutron fields can be made with a Bonner spectrometer. Those system was calibrated with referred neutron standard sources and used for make measurements on a spot of the room where a Variant 2300C/D Linac is installed. The unfolding process used the BUNKI computer code for determination of the neutron spectra at the measurement spot
Panoramic stereo sphere vision
Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian
2013-01-01
Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.
Unveiling small sphere's scattering behavior
Tzarouchis, Dimitrios C; Sihvola, Ari
2016-01-01
A classical way for exploring the scattering behavior of a small sphere is to approximate Mie coefficients with a Taylor series expansion. This ansatz delivered a plethora of insightful results, mostly for small spheres supporting electric localized plasmonic resonances. However, many scattering aspects are still uncharted, especially for the case of magnetic resonances. Here, an alternative system ansatz is proposed based on the Pad\\'e approximants for the Mie coefficients. The extracted results reveal new aspects, such as the existence of a self-regulating radiative damping mechanism for the first magnetic resonance. Hence, a systematic way of exploring the scattering behavior is introduced, sharpening our understanding about sphere's scattering behavior and its emergent functionalities.
Hsu, Wei-Hung; Masim, Frances Camille P; Porta, Matteo; Nguyen, Mai Thanh; Yonezawa, Tetsu; Balčytis, Armandas; Wang, Xuewen; Rosa, Lorenzo; Juodkazis, Saulius; Hatanaka, Koji
2016-09-01
Femtosecond laser-induced hard X-ray generation in air from a 100-µm-thick solution film of distilled water or Au nano-sphere suspension was carried out by using a newly-developed automatic positioning system with 1-µm precision. By positioning the solution film for the highest X-ray intensity, the optimum position shifted upstream as the laser power increased due to breakdown. Optimized positioning allowed us to control X-ray intensity with high fidelity. X-ray generation from Au nano-sphere suspension and distilled water showed different power scaling. Linear and nonlinear absorption mechanism are analyzed together with numerical modeling of light delivery. PMID:27607607
Electric dipoles on the Bloch sphere
Vutha, Amar C
2014-01-01
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.
Electric dipoles on the Bloch sphere
Vutha, Amar C.
2015-03-01
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic and molecular physics.
Kinetic theory of hard spheres
Beijeren, H. van; Ernst, M.H.
1979-01-01
Kinetic equations for the hard-sphere system are derived by diagrammatic techniques. A linear equation is obtained for the one-particle-one particle equilibrium time correlation function and a nonlinear equation for the one-particle distribution function in nonequilibrium. Both equations are nonloca
2001 Tom W. Bonner Prize in Nuclear Physics Lecture
Geller, Richard
2001-04-01
incident ion dose (ex : superheavies - rare isotopes, etc.). (ii) Long duration runs with extreme heavy ion energy on existing machines (ex. CERN : 33 TeV Pb ions, for gluon quark plasma). (iii) Cancer therapy with heavy ions where the physicians require extremely reproducible doses for therapy protocols. The future of ECRIS will depend on further applications : for instance the production of very short life (1+) isotope ions delivered by ISOL systems in continuous regime. For this we developed in 1995 the so called (1+/N+) ECRIS charge booster which catches the (1+) ions before they are adsorpted on the walls. Moreover for pulsed accelerators we developed in 1998 an ECRIT (ECR Ion Trap) charge booster which is simultaneously a (1+) ions accumulator and HCI beam buncher.
International Nuclear Information System (INIS)
Molecular dynamics simulations have been used to calculate the self-diffusion coefficient, D, and other transport coefficients of the hard sphere and Weeks-Chandler-Andersen (WCA) fluids over a wide density range. Simulations were carried out with different numbers of particles, N, in the range between 500 and 273 375 for the WCA and up to 10 976 for the hard sphere fluid. These data were fitted to the relationship D=D∞-AN-3α, where the parameters D∞, A and α were all allowed to be density dependent. The self-diffusion coefficient in the thermodynamic limit was obtained for both fluids. The Stokes-Einstein (SE) relationship stick-slip parameter, c = kBT/πDηs, where kB is Boltzmann's constant, T is the temperature and ηs is the shear viscosity, was calculated for the two fluids at each state point as a function of N. Because of the relatively strong N dependence of D, the parameter c is also shown to be sensitive to N. It is shown that data taken for a few hundred particles can significantly overestimate the value of c. At liquid-like densities, with increasing system size, c tends towards the slip value of 2. The same trend is observed for hard spheres and WCA particles. Therefore for any study of the SE stick-slip parameter it is important to perform several simulations for different system sizes and extrapolate the self-diffusion coefficient to the thermodynamic limit, and it is this value which should be used to compare with theory. At the same packing fraction the self-diffusion coefficient of the WCA fluid is larger than the value for the hard sphere fluid in the thermodynamic limit by, for example, 10% at a packing fraction of 0.3 and 60% at a packing fraction of 0.49. The trend for the shear viscosity is the reverse, both of which could be attributed to the softness of the potential in the WCA case and its effect in inducing more cooperative interparticle trajectories than for the hard sphere
Chaney, A.; Lu, Lei; Stern, A.
2015-09-01
We show that fuzzy spheres are solutions of Lorentzian Ishibashi-Kawai-Kitazawa-Tsuchiya-type matrix models. The solutions serve as toy models of closed noncommutative cosmologies where big bang/crunch singularities appear only after taking the commutative limit. The commutative limit of these solutions corresponds to a sphere embedded in Minkowski space. This "sphere" has several novel features. The induced metric does not agree with the standard metric on the sphere, and, moreover, it does not have a fixed signature. The curvature computed from the induced metric is not constant, has singularities at fixed latitudes (not corresponding to the poles) and is negative. Perturbations are made about the solutions, and are shown to yield a scalar field theory on the sphere in the commutative limit. The scalar field can become tachyonic for a range of the parameters of the theory.
Song, F.; Toksoz, M. N.
2012-12-01
Over the last decade, hydraulic fracturing has become one important key enabling technique in the development of unconventional oil and gas reservoirs. Microseismic monitoring has proved to be an effective diagnostic tool to image complex fracturing and to understand fracture growth. The initial uptake of this geophysical technology has been focused on fast and accurate microearthquake locations. In addition to locations, microearthquake source mechanisms, represented by the complete moment tensors, reveal important information on geomechanical understanding of hydrofrac growth and have profound implications on fracturing design. The retrieval of complete moment tensors has been hindered by several factors including limited geophone azimuthal coverage, relatively poor data quality (due to small event magnitudes and high borehole noise) and velocity model uncertainty. In this paper, the complete microseismic moment tensors have been inverted using full waveforms. We use the waveforms to obtain an accurate velocity structure. The unconstrained inversion using two-well data and constrained inversion with one-well data have been conducted on Barnett shale and Bonner sand, respectively. Different fracture growth patterns are seen in these two datasets. The source mechanisms show mixed failure modes in the complex fracture network from the Barnett shale. In the Bonner sands, a planar fracture grows mostly by shear failure at tip characterized by a double couple mechanism. The results may be explained by different reservoir conditions, including the geomechanical properties of the formations. Correctly inverted microearthquake source mechanisms help better understand both the hydraulic fracturing and the underlying reservoir, and aid the development of sophisticated horizontal well completions.
Global Calibration of Multiple Cameras Based on Sphere Targets
Junhua Sun; Huabin He; Debing Zeng
2016-01-01
Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three), while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphe...
Two-sphere low Reynold's propeller
Najafi, Ali; Zargar, Rojman
2010-01-01
A three-dimensional model of a low-Reynold's swimmer is introduced and analyzed in this paper. This model consists of two large and small spheres connected by two perpendicular thin rods. The geometry of this system is motivated by the microorganisms that use a single tail to swim, the large sphere represents the head of microorganism and the small sphere resembles its tail. Each rod changes its length and orientation in a non-reciprocal manner that effectively propel the system. Translationa...
International Nuclear Information System (INIS)
The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 1016-1018 eV.
Maire, A -L; Ginski, C; Vigan, A; Messina, S; Mesa, D; Galicher, R; Gratton, R; Desidera, S; Kopytova, T G; Millward, M; Thalmann, C; Claudi, R U; Ehrenreich, D; Zurlo, A; Chauvin, G; Antichi, J>; Baruffolo, A; Bazzon, A; Beuzit, J -L; Blanchard, P; Boccaletti, A; de Boer, J; Carle, M; Cascone, E; Costille, A; De Caprio, V; Delboulbe, A; Dohlen, K; Dominik, C; Feldt, M; Fusco, T; Girard, J H; Giro, E; Gisler, D; Gluck, L; Gry, C; Henning, T; Hubin, N; Hugot, E; Jaquet, M; Kasper, M; Lagrange, A -M; Langlois, M; Mignant, D Le; Llored, M; Madec, F; Martinez, P; Mawet, D; Milli, J; Moeller-Nilsson, O; Mouillet, D; Moulin, T; Moutou, C; Origne, A; Pavlov, A; Petit, C; Pragt, J; Puget, P; Ramos, J; Rochat, S; Roelfsema, R; Salasnich, B; Sauvage, J -F; Schmid, H M; Turatto, M; Udry, S; Vakili, F; Wahhaj, Z; Weber, L; Wildi, F
2015-01-01
[Abridged] Context. The young systems PZ Tel and HD 1160, hosting known low-mass companions, were observed during the commissioning of the new planet finder SPHERE with several imaging and spectroscopic modes. Aims. We aim to refine the physical properties and architecture of both systems. Methods. We use SPHERE commissioning data and REM observations, as well as literature and unpublished data from VLT/SINFONI, VLT/NaCo, Gemini/NICI, and Keck/NIRC2. Results. We derive new photometry and confirm the nearly daily photometric variability of PZ Tel A. Using literature data spanning 38 yr, we show that the star also exhibits a long-term variability trend. The 0.63-3.8 mic SED of PZ Tel B allows us to revise its properties: spectral type M7+/-1, Teff=2700+/-100 K, log(g)0.66) of PZ Tel B. For e4 MJ) outside 0.5" for the PZ Tel system. We also show that K1-K2 color can be used with YJH low-resolution spectra to identify young L-type companions, provided high photometric accuracy (<0.05 mag) is achieved. Conclusi...
Institute of Scientific and Technical Information of China (English)
孙鸣超
2003-01-01
在Tortoise坐标系中,利用Brick-Wall模型研究中微子场和标量场对Vaidya-Bonner-de Sitter黑洞熵的量子修正.当黑洞事件视界不随超前时间变化时,结果与Reissner-Nordstrom-de Sitter黑洞的量子熵完全相同.
Klotsa, Daphne; Hill, Richard J A; Bowley, Roger M; Swift, Michael R
2015-01-01
We describe experiments and simulations demonstrating the propulsion of a neutrally-buoyant swimmer that consists of a pair of spheres attached by a spring, placed in a vibrating fluid. The vibration of the fluid induces relative motion of the spheres which, for sufficiently large amplitudes, can lead to motion of the center of mass of the two spheres. We find that the swimming speed obtained from both experiment and simulation agree and collapse onto a single curve if plotted as a function of the streaming Reynolds number, suggesting that the propulsion is related to streaming flows. There appears to be a critical onset value of the streaming Reynolds number for swimming to occur. The mechanism for swimming is traced to a jet of fluid generated by the relative motion of the spheres.
International Nuclear Information System (INIS)
The author's nonlinearly pulsating model with elliptic star orbits, based on an equilibrium Einstein model sphere (Paper I), is tested for stability against volume perturbations. The corresponding complete and exact dispersion relation is derived. A thorough analysis is made of the global m = 1, N = 3 harmonic, representing ''egg shaped'' perturbations. In the nonsteady model, anisotropic instability will set in beginning when the radial pulsations and the transverse motions have an energy ratio Δ( = 0.826. At this critical state the ratio of the maximum and minimum radii will be 11.2, half that found for barlike (ellipsoidal) surface-type perturbations. When the pulsation amplitude reaches its maximum value, the configuration will experience power-law Jeans-type instability. The model also has a narrow island of instability against the barlike disturbances considered in Paper I, apparently a resonance stemming from the model's nonequilibrium character
Design of a system for neutrons dosimetry; Diseno de un sistema para dosimetria de neutrones
Energy Technology Data Exchange (ETDEWEB)
Ceron, P.; Rivera, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Paredes G, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Azorin, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Sanchez, A. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Vega C, H. R., E-mail: victceronr@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)
2014-08-15
At the present time diverse systems of detection of neutrons exist, as proportional counters based on BF{sub 3}, He{sub 3} and spectrometers of Bonner spheres. However, the cost and the complexity of the implementation of these systems put them far from the reach for dosimetric purposes. For these reasons a system of neutrons detection composed by a medium paraffin moderator that forms a 4π (spheres) arrangement and of several couples of thermoluminescent dosimeters TLD 600/TLD 700. The response of the system presents a minor repeatability to 5% in several assays when being irradiated with a {sup 239}PuBe source and a deviation of 13.8% in the Tl readings of four different spheres. The calibration factor of the system with regard to the neutrons source which was of 56.2 p Sv/nc also was calculated. These detectors will be used as passive monitors of photoneutrons in a radiotherapy room with lineal accelerator of high energy. (Author)
Sknepnek, Rastko; Henkes, Silke
2015-02-01
We show that coupling to curvature nontrivially affects collective motion in active systems, leading to motion patterns not observed in flat space. Using numerical simulations, we study a model of self-propelled particles with polar alignment and soft repulsion confined to move on the surface of a sphere. We observe a variety of motion patterns with the main hallmarks being polar vortex and circulating band states arising due to the incompatibility between spherical topology and uniform motion—a consequence of the "hairy ball" theorem. We provide a detailed analysis of density, velocity, pressure, and stress profiles in the circulating band state. In addition, we present analytical results for a simplified model of collective motion on the sphere showing that frustration due to curvature leads to stable elastic distortions storing energy in the band.
International Nuclear Information System (INIS)
We calculate the Helmholtz free energy of the liquid alkali metals at various temperatures and of several polyvalent metals (Mg, Cd, Al, In, Tl and Pb) near freezing, using the variational approach based on the Gibbs-Bogoliubov inequality in conjunction with the charge-hard-sphere reference fluid with ab initio nonlocal pseudopotentials for the electron-ion interaction. The reference fluid introduces two variational parameters, i.e. the plasma coupling strength Γ and the packing fraction η, and is treated by a thermodynamically selfconsistent approach reducing to highly accurate descriptions of the one-component classical plasma for η=0 and of the neutral-hard-sphere fluid for Γ=0. For the alkali metals near freezing the free energy shows two competing minima as a function of these parameters, the first lying at η approx. 0.42 and Γ approx. 120 and the second near η approx. 0.05 and Γ approx. 150. The latter minimum provides the lowest variational bound to the free energy in all cases. A moderate increase in temperature shifts the aboslute minimum of the free energy to η=0 and removes the secondary minimum. Our results for the alkalis thus confirm the variational justification for a plasma-like viewpoint. For polyvalent metals the effective ion-ion potential in the region of the first neighbour distance may show either a relatively deep attractive well or a soft-repulsion hump followed by a shallow minimum, depending on the electronic screening function used in its construction. However, the free energy contours in the (η, Γ) plane are found to be quite insensitive to such differences in shape of the pair potential. The relevant free energy minima mostly lie near η approx. 0.42 and Γ approx. 30 and near η=0 and Γ approx. 160. The free energy differences between these minima, although very small, favour a plasma-like viewpoint for all the polyvalent metals that we have considered except for Al. 39 refs, 7 figs, 7 tabs
Energy Technology Data Exchange (ETDEWEB)
Frusawa, Hiroshi, E-mail: frusawa.hiroshi@kochi-tech.ac.jp
2014-05-01
A coarse-grained system of one-dimensional (1D) hard spheres (HSs) is created using the Delaunay tessellation, which enables one to define the quasi-0D state. It is found from comparing the quasi-0D and 1D free energy densities that a frozen state due to the emergence of quasi-0D HSs is thermodynamically more favorable than fluidity with a large-scale heterogeneity above crossover volume fraction of ϕ{sub c}=e/(1+e)=0.731⋯ , at which the total entropy of the 1D state vanishes. The Delaunay-based lattice mapping further provides a similarity between the dense HS system above ϕ{sub c} and the jamming limit in the car parking problem.
International Nuclear Information System (INIS)
A coarse-grained system of one-dimensional (1D) hard spheres (HSs) is created using the Delaunay tessellation, which enables one to define the quasi-0D state. It is found from comparing the quasi-0D and 1D free energy densities that a frozen state due to the emergence of quasi-0D HSs is thermodynamically more favorable than fluidity with a large-scale heterogeneity above crossover volume fraction of ϕc=e/(1+e)=0.731⋯ , at which the total entropy of the 1D state vanishes. The Delaunay-based lattice mapping further provides a similarity between the dense HS system above ϕc and the jamming limit in the car parking problem.
vSphere high performance cookbook
Sarkar, Prasenjit
2013-01-01
vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.
Hard sphere packings within cylinders.
Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick
2016-02-23
Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle. PMID:26843132
ANALYSIS OF MECHANISMS FINANCING OF CULTURAL SPHERE
Directory of Open Access Journals (Sweden)
Costandachi Gheorghe
2008-01-01
Full Text Available In this work is made analysis concern basically state structures of culture and arts activities, is describes the problems are met during the reforming process the financial mechanisms in cultural sphere. Author disclosed the ways evolve private and estate financing cultural sphere, also is disclosed why is need estate financial support. The work contains something detailed measures actions to improve financial and mechanisms financing of cultural sphere. Analyzing questions of modernization of budgetary financing of branch the author have formulated effectiveness of use of budgetary funds at all levels in cultural structures and proposed the ways of finishing of market reforms in cinematography. In the final of work is presented scheme system of financing, formation and distribution of financial resources in cinematography and is making conclusions and is offered wais of the solutions created present situation in this sphere in Moldova.
Kobryn, A E; Tokarchuk, M V
1999-01-01
An Enskog-Landau kinetic equation for a many-component system of charged hard spheres is proposed. It has been obtained from the Liouville equation with modified boundary conditions by the method of nonequilibrium statistical operator. On the basis of this equation the normal solutions and transport coefficients such as bulk kappa and shear eta viscosities, thermal conductivity lambda, mutual diffusion D^{\\alpha\\beta} and thermal diffusion D_T^\\alpha have been obtained for a binary mixture in the first approximation using the Chapman-Enskog method. Numerical calculations of all transport coefficients for mixtures Ar-Kr, Ar-Xe, Kr-Xe with different concentrations of compounds have been evaluated for the cases of absence and presence of long-range Coulomb interactions. The results are compared with those obtained from other theories and experiment.
Calculation and study on model of crushing load of HTR absorption sphere
International Nuclear Information System (INIS)
The absorption sphere shutdown system is the second shutdown system of 10 MW HTR. The absorption sphere contains 25% B4C, dispersing in graphite matrix. The crushing load, which is an important performance parameter of the absorption sphere, closely relates to the diameter. The effect of graphite sphere diameter and density on the crushing load was studied using the graphite sphere to simulate HTR absorption spheres. Three kinds of graphites with different densities were chosen and processed into five types of spheres with different diameters, and then the crushing experiment was conducted. The results show that the crushing load of the sphere is proportional to the square of the diameter, and increases with the density. For a certain diameter of graphite sphere, increasing the density of the sphere is an effective way to enhance the crushing load. (authors)
Scattering by a nihility sphere
Lakhtakia, A
2006-01-01
On interrogation by a plane wave, the back-scattering efficiency of a nihility sphere is identically zero, and its extinction and forward-scattering efficiencies are higher than those of a perfectly conducting sphere.
Path integral representations on the complex sphere
International Nuclear Information System (INIS)
In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S3C. The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)
Algebraic properties of Bier spheres
Directory of Open Access Journals (Sweden)
Inga Heudtlass
2012-05-01
Full Text Available We give a classification of flag Bier spheres, as well as descriptions of the first and second Betti numbers of general Bier spheres. Additionally, we compute the Betti numbers for a specific class of Bier spheres, constructed from skeletons of a full simplex.
Entanglement entropy for odd spheres
Dowker, J S
2010-01-01
It is shown, non--rigorously, that the effective action on a Z_q factored odd spheres (lune) has a vanishing derivative at q=1. This leaves the effective action on the ordinary odd d-sphere as (minus) the value of the entanglement entropy associated with a (d-2)-sphere. Some numbers are given.
Leder, Alexander; Ricochet Collaboration
2016-03-01
The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CENNS) using dark matter style detectors placed near a neutrino source, possibly the MIT research reactor (MITR), which offers a high continuous neutrino flux at high energies. Currently, Ricochet is characterizing the backgrounds at MITR. The main background is the neutrons emitted simultaneously from the core. To characterize this background, we wrapped a Bonner cylinder around a 3He thermal neutron detector, whose data was then unfolded to produce a neutron energy spectrum across several orders of magnitude. We discuss the resulting spectrum as well its implications for deploying Ricochet in the future.
The thermal conductivity of beds of spheres
Energy Technology Data Exchange (ETDEWEB)
McElroy, D.L.; Weaver, F.J.; Shapiro, M.; Longest, A.W.; Yarbrough, D.W.
1987-01-01
The thermal conductivities (k) of beds of solid and hollow microspheres were measured using two radial heat flow techniques. One technique provided k-data at 300 K for beds with the void spaces between particles filled with argon, nitrogen, or helium from 5 kPa to 30 MPa. The other technique provided k-data with air at atmospheric pressure from 300 to 1000 K. The 300 K technique was used to study bed systems with high k-values that can be varied by changing the gas type and gas pressure. Such systems can be used to control the operating temperature of an irradiation capsule. The systems studied included beds of 500 ..mu..m dia solid Al/sub 2/O/sub 3/, the same Al/sub 2/O/sub 3/ spheres mixed with spheres of silica--alumina or with SiC shards, carbon spheres, and nickel spheres. Both techniques were used to determine the k-value of beds of hollow spheres with solid shells of Al/sub 2/O/sub 3/, Al/sub 2/O/sub 3//center dot/7 w/o Cr/sub 2/O/sub 3/, and partially stabilized ZrO/sub 2/. The hollow microspheres had diameters from 2100 to 3500 ..mu..m and wall thicknesses from 80 to 160 ..mu..m. 12 refs., 7 figs., 4 tabs.
The Separate Spheres Model of Gendered Inequality.
Directory of Open Access Journals (Sweden)
Andrea L Miller
Full Text Available Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.
The Separate Spheres Model of Gendered Inequality.
Miller, Andrea L; Borgida, Eugene
2016-01-01
Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology. PMID:26800454
Peternell, Martin; Sendra, Juana
2011-01-01
The conchoid of a surface $F$ with respect to given fixed point $O$ is roughly speaking the surface obtained by increasing the radius function with respect to $O$ by a constant. This paper studies {\\it conchoid surfaces of spheres} and shows that these surfaces admit rational parameterizations. Explicit parameterizations of these surfaces are constructed using the relations to pencils of quadrics in $\\R^3$ and $\\R^4$. Moreover we point to remarkable geometric properties of these surfaces and their construction.
Godsil, C. D.; Zaks, J.
2012-01-01
Let $G$ be the graph with the points of the unit sphere in $\\mathbb{R}^3$ as its vertices, by defining two unit vectors to be adjacent if they are orthogonal as vectors. We present a proof, based on work of Hales and Straus chromatic number of this graph is four. We also prove that the subgraph of G induced by the unit vectors with rational coordinates is 3-colourable.
Berenstein, David; Lashof-Regas, Robin
2015-01-01
We construct various exact analytical solutions of the $SO(3)$ BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori.These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the $\\mathcal{N} = 1^*$ field theory with a non-trivial charge density. The solutions we construct have a $\\mathbb{Z}_N$ symmetry, where $N$ is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in $2N$ real variables. These equations have a discrete set of solutions for each value of the angular momentum. We study the phase structure of the solutions for various values of $N$. Also the continuum limit where $N\\to \\infty$, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.
Кобилін, Павло
2016-01-01
The article characterizes population trading service in Kharkiv region. The brief analysis of the previous human-geographical research on trading sector was given. The system approach in human geography was emphasized, the research is based on this approach. The definition of “social and geographical system” was given. The essence of the social and geographical system local classifications was revealed. They include indicators of system development (indexes sum of the social and geographical ...
Guthrie, Forbes; Saidel-Keesing, Maish
2011-01-01
The only book focused on designing VMware vSphere implementations.VMware vSphere is the most widely deployed virtualization platform today. Considered the most robust and sophisticated hypervisor product, vSphere is the de facto standard for businesses, both large and small. This book is the only one of its kind to concisely explain how to execute a successful vSphere architecture, tailored to meet your company's needs. Expert authors share with you the factors that shape the design of a vSphere implementation. Learn how to make the right design decisions for your environment.Explores the late
Two-sphere low Reynold's propeller
Najafi, Ali
2010-01-01
A three-dimensional model of a low-Reynold's swimmer is introduced and analyzed in this paper. This model consists of two large and small spheres connected by two perpendicular thin rods. The geometry of this system is motivated by the microorganisms that use a single tail to swim, the large sphere represents the head of microorganism and the small sphere resembles its tail. Each rod changes its length and orientation in a non-reciprocal manner that effectively propel the system. Translational and rotational velocities of the swimmer are studied for different values of parameters. Our findings show that by changing the parameters we can adjust both the velocity and the direction of motion of the swimmer.
Torsional oscillations of a sphere in a Stokes flow
Box, F; Mullin, T
2014-01-01
The results of an experimental investigation of a sphere performing torsional oscillations in a Stokes flow are presented. A novel experimental set up was developed which enabled the motion of the sphere to be remotely controlled through application of an oscillatory magnetic field. The response of the sphere to the applied field was characterised in terms of the viscous, magnetic and gravitational torques acting on the sphere. A mathematical model of the system was developed and good agreement was found between experimental and theoretical results. The flow resulting from the motion of the sphere was measured and the fluid velocity was found to have an inverse square dependence on radial distance from the sphere. Agreement between measurements and the analytical solution for the fluid velocity indicates that the flow may be considered Stokesian.
The periodically oscillating plasma sphere
International Nuclear Information System (INIS)
A new method of operating an inertial electrostatic confinement (IEC) device is proposed, and its performance is evaluated. The scheme involved an oscillating thermal cloud of ions immersed in a bath of electrons that form a harmonic oscillator potential. The scheme is called the periodically oscillating plasma sphere, and it appears to solve many of the problems that may limit other IEC systems to low gain. A set of self-similar solutions to the ion fluid equations is presented, and plasma performance is evaluated. Results indicate that performance enhancement of gridded IEC systems such as the Los Alamos intense neutron source device is possible as well as high-performance operation for low-loss systems such as the Penning trap experiment. Finally, a conceptual idea for a massively modular Penning trap reactor is also presented
Falling-sphere radioactive viscometry
International Nuclear Information System (INIS)
In this work the falling sphere viscometric method was studies experimentally using a sphere tagged with 198Au radiosotopo, the objective being the demosntration of the advantages of this technique in relation to the traditional method. The utilisation of the falling radioactive sphere permits the point-point monitoring of sphere position as a function of count rate. The fall tube wall and end effects were determined by this technique. Tests were performed with spheres of different diameters in four tubes. The application of this technique demosntrated the wall and end effects in sphere speed. The case of sphere fall in the steady slow regime allowed the determination of the terminal velocity, showing the increase of botton end effect as the sphere approaches the tube base. In the case the transient slow regime, the sphere was initially in a state of respose near the top surface. The data obtained show the influence of the free surface and wall on the sphere acceleration. These experimental data were applied to the Basset equation on order to verify the behaviour of the terms in this equation. (author)
Plaquettes, Spheres, and Entanglement
Grimmett, Geoffrey R
2010-01-01
The high-density plaquette percolation model in d dimensions contains a surface that is homeomorphic to the (d-1)-sphere and encloses the origin. This is proved by a path-counting argument in a dual model. When d=3, this permits an improved lower bound on the critical point p_e of entanglement percolation, namely p_e >= \\mu^-2 where \\mu is the connective constant for self-avoiding walks on Z^3. Furthermore, when the edge density p is below this bound, the radius of the entanglement cluster containing the origin has an exponentially decaying tail.
Generalized Sphere Packing Bound
Fazeli, Arman; Vardy, Alexander; Yaakobi, Eitan
2014-01-01
Kulkarni and Kiyavash recently introduced a new method to establish upper bounds on the size of deletion-correcting codes. This method is based upon tools from hypergraph theory. The deletion channel is represented by a hypergraph whose edges are the deletion balls (or spheres), so that a deletion-correcting code becomes a matching in this hypergraph. Consequently, a bound on the size of such a code can be obtained from bounds on the matching number of a hypergraph. Classical results in hyper...
Dowker, J S
2012-01-01
I give some scalar field theory calculations on a d-dimensional lune of arbitrary angle, evaluating, numerically, the effective action which is expressed as a simple quadrature, for conformal coupling. Using this, the entanglement and Renyi entropies are computed. Massive fields are also considered and a renormalisation to make the (one-loop) effective action vanish for infinite mass is suggested and used, not entirely successfully. However a universal coefficient is derived from the large mass expansion. For the round sphere, I show how to convert the quadrature form of the conformal Laplacian determinant into the more usual sum of Riemann zeta functions (and log2).
International Nuclear Information System (INIS)
Highlights: • A deceleration system for fuel transportation in a pebble bed reactor is designed. • Dynamic analysis and motion analysis of the deceleration process are conducted. • The effectiveness of the system is verified by the analysis and the experiment. • Some key design parameters are studied to achieve effective deceleration. • This research provides a guide for the design of a pebble bed reactor. - Abstract: The fuel elements cycle occurring inside and outside the core of a pebble bed reactor is carried out by pneumatic conveying. In some processes of conveyance, it is necessary to reduce the velocity of the moving fuel element in a short time to avoid damage to the fuel elements and the equipment. In this research, a deceleration system for near-diameter spheres in pipeline transportation based on the resistance of a pneumatic cushion is designed to achieve an effective and reliable deceleration process. Dynamic analysis and motion analysis of the deceleration process are conducted. The results show that when the fuel element is moving in the deceleration pipeline, the gas in the pipeline is compressed to create a pneumatic cushion which resists the movement of the fuel element. In this way, the velocity of the fuel element is decreased to below the target value. During this process, the deceleration is steady and reliable. On this basis some key design parameters are studied, such as the deceleration pipeline length, the ratio of the diameter of the fuel element to the internal diameter of the pipeline, etc. The experimental results are generally consistent with the analysis and demonstrate the considerable effectiveness of the deceleration process as well. This research provides a guide for the design of the fuel elements cycling system in a pebble bed reactor along with the optimization of its control
Bridging conflicting innovation spheres of tourism innovation
DEFF Research Database (Denmark)
Fuglsang, Lars; Sørensen, Flemming; Nordli, Anne Jørgensen
2016-01-01
competition which may inhibit networked and open innovation. Tourist destinations are examples of such localized systems. In this paper we present two extreme cases of tourist destinations in which collaborative innovation processes were established in spite of fierce disagreements between actors. We argue...... that in tourist destinations actors belong to conflicting innovation spheres but can be brought together in innovation processes when a diplomat enable compromises and when innovation spheres change from personalized to more generalized forms of activity during interaction. The findings are relevant...
G B, Abhilash
2015-01-01
This is an excellent handbook for system administrators, support professionals, or for anyone intending to give themselves a headstart in learning how to install, configure, and manage a vSphere environment. It is also a good task-oriented reference guide for consultants or infrastructure architects who design and deploy vSphere environments.
Transnational public spheres : A spatial perspective
Forough, Mohammadbagher
2015-01-01
Whereas more and more transnational challenges (such as global financial crises, climate change, terrorism, migration, and so forth) are affecting people’s lives, democratic systems and their public spheres (i.e. spaces in which citizens can express their collective concerns) are national. To give a
Casimir stress on lossy magnetodielectric spheres
Raabe, C; Welsch, D G; Raabe, Christian; Knoell, Ludwig; Welsch, Dirk-Gunnar
2003-01-01
An expression for the Casimir stress on arbitrary dispersive and lossy linear magnetodielectric matter at finite temperature, including left-handed material, is derived and applied to spherical systems. To cast the relevant part of the scattering Green tensor for a general magnetodielectric sphere in a convenient form, classical Mie scattering is reformulated.
Regular Totally Separable Sphere Packings
Reid, Samuel
2015-01-01
The topic of totally separable sphere packings is surveyed with a focus on regular constructions, uniform tilings, and contact number problems. An enumeration of all regular totally separable sphere packings in $\\mathbb{R}^2$, $\\mathbb{R}^3$, and $\\mathbb{R}^4$ which are based on convex uniform tessellations, honeycombs, and tetracombs, respectively, is presented, as well as a construction of a family of regular totally separable sphere packings in $\\mathbb{R}^d$ that is not based on a convex...
Properties of lithium orthosilicate spheres
International Nuclear Information System (INIS)
Lithium ceramic spheres have been proposed as a tritium breeding material for a fusion reactor blanket. Spheres fabricated by Schott, Mainz show a glass-like structure in light and scanning electron microscopy. A crystalline structure, however, was detected by X-ray diffraction. Part of the spheres were annealed at 10000C for 2 h to heal microcracks and to relieve internal stress. After annealing a grain structure was found by microscopy with grains of 10-30 μm grain size. When stored in air the spheres took up moisture. After some days the water content yielded 2-3 mol%. A thermo-mechanical test was conducted with the spheres by cycling between 60 and 6000C in a stainless steel capsule which simulated the pressure load during thermal cycling of the fusion reactor blanket. Examination of the spheres after 10 cycles showed that 11% of as-fabricated spheres were broken. The amount of broken spheres which had been annealed was only 2%. It is assumed that healing of microcracks and relieve of internal stress improves the behavior of the spheres. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Mazrou, Hakim [Centre de Recherche Nucleaire d' Alger (CRNA), 02 Boulevard Frantz Fanon, B.P. 399, 16000 Alger (Algeria)], E-mail: mazrou_h@comena-dz.org; Sidahmed, Tassadit; Idiri, Zahir; Lounis-Mokrani, Zohra; Bedek, Said [Centre de Recherche Nucleaire d' Alger (CRNA), 02 Boulevard Frantz Fanon, B.P. 399, 16000 Alger (Algeria); Allab, Malika [Faculte de Physique, Universite des Sciences et de la Technologie Houari-Boumediene (USTHB), Alger (Algeria)
2008-02-15
In the present work, measurements have been performed using an available multisphere neutron spectrometer based on a calibrated {sup 6}LiI scintillation detector (10mmox2mm) exposed to an {sup 241}Am-Be neutron source. Sensitive analysis has been performed to assess influence of angle and source-detector distances dependence on the detector responses. Our experimental responses were compared with the published experimental and calculated data for two {sup 241}Am-Be (ISO, PTB) neutron spectra with (4mmox4mm) {sup 6}LiI detector. A discrepancy by a factor of about two was achieved and it is chiefly due to the difference shown in active surface of both detectors.
Event Driven Langevin simulations of Hard Spheres
Scala, Antonio
2011-01-01
The blossoming of interest in colloids and nano-particles has given renewed impulse to the study of hard-body systems. In particular, hard spheres have become a real test system for theories and experiments. It is therefore necessary to study the complex dynamics of such systems in presence of a solvent; disregarding hydrodynamic interactions, the simplest model is the Langevin equation. Unfortunately, standard algorithms for the numerical integration of the Langevin equation require that int...
Modelling Priorities of Financial Provision of the Social Sphere
Directory of Open Access Journals (Sweden)
Mamonova Hanna V.
2014-01-01
Full Text Available The article studies the modern state of the social sphere and conducts modelling of priorities of financial provision of the social sphere at the state level. Social sphere should be considered as the basis of development of the national economy. The goal of this article is the study of the modern state and modelling priorities of financial provision of the social sphere at the state level. The subject of the study is modelling priority directions of financial provision of components of the social sphere. Taking into account fast changes in the social sphere of the country and regular increase of social standards, the article identifies a necessity of changing priorities of the social policy, first of all, problems of financing the social sphere and formation of priority directions on improvement of this system. The article shows that the main problems of financial provision of the social sphere are: insufficient volumes of budget funds for financing the social sphere, financing practically all items of social expenditures in a smaller volume than it is required for the existing social support of the population and absence of mechanisms of ensuring quality of social services. The article offers to use the hierarchy analysis method for identifying immediate and priority directions of financing components of the social sphere. On the basis of the built directed communication graph the article presents a binary matrix of dependence of components of the social sphere and builds a hierarchy model of these components. As a result it is seen that the highest level of hierarchy is taken by science, then healthcare and social sphere are at the same level, then education, sports and at the lowest level are culture and art. The obtained results could be used when improving financing of the social sphere. In order to ensure efficiency of functioning of the social sphere it is necessary to improve the system of financing of its components on the basis of use
Neutron monitoring using moderating sphere detectors
International Nuclear Information System (INIS)
Three moderating sphere-detector systems are examined as a neutron area monitoring instruments. The thermal neutron detectors used are the (bare-Cd covered) Li6 (Eu) crystal scintillating detector, the U235-mica track detector and the partially Cd-covered R.M. film. The response of the 12 s sphere-detector systems to Pu-Be neutrons are found to be 0.22 counts/neutrons for the Li6I-system. 8x10-4 tracks per neutron for the track-detector system and 10 mR equivalent γ-ray exposure per 2x10-neutrons per cm- for the Cd-covered R.M. film system
Sphere Recognition: Heuristics and Examples
Joswig, Michael; Lutz, Frank H.; Tsuruga, Mimi
2014-01-01
Heuristic techniques for recognizing PL spheres using the topological software polymake are presented. These methods have been successful very often despite sphere recognition being known to be hard (for dimensions $d \\ge 3$) or even undecidable (for $d \\ge 5$). A deeper look into the simplicial complexes for which the heuristics failed uncovered a trove of examples having interesting topological and combinatorial properties.
Event Driven Langevin simulations of Hard Spheres
Scala, Antonio
2011-01-01
The blossoming of interest in colloids and nano-particles has given renewed impulse to the study of hard-body systems. In particular, hard spheres have become a real test system for theories and experiments. It is therefore necessary to study the complex dynamics of such systems in presence of a solvent; disregarding hydrodynamic interactions, the simplest model is the Langevin equation. Unfortunately, standard algorithms for the numerical integration of the Langevin equation require that interactions are slowly varying during an integration timestep. This in not the case for hard-body systems, where there is no clearcut between the correlation time of the noise and the timescale of the interactions. Starting first from a splitting of the Fokker-Plank operator associated with the Langevin dynamics, and then from an approximation of the two-body Green's function, we introduce and test two new algorithms for the simulation of the Langevin dynamics of hard-spheres.
On the revolution of heavenly spheres
Copernicus, Nicolaus
1995-01-01
The Ptolemaic system of the universe, with the earth at the center, had held sway since antiquity as authoritative in philosophy, science, and church teaching. Following his observations of the heavenly bodies, Nicolaus Copernicus (1473-1543) abandoned the geocentric system for a heliocentric model, with the sun at the center. His remarkable work, On the Revolutions of Heavenly Spheres, stands as one of the greatest intellectual revolutions of all time, and profoundly influenced, among others, Galileo and Sir Isaac Newton.
Mesoscale assembly of NiO nanosheets into spheres
International Nuclear Information System (INIS)
NiO solid/hollow spheres with diameters about 100 nm have been successfully synthesized through thermal decomposition of nickel acetate in ethylene glycol at 200 deg. C. These spheres are composed of nanosheets about 3-5 nm thick. Introducing poly(vinyl pyrrolidone) (PVP) surfactant to reaction system can effectively control the products' morphology. By adjusting the quantity of PVP, we accomplish surface areas-tunable NiO assembled spheres from ∼70 to ∼200 m2 g-1. Electrochemical tests show that NiO hollow spheres deliver a large discharge capacity of 823 mA h g-1. Furthermore, these hollow spheres also display a slow capacity-fading rate. A series of contrastive experiments demonstrate that the surface area of NiO assembled spheres has a noticeable influence on their discharge capacity. - Graphical abstract: The mesoscale assembly of NiO nanosheets into spheres have been achieved by a solvothermal method. N2 adsorption/desorption isotherms show the SBET of NiO is tunable. NiO spheres show large discharge capacity and slow capacity-fading rate.
Full sphere hydrodynamic and dynamo benchmarks
Marti, P.
2014-01-26
Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that alloweasy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results. © The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society.
Dense packing of spheres around rods in supramolecular aggregates
International Nuclear Information System (INIS)
We consider a system of identically-sized spheres that coat a rod in a dense monolayer. We derive relationships that show how the number of spheres needed to cover a unit length of rod depends on the sphere and rod radii. The analysis could provide a stimulating exercise for students who have been introduced to the conventional examples of dense packing that are taught in many introductory physical science courses. The new class of liquid crystalline system which prompted this analysis may have applications in displays that can maintain stable liquid crystalline order over a broad range of temperatures. (author)
Spheres of isolation: adaptation of isolation levels to transactional workflow
Guabtni, Adnene; Charoy, François; Godart, Claude
2005-01-01
In Workflow Management Systems (WFMSs), transaction isolation is managed most of the time by the underlying database system using ANSI SQL strategies. These strategies do not take sufficiently into account process aspects. Our work consists in studying with more depth the relation between isolation strategy and process dimension as well as the real isolation needs in workflow environments. To carry out these needs, we define `spheres of isolation' inspired from `spheres of control' proposed b...
Simple manipulator for rotating spheres
International Nuclear Information System (INIS)
We describe a simple device for rapidly rotating a small sphere to any orientation for inspection of the surface. The ball is held between two small, flat surfaces and rolls as the surfaces are moved differentially parallel to one another
Data compression on the sphere
McEwen, J D; Eyers, D M; 10.1051/0004-6361/201015728
2011-01-01
Large data-sets defined on the sphere arise in many fields. In particular, recent and forthcoming observations of the anisotropies of the cosmic microwave background (CMB) made on the celestial sphere contain approximately three and fifty mega-pixels respectively. The compression of such data is therefore becoming increasingly important. We develop algorithms to compress data defined on the sphere. A Haar wavelet transform on the sphere is used as an energy compression stage to reduce the entropy of the data, followed by Huffman and run-length encoding stages. Lossless and lossy compression algorithms are developed. We evaluate compression performance on simulated CMB data, Earth topography data and environmental illumination maps used in computer graphics. The CMB data can be compressed to approximately 40% of its original size for essentially no loss to the cosmological information content of the data, and to approximately 20% if a small cosmological information loss is tolerated. For the topographic and il...
Dyson Spheres around White Dwarfs
Semiz, İbrahim
2015-01-01
A Dyson Sphere is a hypothetical structure that an advanced civilization might build around a star to intercept all of the star's light for its energy needs. One usually thinks of it as a spherical shell about one astronomical unit (AU) in radius, and surrounding a more or less Sun-like star; and might be detectable as an infrared point source. We point out that Dyson Spheres could also be built around white dwarfs. This type would avoid the need for artificial gravity technology, in contrast to the AU-scale Dyson Spheres. In fact, we show that parameters can be found to build Dyson Spheres suitable --temperature- and gravity-wise-- for human habitation. This type would be much harder to detect.
Economics and the Public Sphere
Reinert, Erik S.
2012-01-01
This paper identifies four different periods (1848, 1890s - partly also 1930s - and neoliberalism today) where the same tendencies recur: a Rise of Academic Monoculture (of esoteric knowledge), Refeudalization (tendencies towards a plutocracy), Crisis and Renewal. These sequences and their recurrence define the changing relationship between economics and the public sphere, and it is only through activities in the public sphere that any renewal will take place.
Isentropic Spheres in General Relativity
Humi, Mayer; Roumas, John
2016-01-01
Astrophysical gas clouds undergo thermodynamically irreversible processes and emit heat to their surroundings. Due the emission of this heat one can envision an idealized situation in which gas entropy remains (almost) constant. With this motivation in mind we derive in this paper interior solutions to the Einstein equations of General Relativity for spheres which consist of isentropic gas. In particular we investigate solutions in which the mass distribution inside the sphere has several she...
Semiclassical collapse of a sphere of dust
Roberto CasadioDepartment of Physics University of Bologna and Istituto Nazionale di Fisica Nucleare, Sezione di Bologna; Giovanni Venturi(Department of Physics, University of Bologna, and Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy)
2015-01-01
The semiclassical collapse of a homogeneous sphere of dust is studied. After identifying the independent dynamical variables, the system is canonically quantised and coupled equations describing matter (dust) and gravitation are obtained. The conditions for the validity of the adiabatic (Born--Oppenheimer) and semiclassical approximations are derived. Further on neglecting back--reaction effects, it is shown that in the vicinity of the horizon and inside the dust the Wightman function for a c...
McEwen, J D; Lasenby, A N
2006-01-01
We derive optimal filters on the sphere in the context of detecting compact objects embedded in a stochastic background process. The matched filter and the scale adaptive filter are derived on the sphere in the most general setting, allowing for directional template profiles and filters. The performance and relative merits of the two optimal filters are discussed. The application of optimal filter theory on the sphere to the detection of compact objects is demonstrated on simulated mock data. A naive detection strategy is adopted, with an initial aim of illustrating the application of the new optimal filters derived on the sphere. Nevertheless, this simple object detection strategy is demonstrated to perform well, even a low signal-to-noise ratio. Code written to compute optimal filters on the sphere (S2FIL), to perform fast directional filtering on the sphere (FastCSWT) and to construct the simulated mock data (COMB) are all made publicly available. (Accompanying code will be made publicly available on publi...
Energy Technology Data Exchange (ETDEWEB)
Mendez Villafane, R.; Sansoloni florit, F.; Lagares gonzalez, J. L.; Llop Roig, J.; Guerrero Araque, J. E.; Muniz Gutierrez, J. L.; Perez Morales, J. M.
2011-07-01
To measure the neutron spectrum has been used spectrometry system based on Bonner spheres with Au flakes as thermal neutron detector at its center while the results are still pending and will be analyzing another job.
Superposition of nonlinear coherent states on a sphere
Directory of Open Access Journals (Sweden)
T Hosseinzadeh
2013-09-01
Full Text Available In this paper, by using the nonlinear coherent states on a sphere, we introduce superposition of the aforementioned coherent states. Then, we consider quantum optical properties of these new superposed states and compare these properties with the corresponding properties of the nonlinear coherent states on the sphere. Specifically, we investigate their characteristics function, photon-number distribution, Mandel parameter, quadrature squeezing, anti-bunching effect and Wigner function, and obtain the curvature effect on the properties of the superposed states. Finally, by using the trapped atom system, we introduce a theoretical scheme to generate superposition of the coherent states on the sphere.
International Nuclear Information System (INIS)
Highlights: • This paper is to study the heat transfer coefficient on spheres in a 3-D array. • Transient liquid crystal technique is used to measure temperature distributions. • A 3-D transient CFD model with different turbulence models is also developed. • v2‾-f Turbulence model is shown to be more suitable for simulating pebble arrangement. • Beneficial effect of Rein on heat transfer for pebbles is shown in test and model. - Abstract: With advantage of higher heat transfer area per unit mass, a pebble bed is usually adopted as an essential component for design of energy production systems and thermal energy storage (TES) systems. The majority of this paper investigates the sphere blockage ratio (β) on the thermal–hydraulic characteristics of a pebble with 14 spheres using a three-dimensional (3-D) computational fluid dynamics (CFD) model with the v2‾-f turbulence model. In a previous work, this model has been validated against measured distributions of the heat transfer coefficient on the selected spheres. The measured data are obtained using the transient liquid–crystal technique. According to the simulation results, the thermal–hydraulic characteristics in the sphere array can be captured reasonably with the present CFD model, including flow stagnation, flow separation, vortex formation and anisotropic characteristics of the heat transfer on the sphere surface. Comparisons of the simulation results for the sphere arrays with different blockage ratios show that the flow and turbulent intensity distributions are similar in most regions of a sphere array, except the portions between the pebbles. The heat transfer coefficient for the upstream spheres increases slightly as the blockage ratio decreases. However, a lower heat transfer coefficient is predicted for the downstream sphere if β is less than 0.75. In addition, the heat transfer coefficient around the front of a downstream sphere would not be influenced by the upstream spheres until
Extrinsic Calibration of Camera Networks Using a Sphere
Directory of Open Access Journals (Sweden)
Junzhi Guan
2015-08-01
Full Text Available In this paper, we propose a novel extrinsic calibration method for camera networks using a sphere as the calibration object. First of all, we propose an easy and accurate method to estimate the 3D positions of the sphere center w.r.t. the local camera coordinate system. Then, we propose to use orthogonal procrustes analysis to pairwise estimate the initial camera relative extrinsic parameters based on the aforementioned estimation of 3D positions. Finally, an optimization routine is applied to jointly refine the extrinsic parameters for all cameras. Compared to existing sphere-based 3D position estimators which need to trace and analyse the outline of the sphere projection in the image, the proposed method requires only very simple image processing: estimating the area and the center of mass of the sphere projection. Our results demonstrate that we can get a more accurate estimate of the extrinsic parameters compared to other sphere-based methods. While existing state-of-the-art calibration methods use point like features and epipolar geometry, the proposed method uses the sphere-based 3D position estimate. This results in simpler computations and a more flexible and accurate calibration method. Experimental results show that the proposed approach is accurate, robust, flexible and easy to use.
Transport properties of highly asymmetric hard-sphere mixtures.
Bannerman, Marcus N; Lue, Leo
2009-04-28
The static and dynamic properties of binary mixtures of hard spheres with a diameter ratio of sigma(B)/sigma(A)=0.1 and a mass ratio of m(B)/m(A)=0.001 are investigated using event driven molecular dynamics. The contact values of the pair correlation functions are found to compare favorably with recently proposed theoretical expressions. The transport coefficients of the mixture, determined from simulation, are compared to the predictions of the revised Enskog theory using both a third-order Sonine expansion and direct simulation Monte Carlo. Overall, the Enskog theory provides a fairly good description of the simulation data, with the exception of systems at the smallest mole fraction of larger spheres (x(A)=0.01) examined. A "fines effect" was observed at higher packing fractions, where adding smaller spheres to a system of large spheres decreases the viscosity of the mixture; this effect is not captured by the Enskog theory. PMID:19405594
Non-equilibrium Casimir forces: Spheres and sphere-plate
Krüger, Matthias; Bimonte, Giuseppe; Kardar, Mehran
2011-01-01
We discuss non-equilibrium extensions of the Casimir force (due to electromagnetic fluctuations), where the objects as well as the environment are held at different temperatures. While the formalism we develop is quite general, we focus on a sphere in front of a plate, as well as two spheres, when the radius is small compared to separation and thermal wavelengths. In this limit the forces can be expressed analytically in terms of the lowest order multipoles, and corroborated with results obtained by diluting parallel plates of vanishing thickness. Non-equilibrium forces are generally stronger than their equilibrium counterpart, and may oscillate with separation (at a scale set by material resonances). For both geometries we obtain stable points of zero net force, while two spheres may have equal forces in magnitude and direction resulting in a self-propelling state.
Experiments on Sphere Cylinder Geometry Dependence in the Electromagnetic Casimir Effect
Mukhopadhyay, Shomeek; Noruzifar, Ehsan; Wagner, Jeffrey; Zandi, Roya; Mohideen, Umar
2013-03-01
We report on ongoing experimental investigations on the geometry dependence of the electromagnetic Casimir force in the sphere-cylinder configuration. A gold coated hollow glass sphere which forms one surface is attached to a Silicon AFM cantilever. The cylinder, which is constructed from tapered optical fiber is also gold coated. The resonance frequency shift of the cantilever is measured as a function of the sphere-cylinder surface separation. The sphere-cylinder electrostatic force is used for alignment of the sphere and the cylinder and also for calibrating the system. The results are compared to numerical simulations in the framework of the Proximity Force Approximation (PFA).
Extrinsic Calibration of Camera Networks Using a Sphere
Junzhi Guan; Francis Deboeverie; Maarten Slembrouck; Dirk Van Haerenborgh; Dimitri van Cauwelaert; Peter Veelaert; Wilfried Philips
2015-01-01
In this paper, we propose a novel extrinsic calibration method for camera networks using a sphere as the calibration object. First of all, we propose an easy and accurate method to estimate the 3D positions of the sphere center w.r.t. the local camera coordinate system. Then, we propose to use orthogonal procrustes analysis to pairwise estimate the initial camera relative extrinsic parameters based on the aforementioned estimation of 3D positions. Finally, an optimization routine is applied t...
Trappenburg, M.J.
1997-01-01
Part of the debate on cost containment in health care systems can be characterized as applied political philosophy. Three philosophical directions can be traced. (1) Norman Daniels and Ronald Dworkin advocate a health care distributional system based on a Rawls' A Theory of Justice. (2) Tristram Eng
Troubleshooting vSphere storage
Preston, Mike
2013-01-01
This is a step-by-step example-oriented tutorial aimed at showing the reader how to troubleshoot a variety of vSphere storage problems, and providing the reader with solutions that can be completed with minimal effort and time in order to limit damage to work.If you are a vSphere administrator, this is the book for you. This book will provide you with 'need to know' information about the various storage transports that ESXi utilizes, the tools and techniques we can use to identify problems, and the fundamental knowledge and steps to take to troubleshoot storage-related issues. Prior knowledge
Global Calibration of Multiple Cameras Based on Sphere Targets
Directory of Open Access Journals (Sweden)
Junhua Sun
2016-01-01
Full Text Available Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three, while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view.
Global Calibration of Multiple Cameras Based on Sphere Targets.
Sun, Junhua; He, Huabin; Zeng, Debing
2016-01-01
Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three), while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view. PMID:26761007
Global Calibration of Multiple Cameras Based on Sphere Targets
Sun, Junhua; He, Huabin; Zeng, Debing
2016-01-01
Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three), while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view. PMID:26761007
Trappenburg, M.J.
1997-01-01
Part of the debate on cost containment in health care systems can be characterized as applied political philosophy. Three philosophical directions can be traced. (1) Norman Daniels and Ronald Dworkin advocate a health care distributional system based on a Rawls' A Theory of Justice. (2) Tristram Engelhardt defends a market based approach, reminiscent of Nozick's Anarchy, State, and Utopia. (3) Daniel Callahan advocates a communitarian strategy which resembles the work of Christopher Lasch and...
International Nuclear Information System (INIS)
Physics Department, Nuclear Research Center Negevu Some recent developments in classical density functional theory are reviewed briefly, concerning mainly dimensional cross-over, close packed configurations, symmetry breaking, and the freezing transition. The so called Fundamental Measure Functionals are based on the fundamental geometric measures of the individuals hard particles. They were originally derived by seeking an interpolation between the ideal gas and idea - liquid limits. Their general behavior depends crucially on their singularity at local packing fraction η(r) = ∫ dr'ρ(r')θ(R-(|r-r'|) equal one, η(r)=1 , where θ(x) is the Heaviside step function. Several very recent analyses revealed that the fundamental measure functionals, due to their singularity and their unique structure, have many of the basic physical properties expected from the exact (but unknowns) free-energy functional when applied to densely packed hard-spheres. These properties are important also for applications to continuous (''soft'') interactions
Laflamme-Sanders, Alexandra; Zhu, Mu
2008-11-01
LAGO is an efficient kernel algorithm designed specifically for the rare target detection problem. However, unlike other kernel algorithms, LAGO cannot be easily used with many domain-specific kernels. We solve this problem by first providing a unified framework for LAGO and clarifying its basic principle, and then applying that principle on the unit sphere instead of in the Euclidean space. PMID:18775643
Boulatov, D. V.
1993-01-01
We give the formula for a simple Wilson loop on a sphere which is valid for an arbitrary QCD$_2$ saddle-point $\\rho(x)$: \\mbox{$W(A_1,A_2)=\\oint \\frac{dx}{2\\pi i} \\exp(\\int dy \\frac{\\rho(y)}{y-x}+A_2x)$}. The strong-coupling-phase solution is investigated.
Schleimer, Saul
2004-01-01
We prove that the three-sphere recognition problem lies in the complexity class NP. Our work relies on Thompson's original proof that the problem is decidable [Math. Res. Let., 1994], Casson's version of her algorithm, and recent results of Agol, Hass, and Thurston [ArXiv, 2002].
Energy Technology Data Exchange (ETDEWEB)
Anon.
2009-11-15
In the ''Bonner Bogen'' construction project, the focus was on resources-saving technology and maximum user comfort, resulting in an integrated planning and implementation process. According to the investor, BonnVisio, the technical infrastructure and energy center of the building - based on groundwater geothermal energy with aquifer storage - is unique in Germany and Europe in terms of size, mode of operation, and efficiency. (orig.)
Ellipsoids beat Spheres: Experiments with Candies, Colloids and Crystals
Chaikin, Paul
2006-04-01
How many gumballs fit in the glass sphere of a gumball machine? Scientists have been puzzling over problems like this since the Ancient Greeks. Yet it was only recently proven that the standard way of stacking oranges at a grocery store--with one orange on top of each set of three below--is the densist packing for spheres, with a packing fraction φ˜ 0.74. Random (amorphous) packings of spheres have a lower density, with φ ˜0.64. The density of crystalline and random packings of atoms is intimately related to the melting transition in matter. We have studied the crystal-liquid transition in spherical colloidal systems on earth and in microgravity. The simplest objects to study after spheres are squashed spheres -- ellipsoids. Surprisingly we find that ellipsoids can randomly pack more densely than spheres, up to φ˜0.68 - 0.71 for a shape close to that of M&M's^ Candies, and even approach φ˜0.75 for general ellipsoids. The higher density relates directly to the higher number of neighbors needed to prevent the more asymetric ellipsoid from rotating. We have also found the ellipsoids can be packed in a crystalline array to a density, φ˜.7707 which exceeds the highest previous packing. Our findings provide insights into granular materials, rigidity, crystals and glasses, and they may lead to higher quality ceramic materials.
Fermions, Skyrmions and the 3-sphere
Energy Technology Data Exchange (ETDEWEB)
Goatham, Stephen W; Krusch, Steffen [School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF (United Kingdom)], E-mail: swg3@kent.ac.uk, E-mail: S.Krusch@kent.ac.uk
2010-01-22
This paper investigates a background charge one Skyrme field chirally coupled to light fermions on the 3-sphere. The Dirac equation for the system commutes with a generalized angular momentum or grand spin. It can be solved explicitly for a Skyrme configuration given by the hedgehog form. The energy spectrum and degeneracies are derived for all values of the grand spin. Solutions for non-zero grand spin are each characterized by a set of four polynomials. The paper also discusses the energy of the Dirac sea using zeta-function regularization.
Fermions, Skyrmions and the 3-Sphere
Goatham, Stephen W
2009-01-01
This paper investigates a background charge one Skyrme field chirally coupled to light fermions on the 3-sphere. The Dirac equation for the system commutes with a generalised angular momentum or grand spin. It can be solved explicitly for a Skyrme configuration given by the hedgehog form. The energy spectrum and degeneracies are derived for all values of the grand spin. Solutions for non-zero grand spin are each characterised by a set of four polynomials. The paper also discusses the energy of the Dirac sea using zeta function regularization.
Eddy currents in a conducting sphere
Bergman, John; Hestenes, David
1986-01-01
This report analyzes the eddy current induced in a solid conducting sphere by a sinusoidal current in a circular loop. Analytical expressions for the eddy currents are derived as a power series in the vectorial displacement of the center of the sphere from the axis of the loop. These are used for first order calculations of the power dissipated in the sphere and the force and torque exerted on the sphere by the electromagnetic field of the loop.
Minimality of Symplectic Fiber Sums along Spheres
Dorfmeister, Josef G
2010-01-01
In this note we complete the discussion of minimality of symplectic fiber sums. We find, that for fiber sums along spheres the minimality of the sum is determined by the cases discussed by M. Usher and one additional case: If the sum is the result of the rational blow-down of a symplectic -4-sphere in X, then it is non-minimal if X contains a certain configuration of exceptional spheres in relation to this -4-sphere.
Wake structures of two side by side spheres in a tripped boundary layer flow
Directory of Open Access Journals (Sweden)
Canli Eyüb
2014-03-01
Full Text Available Two independent spheres were placed in a side by side arrangement and flow structure in the wake region of the spheres was investigated with a Particle Image Velocimetry (PIV system when the spheres were in a boundary layer over a flat plate as a special case. Reynolds number was 5000 based on the sphere diameter which was 42.5 mm. Boundary layer was tripped 8mm away from the leading edge of the flat plate with a 5 mm trip wire. The thickness of the hydrodynamically developed boundary layer was determined as 63mm which was larger than the sphere diameter of D=42.5mm. Wake region of the spheres was examined from point of flow physics for the different sphere locations in the ranges of 0≤G/D ≤1.5 and 0≤S/D ≤1.5 where G and S were the distance between the spheres and the distance between the bottom point of the spheres and the flat plate surface, respectively. Depending on the different sphere locations, instantaneous and time averaged vorticity data, scalar values of time-averaged velocity components and their root mean square (rms values and time averaged vorticity data are presented in the study for the evaluation of wake region of the spheres. It is demonstrated that the gap between the two spheres and the interaction between the gap and the boundary layer greatly affects flow pattern, especially when spheres are located near to the flat plate surface, i.e. S/D=0.1 for 0≤G/D ≤1.5. Different distances between the spheres resulted in various flow patterns as the spheres were approached to the flat plate. The distance S/D=0.1 for all gap values has the strongest effect on the wake structures. Beyond G/D=1.0, the sphere wakes tend to be similar to single sphere case. The instantaneous vorticity fields of the side by side arrangements comprised wavy structures in higher level comparing to an individual sphere case. The gap flow intensifies the occurrence of small scale eddies in the wake region. The submersion rate of the spheres
Coating a Sphere With Evaporated Metal
Strayer, D. M.; Jackson, H. W.; Gatewood, J. R.
1986-01-01
In vacuum coating apparatus, metal evaporated onto sphere from small source located some distance away. Sphere held in path of metal vapor while rotated about axis that rocks back and forth. One tilting motion particularly easy to produce is sinusoidal rocking with frequency much lower than rotational frequency. Apparatus developed for coating single-crystal sapphire spheres with niobium.
The Public Sphere and the Conflict-Structure in Spent Nuclear Fuel Management
International Nuclear Information System (INIS)
Social Acceptance is important to decide policy of spent nuclear fuel management. The idea of a public sphere as a receptacle of dynamic process is the core in this discussion. The purpose of this study is to examine the concept, participants, the conflict-structure and agreeable conditions of a public sphere. A public sphere means in this paper, mechanism and systems that various stakeholders' and public's participation with spontaneous will can affect decision-making process. For good designing and implementing a public sphere, it is necessary to analysis and cope with political, foreign and security, economic, sociocultural environments, the law and systems around spent nuclear fuel management.
Spheres of Justice within Schools
DEFF Research Database (Denmark)
Sabbagh, Clara; Resh, Nura; Mor, Michal;
2006-01-01
This article argues that there are distinct spheres of justice within education and examines a range of justice norms and distribution rules that characterize the daily life of schools and classrooms. Moving from the macro to micro level, we identify the following five areas: the right to education......, the allocation of (or selection into) learning places, teaching–learning practices, teachers’ treatment of students, and student evaluations of grade distribution. We discuss the literature on the beliefs by students and teachers about the just distribution of educational goods in these five domains......, and on the practices used in the actual allocation of these goods. In line with normative ‘spheres of justice’ arguments in social theory, we conclude that the ideals of social justice within schools vary strongly according to the particular resource to be distributed. Moreover, these ideals often do...
Gerlach, Henryk
2010-01-01
What is the longest rope on the unit sphere? Intuition tells us that the answer to this packing problem depends on the rope's thickness. For a countably infinite number of prescribed thickness values we construct and classify all solution curves. The simplest ones are similar to the seamlines of a tennis ball, others exhibit a striking resemblance to Turing patterns in chemistry, or to ordered phases of long elastic rods stuffed into spherical shells.
Lowe, Scott
2011-01-01
A new and updated edition of bestselling Mastering VMware vSphere 4 Written by leading VMware expert, this book covers all the features and capabilities of VMware vSphere. You'll learn how to install, configure, operate, manage, and secure the latest release.Covers all the new features and capabilities of the much-anticipated new release of VMware vSphereDiscusses the planning, installation, operation, and management for the latest releaseReviews migration to the latest vSphere softwareOffers hands-on instruction and clear explanations with real-world examples Mastering VMware vSphere is the
Fusion breeder sphere - PAC blanket design
International Nuclear Information System (INIS)
There is a considerable world-wide effort directed toward the production of materials for fusion reactors. Many ceramic fabrication groups are working on making lithium ceramics in a variety of forms, to be incorporated into the tritium breeding blanket which will surround the fusion reactor. Current blanket designs include ceramic in either monolithic or packed sphere bed (sphere-pac) forms. The major thrust at AECL is the production of lithium aluminate spheres to be incorporated in a sphere-pac bed. Contemporary studies on breeder blanket design offer little insight into the requirements on the sizes of the spheres. This study examined the parameters which determine the properties of pressure drop and coolant requirements. It was determined that an optimised sphere-pac bed would be composed of two diameters of spheres: 75 weight % at 3 mm and 25 weight % at 0.3 mm
Generating perfect fluid spheres in general relativity
International Nuclear Information System (INIS)
Ever since Karl Schwarzschild's 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star--a static spherically symmetric blob of fluid with position-independent density--the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres
Motion of spheres along a fluid-gas interface.
Cichocki, Bogdan; Ekiel-Jezewska, Maria L; Nägele, Gerhard; Wajnryb, Eligiusz
2004-08-01
A system of many spherical particles, suspended in a quiescent fluid and touching a planar free fluid-gas interface, is considered. Stick fluid boundary conditions at the sphere surfaces are assumed. The free surface boundary conditions are taken into account with the use of the method of images. For such a quasi-two-dimensional system, the one-sphere resistance operator is calculated numerically. Moreover, the corresponding friction and mobility tensors are constructed from irreducible multipole expansion. Finally, the long-distance terms of the two-sphere mobility tensor are evaluated explicitly up to the order of 1/r3, where r is the interparticle distance. Experiments which have motivated this work are outlined. PMID:15260785
Cavitation and radicals drive the sonochemical synthesis of functional polymer spheres
Energy Technology Data Exchange (ETDEWEB)
Narayanan, Badri; Deshmukh, Sanket A.; Shreshta, Lok Kumar; Ariga, Katsuhiko; Pol, Vilas G.; Sankaranarayanan, Subramanian K.R.S.
2016-07-25
Sonochemical synthesis can lead to a dramatic increase in the kinetics of formation of polymer spheres (templates for carbon spheres) compared to the modified St€ober silica method applied to produce analogous polymer spheres. Reactive molecular dynamics simulations of the sonochemical process indicate a significantly enhanced rate of polymer sphere formation starting from resorcinol and formaldehyde precursors. The associated chemical reaction kinetics enhancement due to sonication is postulated to arise from the localized lowering of atomic densities, localized heating, and generation of radicals due to cavitation collapse in aqueous systems. This dramatic increase in reaction rates translates into enhanced nucleation and growth of the polymer spheres. The results are of broad significance to understanding mechanisms of sonication induced synthesis as well as technologies utilizing polymers spheres.
Directory of Open Access Journals (Sweden)
M.I. Ovcharenko
2013-09-01
Full Text Available The aim of the article. The article presents the methodological approach to optimization of the choice of management actions in the sphere of corporate culture development from position of its economic efficiency. The author suggests four levels of corporate culture high, heightened, medium and low in accordance with two management instruments of evolutionary and revolutionary character.The results of the analysis. The author found that the cost of managing the development of corporate culture are derived from differentiation and development of personnel incentives. The amount and structure of the cost of management measure implementation depends on selected instrument of corporate culture.Finding of optimal value in terms of tangible and intangible incentives that provides a balance of economic interests of employees and managers is very important in this case.To assess the economic efficiency of corporate culture we offer an original model that consists of the following phases:assessment and determination of the current state of corporate culture at the enterprise;identifying of key directions of corporate culture development;planning of actual management costs dynamics;formation of mechanism of economic benefits calculating;the implementation of expert evaluating the impact of interventions using selected indicators;final calculation of economic efficiency of corporate culture improvement using two methods the diagnostic and control and diagnostic search.The author indicated that at the present stage of domestic industries` development it is important to use diagnostic search in efficiency of corporate culture assessing.We believe that for the purpose of evaluating the effectiveness , it is appropriate to limit the application of methods aimed at determining the degree of deviation of actual results from potentially possible in the market, with appropriate adaptation to the specific conditions of carrying out in domestic industry
The rheology of adhesive hard sphere dispersions
Woutersen, A. T. J. M.; de Kruif, C. G.
1991-04-01
The influence of an attractive interparticle potential on the rheology of a sterically stabilized silica dispersion was investigated. Using a marginal solvent, there was an effective attraction between the particles which depended on the temperature. Three experiments in which different properties of the dispersion were probed showed that a square well model can be used to describe the temperature dependence of the pair potential. The turbidity of a dilute dispersion was measured as a function of the volume fraction and the temperature. Using dynamic light scattering techniques, the effect of the strength of the interparticle attraction on the diffusion coefficient was investigated. Furthermore, the steady shear viscosity was measured as a function of the volume fraction and the temperature. A microscopic theory for the low shear viscosity of a semidilute dispersion of adhesive hard spheres was successfully used to determine the interaction parameters. Viscosity measurement on dense suspensions showed that while the system is still in the one-phase state, temporal aggregates are formed by the interparticle forces which are disrupted by both shear and Brownian motion of the particles. The shear thinning behavior of a concentrated dispersion of adhesive hard spheres scales in a dimensionless shear stress. This group is the ratio of the forces, arising from the shear and the interparticle potential.
Characterizing HR3549B using SPHERE
Mesa, D; D'Orazi, V; Ginski, C; Desidera, S; Bonnefoy, M; Gratton, R; Langlois, M; Marzari, F; Messina, S; Antichi, J; Biller, B; Bonavita, M; Cascone, E; Chauvin, G; Claudi, R U; Curtis, I; Fantinel, D; Feldt, M; Garufi, A; Galicher, R; Henning, Th; Incorvaia, S; Lagrange, A M; Millward, M; Perrot, C; Salasnich, B; Scuderi, S; Sissa, E; Wahhaj, Z; Zurlo, A
2016-01-01
Aims. In this work, we characterize the low mass companion of the A0 field star HR3549. Methods. We observed HR3549AB in imaging mode with the the NIR branch (IFS and IRDIS) of SPHERE@VLT, with IFS in YJ mode and IRDIS in the H band. We also acquired a medium resolution spectrum with the IRDIS long slit spectroscopy mode. The data were reduced using the dedicated SPHERE GTO pipeline, purposely designed for this instrument. We employed algorithms such as PCA and TLOCI to reduce the speckle noise. Results. The companion was clearly visible both with IRDIS and IFS.We obtained photometry in four different bands as well as the astrometric position for the companion. Based on our astrometry, we confirm that it is a bound object and put constraints on its orbit. Although several uncertainties are still present, we estimate an age of ~100-150 Myr for this system, yielding a most probable mass for the companion of 40-50MJup and T_eff ~300-2400 K. Comparing with template spectra points to a spectral type between M9 and...
Hydrothermal Syntheses of Colloidal Carbon Spheres from Cyclodextrins
Energy Technology Data Exchange (ETDEWEB)
Shin, Yongsoon; Wang, Li Q.; Bae, In-Tae; Arey, Bruce W.; Exarhos, Gregory J.
2008-09-18
Colloidal carbon spheres have been prepared from aqueous alpha-, beta-, and gamma-cyclodextrin (CD) solutions in closed systems under hydrothermal conditions at 160 oC. Both liquid and solid-state 13C NMR spectra taken for samples at different reaction times have been used to monitor the dehydration and carbonization pathways. CD slowly hydrolyzes to glucose and forms 5-hydroxymethyl furfural (HMF) followed by carbonization into colloidal carbon spheres. The isolated carbon spheres are 70-150 nm in diameter, exhibit a core-shell structure, and are comprised of a condensed core (C=C) peppered with resident chemical functionalities including carboxylate and hydroxyl groups. Evidence from 13C solid-state NMR and FT-IR spectra reveal that the evolving carbon spheres show a gradual increase in the amount of aromatic carbon as a function of reaction time and that the carbon spheres generated from gamma-CD contain significantly higher aromatic carbon than those derived from alpha- and beta-CD.
Experimental determination of the dynamics of an acoustically levitated sphere
Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.
2014-11-01
Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.
Experimental determination of the dynamics of an acoustically levitated sphere
Energy Technology Data Exchange (ETDEWEB)
Pérez, Nicolás, E-mail: nico@fisica.edu.uy [Centro Universitario de Paysandú, Universidad de la República, Paysandú (Uruguay); Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Canetti, Rafael [Facultad de Ingeniería, Universidad de la República, Montevideo (Uruguay); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)
2014-11-14
Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.
Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres.
Yu, Jiaguo; Yu, Xiaoxiao
2008-07-01
ZnO hollow spheres with porous crystalline shells were one-pot fabricated by hydrothermal treatment of glucose/ZnCl2 mixtures at 180 degrees C for 24 h, and then calcined at different temperatures for 4 h. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption isotherms. The photocatalytic activity of the as-prepared samples was evaluated by photocatalytic decolorization of Rhodamine B aqueous solution at ambient temperature. The results indicated that the average crystallite size, shell thickness, specific surface areas, pore structures, and photocatalytic activity of ZnO hollow spheres could be controlled by varying the molar ratio of glucose to zinc ions (R). With increasing R, the photocatalytic activity increases and reaches a maximum value at R = 15, which can be attributed to the combined effects of several factors such as specific surface area, the porous structure and the crystallite size. Further results show that hollow spheres can be more readily separated from the slurry system by filtration or sedimentation after photocatalytic reaction and reused than conventional powder photocatalyst. After many recycles for the photodegradation of RhB, the catalyst does not exhibit any great loss in activity, confirming ZnO hollow spheres is stability and not photocorroded. The prepared ZnO hollow spheres are also of great interest in solar cell, catalysis, separation technology, biomedical engineering, and nanotechnology. PMID:18678024
Guthrie, Forbes
2013-01-01
Achieve the performance, scalability, and ROI your business needs What can you do at the start of a virtualization deployment to make things run more smoothly? If you plan, deploy, maintain, and optimize vSphere solutions in your company, this unique book provides keen insight and solutions. From hardware selection, network layout, and security considerations to storage and hypervisors, this book explains the design decisions you'll face and how to make the right choices. Written by two virtualization experts and packed with real-world strategies and examples, VMware v
Building the Platform of Digital Earth with Sphere Split Bricks
Directory of Open Access Journals (Sweden)
WANG Jinxin
2015-06-01
Full Text Available Discrete global grids, a modeling framework for big geo-spatial data, is always used to build the Digital Earth platform. Based on the sphere split bricks (Earth system spatial grids, it can not only build the true three-dimensional digital Earth model, but also can achieve integration, fusion, expression and application of the spatial data which locates on, under or above the Earth subsurface. The theoretical system of spheroid geodesic QTM octree grid is discussed, including the partition principle, analysis of grid geometry features and coding/ decoding method etc, and a prototype system of true-3D digital Earth platform with the sphere split bricks is developed. The functions of the system mainly include the arbitrary sphere segmentation and the visualization of physical models of underground, surface and aerial entities. Results show that the sphere geodesic QTM octree grid has many application advantages, such as simple subdivision rules, the grid system neat, clear geometric features, strong applicability etc. In particular, it can be extended to the ellipsoid, so it can be used for organization, management, integration and application of the global spatial big data.
Smith-Purcell radiation from a chain of spheres
International Nuclear Information System (INIS)
Smith-Purcell and diffraction radiation were investigated. These types of radiation appear when a charged particle moves close to a conducting target. Spectral and angular distribution of diffraction radiation from the non-periodic chain of spheres is obtained analytically; local field effects are discussed. Analytical expression for the distribution of Smith-Purcell radiation from the periodic chain of spheres is obtained as well. For the first time it has been shown, that Smith-Purcell radiation for such a system is distributed over the cone. The results are investigated for the particles of different sizes, dielectric and metal, and for both ultrarelativistic and nonrelativistic cases.
Natural convection between concentric and vertically eccentric spheres
Energy Technology Data Exchange (ETDEWEB)
Tazi-charki, M.N.; Daoudi, S. [Faculte des sciences Dhar Mehraz, Atlas (Morocco); Daguenet, M. [Perpignan Univ., 66 (France)
1995-12-31
Laminar natural convection flow between concentric and two vertically eccentric spheres was studied numerically. The inner sphere was heated by the application of a constant heat flux, and the outer was isothermally cooled. The bispherical system of coordinates was used so that the governing equations could be presented in a suitable form for the numerical treatment which was based on the finite volume method. The effect of the Rayleigh number and eccentricity were examined. Results presented streamlines and isotherm contours. Higher rates of heat transfer were observed for greater eccentricities and greater Rayleigh numbers. 4 figs., 7 refs.
Management of social sphere as a factor of positive image of the state in the modern world
Directory of Open Access Journals (Sweden)
Pakulina Alevtyna
2016-04-01
Full Text Available The object of study is the process of state management of social sphere as a factor of positive image of Ukraine in the modern world. The article conducts a complex analysis of state management of social sphere as a factor of positive image of Ukraine. The authors have defined the modern tendencies, features of management of social sphere and formation of the state positive image. The dominant, which characterize the positive image of Ukraine in the world as a basis of priorities of systemic reform of the social sphere was scientifically proved. The authors of the article define the priorities of state management of social sphere of Kharkov region.
International Nuclear Information System (INIS)
Compaction characteristics of granular materials subjected to axial loading are investigated for both sphere and non-sphere granular assemblies. The computational study is based on the discrete element method (DEM). The compressive stress-strain relation obtained from three-dimensional DEM simulations is compared with that of an idealized two-dimensional plane-strain compression test and physical experiments using a bronze sphere assembly. We observed good agreement between the experimental and three-dimensional DEM simulation results, while two-dimensional simulations significantly underestimate the stiffness of particulate bed, particularly at large strains. This demonstrates that two-dimensional analysis is generally inadequate to model the compaction characteristics of granular systems. We performed a detailed analysis on the force-transmission characteristics of granular materials at microscopic level and present a connection between the directional orientation of force-networks and the invariants of the macroscopic stress tensor: the non-sphere systems were able to build up a strongly anisotropic network of heavily loaded contacts. Several complex phenomena, both geometric and kinematic, that are operative in sphere and non-sphere assemblies due to inter-particle interactions during compression are presented here. It is often assumed that the ratio of invariants of the stress tensor is uniform and constant in uni-axial compression tests. Our results show that the ratio of invariants of the stress tensor is non-uniform and non-constant even when the granular assemblies are subjected to the so-called uni-axial compressive loading, which is in agreement with other recent studies (e.g. Gu et al 2001 Int. J. Plasticity 17 147) performed using the finite element method. The non-homogeneous characteristics that are reported at the particulate scale need to be accounted in considering possible continuum models for the granular systems
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-07-01
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.
Second-sphere complexes in analytical chemistry
International Nuclear Information System (INIS)
Literary data on the application in the modern analytical chemistry of outer-sphere complexes, forming from coordination-saturated inner-sphere complexes and ligands, cation particles or organic solvent molecules in the second sphere are summarised. It is shown, that the outer-sphere complexes peculiarities, involving in their relatively low stability and activation energy for the processes in the second sphere, together with their variety allows one to effectively use these complexes for separation, extraction and, especially, determination of inorganic and organic substances. Outer-sphere complexes are used to determine some transition metals, lanthanides, berillium, boron and some other elements. The improvement of sensitivity, selectivity and expressiveness of analytical determination, achieved here, is discussed
Sphere-Pac Evaluation for Transmutation
Energy Technology Data Exchange (ETDEWEB)
Icenhour, A.S.
2005-05-19
The U.S. Department of Energy Advanced Fuel Cycle Initiative (AFCI) is sponsoring a project at Oak Ridge National Laboratory with the objective of conducting the research and development necessary to evaluate the use of sphere-pac transmutation fuel. Sphere-pac fuels were studied extensively in the 1960s and 1970s. More recently, this fuel form is being studied internationally as a potential plutonium-burning fuel. For transmutation fuel, sphere-pac fuels have potential advantages over traditional pellet-type fuels. This report provides a review of development efforts related to the preparation of sphere-pac fuels and their irradiation tests. Based on the results of these tests, comparisons with pellet-type fuels are summarized, the advantages and disadvantages of using sphere-pac fuels are highlighted, and sphere-pac options for the AFCI are recommended. The Oak Ridge National Laboratory development activities are also outlined.
Greenhouse Effect: Temperature of a Metal Sphere Surrounded by a Glass Shell and Heated by Sunlight
Nguyen, Phuc H.; Matzner, Richard A.
2012-01-01
We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the "z"-axis. This development is a generalization of the simple treatment of the…
Human resources of social sphere in the context of sustainable economic development
Мосійчук, Ірина Вікторівна
2014-01-01
The paper studies the nature and peculiarities of human resources of social sphere under conditions of sustainable development; role of human resources in the economic system has been disclosed. In the context of sustainable development the problems of human resource in social sector have been disclosed; indicators of the present-day provision of personnel in social sphere have been analyzed.
Note: Sound velocity of a soft sphere model near the fluid-solid phase transition.
Khrapak, Sergey A
2016-03-28
The quasilocalized charge approximation is applied to estimate the sound velocity of simple soft sphere fluid with the repulsive inverse-power-law interaction. The obtained results are discussed in the context of the sound velocity of the hard-sphere system and of liquid metals at the melting temperature. PMID:27036483
Synthesis and characterization of hydrocarbon sphere
International Nuclear Information System (INIS)
With glucose as starting material, hydrocarbon sphere which was rich in oxygen containing functional groups was synthesized by hydrothermal carbonization process, and characterized by SEM and FTIR techniques. The results show that the size and dispersion of carbon spheres depend on many factors, including the concentration of glucose, the reaction temperature and the adulterated organic monomer. The obtained hydrocarbon spheres contain rich functional groups which can greatly improve the hydrophilicity and chemical reactivity. (authors)
Counter public spheres and global modernity
Fenton, Natalie; Downey, John
2015-01-01
This article explores the concept of counter public spheres and their relationship to the dominant public sphere. We argue that counter public spheres are increasingly relevant due to particular social and political configurations that mark out a distinct stage of modernity. We suggest that this stage is characterised in particular by the intensification of globalisation, the rise of neo-liberalism and a decline of trust and social democracy resulting in instability in the dominant public sph...
Counter public spheres and global modernity:
Downey, John; Fenton, Natalie
2003-01-01
This article explores the concept of counter public spheres and their relationship to the dominant public sphere. We argue that counter public spheres are increasingly relevant due to particular social and political configurations that mark out a distinct stage of modernity. We suggest that this stage is characterised in particular by the intensification of globalisation, the rise of neo-liberalism and a decline of trust and social democracy resulting in instability in the dominant public sph...
The fuzzy sphere *-product and spin networks
International Nuclear Information System (INIS)
We analyze the expansion of the fuzzy sphere noncommutative product in powers of the noncommutativity parameter. To analyze this expansion we develop a graphical technique that uses spin networks. This technique is potentially interesting in its own right as introducing spin networks of Penrose into noncommutative geometry. Our analysis leads to a clarification of the link between the fuzzy sphere noncommutative product and the usual deformation quantization of the sphere in terms of the *-product
Method for producing small hollow spheres
International Nuclear Information System (INIS)
A method is described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T >approx. 6000C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 103μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants
Hollow Spheres in Composite Materials and Metallic Hollow Sphere Composites (MHSC)
Baumeister, Erika; Molitor, Martin
The newly developed metallic hollow spheres are used in combination with a polymeric matrix for producing metallic hollow-sphere-composites (MSHC), which have been developed for mechanical engineering applications in the “InnoZellMet” project.
National Aeronautics and Space Administration — Payload Systems Inc. (PSI) and the MIT Space Systems Laboratory (MIT-SSL) propose an innovative research program entitled SPHERES-ISS that uses their satellite...
Habitable sphere and fine structure constant
Kozlovskii, Miroslaw P; Kozlowski, Miroslaw; Marciak-Kozlowska, Janina
2005-01-01
Future space missions, TPF and Darwin will focus on searches of signatures of life on extrasolar planets. In this paper we look for model independ definition of the habitable zone. It will be shown that the radius of the habitable sphere depends only on the constants of the Nature. Key words: Habitable sphere, fine structure constant.
Reversible thermal gelation in soft spheres
DEFF Research Database (Denmark)
Kapnistos, M.; Vlassopoulos, D.; Fytas, G.;
2000-01-01
Upon heating, concentrated solutions of star polymers and block copolymer micelles in a good solvent, representing soft spheres, undergo a reversible gelation. This phenomenon is attributed to the formation of clusters causing a partial dynamic arrest of the swollen interpenetrating spheres at high...... temperatures. A phase diagram analogous to that of sterically stabilized colloids is proposed....
Marketing approach to management of service sphere
Остафійчук, Ярослав Васильович
2015-01-01
Approaches to management service sphere at different hierarchical levels with the use of marketing methodology have been considered. Functions of regional marketing in service sphere and its structure, possibilities of integration into marketing of components from other administrative conceptshave been analyzed.
Large attractive depletion interactions in soft repulsive-sphere binary mixtures.
Cinacchi, Giorgio; Martínez-Ratón, Yuri; Mederos, Luis; Navascués, Guillermo; Tani, Alessandro; Velasco, Enrique
2007-12-01
We consider binary mixtures of soft repulsive spherical particles and calculate the depletion interaction between two big spheres mediated by the fluid of small spheres, using different theoretical and simulation methods. The validity of the theoretical approach, a virial expansion in terms of the density of the small spheres, is checked against simulation results. Attention is given to the approach toward the hard-sphere limit and to the effect of density and temperature on the strength of the depletion potential. Our results indicate, surprisingly, that even a modest degree of softness in the pair potential governing the direct interactions between the particles may lead to a significantly more attractive total effective potential for the big spheres than in the hard-sphere case. This might lead to significant differences in phase behavior, structure, and dynamics of a binary mixture of soft repulsive spheres. In particular, a perturbative scheme is applied to predict the phase diagram of an effective system of big spheres interacting via depletion forces for a size ratio of small and big spheres of 0.2; this diagram includes the usual fluid-solid transition but, in the soft-sphere case, the metastable fluid-fluid transition, which is probably absent in hard-sphere mixtures, is close to being stable with respect to direct fluid-solid coexistence. From these results, the interesting possibility arises that, for sufficiently soft repulsive particles, this phase transition could become stable. Possible implications for the phase behavior of real colloidal dispersions are discussed. PMID:18067358
Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines
Directory of Open Access Journals (Sweden)
Chen Lei
2011-06-01
Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.
Eshuis, A.; Harbers, G.; Doornink, D.J.; Mijnlieff, P.F.
1985-01-01
Information about polydisperse colloidal systems was obtained by dynamic light scattering. The correlation functions obtained were analyzed by the histogram method and the method of cumulants. The former was, as a test, applied to a nearly monodispere polystyrene latex. The agreement between the obt
Event-driven Langevin simulations of hard spheres.
Scala, A
2012-08-01
The blossoming of interest in colloids and nanoparticles has given renewed impulse to the study of hard-body systems. In particular, hard spheres have become a real test system for theories and experiments. It is therefore necessary to study the complex dynamics of such systems in presence of a solvent; disregarding hydrodynamic interactions, the simplest model is the Langevin equation. Unfortunately, standard algorithms for the numerical integration of the Langevin equation require that interactions are slowly varying during an integration time step. This is not the case for hard-body systems, where there is no clear-cut distinction between the correlation time of the noise and the time scale of the interactions. Starting first from a splitting of the Fokker-Plank operator associated with the Langevin dynamics, and then from an approximation of the two-body Green's function, we introduce and test two algorithms for the simulation of the Langevin dynamics of hard spheres. PMID:23005884
Eshuis, A; Harbers, G.; Doornink, D.J.; Mijnlieff, P.F.
1985-01-01
Information about polydisperse colloidal systems was obtained by dynamic light scattering. The correlation functions obtained were analyzed by the histogram method and the method of cumulants. The former was, as a test, applied to a nearly monodispere polystyrene latex. The agreement between the obtained results and the values given by the supplier was rather good. Therefore, this technique was applied to some nonionic microemulsions to determine their particle size distribution. The results ...
Slip at the surface of a sphere translating perpendicular to a plane wall in micropolar fluid
Sherif, H. H.; Faltas, M. S.; Saad, E. I.
2008-03-01
The Stokes axisymmetrical flow caused by a sphere translating in a micropolar fluid perpendicular to a plane wall at an arbitrary position from the wall is presented using a combined analytical-numerical method. A linear slip, Basset type, boundary condition on the surface of the sphere has been used. To solve the Stokes equations for the fluid velocity field and the microrotation vector, a general solution is constructed from fundamental solutions in both cylindrical, and spherical coordinate systems. Boundary conditions are satisfied first at the plane wall by the Fourier transforms and then on the sphere surface by the collocation method. The drag acting on the sphere is evaluated with good convergence. Numerical results for the hydrodynamic drag force and wall effect with respect to the micropolarity, slip parameters and the separation distance parameter between the sphere and the wall are presented both in tabular and graphical forms. Comparisons are made between the classical fluid and micropolar fluid.
Simulation and calibration of the response function of multi-sphere neutron spectrometer
International Nuclear Information System (INIS)
In order to realize the on-line real-time measurement of neutron spectrum of ITER fusion, this paper presents a multi-sphere spectrometer system which consists of eight thermal neutron detectors, namely SP9 3He proportional counter, embedded in eight different diameter polyethylene spheres. The response function of eight polyethylene spheres of multi-sphere neutron spectrometer was calculated after the simulation of the neutron transport processes in multi-sphere spectrometer by adopting software Geant4. The peak of the response function is in the low energy region for smaller diameter polyethylene sphere. As the polyethylene sphere diameter increased, the peak of the response function moves to the high energy region. The experimental calibration adopts 241Am-Be neutron source. The relative error between normalized data of experiment 4π solid angle counts and normalized data of simulated detection efficiency of 4 in to 8 in polyethylene sphere is from 1.152% to 12.222%. The experimental results verify the response function of the simulation. All these results provide a theoretical and experimental basis for solving the on-line real-time neutron spectrum of ITER fusion. (authors)
Vibrational Suspension of Light Sphere in a Tilted Rotating Cylinder with Liquid
Directory of Open Access Journals (Sweden)
Victor G. Kozlov
2014-01-01
Full Text Available The dynamics of a light sphere in a quickly rotating inclined cylinder filled with liquid under transversal vibrations is experimentally investigated. Due to inertial oscillations of the sphere relative to the cavity, its rotation velocity differs from the cavity one. The intensification of the lagging motion of a sphere and the excitation of the outstripping differential rotation are possible under vibrations. It occurs in the resonant areas where the frequency of vibrations coincides with the fundamental frequency of the system. The position of the sphere in the center of the cylinder could be unstable. Different velocities of the sphere are matched with its various quasistationary positions on the axis of rotating cavity. In tilted rotating cylinder, the axial component of the gravity force appears; however, the light sphere does not float to the upper end wall but gets the stable position at a definite distance from it. It makes possible to provide a vibrational suspension of the light sphere in filled with liquid cavity rotating around the vertical axis. It is found that in the wide range of the cavity inclination angles the sphere position is determined by the dimensionless velocity of body differential rotation.
Methodology for construction of hollow spheres for use in physical phantoms
International Nuclear Information System (INIS)
In positron emission tomography (PET), quantitative evaluation of spatial resolution/object size, attenuation and scatter effects is often performed using phantoms with hollow spheres. Fillable, plastic-walled spheres are commercially available in several sizes. Radioactive solutions in any concentration can be injected into the spheres. Hollow spheres have several desirable traits, including repeatable, consistent use, and standardization across measurements at different institutions, since identical items are distributed by a single manufacturer. The objective of this work is to describe a methodology for construction of hollow spheres using rapid prototyping. It was used the software SolidWork (2014) to create five 3D models of the hollow spheres with inner diameters of 10 mm, 13 mm, 17 mm, 22 mm, and 28 mm. These models were based on hollow spheres of NEMA/IEC PET body phantom. It was used a Cubex Duo 3D printer (3D Systems) to build the hollow spheres. The material used was the ABS (acrylonitrile butadiene styrene) resin. (authors)
International Nuclear Information System (INIS)
An analytical expression is obtained for the probability density function of the multiplication factor of an array of spheres when each sphere is displaced in a random fashion from its initial position. Two cases are considered: (1) spheres in an infinite background medium in which the total cross section in spheres and medium is the same, and (2) spheres in a void. In all cases we use integral transport theory and cast the problem into one involving average fluxes in the spheres which interact via collision probabilities. The statistical aspects of the problem are treated by first order perturbation theory and the general conclusion is that, when the number of spheres exceeds about 5, the reduced multiplication factor ((ξ (k-k0))/(k0)), where k0 is the unperturbed value, is given accurately by the Gaussian distribution P (ξ)= (1)/(SQRT(2 π) σ DT) exp-((ξ 2)/(2 σ2 DT2)).)) The partial standard deviation σ -2δ / SQRT (3), δ being the maximum movement of the sphere from its equilibrium position. DT is a function of the system properties and geometry. Some numerical results are given to illustrate the magnitude of the effects and also the accuracy of diffusion theory for this type of problem is assessed. The overall accuracy of the perturbation method is assessed by an essentially exact result obtained using simulation, thereby enabling the range of perturbation theory to be investigated
Optimizing packing fraction in granular media composed of overlapping spheres.
Roth, Leah K; Jaeger, Heinrich M
2016-01-28
What particle shape will generate the highest packing fraction when randomly poured into a container? In order to explore and navigate the enormous search space efficiently, we pair molecular dynamics simulations with artificial evolution. Arbitrary particle shape is represented by a set of overlapping spheres of varying diameter, enabling us to approximate smooth surfaces with a resolution proportional to the number of spheres included. We discover a family of planar triangular particles, whose packing fraction of ϕ ∼ 0.73 is among the highest experimental results for disordered packings of frictionless particles. We investigate how ϕ depends on the arrangement of spheres comprising an individual particle and on the smoothness of the surface. We validate the simulations with experiments using 3D-printed copies of the simplest member of the family, a planar particle consisting of three overlapping spheres with identical radius. Direct experimental comparison with 3D-printed aspherical ellipsoids demonstrates that the triangular particles pack exceedingly well not only in the limit of large system size but also when confined to small containers. PMID:26592541
Possibility of neutron transport cross section measurement in a sphere surrounded by moderation
International Nuclear Information System (INIS)
The possibility of an estimation of the neutron macroscopic transport cross section for a medium with known adsorption cross section is presented. A two-region spherical system is used with the sample of interest as the inner sphere. The fundamental decay constant of the thermal neutron flux is calculated on the basis of diffusion theory for such a system as a function of the dimensions of the external sphere and/or the macroscopic absorption cross section of the inner medium. The influence of the diffusion cooling coefficient and the hydrogen content in the inner sphere on the transport cross section estimation is discussed. (author)
Superelastic carbon spheres under high pressure
Li, Meifen; Guo, Junjie; Xu, Bingshe
2013-03-01
We report a superelastic deformation behavior of carbon spheres by the in situ Raman spectroscopy in a high-pressure diamond anvil cell. The carbon spheres produced by arc discharging in toluene have a mean diameter of 200 nm and an onion-like multilayer graphitic structure. We find that the elastic coefficients, during both the compression and decompression processes, remain a constant up to 10 GPa, indicating a superior high-pressure structural stability. Such superelastic behavior is related to the isotropic and concentric configuration of carbon spheres and provides additional insight into improving the microscopic mechanical properties of small-scale particles.
Audit of company’s security in the sphere of applying information technologies
Голяш, Ірина Дмитрівна; Саченко, Світлана Іванівна
2014-01-01
Issues, which concern company’s security in the sphere of applying information technologies, have been determined. Necessity of applying auditing for enhancing such security has been confirmed. Major stages of audit in the sphere of applying information technologies have been determined. It has been suggested to use audit results for improving the company’s information security system, implement new and increase efficiency of existing security mechanisms of its information systems.
An Ancient Relation between Units of Length and Volume Based on a Sphere
Zapassky, Elena; Gadot, Yuval; Finkelstein, Israel; Benenson, Itzhak
2012-01-01
The modern metric system defines units of volume based on the cube. We propose that the ancient Egyptian system of measuring capacity employed a similar concept, but used the sphere instead. When considered in ancient Egyptian units, the volume of a sphere, whose circumference is one royal cubit, equals half a hekat. Using the measurements of large sets of ancient containers as a database, the article demonstrates that this formula was characteristic of Egyptian and Egyptian-related pottery v...
Directional spin wavelets on the sphere
McEwen, Jason D; Büttner, Martin; Peiris, Hiranya V; Wiaux, Yves
2015-01-01
We construct a directional spin wavelet framework on the sphere by generalising the scalar scale-discretised wavelet transform to signals of arbitrary spin. The resulting framework is the only wavelet framework defined natively on the sphere that is able to probe the directional intensity of spin signals. Furthermore, directional spin scale-discretised wavelets support the exact synthesis of a signal on the sphere from its wavelet coefficients and satisfy excellent localisation and uncorrelation properties. Consequently, directional spin scale-discretised wavelets are likely to be of use in a wide range of applications and in particular for the analysis of the polarisation of the cosmic microwave background (CMB). We develop new algorithms to compute (scalar and spin) forward and inverse wavelet transforms exactly and efficiently for very large data-sets containing tens of millions of samples on the sphere. By leveraging a novel sampling theorem on the rotation group developed in a companion article, only hal...
Acoustic levitation of a large solid sphere
Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.
2016-07-01
We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.
Entanglement entropy across a deformed sphere
Mezei, Márk
2014-01-01
I study the entanglement entropy (EE) across a deformed sphere in conformal field theories (CFTs). I show that the sphere (locally) minimizes the universal term in EE among all shapes. In arXiv:1407.7249 it was derived that the sphere is a local extremum, by showing that the contribution linear in the deformation parameter is absent. In this paper I demonstrate that the quadratic contribution is positive and is controlled by the coefficient of the stress tensor two point function, $C_T$. Such a minimization result contextualizes the fruitful relation between the EE of a sphere and the number of degrees of freedom in field theory. I work with CFTs with gravitational duals, where all higher curvature couplings are turned on. These couplings parametrize conformal structures in stress tensor $n$-point functions, hence I show the result for infinitely many CFT examples.
Exceptional cosmetic surgeries on homology spheres
Ravelomanana, Huygens C.
2016-01-01
We investigate the cosmetic surgery conjecture for hyperbolic knots in integer homology spheres, focusing on exceptional surgeries. We give some restrictions on the slopes of exceptional truly cosmetic surgeries according to the type of surgery.
Gender, Diversity and the European Public Sphere
DEFF Research Database (Denmark)
Pristed Nielsen, Helene
2009-01-01
This paper argues that feminist criticism of Habermasian theory leads to new ways of approaching empirical analyses of public sphere deliberation, and gives some concrete indications of which methodological consequences such a critique may lead to....
Scintillation forward spectrometer of the SPHERE setup
International Nuclear Information System (INIS)
The construction of the forward spectrometer for the 4π SPHERE setup to study multiple production of particles in nucleus-nucleus interactions is described. The measured parameters of the spectrometer detectors are presented. 7 refs.; 14 figs.; 1 tab
Elastic spheres can walk on water
Belden, Jesse; Hurd, Randy C.; Jandron, Michael A.; Bower, Allan F.; Truscott, Tadd T.
2016-02-01
Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.
A sphere moving down the surface of a static sphere and a simple phase diagram
Jayanth, V; Biswas, Anindya Kumar
2008-01-01
A small sphere placed on the top of a big static frictionless sphere, slips until it leaves the surface at an angle $\\theta_{l}=\\cos^{-1}{2/3}$. On the other extreme, if the surface of the big sphere has coefficient of static friction, $\\mu_s\\to\\infty$, the small sphere starts rolling and continues to do so until it leaves the surface at an angle $\\theta_{l} =\\cos^{-1}{10/17}$. In the case where, $0\\leq\\mu_s<\\infty$, we get a simple phase diagram. The three phases are pure rolling, rolling with slipping and detached state. One phase line separates pure rolling from rolling with slipping. This diagram is obtained when stopping angles for pure rolling are plotted against static friction coefficients $\\mu_s$. Study in this article is restricted to the case when the mobile sphere starts at the top of the static sphere with infinitesimal kinetic energy.
Please comply: the water entry of soft spheres
Belden, Jesse; Hurd, Randy; Fanning, Tate; Jandron, Michael; Rekos, John; Bower, Allan; Truscott, Tadd
2015-11-01
The typical phenomena associated with sphere water impact are significantly altered when the sphere material is highly compliant rather than rigid. We describe the water impact physics of homogenous and hollow elastic spheres. The homogeneous spheres undergo large oscillatory deformations throughout entry that carve nested disturbances into the normally smooth air cavity, altering cavity shape and pinch off. Using an analytical model, we relate the maximum sphere deformation to the material properties and impact velocity. This characteristic deformation is used to reconcile the differences between cavities formed by compliant and rigid spheres. In addition to the nested disturbances seen with the homogeneous spheres, we observe azimuthal irregularities on the cavity during water entry of hollow elastic spheres. Based on experiments and finite-element modeling, we suggest that these disturbances are initiated by vibration mode shapes excited in the hollow spheres upon impact. For all sphere types, we compare the forces throughout water entry to the rigid sphere case.
Hollow sphere ceramic particles for abradable coatings
International Nuclear Information System (INIS)
A hollow sphere ceramic flame spray powder is disclosed. The desired constituents are first formed into agglomerated particles in a spray drier. Then the agglomerated particles are introduced into a plasma flame which is adjusted so that the particles collected are substantially hollow. The hollow sphere ceramic particles are suitable for flame spraying a porous and abradable coating. The hollow particles may be selected from the group consisting of zirconium oxide and magnesium zirconate
Liouville Quantum Gravity on the Riemann Sphere
David, François; Kupiainen, Antti; Rhodes, Rémi; Vargas, Vincent
2016-03-01
In this paper, we rigorously construct Liouville Quantum Field Theory on the Riemann sphere introduced in the 1981 seminal work by Polyakov. We establish some of its fundamental properties like conformal covariance under PSL{_2({C})}-action, Seiberg bounds, KPZ scaling laws, KPZ formula and the Weyl anomaly formula. We also make precise conjectures about the relationship of the theory to scaling limits of random planar maps conformally embedded onto the sphere.
Surface polaritons on left-handed spheres
Ancey, Stéphane; Décanini, Yves; Folacci, Antoine; Gabrielli, Paul
2007-01-01
We consider the interaction of an electromagnetic field with a left-handed sphere, i.e., with a sphere fabricated from a left-handed material, in the framework of complex angular momentum techniques. We emphasize more particularly, from a semiclassical point of view, the resonant aspects of the problem linked to the existence of surface polaritons. We prove that the long-lived resonant modes can be classified into distinct families, each family being generated by one surface polariton propaga...
Geometrical Dynamics in a Transitioning Superconducting Sphere
Directory of Open Access Journals (Sweden)
Claycomb J. R.
2006-10-01
Full Text Available Recent theoretical works have concentrated on calculating the Casimir effect in curved spacetime. In this paper we outline the forward problem of metrical variation due to the Casimir effect for spherical geometries. We consider a scalar quantum field inside a hollow superconducting sphere. Metric equations are developed describing the evolution of the scalar curvature after the sphere transitions to the normal state.
vSphere virtual machine management
Fitzhugh, Rebecca
2014-01-01
This book follows a step-by-step tutorial approach with some real-world scenarios that vSphere businesses will be required to overcome every day. This book also discusses creating and configuring virtual machines and also covers monitoring virtual machine performance and resource allocation options. This book is for VMware administrators who want to build their knowledge of virtual machine administration and configuration. It's assumed that you have some experience with virtualization administration and vSphere.
Volume bounds of conic 2-spheres
Fang, Hao; Lai, Mijia
2016-01-01
We obtain sharp volume bound for a conic 2-sphere in terms of its Gaussian curvature bound. We also give the geometric models realizing the extremal volume. In particular, when the curvature is bounded in absolute value by $1$, we compute the minimal volume of a conic sphere in the sense of Gromov. In order to apply the level set analysis and iso-perimetric inequality as in our previous works, we develop some new analytical tools to treat regions with vanishing curvature.
Anisotropic fluid spheres in general relativity
International Nuclear Information System (INIS)
A procedure is developed to find static solutions for anisotropic fluid spheres from known static solutions for perfect fluid spheres. The method is used to obtain four exact analytical solutions of Einstein's equations for spherically symmetric self-gravitating distribution of anisotropic matter. The solutions are matched to the Schwarzschild exterior metric. The physical features of one of the solutions are briefly discussed. Many previously known perfect fluid solutions are derived as particular cases. (author)
Adiabatic Invariant Treatment of a Collapsing Sphere of Quantized Dust
Roberto CasadioDipartimento di Fisica, Universita' di Bologna and INFN, Bologna; Fabio Finelli(Dipartimento di Fisica, Universita' di Bologna and INFN, Bologna); Giovanni Venturi(Department of Physics, University of Bologna, and Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy)
2015-01-01
The semiclassical collapse of a sphere of quantized dust is studied. A Born-Oppenheimer decomposition is performed for the wave function of the system and the semiclassical limit is considered for the gravitational part. The method of adiabatic invariants for time dependent Hamiltonians is then employed to find (approximate) solutions to the quantum dust equations of motions. This allows us to obtain corrections to the adiabatic approximation of the dust states associated with the time evolut...
From non commutative sphere to non relativistic spin
Deriglazov, A A
2009-01-01
Reparametrization invariant dynamics on a sphere, being parameterized by angular momentum coordinates, represents an example of non commutative system. It can be quantized according to Berezin-Marinov prescription, replacing the coordinates by Pauli matrices. Following the scheme, we present two semiclassical models for description of spin without use of Grassman variables. The first model implies Pauli equation upon the canonical quantization. The second model produces non relativistic limit of the Dirac equation implying correct value for the electron spin magnetic moment.
SPHERE: Meaningful and Inclusive Sensor-Based Home Healthcare
Burrows, Alison; Gooberman-Hill, Rachel; Craddock, Ian; Coyle, David
2014-01-01
Given current demographic and health trends, and their economic implications, home healthcare technology has become a fertile area for research and development. Motivated by the need for a radical reform of healthcare provision, SPHERE is a large-scale Interdisciplinary Research Collaboration that aims to develop home sensor systems to monitor people's health and wellbeing in the home. This paper outlines the unique circumstances of designing healthcare technology for the home environment, wi...
Chimera states on the surface of a sphere
Panaggio, Mark J; Abrams, Daniel M.
2014-01-01
A chimera state is a spatiotemporal pattern in which a network of identical coupled oscillators exhibits coexisting regions of asynchronous and synchronous oscillation. Two distinct classes of chimera states have been shown to exist: "spots" and "spirals." Here we study coupled oscillators on the surface of a sphere, a single system in which both spot and spiral chimera states appear. We present an analysis of the birth and death of spiral chimera states and show that although they coexist wi...
Brownian Motion on a Sphere: Distribution of Solid Angles
Krishna, M. M. G.; Samuel, Joseph; Sinha, Supurna
2000-01-01
We study the diffusion of Brownian particles on the surface of a sphere and compute the distribution of solid angles enclosed by the diffusing particles. This function describes the distribution of geometric phases in two state quantum systems (or polarised light) undergoing random evolution. Our results are also relevant to recent experiments which observe the Brownian motion of molecules on curved surfaces like micelles and biological membranes. Our theoretical analysis agrees well with the...
A novel sampling theorem on the sphere
McEwen, J D
2011-01-01
We develop a novel sampling theorem on the sphere and corresponding fast algorithms by associating the sphere with the torus through a periodic extension. The fundamental property of any sampling theorem is the number of samples required to represent a band-limited signal. To represent exactly a signal on the sphere band-limited at L, all sampling theorems on the sphere require O(L^2) samples. However, our sampling theorem requires less than half the number of samples of other equiangular sampling theorems on the sphere and an asymptotically identical, but smaller, number of samples than the Gauss-Legendre sampling theorem. The complexity of our algorithms scale as O(L^3), however, the continual use of fast Fourier transforms reduces the constant prefactor associated with the asymptotic scaling considerably, resulting in algorithms that are fast. Furthermore, we do not require any precomputation and our algorithms apply to both scalar and spin functions on the sphere without any change in computational comple...
Constant angular velocity of the wrist during the lifting of a sphere.
Chappell, Paul; Metcalf, Cheryl; Burridge, Jane; Yule, Victoria; Pickering, R.M.
2010-01-01
The primary objective of the experiments was to investigate the wrist motion of a person while they were carrying out a prehensile task from a clinical hand function test. A sixcamera movement system was used to observe the wrist motion of 10 participants. A very light sphere and a heavy sphere were used in the experiments to study any mass effects. While seated at a table, a participant moved a sphere over a small obstacle using their dominant hand. The participants were observed to move the...
Stochastic Hard-Sphere Dynamics for Hydrodynamics of Non-Ideal Fluids
Energy Technology Data Exchange (ETDEWEB)
Donev, A; Alder, B J; Garcia, A L
2008-02-26
A novel stochastic fluid model is proposed with a nonideal structure factor consistent with compressibility, and adjustable transport coefficients. This stochastic hard-sphere dynamics (SHSD) algorithm is a modification of the direct simulation Monte Carlo algorithm and has several computational advantages over event-driven hard-sphere molecular dynamics. Surprisingly, SHSD results in an equation of state and a pair correlation function identical to that of a deterministic Hamiltonian system of penetrable spheres interacting with linear core pair potentials. The fluctuating hydrodynamic behavior of the SHSD fluid is verified for the Brownian motion of a nanoparticle suspended in a compressible solvent.
Electrophoretic mobility of electrostatically interacting colloidal spheres
International Nuclear Information System (INIS)
We have measured the electrophoretic mobility μ = vE/E (where E is the electric field strength and vE the electrophoretic velocity) of highly charged colloidal spheres in deionized aqueous suspension at particle number densities n between 0.15 and 150 μm-3. Under these conditions the system exhibits fluid or crystalline order. We used laser Doppler velocimetry to determine the electrophoretic velocities vE as spatially averaged particle velocities from both integral and spatially resolved measurements. With this approach we were for the first time able to extend measurements far into the crystalline region of the phase diagram. We found μ to be constant at low n while at large n we observe an approximately logarithmic decrease in n. However, the descent of μ is not affected by the phase transition. This indicates that this transport coefficient rather depends on the local structure of the ionic clouds surrounding the particles than on the long range order of the suspension
Quality research methods as a factor of improvement of preproduction sphere
Directory of Open Access Journals (Sweden)
M. Dudek-Burlikowska
2006-08-01
Full Text Available Purpose: A new approach for quality improvement of preproduction sphere in production company with usagequality research methods has been presented.Design/methodology/approach: The possibility of usage of quality research methods are connected withimprovement of preproduction sphere of organization. Interdependence of the quality control and qualityresearch methods in preproduction sphere and management processes has been taken into account.Findings: At the present time the enterprises should integrate management system in preproduction sphere andtheir continuous improvement with quality management, knowledge management and intellectual capital. Suchkind of strategy will enable to achieve success for these companies.Research limitations/implications: Described quality methods in preproduction sphere and quality analysis ofproduct modernity can be employed in companies, in which quality control has been implemented.Practical implications: Averaging Quality Rating method can be used in companies for estimation of qualityindex of product modernity. Usage of this method can improve functionality of preproduction sphere.Originality/value: Describing and comparing modernity of product inside company with usage AveragingQuality Rating method has been presented. This method is a propose of new lifting strategy of effectivities andefficiencies activities of preproduction sphere.
Analysis of the Level of Development of the Socio-labour Sphere of Ukrainian Regions
Directory of Open Access Journals (Sweden)
Bibikova Viktoriia V.
2013-12-01
Full Text Available The goal of the article is the study of the level of development of the socio-labour sphere of Ukrainian regions. In order to achieve the goal, the article develops a complex scorecard, which takes into account all elements of the socio-labour sphere (socio-labour relations, labour market system of labour reimbursement, social accompaniment of labour activity, professional development of economically active population, level and quality of labour life, safety and security of labour. On the basis of the use of the developed scorecard, the article conducts an integral assessment of the level of development of the socio-labour sphere of regions. In order to get more objective information about the state of the labour sphere of Ukraine, the article uses its subjective assessments by population. In the result of the analysis, it reveals a lack of progressive changes of the socio-labour sphere in majority (60% of Ukrainian regions, availability of significant differentiation of regions by the level of its development and the irregular character of changes of separate elements of the labour sphere both within one administrative and territorial unit and among different regions of Ukraine. The article justifies a necessity of conduct of regular diagnostics of the state of the socio-labour sphere of Ukrainian regions with the use of a developed scorecard.
Quantitative and qualitative Kac's chaos on the Boltzmann's sphere
Carrapatoso, Kleber
2012-01-01
We investigate the construction of chaotic probability measures on the Boltzmann's sphere, which is the state space of the stochastic process of a many-particle system undergoing a dynamics preserving energy and momentum. Firstly, based on a version of the local Central Limit Theorem (or Berry-Essenn theorem), we construct a sequence of probabilities that is Kac chaotic and we prove a quantitative rate of convergence. Then, we investigate a stronger notion of chaos, namely entropic chaos introduced in \\cite{CCLLV}, and we prove, with quantitative rate, that this same sequence is also entropically chaotic. Furthermore, we investigate more general class of probability measures on the Boltzmann's sphere. Using the HWI inequality we prove that a Kac chaotic probability with bounded Fisher's information is entropically chaotic and we give a quantitative rate. We also link different notions of chaos, proving that Fisher's information chaos, introduced in \\cite{HaurayMischler}, is stronger than entropic chaos, which...
Linear viscoelasticity in dispersions of adhesive hard spheres
Woutersen, A. T. J. M.; Mellema, J.; Blom, C.; de Kruif, C. G.
1994-07-01
The viscoelastic behavior of concentrated dispersions of adhesive hard spheres was investigated. By changing the temperature, the interaction potential of the particles was varied from a hard sphere repulsion to a strong attraction. Using torsion resonators and a nickel tube resonator the complex viscosity was measured in the frequency range 70-250 000 Hz. The results were described on the basis of a simple mechanical model in terms of a series of relaxation times and a single relaxation strength. The temperature dependence of the longest relaxation time and the relaxation strength indicated that the system undergoes a kinetic transition with decreasing temperature. The transition could be identified with the percolation threshold. Above the transition temperature where the dispersion is in a stable, fluid state, linear viscoelastic behavior is observed. Below the percolation threshold but still in the one-phase region, nonlinear viscoelasticity was measured, even at the smallest strains.
Thermodynamical instabilities of perfect fluid spheres in General Relativity
International Nuclear Information System (INIS)
For a static, perfect fluid sphere with a general equation of state, we obtain the relativistic equation of hydrostatic equilibrium, namely the Tolman–Oppenheimer–Volkov equation, as the thermodynamical equilibrium in the microcanonical, as well as the canonical, ensemble. We find that the stability condition determined by the second variation of entropy coincides with the dynamical stability condition derived by the variations to first order in the dynamical Einstein’s equations. Thus, we show the equivalence of microcanonical thermodynamical stability with linear dynamical stability for a static, spherically symmetric field in General Relativity. We calculate the Newtonian limit and find the interesting property that the microcanonical ensemble in General Relativity transforms to the canonical ensemble for non-relativistic dust particles. Finally, for specific kinds of systems, we study the effect of the cosmological constant on the microcanonical thermodynamical stability of fluid spheres. (paper)
Prediction of binary hard-sphere crystal structures.
Filion, Laura; Dijkstra, Marjolein
2009-04-01
We present a method based on a combination of a genetic algorithm and Monte Carlo simulations to predict close-packed crystal structures in hard-core systems. We employ this method to predict the binary crystal structures in a mixture of large and small hard spheres with various stoichiometries and diameter ratios between 0.4 and 0.84. In addition to known binary hard-sphere crystal structures similar to NaCl and AlB2, we predict additional crystal structures with the symmetry of CrB, gammaCuTi, alphaIrV, HgBr2, AuTe2, Ag2Se, and various structures for which an atomic analog was not found. In order to determine the crystal structures at infinite pressures, we calculate the maximum packing density as a function of size ratio for the crystal structures predicted by our GA using a simulated annealing approach. PMID:19518387
Innovation embedded in entrepreneurs’ networks in private and public spheres
DEFF Research Database (Denmark)
Schøtt, Thomas; Cheraghi, Maryam; Rezaei, Shahamak; Vang, Jan
Global studies have found tendencies: traditional culture promotes entrepreneurs' networking in the private sphere, impeding innovation, whereas secular-rational culture facilitates networking in the public sphere, benefiting innovation. This embeddedness is here scrutinised in contrasting...... societies, China and Denmark. Global Entrepreneurship Monitor has surveyed entrepreneurs in China, Denmark and elsewhere. Analyses reconfirm the global tendencies and show that, China in contrast to Denmark, public sphere networking is sparser, but private sphere networking is denser. Innovation is...... negatively affected by private sphere networking and positively affected by public sphere networking, but innovation is less promoted by public sphere networking in China than in Denmark....
Collinear swimmer propelling a cargo sphere at low Reynolds number
Felderhof, B U
2014-01-01
The swimming velocity and rate of dissipation of a linear chain consisting of two or three little spheres and a big sphere is studied on the basis of low Reynolds number hydrodynamics. The big sphere is treated as a passive cargo, driven by the tail of little spheres via hydrodynamic and direct elastic interaction. The fundamental solution of Stokes' equations in the presence of a sphere with no-slip boundary condition, as derived by Oseen, is used to model the hydrodynamic interactions between the big sphere and the little spheres.
Terminal energy distribution of blast waves from bursting spheres
Adamczyk, A. A.; Strehlow, R. A.
1977-01-01
The calculation results for the total energy delivered to the surroundings by the burst of an idealized massless sphere containing an ideal gas are presented. The logic development of various formulas for sphere energy is also presented. For all types of sphere bursts the fraction of the total initial energy available in the sphere that is delivered to the surroundings is shown to lie between that delivered for the constant pressure addition of energy to a source region and that delivered by isentropic expansion of the sphere. The relative value of E sub/Q increases at fixed sphere pressure/surrounding pressure as sphere temperature increases because the velocity of sound increases.
SPHERES: Design of a Formation Flying Testbed for ISS
Sell, S. W.; Chen, S. E.
2002-01-01
The SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) payload is an innovative formation-flying spacecraft testbed currently being developed for use internally aboard the International Space Station (ISS). The purpose of the testbed is to provide a cost-effective, long duration, replenishable, and easily reconfigurable platform with representative dynamics for the development and validation of metrology, formation flying, and autonomy algorithms. The testbed components consist of three 8-inch diameter free-flying "satellites," five ultrasound beacons, and an ISS laptop workstation. Each satellite is self-contained with on-board battery power, cold-gas propulsion (CO2), and processing systems. Satellites use two packs of eight standard AA batteries for approximately 90 minutes of lifetime while beacons last the duration of the mission powered by a single AA battery. The propulsion system uses pressurized carbon dioxide gas, stored in replaceable tanks, distributed through an adjustable regulator and associated tubing to twelve thrusters located on the faces of the satellites. A Texas Instruments C6701 DSP handles control algorithm data while an FPGA manages all sensor data, timing, and communication processes on the satellite. All three satellites communicate with each other and with the controlling laptop via a wireless RF link. Five ultrasound beacons, located around a predetermined work area, transmit ultrasound signals that are received by each satellite. The system effectively acts as a pseudo-GPS system, allowing the satellites to determine position and attitude and to navigate within the test arena. The payload hardware are predominantly Commercial Off The Shelf (COTS) products with the exception of custom electronics boards, selected propulsion system adaptors, and beacon and satellite structural elements. Operationally, SPHERES will run in short duration test sessions with approximately two weeks between each session. During
Analysis of the Level of Development of the Socio-labour Sphere of Ukrainian Regions
Bibikova Viktoriia V.
2013-01-01
The goal of the article is the study of the level of development of the socio-labour sphere of Ukrainian regions. In order to achieve the goal, the article develops a complex scorecard, which takes into account all elements of the socio-labour sphere (socio-labour relations, labour market system of labour reimbursement, social accompaniment of labour activity, professional development of economically active population, level and quality of labour life, safety and security of labour). On the b...
Doroshenko, Valentina Viktorivna
2012-01-01
The problems of financial support for reforming the heat supply sphere arediscussed in the article. The current state of heat supply sphere causes aggravation of many socioeconomicproblems, connected with low quality, low reliability and excessive power consumption ofheat supply system. The main reason for this is the high level of depreciation of main funds at allstages of the production cycle – from production to consumption of heat energy. The currentlegislation defined the priority of mod...
Thermoelastic expansion in prompt-critical neutron pulse idealized in a fissile metallic sphere
International Nuclear Information System (INIS)
Prompt critical pulses in solid and homogeneous spheres of enriched uranium (93%) and metallic plutonium are studied. The feedback mechanism of the negative inserted reactivity is given by the elastic expansion due to the increase of the temperature in the sphere. Thermomechanical behavior and the capability of the system to become subcritical without a very large increase of energy released in the pulse are analysed. The neutronic and thermoelasticity equations are solved in the time. (M.C.K.)
Effects of a conducting sphere moving through a gradient magnetic field.
Energy Technology Data Exchange (ETDEWEB)
Miles, Richard B. (Princeton University, Princeton, NJ); Kalra, Chiranjeev S. (Princeton University, Princeton, NJ); Shneider, Mikhail (Princeton University, Princeton, NJ); Giffin, Adom (Princeton University, Princeton, NJ); Ames, Thomas L.
2010-04-01
We examine several conducting spheres moving through a magnetic field gradient. An analytical approximation is derived and an experiment is conducted to verify the analytical solution. The experiment is simulated as well to produce a numerical result. Both the low and high magnetic Reynolds number regimes are studied. Deformation of the sphere is noted in the high Reynolds number case. It is suggested that this deformation effect could be useful for designing or enhancing present protection systems against space debris.
Simple liquids' quasiuniversality and the hard-sphere paradigm.
Dyre, Jeppe C
2016-08-17
This topical review discusses the quasiuniversality of simple liquids' structure and dynamics and two possible justifications of it. The traditional one is based on the van der Waals picture of liquids in which the hard-sphere system reflects the basic physics. An alternative explanation argues that all quasiuniversal liquids to a good approximation conform to the same equation of motion, referring to the exponentially repulsive pair-potential system as the basic reference system. The paper, which is aimed at non-experts, ends by listing a number of open problems in the field. PMID:27345623
Simple liquids’ quasiuniversality and the hard-sphere paradigm
Dyre, Jeppe C.
2016-08-01
This topical review discusses the quasiuniversality of simple liquids’ structure and dynamics and two possible justifications of it. The traditional one is based on the van der Waals picture of liquids in which the hard-sphere system reflects the basic physics. An alternative explanation argues that all quasiuniversal liquids to a good approximation conform to the same equation of motion, referring to the exponentially repulsive pair-potential system as the basic reference system. The paper, which is aimed at non-experts, ends by listing a number of open problems in the field.
Robotics Programming Competition Spheres, Russian Part
Sadovski, Andrei; Kukushkina, Natalia; Biryukova, Natalia
2016-07-01
Spheres" such name was done to Russian part of the Zero Robotics project which is a student competition devoted to programming of SPHERES (SPHERES - Synchronized Position Hold Engage and Reorient Experimental Satellites are the experimental robotics devices which are capable of rotation and translation in all directions, http://ssl.mit.edu/spheres/), which perform different operations on the board of International Space Station. Competition takes place online on http://zerorobotics.mit.edu. The main goal is to develop a program for SPHERES to solve an annual challenge. The end of the tournament is the real competition in microgravity on the board of ISS with a live broadcast. The Russian part of the tournament has only two years history but the problems, organization and specific are useful for the other educational projects especially for the international ones. We introduce the history of the competition, its scientific and educational goals in Russia and describe the participation of Russian teams in 2014 and 2015 tournaments. Also we discuss the organizational problems.
DEFF Research Database (Denmark)
Valiente, Manuel
2012-01-01
We prove the equivalence between the hard-sphere Bose gas and a system with momentum-dependent zero-range interactions in one spatial dimension, which we call extended hard-sphere Bose gas. The two-body interaction in the latter model has the advantage of being a regular pseudopotential. The most...
Java meshing tool for sphere arrangements
International Nuclear Information System (INIS)
A tool for meshing sphere arrangements was programmed in order to perform finite element calculations. Sphere arrangements are investigated in frame of the feasibility study of the sphere-pac nuclear fuel. One major concern of this study is the thermal conductivity of the arrangement. Further concerns are the mechanical behavior and sintering of the fuel. The thermal conductivity of the fuel was addressed with the computer code SPACON based on a unit cell approach and a radial heat flow experiment. However, a further approach using the finite element method is desirable, in order to better understanding the thermal flow through the package and to cross check with SPACON data and with experimental data. Also the mechanical behavior of the fuel could be addressed using the finite element technique. (author)
Peculiarities of Future Social Sphere Specialists’ Professional Training in Poland
Directory of Open Access Journals (Sweden)
Zieba Beata
2016-06-01
Full Text Available The article reviews certain aspects of organising the process of professional training of future specialists in social sphere. It identifies, considers and analyzes the main definitions of scientific research, the object of which is to make specialists in social sphere ready for professional activity. The article highlights peculiarities of forming professionally significant personal qualities of social workers as well as their mature, objective system of values. The practical training with a focus on having the ability to apply effective creative approaches in solving social problems is identified as an important component of the comprehensive process of professional training of future specialists in social and pedagogical work. It emphasises the importance of the use of effective innovation in social and socio-educational institutions. It analyzes the problem of organizing student teaching, which includes ignoring the use of active forms and methods in the learning process, a lack of skills of professional activity. The article reveals potential opportunities for the practical activity which is most closely approximate to real professional situations as an opportunity to form a positive attitude towards oneself as a subject of the chosen professional activity and the formation of students as professionals. It forms the principles of future social sphere specialists’ training. The article also highlights the need to direct the educational process towards formation of an individual creative approach and establishment of partnerships between education and social institutions.
International Nuclear Information System (INIS)
Volvox sphere is a bio-mimicking concept of an innovative biomaterial structure of a sphere that contains smaller microspheres which then encapsulate chemicals, drugs and/or cells. The volvox spheres were produced via a high-voltage electrostatic field system, using alginate as the primary material. Encapsulated materials tested in this study include staining dyes, nuclear fast red and trypan blue, and model drugs, bovine serum albumin (BSA) and cytochrome c (CytC). The external morphology of the volvox spheres was observed via electron microscopy whereas the internal structure of the volvox spheres was observed via an optical microscope with the aid of the staining dyes, since alginate is colorless and transparent. The diameter of the microspheres was about 200 to 300 μm, whereas the diameter of the volvox spheres was about 1500 μm. Volvox spheres were durable, retaining about 95% of their mass after 4 weeks. Factors affecting entrapment efficiency, such as temperature and concentration of the bivalent cross-linker, were compared followed by a 7-day in vitro release study. The encapsulation efficiency of CytC within the microspheres was higher at cold (∼ 4 °C) and warm (∼ 50 °C) temperatures whereas temperature has no obvious effect on the BSA encapsulation. High crosslinking concentration (25% w/v) of calcium chloride has resulted higher entrapment efficiency for BSA but not for CytC. Furthermore, volvox spheres showed a different release pattern of BSA and CytC when compared to microspheres encapsulating BSA and CytC. Despite the fact that the mechanisms behind remain unclear and further investigation is required, this study demonstrates the potential of the volvox spheres for drug delivery. - Highlights: • Volvox spheres contain smaller microspheres which can encapsulate drugs and/or cells. • Alginate is the primary material for the inner and outer spheres. • Encapsulation is affected by the crosslinking, temperature and the selection of drugs.
Energy Technology Data Exchange (ETDEWEB)
Teong, Benjamin; Chang, Shwu Jen [Department of Biomedical Engineering, I-Shou University, College of Medicine, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan (China); Chuang, Chin Wen [Department of Electrical Engineering, I-Shou University, No. 1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City 84001, Taiwan (China); Kuo, Shyh Ming, E-mail: smkuo@isu.edu.tw [Department of Biomedical Engineering, I-Shou University, College of Medicine, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan (China); Manousakas, Ioannis, E-mail: i.manousakas@ieee.org [Department of Biomedical Engineering, I-Shou University, College of Medicine, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan (China)
2013-12-01
Volvox sphere is a bio-mimicking concept of an innovative biomaterial structure of a sphere that contains smaller microspheres which then encapsulate chemicals, drugs and/or cells. The volvox spheres were produced via a high-voltage electrostatic field system, using alginate as the primary material. Encapsulated materials tested in this study include staining dyes, nuclear fast red and trypan blue, and model drugs, bovine serum albumin (BSA) and cytochrome c (CytC). The external morphology of the volvox spheres was observed via electron microscopy whereas the internal structure of the volvox spheres was observed via an optical microscope with the aid of the staining dyes, since alginate is colorless and transparent. The diameter of the microspheres was about 200 to 300 μm, whereas the diameter of the volvox spheres was about 1500 μm. Volvox spheres were durable, retaining about 95% of their mass after 4 weeks. Factors affecting entrapment efficiency, such as temperature and concentration of the bivalent cross-linker, were compared followed by a 7-day in vitro release study. The encapsulation efficiency of CytC within the microspheres was higher at cold (∼ 4 °C) and warm (∼ 50 °C) temperatures whereas temperature has no obvious effect on the BSA encapsulation. High crosslinking concentration (25% w/v) of calcium chloride has resulted higher entrapment efficiency for BSA but not for CytC. Furthermore, volvox spheres showed a different release pattern of BSA and CytC when compared to microspheres encapsulating BSA and CytC. Despite the fact that the mechanisms behind remain unclear and further investigation is required, this study demonstrates the potential of the volvox spheres for drug delivery. - Highlights: • Volvox spheres contain smaller microspheres which can encapsulate drugs and/or cells. • Alginate is the primary material for the inner and outer spheres. • Encapsulation is affected by the crosslinking, temperature and the selection of drugs.
Constant angular velocity of the wrist during the lifting of a sphere.
Chappell, P H; Metcalf, C D; Burridge, J H; Yule, V T; Pickering, R M
2010-05-01
The primary objective of the experiments was to investigate the wrist motion of a person while they were carrying out a prehensile task from a clinical hand function test. A six-camera movement system was used to observe the wrist motion of 10 participants. A very light sphere and a heavy sphere were used in the experiments to study any mass effects. While seated at a table, a participant moved a sphere over a small obstacle using their dominant hand. The participants were observed to move their wrist at a constant angular velocity. This phenomenon has not been reported previously. Theoretically, the muscles of the wrist provide an impulse of force at the start of the rotation while the forearm maintains a constant vertical force on a sphere. Light-heavy mean differences for the velocities, absolute velocities, angles and times taken showed no significant differences (p = 0.05). PMID:20233128
Scalar Solitons on the Fuzzy Sphere
Austing, P; Thorlacius, L; Austing, Peter; Jonsson, Thordur; Thorlacius, Larus
2002-01-01
We study scalar solitons on the fuzzy sphere at arbitrary radius and noncommutativity. We prove that no solitons exist if the radius is below a certain value. Solitons do exist for radii above a critical value which depends on the noncommutativity parameter. We construct a family of soliton solutions which are stable and which converge to solitons on the Moyal plane in an appropriate limit. These solutions are rotationally symmetric about an axis and have no allowed deformations. Solitons that describe multiple lumps on the fuzzy sphere can also be constructed but they are not stable.
Bolander, Brian
2014-01-01
An easy-to-follow guide full of hands-on examples of real-world design best practices. Each topic is explained and placed in context, and for the more inquisitive, there are more details on the concepts used.If you wish to learn about vSphere best practices and how to apply them when designing virtual, high performance, reliable datacenters that support business critical applications to work more efficiently and to prepare for official certifications, this is the book for you. Readers should possess a good working knowledge of vSphere as well as servers, storage, and networking.
Scattering by two spheres: Theory and experiment
DEFF Research Database (Denmark)
Bjørnø, Irina; Jensen, Leif Bjørnø
1998-01-01
three issues: (1) to develop a simplified theory for scattering by two elastical spheres; (2) to measure the scattering by two spheres in a water tank, and (3) to compare the theoretical/numerical results with the measured data. A number of factors influencing multiple scattering, including the......Extensive studies of scattering of acoustical signals by targets of different regular shapes have formed a useful background for attempts to develop procedures for remote monitoring of suspended materials in marine environments as, for instance, measurements of characteristic parameters of...
Packing Effect of Excluded Volume on Hard-Sphere Colloids
Institute of Scientific and Technical Information of China (English)
肖长明; 金国钧; 马余强
2001-01-01
We apply the principle of maximum entropy to consider the excluded volume effect on the phase separation of binary mixtures consisting of hard spheres with two different diameters. We show that a critical volume fraction of hard spheres exists locating the packing of large spheres. In particular, through numerical calculation, we have found that the critical volume fraction becomes lower when the ratio α = σ1/σ2 of large-to-small sphere diameters increases, but becomes higher when the ratio of the large sphere volume fraction to the total volume fraction of large and small spheres increases.
Steel Spheres and Skydiver--Terminal Velocity
Costa Leme, J.; Moura, C.; Costa, Cintia
2009-01-01
This paper describes the use of open source video analysis software in the study of the relationship between the velocity of falling objects and time. We discuss an experiment in which a steel sphere falls in a container filled with two immiscible liquids. The motion is similar to that of a skydiver falling through air.
Pious Entertainment: Hizbullah's Islamic Cultural Sphere
Alagha, J.E.
2011-01-01
Alagha’s chapter on Hezbollah’s Islamic cultural sphere is sure to generate some of the most interesting discussion. Lebanon and Hezbollah in particular are among the hottest topics in the studies of contemporary Islam, but few people actually have the appropriate levels of both access to and unders
Einstein Metrics on Rational Homology Spheres
Boyer, Charles P.; Galicki, Krzysztof
2003-01-01
We prove the existence of Sasakian-Einstein metrics on infinitely many rational homology spheres in all odd dimensions greater than 3. In dimension 5 we obain somewhat sharper results. There are examples where the number of effective parameters in the Einstein metric grows exponentially with dimension.
String Field Theory and the Fuzzy Sphere
Ita, Harald; Oz, Yaron
2001-01-01
We use boundary string field theory to study open string tachyon condensation on a three-sphere closed string background. We consider the closed string background described by $SU(2)_k$ WZW model in the limit of large $k$. We compute the exact tachyon potential and analyse the decay modes.
Performance and Politics in the Public Sphere
Directory of Open Access Journals (Sweden)
Pia Wiegmink
2011-12-01
Full Text Available Pia Wiegmink’s timely examination of the transforming transnational spaces of protest in a globalizing and technologically mediated public sphere in “Performance and Politics in the Public Sphere” offers a well-researched review of contemporary theory surrounding ideas of the political (Chantal Mouffe, the public sphere (Jürgen Habermas, the transnational public sphere (Nancy Fraser, and the reterritorialized transnational public sphere (Markus Schroer as the basis for her analysis of how the performance of political action in public—virtual or physical—is transformed by the capacity of the local to be played on a global stage, thus turning the citizen-actor into a cosmopolitan, transnational force. Tracing examples from the Seattle protests against the World Trade Organization meetings in 1999 by the Global Justice Movement to the work of the Electronic Disturbance Theater, from the civil rights movement to the subject matter of her larger study, “The Church of Life After Shopping,” “Billionaires for Bush,” and “The Yes Men,” Wiegmink provides an important analysis of the “alternative aesthetics” of the counterpublics’ formation, dissent, and action in and against hegemony. This selection is taken from her monograph, Protest EnACTed: Activist Performance in the Contemporary United States, a strong, cultural studies–focused contribution to transnational American Studies.
On configuration spaces of hard spheres
Baryshnikov, Yuliy; Kahle, Matthew
2011-01-01
We study configuration spaces of hard spheres in a bounded region. We develop a general Morse-theoretic framework, and show that mechanically balanced configurations play the role of critical points. As an application, we find the precise threshold radius for a configuration space to be homotopy equivalent to the configuration space of points.
Performance and Politics in the Public Sphere
Directory of Open Access Journals (Sweden)
Pia Wiegmink
2011-12-01
Full Text Available Pia Wiegmink’s timely examination of the transforming transnational spaces of protest in a globalizing and technologically mediated public sphere in “Performance and Politics in the Public Sphere” offers a well-researched review of contemporary theory surrounding ideas of the political (Chantal Mouffe, the public sphere (Jürgen Habermas, the transnational public sphere (Nancy Fraser, and the reterritorialized transnational public sphere (Markus Schroer as the basis for her analysis of how the performance of political action in public—virtual or physical—is transformed by the capacity of the local to be played on a global stage, thus turning the citizen-actor into a cosmopolitan, transnational force. Tracing examples from the Seattle protests against the World Trade Organization meetings in 1999 by the Global Justice Movement to the work of the Electronic Disturbance Theater, from the civil rights movement to the subject matter of her larger study, “The Church of Life After Shopping,” “Billionaires for Bush,” and “The Yes Men,” Wiegmink provides an important analysis of the “alternative aesthetics” of the counterpublics’ formation, dissent, and action in and against hegemony. This selection is taken from her monograph, Protest EnACTed: Activist Performance in the Contemporary United States, a strong, cultural studies–focused contribution to transnational American Studies.
Production of Liquid Metal Spheres by Molding
Directory of Open Access Journals (Sweden)
Mohammed G. Mohammed
2014-10-01
Full Text Available This paper demonstrates a molding technique for producing spheres composed of eutectic gallium-indium (EGaIn with diameters ranging from hundreds of microns to a couple millimeters. The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs defined by replica molding. The metal flows into these features during spreading. The spontaneous formation of a thin oxide layer on the liquid metal keeps the metal flush inside these reservoirs. Subsequent exposure to acid removes the oxide and causes the metal to bead up into a sphere with a size dictated by the volume of the reservoirs. This technique allows for the production and patterning of droplets with a wide range of volumes, from tens of nanoliters up to a few microliters. EGaIn spheres can be embedded or encased subsequently in polymer matrices using this technique. These spheres may be useful as solder bumps, electrodes, thermal contacts or components in microfluidic devices (valves, switches, pumps. The ease of parallel-processing and the ability to control the location of the droplets during their formation distinguishes this technique.
DEFF Research Database (Denmark)
Brimberg, Jack; Juel, Henrik; Schöbel, Anita
2007-01-01
We consider the problem of locating a spherical circle with respect to existing facilities on a sphere, such that the sum of distances between the circle and the facilities is minimized or such that the maximum distance is minimized. The problem properties are analyzed, and we give solution...... contexts such as search-and-rescue missions and medical or biological studies....
Second virial coefficients of dipolar hard spheres
Philipse, A.P.; Kuipers, B.W.M.
2010-01-01
An asymptotic formula is reported for the second virial coefficient B2 of a dipolar hard-sphere (DHS) fluid, in zero external field, for strongly coupled dipolar interactions. This simple formula, together with the one for the weak-coupling B2, provides an accurate prediction of the second virial co
Ligand sphere conversions in terminal carbide complexes
DEFF Research Database (Denmark)
Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.; Bendix, Jesper
2016-01-01
Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...
DNS of Swirling Flow Past a Sphere
Higgins, Keith; Ooi, Andrew; Chong, Min; Balachandar, S.
2001-11-01
Experimental investigations into the swirling flow past a sphere have revealed a range of surprising and complex flow phenomena. These results have advanced our understanding in applications such as particle entrainment and the combustion of fuel droplets. Renewed interest in this problem has been kindled by recent experimental observations. (Mattner et al. 2001, submitted for review to J. Fluid Mech.) This has motivated the development of a fully spectral direct numerical simulation of the three-dimensional time-dependent swirling flow past a sphere. The effect of swirl on the various transitions in the wake structure behind a sphere is unknown. The main objective of our study is to identify transitions that occur with increasing Reynolds number and swirl strength. Firstly, we show the effect of swirl strength on the axisymmetric sphere wake and drag. Then, using a three-dimensional simulation, we examine the effect of swirl on the time histories of the lift, drag and velocities. We hope to show some visualisations of the topology of the 3D wake flow using the invariants of the velocity gradient tensor.
Metal-Matrix/Hollow-Ceramic-Sphere Composites
Baker, Dean M.
2011-01-01
A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.
Turbulent drag reduction using fluid spheres
Gillissen, J.J.J.
2013-01-01
Using direct numerical simulations of turbulent Couette flow, we predict drag reduction in suspensions of neutrally buoyant fluid spheres, of diameter larger than the Kolmogorov length scale. The velocity fluctuations are enhanced in the streamwise direction, and reduced in the cross-stream directio
Directory of Open Access Journals (Sweden)
Nobutaka Ono
2008-07-01
Full Text Available In this paper, we propose a novel system to localize a sound source in any planar direction using only two microphones. In our system, the two microphones are asymmetrically placed on a sphere, thus, 1 the diffraction by the sphere and the asymmetrical arrangement of the microphones give the localization cue including the frontback judgment, and 2 unlike the dummy head system, no previous measurements are necessary due to the analytical representation of the sphere diffraction. To deal with reverberation or ambient noises, we consider the maximum likelihood estimation of the direction of arrival with a diffuse noise model on a sphere. We present a real system that we built through the investigation of the optimal microphone arrangement for speech. The experimental results show that our system, which consists of two microphones mounted at ±46◦ angles on a 30mm-radius sphere, estimates a sound source direction including a front-back judgment with less than 10% errors in real environment.
Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere.
Baresch, Diego; Thomas, Jean-Louis; Marchiano, Régis
2013-01-01
This work aims to model the acoustic radiation forces acting on an elastic sphere placed in an inviscid fluid. An expression of the axial and transverse forces exerted on the sphere is derived. The analysis is based on the scattering of an arbitrary acoustic field expanded in the spherical coordinate system centered on the spherical scatterer. The sphere is allowed to be arbitrarily located. The special case of high order Bessel beams, acoustical vortices, are considered. These types of beams have a helicoidal wave front, i.e., a screw-type phase singularity and hence, the beam has a central dark core of zero amplitude surrounded by an intense ring. Depending on the sphere's radius, different radial equilibrium positions may exist and the sphere can be set in rotation around the beam axis by an azimuthal force. This confirms the pseudo-angular moment transfer from the beam to the sphere. Cases where the axial force is directed opposite to the direction of the beam propagation are investigated and the potential use of Bessel beams as tractor beams is demonstrated. Numerical results provide an impetus for further designing acoustical tweezers for potential applications in particle entrapment and remote controlled manipulation. PMID:23297880
A two-sphere model for bacteria swimming near solid surfaces
Dunstan, Jocelyn; Clement, Eric; Soto, Rodrigo
2011-01-01
We present a simple model for bacteria like \\emph{Escherichia coli} swimming near solid surfaces. It consists of two spheres of different radii connected by a dragless rod. The effect of the flagella is taken into account by imposing a force on the tail sphere and opposite torques exerted by the rod over the spheres. The hydrodynamic forces and torques on the spheres are computed by considering separately the interaction of a single sphere with the surface and with the flow produced by the other sphere. Numerically, we solve the linear system which contains the geometrical constraints and the force-free and torque-free conditions. The dynamics of this swimmer near a solid boundary is very rich, showing three different behaviors depending on the initial conditions: (1) swimming in circles in contact with the wall, (2) swimming in circles at a finite distance from the wall, and (3) swimming away from it. Furthermore, the order of magnitude of the radius of curvature for the circular motion is in the range $8-50...
Revitalization of the Public Sphere: A Comparison between Habermasian and the New Public Sphere
Directory of Open Access Journals (Sweden)
Muhammad Zubair Khan
2014-06-01
Full Text Available “Public sphere” is an important component of modern polity. Civil society brings the state in touch with the needs of the citizens through the medium of public sphere. However, Habermas argues that “public sphere” experienced refeudalization owing to various factors i.e. propaganda, cultural industry, market and state intervention. The “public” was condemned to be mere spectator again. This article argues that modern technologies enabled new public sphere (NPS can help restore public status as participant in the democratic process. By employing interpretivist approach the article compares the Habermasian ideal of public sphere with NPS and constructs a matrix, depicting the various related aspects between the two models for highlighting the revival of the public sphere.
VMware vSphere PowerCLI Reference Automating vSphere Administration
Dekens, Luc; Sizemore, Glenn; van Lieshout, Arnim; Medd, Jonathan
2011-01-01
Your One-Stop Reference for VMware vSphere Automation If you manage vSphere in a Windows environment, automating routine tasks can save you time and increase efficiency. VMware vSphere PowerCLI is a set of pre-built commands based on Windows PowerShell that is designed to help you automate vSphere processes involving virtual machines, datacenters, storage, networks, and more. This detailed guide-using a practical, task-based approach and real-world examples-shows you how to get the most out of PowerCLI's handy cmdlets. Learn how to: Automate vCenter Server and ESX/ESX(i) Server deployment and
Cavity formation by the impact of Leidenfrost spheres
Marston, Jeremy
2012-05-01
We report observations of cavity formation and subsequent collapse when a heated sphere impacts onto a liquid pool. When the sphere temperature is much greater than the boiling point of the liquid, we observe an inverted Leidenfrost effect where the sphere is encompassed by a vapour layer that prevents physical contact with the liquid. This creates the ultimate non-wetting scenario during sphere penetration through a free surface, producing very smooth cavity walls. In some cases during initial entry, however, the liquid contacts the sphere at the equator, leading to the formation of a dual cavity structure. For cold sphere impacts, where a contact line is observed, we reveal details of the contact line pinning, which initially forms a sawtooth pattern. We also observe surface waves on the cavity interface for cold spheres. We compare our experimental results to previous studies of cavity dynamics and, in particular, the influence of hydrophobicity on the entry of the sphere. © 2012 Cambridge University Press.
A sphere rolling on the inside surface of a cone
Energy Technology Data Exchange (ETDEWEB)
Campos, I [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Apartado Postal 21-939, Mexico City 04000, DF (Mexico); Fernandez-Chapou, J L [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Apartado Postal 21-267 Coyoacan, Mexico City 04000, DF (Mexico); Salas-Brito, A L [Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-7720 (United States); Vargas, C A [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Apartado Postal 21-267 Coyoacan, Mexico City 04000, DF (Mexico)
2006-05-01
We analyse the motion of a sphere that rolls without slipping on the inside of a conical surface having its axis in the direction of the constant gravitational field of the Earth. This non-holonomic system admits a solution in terms of quadratures. We exhibit that for each set of conditions defining the motion there is only one circular orbit which is stable. We show that its solutions can be found using an analogy with central force problems. We also discuss the case of motion with no gravitational field, that is, of motion on a freely falling cone.
An ancient relation between units of length and volume based on a sphere.
Directory of Open Access Journals (Sweden)
Elena Zapassky
Full Text Available The modern metric system defines units of volume based on the cube. We propose that the ancient Egyptian system of measuring capacity employed a similar concept, but used the sphere instead. When considered in ancient Egyptian units, the volume of a sphere, whose circumference is one royal cubit, equals half a hekat. Using the measurements of large sets of ancient containers as a database, the article demonstrates that this formula was characteristic of Egyptian and Egyptian-related pottery vessels but not of the ceramics of Mesopotamia, which had a different system of measuring length and volume units.
An ancient relation between units of length and volume based on a sphere.
Zapassky, Elena; Gadot, Yuval; Finkelstein, Israel; Benenson, Itzhak
2012-01-01
The modern metric system defines units of volume based on the cube. We propose that the ancient Egyptian system of measuring capacity employed a similar concept, but used the sphere instead. When considered in ancient Egyptian units, the volume of a sphere, whose circumference is one royal cubit, equals half a hekat. Using the measurements of large sets of ancient containers as a database, the article demonstrates that this formula was characteristic of Egyptian and Egyptian-related pottery vessels but not of the ceramics of Mesopotamia, which had a different system of measuring length and volume units. PMID:22470489
Hard spheres at a planar hard wall: Simulations and density functional theory
Davidchack, R. L.; Laird, B. B.; Roth, R.
2016-01-01
Hard spheres are a central and important model reference system for both homogeneous and inhomogeneous fluid systems. In this paper we present new high-precision molecular-dynamics computer simulations for a hard sphere fluid at a planar hard wall. For this system we present benchmark data for the density profile $\\rho(z)$ at various bulk densities, the wall surface free energy $\\gamma$, the excess adsorption $\\Gamma$, and the excess volume $v_{ex}$, which is closely related to $\\Gamma$. We c...
Complex data processing: fast wavelet analysis on the sphere
Wiaux, Y; Vielva, P
2007-01-01
In the general context of complex data processing, this paper reviews a recent practical approach to the continuous wavelet formalism on the sphere. This formalism notably yields a correspondence principle which relates wavelets on the plane and on the sphere. Two fast algorithms are also presented for the analysis of signals on the sphere with steerable wavelets.
21 CFR 886.3320 - Eye sphere implant.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Eye sphere implant. 886.3320 Section 886.3320 Food... DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3320 Eye sphere implant. (a) Identification. An eye sphere implant is a device intended to be implanted in the eyeball to occupy space following the...
The ARN critical dosimetry system
International Nuclear Information System (INIS)
The ARN critical dosimetry system is shown in this work. It includes personal and area dosemeters, and the information of typical spectra. The spectra of the critical facilities in our country are characterised by measurements with our Bonner Sphere System (BSS) or by computational methods in order to evaluate the dose in each case with the actual spectrum. The personal and area dosemeters are able to evaluate the gamma and neutron contributions. The detectors used are thermoluminescents, (TLD) 7Li:Mg,Ti for gamma and threshold detectors (Indium and sulphur pellets) and activation detectors Au (bare and Cd cover) for neutron. The Gamma-ray spectrometry is made with GeHp and MCA (Canberra) calibrated with 133Ba and 137Cs sources. The Beta-ray counting is made with a Geiger Muller (LND)(8%) with an electronic counter prototype developed in Argentina. The system is calibrated with the tioacetamida-technique carried out in our chemistry laboratory. The TLD are calibrated in Argentine SSDL with 60Co source, free in air. The calibration curve has been extended up to 10Gy. The neutron fluence distribution is obtained considering the thermal region as a Maxwellian distribution with a modal energy of 0.0253 eV and the intermediate region with a 1/E spectrum from 0.5 eV to E=200 keV. The basic data are the measured activities in the gold foils. The fast neutron fluence is calculated considering the mean cross section for the selected spectrum over the energy range. The basic data are the measured activities in indium foil and sulphur pellets with threshold energy of 1.7MeV and 2.5MeV respectively. The neutron kerma dose, the recoil charged particle dose and the contribution of the 1H(n, γ) 2H dose component, are calculated applying the dose conversion factors published in TRS211. The area dosemeter gives the gamma incident radiation kerma, and the personal dosemeter, the gamma total dose. This system has participated at the International Intercomparison of Criticality
Theory of tectonics in the sphere
Ribeiro, A; Taborda, R; Ribeiro, Antonio; Matias, Luis; Taborda, Rui
2005-01-01
Soft or Deformable Plate Tectonics in the sphere must follow geometric rules inferred from the orthographic projection. An analytic equivalent of this geometry can be derived by the application of Potential Field Methods in the case of Atlantic type oceans. Laplace equation must be obeyed by the velocity field between the ridge and the passive margin if we neglect the very slight compressibility of ocean lithosphere. A strain wave propagates in the sphere analogous to the behaviour of a free harmonic oscillator. Combining zonal harmonics of order one and sectorial harmonics of degree one we obtain a tesseral harmonic equivalent to the orthographic solution. This potential field approach is valid for homogeneous deformation regime in oceanic lithosphere. Above a compression threshold of 5 to 10% buckling and simultaneous faulting occurs. In Pacific type oceans a dynamic approach, similar to a forced oscillation, must be applied because there are sinks in subduction zones.
Packing circles and spheres on surfaces
Schiftner, Alexander
2009-01-01
Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry. © 2009 ACM.
Second-Generation Curvelets on the Sphere
Chan, Jennifer Y H; Kitching, Thomas D; McEwen, Jason D
2015-01-01
Curvelets are efficient to represent highly anisotropic signal content, such as local linear and curvilinear structure. First-generation curvelets on the sphere, however, suffered from blocking artefacts. We present a new second- generation curvelet transform, where scale-discretised curvelets are constructed directly on the sphere. Scale-discretised curvelets exhibit a parabolic scaling relation, are well-localised in both spatial and harmonic domains, support the exact analysis and synthesis of both scalar and spin signals, and are free of blocking artefacts. We present fast algorithms to compute the exact curvelet transform, reducing computational complexity from $\\mathcal{O}(L^5)$ to $\\mathcal{O}(L^3\\log_{2}{L})$ for signals band-limited at $L$. The implementation of these algorithms is made publicly available. Finally, we present an illustrative application demonstrating the effectiveness of curvelets for representing directional curve-like features in natural spherical images.
Packing circles and spheres on surfaces
Schiftner, Alexander
2009-12-01
Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry.
Wavelets, ridgelets and curvelets on the sphere
Starck, J L; Abrial, P; Nguyen, M; Starck, Jean-Luc; Moudden, Yassir; Abrial, Pierrick; Nguyen, Mai
2005-01-01
We present in this paper new multiscale transforms on the sphere, namely the isotropic undecimated wavelet transform, the pyramidal wavelet transform, the ridgelet transform and the curvelet transform. All of these transforms can be inverted i.e. we can exactly reconstruct the original data from its coefficients in either representation. Several applications are described. We show how these transforms can be used in denoising and especially in a Combined Filtering Method, which uses both the wavelet and the curvelet transforms, thus benefiting from the advantages of both transforms. An application to component separation from multichannel data mapped to the sphere is also described in which we take advantage of moving to a wavelet representation.
Bidirectional reflection effects in practical integrating spheres.
Mahan, J R; Walker, J A; Stancil, M M
2015-10-20
Integrating spheres play a central role in radiometric instrument calibration, surface optical property measurement, and radiant source characterization. Our work involves a simulation, based on the Monte Carlo ray-trace (MCRT) of bidirectional reflections within a practical integrating sphere pierced with two viewing ports. We used data from the literature to create an empirical model for the bidirectional reflection distribution function (BRF) of Spectralon suitable for use in the MCRT environment. The ratio of power escaping through the two openings is shown to vary linearly with wall absorptivity for both diffuse and bidirectional reflections. The sensitivity of this ratio to absorptivity is shown to be less when reflections are weakly bidirectional. PMID:26560384
Ceramica sphere production by a gel casting
International Nuclear Information System (INIS)
The technology of (Th,U)O2 microspheres production by gel casting and subsequente thermal treatment has been transferred from NUKEM GmbH assisted by Kraftwerk Union A.G., both West Germany, to NUCLEBRAS, where it was jointly adapted to produce microspheres suitable for pressing. As a result, there are now available various possibilities to produce ceramic spheres with different characteristics that can be used in different applications. Examples of these characteristics are the range of gel sphere diameters (200 to 5000 μmm) and the value of the specific surface (about 50m2/g for calcined (Th, U)O2 and potentially higher than m2/g for other ceramic materials) (Author)
Statistical inference for disordered sphere packings
Directory of Open Access Journals (Sweden)
Jeffrey Picka
2012-01-01
Full Text Available This paper gives an overview of statistical inference for disordered sphere packing processes. These processes are used extensively in physics and engineering in order to represent the internal structure of composite materials, packed bed reactors, and powders at rest, and are used as initial arrangements of grains in the study of avalanches and other problems involving powders in motion. Packing processes are spatial processes which are neither stationary nor ergodic. Classical spatial statistical models and procedures cannot be applied to these processes, but alternative models and procedures can be developed based on ideas from statistical physics.Most of the development of models and statistics for sphere packings has been undertaken by scientists and engineers. This review summarizes their results from an inferential perspective.
Quantum Isometry groups of the Podles Spheres
Bhowmick, Jyotishman; Goswami, Debashish
2008-01-01
For $\\mu \\in (0,1), c> 0,$ we identify the quantum group $SO_\\mu(3)$ as the universal object in the category of compact quantum groups acting by `orientation and volume preserving isometries' in the sense of \\cite{goswami2} on the natural spectral triple on the Podles sphere $S^2_{\\mu, c}$ constructed by Dabrowski, D'Andrea, Landi and Wagner in \\cite{{Dabrowski_et_al}}.
Poincar\\'e Sphere and Decoherence Problems
Kim, Y S
2012-01-01
Henri Poincar\\'e formulated the mathematics of the Lorentz transformations, known as the Poincar\\'e group. He also formulated the Poincar\\'e sphere for polarization optics. It is shown that these two mathematical instruments can be combined into one mathematical device which can address the internal space-time symmetries of elementary particles, decoherence problems in polarization optics, entropy problems, and Feynman's rest of the universe.
From Noncommutative Sphere to Nonrelativistic Spin
Deriglazov, Alexei A.(Dept. de Matematica, ICE, Universidade Federal de Juiz de Fora, MG, Brazil)
2009-01-01
Reparametrization invariant dynamics on a sphere, being parameterized by angular momentum coordinates, represents an example of noncommutative theory. It can be quantized according to Berezin-Marinov prescription, replacing the coordinates by Pauli matrices. Following the scheme, we present two semiclassical models for description of spin without use of Grassman variables. The first model implies Pauli equation upon the canonical quantization. The second model produces nonrelativistic limit o...
From Noncommutative Sphere to Nonrelativistic Spin
Deriglazov, Alexei A.
2010-02-01
Reparametrization invariant dynamics on a sphere, being parameterized by angular momentum coordinates, represents an example of noncommutative theory. It can be quantized according to Berezin-Marinov prescription, replacing the coordinates by Pauli matrices. Following the scheme, we present two semiclassical models for description of spin without use of Grassman variables. The first model implies Pauli equation upon the canonical quantization. The second model produces nonrelativistic limit of the Dirac equation implying correct value for the electron spin magnetic moment.
From Noncommutative Sphere to Nonrelativistic Spin
Directory of Open Access Journals (Sweden)
Alexei A. Deriglazov
2010-02-01
Full Text Available Reparametrization invariant dynamics on a sphere, being parameterized by angular momentum coordinates, represents an example of noncommutative theory. It can be quantized according to Berezin-Marinov prescription, replacing the coordinates by Pauli matrices. Following the scheme, we present two semiclassical models for description of spin without use of Grassman variables. The first model implies Pauli equation upon the canonical quantization. The second model produces nonrelativistic limit of the Dirac equation implying correct value for the electron spin magnetic moment.
Soft-sphere model for liquid metals
International Nuclear Information System (INIS)
A semi-empirical soft-sphere model of fluids is modified for application to the thermodynamic properties of liquid metals. Enthalpy, volume, and sound speed are computed as functions of temperature for 13 metals and compared with experimental data. Critical points and coexistence curves are also computed and compared with experimental data, where these have been measured. Strengths and weaknesses of the model are discussed
The sea - landfill or sphere of life
International Nuclear Information System (INIS)
The Environmental Information Agency held its third seminar for journalists, entitled 'The sea - landfill or sphere of life' in Hamburg on July 18, 1989. Some 40 journalists - radio journalists and journalists from the staff of dailies and the technical press - took the opportunity to listen for a day to short lectures on selected subjects and submit their questions concerning sea pollution to scientists of diverse disciplines. (orig.)
Spheres of diversities: from concept to policy
Zapata Barrero, Ricard; Ewijk, Anne R. van
2011-01-01
This book is concerned with the diversity debate in the context of Europe. It is about diversity both as a concept and as a policy. Indeed, the epicentre of the analysis is the link between the spheres of diversity-concepts and diversity-policies. The book explores how the concept of diversity orientates policies and management, and also how public/private management facilitates new policy orientations. As such, the book enhances conceptual thinking on diversity, but also fa...
Supersymmetric theories on squashed five-sphere
Imamura, Yosuke
2012-01-01
We construct supersymmetric theories on the SU(3)xU(1) symmetric squashed five-sphere with 2, 4, 6, and 12 supercharges. We first determine the Killing equation by dimensional reduction from 6d, and use Noether procedure to construct actions. The supersymmetric Yang-Mills action is straightforwardly obtained from the supersymmetric Chern-Simons action by using a supersymmetry preserving constant vector multiplet.
Turbulator Diameter and Drag on a Sphere
Directory of Open Access Journals (Sweden)
Nicholas Robson
2009-01-01
Full Text Available A sphere with turbulators of varying diameter was pulled through water with constant force. The relationship between the diameter of the turbulators and the ball’s total coefficient of drag was determined. The maximum drag reduction was found with turbulators of 0.002 m. The drag reduction was less for turbulators of sizes 0.004 m and 0.005 m.
The Separate Spheres Model of Gendered Inequality
Miller, Andrea L.; Borgida, Eugene
2016-01-01
Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychologic...
Sticky red spheres can be used to capture western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), but whether they capture more flies than yellow spheres and panels is poorly known. The objective of this study was to compare fly captures on red spheres versus yellow traps so...
Agglomeration techniques for the production of spheres for packed beds
International Nuclear Information System (INIS)
One attractive fusion-breeder-blanket design features a lithium bearing ceramic in the form of spheres packed into a random array. The spheres have diameters of 3 mm and 0.3 mm. This report surveys techniques used to produce ceramic spheres on an industrial scale. The methods examined include tumbling and mixing granulation, extrusion, briquetting and pelletizing. It is concluded that the required quantities of 0.3 mm diameter spheres can be produced by the tumbling agglomeration of a feed powder. The 3 mm diameter spheres will be made using a process of extrusion, chopping and rolling
On the Impact of Spheres onto Liquid Pools and Ultra-viscous Films
Mansoor, Mohammad Mujtaba
2016-06-01
The free-surface impact of spheres is important to several applications in the military, industry and sports such as the water-entry of torpedoes, dip-coating procedures and slamming of boats. This two-part thesis attempts to explore this field by investigating cavity formation during the impact of spheres with deep liquid pools and cavitation in thin ultra-viscous films. Part I reports results from an experimental study on the formation of stable- streamlined and helical cavity wakes following the free-surface impact of heated Leidenfrost spheres. The Leidenfrost effect encapsulates the sphere by a vapor layer to prevent any physical contact with the surrounding liquid. This phenomenon is essential for the pacification of acoustic rippling along the cavity interface to result in a stable-streamlined cavity wake. Such a streamlined configuration experiences drag coefficients an order of magnitude lower than those acting on room temperature spheres. A striking observation is the formation of helical cavities which occur for impact Reynolds numbers 0 ≳ 1.4 × 105 and are characterized by multiple interfacial ridges, stemming from and rotating synchronously about an evident contact line around the sphere equator. This helical configuration has 40-55% smaller overall force coefficients than those obtained in the formation of stable cavity wakes. Part II of this thesis investigates the inception of cavitation and resulting structures when a sphere collides with a solid surface covered with a layer of non-Newtonian liquid having kinematic viscosities of up to 0 = 20,000,000 cSt. The existence of shear-stress- induced cavitation during sphere approach towards the base wall (i.e. the pressurization stage) in ultra-viscous films is shown using a synchronized dual-view high-speed imaging system. In addition, cavitation by depressurization is noted for a new class of non-contact cases whereby the sphere rebounds without any prior contact with the solid wall. Horizontal
Confined disordered strictly jammed binary sphere packings
Chen, D.; Torquato, S.
2015-12-01
Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these
Umebayashi, Daisuke; Coles, Brenda; van der Kooy, Derek
2016-05-01
Remyelination is the goal of potential cell transplantation therapies for demyelinating diseases and other central nervous system injuries. Transplantation of oligodendrocyte precursor cells (OPCs) can result in remyelination in the central nervous system, and induced pluripotent stem cells (iPSCs) are envisioned to be an autograft cell source of transplantation therapy for many cell types. However, it remains time-consuming and difficult to generate OPCs from iPSCs. Clonal sphere preparations are reliable cell culture methods for purifying select populations of proliferating cells. To make clonal neurospheres from human embryonic stem cell (ESC)/iPSC colonies, we have found that a monolayer differentiation phase helps to increase the numbers of neural precursor cells. Indeed, we have compared a direct isolation of neural stem cells from human ESC/iPSC colonies (protocol 1) with monolayer neural differentiation, followed by clonal neural stem cell sphere preparations (protocol 2). The two-step method combining monolayer neuralization, followed by clonal sphere preparations, is more useful than direct sphere preparations in generating mature human oligodendrocytes. The initial monolayer culture stage appears to bias cells toward the oligodendrocyte lineage. This method of deriving oligodendrocyte lineage spheres from iPSCs represents a novel strategy for generating OPCs. PMID:26972950
Hopf Maps, Lowest Landau Level, and Fuzzy Spheres
Directory of Open Access Journals (Sweden)
Kazuki Hasebe
2010-09-01
Full Text Available This paper is a review of monopoles, lowest Landau level, fuzzy spheres, and their mutual relations. The Hopf maps of division algebras provide a prototype relation between monopoles and fuzzy spheres. Generalization of complex numbers to Clifford algebra is exactly analogous to generalization of fuzzy two-spheres to higher dimensional fuzzy spheres. Higher dimensional fuzzy spheres have an interesting hierarchical structure made of ''compounds'' of lower dimensional spheres. We give a physical interpretation for such particular structure of fuzzy spheres by utilizing Landau models in generic even dimensions. With Grassmann algebra, we also introduce a graded version of the Hopf map, and discuss its relation to fuzzy supersphere in context of supersymmetric Landau model.
Application-Specific Instruction Set Processor Implementation of List Sphere Detector
Directory of Open Access Journals (Sweden)
Salmela Perttu
2007-01-01
Full Text Available Multiple-input multiple-output (MIMO technology enables higher transmission capacity without additional frequency spectrum and is becoming a part of many wireless system standards. Sphere detection has been introduced in MIMO systems to achieve maximum likelihood (ML or near-ML estimation with reduced complexity. This paper reviews related work on sphere detector implementations and presents an application-specific instruction set processor (ASIP implementation of K-best list sphere detector (LSD using transport triggered architecture (TTA. The implementation is based on using memory and heap data structure for symbol vector sorting. The design space is explored by presenting several variations of the implementation and comparing them with each other in terms of their latencies and hardware complexities. An early proposal for a parallelized architecture with a decoding throughput of approximately 5.3 Mbps is presented
SPHERES tethered formation flight testbed: advancements in enabling NASA's SPECS mission
Chung, Soon-Jo; Adams, Danielle; Saenz-Otero, Alvar; Kong, Edmund; Miller, David W.; Leisawitz, David; Lorenzini, Enrico; Sell, Steve
2006-06-01
This paper reports on efforts to control a tethered formation flight spacecraft array for NASA's SPECS mission using the SPHERES test-bed developed by the MIT Space Systems Laboratory. Specifically, advances in methodology and experimental results realized since the 2005 SPIE paper are emphasized. These include a new test-bed setup with a reaction wheel assembly, a novel relative attitude measurement system using force torque sensors, and modeling of non-ideal tethers to account for tether vibration modes. The nonlinear equations of motion of multi-vehicle tethered spacecraft with elastic flexible tethers are derived from Lagrange's equations. The controllability analysis indicates that both array resizing and spin-up are fully controllable by the reaction wheels and the tether motor, thereby saving thruster fuel consumption. Based upon this analysis, linear and nonlinear controllers have been successfully implemented on the tethered SPHERES testbed, and tested at the NASA MSFC's flat floor facility using two and three SPHERES configurations.
Statistical equilibria of the coupled barotropic flow and shallow water flow on a rotating sphere
Ding, Xueru
The motivation of this research is to build equilibrium statistical models that can apply to explain two enigmatic phenomena in the atmospheres of the solar system's planets: (1) the super-rotation of the atmospheres of slowly-rotating terrestrial planets---namely Venus and Titan, and (2) the persistent anticyclonic large vortex storms on the gas giants, such as the Great Red Spot (GRS) on Jupiter. My thesis is composed of two main parts: the first part focuses on the statistical equilibrium of the coupled barotropic vorticity flow (non-divergent) on a rotating sphere; the other one has to do with the divergent shallow water flow rotating sphere system. The statistical equilibria of these two systems are simulated in a wide range of parameter space by Monte Carlo methods based on recent energy-relative enstrophy theory and extended energy-relative enstrophy theory. These kind of models remove the low temperatures defect in the old classical doubly canonical energy-enstrophy theory which cannot support any phase transitions. The other big difference of our research from previous work is that we work on the coupled fluid-sphere system, which consists of a rotating high density rigid sphere, enveloped by a thin shell of fluid. The sphere is considered to have infinite mass and angular momentum; therefore, it can serve as a reservoir of angular momentum. Unlike the fluid sphere system itself, the coupled fluid sphere system allows for the exchange of angular momentum between the atmosphere and the solid planet. This exchange is the key point in any model that is expected to capture coherent structures such as the super-rotation and GRS-like vortices problems in planetary atmospheres. We discovered that slowly-rotating planets can have super-rotation at high energy state. All known slowly-rotating cases in the solar system---Venus and Titan---have super-rotation. Moreover, we showed that the anticyclonicity in the GRS-like structures is closely associated with the
Wang, Dan Ping
2009-10-27
Nanoparticles are often used as seeds to grow one-dimensional nanomaterials or as core materials to prepare core-shell nanostructures. On the other hand, the presynthesized inorganic nanoparticles can also be used as starting building blocks to prepare inorganic-polymer nanocomposites. In this work, we explore the roles of metal-oxide nanoparticles (anatase TiO2) in the area of constructional synthesis of highly complex core-shell and hollow sphere nanostructures comprising SiO2, TiO2, and polyaniline (PAN). In particular, multifunctional roles of oleate-surfactant-protected TiO2 nanoparticles have been revealed in this study: they provide starting sites for polymerization of aniline on the surface of SiO2 mesospheres; they land on the inner surface of polyaniline shell to form a secondary material phase; they work as initial crystalline seeds for homogeneous growth of interior TiO2 shell; and they serve as primary nanobuilding blocks to form exterior TiO2 shell on the polyaniline via self-assembly. With the assistance of the TiO2 nanoparticles, a total of six complex core-shell and hollow sphere nanocomposites (SiO 2/TiO2, SiO2/TiO2/PAN, SiO 2/TiO2/PAN/TiO2, TiO2/PAN, TiO 2/PAN/TiO2, and TiO2/TiO2) have been made in this work through controlled self-assembly, templating growth, polymerization, and homogeneous seeded growth. Applicability of these nanostructures in photocatalytic applications has also been demonstrated by our preliminary investigations. The easy separation of used catalysts after reaction seems to be advantageous because of relatively large external diameters of the lightweight nanocomposites. © 2009 American Chemical Society.
Energy Technology Data Exchange (ETDEWEB)
Anon.
2010-07-01
In the late autumn of 2009, the Life and Style hotel 'Kameha Grand Bonn' (Bonn, Federal Republic of Germany) was opened. It lies regionally beautiful at the 'Bonn Bogen' on the right side of the River Rhine. Owner and investor of the 100 million Euro expensive project is the private inventory owner BonnVisio Real Estate GmbH and Co. KG (Bonn, Federal Republic of Germany). The extravagant and unmistakable hotel architecture with a building silhouette dropping to the River Rhine was developed by the architect Karl-Heinz Schommer (Bonn, Federal Republic of Germany). By means of a symbiosis from passive solar power, cooling system and resources conservating climate concept based on geothermal energy, the hotel fulfils the requirements of a Green Building.
International Nuclear Information System (INIS)
This paper presents a method to reconstruct the absolute shape of a sphere—i.e. a topography of radii—using the sphere interferometer of PTB in combination with a stitching approach. The method allows for the reconstruction of absolute radii instead of the relative shape deviations which result from conventional sphericity measurements. The sphere interferometer was developed for the volume determination of spherical material measures—in particular the spheres of the Avogadro project—by precise diameter measurements with an uncertainty of 1 nm or less. In the scope of the present work a procedure has been implemented that extends the applicability of the interferometer to fields where not the volume or diameter but the direction-dependent radii are of interest. The results of the reconstruction were compared quantitatively to the independent results of sphericity measurements from CSIRO
Rapid sphere sizing using a Bayesian analysis of reciprocal space imaging data.
Ziovas, K; Sederman, A J; Gehin-Delval, C; Gunes, D Z; Hughes, E; Mantle, M D
2016-01-15
Dispersed systems are important in many applications in a wide range of industries such as the petroleum, pharmaceutical and food industries. Therefore the ability to control and non-invasively measure the physical properties of these systems, such as the dispersed phase size distribution, is of significant interest, in particular for concentrated systems, where microscopy or scattering techniques may not apply or with very limited output quality. In this paper we show how reciprocal space data acquired using both 1D magnetic resonance imaging (MRI) and 2D X-ray micro-tomographic (X-ray μCT) data can be analysed, using a Bayesian statistical model, to extract the sphere size distribution (SSD) from model sphere systems and dispersed food foam samples. Glass spheres-in-xanthan gels were used as model samples with sphere diameters (D) in the range of 45μm⩽D⩽850μm. The results show that the SSD was successfully estimated from both the NMR and X-ray μCT with a good degree of accuracy for the entire range of glass spheres in times as short as two seconds. After validating the technique using model samples, the Bayesian sphere sizing method was successfully applied to air/water foam samples generated using a microfluidics apparatus with 160μm⩽D⩽400μm. The effect of different experimental parameters such as the standard deviation of the bubble size distribution and the volume fraction of the dispersed phase is discussed. PMID:26439290
Stokes flow between eccentric rotating spheres with slip regime
Faltas, M. S.; Saad, E. I.
2012-10-01
The steady axisymmetric flow problem of a viscous fluid contained between two eccentric spheres that rotate about an axis joining their centers with different angular velocities is considered. A linear slip of Basset-type boundary condition at both surfaces of the spherical particle and the container is used. Under the Stokesian assumption, a general solution is constructed from the superposition of basic solutions in the spherical coordinate systems based on the inner solid particle and the spherical container. The boundary conditions on the particle's surface and spherical container are satisfied by a collocation technique. Numerical results for the coupling coefficient acting on the particle are obtained with good convergence for various values of the ratio of particle-to-container radii, the relative distance between the centers of the particle and container, the slip coefficients and the relative angular velocity. In the limiting cases, the numerical values of the coupling coefficient for the solid sphere in concentric position with the container and when the particle is near the inner surface of the container are obtained, and the results are in good agreement with the available values in the literature. The variation of the coupling coefficient with respect the parameters considered are tabulated and displayed graphically.
Scaled particle theory for hard sphere pairs. I. Mathematical structure
Stillinger, Frank H.; Debenedetti, Pablo G.; Chatterjee, Swaroop
2006-11-01
We develop an extension of the original Reiss-Frisch-Lebowitz scaled particle theory that can serve as a predictive method for the hard sphere pair correlation function g(r ). The reversible cavity creation work is analyzed both for a single spherical cavity of arbitrary size, as well as for a pair of identical such spherical cavities with variable center-to-center separation. These quantities lead directly to a prediction of g(r ). Smooth connection conditions have been identified between the small-cavity situation where the work can be exactly and completely expressed in terms of g(r ), and the large-cavity regime where macroscopic properties become relevant. Closure conditions emerge which produce a nonlinear integral equation that must be satisfied by the pair correlation function. This integral equation has a structure which straightforwardly generates a solution that is a power series in density. The results of this series replicate the exact second and third virial coefficients for the hard sphere system via the contact value of the pair correlation function. The predicted fourth virial coefficient is approximately 0.6% lower than the known exact value. Detailed numerical analysis of the nonlinear integral equation has been deferred to the subsequent paper.
Relativistic Landau models and generation of fuzzy spheres
Hasebe, Kazuki
2016-07-01
Noncommutative geometry naturally emerges in low energy physics of Landau models as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically applied to the relativistic Landau models. In the first half of the paper, a detail analysis of the relativistic Landau problems on a sphere is presented, where a concise expression of the Dirac-Landau operator eigenstates is obtained based on algebraic methods. We establish SU(2) “gauge” transformation between the relativistic Landau model and the Pauli-Schrödinger nonrelativistic quantum mechanics. After the SU(2) transformation, the Dirac operator and the angular momentum operators are found to satisfy the SO(3, 1) algebra. In the second half, the fuzzy geometries generated from the relativistic Landau levels are elucidated, where unique properties of the relativistic fuzzy geometries are clarified. We consider mass deformation of the relativistic Landau models and demonstrate its geometrical effects to fuzzy geometry. Super fuzzy geometry is also constructed from a supersymmetric quantum mechanics as the square of the Dirac-Landau operator. Finally, we apply the level projection method to real graphene system to generate valley fuzzy spheres.
Evaluation framework for K-best sphere decoders
Shen, Chungan
2010-08-01
While Maximum-Likelihood (ML) is the optimum decoding scheme for most communication scenarios, practical implementation difficulties limit its use, especially for Multiple Input Multiple Output (MIMO) systems with a large number of transmit or receive antennas. Tree-searching type decoder structures such as Sphere decoder and K-best decoder present an interesting trade-off between complexity and performance. Many algorithmic developments and VLSI implementations have been reported in literature with widely varying performance to area and power metrics. In this semi-tutorial paper we present a holistic view of different Sphere decoding techniques and K-best decoding techniques, identifying the key algorithmic and implementation trade-offs. We establish a consistent benchmark framework to investigate and compare the delay cost, power cost, and power-delay-product cost incurred by each method. Finally, using the framework, we propose and analyze a novel architecture and compare that to other published approaches. Our goal is to explicitly elucidate the overall advantages and disadvantages of each proposed algorithms in one coherent framework. © 2010 World Scientific Publishing Company.
Electrolyte-resistance change due to an insulating sphere in contact with a disk electrode
Energy Technology Data Exchange (ETDEWEB)
Bouazaze, H. [Universite Pierre et Marie Curie-Paris6, Laboratoire Interfaces et Systemes Electrochimiques, CNRS, UPR15-LISE, 4 place Jussieu, case courrier 133, 75252 Paris Cedex 05 (France); Fransaer, J. [Department of Metallurgy and Material Engineering, Katholieke Universiteit Leuven, 3001 Leuven (Belgium); Huet, F., E-mail: francois.huet@upmc.f [Universite Pierre et Marie Curie-Paris6, Laboratoire Interfaces et Systemes Electrochimiques, CNRS, UPR15-LISE, 4 place Jussieu, case courrier 133, 75252 Paris Cedex 05 (France); Rousseau, P.; Vivier, V. [Universite Pierre et Marie Curie-Paris6, Laboratoire Interfaces et Systemes Electrochimiques, CNRS, UPR15-LISE, 4 place Jussieu, case courrier 133, 75252 Paris Cedex 05 (France)
2010-02-01
This work is aimed at improving the quantitative analysis of the electrolyte-resistance (ER) fluctuations generated by two-phase systems with dispersed gaseous, liquid, or solid insulating entities in a conductive electrolyte. The primary potential distribution around a disk electrode in contact with a small insulating sphere, which simulates a spherical particle, drop, or gas bubble sitting on a disk electrode used as a sensor, was calculated with a collocation method in order to derive the increment in ER caused by the sphere. For a sphere of size equal to one-tenth of the electrode size, the values of the ER increments were found to be very low and to depend on the sphere position: 0.3% close to the edge of the electrode and 0.05% at its centre. Despite the influence of variations in the electrolyte temperature and of the approximate horizontality of the electrode, these low values could be measured experimentally by scanning insulating spheres of 1 and 2 mm in diameter above or in contact with a stainless steel electrode of 10 mm in diameter, using the motorized translation stage of a scanning electrochemical microscope and a home-made electronic device measuring low-amplitude ER fluctuations.
Monoenergetic Critical Parameters and Decay Constants for Small Spheres and Thin Slabs
International Nuclear Information System (INIS)
A method has been developed for the solution of the monoenergetic critical problem for a slab or a sphere. The method utilizes an expansion of the flux density in Legendre polynomials of the coordinate. It is equivalent to the usual variational method using powers of the coordinate, but the use of Legendre polynomials makes it possible to calculate most of the elements of the resulting matrix by means of recurrence formulae. A series of calculations has been performed for slabs and spheres with d ≤ 5, where d is the thickness of the slab or the diameter of the sphere measured in mean free paths. The critical problem is equivalent to the problem of determining the decay constant of a subcritical system with an exponentially decaying flux density. In consequence the calculations also give a series of decay constants for subcritical slabs and spheres. Comparisons with diffusion theory show that large errors can result from uncritical application of diffusion theory to small assemblies. The author would recommend that measurements on small pulsed assemblies be analyzed by means of more accurate methods, for example the present method extended to multi-group treatment of the energy dependence. The results of the calculations show clearly the interesting fact that the exponentially decaying flux of very small spheres has a minimum at the center
Oyane, Ayako; Araki, Hiroko; Nakamura, Maki; Shimizu, Yoshiki; Shubhra, Quazi T H; Ito, Atsuo; Tsurushima, Hideo
2016-05-01
Surface-mediated gene delivery systems have many potential applications in tissue engineering. We recently fabricated an assembly consisting of DNA-amorphous calcium phosphate (DNA-ACP) nanocomposite spheres on a polymer substrate via coprecipitation in a labile supersaturated calcium phosphate (CaP) solution and demonstrated the assembly's high gene delivery efficacy. In this study, we conducted a detailed investigation of the coprecipitation process in solution and revealed that the negatively charged DNA molecules were immobilized in the ACP spheres during the initial stage of coprecipitation and functioned as both sphere-dispersing and size-regulating agents. As a result, the DNA-ACP nanocomposites grew into size-regulated submicrospheres in solution and assembled onto the substrate via gravity sedimentation. The assembled nanocomposite spheres were chemically anchored to the substrate surface through an intermediate layer of CaP-based nanoparticles that was formed heterogeneously at the substrate surface. The coprecipitation conditions, i.e., coprecipitation time and Ca and P concentrations in solution, greatly affected the state of assembly of the nanocomposite spheres, thereby influencing the gene expression level of the cells cultured on the substrate. Increasing the number density and decreasing the size of the nanocomposite spheres did not always increase the assembly's gene delivery efficacy (per surface area of the substrate) due to adverse effects on cellular viability. As demonstrated herein, controlling the coprecipitation conditions is important for designing a cell-stimulating and biocompatible scaffold surface consisting of an assembly of DNA-ACP nanocomposite spheres. PMID:26896659
Embeddability in the 3-sphere is decidable
Matoušek, Jiří; Sedgwick, Eric; Tancer, Martin; Wagner, Uli
2014-01-01
We show that the following algorithmic problem is decidable: given a $2$-dimensional simplicial complex, can it be embedded (topologically, or equivalently, piecewise linearly) in $\\mathbf{R}^3$? By a known reduction, it suffices to decide the embeddability of a given triangulated 3-manifold $X$ into the 3-sphere $S^3$. The main step, which allows us to simplify $X$ and recurse, is in proving that if $X$ can be embedded in $S^3$, then there is also an embedding in which $X$ has a short meridi...
Conformally flat anisotropic spheres in general relativity
Herrera, L; Ospina, J F; Fuenmayor, E
2001-01-01
The condition for the vanishing of the Weyl tensor is integrated in the spherically symmetric case. Then, the resulting expression is used to find new, conformally flat, interior solutions to Einstein equations for locally anisotropic fluids. The slow evolution of these models is contrasted with the evolution of models with similar energy density or radial pressure distribution but non-vanishing Weyl tensor, thereby bringing out the different role played by the Weyl tensor, the local anisotropy of pressure and the inhomogeneity of the energy density in the collapse of relativistic spheres.
Sphere impact and penetration into wet sand
Marston, J. O.
2012-08-07
We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.
Sphere-cone-polynomial special window with good aberration characteristic
International Nuclear Information System (INIS)
Optical windows with external surfaces shaped to satisfy operational environment needs are known as special windows. A novel special window, a sphere-cone-polynomial (SCP) window, is proposed. The formulas of this window shape are given. An SCP MgF2 window with a fineness ratio of 1.33 is designed as an example. The field-of-regard (FOR) angle is ±75°. From the window system simulation results obtained with the calculated fluid dynamics (CFD) and optical design software, we find that compared to the conventional window forms, the SCP shape can not only introduce relatively less drag in the airflow, but also have the minimal effect on imaging. So the SCP window optical system can achieve a high image quality across a super wide FOR without adding extra aberration correctors. The tolerance analysis results show that the optical performance can be maintained with a reasonable fabricating tolerance to manufacturing errors
A fully spectral methodology for magnetohydrodynamic calculations in a whole sphere
Marti, P.; Jackson, A.
2016-01-01
We present a fully spectral methodology for magnetohydrodynamic (MHD) calculations in a whole sphere. The use of Jones-Worland polynomials for the radial expansion guarantees that the physical variables remain infinitely differentiable throughout the spherical volume. Furthermore, we present a mathematically motivated and systematic strategy to relax the very stringent time step constraint that is present close to the origin when a spherical harmonic expansion is used for the angular direction. The new constraint allows for significant savings even on relatively simple solutions as demonstrated on the so-called full sphere benchmark, a specific problem with a very accurately-known solution. The numerical implementation uses a 2D data decomposition which allows it to scale to thousands of cores on present-day high performance computing systems. In addition to validation results, we also present three new whole sphere dynamo solutions that present a relatively simple structure.
Wang, T. G.; Elleman, D. D. (Inventor)
1982-01-01
A system for forming hollow spheres containing pressured gas is described which includes a cylinder device containing a molten solid material with a nozzle at its end. A second gas nozzle, lying slightly upstream from the tip of the first nozzle, is connected to a source that applies pressured filler gas that is to fill the hollow spheres. High pressure is applied to the molten metal, as by moving a piston within the cylinder device, to force the molten material out of the first nozzle. At the same time, pressured gas fills the center of the extruded hollow liquid pipe that breaks into hollow spheres. The environment outside the nozzles contains gas at a high pressure such as 100 atmospheres. Gas is supplied to the gas nozzle at a slightly higher pressure such as 101 atmospheres. The pressure applied to the molten material is at a still higher pressure such as 110 atmospheres.
The optimal rolling of a sphere, with twisting but without slipping
Energy Technology Data Exchange (ETDEWEB)
Beschatnyi, I Yu [Program Systems Institute, Russian Academy of Sciences, Pereslavl' -Zalesskii, Yaroslavl' Region (Russian Federation)
2014-02-28
The problem of a sphere rolling on the plane, with twisting but without slipping, is considered. It is required to roll the sphere from one configuration to another in such a way that the minimum of the action is attained. We obtain a complete parametrization of the extremal trajectories and analyse the natural symmetries of the Hamiltonian system of the Pontryagin maximum principle (rotations and reflections) and their fixed points. Based on the estimates obtained for the fixed points we prove upper estimates for the cut time, that is, the moment of time when an extremal trajectory loses optimality. We consider the problem of re-orienting the sphere in more detail; in particular, we find diffeomorphic domains in the pre-image and image of the exponential map which are used to construct the optimal synthesis. Bibliography: 15 titles.
A Multiple Sphere T-Matrix Fortran Code for Use on Parallel Computer Clusters
Mackowski, D. W.; Mishchenko, M. I.
2011-01-01
A general-purpose Fortran-90 code for calculation of the electromagnetic scattering and absorption properties of multiple sphere clusters is described. The code can calculate the efficiency factors and scattering matrix elements of the cluster for either fixed or random orientation with respect to the incident beam and for plane wave or localized- approximation Gaussian incident fields. In addition, the code can calculate maps of the electric field both interior and exterior to the spheres.The code is written with message passing interface instructions to enable the use on distributed memory compute clusters, and for such platforms the code can make feasible the calculation of absorption, scattering, and general EM characteristics of systems containing several thousand spheres.
Chaaban, Anas
2016-02-03
The capacity of the free-space optical channel is studied. A new recursive approach for bounding the capacity of the channel based on sphere-packing is proposed. This approach leads to new capacity upper bounds for a channel with a peak intensity constraint or an average intensity constraint. Under an average constraint only, the derived bound is tighter than an existing sphere-packing bound derived earlier by Farid and Hranilovic. The achievable rate of a truncated-Gaussian input distribution is also derived. It is shown that under both average and peak constraints, this achievable rate and the sphere-packing bounds are within a small gap at high SNR, leading to a simple high-SNR capacity approximation. Simple fitting functions that capture the best known achievable rate for the channel are provided. These functions can be of practical importance especially for the study of systems operating under atmospheric turbulence and misalignment conditions.
Study of sol--gel processing for fabrication of hollow silica--aerogel spheres
International Nuclear Information System (INIS)
Preliminary results were previously reported indicating that uniform, hollow silica--aerogel spheres of controlled size and thickness can be fabricated by controlled hydrolysis and condensation of tetraethylorthosilicate (TEOS). The method consists of first producing a stream of hollow drops of a mixture of TEOS, H2O, ethanol, and a catalyst using a dual-nozzle system and then introducing the drops into a gelation chamber where the drops solidify into a rigid form while being levitated by a gelation gas mixture. A detailed further study designed to understand and control the kinetics of the sol--gel processing that is responsible for the hollow silica--aerogel sphere formation is described. Specifically, the optimal rheology and stoichiometry of the reactant solution, the make-up of the gelation/levitation gas mixture, and the characteristics of the resulting silica--aerogel spheres, such as the size, thickness, porosity, pore size, and density, are investigated
A multiple sphere T-matrix Fortran code for use on parallel computer clusters
International Nuclear Information System (INIS)
A general-purpose Fortran-90 code for calculation of the electromagnetic scattering and absorption properties of multiple sphere clusters is described. The code can calculate the efficiency factors and scattering matrix elements of the cluster for either fixed or random orientation with respect to the incident beam and for plane wave or localized-approximation Gaussian incident fields. In addition, the code can calculate maps of the electric field both interior and exterior to the spheres. The code is written with message passing interface instructions to enable the use on distributed memory compute clusters, and for such platforms the code can make feasible the calculation of absorption, scattering, and general EM characteristics of systems containing several thousand spheres.
Realizing variable contrast technique in MRC measuring target using integrating sphere
Institute of Scientific and Technical Information of China (English)
Wenjuan Li(李文娟); Chao Qi(齐超); Jingmin Dai(戴景民)
2004-01-01
In order to realize variable contrast in the minimum resolvable contrast(MRC)measuring target in the visible imaging system, a novel technique is presented, which adopts two integrating spheres to illuminate two sides of target respectively and the different contrasts can be achieved by regulating the luminancein two integrating spheres. This technique can make the contrast be regulated more conveniently. Based on this technique, the MRC measuring device is developed. This device can be used in all kinds of trial fields. The expanded uncertainty of measuring MRC is less than 3％.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Monodisperse polystyrene (PS) colloidal spheres were successfully prepared through emulsifier-free emulsion polymerization by controlling the polymerization reaction time, ionic strength of the system, concentration of the ionic copolymer (sodium p-styrenesulfonate) and other factors. The PS colloidal spheres were assembled into colloidal crystals whose structures were mainly face-centered cubic (fcc) close-packed. Then FDTD method was used to calculate the color-rendering characteristics of the colloidal crystals surface. The calculated results were consistent with the experimental results.
Numerical calculation of the Casimir forces between a gold sphere and a nanocomposite sheet
International Nuclear Information System (INIS)
The repulsive Casimir force is expected as a force which enables to levitate small objects such as machine parts used in Micro Electro Mechanical Systems (MEMS), and superlubricity in MEMS may be realized by this levitation. We study the Casimir force between a gold sphere and a nanocomposite sheet containing many nickel nanoparticles. In particular, we focus on the dependence of the Casimir force on the separation between the gold sphere and the surface of the nanocomposite sheet. The Casimir force changes from the attractive force to the repulsive force as the separation increases. The strength of the repulsive force is, however, too small to levitate MEMS parts.
The pressure of a hard sphere fluid on a curved surface
International Nuclear Information System (INIS)
Utilizing the integral equation approach to the hard sphere-- fluid system developed in the preceding paper, the hard sphere-hard wall interaction is studied. For the case of a flat wall, perturbation solutions of the integral equation valid to second and third order in the packing fraction, y, are derived. For a surface of arbitrary curvature, an equation of state valid to second order in the packing fraction is also derived. When applied to very small cavities, it is found that the pressure at high densities is significantly higher than it would be for a flat wall
Levesque, Maximilien; Borgis, Daniel; 10.1063/1.4734009
2012-01-01
Hard-sphere mixtures provide one a solvable reference system that can be used to improve the density functional theory of realistic molecular fluids. We show how the Kierlik-Rosinberg's scalar version of the fundamental measure density functional theory of hard spheres [Phys. Rev. A, {\\bf 42}, 3382 (1990)], which presents computational advantages with respect to the original Rosenfeld's vectorial formulation or its extensions, can be implemented and minimized in three dimensions to describe fluid mixtures in complex environments. This implementation is used as a basis for defining a molecular density functional theory of water around molecular hydrophobic solutes of arbitrary shape.
Liouvillian integrability of gravitating static isothermal fluid spheres
Iacono, Roberto; Llibre, Jaume
2014-10-01
We examine the integrability properties of the Einstein field equations for static, spherically symmetric fluid spheres, complemented with an isothermal equation of state, ρ = np. In this case, Einstein's equations can be reduced to a nonlinear, autonomous second order ordinary differential equation (ODE) for m/R (m is the mass inside the radius R) that has been solved analytically only for n = -1 and n = -3, yielding the cosmological solutions by De Sitter and Einstein, respectively, and for n = -5, case for which the solution can be derived from the De Sitter's one using a symmetry of Einstein's equations. The solutions for these three cases are of Liouvillian type, since they can be expressed in terms of elementary functions. Here, we address the question of whether Liouvillian solutions can be obtained for other values of n. To do so, we transform the second order equation into an equivalent autonomous Lotka-Volterra quadratic polynomial differential system in {R}^2, and characterize the Liouvillian integrability of this system using Darboux theory. We find that the Lotka-Volterra system possesses Liouvillian first integrals for n = -1, -3, -5, which descend from the existence of invariant algebraic curves of degree one, and for n = -6, a new solvable case, associated to an invariant algebraic curve of higher degree (second). For any other value of n, eventual first integrals of the Lotka-Volterra system, and consequently of the second order ODE for the mass function must be non-Liouvillian. This makes the existence of other solutions of the isothermal fluid sphere problem with a Liouvillian metric quite unlikely.
Liouvillian integrability of gravitating static isothermal fluid spheres
Energy Technology Data Exchange (ETDEWEB)
Iacono, Roberto, E-mail: roberto.iacono@enea.it [ENEA-C. R. Casaccia, Via Anguillarese 301, 00123 Roma (Italy); Llibre, Jaume, E-mail: jllibre@mat.uab.cat [Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain)
2014-10-01
We examine the integrability properties of the Einstein field equations for static, spherically symmetric fluid spheres, complemented with an isothermal equation of state, ρ = np. In this case, Einstein's equations can be reduced to a nonlinear, autonomous second order ordinary differential equation (ODE) for m/R (m is the mass inside the radius R) that has been solved analytically only for n = -1 and n = -3, yielding the cosmological solutions by De Sitter and Einstein, respectively, and for n = -5, case for which the solution can be derived from the De Sitter's one using a symmetry of Einstein's equations. The solutions for these three cases are of Liouvillian type, since they can be expressed in terms of elementary functions. Here, we address the question of whether Liouvillian solutions can be obtained for other values of n. To do so, we transform the second order equation into an equivalent autonomous Lotka–Volterra quadratic polynomial differential system in R² and characterize the Liouvillian integrability of this system using Darboux theory. We find that the Lotka–Volterra system possesses Liouvillian first integrals for n = -1, -3, -5, which descend from the existence of invariant algebraic curves of degree one, and for n = -6, a new solvable case, associated to an invariant algebraic curve of higher degree (second). For any other value of n, eventual first integrals of the Lotka–Volterra system, and consequently of the second order ODE for the mass function must be non-Liouvillian. This makes the existence of other solutions of the isothermal fluid sphere problem with a Liouvillian metric quite unlikely.
Liouvillian integrability of gravitating static isothermal fluid spheres
International Nuclear Information System (INIS)
We examine the integrability properties of the Einstein field equations for static, spherically symmetric fluid spheres, complemented with an isothermal equation of state, ρ = np. In this case, Einstein's equations can be reduced to a nonlinear, autonomous second order ordinary differential equation (ODE) for m/R (m is the mass inside the radius R) that has been solved analytically only for n = −1 and n = −3, yielding the cosmological solutions by De Sitter and Einstein, respectively, and for n = −5, case for which the solution can be derived from the De Sitter's one using a symmetry of Einstein's equations. The solutions for these three cases are of Liouvillian type, since they can be expressed in terms of elementary functions. Here, we address the question of whether Liouvillian solutions can be obtained for other values of n. To do so, we transform the second order equation into an equivalent autonomous Lotka–Volterra quadratic polynomial differential system in R2, and characterize the Liouvillian integrability of this system using Darboux theory. We find that the Lotka–Volterra system possesses Liouvillian first integrals for n = −1, −3, −5, which descend from the existence of invariant algebraic curves of degree one, and for n = −6, a new solvable case, associated to an invariant algebraic curve of higher degree (second). For any other value of n, eventual first integrals of the Lotka–Volterra system, and consequently of the second order ODE for the mass function must be non-Liouvillian. This makes the existence of other solutions of the isothermal fluid sphere problem with a Liouvillian metric quite unlikely
The quantum Talbot effect on a sphere
Energy Technology Data Exchange (ETDEWEB)
Hannay, J H; Lockwood, Amy [H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)
2008-10-03
Any quantum (Schroedinger) wavefunction on a sphere is necessarily periodic in time. The corresponding statement down one dimension, for a circular line instead, is the quantum version of the 'Talbot effect' for a diffraction grating in paraxial optics (which is fully analogous to quantum mechanics). In the circle case the 'revival' of any initial wavefunction at the period, or 'Talbot time', is accompanied by a kind of partial revival at any rational fraction of the period, increasing in complexity for less simple fractions. In particular, any piecewise constant initial wavefunction is again piecewise constant at such times. By contrast, in the sphere case, the simplest piecewise constant wave, constant on hemispheres is shown not to retain its piecewise constancy at rational fractions of the period, but instead, rather strikingly, to develop infinities at calculable locations. The calculation requires the uniform asymptotic form of the Legendre polynomials together with the Poisson sum formula leading to Gauss sums.
Analysis of rainbow scattering by a chiral sphere.
Shang, Qing-Chao; Wu, Zhen-Sen; Qu, Tan; Li, Zheng-Jun; Bai, Lu; Gong, Lei
2013-09-23
Based on the scattering theory of a chiral sphere, rainbow phenomenon of a chiral sphere is numerically analyzed in this paper. For chiral spheres illuminated by a linearly polarized wave, there are three first-order rainbows, with whose rainbow angles varying with the chirality parameter. The spectrum of each rainbow structure is presented and the ripple frequencies are found associated with the size and refractive indices of the chiral sphere. Only two rainbow structures remain when the chiral sphere is illuminated by a circularly polarized plane wave. Finally, the rainbows of chiral spheres with slight chirality parameters are found appearing alternately in E-plane and H-plane with the variation of the chirality. PMID:24104080
Brouwers, H.J.H.
2008-01-01
In a previous paper analytical equations were derived for the packing fraction of crystalline structures consisting of bimodal randomly placed hard spheres H. J. H. Brouwers, Phys. Rev. E 76, 041304 2007. The bimodal packing fraction was derived for the three crystalline cubic systems: viz., face-ce
THE ROLE OF THE RETIREMENT INCOME SPHERE ADMINISTRATION WITHIN THE ECONOMIC SECURITY OF THE STATE
Левківський, Василь Миколайович
2014-01-01
The article concerns the categorical analysis of the concept of administration definition. It has been carried out the importance of the social administration in the development of the pension system. It has been determined the role of the administration in the pension sphere in promoting the economic security of the state.
Lemaillet, Paul; Bouchard, Jean-Pierre; Hwang, Jeeseong; Allen, David W.
2015-12-01
There is a need for a common reference point that will allow for the comparison of the optical properties of tissue-mimicking phantoms. After a brief review of the methods that have been used to measure the phantoms for a contextual backdrop to our approach, this paper reports on the establishment of a standardized double-integrating-sphere platform to measure absorption and reduced scattering coefficients of tissue-mimicking biomedical phantoms. The platform implements a user-friendly graphical user interface in which variations of experimental configurations and model-based analysis are implemented to compute the coefficients based on a modified inverse adding-doubling algorithm allowing a complete uncertainty evaluation. Repeatability and validation of the measurement results of solid phantoms are demonstrated for three samples of different thicknesses, d=5.08 mm, 7.09 mm, and 9.92 mm, with an absolute error estimate of 4.0% to 5.0% for the absorption coefficient and 11% to 12% for the reduced scattering coefficient (k=2). The results are in accordance with those provided by the manufacturer. Measurements with different polarization angles of the incident light are also presented, and the resulting optical properties were determined to be equivalent within the estimated uncertainties.
Negotiating Islam in Emerging Public Spheres in Contemporary Tajikistan
Nozimova, Shahnoza; Epkenhans, Tim
2013-01-01
Over the past decade, the Internet has emerged as a new public sphere in the Central Asian republic of Tajikistan in particular for negotiating ‘Islam’ – religious belief, practice and morality. Whilst the authoritarian regime severely restricts the ‘traditional’ public spheres, the Internet has proven to be more resilient and elusive to government control. Blocked web pages move to other domains, and, in particular, labour migration has ‘denationalized’ public spheres. Additionally, the Inte...
Random close packing fractions of lognormal distributions of hard spheres
Farr, Robert S.
2013-01-01
We apply a recent one-dimensional algorithm for predicting random close packing fractions of polydisperse hard spheres [Farr and Groot, J. Chem. Phys. 133, 244104 (2009)] to the case of lognormal distributions of sphere sizes and mixtures of such populations. We show that the results compare well to two much slower algorithms for directly simulating spheres in three dimensions, and show that the algorithm is fast enough to tackle inverse problems in particle packing: designing size distributi...
Optimized recentered confidence spheres for the multivariate normal mean
Abeysekera, Waruni; Kabaila, Paul
2014-01-01
Casella and Hwang, 1983, JASA, introduced a broad class of recentered confidence spheres for the mean theta of a multivariate normal distribution with covariance matrix sigma^2 I, for sigma^2 known. Both the center and radius functions of these confidence spheres are flexible functions of the data. For the particular case of confidence spheres centered on the positive-part James-Stein estimator and with radius determined by empirical Bayes considerations, they show numerically that these conf...
Hollow sphere, a flexible multimode Gravitational Wave antenna
Lobo, J. Alberto
2001-01-01
Hollow spheres have the same theoretical capabilities as the usual solid ones, since they share identical symmetries. The hollow sphere is however more flexible, as thickness is an additional parameter one can vary to approach given specifications. I will briefly discuss the more relevant properties of the hollow sphere as a GW detector (frequencies, cross sections), and suggest some scenarios where it can generate significant astrophysical information.
Oil capture from a water surface by a falling sphere
Smolka, Linda; McLaughlin, Clare; Witelski, Thomas
2015-11-01
When a spherical particle is dropped from rest into an oil lens that floats on top of a water surface, a portion of the oil adheres to the sphere. Once the sphere comes to rest at the subsurface, the oil forms a pendant drop that remains attached in equilibrium to the sphere effectively removing oil from the water surface. Best fit solutions of the Laplace equation to experimental profiles are used to investigate the parameter dependence of the radius of curvature and the filling and contact angles at the three-phase contact line of the pendant drop for spheres with different wetting properties, densities and radii. The volume of oil captured by a sphere increases with a sphere's mass and diameter. However, lighter and smaller spheres capture more oil relative to their own volume than do heavier and larger spheres (scaling with the sphere mass ~M - 0 . 544) and are thus more efficient at removing oil from a water surface. The authors wish to acknowledge the support of the National Science Foundation Grant Nos. DMS-0707755 and DMS-0968252.
On $k$-stellated and $k$-stacked spheres
Bagchi, Bhaskar; Datta, Basudeb
2012-01-01
We introduce the class $\\Sigma_k(d)$ of $k$-stellated (combinatorial) spheres of dimension $d$ ($0 \\leq k \\leq d + 1$) and compare and contrast it with the class ${\\cal S}_k(d)$ ($0 \\leq k \\leq d$) of $k$-stacked homology $d$-spheres. We have $\\Sigma_1(d) = {\\cal S}_1(d)$, and $\\Sigma_k(d) \\subseteq {\\cal S}_k(d)$ for $d \\geq 2k - 1$. However, for each $k \\geq 2$ there are $k$-stacked spheres which are not $k$-stellated. The existence of $k$-stellated spheres which are not $k$-stacked remains...
CER-MET SPHERE-PAC fuel potential
International Nuclear Information System (INIS)
During operation of the fuel rods in an LWR core the low thermal conductivity of oxide fuel causes high temperatures in the fuel column. This imposes restrictions on the permissible power increases of the fuel rods during in-reactor operation. In a joint KEMA-ECN-GKN programme the applicability of a 3-fraction mixture of large MOX spheres with medium and small natural UO2 spheres in an 88 percent smear density sphere-pac columns of LWR fuel rods has been shown. A 3-fraction CER-MET sphere-pac fuel column of large UO2 or MOX spheres with medium and small spheres of a metal alloy, has a much higher thermal conductivity than pure oxide fuel. Sooner or later uranium becomes scarcer and plutonium from reprocessing plants has to be used in LWR fuel. Then, for CER-MET sphere-pac fuel only 1 fraction has to be fabricated from the plutonium of the reprocessing plants. Moreover, thanks to the low operation temperatures in the CER-MET sphere-pac fuel column the restrictions on power increases become less stringent and the stored heat in the core is lower than in pure oxide cores. The major material aspects of this new CER-MET sphere-pac fuel are presented here. (author). 19 refs.; 7 tabs
Synthesis and Characterization of Oil-Chitosan Composite Spheres
Huang, Keng-Shiang; Wang, Chih-Yu; Yang, Chih-Hui; Grumezescu, Alexandru; Lin, Yung-Sheng; Kung, Chao-Pin; Lin, I-Yin; Chang, Yi-Ching; Weng, Wei-Jie; Wang, Wei-Ting
2013-01-01
Oil-chitosan composite spheres were synthesized by encapsulation of sunflower seed oil in chitosan droplets, dropping into NaOH solution and in situ solidification. Hydrophilic materials (i.e., iron oxide nanoparticles) and lipophilic materials (i.e., rhodamine B or epirubicin) could be encapsulated simultaneously in the spheres in a one step process. The diameters of the prepared spheres were 2.48 ± 0.11 mm (pure chitosan spheres), 2.31 ± 0.08 mm (oil-chitosan composites), 1.49 ± 0.15 mm (ir...
Method and apparatus for producing small hollow spheres
International Nuclear Information System (INIS)
A method and apparatus are described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T greater than or equal to 6000C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 103 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants
Human postprandial gastric emptying of 1-3-millimeter spheres
International Nuclear Information System (INIS)
Microspheres of pancreatin should empty from the stomachs of patients with pancreatic insufficiency as fast as food. The present study was undertaken in 26 healthy subjects to identify the size of spheres that would empty from the stomach with food and to determine whether different meals alter this size. Spheres of predefined sizes were labeled with /sup 113m/In or /sup 99m/Tc. Using a gamma-camera, we studied the concurrent gastric emptying of spheres labeled with /sup 113m/In and of chicken liver labeled with /sup 99m/Tc in 100-g, 154-kcal or 420-g, 919-kcal meals, or the concurrent emptying of 1-mm vs. larger spheres. One-millimeter spheres emptied consistently (p less than 0.01, paired t-test) faster than 2.4- or 3.2-mm spheres when ingested together with either the 420- or 100-g meals. Thus, in the 1-3-mm range of diameters, sphere size was a more important determinant of sphere emptying than meal size. Statistical analyses indicated that spheres 1.4 +/- 0.3 mm in diameter with a density of 1 empty at the same rate as /sup 99m/Tc-liver. Our data indicate some commercially marketed microspheres of pancreatin will empty too slowly to be effective in digestion of food
IBM WebSphere Application Server 80 Administration Guide
Robinson, Steve
2011-01-01
IBM WebSphere Application Server 8.0 Administration Guide is a highly practical, example-driven tutorial. You will be introduced to WebSphere Application Server 8.0, and guided through configuration, deployment, and tuning for optimum performance. If you are an administrator who wants to get up and running with IBM WebSphere Application Server 8.0, then this book is not to be missed. Experience with WebSphere and Java would be an advantage, but is not essential.
Energy Technology Data Exchange (ETDEWEB)
Patrinoiu, Greta; Calderón-Moreno, Jose Maria; Culita, Daniela C. [Illie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania); Birjega, Ruxandra [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box Mg—27, Magurele, Bucharest (Romania); Ene, Ramona [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania); Carp, Oana, E-mail: ocarp@icf.ro [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania)
2013-06-15
A green template route for the synthesis of mesoscale solid ZnO spheres was ascertained. The protocol involves a double coating of the carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. The composites were characterized by FTIR spectroscopy, thermal analysis, scanning electron microscopy while the obtained ZnO spheres by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, N{sub 2} adsorption–desorption isotherms and photoluminescence investigations. A growth mechanism of the solid spheres is advanced based on these results. While the spheres' diameters and the mean size values of ZnO are independent on deposition order, the surface area and the external porosity are fairly dependent. The photoluminescence measurements showed interesting emission features, with emission bands in the violet to orange region. The spheres present high photocatalytical activity towards the degradation of phenol under UV irradiation, the main reaction being its mineralization. - Graphical abstract: A novel and eco-friendly methodology for the synthesis of mesoscale solid ZnO spheres was developed. The protocol involves a double coating of the starch-derived carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. - Highlights: • ZnO solid spheres are obtained via a template route using carbonaceous spheres. • Two-step coatings of interchangeable order are used as deposition procedure. • The coating procedure influences the porosity and surface area. • ZnO spheres exhibited interesting visible photoluminescence properties. • Solid spheres showed photocatalytical activity in degradation of phenol.
LIFT FORCE ON ROTATING SPHERE AT LOW REYNOLDS NUMBERS AND HIGH ROTATIONAL SPEEDS
Institute of Scientific and Technical Information of China (English)
由长福; 祁海鹰; 徐旭常
2003-01-01
The lift force on an isolated rotating sphere in a uniform flow was investigated by means of a three-dimensional numerical simulation for low Reynolds numbers (based on the sphere diameter) (Re ＜ 68.4) and high dimensionless rotational speeds (Γ＜ 5). The Navier-Stokes equations in Cartesian coordinate system were solved using a finite volume formulation based on SIMPLE procedure. The accuracy of the numerical simulation was tested through a comparison with available theoretical, numerical and experimental results at low Reynolds numbers, and it was found that they were in close agreement under the above mentioned ranges of the Reynolds number and rotational speed. From a detailed computation of the flow field around a rotational sphere in extended ranges of the Reynolds number and rotational speed, the results show that, with increasing the rotational speed or decreasing the Reynolds number, the lift coefficient increases. An empirical equation more accurate than those obtained by previous studies was obtained to describe both effects of the rotational speed and Reynolds number on the lift force on a sphere. It was found in calculations that the drag coefficient is not significantly affected by the rotation of the sphere. The ratio of the lift force to the drag force, both of which act on a sphere in a uniform flow at the same time, was investigated. For a small spherical particle such as one of about 100μm in diameter, even if the rotational speed reaches about 106 revolutions per minute, the lift force can be neglected as compared with the drag force.
Oyarzun, B.A.; Van Westen, T.; Vlugt, T.J.H.
2013-01-01
he liquid crystal phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids are studied by constant pressure Monte Carlo simulations. An extensive study on the phase behavior of linear fluids with a length of 7, 8, 9, 10, 11, 12, 13, 14, 15, and 20 beads is carried out. The phase behavior of partially flexible fluids with a total length of 8, 10, 14, and 15 beads and with different lengths for the linear part is als...
Institute of Scientific and Technical Information of China (English)
兰明建; 程发银
2009-01-01
将Parikh-Wilczek的半经典隧穿方法推广到动态Vaidya-Bonner黑洞.注意到Hawking辐射是黑洞事件视界附近由于真空涨落而引发的一种量子隧穿,在考虑辐射粒子自引力作用的情况下,计算了粒子的隧穿率及其相应的出射修正谱,结果满足量子理论的幺正性定理.%We extend Parikh and Wilczek's work to the Vaidya-Bonner black hole. We regard Hawking radiation as a tunneling process across the event horizon and calculate the tunneling probability when self-gravi-tation is taken into account. We also obtain the corresponding emission spectrum correction, the result is consist-ent with an underlying unitary theory.
DEFF Research Database (Denmark)
Holm, Torkil; Crossland, Ingolf
1996-01-01
Deuterium and 13C kinetic isotope effects (KIEs) have been determined for the conversion of methyl iodide into methyl radical via inner sphere ET (electron transfer) and via outer sphere ET. The alfa-deuterium KIE was found to be very high for in......Deuterium and 13C kinetic isotope effects (KIEs) have been determined for the conversion of methyl iodide into methyl radical via inner sphere ET (electron transfer) and via outer sphere ET. The alfa-deuterium KIE was found to be very high for in...
Unit quaternions and the Bloch sphere
International Nuclear Information System (INIS)
The spinor representation of spin-1/2 states can equally well be mapped to a single unit quaternion, yielding a new perspective despite the equivalent mathematics. This paper first demonstrates a useable map that allows Bloch-sphere rotations to be represented as quaternionic multiplications, simplifying the form of the dynamical equations. Left-multiplications generally correspond to non-unitary transformations, providing a simpler (essentially classical) analysis of time-reversal. But the quaternion viewpoint also reveals a surprisingly large broken symmetry, as well as a potential way to restore it, via a natural expansion of the state space that has parallels to second order fermions. This expansion to ‘second order qubits’ would imply either a larger gauge freedom or a natural space of hidden variables. (paper)
On the Torus Cobordant Cohomology Spheres
Indian Academy of Sciences (India)
Ali Özkurt; Doğan Dönmez
2009-02-01
Let be a compact Lie group. In 1960, P A Smith asked the following question: ``Is it true that for any smooth action of on a homotopy sphere with exactly two fixed points, the tangent -modules at these two points are isomorphic?" A result due to Atiyah and Bott proves that the answer is `yes’ for $\\mathbb{Z}_p$ and it is also known to be the same for connected Lie groups. In this work, we prove that two linear torus actions on $S^n$ which are -cobordant (cobordism in which inclusion of each boundary component induces isomorphisms in $\\mathbb{Z}$-cohomology) must be linearly equivalent. As a corollary, for connected case, we prove a variant of Smith’s question.
Particle tracks fitted on the Riemann sphere
Strandlie, A; Frühwirth, R; Lillekjendlie, B
2000-01-01
We present a novel method of fitting trajectories of charged particles in high-energy physics particle detectors. The method fits a circular arc to two-dimensional measurements by mapping the measurements onto the Riemann sphere and fitting a plane to the transformed coordinates of the measurements. In this way, the non- linear task of circle fitting, which in general requires the application of some iterative procedure, is turned into a linear problem which can be solved in a fast, direct and non-iterative manner. We illustrate the usefulness of our approach by stating results from two simulation experiments of tracks from the ATLAS Inner Detector Transition Radiation Tracker (TRT). The first experiment shows that with a significantly lower execution time, the accuracy of the estimated track parameters is virtually as good as the accuracy obtained by applying an optimal, non-linear least- squares procedure. The second experiment focuses on track parameter estimation in the presence of ambiguous measurements....
Algorithmic construction of static perfect fluid spheres
International Nuclear Information System (INIS)
Perfect fluid spheres, either Newtonian or relativistic, are the first step in developing realistic stellar models (or models for fluid planets). Despite the importance of these models, explicit and fully general solutions of the perfect fluid constraint in general relativity have only very recently been developed. In this paper we present a variant of Lake's algorithm wherein (1) we recast the algorithm in terms of variables with a clear physical meaning--the average density and the locally measured acceleration due to gravity, (2) we present explicit and fully general formulas for the mass profile and pressure profile, and (3) we present an explicit closed-form expression for the central pressure. Furthermore we can then use the formalism to easily understand the pattern of interrelationships among many of the previously known exact solutions, and generate several new exact solutions
Perfect fluid spheres in general relativity
International Nuclear Information System (INIS)
Spherically symmetric perfect fluid distributions in general relativity have been investigated under the assumptions of (i) uniform expansion or contraction and (ii) the validity of an equation of state of the form p=p(rho) with nonuniform density. An exact solution which is equivalent to a solution found earlier by Wyman is obtained and it is shown that the solution is unique. The boundary conditions at the interface of fluid distribution and the exterior vacuum are discussed and as a consequence the following theorem is established: Uniform expansion or contraction of a perfect fluid sphere obeying an equation of state with nonuniform density is not admitted by the field equations. It is further shown that the Wyman metric is not suitable on physical grounds to represent a cosmological solution. (author)
Unit quaternions and the Bloch sphere
Wharton, K. B.; Koch, D.
2015-06-01
The spinor representation of spin-1/2 states can equally well be mapped to a single unit quaternion, yielding a new perspective despite the equivalent mathematics. This paper first demonstrates a useable map that allows Bloch-sphere rotations to be represented as quaternionic multiplications, simplifying the form of the dynamical equations. Left-multiplications generally correspond to non-unitary transformations, providing a simpler (essentially classical) analysis of time-reversal. But the quaternion viewpoint also reveals a surprisingly large broken symmetry, as well as a potential way to restore it, via a natural expansion of the state space that has parallels to second order fermions. This expansion to ‘second order qubits’ would imply either a larger gauge freedom or a natural space of hidden variables.
Synthesis and release of trace elements from hollow and porous hydroxyapatite spheres
International Nuclear Information System (INIS)
It is known that organic species regulate fabrication of hierarchical biological forms via solution methods. However, in this study, we observed that the presence of inorganic ions plays an important role in the formation and regulation of biological spherical hydroxyapatite formation. We present a mineralization method to prepare ion-doped hydroxyapatite spheres with a hierarchical structure that is free of organic surfactants and biological additives. Porous and hollow strontium-doped hydroxyapatite spheres were synthesized via controlling the concentration of strontium ions in a calcium and phosphate buffer solution. Similarly, fluoride and silicon-doped hydroxyapatite spheres were synthesized. While spherical particle formation was attainable at low and high temperature for Sr-doped hydroxyapatite, it was only possible at high temperature in the F/Si-doped system. The presence of inorganic ions not only plays an important role in the formation and regulation of biological spherical hydroxyapatite, but also could introduce pharmaceutical effects as a result of trace element release. Such ion release results showed a sustained release with pH responsive behavior, and significantly influenced the hydroxyapatite re-precipitation. These ion-doped hydroxyapatite spheres with hollow and porous structure could have promising applications as bone/tooth materials, drug delivery systems, and chromatography supports.
Directory of Open Access Journals (Sweden)
Oleksandr Popov
2015-06-01
Full Text Available Purpose: exposure of conceptual and strategic positions of the complex marketing of sphere of physical culture and sport in the conditions of European integration of regional center. Material and Methods: analysis of literary sources, analysis of documents of legislative, normatively-legal and programmatic maintenance, analysis of the systems, questioning as a questionnaire. Results: the analysis of the systems of terms of development of sphere of physical culture and sport is carried out by the study of modern tendencies, interests of young people and habitants of regional center; complex description of conceptual and strategic positions of the relatively complex marketing of sphere of physical culture and sport is presented in the conditions of European integration of regional center. Conclusions: it is set that the decision of tasks in relation to conditioning for development of sphere of physical culture and sport must come true with the observance of certain principles; got founding in relation to development of marketing plan of forming of sporting image Kharkiv.
Social Justice and Education in the Public and Private Spheres
Power, Sally; Taylor, Chris
2013-01-01
This paper explores the complex relationship between social justice and education in the public and private spheres. The politics of education is often presented as a battle between left and right, the state and the market. In this representation, the public and the private spheres are neatly aligned on either side of the line of battle, and…
Administrative Methods of State Management in the Sphere of Customs
Мартюшевская, Елена Николаевна
2015-01-01
The article dedicates administrative methods of public administration in sphere of customs matters. The author pays attention on the definition of non-tariff measures with regard to non-tariff methods, also how to improve in existing science of classification of administrative methods of public administration in sphere of customs matters.
Computational Analysis of Wake Field Flow between Multiple Identical Spheres
Brand, Wesley; Greenslit, Morton; Klassen, Zach; Hastings, Jay; Matson, William
2014-11-01
It is well understood both that objects moving through a fluid perturb the motion of nearby objects in the same fluid and that some configurations of objects moving through a fluid have little inter-object perturbation, such as a flock of birds flying in a V-formation. However, there is presently no known method for predicting what configurations of objects will be stable while moving through a fluid. Previous work has failed to find such stable configurations because of the computational complexity of finding individual solutions. In this research, the motions of two spheres in water were simulated and combinations of those simulations were used to extrapolate the motions of multiple spheres and to find configurations where the lateral forces on each sphere were negligible and the vertical forces on each sphere were equivalent. Two and three sphere arrangements were simulated in COMSOL Multiphysics and Mathematica was used both to demonstrate that combinations of two sphere cases are identical to three sphere cases and to identify stable configurations of three or more spheres. This new approach is expected to simplify optimization of aerodynamic configurations and applications such as naval and aerospace architecture and racecar driving. Advisor.
Thermodynamic signature of the dynamic glass transition in hard spheres
Hermes, M; Dijkstra, M.
2010-01-01
We use extensive event-driven molecular dynamics simulations to study the thermodynamic, structural and dynamic properties of hard-sphere glasses. We determine the equation of state of the metastable fluid branch for hard spheres with a size polydispersity of 10%. Our results show a clear jump in th
Radioactive spheres without inactive wall for lesion simulation in PET
Energy Technology Data Exchange (ETDEWEB)
Bazanez-Borgert, M.; Bundschuh, R.A.; Herz, M.; Martinez, M.J.; Schwaiger, M.; Ziegler, S.I. [Klinik und Poliklinik fuer Nuklearmedizin, Klinikum rechts der Isar der Technischen Univ. Muenchen (Germany)
2008-07-01
With the growing importance of PET and PET/CT in diagnosis, staging, therapy monitoring and radiotherapy planning, appropriate tools to simulate lesions in phantoms are important. Normally hollow spheres, made of plastic or glass, which can be filled with radioactive solutions, are used. As these spheres have an inactive wall they do not reflect the real situation in the patient and lead to quantification errors in the presence of background activity. We propose spheres made of radioactive wax, which are easy to produce, give a high flexibility to the user and a more accurate quantification. These wax spheres were evaluated for their applicability in PET phantoms and it was found that the activity is not diffusing into the surrounding water in relevant quantities, that they show a sufficient homogeneity, and that their attenuation properties are equivalent to water for photons of PET energies. Recovery coefficients for the wax spheres were measured and compared with those obtained for fillable plastic spheres for diameters of 28, 16, 10, and 6 mm in the presence of background activity. Recovery coefficients of the wax spheres were found to be up to 21% higher than for the fillable spheres. (orig.)
Squeeze flow between a sphere and a textured wall
Energy Technology Data Exchange (ETDEWEB)
Chastel, T.; Mongruel, A., E-mail: anne.mongruel@upmc.fr [Physique et Mécanique des Milieux Hétérogènes, UMR 7636 CNRS–ESPCI, Université Pierre et Marie Curie–Université Paris-Diderot, 10 rue Vauquelin, 75231 Paris Cedex 05 (France)
2016-02-15
The motion of a millimetric sphere, translating in a viscous fluid towards a wettable textured wall, is investigated experimentally. The textures consist of square arrays of cylindrical or square micro-pillars, the height, width, and spacing of which are varied, keeping the periodicity small compared to the sphere radius. An interferometric device is used to measure the sphere vertical displacement, for distances between the sphere and the base of the pillars smaller than 0.1 sphere radius, and with a resolution of 200 nm. At a given distance from the top of the pillars, the sphere velocity is found to be significantly larger than the corresponding velocity for a smooth solid wall. A squeeze flow model of two adjacent fluid layers is developed in the lubrication approximation, one fluid layer having an effective viscosity that reflects the viscous dissipation through the array of pillars. The pressure field in the gap between the sphere and the textured surface is then used to obtain the drag force on the sphere and hence its velocity. Adjustment of the model to the velocity measurements yields the effective viscosity for a given texture. Finally, a correlation between the effective viscosity and the geometry of the pillar array is proposed.
Regions of attraction between like-charged conducting spheres
Lekner, John
2016-06-01
Two positively charged conducting spheres have been shown to attract at close enough range, unless they have a charge ratio that would result from contact. We give analytical results for the charge ratio at which the cross-over between electrostatic attraction and repulsion occurs, as a function of the sphere separation.
Maximum absorption by homogeneous magneto-dielectric sphere
DEFF Research Database (Denmark)
Palvig, Michael Forum; Breinbjerg, Olav; Willatzen, Morten
2014-01-01
n order to obtain a benchmark for electromagnetic energy harvesting, we investigate the maximum absorption efficiency by a magneto-dielectric homogeneous sphere illuminated by a plane wave, and we arrive at several novel results. For electrically small spheres we show that the optimal relative......–Mie theory combined with the optical theorem....
Meteor ablation spheres from deep-sea sediments
Blanchard, M. B.; Brownlee, D. E.; Bunch, T. E.; Hodge, P. W.; Kyte, F. T.
1978-01-01
Spheres from mid-Pacific abyssal clays (0 to 500,000 yrs old), formed from particles that completely melted and subsequently recrystallized as they separated from their meteoroid bodies, or containing relict grains of parent meteoroids that did not experience any melting were analyzed. The spheres were readily divided into three groups using their dominant mineralogy. The Fe-rich spheres were produced during ablation of Fe and metal-rich silicate meteoroids. The glassy spheres are considerably more Fe-rich than the silicate spheres. They consist of magnetite and an Fe glass which is relatively low in Si. Bulk compositions and relict grains are useful for determining the parent meteoroid types for the silicate spheres. Bulk analyses of recrystallized spheres show that nonvolatile elemental abundances are similar to chondrite abundances. Analysis of relict grains identified high temperature minerals associated with a fine-grained, low temperature, volatile-rich matrix. The obvious candidates for parent meteoroids of this type of silicate sphere is a carbonaceous chondrite.
Creeping Viscous Flow around a Heat-Generating Solid Sphere
DEFF Research Database (Denmark)
Krenk, Steen
1981-01-01
The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in close...... form and an application to the storage of heat-generating nuclear waste is discussed....
Free motion on the Poisson plane and sphere
Zakrzewski, S.
1996-01-01
Poisson plane and sphere --- homogeneous spaces of Poisson groups E(2) and SU(2) (resp.) --- have phase spaces (corresponding symplectic groupoids), in which a free Hamiltonian is naturally defined. We solve the equations of motion and point out some unexpected features: free motion on the plane is bounded (periodic) and free trajectories on the sphere are all circles except the big ones.
Actions of SL(n,Z) on homology spheres
Parwani, Kamlesh
2005-01-01
Any continuous action of SL(n,Z), where n > 2, on a r-dimensional mod 2 homology sphere factors through a finite group action if r < n - 1. In particular, any continuous action of SL(n+2,Z) on the n-dimensional sphere factors through a finite group action.
Seeded Synthesis of Monodisperse Core-Shell and Hollow Carbon Spheres.
Gil-Herrera, Luz Karime; Blanco, Álvaro; Juárez, Beatriz H; López, Cefe
2016-08-01
Monodisperse carbon spheres between 500 and 900 nm are hydrothermally synthesized from glucose on polystyrene seeds. Control over temperature, time, glucose concentration, and seed size yields hybrid spheres without aggregation and no additional spheres population. Pyrolysis transforms the hybrid into hollow carbon spheres preserving monodispersity. This approach provides a basis for functional carbon spheres applicable in photonics and energy storage. PMID:27337299
Oyarzún, Bernardo; van Westen, Thijs; Vlugt, Thijs J. H.
2013-05-01
The liquid crystal phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids are studied by constant pressure Monte Carlo simulations. An extensive study on the phase behavior of linear fluids with a length of 7, 8, 9, 10, 11, 12, 13, 14, 15, and 20 beads is carried out. The phase behavior of partially flexible fluids with a total length of 8, 10, 14, and 15 beads and with different lengths for the linear part is also determined. A precise description of the reduced pressure and of the packing fraction change at the isotropic-nematic coexistence was achieved by performing long simulation runs. For linear fluids, a maximum in the isotropic to nematic packing fraction change is observed for a chain length of 15 beads. The infinite dilution solubility of hard spheres in linear and partially flexible hard-sphere chain fluids is calculated by the Widom test-particle insertion method. To identify the effect of chain connectivity and molecular anisotropy on free volume, solubility is expressed relative to that of hard spheres in a hard sphere fluid at same packing fraction as relative Henry's law constants. A linear relationship between relative Henry's law constants and packing fraction is observed for all linear fluids. Furthermore, this linearity is independent of liquid crystal ordering and seems to be independent of chain length for linear chains of 10 beads and longer. The same linear relationship was observed for the solubility of hard spheres in nematic forming partially flexible fluids for packing fractions up to a value slightly higher than the nematic packing fraction at the isotropic-nematic coexistence. At higher packing fractions, the small flexibility of these fluids seems to improve solubility in comparison with the linear fluids.
Sampling theorems and compressive sensing on the sphere
McEwen, J D; Thiran, J -Ph; Vandergheynst, P; Van De Ville, D; Wiaux, Y
2011-01-01
We discuss a novel sampling theorem on the sphere developed by McEwen & Wiaux recently through an association between the sphere and the torus. To represent a band-limited signal exactly, this new sampling theorem requires less than half the number of samples of other equiangular sampling theorems on the sphere, such as the canonical Driscoll & Healy sampling theorem. A reduction in the number of samples required to represent a band-limited signal on the sphere has important implications for compressive sensing, both in terms of the dimensionality and sparsity of signals. We illustrate the impact of this property with an inpainting problem on the sphere, where we show superior reconstruction performance when adopting the new sampling theorem.
Quantum states of two particles on concentric spheres
Ezra, Gregory S.; Berry, R. Stephen
1983-10-01
The model of two particles on a sphere is extended to two particles on concentric spheres (POCS). The quantum states are found for two electrons, one on a sphere of radius 10 a.u. (simulating the shell n=3 in He) and the other, on spheres of 10, 15, 25, 50, and 100 a.u. The eigenvalues and densities ρ(θ12) exhibit a transition from collective, moleculelike behavior to independent-particle-like behavior with Russell-Saunders coupling. The parallel problem of two particles with electron masses interacting via a repulsive Gaussian potential is also treated and a similar transition from collective to independent-particle behavior found. The principal difference between the two cases is only the region of radius of the larger sphere where the transition occurs.
Priority Guidelines Of The Service Sphere Development In Uzbekistan
Directory of Open Access Journals (Sweden)
Bakhtiyor Safarov
2011-04-01
Full Text Available The present research article is devoted to study the priorities of service sphere development in Uzbekistan. The comparative analysis of service sphere development during 1996-2009 were presented, survey of disperse territories, analysis and generalization methods used to identify trends in services sphere. Disperse markets were grouped into markets with high, medium and low development level. Retail trade is identified one of the most important components of service sphere in Uzbekistan. Retail turnover figures were predicted until 2013 used retrospective data for forecasting. Linear trend - trends of increase or decrease of index, visual analysis of time series dynamics(graphic presentation were used to solve the studied problem. Main priorities and targets in service sphere in Uzbekistan and it’s role in economy were determined.
An integrating sphere to measure CD from difficult samples
Castiglioni; Albertini
2000-05-01
Integrating spheres are widely used with UV-Vis and occasionally with infrared spectrophotometers to measure different types of samples, either in transmission mode (scattered transmission accessories) or in total/diffuse reflectance mode. We built a prototype sphere of the demountable type, which fits easily the sample compartment of a commercial CD spectropolarimeter, requiring neither any alignment nor the use of a dedicated photomultiplier. Samples can be inserted either at the sphere entrance (for scattered transmission mode) or in the center of the sphere (for total reflectance experiments). Selected experimental data are presented to evaluate sphere efficiency, its wavelength range and results with a single sample in different forms. Copyright 2000 Wiley-Liss, Inc. PMID:10790200
Holomorphic Two-Spheres in Complex Grassmann Manifold (2, 4)
Indian Academy of Sciences (India)
Xiaowei Xu; Xiaoxiang Jiao
2008-08-01
In this paper, we use the harmonic sequence to study the linearly full holomorphic two-spheres in complex Grassmann manifold (2,4). We show that if the Gaussian curvature (with respect to the induced metric) of a non-degenerate holomorphic two-sphere satisfies ≤ 2 (or ≥ 2), then must be equal to 2. Simultaneously, we show that one class of the holomorphic two-spheres with constant curvature 2 is totally geodesic. Concerning the degenerate holomorphic two-spheres, if its Gaussian curvature ≤ 1 (or ≥ 1), then =1. Moreover, we prove that all holomorphic two-spheres with constant curvature 1 in (2,4) must be (4)-equivalent.
SPHERE: a scalable multicast framework in overlay networks
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper presents Sphere, a scalable multicast framework in overlay network. Sphere is a highly efficient, self-organizing and robust multicast protocol overlayed on the Internet. The main contributions of this paper are twofold. First, Sphere organizes the control topology of overlay network in two directions: horizontal and vertical. The horizontal meshes are used to locate and organize hosts in tracks, and the vertical meshes are used to manage the data paths between tracks. Second, Sphere balances stress and stretch of the overlay network by assigning hosts into different tracks and clusters. This structure distributes stress on the multicast trees uniformly, and meantime makes path stretch as small as possible.Simulations results show that Sphere can support multicast with large group size and has good performance on organizing meshes and building data delivery trees.
Fabrication of beryllium spheres and its validation tests
International Nuclear Information System (INIS)
A sphere-pack blanket concept using small size spheres of beryllium is one of the promising design concept of the ITER blanket, because the sphere-pack can accommodate the size deformation due to neutron irradiation damage, helium swelling and cyclic temperature changes. Preliminary R and D for an industrial fabrication technology of beryllium spheres (1.0 ± 0.3 mm in diameter) has been started as part of feasibility study of Japanese blanket concept of layered sphere-pack configuration. The following tests were performed in the several demo-fabrications; feasibility of size distribution control, material characterization such as macroscopic and microscopic structure analysis, impurity analysis, and attainable packing density, mechanical integrity under various thermal cycling conditions. (author)
International Nuclear Information System (INIS)
Highlights: • Li4Ti5O12 (LTO) spheres are prepared by molten-salt and TiO2 spheres as template. • The LTO spheres are potential for using as anode for AC//LTO hybrid capacitor. • The AC//LTO hybrid supercapacitor presents good electrochemical performance. - Abstract: There is a growing demand for hybrid supercapacitor systems to combine the advantages of both lithium-ion battery and supercapacitors for the application of electric vehicles. We describe in this paper one kind of hybrid supercapacitor comprising spherical Li4Ti5O12 as negative electrode and activated carbon (AC) as positive electrode in the non-aqueous electrolyte. The Li4Ti5O12 spheres were synthesized using a LiCl-KCl molten-salt method and TiO2 spheres as the template. The Li4Ti5O12 spheres revealed high discharge capacity (168 mAh g−1 at 0.2 C), and a good capacity retention with high coulombic efficiency after cycling, which can be potential anode material for lithium ion batteries and negative material for hybrid supercapacitor. The AC//LTO hybrid supercapacitor exhibits excellent capacity retention of 93% after 500 cycles and offers higher energy density and power density than the AC//AC symmetric supercapacitor. The presented AC//LTO hybrid supercapacitor could be a competitive candidate for the promising energy storage devices
International Nuclear Information System (INIS)
We have developed an active magnetic levitation system that comprises a field-cooled disk-shaped or sphere-shaped HTS bulk and multiple ring-shaped electromagnets. In this system, the levitation height of HTS bulk can be controlled by adjusting the operating current of each electromagnet individually. Further, the application of the vertical noncontact levitation system is expected due to its levitation stability without mechanical supports. We assume that this system is applied to inertial nuclear fusion. However, one of the important issues is to achieve position control with high accuracy of the fusion fuel in order to illuminate the target evenly over the entire surface. Therefore, this system is applied to the levitation and position control of a sphere-shaped superconducting capsule containing nuclear fusion fuel. In this study, we designed and constructed a position control system for the sphere-shaped HTS bulk with a diameter of 5 mm by using numerical simulation based on hybrid finite element and boundary element analysis. We then carried out the experiment of levitation height and position control characteristics of the HTS bulk in this system. With regard to position control, accuracies within 59 μm are obtained
Recovering functions defined on the unit sphere by integration on a special family of sub-spheres
Salman, Yehonatan
2016-05-01
The aim of this article is to derive a reconstruction formula for the recovery of C1 functions, defined on the unit sphere {{{S}}}^{n - 1} , given their integrals on a special family of n - 2 dimensional sub-spheres. For a fixed point overline{a} strictly inside {{{S}}}^{n - 1} , each sub-sphere in this special family is obtained by intersection of {{{S}}}^{n - 1} with a hyperplane passing through overline{a} . The case overline{a} = 0 results in an inversion formula for the special case of integration on great spheres (i.e., Funk transform). The limiting case where pin {{{S}}}^{n - 1} and overline{a}→ p results in an inversion formula for the special case of integration on spheres passing through a common point in {{{S}}}^{n - 1}.
Double integrating spheres: A method for assessment of optical properties of biological tissues
Poppendieck, Wigand
2004-01-01
The determination of the optical properties of biological tissue is an important issue in laser medicine. The optical properties define the tissue´s absorption and scattering behaviour, and can be expressed by quantities such as the albedo, the optical thickness and the anisotropy coefficient. During this project, a measurement system for the determination of the optical properties was built up. The system consists of a double integrating sphere set-up to perform the necessary reflection and ...
Statistical mechanics of molecular fluids. The RHNC theory applied to hard dipolar spheres
International Nuclear Information System (INIS)
The RHNC (reference hipernetted chain) equation, together with an optimization criterion which extremalizes the Helmholtz free energy, is used to obtain structural, thermodynamic, and dielectric properties of a system made up of hard dipolar spheres. The comparison with simulation results is made in the same boundary conditions and then the properties of an infinite system are evaluated for a variaty of states at different densities and dipolar moments. (Author)
Directory of Open Access Journals (Sweden)
Doroshenko, Valentina Viktorivna
2012-11-01
Full Text Available The problems of financial support for reforming the heat supply sphere arediscussed in the article. The current state of heat supply sphere causes aggravation of many socioeconomicproblems, connected with low quality, low reliability and excessive power consumption ofheat supply system. The main reason for this is the high level of depreciation of main funds at allstages of the production cycle – from production to consumption of heat energy. The currentlegislation defined the priority of modernization of heat supply sphere, but it requires the significantamount of financial resources for the implementation of relevant investment projects. Due to theanalysis the domestic sources of financial support are very limited, but the use of foreign fundsincreases the financial dependence on external borrowings. This situation provides a high relevance of searching for domestic funds and it became the main objective of this research. Thefinal goal was to make a set of suggestions on improving the current mechanism of financialsupport for reforming the heat supply sphere at the expense of implementation of reserve not beinginvolved nowadays, namely, public funds. People are eager and able to spend their own savings tointroduce the most effective modern energy saving technology – per-apartment heating. Accordingto the wide experience, this technology meets each person needs in heat with a significantreduction of natural gas consumption spent on heating (including solving the problem of energytariffs, budget funds for compensation benefits, subsidies, difference in fees, for finance investmentprojects, etc.
Ionic liquid assisted hydrothermal fabrication of hierarchically organized γ-AlOOH hollow sphere
International Nuclear Information System (INIS)
Highlights: ► The γ-AlOOH hollow spheres were synthesized via an ionic liquid-assisted hydrothermal treatment. ► Ionic liquid plays an important role in the morphology of the product. ► Ionic liquid can be easily removed from the product and reused in next experiment. ► A “aggregation–solution–recrystallization” formation mechanism may occur in the system. -- Abstract: Hierarchically organized γ-AlOOH hollow spheres with nanoflake-like porous surface texture have been successfully synthesized via an ionic liquid-assisted hydrothermal synthesis method in citric acid monohydrate (CAMs). It was found that ionic liquid [bmim]+Cl− played an important role in the morphology of the product due to its strong interactions with reaction particles. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). The results show that the product has narrow particle size distribution (500–900 nm particle diameter range), high specific surface area (240.5 m2/g) and large pore volume (0.61 cm3/g). The corresponding γ-Al2O3 hollow spheres can be obtained by calcining it at 550 °C for 3 h. The proposed formation mechanism and other influencing factors of the γ-AlOOH hollow sphere material, such as reaction temperature, reaction duration, CAMs and urea, have also been investigated.
Analytical solution for the lubrication force between two spheres in a bi-viscous fluid
Vázquez-Quesada, A.; Ellero, M.
2016-07-01
An analytical solution for the calculation of the normal lubrication force acting between two moving spheres embedded in a shear-thinning fluid represented by a bi-viscous model is provided. The resulting force between the suspended spheres exhibits a consistent transition between the Newtonian constant-viscosity limits and it reduces to the well-known standard Newtonian lubrication theory for viscosity-ratio approaching one. Effects of several physical parameters of the theory are analyzed under relevant physical conditions, i.e., for a prototypical case of two non-colloidal spheres immersed in a non-Newtonian fluid with rheology parameterized by a bi-viscosity model. Topological results for high/low-viscosity regions in the gap between spheres are also analyzed in detail showing a rich phenomenology. The presented model enables the extension of lubrication dynamics for suspensions interacting with non-Newtonian matrices and provides a clean theoretical framework for new numerical computations of flow of dense complex particulate systems.
Emissivity measurements of shocked tin using a multi-wavelength integrating sphere
Energy Technology Data Exchange (ETDEWEB)
Seifter, A; Holtkamp, D B; Iverson, A J; Stevens, G D; Turley, W D; Veeser, L R; Wilke, M D
2011-11-01
Pyrometric measurements of radiance to determine temperature have been performed on shock physics experiments for decades. However, multi-wavelength pyrometry schemes sometimes fail to provide credible temperatures in experiments, which incur unknown changes in sample emissivity, because an emissivity change also affects the spectral radiance. Hence, for shock physics experiments using pyrometry to measure temperatures, it is essential to determine the dynamic sample emissivity. The most robust way to determine the normal spectral emissivity is to measure the spectral normal-hemispherical reflectance using an integrating sphere. In this paper we describe a multi-wavelength (1.6–5.0 μm) integrating sphere system that utilizes a “reversed” scheme, which we use for shock physics experiments. The sample to be shocked is illuminated uniformly by scattering broadband light from inside a sphere onto the sample. A portion of the light reflected from the sample is detected at a point 12° from normal to the sample surface. For this experiment, we used the system to measure emissivity of shocked tin at four wavelengths for shock stress values between 17 and 33 GPa. The results indicate a large increase in effective emissivity upon shock release from tin when the shock is above 24–25 GPa, a shock stress that partially melts the sample. We also recorded an IR image of one of the shocked samples through the integrating sphere, and the emissivity inferred from the image agreed well with the integrating-sphere, pyrometer-detector data. Here, we discuss experimental data, uncertainties, and a data analysis process. We also describe unique emissivity-measurement problems arising from shock experiments and methods to overcome such problems.
Integrated marketing communications in educational sphere
Baranova, A. S.; Баранова, А. С.
2013-01-01
The article investigates the paradigm of Integrated Marketing Communication and their main features. The author explains concept of Integrated Marketing Communication on the practical example in educational sphere. В статье рассказывается о понятии и основных чертах интегрированных маркетинговых коммуникаций. Автор поясняет положения концепции интегрированных маркетинговых коммуниакций на конкретном примере в образовательной сфере....
Measurement of Neutron Transmission Through Iron Spheres
International Nuclear Information System (INIS)
We have measured the transmission of neutrons through iron spheres with several different neutron sources. The D(d,n) reaction and the 15N(n,p) reaction were found to be the best candidates for nearly monoenergetic sources at energies below 11 MeV. We have used a quasi monoenergetic source with 3.0-, 5.0-, and 7.0-MeV deuterons incident on a deuteron gas cell and 5.1-MeV protons incident on a 15N gas cell. The Ohio University Beam Swinger Facility was used in these measurements. This allowed a single fixed detector in a well-shielded time-of-flight (TOF) tunnel to be used for measurements at all angles. This allows a great reduction in the background from room scattered neutrons. The detector, either NE-213 or lithium glass, was calibrated relative to the neutron spectrum from the B(d,n) or the Al(d,n) source reaction. These spectra have been measured relative to the primary neutron standard, 235U(n, f). The transmitted neutrons have been measured for all source reactions at several angles. The data will be reported as the number of neutrons versus time-of-flight since multiple scattering does not allow the energy to be determined accurately by time-of-flight. We have also measured the source reaction at several angles to enhance the modeling of the source spectrum
Bubble entrapment during sphere impact onto quiescent liquid surfaces
Marston, Jeremy
2011-06-20
We report observations of air bubble entrapment when a solid sphere impacts a quiescent liquid surface. Using high-speed imaging, we show that a small amount of air is entrapped at the bottom tip of the impacting sphere. This phenomenon is examined across a broad range of impact Reynolds numbers, 0.2 a Re = (DU0/Il) a 1.2\\' 105. Initially, a thin air pocket is formed due to the lubrication pressure in the air layer between the sphere and the liquid surface. As the liquid surface deforms, the liquid contacts the sphere at a finite radius, producing a thin sheet of air which usually contracts to a nearly hemispherical bubble at the bottom tip of the sphere depending on the impact parameters and liquid properties. When a bubble is formed, the final bubble size increases slightly with the sphere diameter, decreases with impact speed but appears independent of liquid viscosity. In contrast, for the largest viscosities tested herein, the entrapped air remains in the form of a sheet, which subsequently deforms upon close approach to the base of the tank. The initial contact diameter is found to conform to scalings based on the gas Reynolds number whilst the initial thickness of the air pocket or adimplea scales with a Stokes\\' number incorporating the influence of the air viscosity, sphere diameter and impact speed and liquid density. © 2011 Cambridge University Press.
Radar Imaging of Spheres in 3D using MUSIC
Energy Technology Data Exchange (ETDEWEB)
Chambers, D H; Berryman, J G
2003-01-21
We have shown that multiple spheres can be imaged by linear and planar EM arrays using only one component of polarization. The imaging approach involves calculating the SVD of the scattering response matrix, selecting a subset of singular values that represents noise, and evaluating the MUSIC functional. The noise threshold applied to the spectrum of singular values for optimal performance is typically around 1%. The resulting signal subspace includes more than one singular value per sphere. The presence of reflections from the ground improves height localization, even for a linear array parallel to the ground. However, the interference between direct and reflected energy modulates the field, creating periodic nulls that can obscure targets in typical images. These nulls are largely eliminated by normalizing the MUSIC functional with the broadside beam pattern of the array. The resulting images show excellent localization for 1 and 2 spheres. The performance for the 3 sphere configurations are complicated by shadowing effects and the greater range of the 3rd sphere in case 2. Two of the three spheres are easily located by MUSIC but the third is difficult to distinguish from other local maxima of the complex imaging functional. Improvement is seen when the linear array is replace with a planar array, which increases the effective aperture height. Further analysis of the singular values and their relationship to modes of scattering from the spheres, as well as better ways to exploit polarization, should improve performance. Work along these lines is currently being pursued by the authors.
Forming MOFs into spheres by use of molecular gastronomy methods.
Spjelkavik, Aud I; Aarti; Divekar, Swapnil; Didriksen, Terje; Blom, Richard
2014-07-14
A novel method utilizing hydrocolloids to prepare nicely shaped spheres of metal-organic frameworks (MOFs) has been developed. Microcrystalline CPO-27-Ni particles are dispersed in either alginate or chitosan solutions, which are added dropwise to solutions containing, respectively, either divalent group 2 cations or base that act as gelling agents. Well-shaped spheres are immediately formed, which can be dried into spheres containing mainly MOF (>95 wt %). The spheronizing procedures have been optimized with respect to maximum specific surface area, shape, and particle density of the final sphere. At optimal conditions, well-shaped 2.5-3.5 mm diameter CPO-27-Ni spheres with weight-specific surface areas <10 % lower than the nonformulated CPO-27-Ni precursor, and having sphere densities in the range 0.8 to 0.9 g cm(-3) and particle crushing strengths above 20 N, can be obtained. The spheres are well suited for use in fixed-bed catalytic or adsorption processes. PMID:24964774
Synthesis and Characterization of Oil-Chitosan Composite Spheres
Directory of Open Access Journals (Sweden)
Wei-Ting Wang
2013-05-01
Full Text Available Oil-chitosan composite spheres were synthesized by encapsulation of sunflower seed oil in chitosan droplets, dropping into NaOH solution and in situ solidification. Hydrophilic materials (i.e., iron oxide nanoparticles and lipophilic materials (i.e., rhodamine B or epirubicin could be encapsulated simultaneously in the spheres in a one step process. The diameters of the prepared spheres were 2.48 ± 0.11 mm (pure chitosan spheres, 2.31 ± 0.08 mm (oil-chitosan composites, 1.49 ± 0.15 mm (iron-oxide embedded oil-chitosan composites, and 1.69 ± 0.1 mm (epirubicin and iron oxide encapsulated oil-chitosan composites, respectively. Due to their superparamagnetic properties, the iron-oxide embedded oil-chitosan composites could be guided by a magnet. A lipophilic drug (epirubicin could be loaded in the spheres with encapsulation rate measured to be 72.25%. The lipophilic fluorescent dye rhodamine B was also loadable in the spheres with red fluorescence being observed under a fluorescence microscope. We have developed a novel approach to an in situ process for fabricating oil-chitosan composite spheres with dual encapsulation properties, which are potential multifunctional drug carriers.
Synthesis and characterization of oil-chitosan composite spheres.
Huang, Keng-Shiang; Wang, Chih-Yu; Yang, Chih-Hui; Grumezescu, Alexandru Mihai; Lin, Yung-Sheng; Kung, Chao-Pin; Lin, I-Yin; Chang, Yi-Ching; Weng, Wei-Jie; Wang, Wei-Ting
2013-01-01
Oil-chitosan composite spheres were synthesized by encapsulation of sunflower seed oil in chitosan droplets, dropping into NaOH solution and in situ solidification. Hydrophilic materials (i.e., iron oxide nanoparticles) and lipophilic materials (i.e., rhodamine B or epirubicin) could be encapsulated simultaneously in the spheres in a one step process. The diameters of the prepared spheres were 2.48 ± 0.11 mm (pure chitosan spheres), 2.31 ± 0.08 mm (oil-chitosan composites), 1.49 ± 0.15 mm (iron-oxide embedded oil-chitosan composites), and 1.69 ± 0.1 mm (epirubicin and iron oxide encapsulated oil-chitosan composites), respectively. Due to their superparamagnetic properties, the iron-oxide embedded oil-chitosan composites could be guided by a magnet. A lipophilic drug (epirubicin) could be loaded in the spheres with encapsulation rate measured to be 72.25%. The lipophilic fluorescent dye rhodamine B was also loadable in the spheres with red fluorescence being observed under a fluorescence microscope. We have developed a novel approach to an in situ process for fabricating oil-chitosan composite spheres with dual encapsulation properties, which are potential multifunctional drug carriers. PMID:23681059
Hard spheres at a planar hard wall: Simulations and density functional theory
Directory of Open Access Journals (Sweden)
R.L. Davidchack
2016-03-01
Full Text Available Hard spheres are a central and important model reference system for both homogeneous and inhomogeneous fluid systems. In this paper we present new high-precision molecular-dynamics computer simulations for a hard sphere fluid at a planar hard wall. For this system we present benchmark data for the density profile ρ(z at various bulk densities, the wall surface free energy γ, the excess adsorption Γ, and the excess volume v_{ex}, which is closely related to Γ. We compare all benchmark quantities with predictions from state-of-the-art classical density functional theory calculations within the framework of fundamental measure theory. While we find overall good agreement between computer simulations and theory, significant deviations appear at sufficiently high bulk densities.